Data 7

Supporting Data for the Environmental Impact Assessment

0

ß

Contents

7-3

47 E

Contents	
List of Tables	
List of Figures	
1 Introduction	7-1
1 Introduction . 1.1 General	

2 Topographical Survey	2	Topog	raphical	Survey
------------------------	---	-------	----------	--------

.

3 Geological Survey	C-1
3.1 Borehole Investigations	
3.2 Clay Borrow Sites	
3.2.1 The Surroundings of Kunduchi Landfill Site	
3.2.2 The Site at Kinzudi	
3.2.3 The Site at Pugu	
4 Hydrological Survey	7-11
4.1 Groundwater	
4.2 Surface Water	
5 Water Use Survey	7-17
5.1 Regular Water Supply	
5.2 Surface Water Use	
5.3 Groundwater Use	
6 Water Quality Survey	7-18
6.1 Sampling	
6.2 Analysis	
7 Soil Contamination Survey	7-23
7.1 Introduction	

Ē

1

3

-2

8 Traffic Volume Survey	7-24
8.1 Introduction	7-24
8.2 Objective	
8.3 Methodology	7-24
8.4 Results	7-24
9 Noise Level Survey	7-50
9.1 Introduction	
9.2 Land Use in Vicinity of Survey Stations	
9.3 Methodology	
9.4 Survey Results	
10 Vibration Level Survey	7-58
10.1 Introduction	
10.2 Methodology	
10.3 Survey Results	
11 Air Quality Survey	7-65
11.1 Roadside Air Quality Survey	
11.1.1 Introduction	
11.1.2 Methodology 11.1.3 Survey results	
11.2 Air Quality Survey at the proposed disposal site	
11.2.1 Introduction	
11.2.2 Methodology	
11.2.3 Results	7-72
12 Land Use Survey	7-73
12.1 Existing Land Use	
12.1.1 Mining Rights and Quarrying: western side of	
New Bagamoyo Road	
12.1.2 Residential/Farm Areas	
12.1.4 Other Quarries: eastern side of New Bagamoyo Road	
12.1.5 Commercial	
12.1.6 Salt pans and water logged area	
12.1.7 Scrubs and Bushes	
12.2 Infrastructure	-
12.3 Significant Sites	7-74
12.4 Future Land Use	

Ş

()

13 Flora and Fauna	7-79
13.1 Flora	7-79
13.1.1 Vegetation	7-79
13.1.2 Weeds from Induced Vegetation	7-82
13.1.3 Kunduchi mangroves	7-83
13.1.4 Plates depicting Site Observations	7-83
13.1.5 Plant Check List	7-92
13.2 Fauna	7-97
13.2.1 Materials and Methodology	
13.2.2 Results	7-98
14 Public Health	7-103
14.1 Introduction	7-103
14.2 Occurrence and Incidence of Diseases	
15 Economic Survey	7-105
15.1 Introduction	
and a second	nð its
15.2 Status and scale of mining activities within the proposed fanorill site a	
15.2 Status and scale of mining activities within the proposed landfill site a environs	
environs	
environs	
environs	7-105 7-106 7-106
environs	7-105 7-106 7-106 7-108
 environs	7-105 7-106 7-106 7-108 7-108 7-109
 environs	7-105 7-106 7-106 7-108 7-108 7-109 7-109
 environs	7-105 7-106 7-108 7-108 7-108 7-109 7-109 7-110
 environs	7-105 7-106 7-108 7-108 7-108 7-109 7-109 7-110 7-111
 environs	7-105 7-106 7-108 7-108 7-108 7-109 7-109 7-110 7-111

Appendix 1	
Appendix 2	
Appendix 3	
Appendix 4	

:

List of Tables

Table 2-1: Trigonometric points used in resection	7-3
Table 3-2: Borehole locations	
Table 3-1: Analysis of Clay from the Valley west of the proposed Landfill Site	7-6
Table 3-2: Analysis of clay from the Kinzudi site	
Table 3-3: Analysis of clay from the Pugu site	7-7
Table 3-4: Coefficient of Permeability Results for Bentonite Clay/Sand Mixtures	
Table 3-5: Summary of soil test results for New MECCO Quarry site at Kunduchi.	7-9
Table 3-6: Summary of soil test results from proposed borrow areas	
Table 4-1: Inventory of existing boreholes within the Kunduchi area	7-12
Table 5-1: Water Use Survey.	7-17
Table 6-1: Sampling Points	7-18
Table 6-2: Water Quality Analysis - Parameters and Methods	7-19
Table 6-3: Water Analysis Results (I)	7-20
Table 6-4: Water Analysis Results (II)	7-21
Table 6-5: Water Analysis Results (III)	7-22
Table 7-1: Soil contamination results	7-23
Table 8-1: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-26
Table 8-2: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-28
Table 8-3: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-28
Table 8-4: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-30
Table 8-5: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-32
Table 8-6: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-32
Table 8-7: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-34
Table 8-8: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-36
Table 8-9: Traffic survey results for station A1: New Bagamoyo Road,	
150 m north of the intersection with Sam Nujoma Road	7-36
Table 8-10: Traffic survey results for station A2: New Bagamoyo Road,	
near to the proposed disposal site on the south-east side	7-38
Table 8-11: Traffic survey results for station A2: New Bagamoyo Road,	
near to the proposed disposal site on the south-east side	7-40
Table 8-12: Traffic survey results for station A2: New Bagamoyo Road,	
near to the proposed disposal site on the south-east side	7-40
Table 8-13: Traffic survey results for station A2: New Bagamoyo Road,	
near to the proposed disposal site on the south-east side	7-42
Table 8-14: Traffic survey results for station A2: New Bagamoyo Road,	_ .
near to the disposal site on the south-east side	7-44
Table 8-15: Traffic survey results for station A2: New Bagamoyo Road,	
near to the proposed disposal site on the south-east side	7-44

Ð

()

83

Ŋ

Table 8-16: Traffic survey results for station A2: New Bagamoyo Road, 7.46
near to the proposed disposal site on the south-east side
Table 8, 17. Traffic survey results for station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side
Table 8, 18, Traffic survey results for station A2; New Bagamoyo Road,
near to the proposed disposal site on the south-east side
Table 9-1. Noise level survey results at station: A1: New Bagamoyo Road,
150 m porth of the intersection with Sam Nujoma Koad.
21 January 1997
Table 0.2: Noise level survey results at station A1: New Bagamoyo Road, 150 m
north of the intersection with Sam Nuloma Road: 22 January 1997 1-33
Table 0.3. Noise level survey results at station A1: New Bagamoyo Road, 150 m
north of the intersection with Sam Nujoma Road: 23 January 19977-34
multiple 4. Noise level survey results at station A2. New Bagamoyo Road, near to
the proposed disposal site on the south-east side: 28 January 1997 1-55
Table 0. 5. Noise level survey results at station A2: New Bagamoyo Road, near to
the proposed disposal site on the south-east side. 29 January 19977-50
Table 0. G. Maica level survey results at station A2: New Bagamoyo Road, near 10
the proposed disposal site on the south-east side. 30 January 1997
Table 10-1: Vibration level survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam Nujoma Road. 21
January 1007
Table 10.2. Vibration level survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam (Nujoina Noau, 22
Lonuone 1007
Table 10-3. Vibration level survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam Nujoina Road. 25
1007
The to de Mikrotion outpour results at station A2. New Bagamoyo Road, near to
the proposed disposal site on the south-east side. 20 January, 1997
Table 10 S. Vibration survey results at station A2: New Bagamoyo Koau, near to
the proposed disposal site on the south-east side: 29 January, 1997 1995
Table 10 G. Vibration survey results at station A2. New Bagamoyo Road, near to
the proposed disposal site on the south-east slipe. SU January, 1997
Table 11 1: Ambient air survey results at station AI: New Bagamoyo Road, 150 m
north of the intersection with Nam Nuloma Road. 21 January, 1997 7 00
Table 11.0: Ambient air survey results at station AL: New Bagamoyo Road, 150 m
north of the intersection with Sam Nulonia Koadi 22 January 1997
The Line of the support of the support of the station All New Bagamoyo Road, 150 III
north of the intersection with Sam Nulonia Koad: 25 January, 1997
or 11, 11 4. Ambient oir survey results at station A2. New Bagamoyo Koau, hear to
the proposed disposal site on the south-east side. 20 January, 1997
T. 11-11 5. Ambient or survey results at station A2: New Bagamoyo Koau, hear to
the proposed disposal site on the south-east side. 29 January, 1997
The the Contract of the survey results at station A2. New Bagamoyo Road, field to
the proposed disposal site on the south-east side. 30 January, 1997
T-11, 12, 1, Polotive abundance of hird species in N-W farms
Table 12 2. Polyting abundance of bird species in S-E larms
Table 13-2: A list of Animal Taxa within the Quarry site 7-102
14016 13-3. What of Children Construction Construction 2

. . . .

كالالالة المراجع المتعالية المتعارية المتعاوية والمعقا والمتعادية

Table 13-4: Relative abundance of bird species within the quarry site and its adjacent habitats	7 102
Table 14-1: Reported cases of diseases at Kunduchi Mtongani dispensary	
in 1996	7-103
Table 14-2: Reported cases of diseases in hospitals/dispensaries of Kinondoni	
district in 1995	7-103
Table 15-1: Tax collected from mining companies	
Table 15-2: Small Scale Miners - Population break down	7-106
Table 15-3: Small Scale Miner Productivity	7-107
Table 15-4: Income generation of small scale miners	7-107
Table 15-5: Monthly income of food vendors	7-108
Table 15-6: Attendance of Scavengers at Vingunguti	7-108
Table 15-7: Number of scavengers collecting different items	
at Vingunguti disposal site	7-109
Table 15-8: Distribution in monthly income for scavengers	
at Vingunguti disposal site	7-109
Table 15-9: Distribution in monthly income for middlemen Vingunguti	7-110
Table 15-10: Buying and selling prices for different recycled items	7-111
Table 15-11: Comparison of Estimated Recycled Amounts for Different Items	and
Calculation of the Recycled Waste Amount	7-111
Table 15-12: Uses and major users of recycled waste items in DSM	
Table 15-13: Major recycled items and corresponding end user industries	
in DSM	7-113

R

List of Figures

e 2-1: Present Topographical Conditions and Location of Boreholes	-4
e 4-1: Water Sampling Points within the Study Area at Kunduchi	13
e 4-2: Cross - Section of the Area through the Landfill to the Indian Ocean 7-1	14
e 4-3: The Surface Water Conditions within the Study Area at Kunduchi 7-1	
e 8-1: Location of Survey Stations on New Bagamoyo Road	
e 8-2: Traffic survey results for station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 21 January, 19977-2	7
e 8-3: Traffic survey results for station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 21 January, 19977-2) 9
e 8-4: Traffic survey results for station A1: New Bagamoyo Road, 150 m	.,
north of the intersection with Sam Nujoma Road: 22 January, 19977-3	31
e 8-5: Traffic survey results for station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 22 January, 19977-3	11
e 8-6: Traffic survey results for station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 23 January, 19977-3	35
e 8-7: Traffic survey results for station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 23 January, 19977-3	27
e 8-8: Traffic survey results for station A2: New Bagamoyo Road, near to	••
the proposed disposal site on the south-east side: 28 January, 19977-3	19
e 8-9: Traffic survey results for station A2: New Bagamoyo Road, near to	
the disposal site on the south-east side: 28 January, 1997	11
e 8-10: Traffic survey results for station A2: New Bagamoyo Road, near to	••
the proposed disposal site on the south-east side: 29 January, 19977-4	13
e 8-11: Traffic survey results for station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 29 January, 19977-4	15
e 8-12: Traffic survey results for station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 30 January, 19977-4	17
e 8-13: Traffic survey results for station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 30 January, 19977-4	19
e 9-1: Road profile at station A1 along New Bagamoyo Road about 150 m	
north of the intersection with Sam Nujoma Road	51
e 9-2: Road profile at station A2 along New Bagamoyo Road about 300 m	
south-east of the proposed disposal site	51
e 9-3: Noise level survey results at station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 21 January 19977-5.	52
e 9-4: Noise level survey results at station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 22 January 19977-5.	53
e 9-5: Noise level survey results at station A1: New Bagamoyo Road, 150 m	
north of the intersection with Sam Nujoma Road: 23 January 19977-5	54
e 9-6: Noise level survey results at station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 28 January 19977-5	55
e 9-7: Noise level survey results at station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 29 January 19977-5	56
e 9-8: Noise level survey results at station A2: New Bagamoyo Road, near to	
the proposed disposal site on the south-east side: 30 January 19977-5	

Figure 10-1: Vibration level survey results at station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road: 21
January, 1997
Figure 10-2: Vibration level survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam Nujoma Road: 22
January 1997
Figure 10-3: Vibration level survey results at station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road: 23
January 1997
Figure 10-4: Vibration level survey results at station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side:
28 January 1997
Figure 10-5: Vibration level survey results at station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side:
29 January, 1997
Figure 10-6: Vibration level survey results at station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side:
30 January, 1997
Figure 11-1: Ambient air survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam Nujoma Road: 21
January, 1997
Figure 11-2: Ambient air survey results at station A1: New Bagamoyo Road,
150 m north of the intersection with Sam Nujoma Road: 22
January, 1997
150 m north of the intersection with Sam Nujoma Road:
23 January, 1997
Figure 11-4: Ambient air survey results at station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side:
28 January, 1997
Figure 11-5: Ambient air survey results at station A2: New Bagamoyo Road,
near to the proposed disposal site on the south-east side:
29 January, 1997
Figure 11-6: Ambient air survey results at station A2: New Bagamoyo Road, near to
the proposed disposal site on the south-east side: 30 January, 19977-71
Figure 12-1: Distribution of Mining Rights
Figure 12-2: Existing Landuse within the Study Area
Figure 12-3: Proposed Future Landuse within the Study Area
Figure 13-1: Distribution of Vegetation within the Study Area
Figure 13-2: Arrangement of drift fences and pitfall traps
Figure 13-3: Cumulative frequency distribution of animal taxa in the N-W farms7-98 Figure 13-4: Cumulative frequency distribution of animal taxa trapped in
Kilongawimo village at the Mbezi/Mtongani boundaries
Figure 13-5: Cumulative frequency distribution of animal taxa trapped
in the Tegeta river area
Figure 14-1: Reported cases at Kunduchi Mtongani dispensary in 1996
Figure 14-2: Reported cases of diseases in hospitals/dispensaries
of Kinondoni District in 1995

1 Introduction

1.1 General

- 9

臠

This Annex contains the measurement, survey and data collection works required, according to the technical specifications in the Terms of Reference (see Appendix 4) for the Environmental Impact Assessment (EIA) of the proposed sanitary landfill site at Kunduchi New MECCO quarry (referred to as the study).

These works were conducted as part of the "Study on the Solid Waste Management for Dar es Salaam (DSM) City in the United Republic of Tanzania". Specifically, they form part of the Feasibility Study of the first priority project identified in the Master Plan and are a follow-up to the Initial Environmental Examination (IEE), conducted by the JICA Study Team between June - September, 1996.

These works were conducted by the Department of Environmental Engineering of the University College of Lands and Architectural Studies (UCLAS) of DSM, from January - March 1997.

The study area of these works covers the Kunduchi New MECCO quarry site and its environs and the New Bagamoyo Road from the Kunduchi New MECCO quarry site to the intersection with the Sam Nujoma Road. The main survey sites were in the Kunduchi New MECCO quarry site and its environs as well as at one point along New Bagamoyo Road, 150 metres north of the intersection with Sam Nujoma Road.

1.2 Location and Background of the Study Area

The proposed landfill site is located along New Bagamoyo Road, approximately 19.3 km north of the city centre of DSM, near the village of Mtongani. The site comprises an area of approximately 30 ha. with an original ground elevation of 50 - 65 m above sea level. The land is owned by the government and is under the control of the Ministry of Energy and Minerals who has leased most of the mining rights to MECCO while some rights have also been leased to National Service, MALI Ltd., and TSSQ.

MECCO continues to operate a crushing plant on the site, although these activities are at a low level. This is because a substantial part of the site is already exhausted, having been excavated for coralline limestone down to bottom levels of 43 - 48 m above sea level. Some manual quarrying operations are also being conducted at various parts of the site by independent individuals.

1.3 Measurement, Survey and Data Collection Works

The measurement, survey and data collection works conducted in the study, according to the chronological order in which they are presented in this Annex, are as follows:

- Topographical survey and mapping of the whole area of Kunduchi New MECCO quarry site and its environs, covering an area of approximately 50 hectares.
- Geological survey of the quarry site and investigation of borrow soil sites.
- Hydrological survey.

Control of

A

- Water use survey.
- Water quality survey.
- Soil contamination survey.
- Traffic volume survey.
- Noise level survey.
- Vibration level survey.
- Air quality survey.
- Land use survey.
- Flora and fauna survey.
- Public health survey.
- Economic survey.
- Meteorological data.

1.4 Methodology and Approach

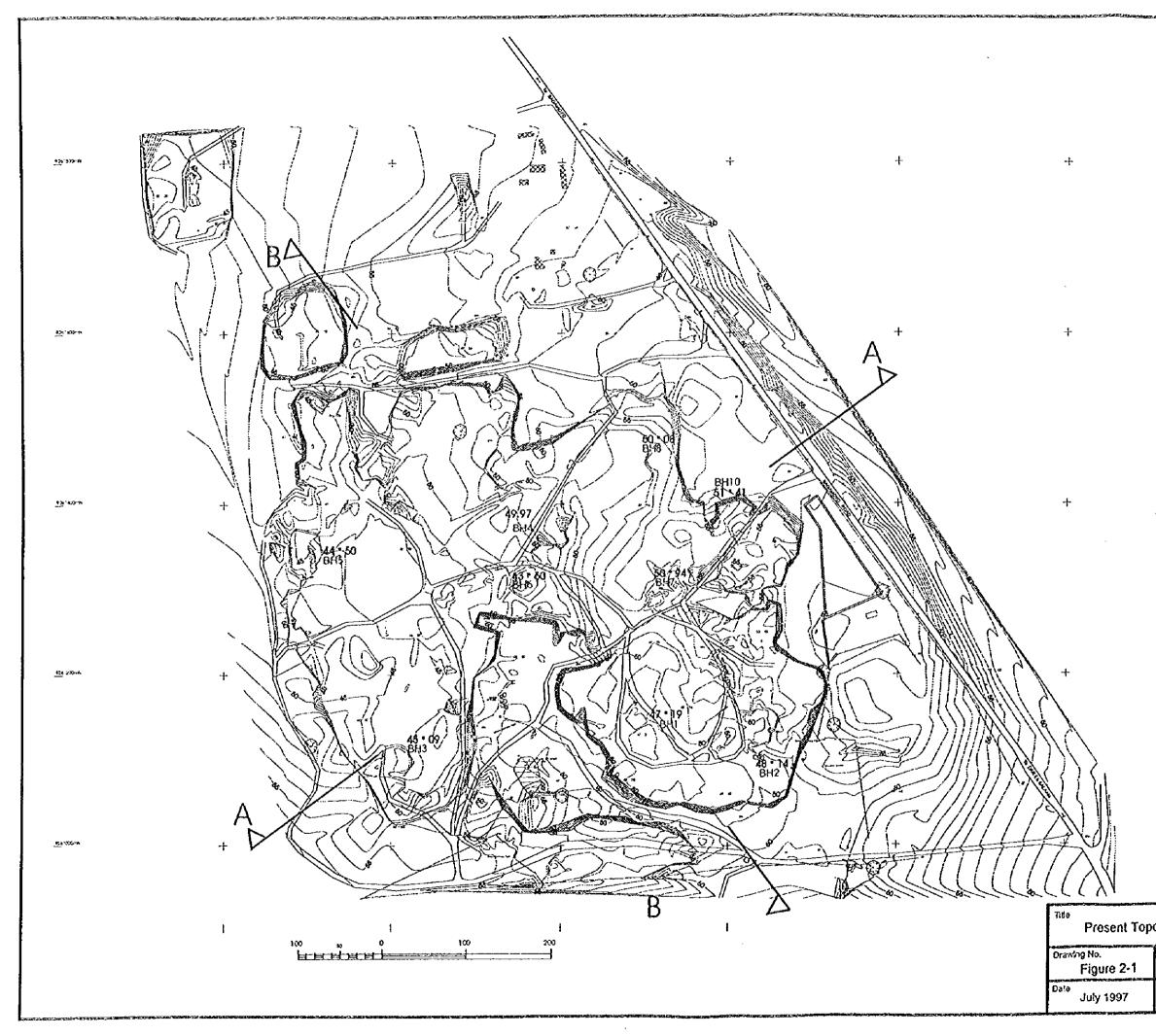
The methodologies and approaches used in the study include:

- Site investigations and surveys.
- Interviews.
- Laboratory analysis.
- Review of available literature.

Detailed information on the methodologies and approaches used is set out under respective study components.

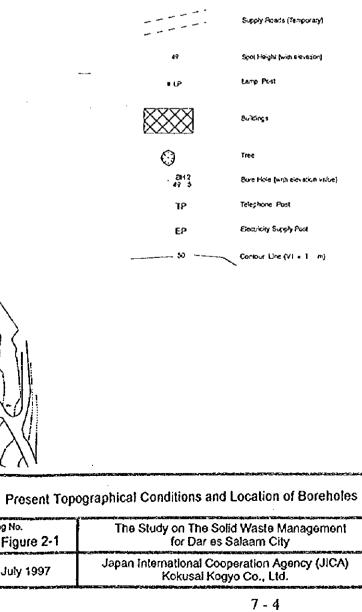
2 Topographical Survey

The work carried out for the topographical survey, including the topographical survey map, is presented here while the topography itself is discussed in the final report.


The whole survey work was based on control points established on the site. Two base points were established using the resection method based on three trigonometric points visible from the site. The three trig points used were the Light House, TP10 (Radio Tanzania Dar es Salaam - RTD) and TP15 (Wazo Hill). The co-ordinates of these points are stated in terms of the UTM co-ordinate system in Table 2-1.

	N(n)	E(n)	H(m)
Lighthouse	9249662.33	537150.67	-
TP 10	925965.44	519977.22	140.43
TP 15	9263378.31	518621.15	123.62

Table 2-1: Trigonometric points used in resection


The topographical map is shown in Figure 2-1. The scale is 1:2000, contour interval is 1.0 m and measurements are in metric units, in accordance with the technical specifications. Existing terrain features such as houses, roads, drainage, river banks, wells, electricity, telephone poles and other less prominent features are also shown.

Processing of the data was carried out using "SDR Map" software which is compatible with the instrumentation used. The final output was through a plotter (in analogue form) and a DXF file (in digital form) and can be exchanged with other software (Autocad, Ilwis, ArcInfo etc.).

LEGEND

.

·

3 Geological Survey

3.1 Borehole Investigations

A total of twelve boreholes were drilled within the study area for the purpose of investigating the geological and hydrological conditions, particularly beneath the bottom of the proposed landfill site. Nine of these boreholes were drilled within the site and are indicated on Figure 2-1 (BH1, BH2, BH3, BH4, BH5, BH6, BH7, BH8 and BH10). These boreholes were surveyed as part of the topographical survey and their location co-ordinates, height (ground level at top of borehole) and drilled depth are set out in Table 3-2.

Description	Northing	Easting	Height (m a.m.s.l.)	Depth (m)
8H 1	9261146.700	521899.887	47.186	15.0
BH 2	9261090.286	522039.822	48.136	3.5
8H 3	9261119.925	521613.171	45.087	15.0
BH 4	9261367.910	521733.353	49.970	3.0
BH 5	9261340.859	521524.622	44.501	6.4
8H 6	9261310.530	521748.828	43.603	1.3
8H 7	9261312.217	521916.123	50,941	5.6
BH 8	9281469.734	521901.402	50.084	6.2
BH 10	9261395.949	521989.599	51.405	15.1

Table 3-2: Borehole locations

The remaining three boreholes (BH11, BH12 and BH13) were drilled to depths of 4.0, 5.5 and 9.2 m respectively outside of the landfill site but within the study area as explained further in section 4 where the hydrological results are presented.

The total depth of drilling was 90 metres; 71.3 metres within the proposed landfill site and 18.7 metres outside. The drilling depth of the boreholes varied, depending on the geological conditions for each particular borehole, as indicated in Table 3-2.

The soil characteristics of 18 samples taken from the drilled boreholes is presented in summary form in Table 3-5. The detailed soil characteristics (Atterberg limits and graphic borehole records) are found in Appendices 1 and 2 of this Annex.

3.2 Clay Borrow Sites

Three sites were investigated as possible borrow areas for clay which could be used for the construction of a bottom liner for the proposed landfill. These were:

- The surroundings of the proposed landfill site at Kunduchi.
- A site at Kinzudi, located approximately 10 km from the proposed landfill site.
- A site at Pugu located approximately 45 km from the proposed landfill site.

One of the most important factors to consider in selecting an appropriate type of clay for use in the construction of a clay bottom liner is that the clay should have a suitably low coefficient of permeability. Maximum permitted values of the coefficient of permeability

. .

vary between countries. For example, the maximum values in Japan and Denmark are 10^{-7} and 10^{-10} m/s respectively while Tchobanoglous et al states a value of 10^{-8} m/s¹. In this study, the very strict Danish standard is adopted. Ideally, the permeability should be measured in the field as the field value of the permeability coefficient is usually larger than the laboratory determined value, often by a factor of 2^2 . In these investigations, all permeability should be larger than the stated values.

3.2.1 The Surroundings of Kunduchi Landfill Site

Within the quarry site itself, patches of sandy clay were found at depths of 4 to 6 m in some of the boreholes drilled in this study. These clay formations were thin (0.5 m) and were found not to comprise a continuous series that could be utilised for the construction of a clay liner.

In the surroundings of the landfill site, clay was found in the valley west of the site and in a relatively small swampy area immediately south of the landfill site. These clay formations were found to be too small for utilisation for the construction of a clay liner. Furthermore, they are located on land that is used for agriculture.

Samples of clay were taken from the two boreholes (BH11 and BH12), 5 metres deep, drilled in the valley west of the site and were analysed in the laboratory. The complete results are set out in Table 3-5 while the main results are summarised in Table 3-1.

Borehola	Clay content (%)	Permeability coefficient (m/s)	Natural moisture content (%)
11	17.5	2.0 x 10 ⁻¹⁰	10.4
12	20.0	1.7 x 10 ⁻⁵	14.4

Table 3-1: Analysis of Clay from the Valley west of the proposed Landfill Site

3.2.2 The Site at Kinzudi

The site at Kinzudi was previously investigated by Kisarawe Brick Factory for the occurrence of clay that could be used for the manufacturing of bricks. Furthermore, geotechnical investigations have previously been carried out for the site to gather field data for its evaluation as a possible landfill site.

Two boreholes, 5 metres deep, were drilled on the site and samples from clay formations were analysed in the laboratory. The complete results are set out in Table 3-6 while the main results are summarised in Table 3-2 below. The permeability coefficients of both clay samples are not satisfactory, being larger than 10^{-10} m/s.

¹ "Integrated Solid Waste Management"; Tchobanoglous et al.; McGraw-Hill Inc.; 1993; pg 432

² "Foundation Analysis and Design"; J.E. Bowles; 5th edition; McGraw-hill Inc.; 1996; pg 53

Borehole	Clay content {%}	Permeability coefficient (m/s)	Natural moisture content (%)
TP 1	≈ 0%	3.3 x 10 ⁻⁹	5.4
TP 2	12%	4.2 x 10 ⁻⁷	6.1

Table 3-2: Analysis of clay from the Kinzudi site

3.2.3 The Site at Pugu

The site at Pugu is used by Kisarawe Brick Factory as a borrow pit for clay for the manufacture of bricks. Large formations of two types of clay are found in this area: red clay within the compound of Kisarawe Brick Factory (KBF) and bentonite (grey) clay found at Mwambisi (part of KBF). Samples of each type of clay were taken and analysed in the laboratory. The complete results are set out in Table 3-6 and summarised in Table 3-3.

Table 3-3: Analysis of clay from the Pugu site

Clay sample	Clay content (%)	Permeability coefficient (m/s)	Natural moisture content (%)
Red clay	12.5	2.5 x 10 ⁻⁵	6.6
Bentonite (grey) clay	36.0	2.4 x 10 ⁻¹¹	9.2

Of the two clay samples, the permeability coefficient of the bentonite (grey) clay is satisfactory, being less than 10^{10} m/s. When properly moistened the clay is highly plastic but is also expected to be very sensitive to traffic and compaction, especially vibration.

It was suggested that the bentonite clay could be used for the construction of a liner for the Kunduchi landfill. Therefore, further laboratory tests were undertaken to investigate the permeability of mixtures of the bentonite clay and sand excavated from the bottom of the New MECCO quarry. Four samples of mixed sand/bentonite clay were prepared as set out below:

- 25% bentonite clay and 75% sand (by weight).
- 40% bentonite clay and 60% sand (by weight).
- 60% bentonite clay and 40% sand (by weight).
- 75% bentonite clay and 25% sand (by weight).

The permeability of each sample was measured after remoulding the mixture using the maximum dry density and optimum moisture content, as determined by the Proctor Test. The permeability results are shown in Table 3-4.

Table 3-4: Coefficient of Permeability Results for Bentonite Clay/Sand Mixtures

Sample	Optimum moisture content (%)	Permeability coefficient (m/s)
25% bentonite clay	15.6	2.0 x 10 ⁻¹⁰
40% bentonite clay	17.0	1.6 x 10 ⁻¹¹
60% bentonite clay	25.0	1.8 x 10 ⁻¹⁰
75% bentonite clay	28.0	0.9 x 10 ⁻¹⁰

The permeability coefficients of all bentonite clay/sand mixtures was found to be satisfactory, being less than or equal to 2×10^{-10} m/s. Thus a bentonite clay/sand mixture with clay content as low as 25% could possibly be used for the construction of a bottom liner.

Ę
3
č
3
<u>بد</u>
(U) (D)
ц.
Š
F
ž
0
8
õ
Ë
ž
<u>ð</u>
~
<u>ç</u>
\$
SU
ē
I test results for New MECCO Quarry site at Kunduchi.
soil tes
ō
of s
y of soil test
ummary
Ë
Ę
ភ
ភ្ល
φ
ē
å
Table 3-5: Sur

								Sieve Analysis	5		Atte	Atterberg Limits	ts	Bulk density gm/m²	Specific Gravity	Permeability ((m/s)
(Bpth (E)	LAB:		S/No.		N.M.C.	Clay	Sitt	Sift+Clay	Sand	Gravel	רירי (%)	(%) (%)	P.I. (%)			
1,25 - 3.46	924	-	9	Greynsh Sandy SILT CLAY of high plasticity.	26.03	22.0	0.93		18.0	1.0	83.20	42.80	40.40	1.851	2.625	3.72×10 ⁻¹⁰
7.16 - 12.50	936		15	Yellowish clayey sifty SAND slightly plastic.	26.50	sample not enough	a not D	13.0	84.0	3.0	46.70	20.78	25.32	1.766	2.645	2.523×10 [°]
14.7 - 15.04	940C	٣	24	Yellowish grey sity sandy clay of medium plasticity.	12.65	16.0	29.0		53.0	2.0	<u>8</u> .40	24.62	28.78	1.730	2.645	1.462×10"7
3.00- 3.51	945	2	S	Yellow clayey suity SAND of medium plasticity.	9.95	0.0	17.0		71.0	3.0	48.1	23.85	24.25	1.808	2.60	1.692/10-5
3.10- 4.83	950	3	4	Grey sandy silty CLAY of medium to high plasticity	18.59	17.5	34.5		46.5	1.5	7.1	26.96	50.14	1.747	2.64	3.758×10 ⁻⁸
9.44 - 10.94	953C	3	4	Grey with yellow sandy sifty CLAY of medium plasticity.	10.62	4.0	37.0		57.5	1.5	45.80	20.79	25.01	1.776	2.64	1.926/10*
13.00 - 15.00	982	r	14	Whitish/Pinkish Grey clayey sifty SAND of tow to medium plasticity.	9.08	4.5	9.5		83.0	°.	46.4	23.5	22.9	1.805	2.66	3.616x10 ⁻⁶
2.95 - 3.07	957	4	9	White limestone rock	8.20	1.5	1.5		85.0	3.0	27.15	9.70	17.45	1.895	2.69	1.698x10*
2.58 - 2.77	964	5	4	Yellowish grey clayey silty SAND of low to modium plasticity.	14.47	12.0	26.0		58.0	0.4	39.60	17.76	21.84	1.678	2.53	2.35×10 ⁻⁰
0.65 - 1.15	975	6	e	Yellow sity SAND of non plasticity with broken stone.	8.03	3.0	0.6		71.0	17.0	sample not enough	enough		1.875	2.68	2.550×10 ⁻⁵
3.8 3.08-	985	7	9	Yellowish brown sandy slifty CLAY of high plasticity.	31.72	31.5	19.5		46.0	3.0	sample not enough	enough		1.707	2.62	2.041×10 ⁻¹¹
0.40 1.50	992	8	0	Yellowish grey clayey sifty SAND of low to medium plasticity.	21.62	1.5	27.5		67.0	4.0	44.60	21.14	23.46	1.582	2.56	2.379×10 ⁻¹⁰
1.50 6.20	966	8	7	Light grey/Grey clayey sifty SAND of low to medium plasticity	10.36	3.0	18.0		76.0	0.5	37.1	15.70	21.40	1.730	2.60	1.051×10 ⁻⁵
2.75 - 3.65	1002	10	4	Greyish Yellow sandy suity CLAY of medium to high plasticity.	21.95	20.0	57.0		22.0	0.1	68.00	29.33	38.67	1.841	2.62	1.319×10 ⁻¹⁰
7.40 - 9.18	1008	10	10	Grey clayey slity SAND of iow plasticity.	15,53	10.0	21.5		67.5	0.1	54.40	28.29	26.11	1.726	2.66	3.5×10 [°]
3.70 - 4.00	1014	11	Ş	Brownish sitty clayey SAND of high plasticity.	10.39	17.5	11.5		70.0	1.0	52.90	21.49	31,41	1.621	2.58	1.997×10 ⁻¹⁰
1.66 - 2.86	1021	12	4	Grey with yellow patches sufty clayey SAND of medium plasticity.	14.34	20.0	13.0		66.0	1.0	45.20	15.87	29.33	1.870	2.58	1.694×10 ⁻⁰
1.40 2.40	1028	τ <u>τ</u>	4	Dark grey clayey sitty SAND of high plasticity.	64.52	18.0	24.0		8.0	0.0	84.90	24.62	60.28	1.680	2.71	4.391×10 ⁻¹⁰
															Į	

Ð

9

Table 3-6: Summary of soil test results from proposed borrow areas

Compaction parameter	Ne se	e 	28.50		13.69	19.50	15.5
Com Defer	NON I		1.455		1.910	1.740	1.820
Permeability (cm/sec)		7,485×10 ⁻¹¹	2.367×10 ⁻¹¹	2.539x10 ⁻⁵	-	3.257x10°	4.205x10 ⁻⁷
Specific Gravity		2.743	2.695	2.668		2.60	2.66
Bulk density dm/m²	4	1.860	1.390	1.660		1.820	2.075
Dits	a é	T	54.37	15.61		25.50	29.2
Atterberg Limits	ŝ.		37.23	18.39		20.80	20.0
A ff	<u>چ</u> ز_	84.5	9.60 8	8. 8.		46.30	49.0
	Gravel	0.0	0.0	1.0		2.0	2.0
ysis	Sand	17.0	13.0	66.0		71.0	73.0
Sieve Analysis	Sitt Clay						
3	Sit	55.5	51.0	20.5		26.8	13.0
. Republication and	Clay	27.5	36.0	12.5		0.2	12.0
	N.M.O.	19.61	9.24	6.57		5.36	6.11
	LABORATORY SOIL DESCRIPTION	Grey sandy clayey SILT of high plasticity (bentonite clay).	Groy sandy clayey SILT of high plasticity.	Red clayey sifty SAND of medium plasticity.	Red clayey silty SAND of medium plasticity.	Yellow grey clayey silty SAND of medium plasticity.	Grey with Red patches clayey sithy SAND of medium plasticity.
	B/H S/No.	Mwambisi Brick Factory (Pugu)	-	Kisarawe Brick Factory (Pugu)		Kinzudi site	
	LAB:	1032	1034	10.33	1035	1037 TP 1	1036 TP 2
	(j) Dept					3.00 - 4.00 -	1.25

7-10

Ś

4 Hydrological Survey

The hydrological survey was divided into two parts:

- groundwater sources within the study area including downgradient of the proposed disposal site to the sea.
- all surface waters within the catchment area of the disposal site

All measurements were taken during the survey period: January - March, 1997, corresponding to the dry season. It should be noted that this year has been drier than normal due to the failure of the short rains in November - December 1996.

4.1 Groundwater

The groundwater table level was investigated using the nine boreholes (BH1 - BH8 and BH10) drilled for the geological survey within the disposal site (see Figure 2-1), and three boreholes, located outside of the landfill site but within the study area (see Figure 4-1). Two of these (BH12 and BH11) were drilled in the valley, approximately 450 and 750 metres west respectively of the western boundary of the landfill site while the third (BH13) was drilled near the salt pans located approximately 1,400 metres to the east of the site's eastern boundary, near the Indian Ocean. In describing the groundwater conditions within the study area, reference is made to Figure 4-2 which is a cross-section of the area through the landfill site to the Indian Ocean.

Within the quarry site, no water was struck in any of the nine boreholes drilled during the survey period (January - March). Three of these boreholes (BH1, BH3 and BH10) were drilled to a depth of 15 m equivalent to 30, 32 and 36 metres a.m.s.l respectively (to the nearest metre). 29.72 metres a.m.s.l. was the greatest depth reached by any of these boreholes. Hence, it can be assumed that the groundwater table below the quarry site is located below 30 metres a.m.s.l. in the dry season.

In the valley to the west of the site, BH11 struck groundwater at an elevation of 44.5 metres a.m.s.l (4.0 m below the ground surface). There are some other dug wells within this valley with water levels at 0.3 - 1.5 m below the surface. These wells contain non-saline water, even during the dry season. The geology of this valley is characterised by shallow patches of sand on top of clay (see borehole log diagrams for BH11 and BH12). The infiltration of water through permeable ground is halted by these clay lenses and hence localised areas within the valley, such as these, have their own perched water table.

East of New Bagamoyo Road and from the bottom of the Old MECCO quarries, the terrain fails relatively steeply to a level of approximately 10 metres a.m.s.l. where two saline water springs are found. From these springs, an approximately 2 km wide swampy area, populated by mangroves, slopes gently towards the Indian Ocean. Within the swampy area, salt pans have been constructed north-east and south-east of the landfill site. The salt pan owners stated that the bottom of these pans never reach the groundwater, which must be true as otherwise the pans could not be used for the production of salt. The drilling of BH13 confirmed this as saline groundwater was struck at 0.6 metres a.m.s.l., 2.4 m below the ground level and approximately 1 m below the bottom of the deepest salt pans.

×)

The groundwater potential of the coastal region was studied as part of the 1979 Water Master Plan³. Generally, the groundwater is saline. Close to the coast, saltwater intrusion occurs. However, sometimes even far inland, water has been encountered exhibiting excessive chloride concentrations. A number of explanations have been suggested for this including chloride being released by host minerals, chloride being present as a result of previous sea water inundation.

Data was obtained from the Ministry of Water on existing boreholes within the Kunduchi area which were established more than 20 years ago before the expansion of the existing piped water supply and is presented in Table 4-1. At present, most of these boreholes are not in use; primarily due to salt water intrusion but also because of vandalism. For example, borehole No. 9/61 was constructed in 1961 near the existing army barracks on the bank of the Tegeta River (~1.5 km downstream of the proposed landfill site) and was used by Kunduchi prison. After not being used for a long time, the borehole was vandalised by removing the pumps and associated structures.

On the basis of these results and observations, the primary groundwater is saline, located at lower than 30 metres a.m.s.l. under the bottom of the New MECCO quarry and flows in the direction towards the Indian Ocean. As Figure 4-2 shows, it is expected that the groundwater level below the landfill site is at approximately 20 metres a.m.s.l.

1. Borehole No. 94/76	Village, District: Goba (Kinondoni District), Kinondoni
Yield of well:	Total depth: 59.15 m
Depth water struck:	
Lithology (depth in m below ground level):	sands, clays
2. Borehole No. 237/74:	Village, District: Kunduchi, Kinondoni
Yield of well: 2,000 gph; LPM 151.7	Total depth 50.3 m
Depth water struck: 15.73 m	
Lithology (depth in m below ground level):	0 - 0.75 dark brown silty sand; 0.76 - 11.28 brown to light
	lecomposed sandy coal in a matrix of silty clay, 22.87 - 41.16
white fine and coarse sand with coral fragmen	
3. Borehole No. 9/61	Village, District: Kunduchi Prisons, Kinondoni
Yield: 1,100 gph/82 LPM	Total depth: not recorded
Depth water struck: not recorded	
Lithology; Impure sandy clays with two horize	ons of pure quartz. Sand - quaternary alluvials.
4. Borehole No : 5/42	Village; District: Kunduchi Estate, Kinondoni
Yield: 500 gph/37.8 LPM	Total depth: 36.3 m
Depth water struck: not recorded	
Lithology (depth in m below ground level):	Pliocene-Pleistocene sands, clays, chalk
5. Borehole No. 4/59	Village District: Kunduchi Sisal estate, Kinondoni
Yield: 1,080 gph (81.9 LPM)	Total depth: 30.5 m
Depth water struck: not recorded	
Lithology: not recorded	· · · · · · · · · · · · · · · · · · ·
6. Borehole no.: 5/59	Village, District: Kunduchi Sisəl Estate, Kinondoni
Yield: 800 gph (60.6 LPM)	Total depth: 32.6 m
Depth water struck: not recorded	
Lithology: not recorded	
7. Borehole No.: 9/59	Village, District: Kunduchi Sisal Estate Kinondoni
Yield: 4,000 gph (303.3 LPM)	Total depth: not recorded.
Depth water struck: 13.1 m.	-
Lithology (depth in m below ground level):	Marine clays, sands and gravel - Tertiary

Table 4-1: Inventory of existing boreholes within the Kunduchi area

7 - 12

肾

³ "Coast/Dar es Salaam Regions Water Master Plan"; CBA Engineering Ltd.; Canada, 1979

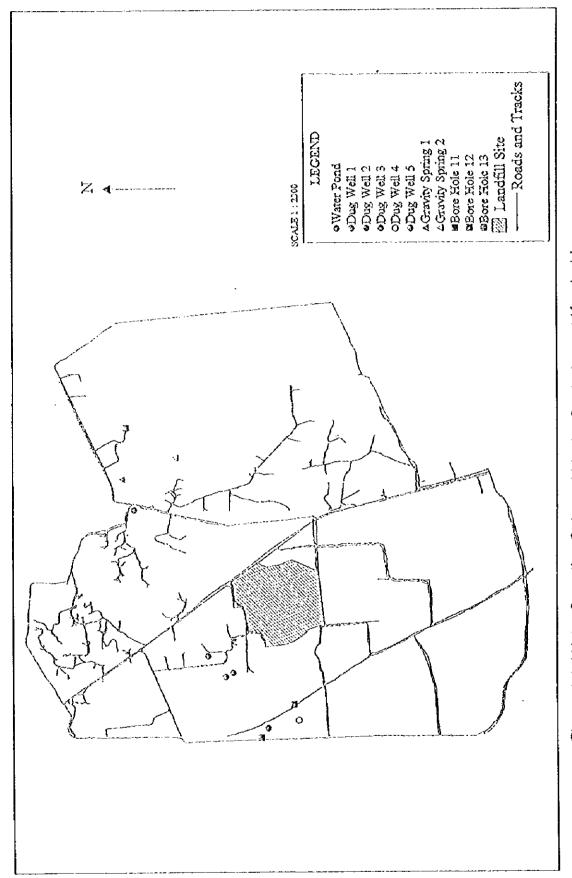
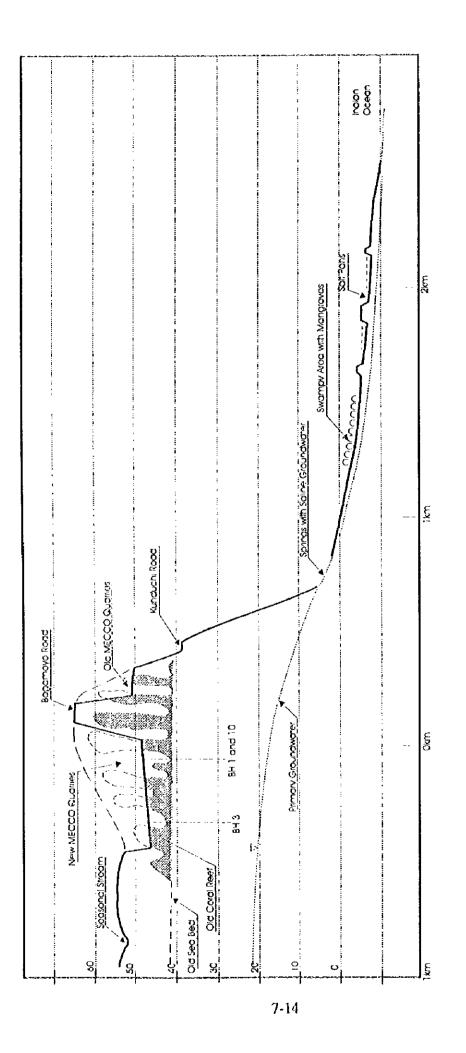



Figure 4-1: Water Sampling Points within the Study Area at Kunduchi

(i) and (i)

(anna)

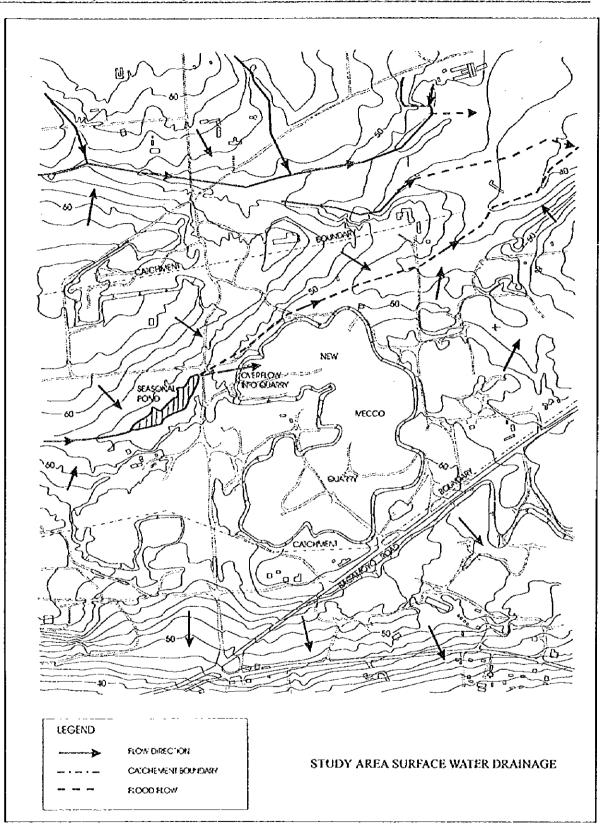
4.2 Surface Water

 $\dot{\langle}$

諁

The surface water conditions within the study area are summarised below. Reference is made to Figure 4-3 which shows the water catchment areas around the proposed landfill site and surface water sources

There are only seasonal surface water sources around the proposed disposal site at Kunduchi. The major surface water source is Tegeta River to the north of the study area which flows into the Indian Ocean about 2 km north-east of the site. This river is a physical boundary of the Kunduchi/Salasala/Mtongani and Tegeta areas and is formed by tributaries from the adjacent catchment areas. During the entire three month survey period, the river and its tributaries were all dry. Hence, it was not possible to measure surface water flowrates during this time. Neither was it possible to use historical data for this purpose, as no discharge data was available from the Water Department (Hydrology section) as this river is not under a long-term monitoring programme. However, it is known that the lower reaches of this river experiences floods during heavy rains.


Within the quarry pits on site, virtually all of the surface runoff is trapped, thus creating large water pools in the pits during the rainy season.

Stormwater runoff from the areas outside the site on the north and west sides is drained off to the valley west of the site, where the approximate level at the bottom of the valley is 45 m. The valley contains a stream which is dry throughout most of the year. However, during the rainy season, the stream connects to Tegeta River as described above.

The areas outside the site on the south-east and eastern sides drain towards Mtongani village and into the swampy area near the salt pans.

Directly south of the site, there is a very shallow, seasonal water pond, which is only present during the rainy season, collecting and storing stromwater runoff from catchment areas to the south of the site, which subsequently evaporates on the cessation of the rains. No survey map for the area immediately south of the site is available and hence it is not possible to determine the size of this pond's catchment area, nor is there any historical data on the variation in water volume of this lake. However, during flood events, water flows via an overflow channel from this pond to the New MECCO quarry.

7 - 15

THE REAL

5 Water Use Survey

Investigations were made to determine water use from surface water and groundwater sources within the study area (Figure 4-1).

5.1 Regular Water Supply

The main water pipeline from Lower Ruvu Water Treatment Plant passes through the valley to the west of the landfill site. This pipeline provide piped water to people living along the pipeline, including residents around the landfill site and villages situated between New Bagamoyo Road and the Indian ocean, downstream of the landfill site. This is the primary source of water for all people living in these areas and the supply is generally reliable.

5.2 Surface Water Use

All rivers within the study area are seasonal. Tegeta River, the most prominent river is used as an alternative water source during water shortages/cuts. The water taken from this river is used for laundry, bathing and other domestic purposes excluding drinking.

5.3 Groundwater Use

The groundwater survey covered a total area of more than 2 sq. km. The groundwater provides an important alternative water source during water shortages/cuts. Several wells (mainly traditional) were identified inside the study area, the details of which are presented in Table 5-1.

Date	Wøter source	Location	Water Level relative to ground fevel	Water use
23/1-97	Water pond	E 519529.03 N 9269728.8	1.0 m	A dug pit used for fish culture, of area 20 m x 15 m and 2.0 dcep. The water is also used for small scale irrigation and as a source of drinking water for livestock. The pool is recharged by groundwater.
23/1/97	Dug well 1	E 518456.62 N 9269528.50	0.3 m	Water used for cooking and laundry.
	Dug well 2	E 518484 38 N 9269472.10	1.5 m	The well provides drinking water. The water is clear. The well is not protected. During piped water supply interruptions, the well is the only dependable source of water for the surrounding residents as far as Boko (about 1500 people per day served during water cuts).
23/1/97	Dug well 3	E 518152.43 N 9269200.1	0.3 m	The second source of water during water cuts. The water is turbid (milky).
28:1:97	Dug well 4	E 518164.54 N 9269087.0 (in Tanesco's premises on the Tegeta river bank)	1.0 m	The water is turbid. The pool is 1.5 m x 4 m and about 1.0 deep. The pool is recharged by groundwater.
29/1/97	Dug well 5	At the junction of Tegeta river and Bahari Beach Hotel Road.	0.3 m	A dug well in the Tegeta river bed. The well provides water during acute shortages of water. The well is seasonal.
4/2/97	Gravity spring	Mtongani near the road to Kundachi Beach Hotel	Surface	Not used for drinking. Also used as a source of water for construction activities. The water is saline.
4'2.97	Gravity spring	Miongani near the solt pan.	Surface	Used for domestic purposes except drinking. The water is satine

Table 5-1: Water Use Survey

Note: Water quality results from these water sources are presented in section 6.0.

6 Water Quality Survey

A Water quality survey was carried out in the study area in conjunction with the Hydrological and Water use surveys as set out below.

6.1 Sampling

Water samples were taken from selected points, set out in Table 6-1, located as shown in Figure 4-1. Sampling was conducted from these points at approximately fortnightly intervals three times over a three month period.

Water source	Sampling point	Nature of sampling point
acoundurator	BHII	borehole in farm in valley to west of landfill site
groundwater	BH13	borcholc at salt pans to east of landfill site
	SP/1	gravity spring 1
surface water	SP/2	gravity spring 2
	Pond	water pond in farm
	DW/1	dug well in farm (not for domestic use)
	DW/2	dug well in farm (used for domestic purposes)
	DW/3	dug well in farm
	DW/4	dug well in TANESCO premises on banks of Tegeta river

Table 6-1: Sampling Points

6.2 Analysis

"Standard Methods for the Examination of Water and Wastewater", 17th Edition (1989), published by the American Public Health Association (APHA), American Water Works Association and the Water Pollution & Control Federation of USA was used for most of the water quality analysis.

Ambient air temperature, water temperature and the water quality parameters analysed are set out in Table 6-2 together with the methods used for measuring these parameters. The weather conditions were also recorded during sampling. Water quality analysis results are set out in Table 6-3 - Table 6-5.

Į,

1

:

•

No.	Parameter	Measurement Method
1	Ambient Temperature	Mercury filled Celsius thermometer
2	Water Temperature	Mercury filled Celsius thermometer
3	Colour	Spectrophotometric Method
4	Turbidity	Nephelometric Method
5	рН	Electrometric Method
6	Dry matter (Filterable matter)	Whatman Filtration Method
7	Electrical Conductivity (EC)	Self Contained Conductivity Instrument (Laboratory) Method
8	Dissolved Oxygen (DO)	Electrode-probe Method
9	Chemical Oxygen Demand (COD)	Closed Reflux, Calorimetric Method
10	Biochemical Oxygen Demand (BOD)	5-day BOD test at 20 ⁰ C (Manometric Method)
11	Suspended Solids (SS)	Total Suspended Solids dried at 103 - 105° C (Method)
12	Faecal Coliforms (FC)	Membrane Filter Procedure
13	Total Nitrogen (T-N)	Digestion and Nesslerization Method
14	Ammonia (NH ⁺)	Nessler Method
15	Sodium (Na ⁺)	not stated
16	Calcium (Ca ²⁺)	EDTA Method
17	Iron (Fe)	Atomic Absorption Spectrophotometer Method
18	Chloride (Cl)	Argentometric Method
19	Sulphate (SO ₄ ²)	Turbidimetric Method
20	Chromium (Cr ⁶¹)	Atomic Absorption Spectrophotometric Method
21	Cadmium (Cd)	Atomic Absorption Spectrophotometric Method
22	Lead (Pb)	Atomic Absorption Spectrophotometric Method
23	Arsenic (As)	Atomic Absorption Spectrophotometric Method

Table 6-2: Water Quality Analysis - Parameters and Methods

7 - 19

\sim
_
Results (
ysis
Anal
Water /
0 0
Table 6

Sampling Date: 14 February 1997

PARAMETER	UNITS				STNICE ONI IGMAS	STNICC		<i>b</i>		
		BH13	8411	SP/1	SP/2	DOND	L/MG	DW/2	DW/3	DW/A
Air Temperature	သိ	32	32	32	32	32	32	32	32	32
Water temperature	ပ	29	29	29	29	29	29	29	29	29
Weather		Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny
Colour		35420.00	3540.00	7.00	14.00	14.00	44.00	29.00	141.00	560.00
Turbidity	NTU	12390.00	2550.00	3.00	6.00	64.00	16.00	6.00	60.00	182.00
μ		5.49	5.93	8.34	9.31	8.49	7.20	5.28	7.99	7.45
Filterable solids (Dry matter)	l∕ ɓɯ	2354.1	433.5	0.42	1.67	1.61	1.37	0.74	2.11	1.33
EC	mS/cm	140.00	0.48	10.1	10.00	0.668	0.194	0.205	0.48	0.299
8	mg/l	4,12	5.66	6.76	5.89	4.43	6.45	6.35	6.53	5.82
COD	mg/l	945.00	95.00	187.00	175.00	73.00	151.00	41.00	128.00	151.00
BOD	mg/l	633.00	59.00	130.9	120.00	49.00	99.00	29.00	84.00	97.00
SS	mg/I	31523.00	1887.00	2.3	4 .9	55.68	13.98	4.9	46.70	140.05
С Ш	count/ 100mi	430	60	660	330	066	1200	110	82	2600
1-N	mg/l	164.00	84.75	1.51	1.43	2.98	2.28	8.65	2.22	1.51
ZH ²	mg/l	24.24	36.00	1.36	0.27	0.35	0.55	0.43	0.32	0.96
Na	mg/l	2187.50	81.80	1597.50	1605.00	30.80	32.30	28.70	38.80	26.10
Ca ^{-†}	/bm	457.30	1.33	775.22	399.12	109.00	387.20	43.12	279.13	345.11
-Te	mg/l	100.1	27.3	0.05	0.00	0.53	0.34	0.63	0.27	1.66
<u>.</u>	mg/l	8370.00	280.00	5730.00	5320.00	75.00	53.00	64.00	216.00	87.00
so.	₩g/I	7200.00	68.00	2517.50	1960.00	21.50	35.20	37.60	35.20	22.00
ับ	l/gm	0.025	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3	ng/l	0.06	0.02	0.04	0.02	0.01	0.02	0.01	0.01	0.02
Qd-	ng/l	0.22	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
As	ng/l	0.34	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

ß

 \bigcirc

æ
Results (
Analysis
Water.
8
Table (

Sampling Date: 28 February 1997

PARAMETER	UNITS				SAMPLING POINTS	POINTS				
		BH13	BH11	SP/1	SP/2	POND	PW/1	DW/2	DW/3	DW/4
Air Temperature	ပ္	30.4	30.4	30.4	30.4	30.4	30.4	30.4	30.4	30.4
Water temperature	ပ	28.6	28.6	28.6	28.6	23.6	28.6	28.6	28.6	28.6
Weather		Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny
Colour	Hazen	35000.00	3530.00	5.00	12.00	12.00	34.00	20.00	101.00	540.00
Turbidity	DTN	12000.00	2500.00	1.00	4.00	60.00	8.00	10.00	23.00	184.00
ΡH		9.1	6.93	8.24	9.11	8.49	5.69	6.70	8.79	7.45
Filterable solids (Dry matter)	1/ ôm	2300.1	423.5	0.37	1.67	1.60	1.37	0.77	2.52	1.30
ы С	mS/cm	134.00	0.68	9.10	9.5	0.479	0.190	0.198	0.55	0.367
0.0	mg/i	4.82	5.83	6.89	6.89	5.89	6.47	6.65	6.77	6.82
GOO	Mg/I	935.00	99.00	178.00	171.00	76.00	158.00	48.00	133.00	158.00
BOD	ng/l	629.00	57.00	122.7	119.00	51.00	100.00	30.00	87.00	<u>99.00</u>
SS	mg/l	31413.00	1867.00	2.2	3.3	55.68	12.76	5.3	47.70	154.05
О Ц	count/ 100ml	410	71	668	344	£86	1250	140	88	2600
N-F	mg/l	144.00	83.65	1.44	1.44	3.2	2.74	8.85	2.52	1.88
NHa	1/6m	21.14	34.00	1.33	0.26	0.45	0.56	0.44 24	0.34	1.16
Na	ng/i	2144.30	80.44	1587.00	1603.00	31.60	32.88	28.70	39.70	27.14
Cat	mg/l	447.30	1.33	305.22	390.22	111.00	388.00	43.00	266.11	347.11
Fe	ug/i	90.1	26.3	C.05	0.00	0.53	0.37	0.55	0.30	2.11
-io	l/gm	8260.00	277.00	5640.00	5310.00	78.00	61.00	68.10	218.00	89.00
SO4	1/6m	7100.00	66.00	2516.10	1870.00	22.70	37.33	36.970	34.10	23.00
ů,	ng/i	0.026	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Q	l/gm	0.05	0.02	0.06	0.05	0.02	0.02	0.01	0.01	0.02
PD	Vôm	0.21	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
As	1/6m	0.33	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

3

۲	1			~								~			5	I			[_]		5	, ,	5	5	1
	DW/4	31	29	Sunny	550.00	176.00	7.66	1.23	0.301	5.44	150.00	96.00	144.55	2800	1.79	1.21	31.21	366.11	1.71	89.0	23.20	×	0.02	<0.03	<00 02
Sampling Date: 14 Walch 199	DW/3	31	29	Sunny	140.00	50.00	8.43	2.8	0.51	6.32	126.00	85.32	46.70	100	2.76	0.29	40.00	256.13	0.32	226.00	35.00	<0.003		<0.03	<0.003
oamping	DW/2	31	29	Sunny	27.00	5.00	6.11	0.73	0.214	6.22	40.00	31.30	4.9	230	8.88	0.41	29.60	48.32	0.71	66.00	37.60	V	0.01	v	<0.003
	LIMO	31	29	Sunny	43.00	13.00	7.82	1.43	0.213	6.34	141.00	98.00	13.98	1600	2.34	0.43	35.70	374.20	0.47	59.00	37.10	<0.003	0.02	<0.03	<0.003
OINTS	QNOd	31	29	Sunny	13.00	54.00	8.67	1.59	0.717	4.32	72.00	51.00	55.68	1010	3.13	0.37	39.90	121.00	0.59	67.00	23.10	v	0.01	v	<0.003
SAMPI ING POINTS	SP/2	31	29	Sunny	13.00	5.00	9.56	1.54	10.33	5.91	161.00	126.00	4.9	420	1.98	0.27	1689.00	312.12	0.01	5310.00	1980.00	<0.003	0.02	<0.03	<0.03
	SP/A	31	29	Sunny	6.00	2.00	8.44	0.51	10.21	6.34	172.00	127.6	2.3	760	2.15	1.12	1649.50	760.22	0.15	5710.00	2521.70	v	0.03	v	<0.003
	BH11	31	29	Sunny	3440.00	2320.00	6.64	441.5	0.52	5.42	93.00	56.00	1887.00	100	92.12	33.00	82.30	1.21	30.23	278.00	78.00	<0.003	0.02	<0.03	<0.003
	BH13	32	29	Sunny	34420.00	12210.00	6.57	2404.1	146.00	4.00	932.00	622.00	31523.00	560	177.00	22.13	2189.50	455.30	99.19	8360.00	7120.00	0.025	0.05	0.22	0.34
LINITS		ç	р С		Hazen	אדט		1/ Gm	mS/cm	l/õm	ng/l	l/6m	₩9/I	count/ 100 ml	l/bu	₩0/I	l/6m	1/6m	l/6m	mg/I	l/gm	mg/I	mg/l	ng/l	mq/l
PARAMETER		Air Temperature	Water temperature	Weather	Colour	Turbidity	Hd	Filterable solids (Dry matter)	U U U	00	COD	BOD	SS	FC	2-F	NH	Na⁺	Ca ²⁺	Fe	CI-	SO₄ ^{2.}	Cr ²⁺	Cd	Pb	As

(88)
Results
Analysis
: Water
Table 6-5

Sampling Date: 14 March 1997

7 Soil Contamination Survey

7.1 Introduction

()

3

The objective of this survey was to determine baseline data for soil contamination within the study area and particularly near the proposed disposal site.

Two samples were taken from two sampling points; one being from the Old MECCO quarry, the other from the new MECCO quarry. Samples were analysed in the laboratory using the Atomic Absorption Spectrophotometer (AAS) Model 2380 P. Clmer.

7.2 Methodology and Results

About 5 g (accurately weighed) air dried finely ground sample was placed in an Erlenmeyer flask. 20 ml of extracting solution ($0.05M HCL + 0.05M H_2SO_4$) was added and placed in a mechanical shaker for 15 minutes. The sample was then filtered through Whatman No. 42 filter paper into a 50 ml flask with extracting solution. Concentrations of the elements of interest (i.e. Cd, Pb, Cr, Cu, Zn, Fe, and Mn) were determined using Atomic Absorption Spectrophotometer (AAS) model 2380 P.Elmer. All working standards were prepared using the extracting solution.

The results are presented in Table 7-1.

Parameter	Units	Cd	Рb	Cr	Cu	Zn	Fe	Mn
OMQ	mg/l	0.215	0,9	<0.003	0.65	<0.002	1.36	0.23
NMQ	mg/l	0.16	1.1	<0.003	0.5	<0.002	0.910	0.365
Detection limit	mg/l	0.001	0.03	0.003	0.002	0.002	0.004	0.002

Table 7-1: Soil contamination results

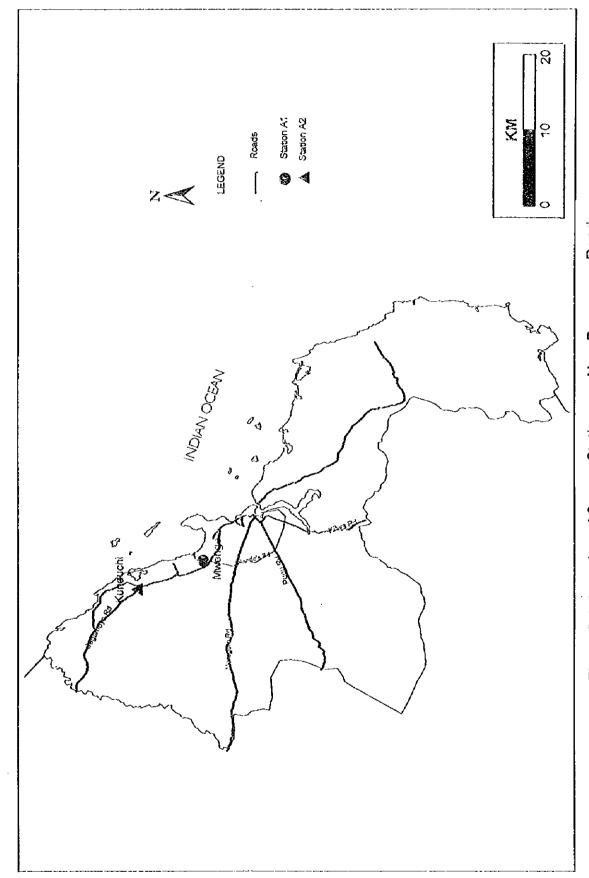
Note: OMQ = Old MECCO quarry; NMQ = New MECCO quarry

8 Traffic Volume Survey

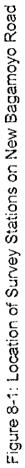
8.1 Introduction

The traffic volume survey was conducted at two stations on New Bagamoyo Road in accordance with the Terms of Reference as shown in Figure 8-1. Station A1 was located about 150 metres north of the junction with Sam Nujoma Road and station A2 about 300 metres south of the proposed landfill site. The traffic volume survey was carried out for 3 days at each station from 21 - 23 January 1997 at station A1 and from 28 - 30 January at station A2.

8.2 Objective

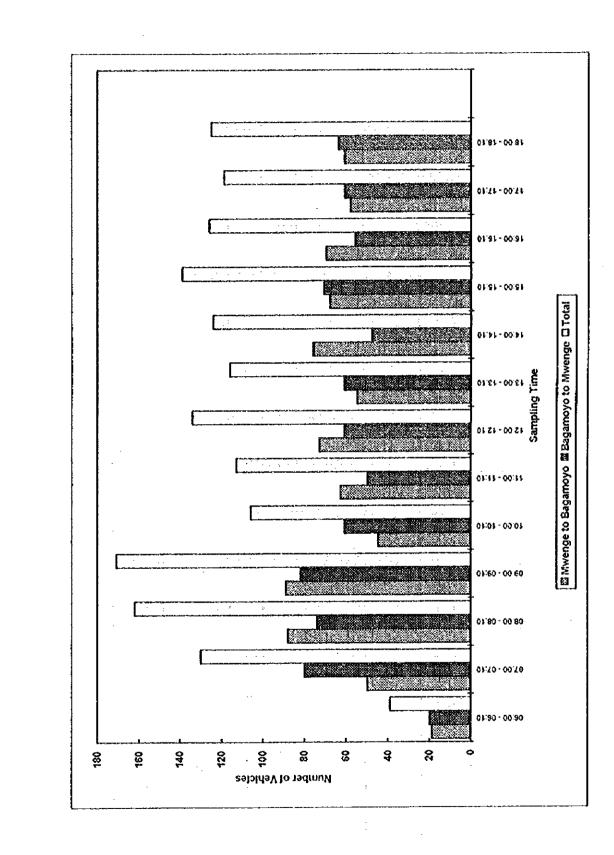

The objective of this survey was to determine the current number of vehicles passing along New Bagamoyo Road during the normal working day at the two locations. This assessment was necessary as the location of the proposed disposal site is such that all the vehicles transporting waste from the city to the proposed disposal site have to pass along this road. Only the survey data is presented here while detailed data analysis is presented in the final report.

8.3 Methodology


The number of vehicles passing along the road at each of the two stations was counted and recorded on field forms as indicated in the survey result tables which follow. The survey was conducted manually with each station having two enumerators each counting vehicles going in different directions. Traffic was divided into three categories; namely, small vehicles (\leq 3.5 tons), large vehicles (>3.5 tons) and motor bikes. The number of vehicles in each category passing along the road were simultaneously counted and recorded hourly from 0600 hours to 1900 hours for three days at each of the two stations. In order to be able to compare the traffic volume with the noise levels, vehicle recording in each category was done separately for the first 10 minutes of each hour and also for the remaining 50 minutes of every hour as indicated in the tables which follow.

8.4 Results

The results are presented in the tables and figures that follow in this section where SV = small vehicle, LV = large vehicle and MC = motorcycle.



日調会

	FROM M	MWENGE 1	0	BAGAMOYO	FROM BA	BAGAMOYO	2	MWENGE		01	TOTAL	
TIME				TOTAL			MC	TOTAL	S۷	۲V	MC	TOTAL
00 - 6.10	1 1 1 1 1	4	0	19		00	***	20	26	12		68
- 7.00		26	- ນ	190	271	39	4	314	430	65	6	504
7.00 - 7.10	35	14	~ -	50	73	5	2	80	108	19	e	130
	250	84	σ	343	283	91	12	314	533	103	3	657
1	61	25	2	83	67	9	τ-	74	128	31	3	162
8.10 - 9.00	215	28	4	277	309	51	12	372	524	109	16	649
00 - 9.10	77	<u></u> б	3	68	63	14	5	82	140	23	80	171
9.10 - 10.00	196	83	5	284	250	44	3	297	446	127	8	581
0.00 - 10.10	38	9		45	52	4	2	61	60	13	3	106
110	254	70	σ	333	226	55	10	291	480	125	19	624
1.00 - 11	47	15	\	63	38	10	2	50	85	25	3	113
1	194	6/	n U	276	238	55	2	300	432	134	10	576
00 - 12.	54	19	0	73	48	12	*-	61	102	31	+	134
2.10-	225	65	10	300	235	49	7	291	460	114	17	591
00 - 13	42	13	0	55	45	15		61	87	28	1	116
3.10 - 1	1621	62	8	249	70	186	2	263	365	132	15	512
00 - 14	59	171	0	76	28	61	++	48	87	36	1	124
14.10 - 15.00	240	60	თ	309	250	47	σ	306	490	107	18	615
8	58	10	0	68	53	17	 	71	111	27	1	139
5.10 - 16.00	231	66	g	303	222	81	4	307	453	147	10	610
16.00 - 16.10	57	12	~-	70	41	15	0	56	98	27	۳.	126
16.10 - 17.00	311	55	Б	375	235	74	5	314	546	129	14	639
7.00 - 17.10	49	7	7	53	47	14	0	61	96	21	2	119
17.10 - 18.00	294	49	10	353	241	58	5	304	535	107	15	657
8.00 - 18.10	56	3	2	61	53	10	τ-	64	109	13	ო	125
1.	313	24	2	344	227	48	ŝ	278	540	72	5	622

suits for station A1. New Banamovo Road 150 m north of the intersection with Sam Nuioma Road ĩ ē Tuble 0.1 Huffin

()

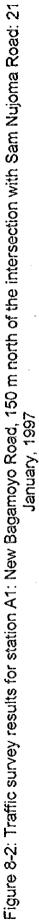
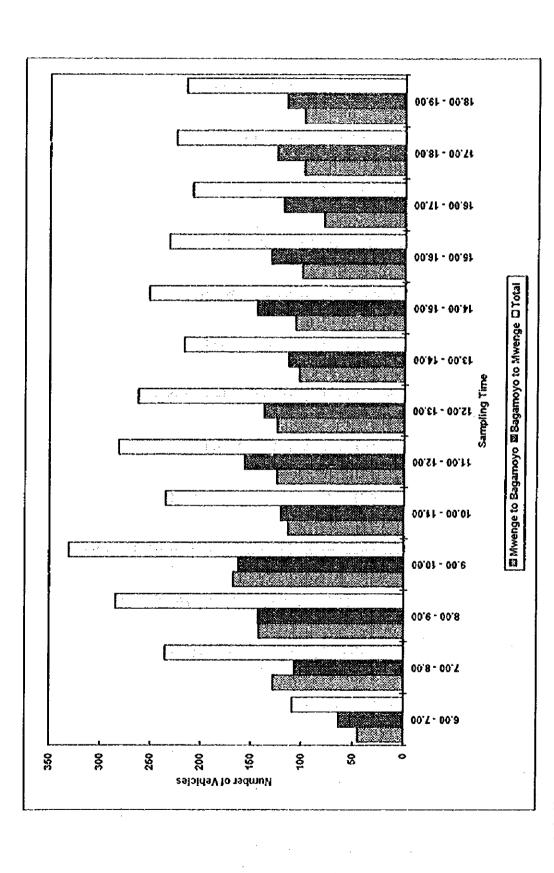


Table 8-2: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road


ð

	543	787	811	752	730	689	725	628	739	749	815	776	747
TOTAL													
FROM BAGAMOYO TO MWENGE	334	394	446	379	352	350	352	324	354	378	370	365	342
FROM MWENGE TO BAGAMOYO	209	393	365	373	378	339	373	304	385	371	445	411	405
TIME	6.00 - 7.00	7.00 - 8.00	8.00 - 9.00	9.00 - 10.00	10.00 - 11.00	11.00 - 12.00	12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	16.00 - 17.00	17.00 - 18.00	18.00 - 19.00

Table 8-3: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

Date: 21 January, 1997

	PL	543	787	811	752	730	639	725	628	739	749	315	776	7.47
	TOTAL													
אר	MC	9 2	24	19	16	ន	13	18	16	61	44	15	17	4
TOTAL	۲ ۲	77	122	140	150	138	159	145	160	143	174	156	128	yα
	SV	456	841	652	586	570	517	562	452	577	564	644	631	AA0
VENGE	TOTAL	334	394	446	379	352	350	352	324	354	378	370	365	242
FROM BAGAMOYO TO MWENGE	MC	5	14	13	ø	12	6	61	Ø	10	S	5	5	×
BAGAMON	۲V	47	24	57	58	62	65	283	201	99	38	68	72	a Y
FROM E	SV	282	356	376	313	278	276	373	115	278	275	276	288	280
BAGAMOYO	TOTAL	209	393	365	373	378	339	373	304	385	371	445	411	205
	MC	5	10	9	8	10	4	10	8	6	9	10	12	σ
FROM MWENGE TO	۲۷	30	98	83	92	76	94	84	75	- 44	76	67	56	77
FROM N	S۷	174	285	276	273	292	241	279	221	299	289	368	343	369
TIME		6.00 - 7.00	7.00 - 8.00	8.00 - 9.00	9.00 - 10.00	10.00 - 11.00	11.00 - 12.00	12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	16.00 - 17.00	17.00 - 18.00	18.00 - 19.00

3

and the second s

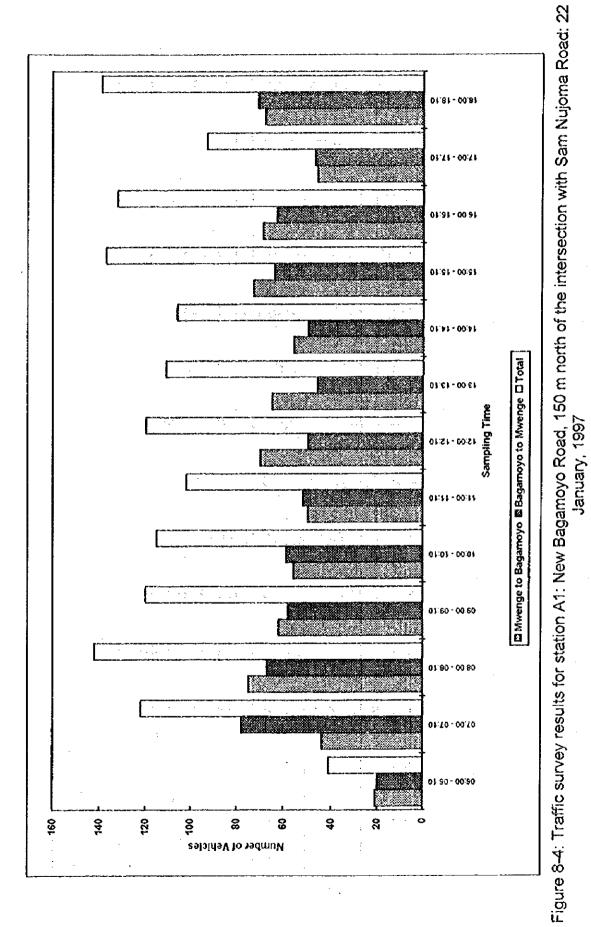

9

Table 8-4: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

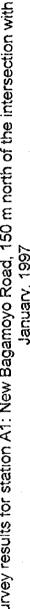
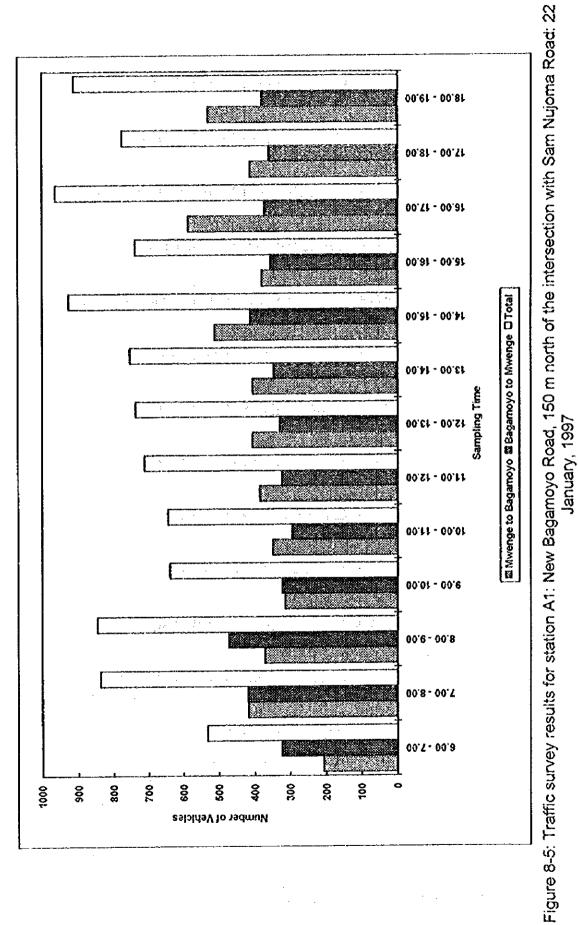
调

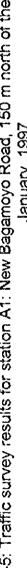
1997		TOTAL	41	492	122	716	142	704	120	519	115	531	102	610	120	618	111	644	106	821	137	603	132	831	93	683	139	773
Date: 22 January, 1997		MC	0	14	с С	16	S	19	4	~	0	7	2	17	2	12	2	7 [3	21	2	15	0	28	0	16	5	17
Date: 22	TOTAI	۲V	6	76	11	110	17	108	20	106	17	134	25	139	25	135	23	124	22	158	28	113	33	168	15	80	23	116
		SV	32	402	108	590	120	577	96 96	406	98	390	75	454	93	471	86	513	81	642	107	475	66	635	78	587	111	640
	ENGE	TOTAL	20	305	78	342	67	406	58	266	59	237	52	274	50	281	46	302	50	364	64	294	63	311	47	315	71	310
	FROM BAGAMOYO TO MWENGE	MC	0	9	2	G	2	15	2	2	0	4	0	5	1	7	F-	4	2	9	0	5	0	6	0	7	3	5
	AGAMOY(LV L	9	46	3	20	3	51	12	37	11	55	14	49	13	60	8	51	12	61	18	59	24	73	10	48	13	45
	FROM B	SV	72	253	73	313	62	340	44	227	48	178	38	216	36	214	37	247	36	297	46	230	39	229	37	260	55	260
	ολογ	TOTAL	21	187	44	374	75	298	62	253	56	294	50	336	10	337	65	342	56	457	73	309	69	520	46	368	68	463
	TO BAGAN	MC TOTAL	0	Ø		7	0	4	2	Ś	0	3	2	ß	~	S	-	ო	v -	15	2	10	0	19	0	6	2	12
	FROM MWENGE TO	2	0	30	Ø	66	14	57	œ	69	9	62		60	12	75	15	73	¢:	97	ę.	54	თ	95	5	32	10	71
	FROM M	SV	18	149	35	277	58	237	52	179	50	212	37	238	57	257	49	266	45	345	61	245	60	406	41	327	56	380
			6.00 - 6.10	6.10 - 7.00	7.00 - 7.10	7.10 - 8.00	8.00 - 8.10	8.10 - 9.00	9.00 -9.10	9.10 - 10.00	10.00 - 10.10	10.10 -11.00	11.00 - 11.10	11.10 - 12.00	12.00 - 12.10	12.10 - 13.00	13.00 - 13.10	13.10 - 14.00	14.00 - 14.10	14.10 - 15.00	15.00 - 15.10	15.10 - 16.00	16.00 - 16.10	16.10 - 17.00	17.00-17.10	17.10 -18.00	18.00 - 18.10	18.10 - 19.00
			6.00 -	7,00	7.00 -	8.00	8.00 -	9.00	9.00 -	10.00	10.00 -	11.00	11.00 -	12.00	12.00 -	13.00	13.00 -	14.00	14.00 -	15.00	15.00 -	16.00	16.00 -	17.00	17.00 -	18.00	18.00 -	19.00

Ð

33

8

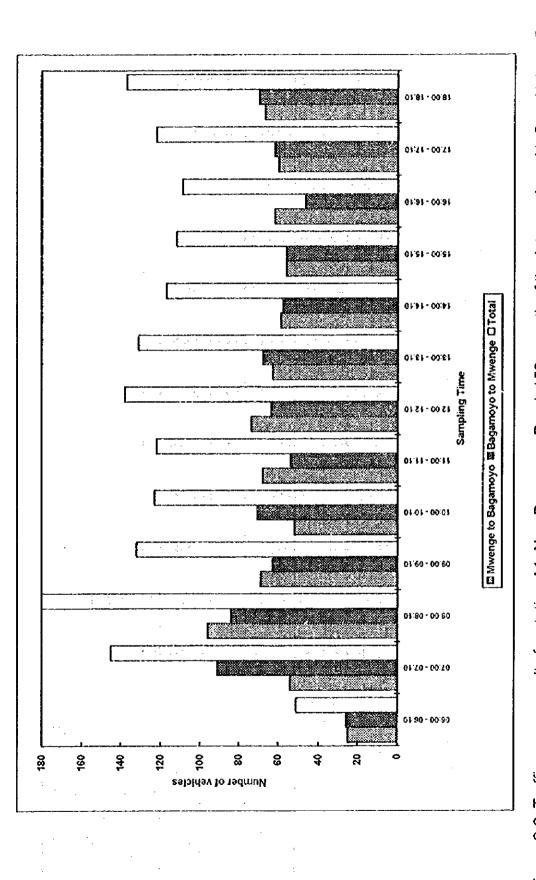




Table 8-5: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

TOTAL	533	838	846	639	646	712	738	755	527	740	963	776	912
FROM BAGAMOYO TO MWENGE	325	420	473	324	296	326	331	348	414	358	374	362	381
FROM MWENGE TO BAGAMOYO	208	418	373	315	350	386	407	407	513	382	589	414	531
TIME	6.00 - 7.00	7.00 - 8.00	8.00 - 9.00	9.00 - 10.00	10.00 - 11.00	11.00 - 12.00	12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	16.00 - 17.00	17.00 - 18.00	18.00 - 19.00

Table 8-6: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

7.645	FROM	FROM MWENGE TO		BAGAMOYO	FROM	BAGAMO	FROM BAGAMOYO TO MWENGE	WENGE		01	TOTAL	
21411	SV		MC	TOTAL	Λŝ	2	MC	TOTAL	SV	2	MC	TOTAL
6.00 - 7.00	167	33	8	208	267	52	G	325	434	85	4	533
7.00 - 8.00	312	98	8	418	386	23	11	420	698	121	19	838
8.00 - 9.00	295	71	7	373	402	54	17	473	697	125	24	846
9.00 - 10.00	231	77	7	315	271	49	4	324	502	126	12	639
10.00 - 11.00	262	85	3	350	226	99	4	296	488	151	5	646
11.00 - 12.00	275	101	10	386	254	63	σ	326	529	164	6	712
12.00 - 13.00	314	87	9	407	250	73	\$	331	564	160	14	738
13.00 - 14.00	315	88	4	407	284	59	5	348	599	147	၂ ၂ ၂	755
14.00 - 15.00	390	107	16	513	333	73	80	414	723	180	24	927
15.00 - 16.00	306	64	12	382	276	4	5	358	582	141	17	740
16.00 - 17.00	466	104	19	589	268	97	6	374	734	201	28	963
17.00 - 18.00	368	37	6	414	297	58	2	362	665	95	16	776
18.00 - 19.00	436	81	14	531	315	58	ø	381	751	139	ន	912



-
No.
ä
Ň
Sam Nujoma Road
ğ
E
0
5
7
Ε
ល
ю́ Ц
C
Ξ
_
Ë
<u>.</u>
ъ
ŏ
- Ø
ል
ntersection
<u>.c</u>
đ۵.
ž
÷
ř
150 m north of the
çtio
Ľ
õ
۲.,
F
-
ပ္ပ
43
X
ங்
Road
ö
Ω.
~
9
Ś
noyo
amoyo
amoyo
agamoyo
agamoyo
lagamoyo
agamoyo
agamoyo
Vew Bagamoyo
Vew Bagamoyo
Vew Bagamoyo
Vew Bagamoyo
agamoyo
Vew Bagamoyo
y results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
vey results for station A1: New Bagamoyo
ic survey results for station A1: New Bagamoyo
raffic survey results for station A1: New Bagamoyo
Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
7: Traffic survey results for station A1: New Bagamoyo
Traffic survey results for station A1: New Bagamoyo

Date: 23 January, 1997

v. 1997		TOTAL	51	450	145	752	180	649	132	614	123	605	122	578	138	640	131	583	117	602	112	582	109	646	122	622	137	
Januar	۲.	MC	¥-	12	N	14	5	18	5	6	ŝ	26	~	13	ო	24	n	5 5	*	9	n	σ	2	မ	v -	σ	n	
Date: 23 January, 1997	TOTAL		15	59	16	119	26	109	13	145	41	106	20	128	22	154	23	105	28	144	16	117	16	117	21	68	13	
		SV	35	379	127	619	149	522	114	460	104	473	100	437	113	462	105	465	88	448	3 3	456	61	523	100	545	121	
	TENGE	TOTAL	26	279	91	357	84	370	63	312	71	282	54	301	64	313	68	298	58	297	56	293	47	282	62	284	70	
	V TO MW	MC	T-	5		8	2	14	3	3	4	13	v -	6	2	10	2	9	0	5		\$	0	2	0	3	-	A CONTRACTOR OF A CONTRACTOR O
	BAGAMOYO TO MWENGE	۲ ۲	10	35	4	21	5	51	8	51	7	46	8	52	6	66	12	56	15	63	10	64	6	67	13	37	10	
	FROM B	SV	15	239	86	328	77	305	52	258	60	223	45	240	53	237	54	236	43	229	45	225	38	213	49	244	59	
	1070	TOTAL	25	171	54	395	96	279	69	302	52	323	63	277	74	327	63	285	59	305	56	289	62	364	60	338	67	
	TO BAGAMOYO	MC	0	7	1	9	3	4	2	9	1	13	F	4	11	141	t	7	*-	5	2	5	2	4	*-	9	2	
	FROM MWENGE	Ľ	5	24	12	3 6	21	58	5	94	7	60	12	76	13	သို့	11	49	13	81	9	53	7	50	8	31	ი	
	FROM	SV	20	140	41	291	72	217	62	202	44	250	55	197	09	225	51	229	45	219	48	231	53	310	51	301	62	
	TIME		6.00 - 6.10	6.10 - 7.00	7.00 - 7.10	7.10 - 8.00	8.00 - 8.10	8.10 - 9.00	9.00 - 9.10	9.10 - 10.00	10.00 - 10.10	10.10 - 11.00	11.00 - 11.10	11.10 - 12.00	12.00 - 12.10	12.10 - 13.00	13.00 - 13.10	13.10 - 14.00	14.00 - 14.10	14.10 - 15.00	15.00 - 15.10	15.10 - 16.00	16.00 - 16.10	16.10 - 17.00	17.00 - 17.10	17.10 - 18.00	18.00 - 18.10	
			6.00 -	7.00	7.00 -	8.00	8.00 -	9.00	- 00.6	10.00	10.00 -	11.00	11.00 -	12.00	12.00 -	13.00	13.00 -	14.00	14.00 -	15.00	15.00 -	16.00	16.00 -	17.00	17.00 -	18.00	18.00 -	

(1. r.)

7-35

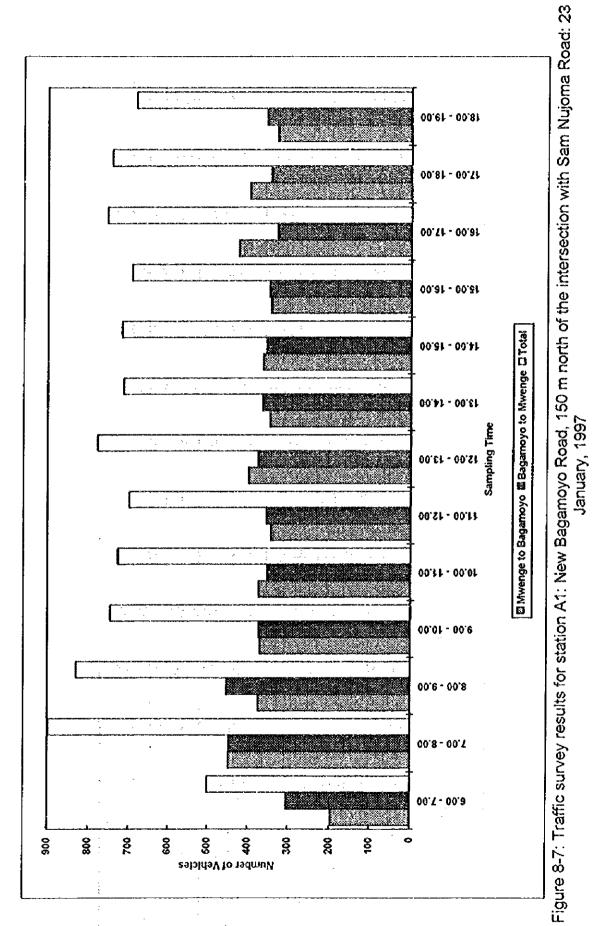
S

Ð

)

Table 8-8: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

D LOINNES	
196	305
449	49 448
375	75 454
371	71 375
375	75 352
345	45 355
401	377 377
348	15 366
364	34 355
345	15 349
426	26 329
398	346
674	

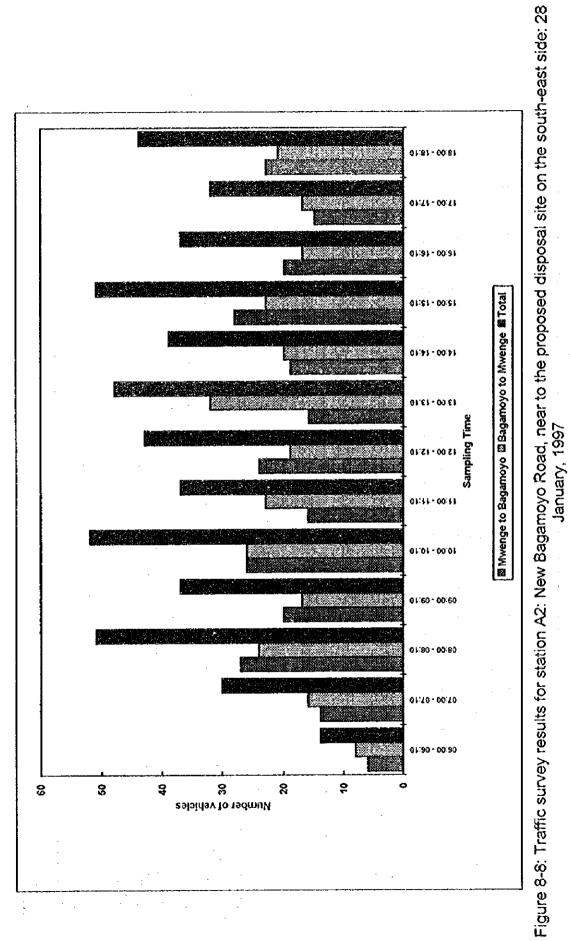

Table 8-9: Traffic survey results for station A1: New Bagamoyo Road, 150 m north of the intersection with Sam Nujoma Road

1001	いちか
8	N

	Ŀ	501	897	829	746	728	8	377	24	719	694	25	3	724
	TOTAL	5	~			~					Q Q		-	
TOTAL	MC	13	16	ន	14	31	15	27	16	1	12	Ø	0	6
10	2	74	135	135	158	120	148	176	128	172	133	133	ŝŝ	72
	٨	414	746	671	574	577	537	575	570	536	549	614	645	693
NENGE	TOTAL	305	448	454	375	353	355	377	366	355	349	329	346	355
YO TO M	MC	9	6	16	9	17	10	12	ω	5	S	~	m	9
FROM BAGAMOYO TO MWENGE	۲ ۲	45	25	56	59	53	60	75	68	78	74	76	50	49
FROM I	۶۷	254	414	382	310	283	285	290	290	272	270	251	293	300
AGAMOYO	TOTAL	196	449	375	371	375	345	401	348	364	345	426	398	429
TO BAGA	MC	7	7	7	8	14	5	15	8	9	9	9	7	13
FROM MWENGE TO B	LV	29	110	79	66	67	3 8	101	60	94	59	57	37	23
FROM N	S۷	160	332	289	264	294	252	285	280	264	279	363	352	393
TIME		6.00 - 7.00	7.00 - 8.00	8.00 - 9.00	9.00 - 10.00	10.00 - 11.00	11.00 - 12.00	12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	16.00 - 17.00	7.00 - 13.00	18.00 - 19.00

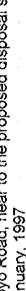
I

Ø


7-37

	TOTAL	12	133	32	226	44	187	37	222	42	194	36	207	60	143	29	154	46	175	46	202	51	243	34	173	40	
TOTAL	MC	0	7	1	9	-	3	0	2	0	1	4.	0	0	6	-	3	4 -	2	0	2	2	6	0	0	1	
TOTA	L V	*-	14	5	49	9	32	6	64	80	72	11	81	20	40	7	43	17	53	14	77	17	78	7	33	8	
	S۷	11	112	26	171	37	152	28	156	34	121	24	126	40	97	21	108	28	120	32	123	32	156	27	140	31	
ENGE	TOTAL	S	73	14	105	23	102	14	63	23	103	17	91	22	66	18	81	24	102	19	103	18	140	15	88	19	
O TO MWENGE	MC	0	4	1	2	0	2	0	1	0	4	0	0	0	4.	0	2	0	1	0	0	0	7	0	0	0	
FROM BAGAMOYO	LV L	0	S	1	23	3	15	3	23	2	38	9	40	S	25	4	21	10	31	4	41	9	46	2	21	4	
FROM B	۶V	5	64	12	80	20	85	11	69	21	64		51	17	70	14	58	14	70	15	62	12	87	13	67	15	
GAMOYO	TOTAL	- ~	60	18	121	21	85	23	129	19	91	19	116	38	44	14	73	22	73	27	66	33	103	19	85	21	
TO BAGA	MC	0	m	0	4	-	-	0	۴.	0	0	*	0	0	~	+		+-	-	0	2	2	2	0	0	~ -	
FROM MWENGE			6	4	26	м	17	g	41	9	34	5	41	15	15	<i>с</i> о	ន	~	2	10	36	11	32	5	12	4	
FROM N	SV	9	48	4	91	17	67	17	87	13	57	13	75	23	27	7	50	4	50	17	61	20	69	14	73	16	
		6.00 - 6.10	1	1	7.10 - 8.00		8.10 - 9.00		9.10 - 10.00	10.00 - 10.10	10.10 -11.00	11.00 - 11.10	11.10 - 12.00	12.00 - 12.10	12.10 - 13.00	13.00 - 13.10	13.10 - 14.00	14.00 - 14.10	14.10 - 15.00	15.00 - 15.10	15.10 - 16.00	16.00 - 16.10	16.10 - 17.00	17.00-17.10	17.10 - 18.00	18.00 - 18.10	
		6.00 -	2.00	7.00 -	8.00	8.00 -	9.00	9.00 -	10.00	10.00 -	11.00	11.00 -	12.00	12.00 -	13.00	13.00 -	14.00	14.00 -	15.00	15.00 -	16.00	16.00 -	17.00	17.00 -	18.00	18.00 -	

Table 8-10: Traffic survey results for station A2: New Bagamoyo Road, near to the proposed disposal site on the south-east side


÷

9

Ì٦ ک

Ð

in the south-east side
al site o
sed dispos
oyo Road, near to the proposed
near to th
o Road, r
Bagamoyo Ro
A2: New
or station
results fo
ic survey
11: Traffi
Table 8-

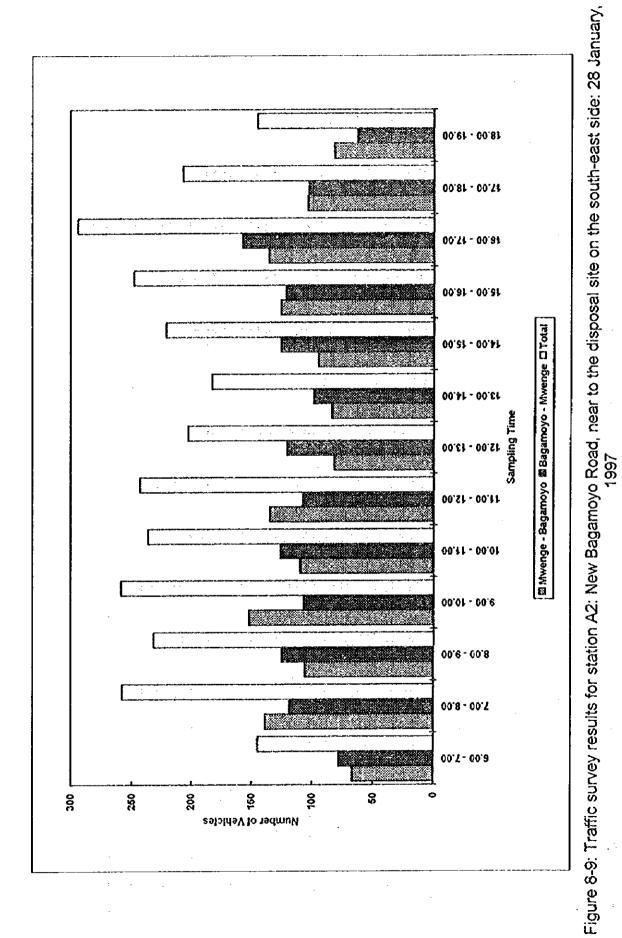
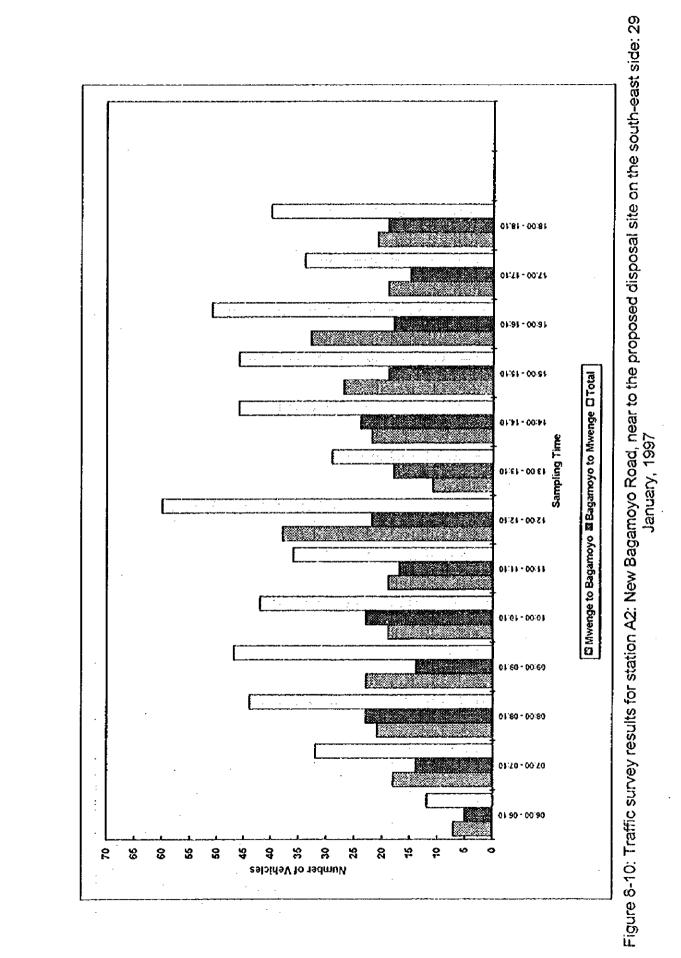

FROM MWENGE TO BAGAMOYO	FROM BAGAMOYO TO MWENGE	TOTAL
67	78	145
139	119	258
106	125	231
152	107	259
110	126	236
135	108	243
82	121	203
84	S S	183
96	126	100
126	122	248
136	158	794
104	103	207
82	63	145

Table 8-12: Traffic survey results for station A2: New Bagamoyo Road, near to the proposed disposal site on the south-east side

uny, 1001		TOTAI		3	258	231	040		230	243	202	201	103	721	248	201	100	22
Teres the same as y, 1001	LAL	UN UN		~	~	4			-	**	ď		* (n	2	*	- C	> (
2	TOTAL	LV L		2	54	တ္လင်္ဂ	73	28	8	92	Ç		3 6	2	ۍ ۲	56	207	2 9 6
		۶۷	667	3	197	189	184	155	ß	150	137	001		0 I 1	155	188	167	- <u>-</u>
	VENGE	TOTAL	C L		119	125	107	175		108	121	00	200	140	122	158	103	5.9
	FROM BAGAMOYO TO MWENGE	Š	₹		3	1		+	-†	0	4	°	- -	- (0	~	0	c
	3AGAMO	2	L.	,	54	<u></u>	26	40		46	0°	25			42	52	23	12
	FROM	SV	69	5	ZR	105	80	85		62	87	72	84	5	-	 66	80	51
01/01	SAGAMUYO	TOTAL	67	190	DC-	106	152	110		1351	82	34	95	126	202	136	104	82
		WC	ო		*	2	4-0	0			2	2	~			4	0	2
CH DOMANNE HOOD	ロシンリンシン	2	20	06	8	20	47	40	34	D T	30	25	59	46	2	43	17	24
		20	54	105	3	4 4 2	104	70	ă	3	00	57	64	78		B D	87	56
	TIME		6.00 - 7.00	7.00 - 8.00		6.VV - 8.UU	9.00 - 10.00	10.00 - 11.00	11 00 - 12 00		12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	00 × 1 00	10.01	17.00 - 18.00	18.00 - 19.00

;

(Janet)


Ð

8

8

	F106 ² 7.	TOTAL	14	114	30	215	51	173	37	185	52	179	37	235	43	165	48	173	65	135	51	233	37	204	32	204	4	204
ary, 1997	AL	MC	0	0	-	ŝ	0	0	0	-	-	4	•	2		S	0	***	0		~	r)	v	2	~~	4	2	2
Date: 29 January, 1997	TOTAI	2	G	21	4	57	1 0	40	80	61	19	68	11	86	15	57	21	63	14	72	20	6	15	60	9	38	2	30
Dati		۶۷	ø	8	25	153	41	133	29	123	32	107	25	130	27	103	27	109	25	112	30	139	21	137	25	162	35	172
	ENGE	TOTAL	စာ	63	16	97	24	8	17	92	26	108	23	117	6	94	32	102	20	83	23	124	17	133	17	118	21	102
	O TO MWI	MC	0	2	1	2	0	0	0	۴-	0	3	* *	4	₹-	2	0		0	0	0	с л	0	4	0	3	4	4-
	FROM BAGAMOYO TO MWENGE	۲۷	2	13	0	22	4	12	2	27	13	46	7	47	9	31	15	34	83	33	0	47	Ş	43	4	23	3	15
	FROM B	SV	9	48	15	73	20	71	15	64	13	59	15	66	12	61	17	67	12	50	13	74	12	86	13	92	17	86
	IGAMOYO	TOTAL	9	51	14	118	27	06	20	93	26	71	14	118	24	71	16	71	19	102	28	109	20	71	15	86	23	102
	TO BAGAI	MC	0		0	3	0	0	0	0	-	+	0	e S	0	с,	0	0	0	+	 	0	*-	S		-	r -	۲-
	FROM MWENGE	۲۷	4	8	4	35	9	28	9	34	9	22	4	51	6	26	9	29	9	39	10	44	10	17	2	15	4	15
	FROM	S۷	2	42	10	80	21	62	14	59	19	48	10	64	15	42	10	42	13	62	17	65	6	51	5	20	3	86
	TIME		6.00 - 6.10	6.10 - 7.00	7.00 - 7.10	7.10 - 8.00	8.00 - 8.10	8.10 - 9.00	9.00 - 9.10	9.10 - 10.00	10.00 - 10.10	10.10 - 11.00	11.00 - 11.10	11.10 - 12.00	12.00 - 12.10	12.10 - 13.00	13.00 - 13.10	13.10 - 14.00	14.00 - 14.10	14.10 - 15.00	15.00 - 15.10	15.10 - 16.00	16.00 - 16.10	•	17.00 - 17.10	2-1	18.00 - 18.10	18.10 - 19.00
			¹	7.00		8.00	8.00 -		9.00 -	10.00						13.00	13.00 -	14.00	I ,		15.00 -	16.00	l 		I 	~-	 8	19.00

Table 8-13: Traffic survey results for station A2: New Bagamoyo Road, near to the proposed disposal site on the south-east side

7-43

1001	TOTAL	128	245	224	222	231	272	208	221	224	284	241	236	243
value to valuary, 1001	FROM BAGAMOYO TO MWENGE	71	113	107	109	134	140	113	134	103	147	150	135	123
	FROM MWENGE TO BAGAMOYO	57	132	117	113	97	132	95	87	121	137	91	101	125
	TIME	6.00 - 7.00	7.00 - 8.00	8.00 - 9.00	9.00 - 10.00	10.00 - 11.00	11.00 - 12.00	12.00 - 13.00	13.00 - 14.00	14.00 - 15.00	15.00 - 16.00	16.00 - 17.00	17.00 - 18.00	18.00 - 19.00

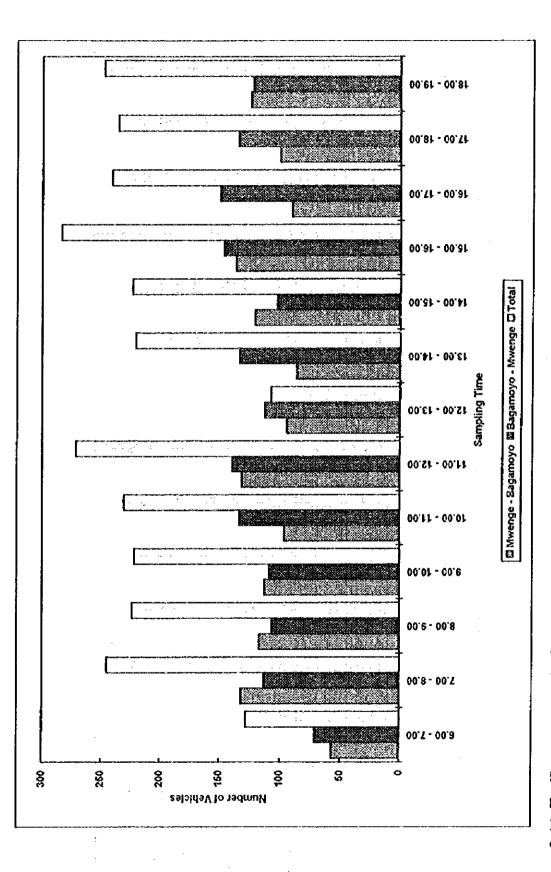

Table 8-14: Traffic survey results for station A2: New Bagamoyo Road, near to the disposal site on the south-east side

Table 8-15: Traffic survey results for station A2: New Bagamoyo Road, near to the proposed disposal site on the south-east side Date: 29 January, 1997

	FROM	FROM MWENGE TO		BAGAMOYO	FROM	FROM BAGAMOYO TO MWENGE	YO TO M	WENGE		0.4	TOTAI	
	۶۷	2	MC	TOTAL	SV	2	MC	TOTAL	SV		MC	TOTAL
6.00 - 7.00	44	12	2	57	54	15	2	71	98 86	27	e	128
7.00 - 8.00	66	39	3	132	88	ន	3	112	178	- 19	9	245
8.00 - 9.00	83	34	0	117	91	16	0	107	174	50	0	224
9.00 - 10.00	73	40	0	113	79	29		109	152	69	-	222
10.00 - 11.00	67	28	2	55	72	59	с М	134	139	87	2	231
11.00 - 12.00	74	55	3	132	81	\$	S	140	155	109	00	272
12.00 - 13.00	57	35	3	96	73	37	6	113	130	72	9	208
13.00 - 14.00	52	35	0	87	25	49		134	136	8		224
14.00 - 15.00	75	45	v -	121	62	41	0	103	137	86	**	224
15.00 - 16.00	82	54 54	Υ-	137	87	57	m	147	169	114	4	284
16.00 - 17.00	60	27	2	91	36	48	4	150	158	75	• •0	241
17.00 - 18.00	82	17	2	101	105	27	e	135	187	2	2	236
18.00 - 19.00	104	19	2	125	103	<u>0</u>	2	123	207	37	4	240

会話

64.53

