第3章 漓江流域の水環境

3. 鴻江流域の水環境

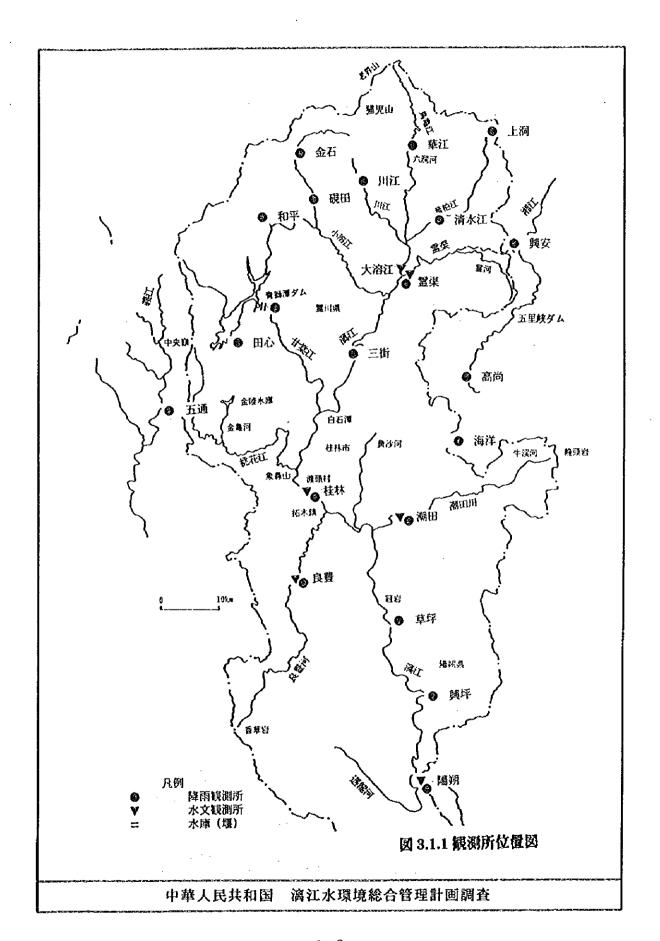
3.1 水文、水理

3.1.1 流域の概要

漓江は、桂江上中流部の俗称で、興安県華江郷老山界南麓に源を発する鳥亀江を源流とし、桂林、陽朔などの都市を貫流しながら、南流して梧州市に於いて薄江に合流する全長 426km の河川である。このうち、桂林市区部分(草坪から甘棠江合流点にある憲川秦家まで)の延長は 49.3 km である。拓木鎮(良豊江合流点)から白石潭までの平均河床勾配は 0.32%であり、桂林から大溶江鎮までの平均河床勾配は 0.94%である。当調査の計画基準点である桂林水文観測所は、桃花江の合流点(市中央部)下流にあり、流域面積は 2,762km² である。また、調査対象流域最下流端にある陽朔水文観測所での流域面積は 5,582 km² である。流域内主要支川の概要については、流域支川概要表にまとめた。

表 3.1.1 流域内主要支川概要

河川名	流域面積	数要
大溶江	719km²	漓江の上流部の小溶江合流地点より上流で、川江、黄柏江が合流する司門
	1	前マアの区間の呼称である。途中湘江からの導水を受ける霊渠が合流する。
	İ	流域は大部分が林地で植生がよく地下水が豊富な浸潤河川であり、司門前よ
	1	し上流の河床勾配は 36.41% である。
靈渠	248km ²	霊渠は湘江からの導水を受け興安県溶江鎮に於いて漓江に合流する流路長
		48.2km の河川であり、平均河床勾配は 4.37%である。
小溶江	269km ²	小溶江は興安県金石郷上白江村に源を発し、南流して千家坪に於いて漓江
		に合流する流域面積 269km²、流路長 48.5km、平均河床勾配 8.06%の河川
		である。小溶江には、青獅潭ダムへの目的とする小溶江壌を計画中である。
桃花江	257km²	桃花江は中央嶺東南側に源を発し、象鼻山に於いて漓江に合流する流路長
(陽江)	i	65km (この内管理区域 46.9km、市内区域 9.2km) の河川である。
		椎山橋から五仙堤間での平均河床勾配は 0.44%であり、市門橋より下流域の
:		洪水疎通能力は、260m³/s から 300m³/s である。
		上流の支流である金亀河には金陵水庫(中型ダム)がある。
甘棠江	763km ²	甘棠江は、白石潭に於いて漓江に合流する支流で上流部に大型水庫(青漪
-		潭水庫) がある。
良豊江	528km ²	良豊江は、青草岩に源を発し、拓木の湖子岩に於いて漓江に合流する流路
(奇峰河)		長 69km(この内市区 31.5km)、平均河床勾配 1.82%の河川であり、渡江合流
		点から黄金堤までの平均河床勾配は 0.49%である。
潮田河	445km ²	潮田河は、霊川県大河江の竜頭岩に源を発する牛渓河を源流とし、西流し
		て霊川県大城に於いて漓江に合流する。


桂林市区は、漓江沿いに北から東南に延びているカルスト谷地にある。また、市区には 200 あまりの湖沼があり、その面積は、郊区で 12km²、城区で 1.65km²、市区全体では 13.65km²にも達する。漓江の洪水期は 3 月から 8 月、非洪水期は 9 月から 2 月であるが、5 月と 6 月に年流出量の 30%以上が集中する極めて流況の悪い河川で、洪水期の浸水と、非洪水期の渇水に悩まされている。

3.1.2 観測所

漓江流域では、28ヶ所の雨量観測所及び8ヶ所の水文観測所が確認されている。 水文水資源局によれば、降雨観測所の設置密度は250km²に1箇所程度と考えられて おり、調査対象流域の規模(陽朔水文観測所地点:5582km²)を考慮すると20ヶ所程 度の降雨観測所に於ける降雨記録が必要となる。当調査に於いては、降雨資料の収集 状況(状態)及び観測所位置等々を考慮して、資料収集状況表に示した19降雨観測所 を調査対象として選定した。また、流量資料は水利計画に於いて最も基本的な重要資 料であるので、水位資料しか得られていない桃花江観測所を除く全ての水文観測所を 対象とする。降雨観測所及び水文観測所位置を観測所位置図に示した。

表 3.1.2 資料収集状況

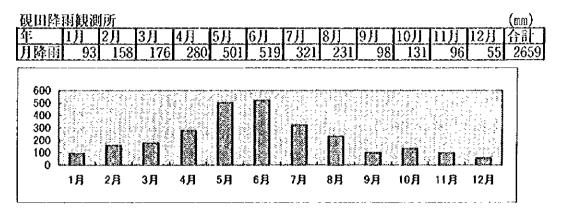
(降雨)					D: 日資料	} +:	部欠測		
観測所名	河川名	位置		開始年	1975	1980	1985	1990	1995
上祠	黄柏江	與安県中峰郷上洞村		1965	0000	(DIDDIDE	DEDEDI	000000	(D)
清水江	黄柏江	興安県厳関郷清水村		1965				a productiva	
興安	湘江	異安県湘江郷江辺村	1958				NE COLORD		
憲渠	霊渠	與安県溶江鎮		1956				apadala	
華江	六洞河	與安県華江郷千样村		1956		DOLD DE		XDED DICKE	10
HÌE	川江	與安県華江郷洞上村		1965				XOODOO	
金石	小溶江	與安県金石郷中利村		1965				XDDDDDD	
現田	小溶江	異安県金石輝規田村		1959				alalalak	
青萄潭	甘棠江	穩川県青獅潭公社前宅 材	ţ	1960					
三街	溶江	靈川県三街鎮三街村		1953				olokokok	
高尚	高尚江	與安県高尚公社上桂村		1969				adololol	
海洋	湘江	興安県海洋郷海洋村		1957				applopp	
五通	洛清江	臨柱県五通鎮五通村							
桂林	漓江	桂林市穿山鰯渡頭村		1917					
良豊	良豊河	臨柱県南辺山公社佛子口	3#1	1959			g d d d d d i	a de la la k	AD
潮田	潮田河	霊川県瀬田郷		1961				16000c	
草坪	漓江	桂林市草坪郷草坪村		1955			4 1 1 1 1	appopp	
與坪	演江	陽朔県與坪鎮万歴村		1959				ADDODE	[0]
陽朔	鴻江	陽朔県城関郷木山搾村		1943	DDD			addada	Q J
(流量)	g					·	- 		T
規劃所名		位置	流域面積		1975	1980	1985	1990	1995
大溶江	大溶江	與安県大溶江镇塩広村	719	1953			ODDOD		
霊渠	霊渠	與安県溶江镇	248						
青綺潭	甘棠江	霊川県青獅潭水庫	474						1PI
桃花江	桃花江	桂林市西門橋	257				dddddi		
良豊	良豊河	挂林市雁山鎮良豊村	224	1967				DODDOO	
潮田	潮田河	靈川県潮田郷島嶺村	428	9				DOODDE	
桂林	漓江	挂林市穿山辉渡頭村	2762		4 2 1 1 5			podpole	11
陽朔	鴻江	陽朔県城関郷木山搾村	5582	1967		deded	doddd		ADT.

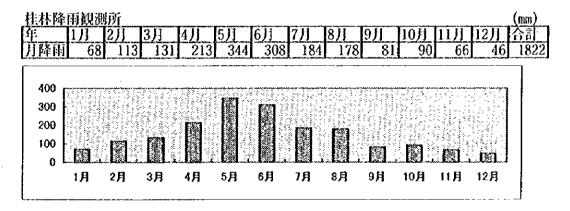
3.1.3 収集資料

当調査においては資料収集状況表に示した通り、1976 年から 1995 年までの至近 20 年について日降雨量及び日流量資料を収集整理した。

(1)降雨

対象 19 降雨観測所における 20 年間の年降雨量を次に示す。


表 3.1.3 年降雨量


年降雨	量(鴻	几上流)		<u> </u>					(mm/年)
年	上洞	清水江	興安	華江	用江.	金石	観刊	青梅潭	三街	霊渠
1976	2660	<u> </u>	2047	2867			3136	2744	2449	2673
1977	2216		2162	3076			2693	2343	2237	2391
1978,	1979		1597	2151			2141	2139	1849	2104
1979	2301	1479	1786	2429	2163	2501	2766	2497	1741	2023
1980	2341	2100	1968	2474	2490	2682	2735	2499	2123	2628
1981	2478	1915	1600	2465	2421	2539	2561	2263	2093	2109
1982	2416	2195	2121	2672	2739	2694	2964	2576	2461	2771
1983	2465	1729	1808	2632	2557	2887	2677	2559	2336	2546
1984	2293	1732	1403	2678	2522	2508	2458	2252	1439	1633
1985	2020	1813	1919	2058	2059	2058	2194	2082	1760	2053
1986	1892	1684	1355	2031	2062	2466	2221	2136	1625	1760
1987	2530	2411	1867	2875	2824	3503	3685	2874	2182	2294
1988	1817	1444	1168	2110	1986	2413	2309	2175	1583	1752
1989	2082	2187	1449	2291	2299	2251	2397	1964	1747	2152
1990	2369	2297	1867	2607	2776	2758	2889	2716	2109	2581
1991	2008	1898	1515	2192	2129	2344	2355	2112	1700	1671
1992	2502	2154	1799	2667	2711	2693	2486	2216	2277	2529
1993	2738	2874	2238	3471	3566	3222	3564	3222	2609	2807
1994	3078	3010	2291	3244	3427	3276	3320	3064	2423	2877
1995	1845	1788	1463	1813	1963	2061	2229	2020	1623	1797
平均	2301	2012	1771	2513	2511	2639	2659	2423	2018	2257

年降雨	量(鴻	[下流]							
年	高尚	海洋	五通	挂林	良豊	草坪	興坪	陽朔	潮田
1976	2007	1687	2429	2066	1957	2167	1948	1706	1828
1977	1996	1870	2092	2061	2232	1884	2024	1759	2236
1978	1777	1713	2189	1763	1565	1452	1238	1285	1548
1979	1551	1610	1999	1713	1639	1491	1416	1434	1596
1980	1907	1890	2139	2070	1870	1602	1591	1356	1856
1981	1905	1627	1795	1832	1768	1665	1479	1463	1480
1982		1809	2480	1938	1886	1621	1642	1706	1832
1983	1729	1586	2378	2029	2050	1814	1827	1636	1716
1984	1334	1300	1773	1429	1406	1218	1336	1369	1340
1985	1760	1640	1908	1610	1450	13 59	1504	1431	1561
1986	1532	1530	1622	1523	1413	1297	1481	1465	1299
1987	1879	1664	2104	1914	1761	1778	1580	1616	1715
1988	1364	1398	1944	1518	1439	1239	1147	1062	1547
1989	1516	1272	1756	1494	1424	1250	1183	1272	1285
1990	1989	1707	2078	1979	1790	1585	1553	1575	1710
1991	1466	1294	1681	1483	1472	1389	1159	1196	1609
1992	1919	1599	1692	1686	1597	1489	1324	1365	1512
1993	2419	2154	3119	2478	2421	2432	2219	1709	2244
1994	2258	1654	2675	2438	2682	2222	2212	2017	2389
1995	1423	1253	1820	1408	1597	1526	1541	1430	1400
平均	1785	1613	2084	1822	1771	1624	1570	1493	1685

年降雨量表から流域の降雨は、上流域で大きく下流域で小さい様子が見られる。

また、上流多雨域(観田)、中流域(桂林)及び下流小雨域(陽朔) に於ける至近 20 年間の平均月降雨量変動を降雨量の月変動図に示したが、量的に見れば 2659mm から 1493mm と地域差が大きいが、時間変動の傾向は全体的に一致していることが見られる。

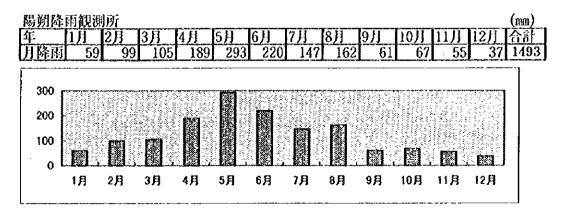


図 3.1.2 至近 20 年間(1976-1995)の降雨量の月変動

(2) 流量

当調査に於いては、対象 7 水文観測所における至近 20 年間の日流量資料をもとに 当該流域の流出特性を把握する。

各水文観測所の年平均流量と年平均比流量を流況表にまとめた。これから、以下の ことが判る。

- ①降雨が多い地域である上流域に位置する大溶江(719km²)及び霊渠水文観測所 (248km²)で 100km²当たりの比流量が大きくそれぞれ 5.40 及び 5.00 である。
- ②桂林水文観測所(2762km²)流域は、中流域の甘棠江や桃花江等々の支川を集めて 比流量は 4.71 と減少する。
- ③陽朔水文観測所(5582km²)では潮田河や良豊江等々の相対的に降雨の少ない下流 域からの流入を加え比流量は 3.82 と更に小さくなる。

ただし、桂林と陽朔の 2 水文観測所については、1987 年以降青獅潭が Aからの補給 の影響が含まれている。

(3) 桂林水文観測所に於ける流況

計画基準点である桂林水文観測所に於ける流量の至近 20 年平均(1976-1995)月変動は以下の通りである。これから見られるように、流出量は 3 月から 8 月までの洪水期に全期間の 80%を占め、流況が極めて悪い河川であることが判る。

流量の月変動(桂林水文観測所:1976-1995の20年平均)											(m^3/s)	ŀ	
月	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	平均
月流量	30	71	104	177	315	330	206	108	74	65	51	28	130

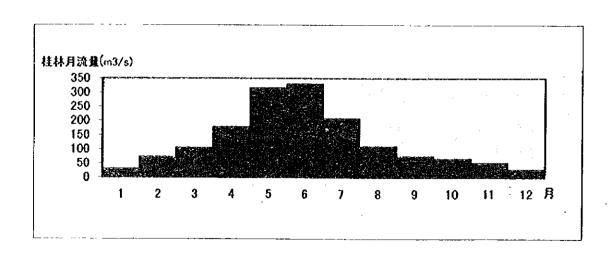


図 3.1.3 流量の月変動(桂林水文観測所:1976-1995 の 20 年平均)

また、至近 20 年(1976-1995)の流況を桂林水文観測所流況曲線として示す。

表 3.1.4 各水文観測所の流況

年平均	的流量	(m^3/s)				
年 大溶	I. 選集	桂林	良豊河	潮田河	湯朔	青獅潭
1976] 46.	86 15.28	157.74	10.33	14.05	250.67	29.51
1977 46.		135.71	12.40	17.25	251.14	27.99
1978 32.		119.54	8.25	13.74	197.96	22.98
1979 39.		127.32	7.93	14.02	208, 12	30.25
1980 40.	- Control of the Cont	130.87	9.02	12.81	212.02	28.84
1981 37.	CONTRACTOR OF THE PERSON NAMED OF THE PERSON N	122.03	8.30	13.52	201.63	23.01
1982 43.	The second secon	150.34	7.59	14.95	236.99	27.27
1983 41.		144.99	8.90	13.58	230.89	28.63
1984 37.		102.58	6.09	9.49	167.25	20.10
1985 30.		100.66	5, 64	12.59	176.52	21.03
1986 31.		90.42	6.15	10.69	164.00	21.00
1987 45.		139.09	7.47	13.45	217.53	32.41
1988 32.		113.67	5.80	10.03	170.63	27.24
1989	10.92	113.83	5.08	8.82	172.53	20.27
1990	11.63	122.38	7.19	13.55	205.72	25.89
1991	8.80	107.38	4.86	9.32	161.17	22.36
1992	13.04	146.36	6.97	14.65	234.21	24.81
1993	14.15	179.12	12.27	19.90	316.31	36.91
1994	16.25	186.62		18.46	312.97	36.34
1995	8.68	111.97	- H- H-	13.07	172.21	22.36
平均 38.	84 12.41	130.13	7.79	13.40	213.02	26.46

	年平均比	流量	$(m^3/s/100)$)km²)			
年	天溶江.	蹇渠	挂林	良豊河	潮田河	陽朔	青野草
1976	6.52	6.16	5.71	4.61	3, 28	4.49	6.23
1977	6.51	6.20	4.91	5.53	4.03	4.50	5.91
1978	4.48	4.92	4.33	3.68	3. 21	3.55	4.85
1979	5.45	4.71	4.61	3.54	3. 27	3.73	6.38
1980	5.60	5.41	4.74	4.03	2.99	3.80	6.08
1981	5.18	4.58	4.42	3.71	3. 16	3.61	4.86
1982	6.02	6.07	5.44	3.39	3.49	4.25	5.75
1983	5.81	5.42	5.25	3.97	3.17	4.14	6.01
1981	5.17	4.36	3.71	2.72	2.22	3.00	4. 24
1985	4.28	4.79	3.61	2.52	2.94	3.16	4.44
1986	4.35	3.72	3.27	2.75	2.50	2.94	4.43
1987	6.34	5.55	5.04	3.33	3.14	3.90	6.84
1988	4.52	4.52	4.12	2.59	2.34	3.06	5.75
1989		4.40	4.12	2.27	2.06	3.09	4.28
1990		4.69	4.43	3.21	3.17	3.69	5.46
1991		3.55	3.89	2.17	2.18	2.89	4.72
1992		5.26	5.30	3.11	3.42	4.20	5. 24
1993		5.71	6.49	5.48	4.65	5.67	7.79
1994		6.55	6.76		4.31	5.61	7.67
1995	-	3.50	4.05		3.05	3.09	4.72
平均	5.40	5.00	4.71	3.48	3. 13	3. 82	5.58

表 3.1.5 桂林水文観測所流況曲線

桂林流況						:				(m³/s)
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
年最大	3400	1170	2570	1590	1330	1740	1820	2230	2550	1630
15日流量	743	538	490	508	515	424	543	454	335	337
35日流量	350	348	266	280	295	273	260	301	187	208
豊木量(95)	127	157	93	140	154	134	153	150	99	116
平水量(185)	4 6	62	40	58	7 6	70	97	78	49	55
低水量(275)	25.3	33.5	25.9	29.0	31.2	40.2	58.6	47.4	29.7	27.1
渴水量(355)	7.7	13.7	12.1	12.2	12.5	15.5	20.6	16.6	15.2	13.0
年最小流量	6.9	13.0	10.0	10.4	10.2	12.1	19.3	14.7	12.2	9.8
桂林流況										
	198€	1987	1988	1989	1990	1991	1992	1993	1994	1995
年最大	1430	2260	1260	1510	1700	1119	2910	2100	3880	1190
15日流量	320	601	490	499	423	430	590	843	543	287
35日流量	206	281	214	259	288	206	369	455	290	220
费水量(95)	106	149	101	119	140	111	143	186	175	136
平木量(185)	46	78	63	50	56	69	53	77	103	73
 	22.8	32.3	41.4	30.2	31.5	36.5	31.2	44.8	58.9	44.9
渴水量(355)	8.6	15.1	23.2	9.3	17.5	27.7	12.6	13.2	14.3	27.2
年最小流量	7.2	13.3	13.1	7.4	8.2	23.7	8.1	8.2	11.4	21.4

(4) 桂林水文観測所に於ける長期の流況

計画基準点である桂林水文観測所に於いては長期にわたる流量観測資料がある、当 調査では資料が良く整理されている 1950 年から 1995 年までの 46 年間の最大流量、 最小流量及び年平均流量資料を入手し、桂林水文観測所流況表にまとめた(桂林及び 陽朔に於いては、1987 年以降は青獅潭ダムからの渇水補給を受けた後の値である)。

桂林水文観測所(2762km³)に於ける多年平均流量は 129.4m³/s、最大 186.6m³/s(1994)、最小 73.9m³/s(1963)であり、平水年 (P=50%) 流量に相当するのは 1988年で 129.2m³/s である。1/4 年(P=75%)規模に近いのは 1965年の 107.0m³/s であり、1/20年(P=95%) 規模に近いのは 1986年の 90.4m³/s である。

表 3.1.6 桂林水文観測所流況表 (1950~1995)

						桂林水文観》	則所(2762km²	·)
	Ĭ	洪水記録	- Northwest Hardell Was below		沿水記録			備考
		最高末位	最大流量		最低水板	最小流量	年平均流量	
年.	生起月日	El.m	m³/s	生起月日	El.m	m³/s	m³/s	
1950	50/05/01	145.72	1940	50/12/31	140.56	10.9	96.8	
1951	51/06/14	144.78		51/02/07	140.48	3.8	122.0	
1952	52/06/06	147.43	5250	52/12/25	140.60	5. 3	179.0	
1953	53/03/19	144.44	1470	53/01/12	140.58	8. 1	135.0	j
1951	54/01/25	147.06		54/11/16	140.48	5.0	155.0	
1955	55/07/27	146.97		55/01/29	140.47	4.5	90.6	
1956	56/05/10	146.33		56/12/09	140.48	5. 0	105.0	
1957	57/05/12	145.40	2480	57/01/06	140.47	5.5	107.0	
1958	58/07/29	143.86		58/12/20	140.63	7. 2	93.3	
1959	59/06/18	146.46		59/01/19	140.66	10.0	169.0	
1960	60/05/13	145.40		60/10/16	140.73	18.3	106.0	
1961	61/06/13	146.38		61/11/10	140.69	17.0	144.0	
1962	62/06/24	145.03		62/12/31	140.70	16.3	133.0	
1963	63/04/19	143.97		63/02/04	140.59	10.7	73.9	
1964	64/06/19	146.28		64/12/31	140.54	11.5	149.0	
1965	65/04/28	145.98		65/01/28	140.50	10.2	107.0	
1966	66/06/19	144.32		66/09/29	140.51	10.5	116.0	
1967	67/05/05	144.47		67/01/25	140.54	11.9	123.0	
1968	68/06/27	146.19		68/12/16	140.71	16.9	178.0	
1969	69/08/26	145.18		69/02/23	140.89	22.9	110.0	
1970	70/05/01	146.60		70/01/19	140.77	21.5	174.0	
1971	71/05/18	145.03		71/12/21	140.56	11.1	118.0	
1972	72/05/23	144.89	2030	72/01/27	140.50	6.1	109.0	
1973	73/05/26	145.24		73/12/31	140.57	9.6	130.0	
1974	74/07/18	146.80	4250	74/11/29	140.49	5.3	123. Ū	
1975	75/04/26	146.50	2550	75/01/00	140.58	9.5	130.0	
1976	76/07/09	146.94	4640	76/02/17	140.45	6.9	158.0	
1977	77/06/10	145.13		77/01/13	140.74	13.0	136.0	
1978	78/05/16	146.53		78/11/09	140.67	10.0	120.0	
1979	79/06/10	145.86		79/12/30	140.60	10.4	127.0	
1980	80/05/07	145.47		80/01/10	140.60	10.2	130.0	
1981	81/06/29	145. 10		81/01/01	140, 67	12.1	122.0	
1982	82/05/12	145.41		82/01/19	140.86	19.3	150.0	
1983	83/05/05	146.24		83/12/11	140.69	14.7	145.0	
1984	84/05/30	146.20		84/12/06	140.68	12.2	103.0	
1985	85/05/27	146.32	3490	85/12/31	140.70	9.8	101.0	
1986	86/07/06	144.79		86/01/14	140.60	7.2	90.4	
1987	87/05/26	146.86		87/01/01	140.60	13.3	139.0	
1988	88/09/03	145.31		88/12/08	140.48	13. 1	129.2	
1989	89/07/02	145.00		89/12/20	140. 18	7.4	113.8	
1990	90/03/23	145.87		90/01/04	140.21	8.2	146. 1	
1991	91/06/07	144.93		91/10/26	140.74	23.7	126.2	
1992	92/07/05	147.11		92/12/22	140.50	8.1	159.7	
1993	93/06/18	146. 10		93/02/12	140.44	8.2	179.1	
1994	94/06/17	147.06		91/01/28	140.44	11.4	186.6	
1995	95/05/25	144.87	1990	95/11/20	140.74	12.4	111.5	

3.2 水利用

3.2.1 流域の水資源と水収支

漓江流域の平均年降雨量は 1,900mm であり、総降水量は 108 億 m³である。このうち蒸発散により約 500mm (28 億 m³) が失われていると概算され、有効降雨量は 1,400mm (80 億 m³) 程度である。漓江に流出する水量は年 70 億 m³であり、10 億 m³が流域の地下水に涵嚢されている。また、現況では 0.9 億 m³が霊渠によって湘江から漓江に供給されている。

一方、現況 (1995 年) の水利用量は、河川木が 16.1 億 m³、地下水が 1.2 億 m³ で 水資源利用率は 22%である。利用目的別では都市用水が 1.4 億 m³、工業用水が 2.0 億 m³、農業用水が 13.9 億 m³であり、農業用水が全体の 80%を占めている。

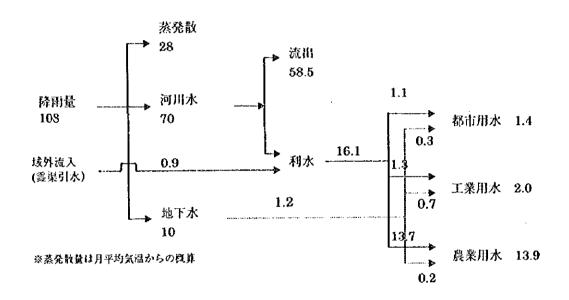


図 3.2.1 漓江流域の水収支(億 m³)

3.2.2 現況の水利用状況

水利用量に関する中国の一般的な統計は、取水方法の違いによって引水工程、提水工程及び蓄水工程に分けられているが、本調査では水資源に対する利用量を把握する観点から、表面水 (河川水、貯水池) と地下水に分けて検討する。このうち、地下水については次章 3.3 で記述することにし、ここでは河川水及び貯水池の利用について述べる。

(1)取水施設

河川取水施設は、流量が 1m³/s 未満の小規模なものを含めて約 2,700 箇所と多く 総取水量は 39.2m³/s である。図 3.2.2 に主要な河川取水地点をしめす。また、貯水 池の取水施設は容量が 100 万 m³以上のものが 30 箇所あり、総容量は 7.7 億 m³(青 獅潭ダム 6 億 m³) 、 総取水量は 54.2m³/s (青獅潭ダム 37.5m³/s) である。

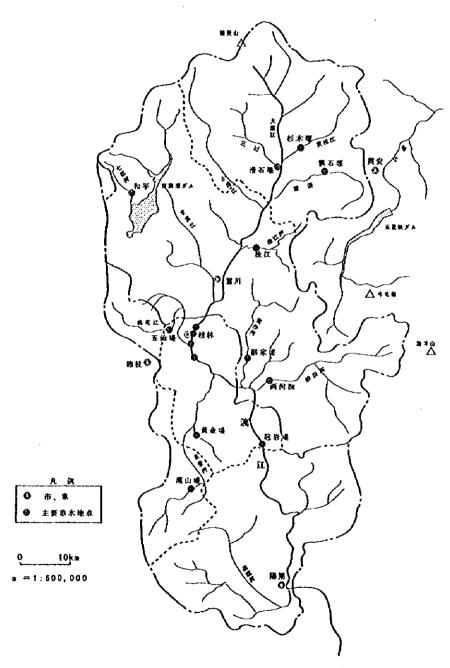


図 3.2.2 河川取水地点 (流域)

(2) 取水量の年次変化

地域別の取水量を過去 10 年間 (1986 年と 1995 年) で比較したものを表 3.2.1 にまとめる。これによれば、

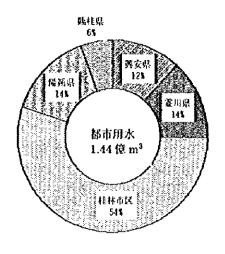
- ① 都市用水は、定住者の生活用水の他に、都市部(桂林市区)での観光客、短期定住者の使用水量及び公共用水が含まれている。取水量は、1986 年が 1.10 億 m³、1995 年が 1.44 億 m³と過去 10 年間で 0.34 億 m³増加している。地域的には桂林市区の影響が大きく全体の 54%を占める。これは、人口の分布と合致しており、加えて桂林市区では観光客や公共用水による使用量が多いことが要因である。
- ② 工業用水は、専用取水施設から取水している企業の他に、浄水場から用水している一般工場を含むものである。取水量は 1986 年が 0.68 億 m³、1995 年が 2.04 億 m³と過去 10 年間で約 3 倍に急増している。これは、流域の工業生産高とほぼ比例している。 地域的には都市用水と同じく桂林市区の影響が圧倒的に大きく全体の 68%を占める。
- ③ 農業用水は、灌漑用水と畜産用水からなるが、量的には灌漑用水が大部分を占める。 取水量は、1986 年が 16.47 億 m³、1995 年が 13.87 億 m³ と過去 10 年間で 2.6 億 m³ 減少し、都市用水や工業用水と対照的な傾向にある。しかし、灌漑面積に大きな変化 が無いことから、灌漑施設の改善によって水の有効利用が図られているものと考えら れる。地域的は青獅潭ダムの灌漑域での利用が大きく全体の 37%を占める。

表 3.2.1 水利用の年次変化

①都市用永

年次	1986	年	1995	华
	取水量 流域人口		取水量	流域人口
地域	(万m³/年)	(万人)	(万m³/年)	(万人)
興安県	1,631	23.47	1,689	24.30
霊川県	1,889	31.12	1,950	32. 13
桂林市区	4,859	45.75	7,865	57. 20
陽朔県	1,896	27.28	2,059	29.62
臨柱県	765	11.01	801	11.53
合計	11,040	138.63	14, 364	154.78

②工業用水


②上亲用小						
年次	1986	6年	1995年			
	取水量	工業生産高	取水量	工業生産高		
地域	(万m³/年)	(万元)	(フテm³/绗:)	(万元)		
與安県	214	16, 800	1,872	165,700		
霊川県	263	20,600	2,644	136,000		
桂林市区	5, 175	405,500	13,813	863, 300		
陽朔県	134	10,500	451	29, 400		
臨桂県	47	3,700	389	25, 400		
青獅潭ダム	1,000		1,260			
合計	6,833	457, 100	20,429	1,219,800		

③農業用水

年次	1986	豻.	1995	作
	取水量	灌溉面積	取水量	灌溉面積
地域	(万m³/年)	(km²)	(万m³/华)	(km²)
與安県	27,746	132.0	21,576	128.2
霊川県	31, 287	135.5	26,655	131.5
桂林市区	8,416	42.2	7,492	41.0
陽朔県	21,817	123.6	20, 143	119.9
臨桂県	12,380	67.1	10,916	64.9
青獅潭ダム	63,053	233. 1	51,900	228.4
合計	164,699	733.5	138,682	713.9

^{※1986}年の工業生産高は1995年価格に換算。

[※]灌漑面積は 1km²=1500 畝で換算。

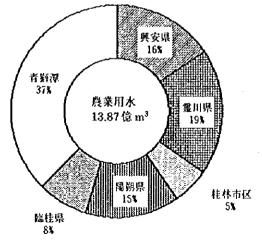
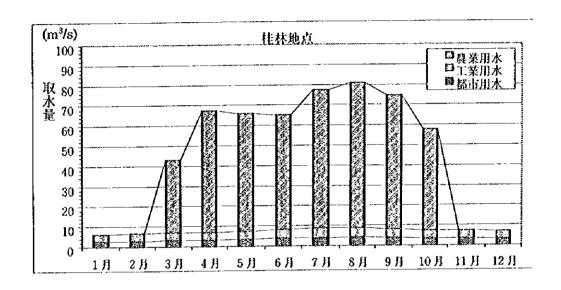
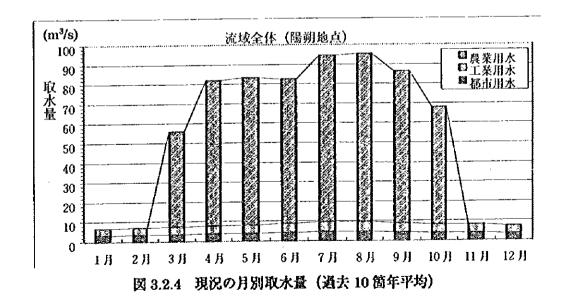




図 3.2.3 地域別水利用の比較 (1995年)

(3) 月別取水量

過去 10 箇年の平均月別取水量を、桂林地点と陽朔地点(流域全体)で集計した結果を図 3.2.4 にしめす。これよると、月別の取水量は、豊水期(3 月~10 月)では農業用水による影響が大きく、最大取水量は桂林地点では 80m³/s 程度、陽朔地点では 95m³/s 程度になる。渇水期は都市用水と工業用水が主で 7~8m³/s 程度に減少する。また、桂林地点と陽朔地点の取水量を比較した場合、桂林地点で全体の 80~90%に達している。

3.3 地下水

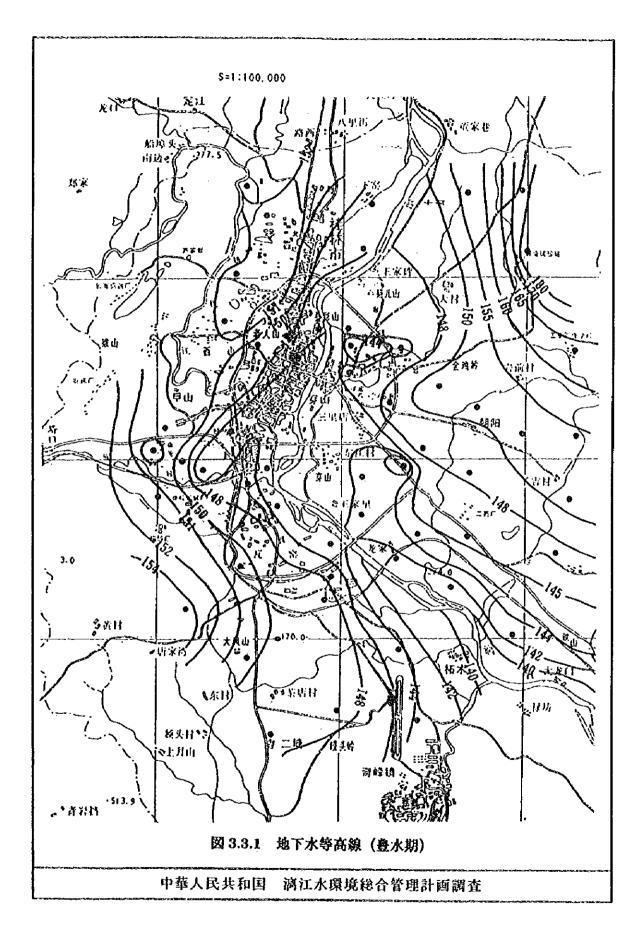
3.3.1 地下水位の観測

地下水については、流域範囲での広域な調査はされておらず、資料としては桂林市区の観測ネットワークがあるのみである。しかし、利用の実態としては桂林市区が主体を占めるものと見られる。

桂林市に属する観測面積は 300km²であり、長期観測点 40~50 箇所、観測頻度 10回/月、このほか、水位計を設けている観測所 8 箇所でオンタイム観測を実行している。地域内の地下水位観測点 200 余り、観測頻度は年に 2 回、豊水期と渇水期各 1 回である。地域内地下水の流況及び変化は図 3.3.1~3.3.2 に示す。地下水位年間変化幅は 2~5m である。

3.3.2 地下水の利用

(1)地下水資源及びその利用と開発


観測ネットワークと桂林市区 (565km²) の地下水資源と利用・開発を表 3.3.1 にしめす。これによれば、桂林市区では地下水資源の可能開発量 (深さ 50~60m 以浅の地下水) は 2.6 億 m³と推定され、これに対して現況 (1995 年) では 1.22 億 m³が取水され、開発利用率は 47%に達してしいる。用途別には、生活用水 0.28 億 m³、工業用水 0.71 億 m³、農業用水 0.23 億 m³である。

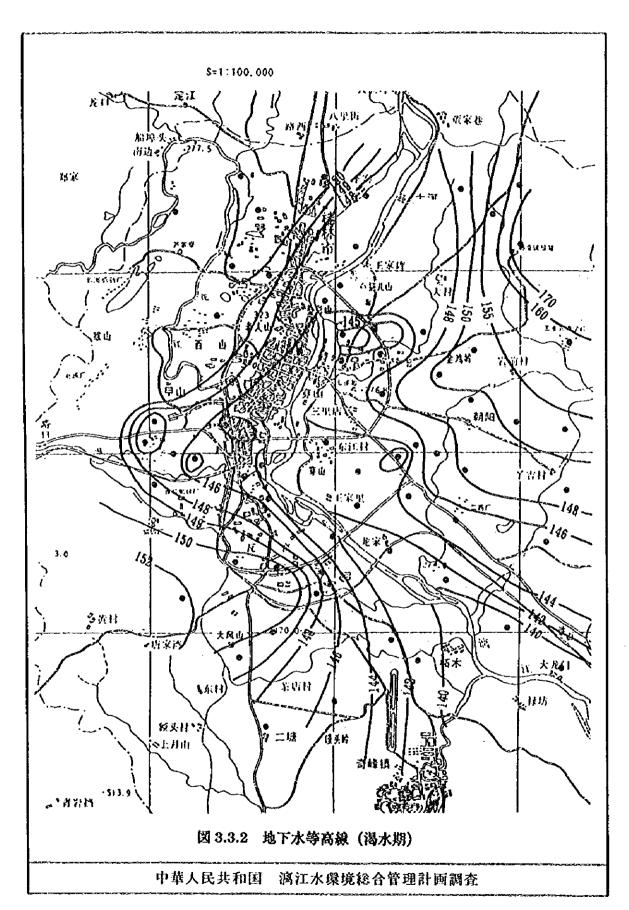

	地区		桂林市観測	ットワーク		市区全体
項目	Ī	東区	西区	南区	āt	(1993年)
①対象面積	km²	100.1	86.4	113.8	300.3	565
②地下水資源量	万m³/年	7,040	6,400	8,410	21,850	(41,100)
③可能開発量	万m³/年	4,400	3,990	2,950	11,340	25,900
① 現況揚水井戸	箇所				?	342
③現況開発量	万m³/年	3,390	1,900	880	6,170	12,200
都市用水	万m³/年				?	2,820
工業用水					?	7,120
農業用水					?	2,260
⑥資源利用率(⑤/②)	%				28.2	29.7
⑦開発利用率(⑤/③)	%				54.4	47.1

表 3.3.1 桂林市区の地下水資源と利用・開発

[※]中国側提出資料による。

^{※()}内は推定値である。

次に、桂林市区の水利用における地下水の利用状況(図 3.3.3)を見ると、都市用水では 36%、工業用水では 51%、農業用水で 30%と大きく、地下水が重要な水資源になっていることが分かる。但し、流域(桂林市上流域)でみた場合、地下水資源の利用率は 10%程度と推定され、合理的な地下水資源の開発が期待される。このためには、今後、広域的な地下水観測網を整備し、流域全体での地下水の変化、水収支を把握する必要がある。

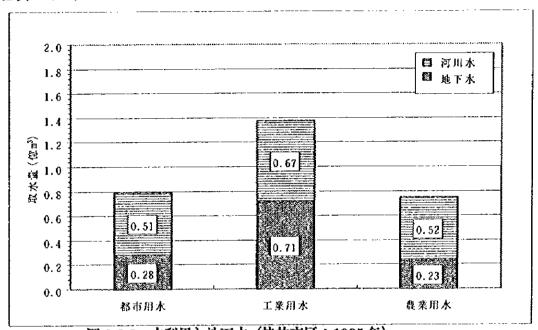


図 3.3.3 水利用と地下水(桂林市区:1995年)

(2)月別取水量

桂林市区の月別取水量を表 3.3.2 にしめす。これによれば、取水量は夏期にやや増大するものの年間を通して大きな変化はなく、平均取水量は 3.9m³/s である。なお、農業用水については、非灌漑期にも一定量の取水があることから、畜産用水や農民の生活水が含まれていると考えられる。

	•												
用途	1月	2月	3月	4月	5月	6 Д	7月	8 //	9月	10 /	11月	12月	年(億 m³)
都市用水 (m³/s)	0.70	0.76	0.80	0.82	0.89	0.98	1.07	1.07	0.98	0.89	0.89	0.80	0.28
工業用水 (m³/s)	1.78	1.92	2.03	2.08	2.26	2.49	2.71	2.71	2.49	2.26	2.26	2.03	0.71
農業用水 (m³/s)	0.58	0.62	0.66	0.67	0.73	0.81	0.88	0.88	0.81	0.73	0.73	0.66	0.23
合計	3.05	3.30	3.49	3.57	3.88	4.27	4.66	4.66	4.27	3.88	3.88	3.49	1.22

表 3.3.2 地下水の月別取水量(桂林市区:1995年)

3.3.3 地下水の水質

観測ネットワークでは、1981 年以後毎年2回(豊本期、渇水期各1回)、50 箇所の観測点で地下木の水質調査を行っている。

- ① 地下水の水質評価は、国家基準 (GB/T14848-93:地下水品質基準) に基づき評価 を行い、第四類水質基準を満たすものは生活用水に適用している。
- ② 1996 年渇水期の調査結果では、22 地点で鉱物指標のうち Mn、鉄、総硬度が基準値を越えた。また、幾つかの井戸では細菌総数、大腸菌が基準値を越えるものがあった。 しかし、生活用水に使用している井戸では、殺菌、消毒処理がなされているため、人体への影響は発生していない。
- ③ 桂林市周辺の地下水は、溶岩が発達しているため、地下水位が浅く汚染されやすい状況にある。特に、桂林市南部の地域では、化学工場、肥料工場、洗剤工場等の工場廃水によって水質の悪化が進行している。
- ① 1982 年には肥料工場による広域な地下水汚染が発生し、工場が閉鎖される水質事故が起こった。
- ⑤ このように、地下水の水質は都市化、工業化によって徐々に悪化する傾向にあるが、 全体の状況をみた場合、汚染の程度は軽度又は微弱級である。しかし、今後の工業開 発によって、汚染区域の拡大や新たな汚染が発生する可能性があり、工場廃水の処理 が重要な課題である。

3.3.4 揚水による地盤沈下

桂林市では地下水の用水に伴う地盤沈下(崩れ)の件数はきわめて少なく、その規模も小さい。時々、岸溶地盤(カルスト地盤)で発生する地盤崩れは、地質の脆弱生や地震によるものと考えられ、現在のところ地下水の用水を原因づける科学的根拠は見あたらない。しかし、今後地下水を過剰揚水した場合は、地盤内に空隙地盤沈下を助長する可能性が考えられ、観測ネットワークを継続する必要がある。

3.4 洪水と渇水

漓江流域は、広西桂林北部の豪雨区に位置している為、降雨量が多く、降雨のほとんどが3月から8月に集中している。漓江の洪水期は3月から8月、非洪水期は9月から2月であるが、5月と6月に年流出量の30%以上が集中する極めて流況の悪い河川で、洪水期の浸水と、非洪水期の渇水に悩まされている。

3.4.1 洪水

洪水は、主に4月から7月に発生し全体の90%を占め、5月6月だけでも60%を占めている。また、洪水は、一般に3~5日続き、洪水到達時間が7~13時間と短い典型的な山地河川である。

史料によれば、西暦 1105 年から 1935 年の間に桂林城区で発生した洪水災害は、49件にもおよび、調査考証によれば、最大の洪水は 1106 年 7 月洪水で洪水位は 151.50mであった。1885 年 6 月 14 日の洪水位は 148.58m (木龍洞の石塔に刻記)で、7810m³/sと推定される。1915 年 8 月の洪水位は 147.74m で、5800m³/s である。

水文資料によれば、1936 年から 1996 年の間に桂林市区で発生した洪水災害は、16件もあり、3~4 年に 1 度程度の割合で発生している。桂林市区に於ける堤防護岸は比較的低いので、氾濫被害を受け易い。洪水位が 145.0m になると浸水が起こり、146.5m になるとかなりの範囲が浸水し、浸水面積は 約 15km² (城区面積の 40%) にも達する。また、近年の主な洪水による被害状況は、以下に示す通りである。

(1)1949年6月27日洪水

桂林水文観測所での洪水位は 147.23m に達し、桂花園、砦州、羅ト州では屋根まで浸水し、福旺街、竹木巷、竹園街、文明路、正陽路、漓濱路、濱江市路、塩街、駅前街等々が、浸水した。東江区の災害状況は激しく東霊街、埠堤街を除いてすべて浸水した。12人が死亡し、耕地の半分が冠水した。

(2)1952年6月6日洪水

市区の降雨量は 80.8mm であったが、漓江上流域の豪雨の影響により洪水が発生した。桂林での洪水位は、147.43m に達し、象山、畳彩、七星等で浸水し、桂花園は 85%が被害を受け、新橋園では屋根まで水没し、城区及び近郊の 31 街(村)が浸水し、排地の 56.4%が冠水した。

(3)1974年7月16-18日洪水

柱林水文観測所での洪水位は 146.80m であり 3 つの連続する洪木ピークが発生し

た。漓江と桃花江の洪水ピークが一致し、洪水が大きくなった。流域平均雨量は 331.7mm で、最大点雨量は 439.5mm であった。桃花江沿川の洪水位は 1952 年洪水 より高かったので、城西轄区はひどく浸水した。城区で冠水した道路は 30 路線に及ん だ。

(4)1992年7月5日洪水

桂林水文観測所での洪水位は 147.11m であり、洪水は漓江本川で発生した。上流の華江、鯉魚塘での 3 日雨量はそれぞれ 563mm、 536mm であった。洪水は 4 日続き、19 時間も高水位が持続した。城区の 47 の道路と近郊の 35 の村が冠水し、冠水面積は 3960ha に達した。

(5)1994年 6月 13から17日洪水

桂林水文観測所での洪水位は 147.06m であり、4 つのピークを持つ全流域性の大洪水であった。洪水 5 日間の流域平均雨量は、698.1mm に達し、警戒水位以上が 87 時間、危険水位以上が 60 時間続いた。城区の道路 48 路線が、冠水した。

洪水による経済損失は以下に示す通りである。

表 3.4.1 洪水被害の状況

桂林市区洪	水災害直	接経済損	失表						
年月日	Jill I	単位	1949/6/27	1952/6/ 6	1974/7/10	1976/7/ 9	1987/5/26	1992/7/ 5	1994/6/17
洪永	末位	(EL.m)	147.23	147.43	146.80	146.94	146.86	147.11	147.06
	流量	(m3/s)	4840	5210	4250	4640	3630	4700	4620
農業技害	天田	(ha)	481.0	656.9	3601.7	2110.0	1897. 1	4364.7	3873.3
	穀物	(i)		312.7				1263.0	7850.0
	損失額	(万元)					21.5	85.0	1570.0
香產損失私		(万元)			0.34	0.24	2.30	682.00	2.07
水産	被災池	(ha)					77.3	283.8	1293.4
	損失額	(万元)					29.8	376.0	3670.0
経済作物	面積	(ha)		161.5	483.7	467.7	562.9	1651.6	2093.3
	損失額	(万元)					177.7	691.0	2017.0
受災人下	八门	(万人)	0.120	2. 170	1.800	3.110	4.600	5.980	15.52 0
<u> </u>	死亡	(X)	12	2	0	1	1	0	56
	財産	(万元)					21.0	125.6	4406.2
新工商業	損害額	(万元)				75.7	193.4	1373.0	6985.6
	移镇	(ヶ所)					26.0	59.0	101.0
交通運輸 *		(万元)					15.85	62.00	1490.10
送麥電通信		(万元)							151.0
水利施設		(ヶ所)			15.0	9.0	19.0	25.0	313.0
	金額	(万元)					14.5	135.0	2072.0
損壊家屋	軒数	(軒)	133.0	671.0	310.0	99.0		2375.0	392.0
	面積	(ha)							10.3
	金額	(万元)					6.1	27.0	3090.0
その他指数		【万元】					11.5		3950.0
損失否計	<u> </u>	(万元)					493.6	3556.6	29140.0

*: 木路道路を含む

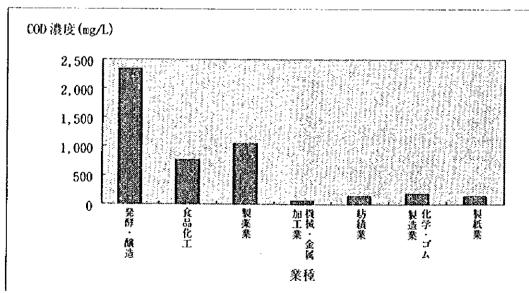
3.4.2 渇水 1970 年以降の桂林における水文量及び渇水被害の状況は以下のとおりである。 表 3.4.2 渇水被害の状況

	渴水年	1972年	1974年	1979年	1989年	1992年
最渴水日	最渴水日	1月27日	11月29日	2月7日	12月20日	12月22日
水位・流量	最小(m3/s)	6.06	5.30	6.90	7.26	8.00
(桂林st)	最低水位(EL.m)	140.50	140.49	140.60	140.18	140.50
給水制限	对象地域	桂林市城区	挂林市城区	桂林市城区	桂基市城区	桂林市城区
	封象人口(万人)	23. 18	23.88	28. 13	34.51	38.9
	給水率(%)	91	90	92	94	96
	制限期間(日)	26	28	24	20	17
工場停止	对象地域	佳林市城区	桂林市城区	桂林市城区	桂林市 鼓区	桂林市城区
	对象工場数	18	20	22	24	25
	停止期間(日)	. 26	28	24	20	17
	技害額(万元)	740	820	1010	1220	1390
農業核害	対象地域	市郊区・陽朔	市郊区・陽朔	市郊区・陽朔	市郊区・陽朔	市郊区・陽朔
	対象面積(万畝)	5.34	5.54	5.91	4.40	4.00
	披害農作物	水稲・読菜	水稲・蔬菜	水稲・蔬菜	水稲・蔬菜	水稲・蔬菜
	被害額(万元)	5607	5817	6205	4620	4200
舟運障害	航行範囲	竹江~陽朔	竹汇~陽朔	竹江~陽朔	竹江~陽朔	竹江~陽朔
(鴻江下り)	航行延長(km)	28.3	28.3	28.3	28.3	2 8.3
	航行停止期間(日	46	156	108]	120	97

3.5 工場排水

3.5.1 概要

(1)工場と排水水質


各工場の概要及び業種ごとの工場の件数、工業用水量及び工業出荷額等を表 3.5.1 にまとめて示す。

桂林市地区で発達している工業事業所(以降工場という)からの排水が、漓江流域 に流入している。工場排水に対しては、厳しい排出基準(第一級基準)で規制されて いるため、これまでに、水質基準が遵守されていなかった38工場に対しては、工場の 閉鎖、生産中止、合併、転業及び移転等の措置がなされている。

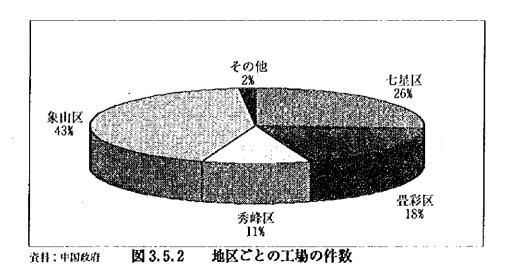
一方、測定データのある 35 工場の業種別 COD 濃度の分布状況は、図 3.5.1 に示したように、発酵・醸造業で濃度が高く、次いで製薬業や食品加工業となっており、負荷量的にも影響が大きい。

(2)工場の分布

工場の分布状況は、桂林市区部に大多数の工場が分布している。また、桂林市市区部の工場の分布数をまとめると、図 3.5.2 のとおりとなり、象由区に最も多く分布しており、次いで七里区等となっている。こうした、工場の分布状況は、そのまま漓江流域での、汚濁負荷の流入箇所の推定にもつながる。

資料: 桂林市環境保護局 図 3.5.1 業種別排水COD濃度

表 3.5.1 滴江流域における工場の概要


業種	作数	工業出荷額	額の全体に占める	工.業用水量	水量の全体に占
	1	(億元/年)	割合 (%)	(万 t /年)	める割合(%)
発酵・醸造	3	2.88	6.49	334	5.62
食品加工	9	2.65	5.97	249	4.19
製業業	6	4.79	10.67	332	5.58
機械・金属加工	24	16.96	38.15	991	16.66
枋績業	8	3.41	7.68	271	4.56
化学・ゴム製造業	10	12.27	27.61	622	10.46
製紙業	2	1.26	2.81	467	7.85
木材加工業	1	0.02	0.05	1	0.02
発電業	1	0.07	0.16	2634	44.29
ガラス製造業	1	0.05	0.10	46	0.77
合計	65	44	100	5,947	100

資料: 桂林市環境保護局

(3)工場の数と工場用水量

資料の得られている 66 工場で検討すると、排水総量は、約 2864 万m³/年、全工場排水量のうち、市区では、約 87%である。(66 工場への工業用水給水量は、6392 万m³/年で、市区の工業用水総量である 7333 万m³/年の約 87%を占めている。)

66 工場のうち、桂林鉄工所と桂林発電所の冷却水は、循環利用するとして、さらに主要汚染源であるSSも問題なく、他の汚染物質も少ないため、汚水管ではなく河川、湖あるいは、雨水管へ放流することも可能としている。また、城市区の周辺にある8工場は、将来単独水処理が考慮されているため、これを除くと他の 56 工場の工場排水総量は、1994年の工業用水総量 4075 万m³/年である。

(4)工場排水量とその放流先

対象となる 65 の工場廃水の放流先を下水道と河川等に分けると、表 3.5.2 のとおりとなる。この表によれば、現状の工場排水は、工場の件数でみると、下水道への放流が 24 件であり、河川等への放流が 41 件である。また、使用工業用水量でみると、全水量 5947 万m³/年に対し、下水道へは、892 万m³/年(15%)であり、また、河川等には 5055 万m³/年(85%)と河川等への放流が多い現状となっている。

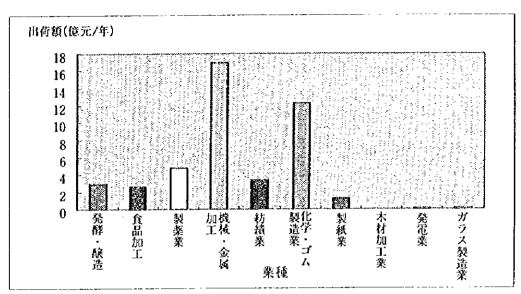
工業用水量 工場の件数 放流先 水量(万m^{3/年)} 割合(%) 割合(%) 件数 37 892 15 下水道 24 5055 85 63 41 河川等 5947 100 100 合計 65

表 3.5.2 工場廃水の放流先

また、河川等への放流先をさらに区分すると図 3.5.5 の通りとなる。図をみると、河川等への放流先では、南渓河が最も多く、漓江本川、桃花江、小東江等の順となっている。

一方、56 工場の放流先河川ごとの工場排水量は、表 3.5.3 のとおり整理される。

TO SEE STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	
対象工場数	工場排水量(万m³/年)
22	1381
8	478
2	272
10	435
9	230
5	174
	対象工場数 22 8 2 10 9 5


表 3.5.3 放流先河川ごとの工場排水量

(5)污濁負荷量

工場からの主要な汚濁物質は、BOD、COD、及びSSである。また、工業汚染源となる主要 19 工場の統計によると、BODが 1897t/年、CODが 4900t/年、及びSSが 1171t/年となっている。

(6)工業出荷額

図 3.5.3 には、現状の業種ごとの工業出荷額を示す。この図によれば、全業種の内、 機械・金属加工が最も多く、次いで、化学・ゴム製造、製薬業、紡績業、発酵・醸造 業及び食品加工業等の順に多くなっている。

資料:桂林環境保護局

図 3.5.3 薬種ごとの出荷額

3.5.2 主要工場の水質特性

(1)水質特性

水質調査結果を基に整理した対象とした各工場の水質特性を表 3.5.4 に示す。個別の水質指標ごとの特性は、以下の通りである。

①排水のpH

工場排水の放流水を対象にすると、桂林漓泉ビール工場、桂林発電所及び桂林タイヤ工場でやや酸性側のpHとなっており、また、霊川化肥工場では、アルカリの強い排水となっている。

②有機物指標

図 3.5.4 のとおり、桂林味精工場では、BOD及びCODが数千 mg/L と非常に排水濃度が高いが、下水道に放流されている。一方、桂林製薬工場及び桂林瀉泉ビール工場では、BOD及びCODが 500~1000mg/L と排水濃度が高く、現状では河川水質への影響度が高い。

④窒素、リン濃度

図 3.5.5 のとおり、桂林味精工場及び桂林製薬工場では、排水中の窒素及びりんの濃度が高い。

⑤有害物質濃度

桂林製薬工場では、図 3.5.6 のとおり、フェノール類の濃度が 9.47mg/L と高く、その他シアン及び砒素も検出されている。また、霊川化肥工場では、砒素がやや高い濃度として検出されているため、河川水質の安全性に関して懸念があり、有機物濃度や窒素、りん濃度の削減と併せて個別の浄化対策が必要と考えられる。

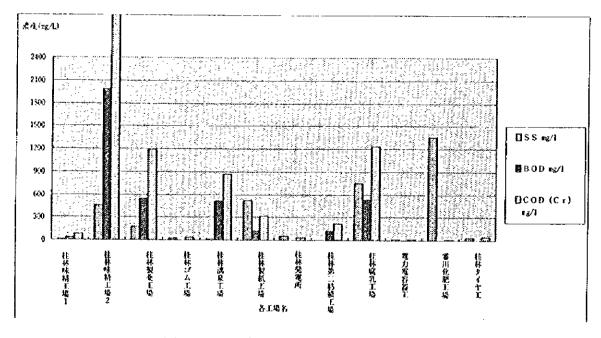


図 3.5.4 各工場の放流水質(有機物濃度)

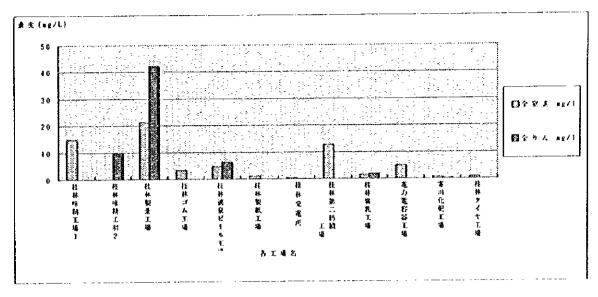


図 3.5.5 各工場の放流水質(窒素、りん濃度)

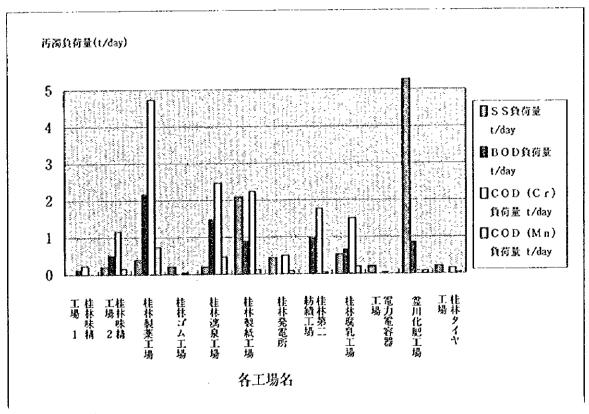


図 3.5.6 工場ごとの汚濁負荷量 (有機物議度)

表 3.5.4 各対象工場廃水の水質特性

pocenies and	T 18 4	水質特性	降水処理施設の概要
工場	工場名	小良针红	カルトトスティエが出現メインドル・メ
No.		South to a Winding of the tells	
1	柱柳珠桥下場	河川放流の冷却水にも窒素が比	
		較的多く含んでいる。下水放流水	再生利用されている。酵母発酵処理施設では、CODが
		も全項目とも濃度が高い。	改善されている。
2	柱林製料工場	現地調査時の放流水は、黄色を	黄色を呈していてる廃水の一部は、未処理で河川に放
		呈しており、全項目とも水質は悪	流されている。全体の総合廃水は、中和・沈澱処理され
		化している。	て寧遠河に排水されている。
3	桂林ゴム工場	他の工場と比較して、水質は比	排水は、流入⇒沈澱⇒スクリーン⇒凝集沈澱⇒放流と
		較的良好である。	いうフローに従って処理されている。
4	桂林瀉泉ビール	放流水のBOD、CODが高い	排水は、流入⇒中和⇒接触酸化塔⇒接触酸化法⇒放流
	工場	濃度となっている。	というフローで処理されている。
5	挂林製紙工場	加圧浮上処理前後で、SSは、低	加圧浮上を含めた二段の木処理によって、固液分離さ
		減している。他の排水も混入した	れていて、流出側のSSは、10mg/l 程度まで浄化されて
		放流水では、濃度が高くなってい	いるが、一部の系統では、未処理のまま漓江に放流され
		る。	ている。
6	柱林発電所	処理工程では、pHが低いが、	排水は、流入⇒沈縠⇒み過⇒放流というフローに従っ
Ì		放流渠ではほぼ他の項目を含めて	て処理されている。
		比較的低い濃度である。	
7	桂林第二紡績工	河川放流であるが、有機物と窒	流入⇒沈澱⇒酸化池⇒放流というフローで排水処理さ
	場	素濃度は改善の余地がある。	れている。
8	挂林腐乳工場	有機物濃度は高い水準にある。	汚水処理施設はないが同工場は市内にあり、排水規制
			のきびしさから河川放流ではなく
			1978年から直接下水道に放流している。
9	電力電容器工場	全項目とも比較的設度が低い傾	木処理は、地下に設置されている油水分離装置であり、
		向にある。	分離された油は、ドラム缶に注入されている。
10	非林タイヤ工場	全項目とも比較的濃度が低い傾	3段の沈澱池で単純な重力沈澱だけで除去している。
		向にある。	
11	霊川化肥工場	放流渠での水質は、pH が 10.5	総合廃水処理施設では、硫酸酸性であるので、石灰で
		とアルカリ性が強い。他ではSS	中和処理して3段の浣澱池で固形物を分離して河川に放
		と砒素が高い。	流している。
L	Annual Contract of the Contrac		



図 3.5.7 工場ごとの汚濁負荷量 (窒素、りん濃度)

(2)排水処理施設の現状と処理効率

①排水処理施設の概要

65 工場の廃水処理施設の方式は、業種により異なるが図 3.5.10 にあるように、 廃水処理施設の方式が不明な工場を除くと、沈澱処理により廃水処理を行っている 工場が多く、次いで、化学処理、沈澱化学処理等がこれに続いている。

②処理効率

表 3.5.5 及び図 3.5.8~9 には、今回の水質調査結果を基にした各工場の水質項目 ことの排水処理施設による処理効率を示す。これらの結果より、現状の桂林市にお ける主要な工場の廃水処理施設における処理効率は、実際の水質測定日に該当する 時期では、工場によっては、一次処理水よりも放流水の水質が悪化しているケース も見られた。沈殿処理を主体に実施している工場では、SSが比較的処理効率が高 い反面、生物処理を実施している味精工場やビール工場では、有機物指標であるB ODやCODの処理効率は、まちまちな結果となっている。また、窒素及びりんの 栄養塩類濃度特に、りんの処理効率は、全体的に低い傾向となっている。

表3.5.5 主要汚濁源の処理効率

測定項目	单位	味 精工	製薬工	J A I.	ピール	製紙工	発電所	紡績工	肥料工	タイヤエ
]										場処理効
1	1	効率	効率	効率	理効率	効率	軽	効率	効率	半
SS	%	78.2	0.0	59.1	96.3	0.0	99.1	100.0	0.0	99.2
BOD	%	91.7	0.0	84.2	46.8	0.0	0.0	0.0	0.0	0.0
COD (Cr)	%	92.8	0.0	70.2	51.8	0.0	98.4	0.0	56.5	83.8
COD (Mn)	%	94.9	0.0	72.2	36.3	0.0	97.0	78.3	0.0	57.1
全窒素	%	91.3	0.0	0.0	69.3	0.0	95.3	28.0	0.0	88.3
全りん	%	71.5	0.0	0.0	14.4	0.0	0.0	0.0	0.0	58.3

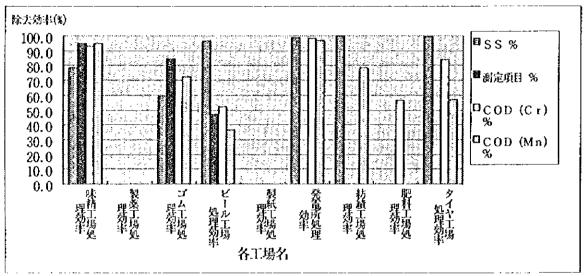


図 3.5.8 各工場の汚濁物質除去効率

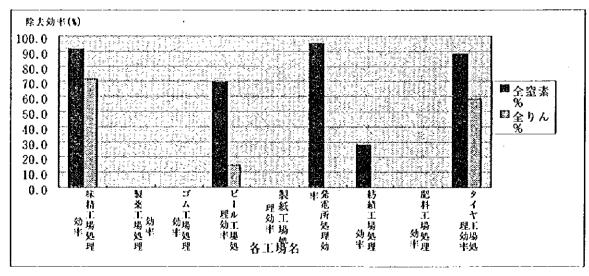
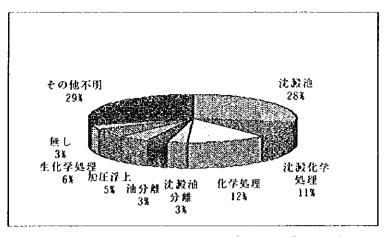



図 3.5.9 各工場の汚濁物質除去効率 (窒素、リン)

資料: 桂林環境保護局 図 3.5.10 排水処理方式の現状

3.5.3 汚濁負荷量の推定

今回実施した工場排水水質調査結果を基にした、対象各工場の汚濁負荷量の推定を 行った。

(1)排水水量

今回の水質調査では、例外を除き各工場の放流渠で実測流量が得られている。各工場の放流渠における流量測定データを基にした排水量を表 3.5.6 に示す。

この排水水量は、各工場が、24 時間連続運転で、1 年間 365 日フル稼動していると 仮定したものである。

(2)汚濁負荷量

各工場の放流渠での実際の分析結果を基に、汚濁物質の負荷量の推定を行うと、表 3.5.11 及び図 3.5.13 のとおりとなる。この結果から、S S、B O D 及び C O D といった有機物指標に係わる汚濁負荷量は、実態調査を実施した 11 の工場の中では、桂林味精工場、桂林製薬工場、桂林ビール工場、桂林第二紡績工場及桂林製紙工場等で大きい値となっており、特に桂林製薬工場では、排水が河川に放流されていることもあって、今後の水質改善が望まれる。また、窒素、りんの汚濁負荷量は、窒素では、桂林味精工場、桂林製薬工場及び桂林第二紡績工場が大きく、りんでは桂林製薬工場が大きい負荷量となっている。

表 3.5.6 各工場の排水量

42000000000000000000000000000000000000	工場名	emmentalisensillerennistationele 44.735 St. etc. etc. (In)	portini mirrori materiali del Companione del Companione del Companione del Companione del Companione del Compa	A: 43-L-FL	TO THE STATE OF T
工場	.1.20111	放流渠の実測	日排水量	年排水量	Via +y
No.		流量 (m³/s)	(m³/fl)	(万 m³/年)	
1	桂林味精工場	0.035	3024	110	冷却水で河川に放流
1	桂林味精工場	0.003	259	9.5	下水道への放流水
2	挂林製薬工場	0.046	3974	145	河川に放流
3	桂林ゴム工場	0.023	1987	72.5	河川に放流
4	桂林鴻泉ビール 工 場	0.033	2850	104	下水道への放流水
5	桂林製紙工場	0.082	7085	259	河川に放流
6	桂林発電所	0.17	14688	536	河川に放流、また、調査時は
				 (1608)	1/3 の稼動、
7	桂林第二紡績工 場	0.094	8121	296	河川に放流
8	佳林腐乳工場	0.006	518	18.9	下水道への放流水
9	電力電容器工場	0.045	3888	142	下水道への放流水
10	霊川化肥工場	0.079	6826	249	河川に放流
11	桂林タイヤ工場	0.044	3801	139	河川に放流

注※:燃焼炉3基のうち1基の稼動であったため、全稼動にした場合の推定排水量

ただし、表 3.5.6 には、木材加工業及びガラス製造業は対象から削除した。これは、 活濁負荷源原単位の推定に関するデータがないこと、さらに工場数がそれぞれ 1 工場 ずつで、工業出荷額及び排水量も小さいため、全体の発生負荷量からは無視し得ること による。

(3)現状における汚濁負荷量

①汚濁負荷量推定に当たっての考え方

a 対象水質項目

汚濁負荷量の推定に際しては、水質対象項目として、BOD、COD(Cr)、COD(Mn)、SS、全窒素、アンモニア態窒素、全りんの計7項目を選定する。

b 工場排水量の推定

現状では、各工場の水量に関するデータに関しては、個々の工場の工業用水量が整備されているが、循環利用を考慮した工場排水放流量は明確にされていない。そのため、今回の水質実態調査による放流量と工場用水使用量との関係、現状の排水総量は、約2864万m³/年で、66工場への工業用水給水量は、6392万m³/年との関係等を参考に推定する。その結果を表3.5.7に示す。

	-3.	0.0.1	.1111	<u>, - ب بر</u>	** ! * ! .	7 27 7 7 17	, 224 (7.74				r Name marrow záchodkalkalka	nene-acces and an ac	ATTENDED TO STATE OF THE STATE
测定項[[ŧξ	桂林味	桂林製			桂林製			桂林	電力	霊川化		승하
	林	精工場	薬工場	ゴム	泉ビー	紙工場	電所	第二	腐乳	電音	肥工場	イヤエ 場	
	味	- 2		工場	ル工場			紡績	工場	器工		224	
	精一							工場	i i	7/1			
1	工.場												
	妍												
	1												
SS負荷量	6.6	42.7	255.3	13.1	7.3	1339.5	836.4	0.0	330.2	18.4	3375.8	44.4	5712.1
BOD負荷量	40.8	187.1	781.9	2.2	533.9	320.7	_	346.8	234.9	0.0	_	-	2763.7
COD (Cr)	85.0	416.8	1723.4	20.3	900.2	814.6	562.8	652.2	545.7	20.6	24.9	58.3	5449.6
負荷量													
	ļ	l							<u> </u>				050.0
COD (Mn)	3.8	51.7	262.6	3.6	173.8	36.2	80.4	14.8	71.1	3.3	22.4	8.3	678.3
負荷量													
724-7態窒素	6.0					1.0			0.4	1.3	5.6		24.6
(NH4-N)	0.0					1.0							
負荷量													
, <u></u>													
全窒素	16.2	119.2	30.6	2.3	4.8	2.2	5.4	37.4	0.6	7.0	1.3	1.0	224.4
負荷量													
全りん	0.1	0.9	61.2		6.5			0.2	0.8	0.1	0.7	0.1	70.6
負荷量													

资料:桂林市市区域区污水治星行程 可行性研究報告

表 3.5.8 現状の桂林市工業汚濁負荷量のうち排水量の推定

			Name of Street, Street, or other Party.		
業種	関連工場数	現状の工業出	工業用水量	工場排水量	単位排水量
		荷額(億元/年)	(万 (年)	(万 (年)	(万 1/年・億元
発酵·醸造	3	2.88	334	150	52
食品加工	9	2.65	249	112	42
製薬工業	6	4.79	332	149	31
機械・金属加工	24	16.96	991	444	93
紡績業	8	3.41	271	121	35
化学・ゴム製造業	10	12.27	622	279	23
製紙業	2	1.26	467	209	166
木材加工業	1	0.02	1	0.5	25
発電業	1	0.07	2634	1180	16857
ガラス製造業	1	0.05	46	21	420
合計	65	44	5947	2664	-

c 工場排水の処理率の推定

今回の工場の水質実態調査結果を基に、業種ごとの工場排水の処理率を推定する。 ①汚濁負荷量原単位の分類構成

工場排水負荷原単位の分類構成は、表 3.5.9 のとおりとする。

②桂林市工業汚濁負荷量の推定

表 3.5.9 の今回対象とした 10業種の総汚濁負荷量からそれぞれの工業出荷額を基にした現状における桂林市工業汚濁負荷量の推定を行うと、表 3.5.10 (全発生負荷量) 及び表 3.5.11 (河川への放流負荷量) のとおりとなる。

表 3.5.9 工場排水負荷量原単位の分類構成

業種	業種構成	適用
発酵・醸造	発酵食品、ビール製造業等	1995 年出荷額で算定
食品加工.	大豆加工、米粉業、缶詰等	,
製業工業	製薬業、香料製造、	"
機械·金属加工	模核製造、電気、金属加工	,
紡績業	製糸業、ウール、タオル等	"
化学・ゴム製造業	肥料、日用品製造、ゴム等	"
製紙業	製紙	4
木材加工業	木材加工	"
発電業	火力発電	,
ガラス製造業	ビール瓶製造	,

表 3.5.10 業種ごとの汚濁負荷量原単位の推定(現況の全発生量) 単位: t/年

業種	SS	BOD	COD(Cr)	COD(Mn)	7ンモニア態窒 素	全窒素	全りん
発酵・醸造	65	924	1693	280	13.5	158	9.2
食品加工	7293	5186	12052	1569	8.7	13	17.8
製業工業	1092	3343	7372	1121	-	131	261.5
機械・金属加工	650	_	728	117	45.8	248	3.4
紡績業	0	1480	2779	63	25.2	160	0.7
化学・ゴム製造 業	3092	69	504	94		29	1.2
製紙業	1507	360	916	41	1.1	3	_
発電業	837		564	81		6	<u></u>
合計	14535	11363	26608	3366	94.4	748	293.8

表 3.5.11 業種ごとの汚濁負荷量原単位の推定(現況の河川への放流負荷量)単位: t/年

業種	SS	BOD	COD(Cr)	COD(Mn)	アンモニア態窒	全窒素	全りん
発酵・醸造	26	369	676	112	<u>素</u> 5.4	63	3.7
食品加工.	4128	2936	6822	888	5.0	8	10.1
製業工業	264	810	1785	271		32	63.3
機械・金属加工	460		516	83	32.5	175	2.4
紡績業	0	538	1011	23	9.2	58	0.2
化学・ゴム製造	2825	63	461	86		27	1.1
業							
製紙業	1507	360	916	41	1.1	3	
発電業	837	-	564	81		6	
合計	10047	5076	12750	1585	53.1	372	81.1

3.6 下水処理

3.6.1 桂林都市部の下水処理設備概要

(1) 下水処理設備

桂林都市部の下水処理設備は、1976年に最初の下水処理場として上窯汚水処理場の設計が行われ、5年後の1981年に完成した。その後、1983年には北冲汚水処理場が建設され、1985年には七里店汚水処理場が完成した。1995年12月に上窯汚水処理場に隣接した第4汚水処理場が、オーストラリヤの借款を使用し完成した。この結果、桂林都市部の下水処理設備能力の合計は17.85万m³/日である。

(2) 汚水処理系統

桂林都市部の汚水処理系統は行政上の区分とは関係なく下記の区分を設定している。

汚 水 処 理 場 名	対照エリア
北神区	北区及び北場区
上 業	中 南 区
七里店	東 区
第 4	琴 潭 区

表3.6.1 汚水処理場名と対象エリア

(3) 汚水処理場の設備設計能力と運転実績値

汚水処理場の設備設計能力と 1996 年の汚水処理実績値は、表 3.6.2 の通りである。 汚水収集下水道管渠及び中継ポンプ場の整備が遅れているため、汚水処理場での処理水量は、設備能力をかなり下まわっており、設備の稼働率は 31%である。実際の排水種別毎の排水量の内訳(生活排水と工業排水)は測定されていないが約 80%が生活排水といわれているまた、地下水浸入水量を 25%とすると、汚水処理場で処理してい

る 56,000m³/日の内訳は、生活排水が 33,600m³/日、工業排水が 8,400m³/日、地下水浸入水量は 14,000 m³/日と推定される、従って生活排水の処理率は、53%、工業排水の処理率は 11%と推定される。

処理場名	設 儋 能 力	実際の処理量
上 窯	3.507jm³/日	体 此 中
北神区	0.35 <i>万</i> m³/日	0.57万億3/日
七里店	4.00万m³/日	1.15万n³/日
93 4	10.00万m³/日	3.75万n³/日
合 計	17.85万㎡/日	5.47 <i>J</i> jm³/日

表 3.6.2 汚水処理場の設備能力と実際の処理量

(実際の処理量は、汚水処理場の 1996 年運転実績による。)

桂林市都市部の生活排水の調査結果は表3.6.3の通りである。

	調査日:1996年	7月21日、22日	調査日:1997年1月12日、13日		
項目	負荷原単位 (g/人・日)	濃 度 (mg/l)	負荷原単位 (g/人・日)	濃 度 (mg/1)	
SS	31.6	192.7	25.7	282.4	
CODcr	28.8	175.6	62.5	686.8	
BOD	20.8	126.8	51.8	569.2	
NH ₄ -N	15.1	92.1	8.9	97.8	
T – P	0.06	0.37	0.05	0.55	
蒸発残留物	110.2	672.0	67.3	739.6	
排水景	164 L / A · B	-	91 I Z X + FI		

表 3.6.3 桂林市都市部の生活排水 (調査結果)

3.6.2 既設、各汚水処理場の概要

(1) 上窯汚水処理場

1981年に建設されたが、1985年に増設された結果処理能力は35,000m³/日となった。1995年12月に隣接地にオーストラリヤの借款による桂林市第4汚水処理場(処理能力100,000m³/日)が完成したので、上窯汚水処理場は運転停止している。これは第4汚水処理場別の汚水収集管渠の敷設が行われていないため、上窯汚水処理場へ流入する汚水収集管渠を使用し、新しい第4汚水処理場を稼動させ、古い上窯汚水処理場の運転を停止させているのである。上窯汚水処理場のポンプ、脱水機等の機器は他の汚水処理場へ移設したため、上窯汚水処理場は直ちに再使用する事は難しい状態である。当汚水処理場の名称は、上窯汚水処理場の他、中南区汚水処理場、南区汚水処理場の別名がある。

①担当地域

北門より南、漓江より西、湘桂鉄道路線より東である。

②処理プロセス

表面機械撹拌曝気による活性汚泥法である。沈殿池を経由し良豊河へ放流され、その後漓江へ流れ込む。脱窒、脱燐対応は考えられていない。

(2) 北冲区污水処理場

1983 年に建設され処理能力は 3,500m³/日の設計であるが、流入汚水量が多く 1996年は 5,709m³/日で運転している。

北冲区汚水処理場の名称の他、北区汚水処理場の別名がある。

①担当地域

現音閣より北、貯木場用鉄道路線より南、清風小区より東、漓江より西である。

②処理プロセス

表面機械撹拌曝気による標準活性汚泥法である。処理水は沈殿池を経由した後、桃 花江へ放流されその後、漓江へ流入する。

(3) 七里店汚水処理場

1989年に建設され設計処理能力は 40,000 m³川である。但し、排水収集管渠敷設工事の遅れにより 1996年の処理場への流入汚水量は 11,462m³円である。

七里店汚水処理場は東区汚水処理場の別名がある。

①担当地域

電力・コンデンサー工場より南、浄瓶山路より北、会価路より西、三里店、ハイテク工業開発区を含む。

②処理プロセス

表面機械搅拌曝気槽を設けた標準押出し流れ活性汚泥法である。処理水は沈殿池を 経由して小頭江へ放流された後、漓江へ流入する。

(4) 桂林市第 4 汚水処理場

1995 年 12 月完成し、設計処理能力は 100,000m³/日であり、1996 年の流入汚水量は 37,513m³/日である。第 4 汚水処理場は上窯汚水処理場の隣接地に建設され、瓦窯汚水処理場の別名がある。

この第 4 汚水処理場は琴潭区の排水を処理する目的で建設されたが汚水収集管渠の 敷設工事遅れにより上窯汚水処理場への流入汚水を処理している。

①琴潭区の担当地域

現在は上窯汚水処理場へ流入する中南区の汚水を処理しているが、本来の担当地域は琴潭区であり鉄道線路より西の都市部、中南区との境界の西環路に敷設してある 管渠に流入する中南区の汚水、琴潭路にそって敷設した西主管渠に流入する汚水で あるが、西主管渠に接続する枝管渠の敷設はまだされていない。

(2)処理プロセス

曝気沈砂池、嫌気槽オキシデェイションデッチ法 (無酸素ゾーン+好気ゾーン) である。処理水は沈殿槽を経由し良豊河へ放流された後、漓江へ流入する。

③処理プロセスの問題点

A²O 法を採用し、脱窒、脱磷も可能となっているが、無酸素工程の DO は 0.7mg/l と

高く、負荷が設計値近くになった時、脱窒能力が発揮できるかは疑問である。これ は嫌気槽の前の沈砂池で曝気していることと、嫌気槽は開放槽であることが問題で ある。又、脱燐についても同様、無酸素状態が作られていないので微生物の燐吸収 効率は低いと思われる。

3.6.3 既設、各汚水処理場の運転実績

1996年の各汚水処理場の運転実績を表 3.6.4に示す。

表3.6.4 汚水処理場の設計値と1996年選転実績値

項目	上窯	第 4	北神区	七里店
建設年度	'81,'85	'95	'83	'89
処理量 (m³/日)				
10 TH.	35,000	100,000	3,500	40,000
実 績	(休止中)	37,513	5,709	11,462
処理方式	活性汚泥法	A ² O法	活性汚泥法	括性汚泥法
水 質				
流入水 BOD	43/100	31/100~120	64.2/100	140/100
処理水 BOD	7.7/20	4/20	13.2/20	8.7/20
流入水 000cr	93/-	-/-	140/-	226/-
処理水 CODer	19/-	-/-	35/-	40/-
流入水 SS	79 /55	79/150~200	108/150	173/150
処理水 SS	14/20	14/20	24/20	31/20
流入水 NH-N	9.4/-	3.6/20~25	-/-	22.7/-
処理水 NH'-N	6.7/~	1,9/15	-/-	18.7/-
流入水 T-P	6.9/	1.5/3~4	-/-	2.9/-
処理水 T-P	3.8/-	1,3/1.5	-/-	0.9/-

注)上記表中の水質欄の上段は 1996 年の年間運転実績値、但し、NH-N,T-P は 1994 年 の値、また上窯の水質は 1994 年の値。全ての下段は設計値。

3.7 河川水質

3.7.1 調査の手順

河川水質調査の手順は既存の河川水質関連資料を収集・整理するとともに、漓江 の水質現況をより詳細に把握するために、補足調査として水質スポット調査、及び 河川自浄作用調査を実施した。

(1)既存水質・水量調査資料等の収集・整理

中国側が保存している既存水質調査資料等について原則として過去 10 年分のデータを収集・整理した。

(2)補足水質調査の実施

調査地点を定め、水質補足調査を行うために現地踏査を実施した。

中国側で実施している水質調査資料、及び現地踏査の結果を踏まえて、補足調査の 水質調査地点を選定した。その調査地点は、合計 10 カ所の地点である。

3.7.2 河川水質現況について

(1)導電率の調査結果からみた河川水質現況

導電率は溶存イオンの総量 (イオンの種類によって感度は異なるが) を示すものであり、生活排水、工場廃水などの混入により、増加する。したがって、導電率を調査することにより、人為的な汚染状況が相対的に把握できる。

1996年8月の補足調査で実施した調査対象流域における晴天時の導電率(μS/cm at 25℃)、DO飽和率等の測定結果を図 3.7.1 に示す。

桂林市街地の上流域ではおおむね 100 前後か、もしくはそれ以下であり、良好である。しかしながら、桂林市内の支流である寧遠河 (331)、南渓河 (309) が 300 を越えており、かつD〇 (溶存酸素) もほぼゼロで、悪臭を放っていることからみて、非常に汚濁している状態である。小東江も同様に汚濁している。

このため、漓江本川桂林市市街地上流の大河では 100 と比較的低いのに対し、桂林市市街地下流の龍門では 175 と上昇しており、桂林市市街地を由来とした汚染状況がわかる。龍門から下流、磨盤由 (141)、陽朔 (157) まで導電率はむしろ減少している。これは下流において汚濁源が少なく、かつ比較的清澄な支川の流入による。

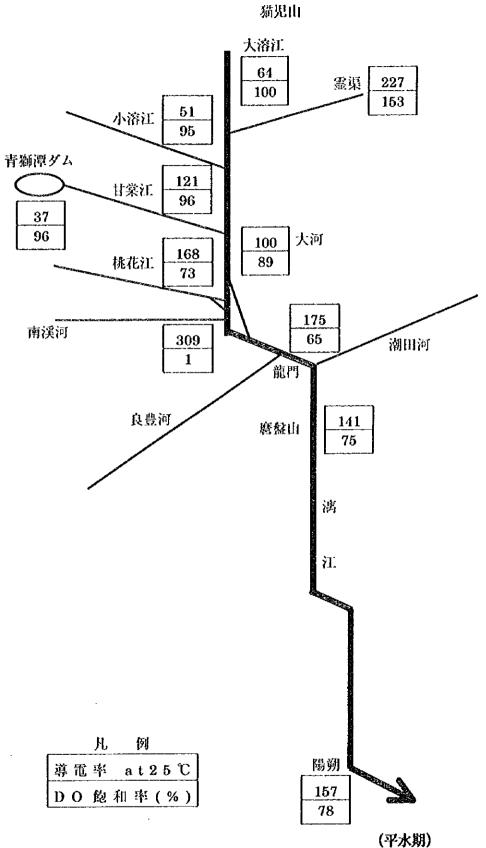


図 3.7.1 河川の導電率·DOの状況 (1996年8月)

(2)有機物汚染 (DO、BOD、COD(Cr)、COD(Mn)) の現況

桂林市上流の大河では、周辺の汚濁源も少なく、水質は良好である。

表 3.7.1、及び図 3.7.2 は 1995 年の年平均水質データから流下に伴う水質の変化を みたものである。

地点名	大河	斗鶏山	能門	磨盤山
到達距離(km)	6.0	16.5	27.3	38.8
DO	7.68	4.58	3.55	5.10
BOD	0.67	2.22	1.25	0.87
COD(Mn)	1.43	2.38	2.10	1.75
SS	6.4	9.3	6.2	9.5
NH4-N	0.23	1.92	0.81	0.26
NO2-N	0.052	0.081	0.120	0.080
NO3-N	0.53	0.56	0.90	1.18
電導度(uS/cm)	124	157	180	186

表 3.7.1 水質の位置特性 (1995年)

DOは桂林市上流の大河では、7.7(mg/L)と高いが、桂林市城区を通過する斗鶏由、及び龍門では各々 4.6,3.6(mg/L)と大きく低下している。これは、桂林市城区からの工場廃水、及び未処理生活排水の影響を受けているものと考えられる。ちなみに水質環境基準 II 類のDO濃度は 6(mg/L)以上であり、斗鶏山、龍門、磨盤山では年平均値で環境基準以下となっており、水質基準を満たしていない状況である。

BOD、COD、NH4-Nはいづれも斗鶏山でピーク濃度になっており、それ以降の下流では河川の自浄作用などにより減少していることがわかる。

ただし、斗鶏山においてもBOD濃度は 2.22、COD濃度は 2.38(mg/L)であり、BOD、CODとも環境基準 II 類を満足している。

(3)窒素、リンの現況

河川における既往の窒素、リンに関するデータは一般に非常に少ない。そこで、1996 年8月に日中共同で水質調査を実施した。この調査結果の一部を下表 3.7.2 に示す。

注) 到達距離は漓江と甘棠江との合流点をゼロとして算出し た

表 3.7.2 漓江本川及び支川等水質調査結果 1996年8月7~16日

	河川名	满江	漓江	漓江	满江.	甘棠江	南溪河	小東江.	桃花江	榕湖	杉湖
調査地点	単位	大河	龍門	實盤山	陽朔大	合流前	南溪河口	劉家橋	南門僑	湖心	湖心
	<u> </u>				橋				L		
DO	mg/L	5.9	4.6	4.2	5.9	5.8	0.0	1.1	4.3	2.7	4.2
COD(Mn)	mg/I.	1.9	2.6	2.3	3.7	3.5	7.7	3.7	2.3	3.2	4.2
COD(Cr)	mg/L	4.0	2.0	6.0	3.0	8.0	28.0	14.0	7.0	12.0	16.0
BOD	mg/L	0.2	0.9	0.8	0.6	1.7	11.1	3.8	0.9	2.0	7.0
N H 4-N	nıg/L	0.71	0.78	0.51	0.24	1.49	3.31	2.00	0.51	2.42	2.22
NO2-N	mg/L	0.053	0.036	0.073	0.022	0.063	0.013	0.274	0.022	0.089	0.085
NO3-N	mg/L	0.66	0.76	0.84	0.63	0.59	0.06	0.21	0.16	0.26	0.18
ΤP	mg/L	0.037	0.012	0.018	0.025	0.038	0.428	0.190	0.060	0.257	0.290
大腸菌群数	個几	238000	238000	2380000	238000	238000	>2380000	>2380000	2380000	23800	238000

COD (Mn):高锰酸盐指数

NH4-N : 氨氮 NO2-N : 业硝酸盐氨 NO3-N : 硝酸盐氮

漓江本川における無機態窒素濃度は、0.89~1.63(mg/L)であり、降雨に含まれる濃度に比べて若干高い程度であり、ほぼ問題のない状況である。

非イオンアンモニアについては環境基準が 0.02(mg/L)ときわめて厳しく、大河、 斗鶏由、龍門、磨盤山ではいづれも常時、環境基準を超過している状態である。

漓江本川におけるリン濃度は、0.012~0.037(mg/L)とかなり低い濃度である。

リンは沈降や水草の増殖等により川底に固定されるので、流下にしたがって必ずし も濃度が高くなっているわけではないことがわかる。

(4)大腸菌など細菌汚染の現況

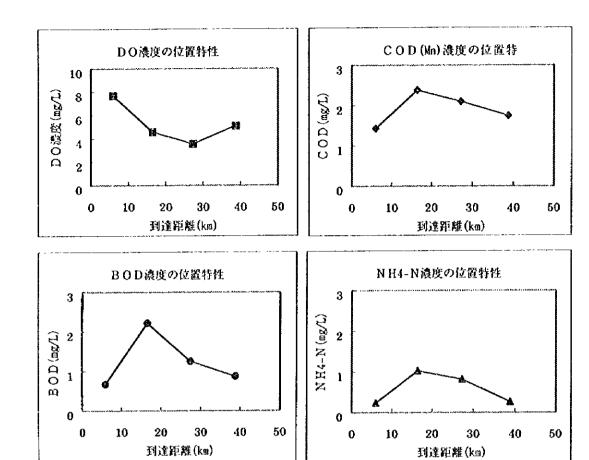
1996年8月の調査によれば、大腸菌群数は105~106個/Lのオーダーである。

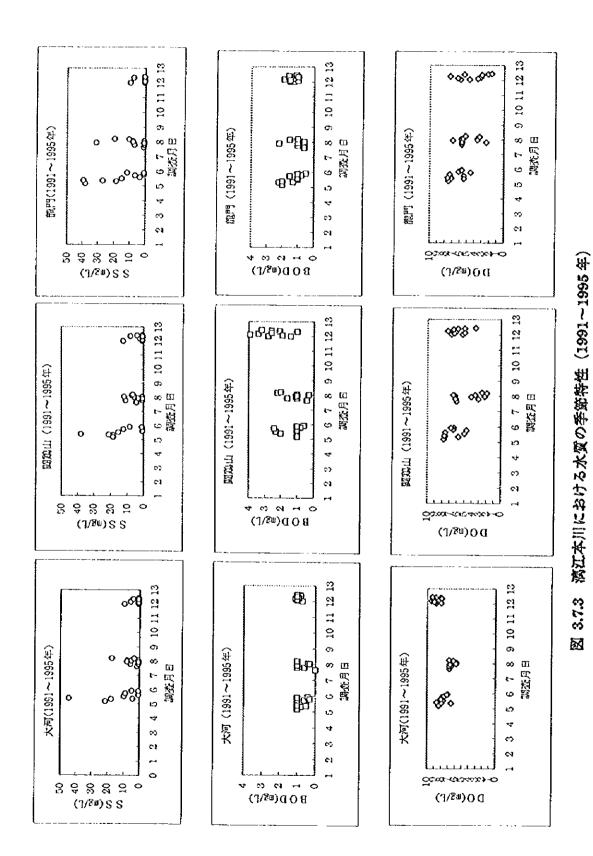
大腸菌は糞便を原因としたものだけでなく、土壌中にも多く存在することから、汚濁の進行した南渓河、小東江を除けば、現時点では特に問題視するほどのレベルではない。

ただし、遊泳区域の水質管理の視点から、下水処理場などで適正な殺菌を行ってい く必要がある。

(5)有害物質による汚染の現況

既往の定期河川水質調査において南渓河などでフェノール、ヒ素などが微量濃度で 検出されたことはあるが、漓江本川においてはほとんど検出されていない。今後、万 一検出された場合は、排出源となっている王場の排水規制などの汚濁源対策を実施し て対応すべきである。



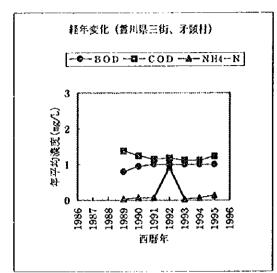

図 3.7.2 流下に伴う漓江水質の変化(1995年平均水質)

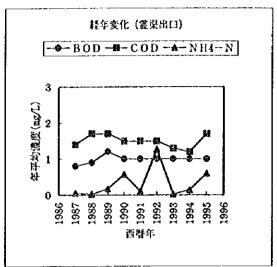
3.7.3 河川水質の季節的な傾向について

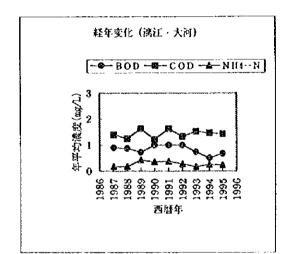
図 3.7.3 に、1991~1995 年の5年間の調査データをプロットしたものを示した。例年5~6月、7~8月、12月に各2回づつ、年間6回の定期水質調査を実施しているので5年間で原則として合計30データをプロットした(欠測の場合を除く)。季節的な特徴として、浮遊物質(SS)は渇水期に減少していることが明瞭に認められる。一般に河川では流量の少ない時期は流送土砂量が小さくなる結果、水中のシルト分が減少し、透明度があがることが多い。

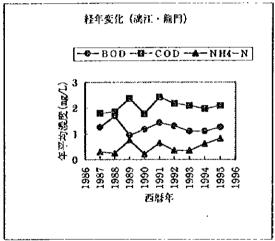
また、一般に河川では渇水期に水質が悪化する傾向があるが、図からわかるよう に漓江本川においては豊水期とほぼ同じレベルであり、そのような傾向はほとんど みられない。

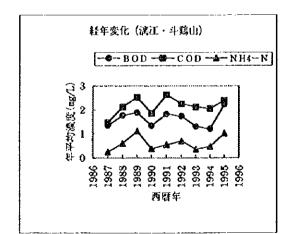
ただし、桂林市中流部の斗鶏山においては、渇水期にBODが高くなっていることが顕著に見られる。これは、河川流量が小さいことと、桂林市街地からの工場排水、生活排水の直接的な影響によるものと考えられる。


3 - 48


3.7.4 河川水質の経年的な傾向について


図 3.7.4~3.7.5 は 1987 年~1995 年までの漓江本川、及び主な文川の年平均水質の経年変化をまとめて示したものである。これによれば、漓江本川、及び桃花江については有機物濃度 (BOD、COD(Mn)) の経年的な変化はほとんどなく、水質環境基準を常に満足している。したがって、BOD、CODでみる限りは、水質汚濁が顕著に進行しているとは考えにくく、鴻江本川の環境容量が大きく、河川での自浄能力が充分に機能しているものと考えられる。


しかし斗鶏山以降の桂林市中流、下流域では、アンモニア (NH4-N) は年々増加傾向にあり、人為的な汚染が増大していることがわかる。


また、支用のうち小東江、南渓河、寧遠河の水質汚濁が顕著に現れており、特に 小東江においては、それまでは比較的清澄であったが、1994年から急速に水質汚濁 が進行していることがわかる。

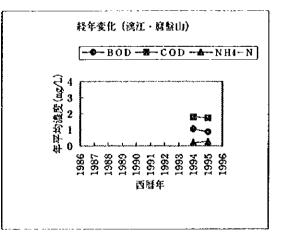
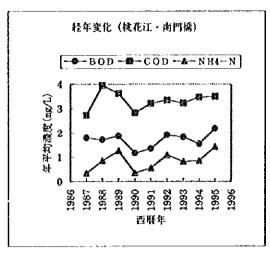
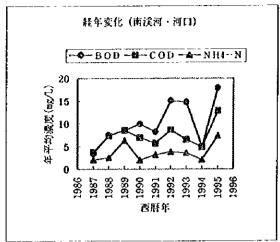
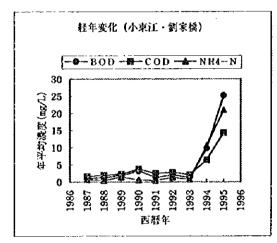
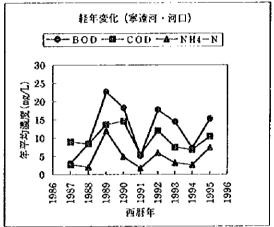






図 3.7.4 桂林市都市部における漓江年平均水質の経年変化

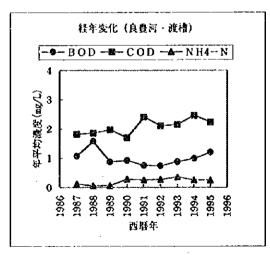


図 3.7.5 桂林市都市部支流における年平均水質の経年変化

3.7.5 渇水期の水質現況について

(1)過去の観測データによる解析

表 3.7.3 に 1991~1995 年の闘鶏山、龍門における渇水期の水質分析結果と桂林観測所における流量観測結果を整理したものを示す。

この結果によれば、過去 5 年間の 10 回の水質調査のうち、桂林観測所において流量が 30(m³/s)以下になったのは 1992 年 12 月 14 目の 1 回だけであり、舟運及び取水に障害を及ぼすほどの渇水時のデータはほとんどないことがわかる。

また、流量が 30(m³/s)以上あれば、渇水期の水質は現状においてはそれほど悪化しないと言える。

表 3.7.3 渇水期の水質と流量(桂林水文観測所、及び観鶏山水質観測地点)

	水質・流量	DO	BOD	COD	NH4-N	流量	通年最小	12月最小
年	月日	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(m³/s)	流量(m³/s)	
1991	12.04	5.0	3.9	3.5	1.33	31.0	26.2	28.9
	12.11	6.5	1.0	1.4	0.10	34.4	(11/06)	(12/23)
1992	12.03	6.4	1.9	2.4	0.64	30.3	8.06	8.06
_	12.14	3.5	3.2	3.3	1.44	12.0	(12/22)	(12/22)
1993	12.01	6.8	1.4	1.3	0.50	47.7	8.22	29.6
i	12.08	7.3	2.6	1.9	0.61	43.6	(2/12)	(12/20)
1994	12.01	5.3	2.8	2.7	1.12	44.4	11.4	35.7
	12.08	5.9	2.1	2.3	0.78	41.1	(1/28)	(12/07)
1995	12.06	6.2	3.4	2.6	1.28	49.0	25.3	27.9
	12.13	5.0	2.6	2.2	1.05	45.0	(1/21)	(12/31)

※出典 水質データは桂林市環境保護局、流量データは広西壮族自治区水文・水資源局、桂林分局による。

(2)1996 年渇水期の水質現況について

1996年12月の渇水期における補足水質調査結果の一部を表 3.7.4に示す。

表 3.7.4 漓江本川及び支川等水質調査結果 1996年 12月 14~19日

	河川名	漓江	漓江	漓江	漓江	甘棠江	南溪河	小東江	桃花江	榕湖	杉湖
調査地点	单位	大河	龍門	磨盤山	陽朔人橋	合流前	南溪河口	劉家橋	南門橋	湖心	湖心
水温	mg/L	12.0	13.0	13.5	10.8	10.0	14.0	14.0	12.0	11.0	11.0
DO	mg/L	8.9	4.0	5.4	10.0	9.8	4.5	0.2	5.2	0.7	4.0
COD(Mn)	mg/L	1.2	1.7	1.7	1.5	1.0	9.8	11.5	1.9	6.8	4.8
BOD	mg/L	1.2	1.8	1.5	1.0	1.8	7.8	100	2.0	11.4	6.8
NH4-N	mg/L	0.56	1.21	0.24	0.11	0.28	2.76	80.00	1.72	18.80	20.20
NO2-N	mg/L	0.076	0.100	0.048	0.015	0.008	0.061	0.115	0.055	0.111	0.055
NO3-N	mg/L	1.10	1.10	1.30	1.20	0.39	0.12	0.27	0.50	0.13	0.18
TP	mg/l.	0.009	0.094	0.055	0.031	0.011	0.252	1.380	0.169	0.743	0.394
大腸菌群数	(N/L	2300	23800	23800	23800	23800	>2380000	2380000	960000	2380000	238000

漓江本川については、渇水期においてもBOD濃度が 1.0~1.8(mg/L)であり、比較的清澄であるといえる(最も汚濁の進行している闘鶏山~浄瓶山大橋の区間を除く)。

ただし、図 3.7.6 の 1996 年 12 月 16 目の調査(桂林水文観測所付近・浄瓶山大橋、流量; 12.0m³/s) 結果によれば、浄瓶山大橋で BOD が 5.6(mg/L)を記録し、環境基準の 3(mg/L)を超えており、闘鶏山〜浄瓶山大橋の間の桂林都市部直下流域では水質汚濁が進行していることがわかる。ただし、龍門から下流域においては河川の白浄作用により水質が回復している。

また、DO 濃度は闘鶏山〜華僑農場にかけて 6(mg/L)を下回っており、地面水水質 基準 II 類を満たしていない。この原因としては 河川の自浄作用の過程で DO が消費 されるためであると考えられる。南渓河、小東江の DO がほばゼロであるため、硫化 水素 (H_2S) などの還元性物質が発生し、そのため漓江本川での DO の消費が大きく なっているものとみられる。

渇水期(冬季)の水質は平水期(夏季)に比べて、河川流量が小さいこと、水温が低くなるため自浄係数が小さくなることから、水質が悪化することが考えられるが、今回の調査では、ほぼ予想通りの結果となった。

リン濃度は桂林都市部下流域の龍門~磨盤由にかけて 0.055~0.094(mg/L)と高く、また NH4-N 濃度も龍門で 1(mg/L)を超えており、これらの水域が桂林都市部から流入する排水により汚染されていることがわかる。

支川については、1996 年 8 月の平水期の調査では南渓河が最も汚濁していたが、 今回の渇水期調査では小東江の汚濁が特に著しい。

今回、霊渠入口、霊渠出口の過去 10 年間の水質データを入手した。それをみると BOD 濃度は通年にわたって 1(mg/L)以下であり、霊川県の上流域の大溶江、小溶江、 霊渠の水質はいづれも比較的清澄であることが明らかになった。

調査地点	単位	闘鶏山	浄瓶山大橋	衛家渡	龍門	華僑農場
水温	Ü	14.0	14.0	14.5	14.5	14.5
平均流速	m/s	0.10	0.66	0.25	0.09	0.07
DO	mg/L	5.5	4.3	3.2	4.2	4.0
BOD	mg/L	4.9	5.6	4.6	2.9	2.1
COD(Mn)	mg/L	3.2	3.6	2.8	2.3	2.0
NH4-N	mg/L	1.57	2.58	1.97	1.18	0.68

表 3.7.5 漓江渴水期現地開查結果 1996年12月16日

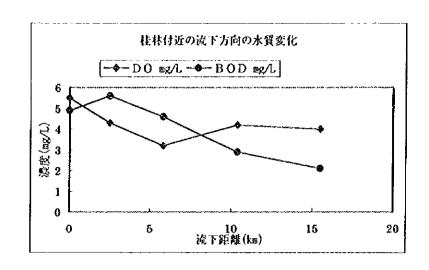


図 3.7.6 渇水期の流下に伴う漓江本川水質変化の状況

3.7.6 榕湖、杉湖の水質状況

1991~1995年の年2回の定期水質調査結果を図3.7.7 に示す。

BOD の経年変化をみると、4.0~13.0(mg/L)、COD(Mn)は 3.9~9.9(mg/L)とかなり濃度が高く、BOD については環境基準Ⅲ類;4(mg/L)を常に越えている。

また 1996 年 8 月の調査結果によれば、無機態窒素(IN=NH4-N+NO2-N+NO3-N)が 2.49~2.77、全リン(TP)が 0.257~0.290 と富栄養化の原因物質である窒素、リンの濃度がきわめて高い状況である。この主要な原因は生活排水等の混入に由来するものと考えられる。また、榕湖入口では DO が 1.2(mg/L)と低く、杉湖に向かって次第に上昇し、杉湖出口では 6.1(mg/L)となっている。この DO 濃度の上昇は湖沼内における藻類の光合成作用によるものと考えられる。これらの調査結果は榕湖の流入水が流入口において既に生活排水等により汚染されていることを示している。

1996 年 12 月の渇水期の調査においても 8 月と同様に、BOD、COD(Mn)、窒素、リン等の濃度が高く、格湖、杉湖は常時水質が悪化しているといえる。

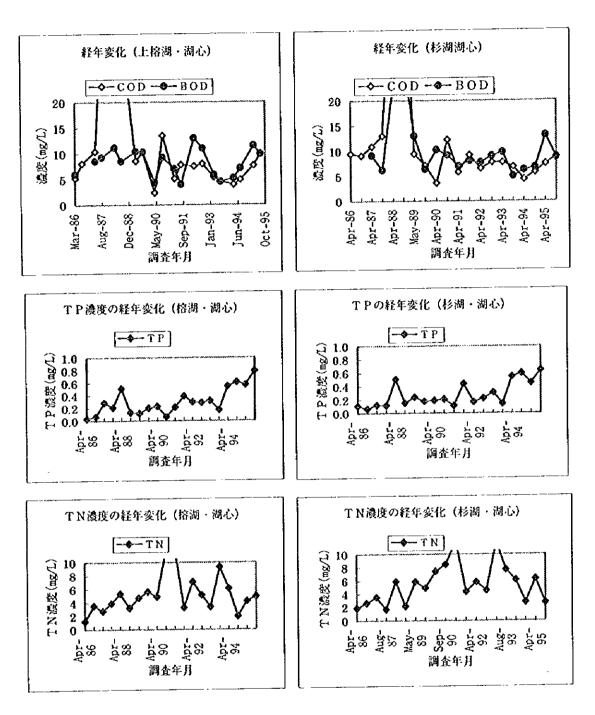


図 3.7.7 榕湖・杉湖の木質経年変化(1991~1995 年)

3.7.7 自浄作用調査の概要

桂林市城区を中心とした漓江流域の経済の発展に伴い、生活汚水や産業廃水による汚濁負荷が今後ますます増加することが想定されている。漓江流域の水環境を保全するためには、漓江本川等の自浄能力・環境容量を把握し、その範囲内に流域からの排出汚濁負荷量の総量を抑制することが必要である。

このような視点から、河川自浄作用現地調査を実施するとともに、比較対照のため併せて室内実験を行った。

なお、自浄作用調査は平水期(1996 年 9 月)と渇水期(1996 年 12 月)に各 1 回 づつ実施した。

表 3.7.6 自浄作用調査の構成(平水期、1996年9月)

調 査	名	½ }	象	河	711	水		
現地調査		鴻江	本川	(龍門→	華僑農	場)、	桃花江	(飛筳橋→甲山新橋)
室内実験	脱酸素係数	漓江	本川	(龍門)	 、桃花	江(新	(建橋)	
	損とう実験	鴻江	本川	(龍門)	、桃花	it (那	(建橋)	

表 3.7.7 自浄作用調査の構成 (渇水期、1996年12月)

調査	41	対 象 河 川 水	
現地調査		漓江本川、5箇所(闘鶏山、浄魚山大橋、衛家渡、龍門、	華僑農場)
室内実験	脱酸素係数	滂江本川(浄版山大橋)	
	振とう実験	漓江本川(浄版山大橋)	

3.7.8 渴水期現地自浄作用調查

(1)調査区間の選定

桃花江については、流下時間が比較的短く自浄作用がそれほど期待できないと判断し、調査は漓江本川だけとし、流下方向の水質変化を詳細に把握するために、BOD 濃度ピークが現れる地点付近から下流の5箇所を調査地点として選定した。

調査地点は、下流に向かって闘鶏由、浄瓶由大橋、衛家渡、龍門、華僑農場の 5 箇 所とした。

なお、流況から浄瓶山大橋を流量調査実施地点とした。

漓江本川 1996年12月16日

表 3.7.8 自浄作用調査区間の基礎データ

調査地点	单位	闘鶏山	净瓶田大橋	衛家渡	龍門	華僑農場
到達距離	(km)	. 0	2.5	3.3	4.6	5.1
流速	(m/s)	0	0.38	0.46	0.17	0.08
到達時間	(hour)	0	1.83	2.01	7.52	17.71
通算距離	(km)	0	2.5	5.8	10.4	15.5
通算時間	(hour)	***	0.00	2.01	9.53	27.24

(2)測定項目

測定項目は、汚濁解析の視点から、流速(流量)、水温、DO、BOD、COD(Mn)、NH4-Nとした。

採水・測定は上流~下流に向けて各地点毎に1本採水し、分析試料とした。

3.7.9 渴水期自浄作用調查·室内実験

室内実験用試料は浄瓶山大橋で表面水を採木し、10 リットルポリタンクに移し替えた。 (1)脱酸素係数 K1 の測定

試験結果を図3.7.8 に示す。

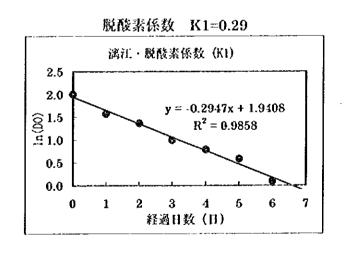


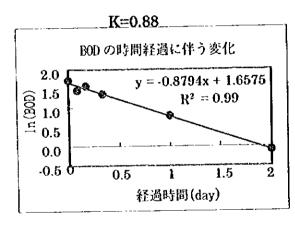
図 3.7.8 残存DOの経日変化

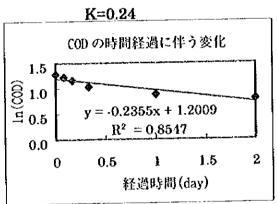
残存D〇(mg/L)のデータを用いて、LOGe(DO)を縦軸に、経過日数を横軸にとり、 最小二乗法による直線の傾きから、脱酸素係数 K1(1/day)を求めた。

その結果、漓江本川で K1=0.29 を得た。

(2)振とう実験

①実験方法


自浄作用現地調査結果との比較対照のため、調達した振とう実験装置を用いて 室内連続振とう実験を実施した。


分析項目は、自浄作用現地調査項目と同様に水温、DO、BOD、COD(Mn)、N H4-Nとした。温度条件は室温(20℃)とした。

※ 実験条件としては、大気開放状態で連続旋回振とう方式・「飛沫が外に飛ばないゆっくりした振とう」として沈殿物はデカンター方式で除去して分析試料とした。

②実験結果

図 3.7.9 に示したように、BOD 総合除去係数(Kr)=0.88 を得た。

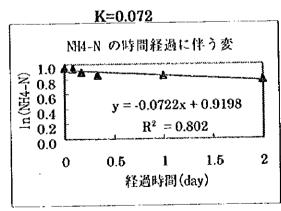


図 3.7.9 室内実験から求めた自浄係数

3.7.10 自浄作用係数の検討

(1)BOD減少速度係数の検討

現地調査の結果から、分解・沈殿を含めた総合的BOD減少速度定数(Kr)は次式により算出できる。

BOD減少反応は一次反応として近似できるので、dC/dt = -Kr·t

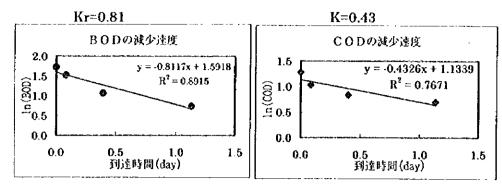
積分すると、 $C=C0 \cdot e^{-Kr \cdot t}$ 、故に $ln(C) = -Kr \cdot t + ln(C0)$

したがって、2地点だけで測定している場合は、Kr=ln(CO/C)/t で計算できる。

Kr(1/day) = (ln (BOD上流濃度 / BOD下流濃度)) * 24(h) / 到達時間(b) また、3 地点以上で測定している場合は、横軸に t (day)、縦軸に ln(C)をプロットし、最小二乗法による直線の傾きから Kr を求めることができる。

一般に、自浄作用調査である程度の精度を保つためには、対象BOD濃度が3 (mg/L)程度あるのが望ましいが、平水期の漓江本川、及び桃花江の調査については、対象BOD濃度が約1 (mg/L)と低すぎるため、調査・分析データの精度については、割り引いて考慮する必要がある。

渇水期の場合、4~5 箇所で観測しているので、横軸に t (day)、縦軸に ln (BOD) (mg/L)をとって最小二乗法による直線の傾きから、Kr を求めればよい。


総合的BOD減少係数と脱酸素係数との関係は、次式により表される。

Kr=K1+K3 ただし、Kr;総合的BOD減少係数(1/day)

K1; 脱酸素係数(1/day)

K3:沈殿、付着等によるBOD減少係数(1/day)

図 3.7.10 に渇水期現地自浄作用調査から求めた自浄係数 (Kr) を示す。 文献によれば Kr は K1 のおおよそ 2 倍程度の値となるのが普通である。

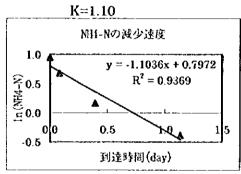


図 3.7.10 現地自浄作用調査から求めた自浄係数 (湯水期)

(2)再曝気係数(K2)の検討

河川において汚濁負荷の流人によりいったんDO濃度は減少するが、流下過程における大気中からの酸素の供給により、次第に回復する。この酸素供給速度定数を再曝気係数と呼ぶ。

再曝気係数を現地調査から得ることは困難なので、計算式により求めた。

特に村上の式は導出過程での理論的な背景が明らかにされていることから、村上の式を用いて計算した。

◎再曝気係数の理論式(村上の式)

$$K_2 = C_3 g^{3/8} \rho^{1/2} \nu^{3/8} D^{1/2} n^{3/4} V^{9/8} / (\sigma^{1/2} H^{3/2})$$

重力加速度	g=9.8m/s ²	水温	t=20°C
密度	$\rho = 0.998 \times 10^3 \text{kg/m}^3$	動粘性係数	$\nu = 1.0105 \times 10^{-4} \text{m}^2/\text{s}$
分子拡散係数	$D=2.037\times10^{-9}$ m ² /s	表面張力	$\sigma = 7.275 \times 10^{-2} \text{kg/s}^2$
机度係数= n	平均流遠= V	水深=H	

 $k_2=22.56\times n^{3/4} V^{9/8}/H^{3/2}$

備考) 式の形から水深が深いほど K2 は小さくなるが、これは酸素が卑ら水面から供給されるためである。

村上の式による再曝気係数の計算結果を表 3.7.18 に示す。

表 3.7.9 桃花江、及び漓江における村上の式による再曝気係数の計算事例

河川名		粗度係数 n			再曝気係数	再曝気係数(底 e)
桃花江、(平水 翔)	22.56	0.04	0.22	1.8	0.152	0.35
湾江 (平水期)	22.56	0.04	0.26	3.5	0.068	0.16
漓江(渇水期)	22.56	0.04	0.27	1.0	0.463	1.07

注) 1996年9月、12月の調査データを使用し、粗度係数=0.04として計算した。

上表 3.7.9 に示したように再曝気係数は桃花江で 0.35 , 漓江本川では平水期で 0.16 、渇水期で 1.07 を得た。

(3)COD(Mn)、COD(Cr)の減少速度係数の検討

COD減少速度定数はBODと同様の考え方により、求めることができる。

(4)NH4-N減少速度係数の検討

NH4-Nについてもその減少反応を一次反応と仮定すれば、BODと同等の計算が成り立つ。

調査内容によって得られる結果はばらついているが、これは水質調査の調査精度、 分析精度の面から、致し方のないところである。

自浄作用調査結果から求めた各自浄係数の数値を整理したものを表 3.7.10 に示す。

表 3.7.10 自净係数開查結果一覧

調査名	平水井	調査	渴水期調査	渴水期室内実験	掎	要
調査月日	1996/9/3	1996/9/5	1996/12/16	1996/12/16-23		
項目	桃花江	漓江	鴻江	滨江·净瓶山大橋		
BOD減少速度(Kr)	< 0	3.4	0.81	0.88		
COD(Mn)	< 0	0.52	0.43	0.24		
COD(Cr)	< 0	4.23	111	***		
NH4-N	0.74	1.59	1.10	0.072		
脱酸素係数(K1)	0.035	0.026	0.29	0.29		
再曝気係数(K2)	0.35	0.16	1.07			

平水期の調査データは水質濃度が低いため、当初から予想されたように水質分析、 及び計算の精度に問題がある結果となった。

脱酸素係数の平水期の結果は1オーダー程度小さい結果となっている。

渇水期においては、NH4-N の結果は室内実験の計算結果が低すぎる。

BOD については、渇水期の調査データをみると、脱酸素係数(K1)=0.29、BOD 減少速度係数(Kr)=0.81 (現地調査) \sim 0.88 (室内実験) となり、この結果は文献値と比較してみて、ほぼ妥当な数値であると考えられる。

3.8 生態系

3.8.1 概況

広西杜族自治区は気候が温暖で雨量も多く動植物資源が豊富であり、熱帯種と亜熱帯種を主として維管束植物が 284 科、1700 属、約 8000 種生育しており、884 種の陸上脊椎動物が確認されている。また、桂林地区において植物では 199 科 544 属 1415 種、動物は 203 種、水生動物で 110 余種、昆虫で 600 種が確認されている。

漓江流域の自然植生は、細枝栲、荷木、銀荷木、甜儲などの常緑広葉樹林であり、主に自然保護区に見られ、全体的には馬尾松、杉木、湿地松などの人工林が広く見られる。漓江両岸では竹類(毛竹、柑竹、吊絲竹、掌篙竹など)、枫場、国槐、狭竹桃、桂花などが植栽されている。「桂林漓江上遊両岸緑化典型調査」によると、漓江(大溶江一大面)の両岸 500m以内では、32.8%に先述の樹種(竹類、楓場など)が植えられ緑化良好な地域とされている。桂林市市区園林緑化樹種は 91 科 236 属 527種にのぼり、そのうち常緑針葉樹は 40種、常緑広葉樹は 124種、常緑灌木は 100種、落葉灌木は 76種、常緑藤本は 30種、落葉藤本は 21種、竹類は 29種である。主要緑化樹種は香樟、阻香、小叶榕、石山榕、桂花、銀木、桂林白朦、大叶女貞、棕櫚、蒲葵花等である。市区内でみられる天然種は、石山に青崗樹を主とした常緑広葉樹がわずかに見られるだけである。

「広西自然保護区」によると、区内には国家重点保護植物に指定されているものが 122 種あり、このうち一級保護植物に指定されているものが 4 種、二級保護植物に指定されているものが 67 種ある。

漓江流域では、二級保護植物の資源冷杉、水松、福建柏、銀钟花、槿棕の 5 種、 三級保護植物の油杉、華南五針松、南方鉄杉、長苞鉄杉などの 13 種で、主に猫児山 総合自然保護区、青獅潭水源林保護区、海洋山水源林保護区に生育している。

動物では、1988年に国務院の認可を受け公布された「国家重点保護野生動物名一覧」および 1991年に広西区人民政府の認可により公布された「広西壮族自治区重点保護野生動物名一覧」によると、広西地域内で国家一級重点保護に指定されている野生動物は 25種、二級重点保護動物は 117種である。

桂林地区での貴重な野生動物については、「桂林地区重点野生動物保護名録」によると全体で 148 種で、国家一級重点保護に指定されている種は虎、豹、金雕等の 12 種、国家二級重点保護に指定されている種は、金猫、短尾猴、白琵鷺、白額雁等 の 31 種である。

3.8.2 鴻江流域の動物

漓江流域の動物の生息状況についてのデータは、貴重な動物の生息状況について、「桂林地区重点野生動物保護名録」に記載された種をもとにヒアリング調査を実施した。漓江流域に生息している動物で国家一、二級重点保護に指定されているものは、かつて生息していた種を含め 37 種である(リストは付属資料に添付)。その主要な種の分布状況は図 3.8.2 に示すとおりである。しかしそのうち、虎、豹、金猫などの6種がすでに当流域では絶滅している。1958 年頃の大規模な森林伐採により生息域が急速に奪われていったことが要因としてあげられた。

天然樹種区政漓江流域の自然保護区内の森林面積および樹種を見ると表 3.8.1 のようになる。天然樹種である広葉樹林(阔叶林)の面積は、猫鬼山で 57.1%、青獅潭で 45.6%、海洋山で 47.6%である。1980 年の森林分布図と 1994 年の森林分布図を比較すると広葉樹林 (阔叶林) は減少傾向にあり、特に青獅潭水源林保護区では、1980年ではダム周辺は防護林とされていたが、1994 年には防護林は水田、竹林へと変わっている場所が目立っている。また、猫鬼山自然保護区内で広葉樹林(阔叶林)は防護林として保護されていて、多くの野生生物の生息場所となっている。海洋山水源林保護区では、南側から馬尾松、湿地松などの松類の植林が行われ、幼齢林から中齢林が多くなっている。川材林、経済林の拡大は今後も増加するものと考えられ、野生動物の生息場所が奪われていく傾向にある。川材林、経済林の拡大に付随して、農薬などによる影響、林床の貧弱化や単一樹種の植栽による生息種の単純化が懸念される。

広葉樹林 (阔叶林) の減少の理由の一つとして周辺住民の生活燃料としての伐採が上げられている。

表 3.8.1 自然保護区内森林面積

	猫児山		青獅潭		海洋山		
項目	面積	森林被覆率	函積	森林被覆率	面積	森林被覆等	
	(km^2)	(比率)	(km^2)	(比率)	(km^2)	(此率)	
		(%)		(%)		(%)	
森林面積	308	68.3	287	68.7	612	57.1	
		(100.0)		(100.0)		(100.0)	
阔叶林	176	(57.1)	131	(45.6)	291	(47.6)	
杉木	17	(5.5)	26	(9.1)	40	(6.5)	
馬尾松 (松林)	(31)	(10.0)	26	(9.1)	108	(15.9)	
その他 (毛竹)	84	(27.4)	(103)	(35.9)	180	(30.0)	

『広西自然保護区』のデータより表を作成

特に水環境の変化で影響を受ける種としては、半水棲の水獺や魚類を餌とする鳥類(黄嘴白鷺、白鸛、黒鸛等)があげられる。

水綱は青獅潭ダム周辺に生息していたが現在はほぼ絶滅したものと見られる。

それはダム周辺の水田の農薬、水際の生息環境の変化も一つの要因としてあげられるが、経済的価値の高さから、捕獲の対象となり乱獲が行われたことが主な要因と見られる。

小溶江では黄嘴白鷺が以前は生息していたが、現在は見られなくなっている。他の区域では、魚類を餌とする鳥類等の減少等は見られず、水環境の変化を要因とした影響は特に見られない結果となった。

3.8.3 漓江流域の鳥類

広西師範大学生物系の調査結果によると、漓江流域の鳥類は 248 種確認されている。

そのうち、主要な 150 種についての生息場所、生息環境を表 3.8.3 にまとめる。

これらの鳥類は、旅鳥、留鳥の二つに大きく分けられ、留鳥は 98 種で本地区に通年的にみられ、猫児由林区に多く見られる。旅鳥は 150 種で、季節的にみられる。そのうち春に南方から繁殖に本地へ訪れ、秋に本地から南方へかえる種がありこれらは、燕子、杜鵑等である。もう一つは、秋に北方から来て冬を過ごし翌年春に北方へ帰る種類がある、これらは、緑 鴨、鷺、鷹、隼等で多い。また、毎年3-4月、9-10月にこの地にやってきて短期間だけ停留しすぐに去ってしまう種類がある。

大溶江より上流は、件遊剩厳、白頚長尾雉、紅腹角雉、黄嘴噪啄木抵、斑啄木抵、 大啄木木抵、山鶺鴒等の森林性の留鳥が多くみられる。中・下流域では、牛背鷺、 大白鷺、小白鷺、針尾鴨、緑翅鴨寞等漓江を主要生息場とする旅鳥が多い。上流側 では猫児山自然保護区のような広葉樹林等が保全されている区域があり、留鳥のよ うな一年を通してみられる鳥類の生息場所となっている。中・下流では、水域を生 息場所としている旅鳥が多く、留鳥の割合がかなり減っている。水域に沿って移動 する旅鳥がその途中で漓江に立ち寄るものと考えられる。また、中・下流域におい ては、森林性の鳥類が少なく、留鳥が生息できる適当な森林が少ないことがいえる

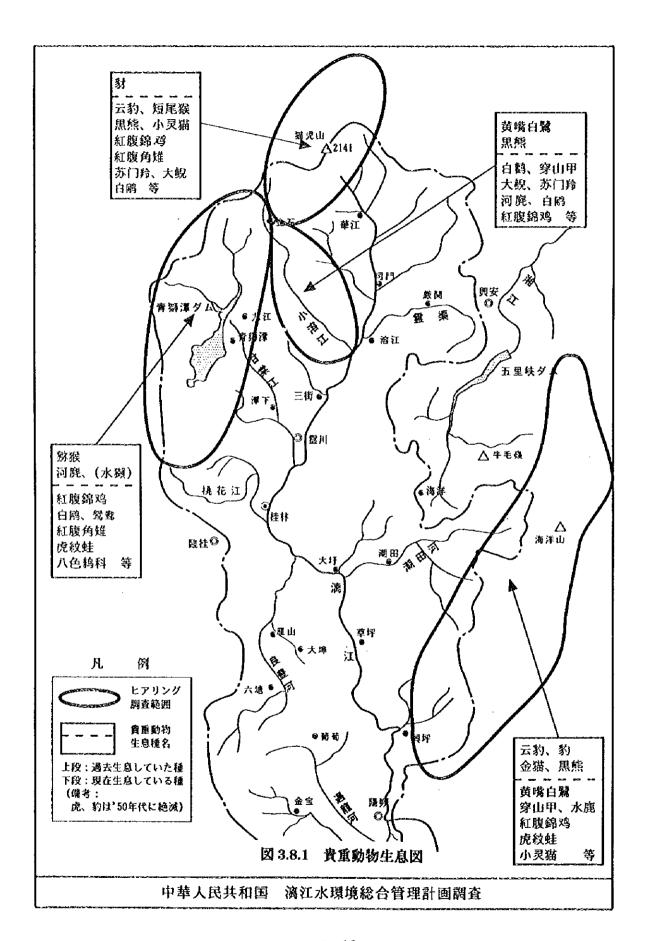


表 3.8.2 滴江流域の鳥類生息状況

		渡り	区分		生	<u>Q</u>	環	境			
	確	留	旅	森	草	人	水	岩石	そ	湾	漓
	#37 P.C.					I		•	Ø		iI.
	種	鳥	島	林	原	林	域	山林	他	江	流域
上流	22	21	2	18	3	3	1	2	0		14
上班	22	95	9.1	82	14	14	4.5	_		0	64
中流	6	1	5	1	1	1	4	1		5	3
比率		17	83	17	17	17	67	17	0	83	50
区分なし	20	9	13	3	2	2	12	2	4	6	12
比率]	45	65	15	10	10	60	10	20	30	60
上・中流	11	6	5	9	2	6	0	Б	6		8
比率		55	45	82	18	55	0	45	55	0	73
中・下流	25	4	21	2	6	5	19	4	3	22	20
比率		16	84	8	24	20	76	16	12	88	80
全域	66	42	29	32	44	48	21	41	29		66
比率		64	44	48	67	73	32	62	44		100
合計	150	311	362	268	140	180	264	<u> </u>	129		449

上流:大溶江上流 中流:大溶江~桂林 下流:桂林~陽朔

上段:種数 下段:比率(%)

	主要種	留鳥	旅鳥	森林	草原	人工林	水域	岩石・山林	その他	流	中流	下流	主要江面	鴻江流域
種数	150	83	75	65	58	65	57	55	42	99	108	91	70	123
全体の比 率(*)		55	50	43	39	43	38	37	28	66	72	61	47	82

広西師範大学生物系調査結果に基づき表を作成した。リストは資料に添付する。

3.8.4 漓江の水生生物(魚類)

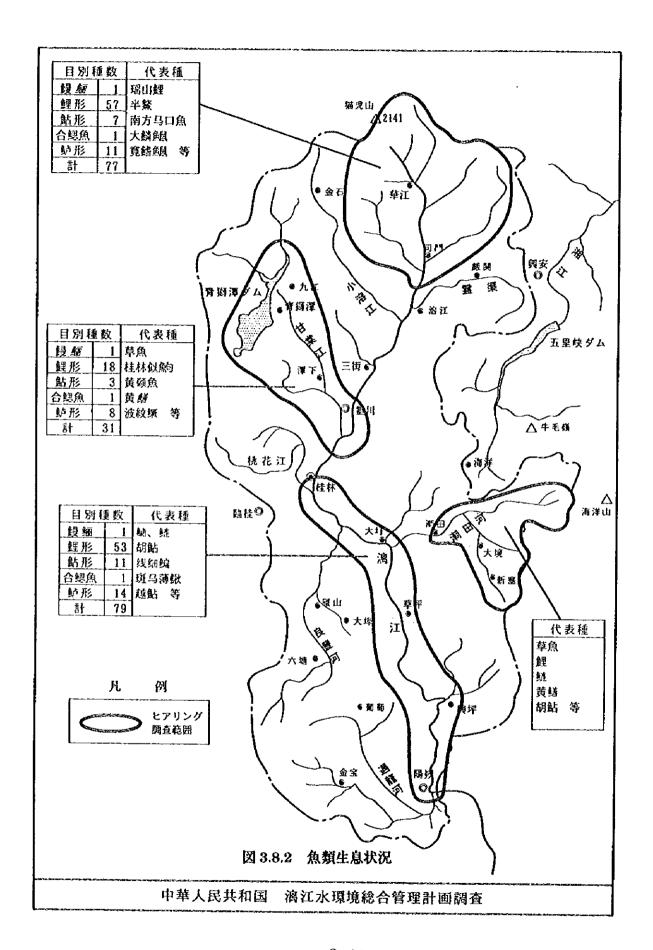
漓江流域での魚類は、1981年「広西淡水魚類志」によると、漓江、桂江、湘江で 5日 16 科 118 種の記録がある。この魚類リストをもとに、調査流域の溶江上流、青 獅潭ダム及び甘棠江、桂林下流でヒアリング調査を行った結果を表 3.8.3、図 3.8.2 にしめす。また、魚類リストは付属資料に添付した。

目名 针名 溶江上流 青獅潭ダム 桂林下流 全域 甘菜江 鳗鲡 鳗鲡 1 1 1 1 鲤形 37 45 11 56 鳅 12 7 16 17 鮎 胡鲇 1 l 1 1 鲇 1 0 1 1 据鲇 1 1 3 3 魚北 0 0 1 1 焦火 1 0 0 1 笙賞 5 3 1 5 合枇魚 合批魚 1 1 1 1 鮨 3 4 5 5 塘螅 1 0 1 1 鰕虎魚 3 0 3 3 斗魚 1 l 1 1 稳 1 1 1 1 刺蚁 2 2 2 2 合 77 31 79 100

表 3.8.3 魚類調查結果

全体で 5 目 16 科 100 種が確認され、主要な種は鯉、草魚、胡鮎、鮎、黄颡魚、黄 鳝である。これらは、全域に共通に見られる種である。

上流では、瑶由鯉、半鰲、大鱗顱、寛鳍魚はいった鯉科の種が多く、下流では 线細鳊、似鯵、長麦穂魚、越鮎、盔鮎、福建紋胸跡のように鯉科の種以外に蝌科、 盔鮎科、鱝科の種が多くなっている。


今回の調査ではダムによる中流域の種数の減少が推測されるが、ヒアリングでは 種数の減少は得られなかった。しかし、量的な減少は全域で共通に見られた。この 原因について調査したところ、以下の回答を得た。

- ①工場排水による水質汚濁
- (2)過剰な漁獲量
- ③水生生物の生息に悪影響を与える漁獲方法(「毒魚(河川に毒を流す)」、「電

魚(川に高電流を流す)、「炸魚(水中で爆薬を炸裂させる)」など) ④不合理な経済活動による生息域の減少

無類への影響は、量的に減少する可能性はあるが、産卵期には、水量が戻ることから大きな影響はないようである。

水質の悪化は今後深刻になると思われるが、いま現在の漓江流域での問題は、捕獲量の過多などの人為的な行為であり、魚市場での漓江の魚も幼魚が多くその影響が伺える。食用としては、養殖魚が多く、漓江内では、草魚、鯉魚、瑶山鯉などの養殖が行われている。これらは不法な場合が多く、水生生物の生息環境を奪ったり、餌の放出により、周辺の魚類をはじめとした水生生物の生態系のバランスが崩れる要因となる可能性がある。適正な養殖業を奨励しながら、漓江内での漁業について、捕獲量の制限、捕獲方法の限定等の見直しを行い、捕獲による影響を軽減する対策が早急に必要である。

