5. Results of Natural Condition and Environment Survey

5-1. Meteological Data

Table-1. Average temperature by month (1982-1993)

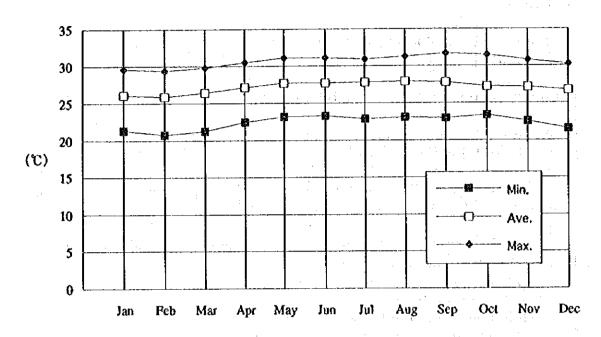


Table-2. Average percipitation by month (1979-1994)

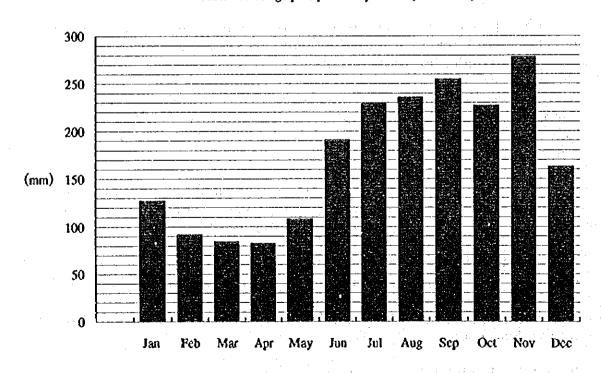


Table -3. Estimated percipitation at Canouan

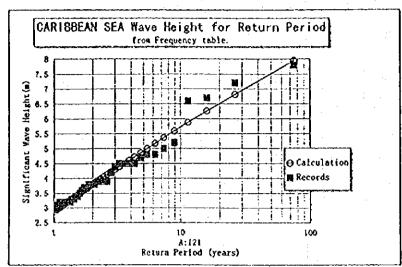

Month	Estimeted rate of rainfull in comparison with Kingstown	Percipitation at Kingstown	Estimated percipitation at Canouan
1	0.4	127.2	50.9
2	0.2	92.0	18.4
3	0.2	84.2	16.8
4	0.2	82.8	16.6
5	0.2	108.0	21.6
- 6	0.4	191.1	76.4
7	0.6	229.1	137.5
8	0.6	235.8	141.5
9	0.6	254.8	152.9
10	0.6	226.8	136.1
11	0.6	278.4	167.0
12	0.4	163.1	65.2
total	er <u>andre fatter andre geren geren geren andre fatter andre fatter andre geren geren gerejabeten for 1</u> 2 de fatter andre de la company	2,073.3	1,000.9

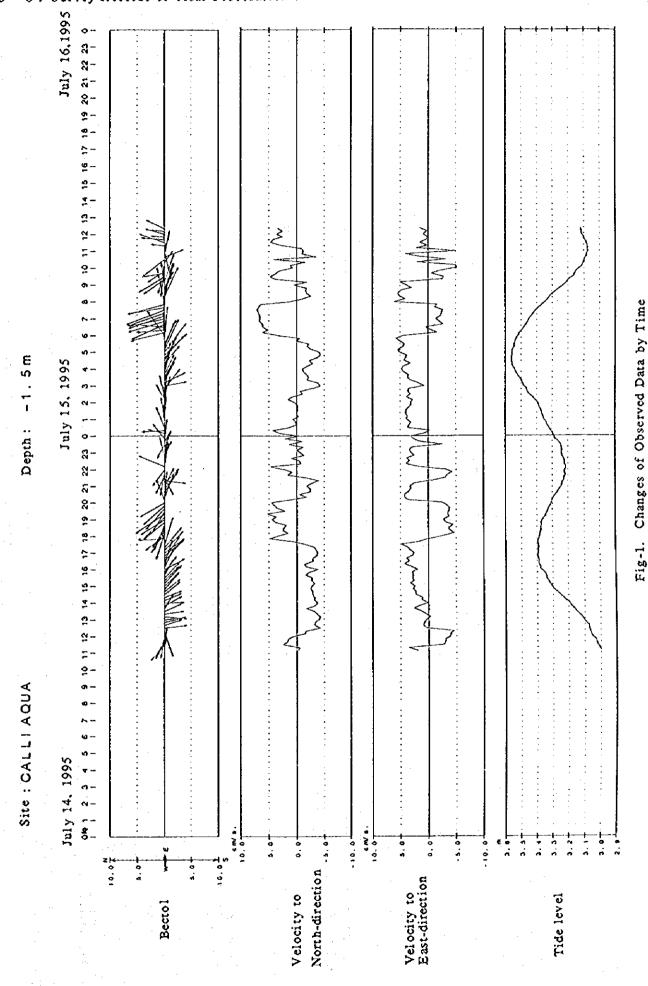
Table -4. Average wind speed by month

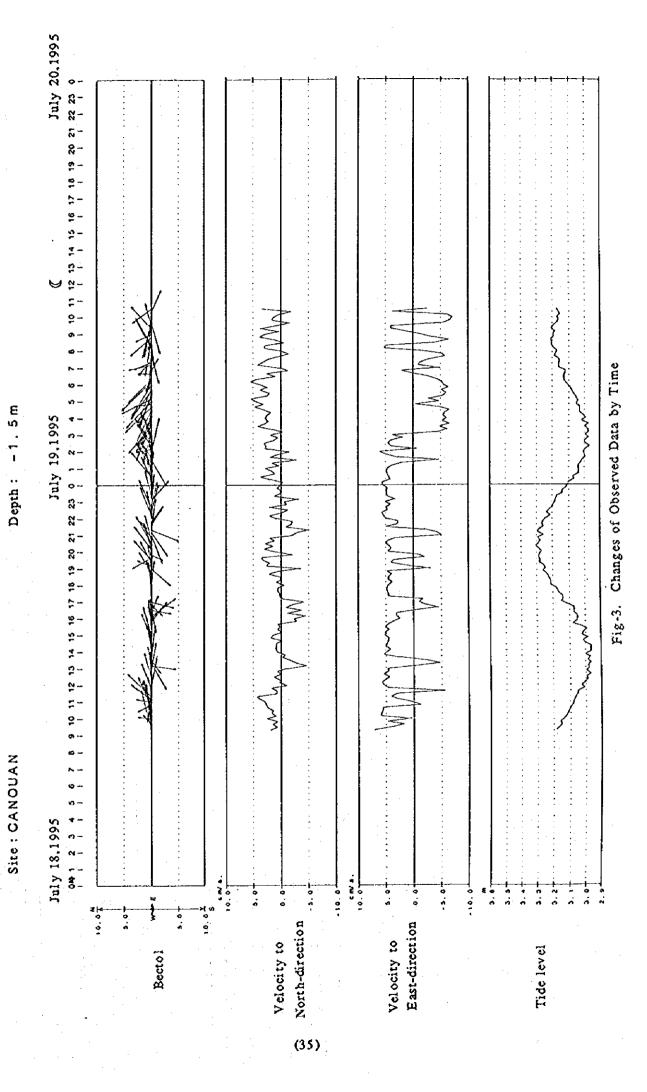
											·	-	
Month	1	2	3	4	5	6	7	8	9	10	11	12	
Average wind speed (m/s)	6.2	6.2	6.0	5.8	6.0	6.4	5.7	4.9	4.7	4.7	4.9	5.6	

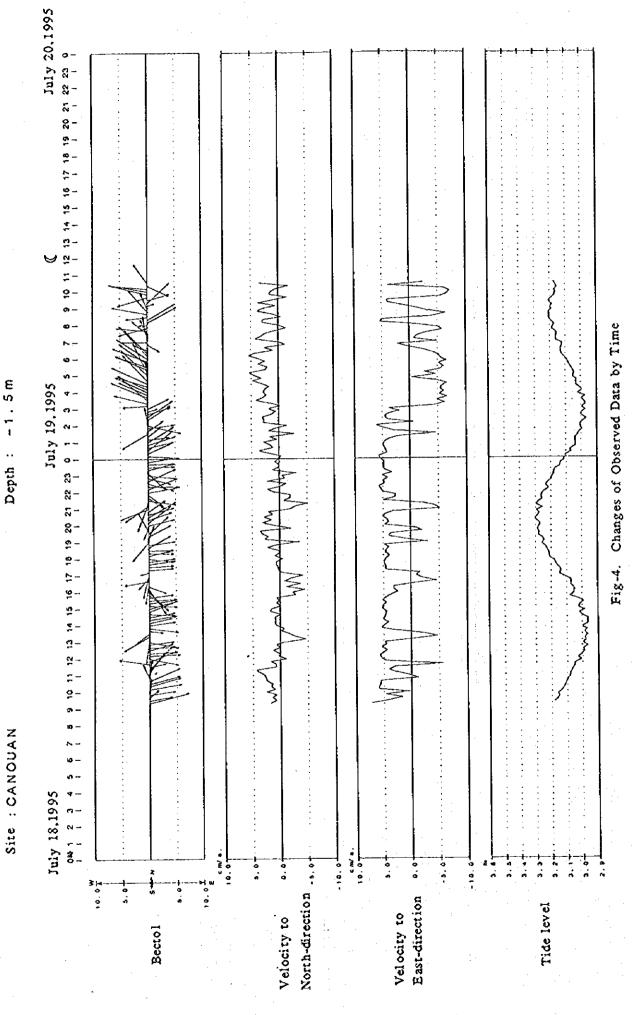
5-2. Relevant Data on Determination of Designal Wave Height

(1) Calculation of Probable Significant Wave Height (based on revolution analysis)

			ή		Calculati	ion	
Paax	freque	ency	1	P(x)	TV	Txcal	Ret. per.
(B/S)		total	nos.			(a)	(years)
7.8	1	1	T.	0.988	3. 837	7.96	74.94
7.2	1		2	0.965	2.994	6.81	26, 28
6.7	1	1	3	0.942	2.583	6. 25	15, 93
6.6	1	1	4	0.919	2.307	5, 88	11.43
5.2	1	- i -		0.896	2.093	5. 59	8.91
5	Ť	l i	6	0.873	1.930	5.36	7.30
4.8	i	 	Ť	0.850	1.788	5. 17	6. (9
4.8	<u>î</u> -		8	0.827	1.665	5.01	5.37
17	i i	<u>-</u>		0.804	1.557	4.85	4.74
4.5			19-	ð. 781	1.461	1.73	4. 24
4.3		}					
4.5		 	11	0.758		4.61	3.84
			15	0.135	1.293	4.50	3.51
4.5		1	13	0.712	1.219	4.40	3. 23
14	1	1	11	0.689	1. 151	4.31	2.99
4.2		1	15	0.666	1.087	1.72	2.78
3.9	1]	16	0.643	1.027	4.14	2,60
3.9	l	1	17	0.620	0.970	4.06	2. 45
3.9	1	_ I	18	0.597	0.916	3.99	2.31
3.9	1	1	19	0.574	0.865	3, 92	2. 18
3.8	1	_ T	20	0.551	0.317	3.85	2.07
3.8	1	1	21	0.528	0.170	3.79	1.97
3.8	. 1	T	22	0. 505	0.726	3.73	1.88
3.7	1	1	23	0. 482	0.683	3.67	1.80
3.7	1	1	24	0.459	0.642	3.61	1.72
3.6	T	1	25	0,436	0.602	3.56	1, 65
3.5	i i	- T	26	0.413	0.564	3.51	1, 58
3.4	1-7	 	27	0.390	0.521	3.46	1.52
3.4	1 – Ť	1 i	28	0.367	0.491	3.41	7.47
3.3	1	 i	29	0.344	0. 456	3.36	i. i2
3.3	 	 	36	0.321	0. 422	3.31	1.37
3.2	ti	 	Ξĩ	0.298	0.389	3. 27	1.32
3.2	 	l ∵i	32	0. 275	0.356	3.23	1.28
3.2	 	 	33	0. 252	0.325	3.18	1.24
1 2	Ii-	}	34	0. 229	0.294	3.11	1.21
132	 	┤ }-	35	0. 206	ŏ. 264	3.10	1, 17
1 2		┼─┼	36	0. 783	0. 234	3:88	1.14
3.2	 - 	 	37	0. 160	0. 204	3.02	1.11
	1	 	38		0. 175		
3.1	1	╁╾╁	39	0.137	0.173	2.98	1.08
3		├ -		0.111		2.94	1.05
	1	 -	40	0.091	0.118	2.90	1.02
2.9		1 1	4)	0.088	0.090	2.85	1.00
2.9		┞	42	0.015	0.061	2.82	0. 97
2.7		 !	43	0.022	0.032	2.78	0. 95
total	43	43	L	21.708	41.510	174.30	224. 21
or		·					
	n peri		20 yea		2.771	6.51	20.00
Retur	n perl		JO yea		3. 102	6.96	30.00
Retur	n peri		40 yea		3, 334	7.28	40.00
Retur	n peri	od In	50 yea	0.981	3.511	7.52	50.00
_,							


^(*) $\forall x = 1.36 \times r v + 2.740$


(2) Calculation of Significant Wave Height at Calliaqua, St. Vincent


		Offshore wave	wave			Composed	Composed Distribution Refraction Diffraction	Refraction	Diffraction	Converted	Wave direction		Depth		اسمحما	Wave height H(m)
Direction Height Cycle Length Ho(m) T(sec) Lo(m)	Height Fo(m)	Cycle T(soc)	Height Cycle Length Ho(m) T(sec) Lo(m) Ho/Lo Smax	Mo/Lo		direction	ជ	滋	Ŋ	wave Ho'(m)	Water	Ho//w	હ	h/Hoʻ	H/Ho'	at peak at revetment at jetty
						+47.0	0.0100	0.435	1.000					-		
						+33.5	0.0450	0.336	1.000				3.82	1.85	1.60	3.31
13	7.0	12.0	224.6 0.03	0.03	2	+10.0	0.3200	0.336	1.000	2.07	S23.6° E	0.0092	• • •	0.55	0.64	1.32
					action of	-11.5	0.3900	0.336	1.000				20.	6/.0	4/	50.1
						+60.0	0.0750	0.729	1.000						-,	
			-			+ 2.0	0.1050	0.435	1.000							
	7.0	12.0	224.6	0.03	0	-10.5	0.1150	0.341	1.000	2.06	S23.6° W	91600.0	3.81	1.85	1.6	3.29
						-27.5	0.0950	0.341	1.000				1.14	0.55	0.64	1.32
						-52.5	0.0200	0.341	1.000				40.1	S	<u>(</u>	4
						+20.5	0.2445	0.433	1.000				4.05	1.72	1.94	4.57
A.S.	7.0	12.0	224.6	0.03	2	10	0.2445	0.495	1.000	2.35	S34.4° W	0.01048		0.48	0.48	1.13
						-43.0	0.0510	0.380	1.000				1.64	0.70	0.67	1.58

(3) Calculation of Significant Wave Height at Friendship Bay, Canouan Is.

		Offshore wave	wave			Composed	Composed Distribution Refraction Diffraction Converted	Refraction	Diffraction	Converted	Wave direction		Depth			Wave height H(m)
Direction Height Cycle Length Ho(m) T(sec) Lo(m)	Height Ho(m)	Cycle T(sec)	Length Lo(m)	Height Cycle Length Ho(m) T(sec) Lo(m) Ho/Lo Smax	Smax	direction	Ճ	ά	Ŋ	wave Ho'(m)		Ho:/Lo	ઉ	h/Ho	h/Ho' H/Ho'	at peak at revetment at ienv
						+25.0	0.2015	0.700	0.280				1 70	2 00	1.80	. 2
83	7.0	12.0	225.0	225.0 0.0312	2	+ 65	0.2020	0.825	0.200	0.85	S27.2° E	0.0037846	1.70	2.00	1.89	1.61
	~~~					-11.0	0.2015	0.962	0.090				3.80	3.53	1.42	1.21
						+63.0	0.0330	0.483	1.000				2.00	2.00	1.89	1.89
S	7.0	12.0	225.0	12.0 225.0 0.0312	9	-14.5	0.1965	0.615	0.310	1.00	S17.7° E	0.0044565	2.00	2.00	1.89	1.89
,				FLIABELA		-38.0	0.1965	0.845	0.200				3.00	3.00	1.55	1.55
						+23.5	0.0845	0.481	1.000				2.58	1.93	1.80	2.40
æ	7.0	12.0	225.0	225.0 0.0312	10	+15.0	0.0845	0.436	1.000	1.34	S46.8 W	0.0059467		1.60	1.53	2.40
	,					-66.0	0.0720	0.407	0.260				3.00	2.25	1.70	2.27







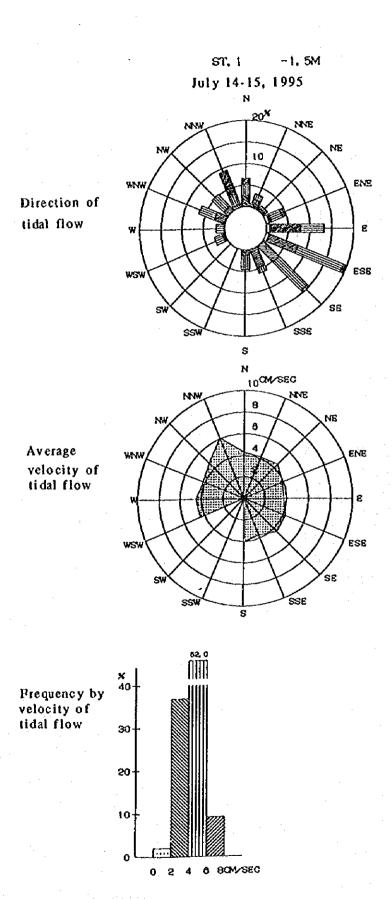
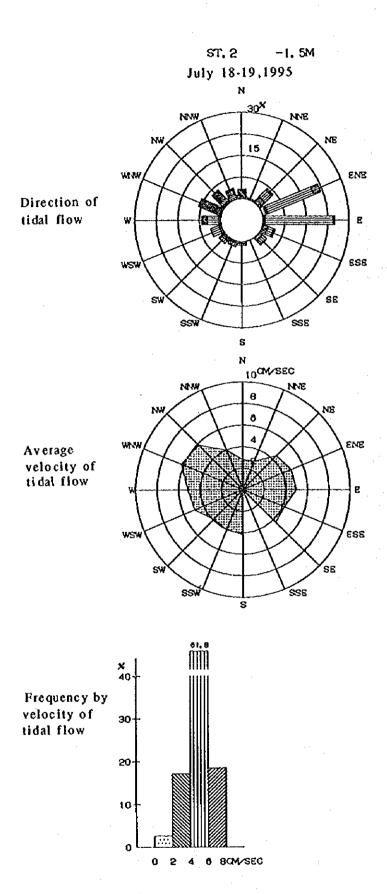
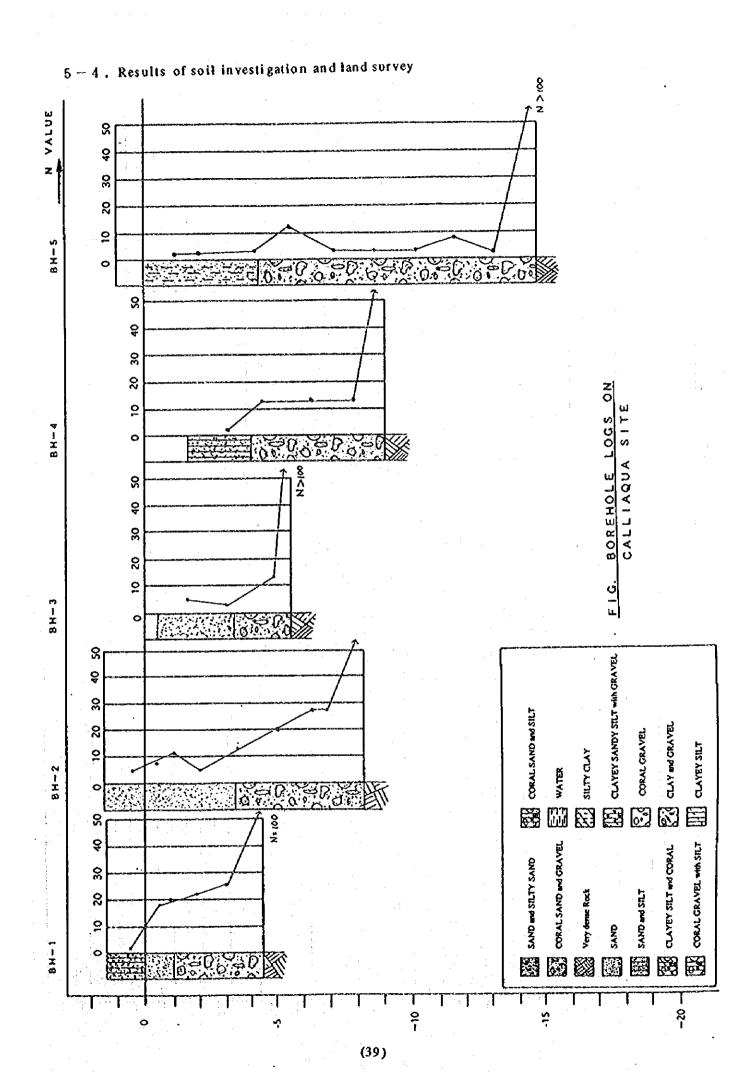
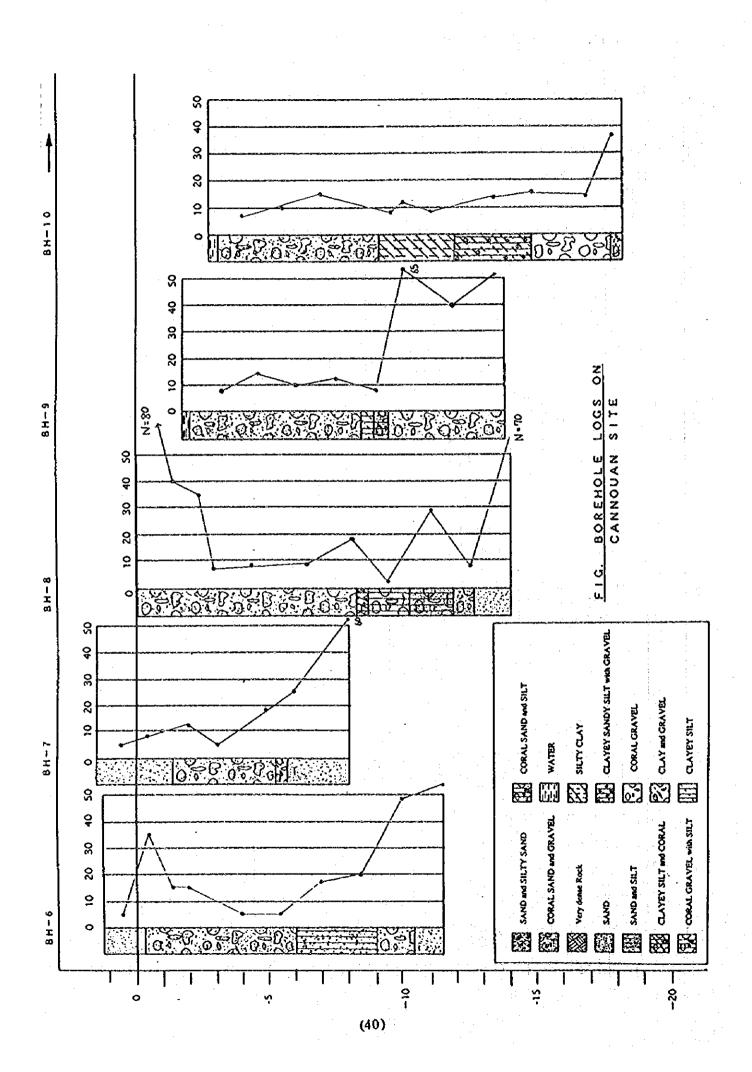
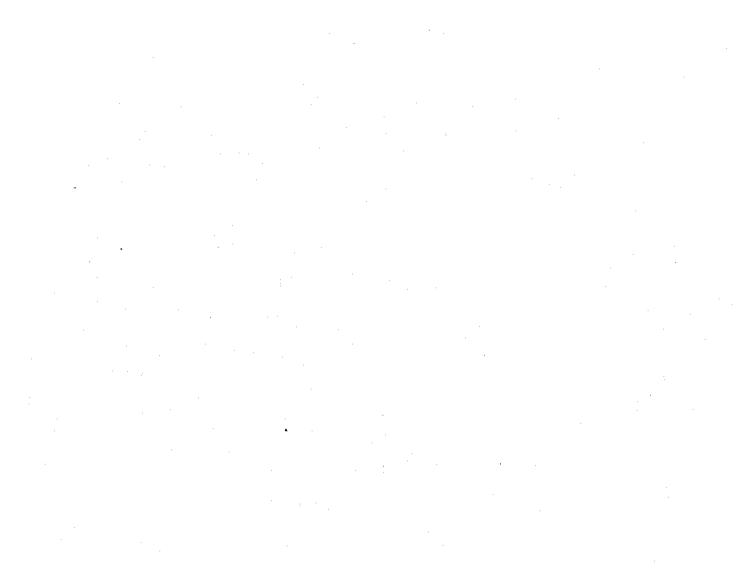
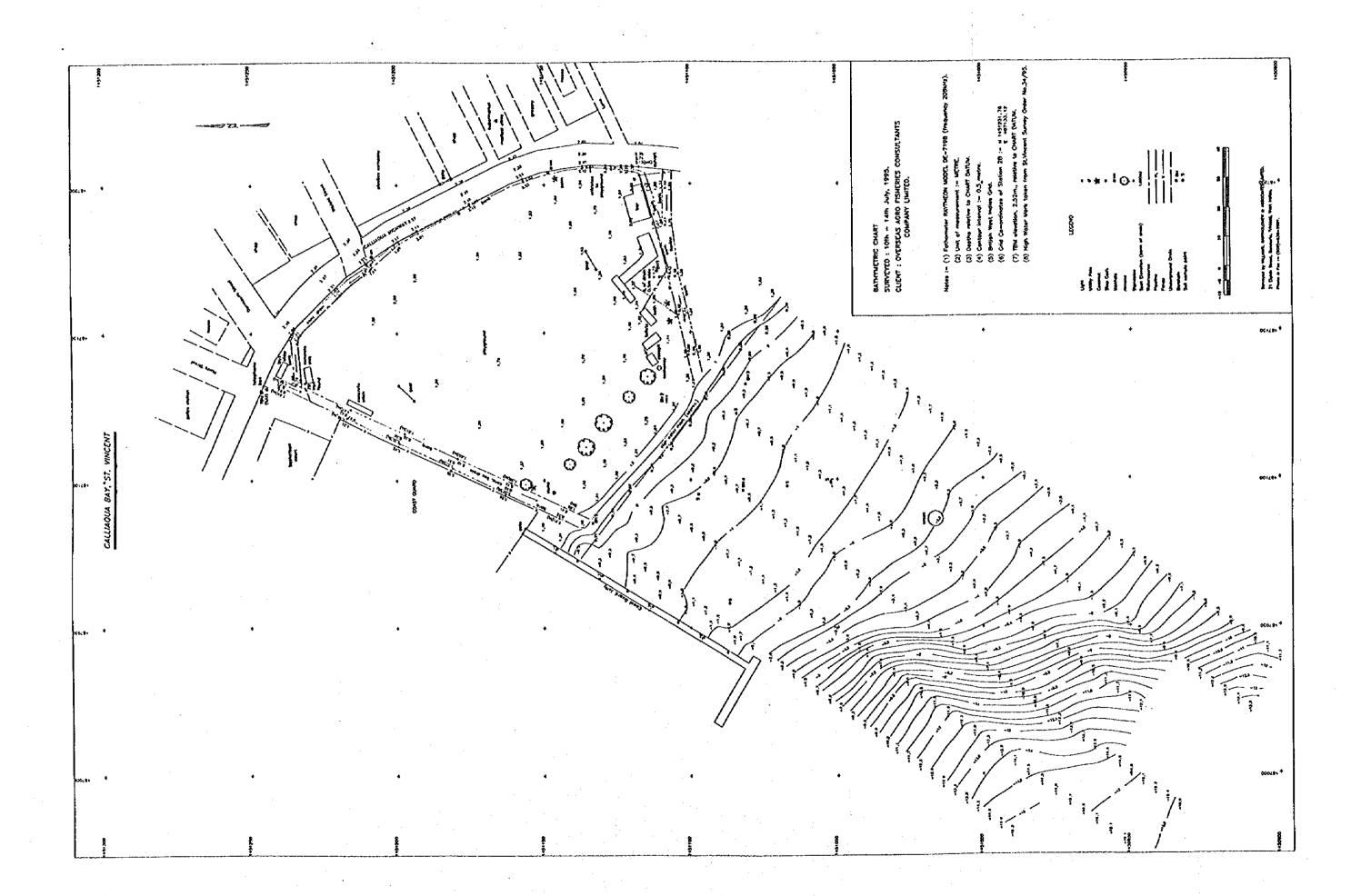
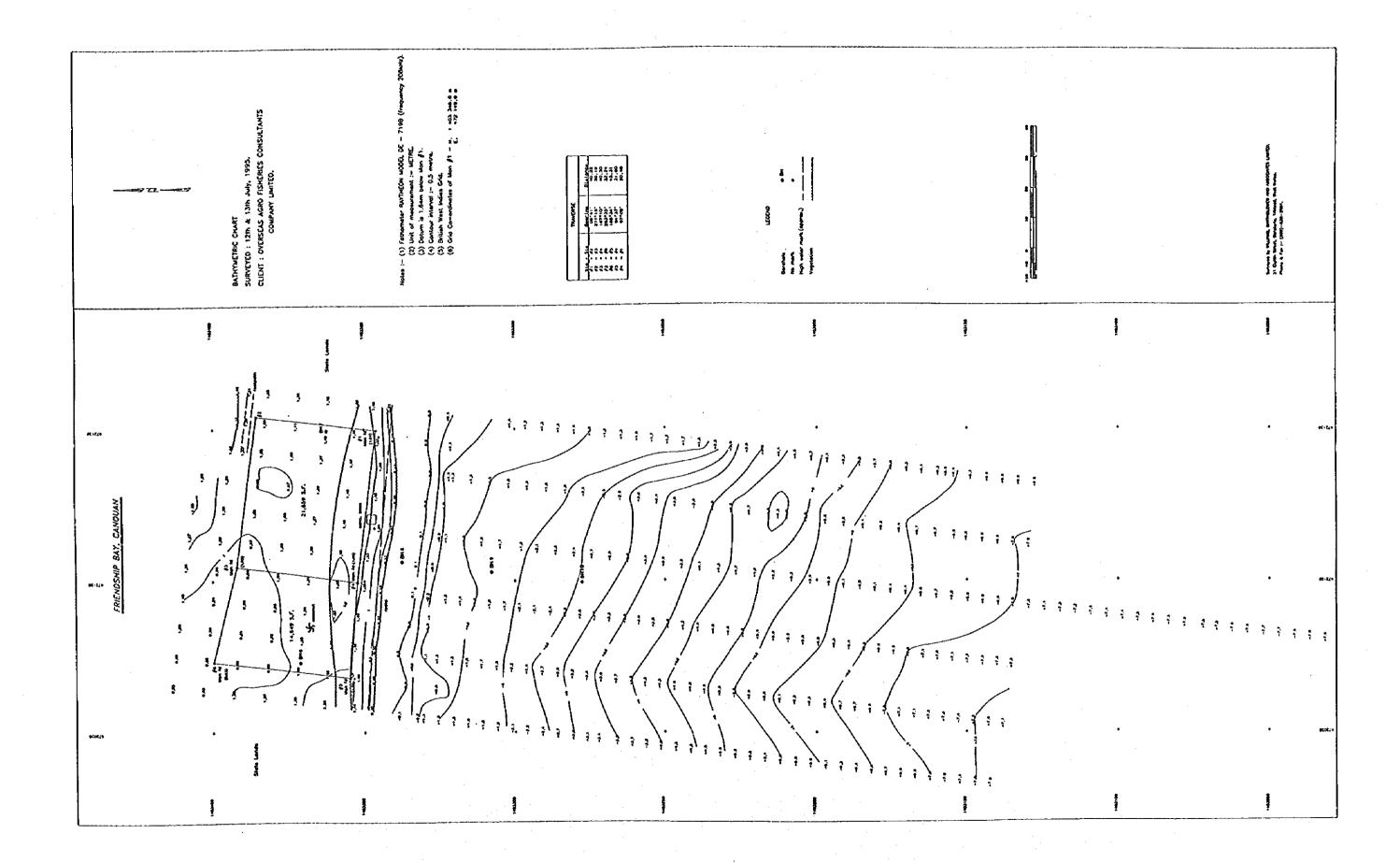
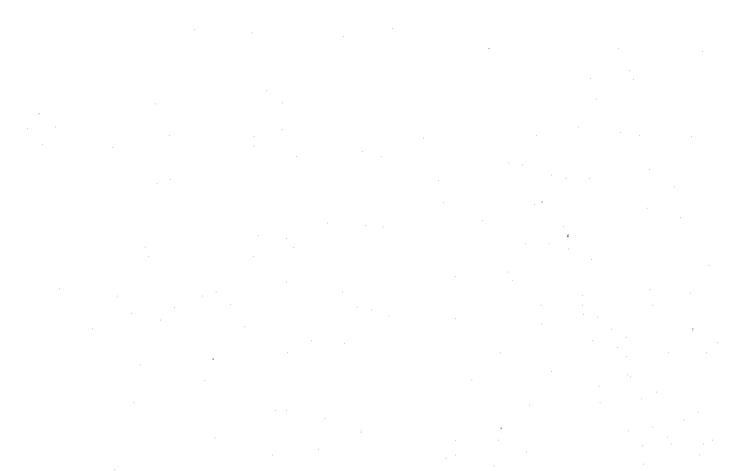



Fig-5. Frequency of Tidal Flow



Fig-6. Prequency of Tidal Flow


CANOUAN














#### 5-5. Results of Environmental Survey

Table-1. Water quality

#### (1) Calliaqua

STA.No	Date & Time	Depth m	Temp.	DO mg/l	I * .	Salinity ppt	BOD nig/l	No.of colonies <u>E. coli</u>	Tramsparency (m)	chlorophyl-a ug/l	Remarks
1 East-side	7/11.09:40	0	31.5	0.1	7.36	•	13	100 20	•	-	,
drain	7/13. 15:20	0	35.9	0.2	7.73	12	-	100 20	•	-	
2	7/11.09:45	0	28.3	0.2	7.28	-	70	>200	•	•	
West-side drain	7/13. 15:25	0	23.6	7.9	8.25	26	•	100 20	-	-	Seawater infrows
3	7/11, 09:50	0	29.3	7.1	8.15	36		20	~	0.1	
off 30m from shore	7/14. 11:30	0	28.6	7.2	8.11	36	-	-	· •	-	
4	7/14. 11:20	0	28.2	6.2	8.11	36	-	-	•	0.1	
off 60m from shore	7/14. 11:25	-3	27.5	6.6	8.09		-	-	<10		

#### Notes:

- 1. BOD: In-situ(after 5-days incubation at 20)
- 2. E. coli : by the paper (after 15-hr. incubation at 37)
- 3. Chlorophyl-a: based on marina observation quideline 9. 6. 5 (JAPAN)

#### (2) Canouan

STA.No	Date & Time	Depth m	Temp. °C	DO mg/l		Salinity ppt	BOD mg/l	No. of colonies E, coli	Tramsparency	chlorophyl-a ug/l	Remarks
all a delination of the delication of the spirit, or we	7/18. 09:45	0	28.3		7.88			0	_	ND	
1	7/19. 10:45	0	28.4	7.8	8.14	36	-		-	-	
off 30m from shore	7/18. 09:45	-2	28.3	7.2	7.91	-	. :		>23	± '	·
7	7/19. 10:45	-2	28.1	7.7	8.13	-	-		<b>-</b>	•	·
	7/18. 09:40	0	28.2	6.1	8.07	36	•	. 0	-	ND	
2 off 60m	7/19. 10:40	0	28.4	6.9	8.14	36		•		-	
	7/18.09:40	-3	28.2	6.9	8.08	-	-		-		
	7/19. 10:40	-3	28.1	6.7	8.10			•		-	

Table-2. Marine Organisms

(1) Pish species observed at site

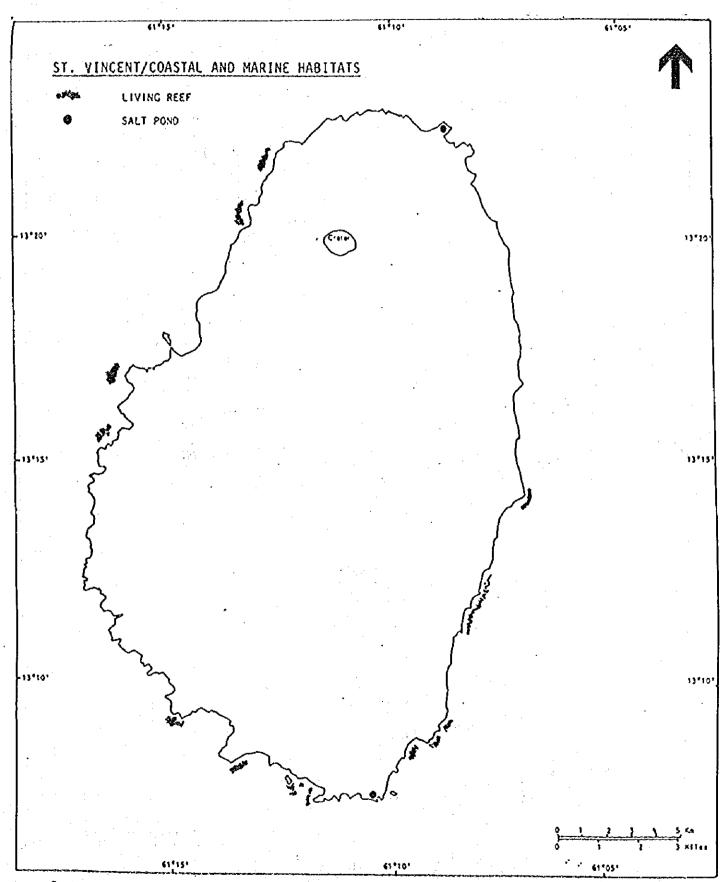
Site	Place		S	Species	Remarks
		•	English name	Scientific name	
O-11!	Around wre	cked 1	Spanish mackerel (young)		1995. 7. 14
Calliaqua	boat	2	Banded butterfly fish	•	10:30-11:00
		1	Ocean surgeon	Acanthurus bahianus	1995. 7. 18
		2	Spanish hogfish	Bodianus rufus	10:40-11:20
		3	Yellow goatfish	Mulloidiothys martinicus	
		4	Spotted goatfish	Pseudupeneus maculatus	1
		5	Damselfish	Pomacentrus SP.	
		6	Squirrelfish	Holocentrus ascensionis	
_	Rocy	7	Sergeant major	Abudefduf Saxatilis	
Canouan	zone	8	Bluehead wrasse	Thalassoma bifasciatum	
· ·		9	Slippery dick	Halichoeres bivittatus	
		10	French grunt	Haemulon flavolineatum	
		11	Smallmouth grunt	Haemulon chrysargyreum	
		12	Mahogany snapper	Lutjanus mahogoni	
4) Zoo-p	lankton	1	Ocean surgeon	Acanthurus bahianus	
., = v · F	zone	2	Slippery dick	Halichoeres bivittatus	

(2) Algae

Calliaqua	1	Zostera SP.
	1	Zostera SP.
Canovan	2	Chaetormorha SP.
	3	Delesseriaceae

#### (3) Phyto-plankton

	Calli	aqua	Can	ouan
Species	off 30m	off 60m	off 30m	off 60m
Trichodesmium sp.	950	2880	5280	4800
Skeletonema costatum	4680	42720		
Rhizosofenia ai ata	120			,
R. alata f. gracitima	:	480		
B, calcar avis		480		:
R. styliformis	120			
Chactoceres affine		1920		
C. adanticum v. neapolitanum		2880		
C. corvisetum		3840		
C. decipions		3360		
C. didymum v. anglica		1920		
C. distres	3960	33120		
C. forenzianum	720	38400		
C. pendulum		960		
C_spp.	720	5760		
Biddulphianomeyi	600			
Cerataulina sp.	. 120			
Ditylum brightwellij	ιx	2400		
Sureprocheca tharnensis		480	1	


1	Asteriorella placialis		14880		
	A. kanana	1440	6240	66000	23760
	Thalassiothria longissima		480		
	Ctimacosphenia sp.	120			
	Nitzschia pungens	·	1920		
	Total No. of individuals	13680	165120	71280	28560
	Total No. of species	12	19	2	2
	Hauling distance (vertical hauliusing # 30cm, NXX13 net)	I.Om	3.0m	2.0m	3.0m
	Water volume filtered	711	2121	1411	2121
	No. of cells per m1 (pcs./m1)	0.2	0.8	0.5	0.1

	Call	редиа	Can	овал
Species	off 30m	off 60m	off 30m	off 60m
Foraminifera			12	
Amphilonche belonoides	20	60		
Nematoda	20		4	
Mecynecerasp. (copepodid)	20			
P. pacrus		10		
P_ spp (copepodid)	80	120		
Clausocalanus sp.	20	120		
Centropages furcatus (copepodid)	20			
Oithona nana	20	60		
Q, spp. (davisae teopepodid)	60	120		2
Ocesea venusta		10		
Q, spp.(copepodid)	20	60	4	
Cocycacus spp.(copepodid)	13	20		
Microsciella porvegica		10		
Euterpina acutifrons		30		
Harpacticoida	- <del></del>		12	
Nauplius of Copepoda	260	390	48	6
Isopoda				2
<u>Creseis acicula</u>		10		
Fritillaria sp.		30		
Oikopicula spp.		90		
Polychaeta larva	60		12	
Gastropoda larva	20			
Appendicularia tarva	7	10		
Nauplius of Ciripedia	40			2
Nauplius of Panaeidae			Ī	
Zoca of Panacidae		10		
Total No. of individuals	680	(160	92	13
Tptal No. of species	15	17	6	
Hauting distance (vertical hauf, using § 30cm NXX13 net)	1.00	3.0m	2.0m	3.00
Water volume filtered	71	212	1431	217
No. of individuals per liter (pes A)	96	5.5	0.7	0.
Volume of spedimented organisms (mt/l)	0.004	0.002	0001	6.00
Wet weight (mg/l)	8.1	2.5	3.6	2.9

Table-3. Existing major plants at Canouan site

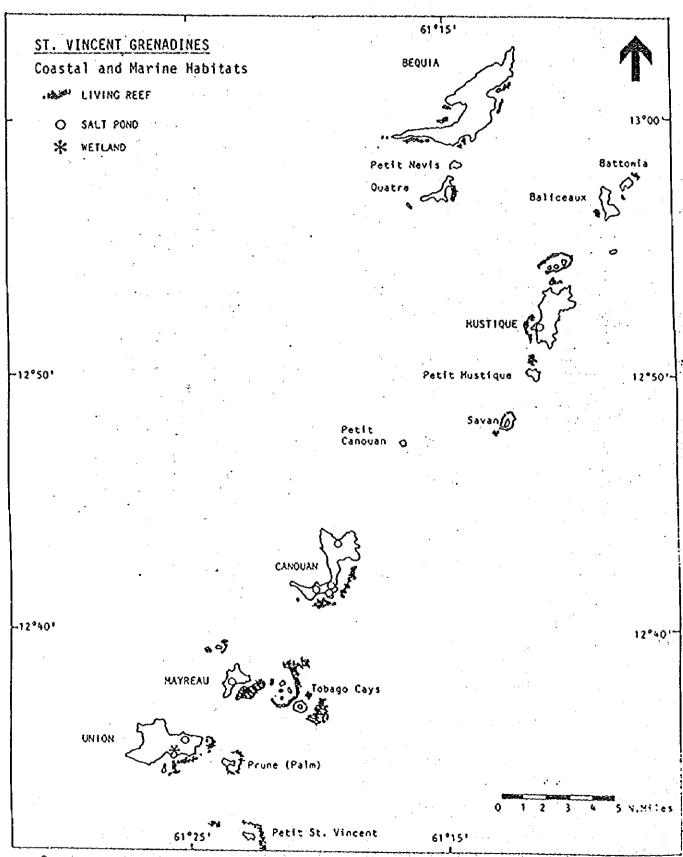

	English name	Scientific name	Diameter & height	No. of trees
1	Sea grape	Coccoloba uvifera	0.1 0.3m 5 8m	11
2	Purple Allamanda	Cryptostegia grandiflora R.Br.	2°5cm 1°3m	720
3	Sweet acacia	Acacia farnesiana (L)wild	2°10cm 1°4m	720
4	Wite Cedar	Tabebuia heterophlla (D.C.)Britton	0.12m 4m	1
5	Camitillo verde (similar species)	Micropholis garciniaefolia Pierre	0.3m 8m	1

Fig-1. Coral Reef Distribution at St. Vincent



Source: Country Environmental Profile, St. Vincent & the Grenadines, 1991 (Calvin A. Howel)

Fig-2. Coral Reef Distribution at the Grenadines



Source : Country Environmental Profile, St. Vincent & the Grenadines, 1991(Calvin A. Howel)

Pig-3. Calliaqua Area Sea Chart

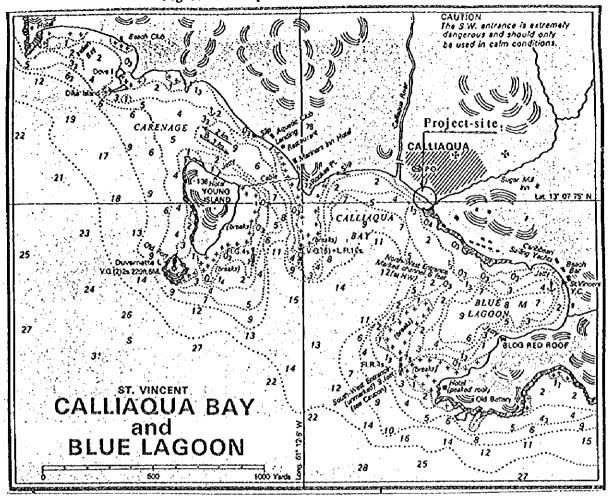
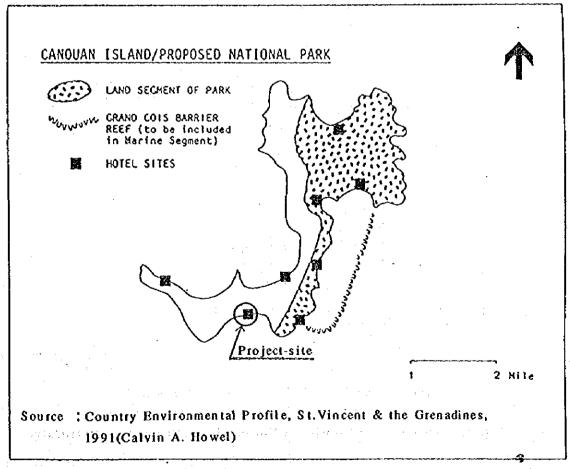
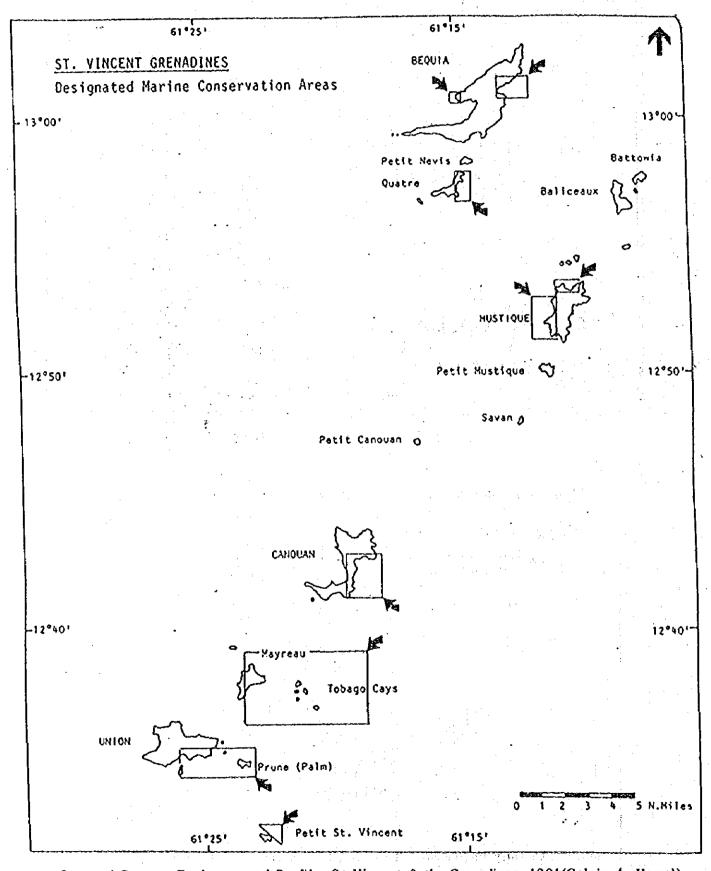





Fig-4. Proposed National Park at Canouan Island



Pig-5. Designated Marine Conservation Areas at St. Vincent & the Grenadina



Source: Country Environmental Profile, St. Vincent & the Grenadines, 1991 (Calvin A. Howel)

# 5-6 Environmental Impact Study Results (according to the JICA environmental guidelines)

Table 1-1 Screening Format (for port construction projects) Calliaqua

(1/2)

Enviror	nme	ntal factors	Contents	Assess- ment	Remarks
·	1	Transfer of residents	Transfer accompanying site take-over (conversion of resident and land ownership rights)	None	There is no privately owned land (structures)
	2	Economic activities	Loss of land and fishing ground, etc., and of the economic structural change	None	The facilities are small and will have no effect.
	3	Traffic and living facilities	Impact on existing traffic from congestion and accidents, etc. and impact on schools and hospitals, etc.	None	Same as above
	4	Isolation of the region	Isolation from local communities through traffic obstruction	None	There are no site conditions that may invite the isolation
Social	5	Ruins and cultural assets	Loss of or reduction in value of temples and buried cultural assets, etc.	None	No such things exist on the site or in its environs.
Environment	6	Water rights and other rights	Obstruction to fishing rights, water rights and forests rights, etc.	None	There are no fishing grounds in front of the site and no works or facilities that may affect ocean waters
	7	Public sanitation	Deterioration of the sanitary conditions through generation of waste and harmful insects, etc.	None	Waste will be minimal and will be treated properly
	8	Waste products	Generation of waste materials and soil from construction work, waste oil and other general wastes	None	Garbage and waste will be small in quantity and public collection services will be utilized.
	9	Disaster (risk)	Increased risk of land collapse or shipping accidents, etc.	None	There are no generation factors.
	10	Topography and geology	Changes to valuable topography and geology through excavation and banking, etc.	None	Same as above
	11	Soil erosion	Washing away of surface soil due to rain following reclamation and forest destruction, etc.	None	Same as above
Natural Environment	12	Underground water	Drying-up and pollution caused by drains from excavation and leachate	None	Same as above
	13	Lakes and rivers	Changes to flow rates and river beds due to land filling or the inflow of drains	None	There are no lakes or rivers nearby.
	14	Coastline and ocean waters	Coastal erosion or accumulation caused by land filling or changes to the ocean conditions	None	There are no works or facilities that may have an effect.

-	^ 1	4
- 6	71	•
٠,	**	*

Enviro	nme	ental factors	Contents	Assess- ment	Remarks
	15 Flora and fauna		Obstruction of growth or extinction of species caused by changes in the environment	None	There are no protected flora and fauna and no facilities that may have an impact.
Natural Environment	16	Climate	Changes in temperature and wind conditions caused by large scale reclamation or buildings	None	There are no generation factors.
	17	Landscape	Topographical changes caused by reclamation or the impedance of the scenic harmony by buildings	None	Current situation will be improved.
:	18	Air pollution	Pollution caused by exhaust fumes and harmful gases from vehicles or shipping	None	There are no generation factors
·	19	Water pollution	Pollution caused by the inflow of soil or industrial wastewater, etc.	None	Current situation will be improved.
	20	Soil pollution	Dust and pollution from insecticides, etc.	None	There are no generation factors.
Pollution	21	Noise and vibration	Generation of noise and vibration from the passage of vehicles and shipping, etc.	None	Same as above
	22	Cave-in	Cave-in caused by change of soil conditions or lowering of underground water level	None	Same as above
	23	Odor	Generation of exhaust gases or odorous substances from the port facilities	None	Scale of facilities is small and odors will not be generated.
Overa	li as:	sessment: Is it a pr	oject that requires IEE or EIA?	No	There are no items of impact.

Table 1-2 Screening Format (Port) Canouan

(<del>1/2</del>)

Enviro	mine	ental factors	Contents	Assess- ment	Remarks
	1	Transfer of residents	Transfer accompanying site take-over (conversion of resident and land ownership rights)	None	There is no privately owned land (structures).
	2	Economic activities	Loss of land and fishing ground production opportunities, etc. or changing of the economic structure	None	The facilities are small and will have no effect.
	3	Traffic and living facilities	Impact on existing traffic from congestion and accidents, etc. and impact on schools and hospitals, etc.	None	Same as above
	4	Isolation of the region	Division of local communities through traffic obstruction	None	There are no site conditions that may invite isolation
Social	5	Ruins and cultural assets	Loss of or reduction in value of temples and buried cultural assets, etc.	None	There are no such things.
Environment	6	Water rights and other rights	Obstruction of fishing rights, water rights and right of common entry to mountains and forests, etc.	None	There are no fishing grounds in front of the site
	7	Public sanitation	Deterioration of the sanitary environment through generation of waste and harmful insects, etc.	None	Waste will be minimal and will be treated properly
	8	Waste products	Generation of waste construction materials, left over earth, waste oil and other general waste products, etc.	None	Same as above
	9	Disaster (risk)	Increased risk of ground subsidence or shipping accidents, etc.	None	There are no generation factors.
	10	Topography and geology	Changes to valuable topography and geology through excavation and banking, etc.	None	Same as above
	11	Soil erosion	Washing away of surface soil due to rain following reclamation and forest destruction, etc.	None	Same as above
Natural Environment	12	Underground water	Pollution caused by wastewater from excavation and leachate	None	Same as above
	13	lakes and rivers	Changes to flow rates and river bods due to land filling or the inflow of wastewater	None	Same as above
	14	Coastline and ocean waters	Coastal erosion or accumulation caused by land filling or changes to the ocean conditions None	None	There are no facilities that may have an effect.

(2/2)

Enviro	nme	ntal factors	Contents	Assess- ment	Remarks
and the State of Stat	15 Flora and fauna		Obstruction of growth or extinction of species caused by changes in the living environment	None	There are no protected flora and fauna.
Natural Environment	16	Climate	Changes in temperature and wind conditions caused by large scale reclamation or buildings	None	There are no generation factors.
	17	Landscape	Topographical changes caused by reclamation or the impedance of the scenic harmony by buildings	None	Same as above
	18	Air pollution	Pollution caused by exhaust fumes and harmful gases from vehicles or shipping	None	Same as above
	19	Water pollution	Pollution caused by the inflow of soil or industrial wastewater, etc.	None	Proper treatment will be done in septic tanks.
	20	Soil pollution	Dust from open piling or pollution from agricultural fertilizers, etc.	None	There are no generation factors.
Pollution	21	Noise and vibration	Generation of noise and vibration from the passage of vehicles and shipping, etc.	None	Same as above
	22	Cave-in	Ground surface subsidence caused by changed geological conditions or lowering of the groundwater level	None	Same as above
	23	Odor	Generation of exhaust gases or odorous substances from the port facilities	None	As generated quantities will be small, it will be treated properly.
Overa	li ass		evelopment project that requires entation of IEB or EIA?	No	

Table 2-1 Scoping Checklist (for port construction projects) Calliaqua

Enviro	nme	ntal factors	Assess- ment	Remarks
	1	Transfer of residents	D	There is no privately owned land. A restaurant exists on the site however, this will be continued urchanged.
	2	Economic activities	**	There are no fishing grounds in front of the site and there will be no impact because the existing facilities will be improved.
į	3	Traffic and living facilities	29	Traffic and living facilities Same as above
Social	4	Isolation of the region	>1	There are no site conditions that may invite isolation of the region
Environment	5	Ruins and cultural assets	* **	There are no such things on the site or in its environs.
	6	Water rights and other rights	,,	There are no fishing grounds near the site and no facilities that may have an impact.
	7	Public sanitation	<b>73</b>	Waste will be minimal and it will either be incinerated or collected.
	8	Waste products	ž2	Fish waste can be considered, however, the generated quantities will be small.
	9	Disaster (risk)	**	No major changes will occur and the scale of facilities will be small.
	10	Topography and geology	>>	There are no protected areas and no major changes will occur.
	11	Soil erosion	, 22	No major changes to the land will occur.
	12	Underground water	>>	There are no pumping facilities (wells).
Natural	13	lakes and rivers	>3	There are no lakes or rivers nearby.
Environment	14	Coastline and ocean waters	***	There are no works or facilities that may have an effect.
	15	Flora and fauna	. <b>33</b>	There are no protected flora and fauna and no works or facilities that may have an impact.
	16	Climate	** .	There are no generation factors.
	17	Landscape	**	As the current situation will be improved, there will be no major changes.
	18	Air pollution	>=	There are no generation factors.
	19	Water pollution	>>	The current situation will be improved.
	20	Soil pollution	77	There are no generation factors.
Pollution	21	Noise and vibration	<b>}9</b>	Same as above
	22	Cave-in	11	Same as above
	23	Odor	>3	The scale of facilities is small and odor will not be generated.

(Note) A: A major impact is foreseen.

B: Some impact is foreseen.

C: Unclear (examination is required and, if an impact becomes clear in the course of the investigations, this shall be given consideration).

D: Because hardly any impact can be foreseen, IEE or EIA shall not be necessary.

Table 2-2 Scoping Checklist (Port) Canouan

Enviro	nme	ntal factors	Assess- ment	Remarks
	1	Transfer of residents	D	There is no privately owned land.
	2	Economic activities	***	The scale of the facilities is small and they will have no impac on the surroundings.
·	3	Traffic and living facilities	**	Same as above
Social	4	Isolation of the region	99	There are no private houses, etc. and no site conditions that may invite isolation of the region
Environment	5	Ruins and cultural assets	>1	There are no such things.
	6	Water rights and other rights	19	There are no fishing grounds in front of the site and no facilitie that may have an impact.
	7	Public sanitation	1)	As waste will be minimal, it will be incinerated.
	8	Waste products	,,	Fish waste will be fed to seagulls and all combustibles will b incinerated.
	9	Disaster (risk)	"	No major changes will occur and no large facilities will be built
	10	Topography and geology	11	Same as above
	11	Soil erosion	37	Same as above
	12	Underground water	71	There are no pumping facilities (wells).
Natural	13	lakes and rivers	**	There are no lakes or rivers nearby.
Environment	14	Coastline and ocean waters	19	There are no works or facilities that may have an effect. For example, the jetty will be a pile structure.
	15	Flora and fauna	H	There are no protected flora and fauna and this matter has been surveyed.
	16	Climate	**	There are no generation factors of scale that may have an impac
	17	Landscape	1>	Same as above
	18	Air pollution	31	Same as above
	19	Water pollution	1)	Effluent will be treated to B.O.D 25 ppm or less in septic tanks
	20	Soil pollution	3+	There are no generation factors.
Pollution	21	Noise and vibration	**	Same as above
	22	Cave-in	1)	Same as above
	23	Odor	1)	Because only minor quantities of fish offal will be generated, i will be treated properly by feeding to seagulls.

(Note) A: A major impact is foreseen.

B: Some impact is foreseen.

D: Because hardly any impact can be foreseen, IEB or EIA shall not be necessary.

C: Unclear (examination is required and, if an impact becomes clear in the course of the investigations, this shall be given consideration).

## 6. Cost Estimation borbe by the Recipient Country

The breakdown of costs to be borne by the government of St. Vincent and the Grenadines.

①	Existing structure removal works	Approx. EC\$100,000 (3.4 million y	ven)
---	----------------------------------	------------------------------------	------

② Power and water supply line laying Approx. EC\$100,000 (3.4 million yen)

③ Installation of fence around site, etc. Approx. EC\$100,000 (3.4 million yen)

Total Approx. EC\$300,000 (10.2 million yen)

Incidentally, the project for construction of the road up to the site on Canouan is being implemented through a loan from the Caribbean Development Bank and is scheduled for completion in October 1996.

