#### 2-6 Development Plan in the Bulutkan District

# 2-6-1 Basic concept for development

1) Locations

The Bulutkan district is located some six kilometers away from the Sautbay tungsten deposit and 23km from the Kokpatas gold mine. 30km to the west of the Bulutkan deposit, there is the Uchkuduk No.3 ore-dressing plant which is treating the Kokpatas ore. The Kokpatas mine and the No.3 plant are linked by rail. (Fig.II-2-6-1)

#### 2) Ore reserves to be mined

Based on the findings of surveys up to Phase III, it has been known that the gold deposit in the Bulutkan district extends over about 1,200m in strike, but the orebodies are scattered about and none of them is large in size. The Phase-III tentative calculation worked out at 275,000t of ore reserves, grading 13.1 g/t Au and 6.5 g/t Ag, of the nine ore blocks. All these ore blocks are located near the surface, allowing open-pit mining, but not in a large scale. In this mining plan, two orebodies are selected for open-pit mining, the ore reserves of which is 115,000t, grading 11.1 g/t Au, while the minable ore is 115,000t, grading 10 g/t Au as discussed later. While the ore grade is relatively high, the ore reserves are very small.

#### 3) Development policy

Since the minable ore reserves are as small as 115,000t, it is difficult to develop the orebodies as an independent mine. Instead, it is planned to develop them as a sub-mine of the nearby Kokpatas gold mine currently operating at a rate of 10,000tpd of crude ore, and to send the ore to the Uchkuduk No.3 plant for beneficiation.

If 115,000t of ore is to be mined over several years, accumulated maintenance and administration costs put a strain on the project income; therefore, the mining operation shoud desirably be finished in a short period. Thus, it is planned to mine out the orebodies in one year, at the operation rate of 450tpd and 260 operating days per year as in the case of the Kokpatas mine. The ore is assumed to be hauled by 45-t trucks to the Kokpatas mine, from where to the Uchkuduk No.3 plant by the existing railroad, as in the case of the kokpatas ore.

#### 4) Initial investment

(1) Infrastructure facilities, etc.

Planning is made on the assumptions that the Kokpatas mine serves as the base and the initial investment is to be minimized. A 23-km road is constructed for the ore haulage

#### to the Kokpatas mine

A temporary transmission line(10,000V, 600kW) only for the lighting and office use is extended from Sautbay. Potable water is conveyed by a tank truck.

|                                  | (10 <sup>3</sup> sum/km | )<br>)       |         |   |      | •  | (10 <sup>3</sup> sum) |
|----------------------------------|-------------------------|--------------|---------|---|------|----|-----------------------|
| ① Roads                          | 12,600                  | $\mathbf{x}$ | 0.7*    | × | 23km | =  | 202,860               |
| ② Temporary transmission line    | 1,500                   | x            | 0.7*    | x | 6km  | =  | 6,300                 |
| ③ Temporary office               |                         |              | :<br>   |   |      |    | 4,840                 |
| ④ Environmental preservation     |                         | 1]+[2        | ]+[3])_ | X | 0,15 | _= | 32,100                |
| Total - Infrastructure cost, etc | 2.(10 <sup>3</sup> sum) |              |         |   |      |    | 246,100               |
| Note: * 70% of normal cos        | st.                     |              |         |   |      |    |                       |

(2) Mining machinery

In case the orebodies are developed in reality, the necessary mining machinery would be procured either by utilization of surplus mining machinery of the kokpatas mine, or by purchasing of new machinery, which, after completion of the mining operation, could be used at the Kokpatas mine. In the tentative calculation, however, 40% of purchase prices of the mining machinery is appropriated for the lease rentals, on an assumed depreciation period of 3 years.

|                                | the general term               | (10 <sup>3</sup> \$) |            |     |     | (103\$) |    |
|--------------------------------|--------------------------------|----------------------|------------|-----|-----|---------|----|
| ① Drilling machine             |                                |                      |            |     |     |         |    |
| (Tamrock DHA 1000S, drilling   | g dia. 89-152mm)               | 500                  | х          | 1   | =   | 500     |    |
| ② Loader(Caterpillar CAT990, b | ucket cap. 8.6m <sup>3</sup> ) | 1,011                | x          | 1   | =   | 1,011   | 41 |
| 3 Truck(Ditto, but CAT 773B, b | oading cap. 45t)               | 654                  | <b>x</b> . | 3   | . = | 1,962   |    |
| ④ Buldozer(Ditto, but CAT D7H  | l, 230hp)                      | 372                  | х          | 1   | =   | 372     |    |
| 6 Grader                       |                                | 356                  | x          | 1 - |     | 356     | 1  |
| ⑥ Tank truck                   |                                | 120                  | X          | 2   | =   | 240     |    |
| 7 Pickup                       |                                | 30                   | x          | 6   | =   | 180     | -  |
| Total - Mining machinery cost  | (10 <sup>3</sup> \$)           |                      |            |     |     | 4,621   |    |
| 4,621,000\$ x 0.4 x            | 50 suni/\$* = 92,              | 420,000 su           | m          |     |     |         |    |

Note: Exchange rate 1\$ = 50 sum

(3) Ore beneficiation equipment

As ore is assumed to be treated on a toll basis by the No.3 ore-dressing plant at Uchkuduk, no new investment is contemplated.

(4) Initial investment costs summary

|                        | (10 <sup>3</sup> sum) | (sum/t) |
|------------------------|-----------------------|---------|
| ① Infrastructure, etc. | 246,100               | (2,140) |

| ② Mining machinery               | 92,420  | (804)   |
|----------------------------------|---------|---------|
| Total - Initial investment costs | 338,520 | (2,944) |

#### 2-6-2 Minable crude ore and stripping ratio

1) Minable ore

1

The ore blocks 1(1), and portions of the blocks1(2) and 6 are selected for the mining operation. The mining recovery is assumed to be 90% while the dilution to be10%. The block 1(1) is to be mined at its entirety, while the 1(2) is mined up to 22m from its top. (Fig.II-2-6-2) On these assumptions, the ore reserves are calculated at 94,000t, grading 7.1 g/t Au.

- Minable crude ore:  $94,000t \ge 0.9 / (1 - 0.1) = 94,000t$ 

- Minable ore grade:  $94,000t \ge 7.1 g/t \ge 0.9 / 94,000t = 6.4 g/t$ 

The block 6 is to be mined up to 30m from the surface; the ore reserves come to 21,000t, grading 29.0 g/t Au.

- Minable crude ore:  $21,000t \ge 0.9 / (1 - 0.1) = 21,000t$ 

- Minable ore grade: 21,000t x 29.0 g/t x 0.9 / 21,000t = 26.1 g/t

The total minable crude ore adds up to 115,000t, grading 10.0 g/t.

2) Stripping volume

On the assumption that 45t dump trucks, 5.08m wide, are used, and that the bench width, the bench height and the angle of slope face are 7.5m, 10m and 70°, respectively, the pit slope comes to  $42^{\circ}$ . The ore deposit area of the bottom face, the thickness and the area of the top face(the surface) of the block 1(2) are  $192m^2$ , 50m and  $12,600m^2$ , respectively, while those of the block 6 are  $246m^2$ , 30m and  $8,816m^2$ , respectively.(Fig. II-2-6-1) The inner volumes of the pits are as follows:

- Block 1(1) and 1(2): {  $192 + 12,600 + (192 \times 12,600)1/2$  } /  $3 \times 50 = 239,123m^3$ - Block 6: {  $246 + 8,186 + (246 \times 8,186)1/2$  } /  $3 \times 30 = 98,511m^3$ Total volume  $338,634m^3$ 

The total volume comes to approximately 338,000m<sup>3</sup>, of which some 40,000m<sup>3</sup> represents the ore portion. Therefore,

- Stripping volume: 338,000m<sup>3</sup> - 40,000m<sup>3</sup> = 298,000m<sup>3</sup>

- Stripping ratio:s:

Block 1(1) and (2):  $(239,123m^3 - 94,000t / 2.9t/m^3) / (94,000t / 2.9t/m^3) = 6.4$ Block 6:  $(98,511m^3 - 21,000t / 2.9t/m^3) / (21,000t / 2.9t/m^3) = 12.6$ 

Total stripping ratio : 298,000m<sup>3</sup> / 40,000m<sup>3</sup> = 7.5

### 2-6-3 Operating Costs

# 1) Mining costs

# (1) Labor cost

The mining operation is assumed to be carried out for 260 days a year on a threeshift basis(eight hours per shift including one-hour rest), to mine out 115,000t of ore in a year. The production rate is 450tpd. The personnel arrangement is shown in Table II-2-6-1.

|                                                | · .            | (       | 10 <sup>3</sup> sum) |
|------------------------------------------------|----------------|---------|----------------------|
| - Engineers : 9p x 10,000 sum/p/m              | o x 12 mos     | . =     | 1,080 a              |
| + Operators : 51p x 8,000 sum/p/m              | o x 12 mos     | ==      | 4,896 b              |
| - Fringe benefit: $(a+b) \times 0.3$           | 8              | =       | 2,271                |
| - Extra pay for mine labor: $(a+b) \times 0$ . | 1              | =       | 598                  |
| Total - Labor cost(10 <sup>3</sup> sum)        |                |         | 8,845                |
|                                                |                | =       | 77 sum/t             |
| (2) Explosives cost                            | 50             | ·       |                      |
| (3) Rock tools cost                            | 23             |         |                      |
| (4) Fuel and lubricant cost                    | 244            |         |                      |
| (5) Tires cost                                 | -36            |         | 11.1                 |
| (6) Electric power cost                        | 1              |         |                      |
| (7) Repair cost                                | 172            |         |                      |
| (8) Ore haulage cost                           | 51             |         |                      |
| (9) Administration cost (10% of the above tota | u <u>l) 65</u> |         |                      |
| Total - Mining costs                           | 719 sum/t      |         | a station            |
| Note: For calculation of the items (2)         | thru (8), refe | r to Ap | pendix 5             |

Ĵ

ŝ

|             | Table II-2 | -6-1 Perso     | miel Requi | rement |                           |
|-------------|------------|----------------|------------|--------|---------------------------|
|             | 1st shift  | 2nd shift      | 3rd shift  | Total  | Adjusted number           |
| Manager     | 1          |                |            | 1      |                           |
| Mining eng. | 1          |                |            | 1      |                           |
| Geologist   | 1          |                |            | 1      | [                         |
| Mechanic    | 1          |                |            | 1      |                           |
| Foreman     | 1 .        | 1 <b>1</b> - 4 | 1          | -3     |                           |
| Staff       | 5          | 1              | 1          | 7(9)   | 7×1.24*=8.7               |
| Driller     | 1          | 1              | 1          | 3      |                           |
| Blaster     | 2          |                |            | 3<br>2 | · · ·                     |
| Mucker      | 1          | 1              | 1          | 3      |                           |
| Trucker     | 3          | 3              | 3          | 9      |                           |
| Bulldozer   | 1          | 1              | :1         | 3      | 1                         |
| Grader      | 1          | 1              | 1          | 3      |                           |
| Repair man  | 2          | 2              | 2          | - 6    |                           |
| Driver      | 2          | 2              | 2          | -6     | Fuel 1, Water 1           |
| Guard       | 1          | 1              | 1          | 3      |                           |
| Clerk       | 3          | l<br>1         |            | 3      | Nurse 1                   |
| Worker      | 17         | 12             | 12         | 41(51) | $41 \times 1.24^* = 50.9$ |
| Total       | 22         | 13             | 13         | 48(60) |                           |

\*1.24, Coefficient: Days operated 260, Vacation 50, Actual working days 210 260÷210=1.24

| 2) Toll-processing costs   |                     |           |
|----------------------------|---------------------|-----------|
| (1) Labor cost             |                     | 50 sum/t  |
| (2) Materials cost         |                     | 435       |
| (3) Electric power cost    |                     | 90        |
| (4) Repair cost            |                     | 190       |
| (5) Administration cost(10 | )% of the above tot | al) 77    |
| Total - Toll-proc          | cessing cost        | 842 sum/t |

2-6-4 Conclusive summary and consideration

1) Revenues

)

(1) Assumptions for calculation

Calculation is made on the assumptions of the minable ore grade at 10.0 g/t Au, the gold price at 360\$/tr-oz, and the total recovery of ore beneficiation at 80%\*. Revenues from by-produced silver are not considered.

Note: \* While the ore beneficiation process and recovery of the No.3 Plant are unknown, rates of recovery in general are as follows:

Flotation: flotation recovery 95% x cyanidation recovery for concentrate 85% = 81% Gravity separation: Concentrate 10% + tailing 90% x cyanidation recovery for tailing

#### 85% = 87%

In this calculation, the recovery in the sales terms is assumed to be 99% and the flotation recovery is applied; therefore, the total recovery is:  $81\% \times 99\% = 80\%$ 

#### (2) Revenues per ton:

10.0 g/t x 0.8 x 360\$/tr-oz / 31.1g/tr-oz x 50 sum/\$= 4,630 sum/t

#### 2) Expenditures

(1) Assumptions for calculation

The initial investment is devided by the minable crude ore, to obtain the investment amount per ton. Depreciation is not considered. No interest on borrowings of development and operation funds is considered, nor reserves for mine closure.

(2) Expenditures per ton of crude ore

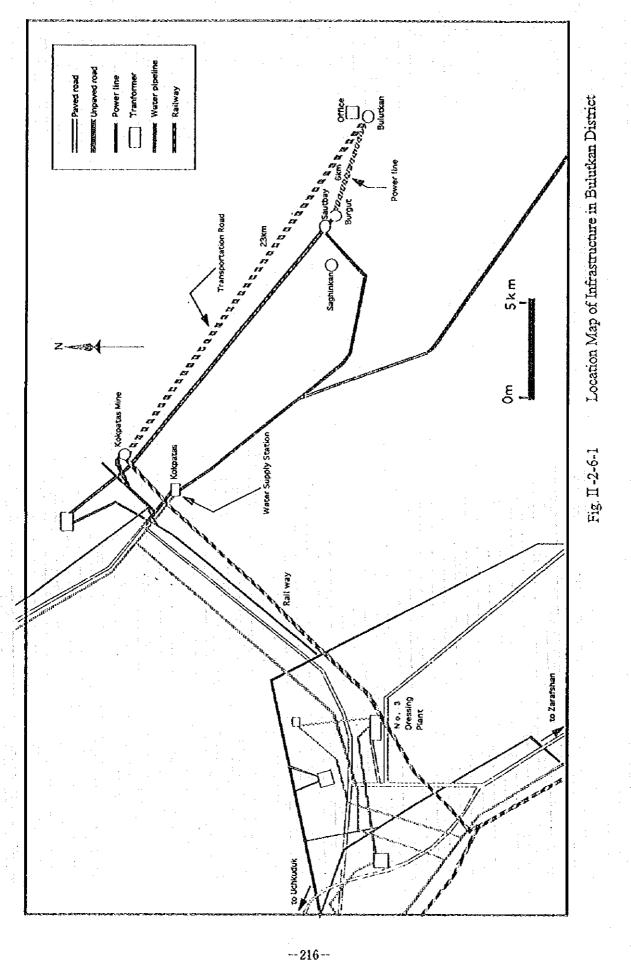
|                            |        | <u>(sum/t)</u> |
|----------------------------|--------|----------------|
| - Initial investment costs |        |                |
| Infrastructure, etc.       | •<br>• | 2,140          |
| Mining machinery           |        | 804            |
| - Mining                   |        | 719            |
| - Toll-ore processing      |        | 842            |
| Total costs (sum/t)        |        | 4,505          |

| 3) Operating income (sum/t)     |        |
|---------------------------------|--------|
| - Revenues per ton of crude ore | 4,630  |
| - Less: Expenditures            | -4,505 |
| Operating income (sum/t)        | 125    |

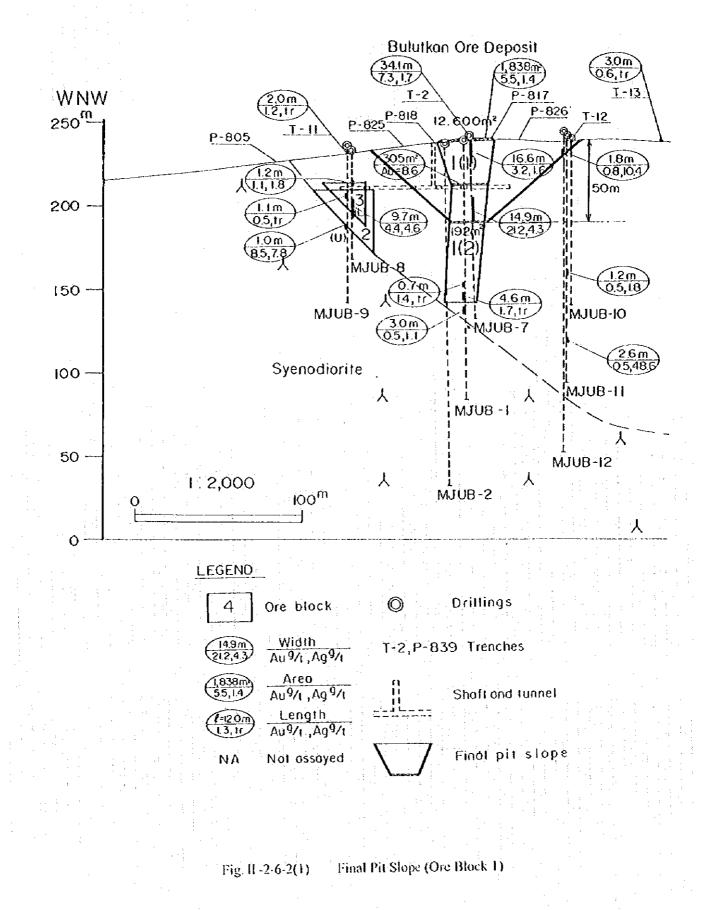
- Total operating income: 125 sum/t x115,000t =14,375,000 sum

#### 4) Feasibility for development

The overall ore reserves of the Bulutkan district is 275,000t, grading 13.1 g/t, which is insufficient for the mine to be developed in a large scale. However, if only the near-surface and wide orebodies(the block 1(1), and parts of the blocks 1(2) and 6) are selected so that 115,000t of minable crude ore, grading 10.0 g/t Au is mined, it would generate the operating income of 125 sum per ton of crude ore, or nearly 15,000,000 sum in total.


Likewise, certain feasibility is conceivable for partial development of the other orebodies scattered around in the district. However, it is not realistic to newly organize an independent mine to be mined out in a year. In order for such orebodies to be actually developed, they should be placed under control and administration of the Kokpatas gold mine as its subsidiary mine.

)


)

0

-215-







m0.8 31.0,NA 5.0m 13,NA 10m Q5,1r WNW <u>1-50</u> P-822 250<sup>m</sup> P+834 <u>1-5</u> P-835 T-24 <u>T-19</u> 8.186m T-21 T-23 (L) 0 30 m 3.0m 200 -Jate-246m 5 (U) 0.7m 60,239 <u>(L)</u> 511 7 ±(L) 150 -MJUB-17 Y 100 -Syenodiorite MJUB-3 Y Y MJU8-18 Y - 人 50 -1:2,000 Y 100<sup>m</sup> 0 LEGEND Drillings  $\bigcirc$ 4 Ore block Width Au 9/1, Ag 9/1 (14.9m (21.2,4.3 T-2, P-839 Trenches Area Au<sup>9</sup>/1, Ag<sup>9</sup>/1 1,838n) 55,14 Shaft and tunnel

NA Not assayed Final pit stope

Fig. II -2-6-2(2) Final Pit Slope (Ore Block 6)

# PART III CONCLUSIONS AND RECOMMENDATIONS

)

### Chapter 1 Conclusions

#### 1-1 Sautbay District

(1) Geology and ore deposits

The Karashakh Forniation and the Kokpatas Formation, both pertaining to the Proterozoic, occur in the Sautbay district. The Karashakh Formation is composed of green rocks and schists of volcanic origin accompanied by quartzite, dolomite and limestone. Its thickness exceeds 1,000m. Stocks and dikes of the Late Carboniferous ~ Early Permian granodiorite, aplite, diorite, lamprophyre, etc. intrude into the Proterozoic.

The major type of the ore deposit is the tungsten-bearing skarn deposit controlled by granodiorite, as represented by the Sautbay deposit which is the main ore deposit in the district, as well as the nearby Burgut and Saghinkan deposits.

The horizon including carbonate rocks which controls occurrence of ore corresponds mainly to the upper part of the Karashakh Formation and the lower part of the Kokpatas Formation. The thickness of mineralization reaches about 500m on a vertical section.

#### (2) Results of ore reserves estimation

Ore reserves of the Sautbay, Burgut and Saghinkan deposits were estimated on the basis of the data recollected during Phases II and III, for revaluation of these ore deposits.

The Phase III estimation of ore reserves of Sautbay and Burgut deposits worked out at approx. 15,195,000t, grading 0.29% WO3 and 0.23 g/t Au, at a cutoff grade of 0.05% WO3, making considerable differences in ore reserves and grade, as compared to the Uzbek estimation(1993) of 39,539,000t, 0.43% WO3 and 0.34 g/t Au. The discrepancy in ore reserves is attributable to the difference in the area of calculation. Discrepancy is very little in the densely drilled upper portion, in contrast to the sparsely drilled lower portion where wide discrepancy has taken place. The discrepancy in the average grade is explicable by the fact that, in the Uzbek calculation of the inferred ore reserves(P1), the highest grade of drillholes intersecting an ore block was extracted and adopted as the grade of the ore block. Consequently, the overall average grade was uplifted.

The Saghinkan ore reserves at a cutoff grade of 0.05% came out at approx. 10,062,000t, grading 0.24% WO3 and 0.02 g/t Au. In case of a cutoff grade at 0.1%, the figures are approx. 8,133,000t and 0.28% WO3 showing declines in ore reserves and grade, as compared to the Uzbek estimation(1994) of 12,710,000t and 0.32% WO3.

These differences are considered to be ascribable to the same causes as in the mentioned cases of the Sautbay and Burgut deposits.

The WO3 grades of these ore deposits are substantially lower than those of skarntype tungsten mines operating since 1980 in the Western countries including USA, Canada, Australia and Korea, which are 0.5% and up in case of open-pit operation while 1.0% and up in case of underground operation.

### (3) Study on development of the ore deposits

Feasibility for development of the Sautbay, Burgut and Saghinkan deposits was studied. Since separate development of these ore deposits is difficult due to the small minable crude ore reserves and low grades, the mining plan of more than one deposit, combined, was pursued. Operation is optimized by combining 700-tpd openpitting of the portions over +100m(above sea level) of the Sautbay deposit and 800-tpd underground mining of the Burgut deposit.

The feasibility study however revealed that even the optimized operation would leave accumulated deficits of 30 million sum(600,000\$) as against the initial investment of about 2 billion sum(40 million\$). The estimation was based on the assumptions that the entire investment is catered for by own funds while no escalation of labor and materials expenses nor costs for equipment replacement, mine closure and taxes are considered. Due to the lack of profitability even under such exceptionally favorbale conditions, development of the tungsten deposits in the Sautbay district is considered economically unfeasible, under the current levels of ore reserves, grade and WO3 price.

#### 1-2 Bulutkan District

(1) Geology and ore deposits

The Kokpatas Formation of the Proterozoic occurs in the district. The Formation is composed of slate and sandstone accompanied by quartzite, chert lense, limestone and dolomite, and its thickness exceeds 1,000m. Stocks and dikes of the Late Carboniferous ~ Early Permian sympodiorite, diorite, granite, porphyrite, lamprophyre, etc. intrude into the Formation.

The faults dominant in this district are with the NW-SE  $\sim$  E-W and NNW-SSE trends.

Ore deposits in the Bulutkan district consist of gold-bearing quartz, silicified veins and skarn orebodies. The known ore deposit in this district is the Bulutkan deposit.

(2) Outline of the Bulutkan deposit

According to results of the exploration conducted independently by the Uzbekistan at the +210m-level tunnel, the bonanza of the Bulutkan deposit occurs at intersections of the faults with WNW-ESE, NW-SE and ENE-WSW trends and the horizon including carbonate rocks.

The orebody is presumed to take the shape of a polygonal pyramid or pipe(width 20-35m; depth about 100m) with a broad upper face(the surface portion), upright or

inclined sharply northwestward. The upper portion of the orebody is composed of silicified rocks accompanied by ferrous oxide, fine-grained quartz veins and chalcedony while the lower portion comprises skarn orebodies accompanied by sulfide veins, which is also accompanied by gold mineralization. Component minerals of the silicified rocks in the upper portion are mainly quartz, chalcedony, calcite, siderite and geothite accompanied by pyrrhotite and gypsum. Those of the skarns in the lower portion are amphibole-pyroxene skarns composed mainly of tremolite, actinolite, chlorite, pyrite, marcasite, goethite, pyrrhotite, arsenopyrite and chalcopyrite, as well as wollastonite, scheelite, epidote and grossular in small quantities.

According to the Uzbek mineralogical study, native gold occurs in quartz veins, calcite veins, and siderite veins, associated with graphite. Native gold is occasionally associated with sulfide minerals in amphibole-pyroxene skarns but not recognized in sulfide minerals. The gold grains take the oval, fine vein, porphrytic and polymorphic forms, while the grain sizes are 0.003mm or less  $\sim 0.1$ mm.

#### (3) Trenching survey results

Portions with Au grade of 1g/t or higher were found at three portions of the following trenches: T-11(80.0-82.0m; 1.2 g/t), T-28(36.0-37.0m; 3.8 g/t) and T-29(52.0-64.0m; 1.3 g/t). At the trenches T-13 and T-18, low-grade but relatively continuous gold mineralization was observed. Many silicified and oxide zones were confirmed by trenching but few of them showed high grade of Au.

#### (4) Drilling survey results

(:)

Gold mineralization was observed at the two drillholes aimed at the west extension of the Bulutkan deposit: MJUB-8(depths18.1-19.3m: true width 0.5m; 1.1g/t Au and 27.7-37.4m:4.9m; 4.4 g/t) and MJUB-9 (47.0-48.0m:0.5m; 8.5 g/t).

Au grades of 1g/t or more were also confirmed at MJUB-13(39.5-41.5m: 1.1m; 11.9 g/t), MJUB-17(23.4-26.4m:2.0m, 1.3 g/t) and MJUB-18(69.0-69.5m: 0.5m; 9.8 g/t). However, these orebodies are presumed to be poor in continuity and small in size(extension 50-150m; depth up to 100m), in the light of the trenching and drilling survey results.

#### (5) Geophysical survey results

The geophysical survey by the TEM method clarified the resistivity structure up to some 200m under the surface or 0m above the sea level. At the zone where syenodiorite occurs in the south of the survey area, the resistivity ranged from the medium to the very high. At the zone where Proterozoic occurs along the northern periphery of the syenodiorite body in the central part of the survey area, the high ~ very high-resistivity zones, apparently inclined northward, are intermittently distributed. Most of the major mineral showings confirmed in the district by the trenching and drilling surveys have been found in these high-resistivity zones. The high resistivity zones correspond mainly to zones where diorite dikes, silicified rocks, quartizte and quartz veins are densely concentrated, and also to zones of silicified and skarnized metasomatites.

To the north of the high-resistivity zones, low-resistivity zones spread. The thickness of the low-resistivity zone tends to increase northward, and, in this district, stratiform distribution of resistivity is observed. The low-resistivity zones correspond to zones where limestone and slate occur. The resistivity distribution in the horizontal direction shows a block-like distribution controlled in the trends of WNW-ESE and NNE-SSW, similar to those of faults dominant in the survey area.

(6) Results of measurement of the homogenization temperature of fluid inclusions

The homogenization temperatures of fluid inclusions in quartz veins and calcite veins range from 100°C to 360°C. Samples measured by calcite show a range of 102°C-167°C while those measured by quartz show 101°C-362°C. Samples taken from skarns fall within a range of 250°C-350°C, while samples with gold mineralization was generally around 200°C ranging from 100°C to 250°C. These results are concordant with the conclusion of the Phase II survey that high-temperature skarnization (homogenization temperature: 250°C-350°C) was followed by gold mineralization under lower temperature(150°C-250°C).

The process of formation of the Bulutkan deposit can be interpreted as follows:

① By the intrusion of the syenodiorite stock, amphibole-pyroxene skarns which have paragenetic mineral compositions of chalcopyrite-pyrrhotite and pyrite-arsenopyrite in the horizon including carbonate rocks of the Kokpatas Formation were formed.

② Afterwards, gold-silver mineralization accompanying quartz veins, siderite veins and calcite veins was added.

(7) Results of ore reserves calculation

A tentative calculation on the ore portion ascertained by the trenching and drilling surveys and also by the tunneling prospecting by the Uzbek side indicated the ore reserves of 275,000t, grading 13.1g/t Au(3.6t of Au content), which is small for a gold deposit in Uzbekistan.

(8) Study on development of the ore deposit

In the Bulutkan district, large-scale development is unapplicable due to the small ore reserves, while small-scale open-pit mining is applicable to near-surface orebodies with wide veins. Feasibility for development of two selected ore blocks including the Bulutkan deposit was studied on the assumptions that initial investment is to be minimized and that the ore is to be hauled to the Kokpatas gold mine by 45-t trucks and to the Uchkuduk No.3 ore-dressing plant by rail, for processing. A tentative calculation indicated that, if 115,000t of minable crude ore, grading 10.0 g/t Au, is mined out within one year, operating income of approx. 15 million sum(300,000\$) would be gained. As it is not realistic to newly organize an independent mine only for the one-year operation, the ore blocks would have to be placed under the control and administration of the Kokpatas gold mine as its subsidiary mine if the ore blocks are to be developed in reality.

-223-

)

1)

)

#### Chapter 2 Recommendations

#### 1) Sautbay district

The ore reserves of the Saubay, Burgut and Saghinkan deposits were estimated at a cutoff grade of 0.05% WO<sub>3</sub>. The Saubay-Burgut ore reserves are approx. 15,195,000t, averaging 0.29% WO<sub>3</sub> and 0.23 g/t Au, while the Saghinkan reserves are approx. 10,062,000t, averaging 0.24% WO<sub>3</sub> and 0.02 g/t Au.

Based on the estimates, feasibility for development of these deposits was studied, which however led to the negative conclusion that mine development in this district is economically unfeasible under the current levels of ore reserves, grade and WO3 price, since the operations generate losses even on the most favorable assumptions. A certain increase in ore reserves by further exploration may be anticipated but a significant improvement in WO3 grade is unlikely.

Under such circumstances, it is advisable to suspend exploration in this district and to reserve the district as a potential supply source of tungsten resources for the future.

#### 2) Bulutkan district

The gold deposits in this district are scattered along the strike of the extension over 1,200m in the Proterozoic close to the northern periphery of the syenodiorite stock.

The Phase III estimation of the total ore reserves of eight ore blocks indicated approx. 275,000t, grading 13.1g/t Au and 6.5 g/t Ag. Two of the ore blocks, including the Bulutkan deposit, were extracted for the tentative feasibility study for open pit operation. The study indicates that if 115,000t of minable crude ore, grading 10.0 g/t, is mined out within a period of one year, it would generate operating income of 125 sum(2.50\$) per ton of crude ore. It is necessary to study how to deal with the ore deposit in the future.

There remains certain possibility for discovery of small ore deposits of a Bulutkanclass, to the north of the syenodiorite stock in the area east of the trench T-6, where the Phase II trenching and geophysical surveys were conducted. It is recommendable to carry out further trenching, geophysical and drilling surveys in the area, in order to ascertain mineralization in the area. Since bonanzas in this district occur at intersections of the faults with WNW-ESE trends, groups of fissures intersecting the faults and also the horizon of carbonate rocks, it is recommended, for successful exploration, to make detailed studies on the structures of the horizon of carbonate rocks and of the faults intersecting the horizon.

|            | : · · ·                                         |               |       |         |         |            |                       | й.<br>С      |
|------------|-------------------------------------------------|---------------|-------|---------|---------|------------|-----------------------|--------------|
| •          |                                                 | i.            |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
| · .        |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         | . · · · |            |                       | -            |
|            |                                                 |               | . • . |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               | i     |         |         |            |                       |              |
|            |                                                 | . •           |       |         |         |            |                       |              |
|            | :<br>                                           |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       | :            |
|            |                                                 |               |       | ·       |         |            |                       | •            |
|            |                                                 |               |       |         |         |            |                       |              |
|            | n getan de la stra<br>November 1995 - De la ser |               |       |         | 1 A .   |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       | - 11 11 |         |            |                       |              |
|            |                                                 | · · ·         |       |         |         | tiki ali i |                       |              |
|            |                                                 |               |       |         |         | · · ·      |                       |              |
|            |                                                 |               |       |         | · · ·   |            |                       |              |
|            |                                                 |               |       |         |         | : •        | · · ·                 |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 | . : : .       |       |         |         |            |                       | e de la dela |
|            |                                                 |               |       |         |         |            |                       | . :<br>.*    |
|            |                                                 |               |       |         |         |            | · · ·                 |              |
|            |                                                 |               |       |         |         |            | n fin<br>1997 - Angel |              |
| t da ser t |                                                 |               |       |         |         |            |                       |              |
| ,          |                                                 |               |       |         |         |            |                       |              |
| · · ·      |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            | · . ·                                           | · . ·         |       | : :     |         | - · · ·    |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 | ·             |       | · · · · | е .     |            |                       |              |
|            |                                                 | the second as | 4     |         |         | · ·        |                       |              |
|            |                                                 |               |       |         | : ·     |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
| · .        |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |
|            |                                                 |               |       |         |         |            |                       |              |

· · · ·



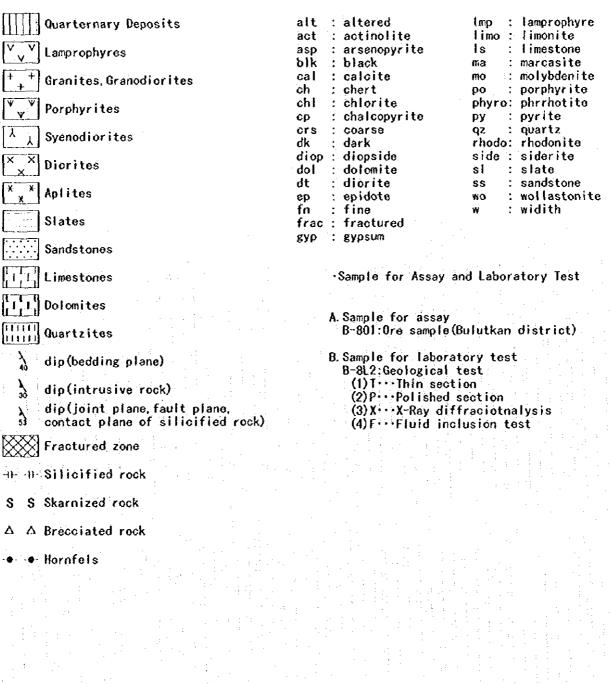
#### Collected Data

- 1. Ahniedov H.A. (1994): Project(draft) on search for gold and other useful minerals in the Bulutkan Area in 1994-1998
- 2. Allakhverdov O.L., Azin, V.M.(1992): Pre-Feasibility note on commercial significance and expediency of prospecting of Sautbay tungsten deposit (underground), vol. 1, text and textual attachments, pp. 114.
- Allakhverdov O.L.(1994): Thematical (topical) Party for working out conditions and evaluation of mineral resurces. Report on pre-feasibility study on industrial significance and expediency of preliminary exploration of Turbay gold deposit. Tashkent, pp. 111.
- Avezmetov H.R., Druchinina (1979): Geological report on results of prospecting activities on the Turbay gold field for 1977 - 1979, Kyzylkum Geol Prosp. Team, Murintau settlement, pp. 107 (only graphical attachment).
- 5. Cheshuin A.P.(1994): Complex physical-geological modelling for the purpose of prospecting and local forecasting of Turbay ore knot mineralization, pp.165.
- 6. Horsov A.A.(1991): To develop and introduce rational methodology of processing prospecting geophysical methods complex for local forecasting of mineralisation in the Kokpatas ore field area in 1987 1991, pp.234.
- Horsov A.A. (1992): Improvement of scientific methods and introduction of advanced technologies of geophysical research for purpose of prospecting and local forecasting of ore objects on the territory of Uzbekistan, pp. 152.
- 8. Horsov A.A. (1993): List of applied software for geologic-geophysical data processing on PC, pp. 10.
- 9. Horsov A.A. et al(1994): Evaluation of prospects and gold forecast resources in the Bukantau ore area on the basis of analysis of physical-geological models of ore objects, pp. 104.
- 10. Jastrebov A (1993): Reserves calculations in the contour of experiment-industrial pit on Sautbay tungsten deposit.
- 11. 国際鉱物資源開発協力協会(JMEC)(1994):平成5年度資源開発協力基礎調査プロジェク ト選定調査報告書 ウズベキスタン共和国, pp.177(in Japanese)
- 12. Kotunov A Ja (1977): Geological report on general gold and other mineral resources prospecting of Central Bukantau mountain range with identification of areas for detailed exploration on the basis of geological survey on the scale of 1:50,000 and complex of geological methods. Kyzilkum Prospecting Team, Muruntau Settlent, pp.235.
- 13. Mechtiev E.A., Radajev A.A.(1983): Report on detailed prospecting activities for gold and other mineral resources in north-eastern part of Okjetpes ore field and

prospecting-evaluating activities on the eastern continuiation of mineralized zone N1 for 1980-1983, pp.119.

- 14. M.E.G.E.I.(1992): Pre-Feasibility study on open pit development of upper levels of Sautbay tungsten ore deposit, vol. 1, text and textual attachments, pp. 69.
- Miroshnikov L.V., Aristov A S.(1982): Report on detailed exploration of Okjetpes silver deposit conducted for the period of 1979-1982, with reserves calculation from 01.09.1982, Kyzilkumgeologia. Kokpatas settlement, Kokpatas Geol. Prospecting Party, pp.409.
- 16. Radaeva T.P.(1994): Initial data for pre-feasibility study on Saghinkan deposit, Samarkandgeology, pp.70.
- 17. Rozenpheld, S.Sh., Orel, M.A.(1991): Technological tests of tungsten ore at Sautbay deposit, pp. 108.
- 18. Shaakov B.B., Prokudin M.E.(1983): Report on detailed prospecting activities for gold in the limits of Central Turbay Gold-bearing Structure on mineralizations as following: Karatau, Oguztau, Kayansai, Daikovoye, Centralnoie and On Ore Point Groups: Taraubay, Sautbay, Oguztan, Ayolim. Kyzilkum prospecting Team, pp.258.
- 19. Shaakov B.B., Prokudina M.E. (1990): Prospecting activities for tungsten in northwestern flank of the Sarytau deposit up to the the depth of 600m conducted for the period of 1988-1990: Kokpatas Geolprosp. Team, pp.381.
- 20. Tulegenov T.G.(1990): Petrophysical and geo-electronical research on Sautbay ore field, pp.55.
- 21. Yastrebov, B.E.(1993): Reserves calculation at the Sautbay tungsten deposit outlined with experimental-commercial open pit, vol. 1, text and textual attachments, pp. 102.
- 22. Zakinov P.E., Gershkovich E.M.(1975): Report on results of prospecting geologicgeophysical activities for gold and other mineral resources in the central parf of Bukantau mountains, 1972-1974, Samarkandgeology, pp.148.
- 23. Zakirov A.T., Halmurzaev N.H.(1973): Gold, tungsten and other minerals prospecting in the South Turbay area and prospecting evaluating activities in the central part of the Sautbay tungsten deposit for period of 1985 -1993.

-228-


# APPENDICES

Appendix 1

# 1 Geologic Core Logs of the Drillings

# <u>LEGEND</u>

Abbreviations



٨--1

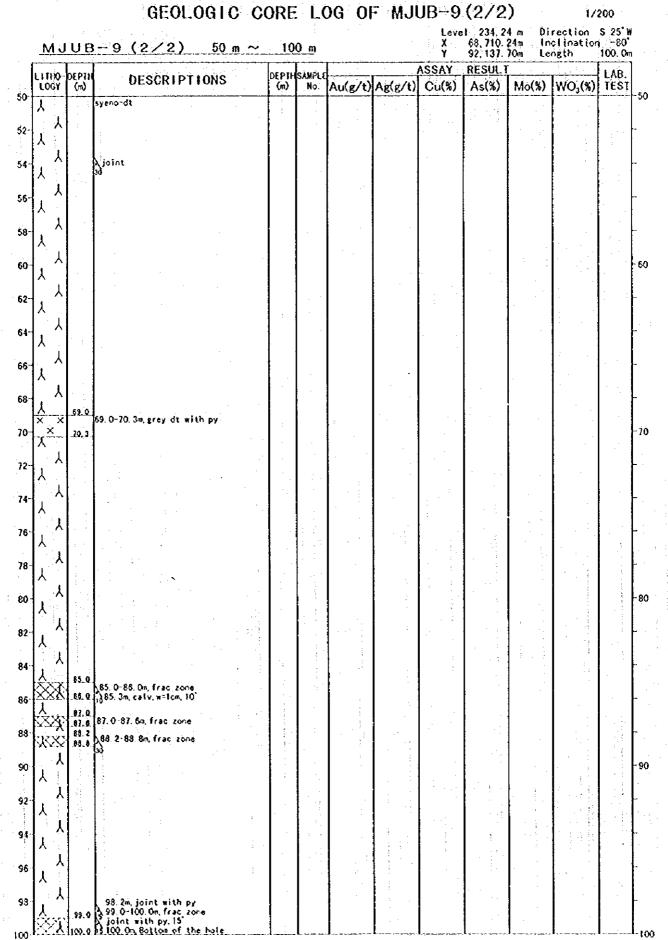
GEOLOGIC CORE LOG OF MJUB+8 (1/2)

1/200

| Y       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷      |                                       |                                       |                                                                                                                  | с л        | - •-•     |          |                     | Leve<br>X | 1 231.5           | /<br>1 m 0j<br>ntm 80 | rection S<br>clination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25°₩<br>-80° |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|---------------------|-----------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | MJ                                    |                                       |                                                                                                                  | 00         | <u></u>   | <b>.</b> |                     | Ŷ         | 92, 128,          | 40 m le               | ngth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | ;     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                       |                                       | DESCRIPTIONS                                                                                                     |            |           |          | r                   |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $ \begin{array}{c} 2 \\ 4 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-     | LOGY                                  | · · · · · · · · · · · · · · · · · · · |                                                                                                                  | <u>(m)</u> | No        | Au(g/t)  | Ag(g/t)             | Cu(%)     | A\$(%)            | Mo(%)                 | WO <sub>3</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEST         | -0    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      |                                       |                                       | 0-4.Om, sand with pebbles                                                                                        |            |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | -     |
| $ \begin{array}{c} \begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ź-     |                                       |                                       |                                                                                                                  | :          |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | -     |
| $ \begin{array}{c} \begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                       |                                       |                                                                                                                  |            |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-     |                                       |                                       | 4. U=7. UR, Strongty Restricted                                                                                  |            |           |          | •                   |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       | 1.90                                  |                                                                                                                  | 4.9        | <b> </b>  |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $ \begin{array}{c} 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 8 & + & + & \\ 12 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & 14.2 \\ 14 & - & - & 14.2 \\ 14 & - & - & 14.2 \\ 14 & - & - & - & 14.2 \\ 14 & - & - & - & 14.2 \\ 14 & - & - & - & - & 14.2 \\ 14 & - & - & - & - & - & - \\ 15 & - & & - & - & - & - \\ 15 & - & & & - & - & - & - \\ 16 & - & & & & - & - & - \\ 18 & - & & & - & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - \\ 18 & - & & & & - & - & - & - \\ 18 & - & & & & - & - & - & - \\ 18 & - & & & & - & - & - & - \\ 18 & - & & & & - & - & - & - \\ 18 & - & & & & - & - & - & - & - \\ 18 & - & & & & - & - & - & - & - \\ 18 & - & & & & - & - & - & - & - & - \\ 18 & - & & & & - & - & - & - & - & - & - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6-     |                                       |                                       |                                                                                                                  |            | B-801     | 0.1      | < 1                 | < 0.01    | < 0.01            | <b>&lt; 0</b> .01     | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                       | 1.00                                  | 7.0-9.0m, storagly weatherd silici.                                                                              | 7.0        | - <u></u> |          | •                   |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-     | 1.1.1.1.1.1.1.1                       |                                       | rock with cal v.& limo                                                                                           |            | 8-802     | 0.1      | <1                  | < 0.01    | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ŀ     |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :      |                                       | <b>8</b> -80                          |                                                                                                                  | 9.0        |           | <u>↓</u> |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $     \begin{array}{c}         12 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\         14 \\       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-    |                                       |                                       | rock(ss/) with gz verniets and limo                                                                              |            |           | 0.1      | < 1                 | < 0.01    | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -10   |
| $ \begin{array}{c} 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                       |                                       |                                                                                                                  | 11.0       |           | 201      | < 1                 | < 0.01    | < 0.01            | < 0.01                | 2 0 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $     \begin{array}{c}         14 - \frac{14}{2} - \frac{14}{2} - \frac{13}{2} - \frac{14}{2} - \frac{12}{2} - \frac{36}{2} - \frac{12}{2} - \frac{14}{2} - \frac{14}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12-    | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                                                  | 12.5       |           | <u> </u> |                     |           |                   | . 0.01                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ۳     |
| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14-    |                                       | 14 30                                 |                                                                                                                  |            | B-805     | < 0.1    | < 1                 | < 0.01    | 0.01              | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $16^{-1} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14     | ** \$ **                              | 1 1. 24                               | 14.2-19 3m grey-brownish grey silici                                                                             | 14.2       | B-806     | < 0.1    | < 1                 | < 0.01    | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16-    |                                       |                                       |                                                                                                                  |            | IR-ANI    | < 0.1    |                     | < 0.01    | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -     |
| $13 - \frac{1}{12} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     |                                       |                                       | 66<br>16 7-17 5m frac 2004                                                                                       |            | B-808     | < 0.1    | <1                  | < 0.01    | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18-    | * \$ *                                |                                       |                                                                                                                  |            |           | 0.1      | <1                  | 0.02      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ┡     |
| $ \begin{array}{c} 20 \\ + & 5 \\ + & 5 \\ 21 \\ + & 5 \\ + & 5 \\ 22 \\ + & 5 \\ + & 5 \\ 23 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ 24 \\ + & 5 \\ + & 5 \\ + & 5 \\ 32 \\ - & 5 \\ 24 \\ + & 5 \\ + & 5 \\ + & 5 \\ 32 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - & 5 \\ - &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                       | 19.30                                 |                                                                                                                  | 10.2       |           | 1.1      | 1.8                 | 0.03      | <b>&lt; 0.0</b> 1 | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $\begin{array}{c} 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 22^{2} \\ 1 \\ 22^{2} \\ 1 \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 22^{2} \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20-    | 5 5                                   |                                       | avorioant yy                                                                                                     | 19.0       | 8-8011    | < 0.1    | <1                  | 0.11      | 0.08              | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 20    |
| $ \begin{array}{c} 222 \\ 323 \\ 224 \\ 334 \\ 324 \\ 324 \\ 324 \\ 335 \\ 324 \\ 335 \\ 324 \\ 335 \\ 324 \\ 335 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | E                                     | 20.30                                 | 20.1-20.3m, py vein<br>20.3-34.6m, grey silici, and skarnized.                                                   |            | 18-8012   | < 0.1    | - <b>&lt;</b> 1     | 0.06      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | · .   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22-    |                                       | 22.60                                 |                                                                                                                  |            |           | < 0.1    | <1.                 | 0.02      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                       |                                       | 22. 6-23. 4m, py vein                                                                                            | 22.6       | 8-8014    | 0.1      | <1                  | 0.38      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $\begin{array}{c} 26 \\ + s + s \\ 26 \\ + s + s \\ 26 \\ + s + s \\ 28 \\ + s + s \\ 28 \\ + s + s \\ 30 \\ 38 \\ + s + s \\ 30 \\ 38 \\ + s + s \\ 30 \\ 31 \\ - s + s \\ 34 \\ + s + s \\ 34 \\ - s + s \\ - s + s \\ 34 \\ - s + s \\ - s + s \\ 34 \\ - s + s s + s + s \\ - s + s + s + s \\ - s + s + s + s \\ - s + s + s + s + s \\ - s + s + s + s + s \\ - s + s + s + s + s \\ - s + s + s + s + s + s \\ - s + s + s + s + s + s \\ - s + s + s + s + s + s + s \\ - s + s + s + s + s + s + s + s \\ - s + s + s + s + s + s + s + s \\ - s + s + s + s + s + s + s + s + s \\ - s + s + s + s + s + s + s + s + s + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24-    | -                                     | 24.50                                 | is skarnized metaso, with py :: :                                                                                |            |           | < 0.1    | < 1                 | 0.11      | < 0.01 :          | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B-812        |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                       |                                       | <b>V3</b> 0                                                                                                      | 24.7       | 8-8016    | < 0.1    | :<br>۲۱             | 0.03      | < 0.01            | 0.01                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Х.Р          |       |
| $\begin{array}{c} 28 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ + 8 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26-    |                                       | 26.10                                 |                                                                                                                  | 26.1       |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- |                                       | 31-38                                 | 27 3-27 7m ov vein                                                                                               | 27.7       | 8-8017    | < 0.1    | <1                  | 0.12      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| 30 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28-    | -                                     | ÷                                     |                                                                                                                  |            |           | 12       | 11.4                | 0.14      | < 0.01            | < 0.01                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-8L3<br>P   | 28.3  |
| $\begin{array}{c} + s + s + s + s + s + s + s + s + s + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20     | +- \$ +>                              | ÷                                     |                                                                                                                  |            | 8-8019    | 4        | 3.2                 | 0.1       | 0.02              | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -20   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 307    |                                       |                                       |                                                                                                                  | 30.0       | 8-8020    | < 0.1    | ×1                  | 0.05      | < 0.01            | 0.01                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -30   |
| $\begin{array}{c} 34 \\ + s \\ \frac{1}{s} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12-    |                                       | 32 10                                 |                                                                                                                  |            |           | 0.2      | < 1                 | 0.09      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8-814        |       |
| $ \begin{array}{c} 34 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                       | 32.50                                 | ),32,1-32,5m,qz vein<br>70                                                                                       | 32.1       | 8-8022    | 0.6      | 2.2                 | 0.03      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F            | 32.3  |
| $\begin{array}{c} 34.6 \\ 5 \\ 5 \\ 5 \\ 8 \\ 38.40 \\ 36.4 \\ 37.40 \\ 40 \\ 1 \\ 44 \\ 46 \\ 1 \\ 46 \\ 1 \\ 48 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34-    |                                       |                                       |                                                                                                                  | 335        |           | 0.3      | 21                  |           |                   | 0.01                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 815        | 34. Z |
| $\begin{array}{c} 36 \\ s \\ \times \\ \times \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 \\ 31.40 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 5 S                                   | 34.60                                 | 34.6-36.4m, skarn with py, ma                                                                                    |            | 1         | 1        |                     |           |                   |                       | fairing and the second | F            | 1     |
| $37.4 \xrightarrow{37.4} 37.4 \xrightarrow{37.4} 37.$ | 36-    | \$ <u>\$</u>                          |                                       | and the second |            |           |          |                     | •         |                   |                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ┝     |
| $ \frac{38}{40} + \frac{1}{100} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                       | 37.40                                 | CL WITH DY IDA                                                                                                   | •          | B-8026    | 2.8      | 1.6                 | 0.02      | < 0.01            | < 0.01                | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| $   \begin{array}{c}     40 \\     42 \\     44 \\     46 \\     46 \\     48 \\     48 \\     48 \\     4   \end{array}   \begin{array}{c}     3 \\     3 \\     3 \\     3 \\     3 \\     3 \\     3 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\      40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\     40 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38-    | 1                                     |                                       | 37. 4-100, 00, pinkish grey syeno-dt                                                                             | 97.9<br>   |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ╞     |
| $\frac{42}{44} - \frac{1}{12} + \frac{16}{12} = \frac{10}{12} + \frac{10}{12} = \frac{10}{12} + \frac{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1                                     | <b>-</b>                              | A                                                                                                                |            |           |          |                     |           |                   |                       | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       |
| $44 - \lambda$ $46 - \lambda$ $46 - 80 - 47. 1m, qz vein$ $48 - \lambda$ $\lambda$ $46 - \lambda$ $46 - $                                                                                                                                                                                                                                                                                                                                                                                                | 40-    | λË                                    |                                       |                                                                                                                  |            |           |          |                     | ч         |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | -40   |
| $44 - \lambda$ $46 - \lambda$ $46 - 80 - 47. 1m, qz vein$ $48 - \lambda$ $\lambda$ $46 - \lambda$ $46 - $                                                                                                                                                                                                                                                                                                                                                                                                |        | ۲.                                    |                                       |                                                                                                                  | Í          |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
| $\begin{array}{c} 44 \\ 46 \\ 46 \\ 48 \\ 48 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42-    | X.                                    |                                       |                                                                                                                  |            |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ÷ ۲   |
| $\frac{3^{\circ}}{46} + \frac{1}{\sqrt{1 + \frac{1}{2}}} + \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ۲. I                                  |                                       |                                                                                                                  |            |           |          |                     |           | 1.3.26            | <b>}</b>              | L A NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1     |
| 48-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44-    | K -                                   |                                       | <b>1V</b>                                                                                                        |            |           |          |                     |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Ē     |
| 48-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | L Y                                   | · · .                                 |                                                                                                                  |            |           |          |                     | · .       |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46-    | <u>الم</u>                            | 46.80                                 | 46 9-47 to as                                                                                                    |            |           |          |                     |           | · · ·             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ľ.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.    |                                       | 70.10                                 | 10.0747. (M, QZ V¢(N)                                                                                            |            |           |          | · .                 |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45-    | ١× ٦                                  |                                       |                                                                                                                  |            |           |          | $\{e_i\}_{i=1}^{k}$ |           |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50-    | 7                                     |                                       |                                                                                                                  | · ·        |           | L        |                     | 1         | l                 |                       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 50    |

Δ--3

|                     | <b>1</b>               | -8 (2/2) 50 m~                        | 10           | r             | j       |         | ASSAY | 1 231, 5<br>68, 678,<br>92, 126,<br>RESUL1                                                                                     |       | ngth                | 100.0      |
|---------------------|------------------------|---------------------------------------|--------------|---------------|---------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|------------|
| , I THQ-<br>LOGY    | DEPTH<br>(m)           | DESCRIPTIONS                          | 0821H<br>(m) | SARPLE<br>No. | Au(g/t) | Ág(g/t) | Cu(%) | As(%)                                                                                                                          | Mo(%) | WO <sub>3</sub> (%) | LAB<br>TES |
| ٨                   |                        |                                       |              |               |         |         |       |                                                                                                                                | [     |                     |            |
| <u>,</u>            |                        |                                       | 1            |               | ļ       |         |       |                                                                                                                                |       |                     |            |
| А.<br>Т             |                        |                                       |              |               | 3       |         | :     |                                                                                                                                |       |                     |            |
| ۸<br>۱              |                        |                                       |              |               |         | · ·     |       |                                                                                                                                |       |                     | :          |
| x x                 | 55.20                  | 55.2-58.5m, greenish grey dt          |              |               |         |         |       |                                                                                                                                |       |                     |            |
| <u>, x</u>          | . 56, 50 <sup>40</sup> |                                       |              |               |         |         |       |                                                                                                                                |       |                     |            |
| ٦ J                 |                        |                                       |              | :             |         |         |       | · ·                                                                                                                            |       | Í                   |            |
| $Y_{\mathbb{F}}$    |                        |                                       |              |               |         |         |       | :                                                                                                                              |       |                     |            |
| 값                   |                        |                                       | ·            |               |         |         |       |                                                                                                                                |       |                     |            |
| Х ;<br>: 1          |                        |                                       |              |               |         |         |       |                                                                                                                                |       |                     |            |
| 人人                  |                        |                                       |              |               |         |         |       |                                                                                                                                | 1     |                     |            |
| ۲.                  |                        |                                       |              |               |         |         |       |                                                                                                                                |       |                     |            |
| ٨.                  |                        | jaint                                 |              |               |         |         |       |                                                                                                                                | · ·   |                     | :          |
| ٦, ۲                |                        |                                       |              |               |         |         |       |                                                                                                                                | [     |                     |            |
| λ.                  |                        |                                       |              |               |         |         |       |                                                                                                                                |       | L. L.               | •.         |
| λÂ                  |                        |                                       |              |               | l       |         |       |                                                                                                                                |       |                     |            |
| X                   |                        |                                       |              |               |         |         |       |                                                                                                                                |       |                     | · · · ·    |
| Y '                 |                        |                                       |              |               |         |         | ta an |                                                                                                                                |       |                     | :          |
| · A                 |                        |                                       |              | 1.1           |         |         |       |                                                                                                                                | +     |                     |            |
| ×<br>· J            |                        |                                       |              |               |         |         |       |                                                                                                                                | 1.7   |                     |            |
| Y                   | Í Í.                   |                                       |              |               |         |         |       |                                                                                                                                |       | н — <u>н</u> н      |            |
| įλ                  |                        |                                       |              |               |         | •       |       |                                                                                                                                |       | ÷                   |            |
| λ <sub>ε</sub><br>τ |                        |                                       |              |               |         |         |       |                                                                                                                                |       | <b> </b>            |            |
| ^ ۲                 |                        |                                       |              |               |         |         |       |                                                                                                                                |       |                     |            |
| ΞĴ,                 |                        | joint                                 |              |               |         |         |       |                                                                                                                                |       |                     |            |
| ΥĘ                  |                        |                                       |              |               |         |         |       |                                                                                                                                |       |                     | · · ·      |
| ¦.k                 |                        |                                       |              |               |         | · · ·   |       |                                                                                                                                |       |                     |            |
| ^ '                 |                        |                                       | Í            | [             |         |         |       |                                                                                                                                |       |                     |            |
| Y                   |                        |                                       |              |               |         |         |       |                                                                                                                                |       | :                   |            |
| ļλ                  |                        | · · · · · · · · · · · · · · · · · · · | 1            |               |         |         |       | на на селот<br>1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - |       |                     |            |
| ٨ <sub>i</sub>      |                        |                                       |              |               |         |         | · (   |                                                                                                                                |       |                     |            |
|                     |                        | ioint                                 |              |               |         |         |       | n an an<br>The second se     |       |                     |            |
| ٠.                  |                        |                                       | 1 · .        |               |         |         |       |                                                                                                                                |       |                     |            |
| Y                   |                        |                                       |              |               |         |         |       | 1                                                                                                                              |       |                     |            |
| <del>. t</del>      | 92.00                  |                                       | [            |               |         |         |       |                                                                                                                                | [     |                     | B-81.7     |
| λ                   | 94.00                  | 13.5m, frac zone with clay            |              | 4             |         |         | 4 A.  |                                                                                                                                |       |                     | T          |
| J S                 | Þ                      | sz, py vein, w≂0. 4cm                 |              |               |         |         |       |                                                                                                                                | 2     |                     | I -        |
| <br>                | 1                      |                                       |              | 1             |         |         |       |                                                                                                                                |       |                     |            |
| ॐ                   | 97.60                  | i. 3-97. 6m, frac. zone               |              |               |         | 1       |       |                                                                                                                                |       |                     | :          |
| 7                   |                        |                                       | 1            |               |         |         |       |                                                                                                                                |       |                     | ( · · .    |


# GEOLOGIC CORE LOG OF MJUB-8'(2/2)

1/200

# GEOLOGIC CORE LOG OF MJUB-9(1/2)

| ۰.                          | · .                | GEOLOGIC CO                                                                   | ORE          | . L(             | DG 01                    | - MJI              | JB9              | (1/2                                |                                                                                                                 | . 173                        | 200                     |      |
|-----------------------------|--------------------|-------------------------------------------------------------------------------|--------------|------------------|--------------------------|--------------------|------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------|
| MJ                          | UE                 | 1-9 (1/2) 0 m ~                                                               | 5            | <u>0 m</u>       | <br>:                    |                    | Levə<br>X<br>Y   | 1 234, 24<br>68, 710, 1<br>92, 137, | 24 m - In                                                                                                       | rection<br>clination<br>ngth | S25 W<br>-80<br>100, On |      |
| LITHO-                      | DEPTH<br>(m)       | DESCRIPTIONS                                                                  | DEPTH<br>(m) | SAMPLE<br>No.    |                          | Ag(g/t)            | ASSAY<br>Cu(%)   | RESULT<br>As(%)                     | Mo(%)                                                                                                           | ₩O₃(%)                       | LAB.<br>Test            |      |
| <u>۳</u>                    | 0.6                | 0-0.6m, sand with peobles<br>0.6-1.8m reddish brown silici.                   |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | -0   |
| 2-1                         | 118                |                                                                               |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | <br> |
| 4-                          |                    |                                                                               | •            | Ì                |                          |                    |                  |                                     |                                                                                                                 |                              |                         | -    |
|                             |                    | 4.5-7.8m,qz vein                                                              | 4.5<br>5.5   | 8-901            | < 0.1                    | <1                 | 0.01             | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 6                           |                    |                                                                               | 6.5          | 8-902            | < 0.1                    | - < 1              | 0.01             | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         | - ·  |
|                             | 7.8                | 7.8–8.8m,brecclated gz v with limo                                            | 1.8          | 8-903            | < 0.1                    | <u></u> (1         | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 8                           |                    |                                                                               | 8.8          | B-904            | < 0.1                    | <1                 | 0.01             | < 0.01                              | < 0.01                                                                                                          | < 0.01                       | B-912                   |      |
| 10 + +                      | 9 1<br>9 9<br>10 3 | 19.1~9.9m, brecciated oz v with limo<br>19.9-10.3m, greenish grey silici. &   | 9.9          | B-905            | < 0.1                    | <u>&lt;1</u><br><1 | 0.01             | < 0.01                              | < 0.01<br>< 0.01                                                                                                | < 0.01<br>< 0.01             | F                       | -10  |
|                             | 10.6               | skarnized metaso.<br>10.3-10.6m brecciated oz v.with limo.                    | 10.6         | B-906<br>B-907   | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 12-                         | 12.1               | 10.6-12.1m, frac.zone with clay<br>12.1-18.8m, greenish grey silici.&         | 12.1         | D- 997           |                          |                    |                  |                                     |                                                                                                                 |                              | ÷                       | -    |
| s -#- \$                    |                    | skarnized metaso, with gz limo                                                |              | 8-908            | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 14 <del></del>              | 14.0<br>14.8       | 14.0-14.8m, brown skarn with cal, limo                                        | 14.0<br>14.8 | 0_000            | < 0.1                    | <1                 | < 0.01           | 0.1                                 | < 0.01                                                                                                          | < 0.01                       |                         | -    |
|                             |                    | 15,8-16.0m, sveno-dt                                                          | 15.8         | 8-9010           | 0.1                      | 1.2                | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| + 3 ++                      | 19.3               | 63<br>16.8-17.2m, cal vein                                                    | 16.8         | 10_0012          | <u>&lt; 0.1</u><br>< 0.1 | . <1               | < 0.01<br>< 0.01 | < 0.01<br>< 0.01                    | < 0.01<br>< 0.01                                                                                                | < 0.01<br>< 0.01             |                         |      |
| 18-1 \$ ++- \$              | <b>í</b>           | 17.4-17.6m, cal. vein                                                         | 17.6         | 8-9012<br>8-9013 | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| + <b>-</b> S + <del>:</del> | 18.0               | 18.8-21.0m, qz.v. with Limo                                                   | 18.8         | 8-9014           | 0.2                      | 1.4                | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 20-21-22                    |                    |                                                                               | 20.0         | 8-9015           | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         | -20  |
| S # S<br>+ S #              | 21.0<br>22.0       | 121.0-22. On brownish grey silici.                                            | 21.0         | 8-9016           | < 0.1                    | 1<1                | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 22 S S                      |                    | <sub>6</sub> 3 and skarnized metaso.with py,limo<br>22.0—23.2m,skarn(wo,act)  |              | 8-9017           | < 0.1                    | 1                  | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       | <u>B-913</u><br>X       | 22.5 |
| 24- <u>5</u> 5              | 23.7               | 23.2-25.3m, greenish grey silici.&<br>skarnized metaso with cal,qz            | 23.2         | 8-9018           | 0.1                      | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       | 2. 4<br>1. 4 -          | L.   |
| S-# S<br>-# S-#             |                    | 23.7-24.2m, skarn (wo-diop)                                                   | 29.2         | 8-9019           | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       | 5 <u>1</u> 5            |      |
| 26-313                      |                    | 25.3-28.2m, skarnized is with wo diop                                         | 26.3         | 8-9020           | < 0.1                    | <1                 | 0.01             | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         | -    |
|                             | 1<br>1             |                                                                               | 27.3         | 8-9021           | < 0.1                    | <1                 | 0.02             | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         |      |
| 28-1515                     | 28.2               | 28.2-29.4m, green skarn with py, ma                                           | 282          | B-9022<br>B-9023 | < 0.1<br>< 0.1           | <u>&lt;1</u><br><1 | < 0.01<br>0.02   | 0.02                                | < 0.01<br>< 0.01                                                                                                | < 0.01<br>0.01               | 8-514<br>T.X.P          | 20.4 |
| s<br>30_\$ # \$             | 29.4               |                                                                               | 29.4         |                  | ·                        |                    |                  |                                     |                                                                                                                 |                              |                         | 20   |
| 30- <u>* * *</u><br>× ×     | 30.7               | A metaso                                                                      | 30.7         | B-9024           | < 0.1                    | <1                 | < 0.01           | 0.04                                | < 0.01                                                                                                          | < 0.01                       |                         | -30  |
| 32-1                        | 31.8               | 30. 7-31. 8m, dk. grey dt                                                     |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | Ļ    |
|                             |                    | að<br>31.8-39.8m,pinkish grey ors syeno-dt                                    | 1            |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | 1.1  |
| 34-人                        |                    |                                                                               |              |                  |                          |                    | a a.e.           | 19                                  | a de la composición d |                              | · · ·                   | ╞    |
|                             | 1                  | <b>Δ35.6</b> π, joint with limo                                               |              |                  |                          |                    |                  | · .                                 |                                                                                                                 |                              |                         |      |
| <sup>36</sup> ↓             | ·                  | 13                                                                            |              | <b>1</b> .       | 1 · · ·                  |                    |                  |                                     |                                                                                                                 |                              |                         | Γ    |
| 38-1                        | 1                  |                                                                               |              |                  | н ст.<br>По ст.          |                    |                  |                                     |                                                                                                                 |                              |                         | Ļ    |
|                             |                    | 39.5m, chil, py, maiv, w=0.5-0.8cm                                            |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         |      |
| 40- <u>s</u> ++ s           | 39.8               | 39, 8-41. 2m, silîcî. & skarnized metaso                                      | 39.8         |                  | 201                      | <1                 | < 0.01           | < 0.01                              | 0.01                                                                                                            | 0.02                         |                         | -40  |
| # \$ 4<br>X X               |                    | Vitte intertor Field and different                                            | 41.2         | 8-9025           | < 0.1                    |                    |                  |                                     | · · · · ·                                                                                                       |                              | {                       | Ľ    |
| 42- <u>~×</u>               | 42, 2              | 30 with py<br>42.2-46.5m,silici.d.skarnized                                   | 42.3         | 8-9026           | 0.5                      | <1                 | 0.01             | 0.02                                | < 0.01                                                                                                          | 0.01                         |                         | F    |
| 111                         |                    | 42. 2-40. 3m, still(). & skarnized<br>metaso. (ss>>sl)                        |              | B-9027           | < 0.1                    | <1                 | 0.03             | 0.13                                | < 0.01                                                                                                          | < 0.01                       |                         | L .  |
| 44                          |                    |                                                                               | 44.0         | 8-9028           | < 0.1                    | <1                 | < 0.01           | < 0.01                              | < 0.01                                                                                                          | < 0.01                       |                         | :    |
| 46-11:5                     | 45.5               |                                                                               | 45.5         | B-9029           | < 0.1                    | <1                 | < 0.01           | 0.02                                | < 0.01                                                                                                          | < 0.01                       |                         | +    |
|                             |                    | 48,5-47.0m, whitish grey silici.metas<br>A,47.0-48.0m,qz,py,ma,cp vein<br>-60 | 47.0         |                  | 8.5                      | 7.8                | 0.38             | 1.7                                 | < 0.01                                                                                                          | 0.01                         | 6 <u>-915</u><br>8, X   | 47.5 |
| 48-143                      |                    | 48.3-69. On pinkish grey syeno-dt                                             | 48.0         |                  |                          |                    |                  |                                     |                                                                                                                 |                              | P, X                    | ۲.   |
|                             |                    | 65 CALCENTER BLOCK STOLE                                                      |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | 50   |
| 50                          | • • •              |                                                                               |              |                  |                          |                    |                  |                                     |                                                                                                                 |                              |                         | 50   |

· A-5



A--6

GEOLOGIC CORE LOG OF MJUB-10(1/3)

1/200

|         | MJ                                                              | UE                                    | 3-10 (1/3) 0 m ~                                                                         | 50     | <u>m</u> | ,<br>-       | , .                  | Leve<br>X<br>Y                        | 1 239.1<br>68.597.<br>92.236. | 50m In   | rection<br>clination<br>ngth | \$25' W<br>-80'<br>110. Om |              |
|---------|-----------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|--------|----------|--------------|----------------------|---------------------------------------|-------------------------------|----------|------------------------------|----------------------------|--------------|
| - 1     | LITHO                                                           | hroti                                 |                                                                                          | DE DTL | SAMPLE   |              | :                    | ASSAY                                 | RESULT                        | [        |                              | LAB.                       |              |
|         | LOGÝ                                                            | (m)                                   | DESCRIPTIONS                                                                             | (m)    |          |              | Ag(g/t)              | Cu(%)                                 | As(%)                         | Mo(%)    | WO <sub>3</sub> (%)          | TEST                       |              |
| C       | 11111                                                           |                                       | 0-1.8m, light grey sand with peobles                                                     |        |          |              |                      |                                       |                               |          | 3                            |                            | -0           |
|         |                                                                 |                                       |                                                                                          |        |          |              |                      |                                       |                               |          |                              |                            |              |
| 2       | 拔拔                                                              | 1.8                                   | 1.8-3.On strongly weatherd reddish                                                       | 1.1    |          |              |                      |                                       |                               |          |                              |                            | -            |
|         |                                                                 | 1.0                                   | brown alt(ss>>s1) with lino                                                              |        | 1 A.     | :            | -                    |                                       |                               |          |                              |                            |              |
|         |                                                                 | 1 A.                                  | 3.0-7.0m, reddish brown alt(ss>>sl)                                                      |        |          |              |                      |                                       |                               |          |                              |                            | l.           |
|         |                                                                 |                                       |                                                                                          |        |          |              |                      |                                       |                               |          |                              |                            |              |
|         |                                                                 |                                       | 6                                                                                        |        |          |              |                      |                                       |                               |          | 1 · · · ·                    |                            |              |
| 6       |                                                                 |                                       |                                                                                          |        |          |              |                      |                                       |                               |          | 1                            |                            | -            |
|         | -++- S                                                          | _2.0                                  | 7.0-11.2m greenish grey silici.weakl                                                     |        |          |              |                      |                                       |                               |          |                              |                            |              |
| . 8     | :::++                                                           | · ·                                   | skarnized ss with banded sl and py                                                       |        |          |              |                      |                                       |                               |          |                              |                            | -            |
|         | . <b>-+⊢ \$</b>                                                 |                                       | N                                                                                        |        |          | · ·          |                      |                                       |                               |          |                              |                            |              |
| 1Ċ      |                                                                 |                                       | 30<br>λ,10, 1m, Eimo v, w≃5mm, 35*                                                       | 1.5    |          |              |                      |                                       |                               |          |                              |                            | -10          |
|         | :::+                                                            | 11.2                                  | 35                                                                                       | 11.2   |          |              |                      |                                       |                               |          |                              |                            |              |
| 12      |                                                                 |                                       | <ol> <li>2~15.5m, reddish brown silici, and<br/>weakly skarnized metaso, with</li> </ol> | 120    | 8-1001   | < 0.1        | <1                   | 0.02                                  | < 0.01                        | < 0.01   | < 0.01                       |                            | L            |
|         | \$ -#- \$<br>-#- \$ -#-                                         |                                       | oz veintets & limo                                                                       | 13.0   | B-1002   | < 0.1        | <1                   | 0.01                                  | < 0.01                        | < 0.01   | < 0.01                       |                            |              |
|         | s -#- s                                                         | ne j                                  |                                                                                          |        | B-1003   | < 0.1        | <1                   | 0.01                                  | < 0.01                        | < 0.01   | < 0.01                       |                            |              |
| . 14    | -++ s ++                                                        |                                       |                                                                                          | 14.0   | B-1004   | < 0.1        | . <1                 | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       |                            | <b>-</b> .   |
|         | <u>s</u> ++ s                                                   | 15.5                                  | 15. 2m, qz v. w=2cm, 40                                                                  | 15.5   |          | <b>X 0.1</b> |                      | 10.01                                 | <u> </u>                      | 10.01    | <u> </u>                     |                            |              |
| 16      | +++                                                             | :                                     | 015.5-18.2m, grey silici.ss with gz<br>Veinlets and py                                   |        | B-1005   | < 0.1        | 1.2                  | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       | : i                        | -            |
|         | :++ : : :                                                       |                                       | 2016. 1m, cal v, w=0. 7cm, 20*                                                           | 17.0   |          | 1.0.6        |                      |                                       |                               | <b> </b> |                              |                            |              |
| 18      | <u> </u> ;;;;#                                                  | 18.2                                  | 18.2-19.0m, greenish grey syeno-dt                                                       | 18.2   | 8-1006   | < 0.1        | < 1                  | 0.01                                  | < 0.01                        | < 0.01   | < 0.01                       |                            | ┢            |
|         | J A                                                             | 19.0                                  | 19. 0-42. On, greenish grey silici.                                                      | 19.0   |          |              |                      | · · · · · · · · · · · · · · · · · · · |                               |          |                              |                            |              |
| 20      | .#.s                                                            | 19.9                                  | weakly skarnized alt(ss>sl) with py                                                      |        | 8-1007   | < 0.1        | <sup>-</sup> <1      | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       |                            | -20          |
|         | ·++ \$                                                          |                                       | 19. 9m, syeno-dt, w=10cm                                                                 | 21.0   |          |              |                      |                                       |                               |          |                              |                            | <b>.</b> .   |
|         | +: s:<br>; ; ; ; ;                                              |                                       | <u>-</u>                                                                                 | 2.1.0  |          |              |                      | 1001                                  |                               | 1001     |                              |                            |              |
| ~~      | <u> + .</u><br>. + . s :                                        |                                       |                                                                                          |        | B-1008   | < 0.1        | <sub>् 1</sub> < 1   | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       | 1                          | ſ.           |
|         | +<br>+<br>*                                                     |                                       |                                                                                          | 23.0   |          |              |                      |                                       | ·                             |          |                              |                            |              |
| 24      | + +                                                             |                                       |                                                                                          |        | B-1009   | < 0.1        | < 1                  | <b>&lt; 0</b> .01                     | < 0.01                        | < 0.01   | < 0.01                       | :                          | r.           |
| · .     | + 5                                                             |                                       | 25. 8m, qz V                                                                             | 25.0   |          |              |                      |                                       | ·· · · · ·                    |          |                              |                            |              |
| 26      | [·#•. \$.                                                       | 11                                    | 50 <sup>2</sup> 6.8m,qz v,w≃2cm                                                          |        | B-10010  | < 0,1        | · <1                 | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       |                            | F.           |
| . • * * | *                                                               |                                       |                                                                                          | 27.0   |          |              | <u></u>              |                                       |                               | ·        |                              | +                          | -            |
| - 28    | + \$                                                            |                                       |                                                                                          |        | 8-10011  | < 0.1        | < <b>1</b>           | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       | 1.673                      | -            |
| :       | . <b>+.</b> \$                                                  |                                       |                                                                                          | 29.0   |          |              |                      |                                       |                               |          |                              |                            |              |
| 30      | ķ∧                                                              | i                                     | 29, 2-29, 7m, frac zone                                                                  |        | 8-10012  | < 0.1        | - <u></u><br><b></b> | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       |                            | -30          |
|         | <b>+ s</b>                                                      |                                       | 30.5m, cal v w=2cm                                                                       | 31.0   |          | × 0.1        |                      | × 0.01                                | × 0.01                        | × 0.01   |                              |                            | ~~           |
| 2.2     |                                                                 | -                                     |                                                                                          |        | 1.11     |              |                      |                                       |                               |          |                              |                            |              |
|         | + 5                                                             |                                       |                                                                                          |        | 8-10013  | < 0.1        | <1                   | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       |                            | - ···        |
|         | TTT-                                                            | 33.5                                  | 33.5-34.5m, pinkish grey gr                                                              | 33.5   | ·        | <u> </u>     |                      |                                       |                               |          |                              | 100 C                      |              |
| 34      |                                                                 | 34.5                                  | A A A A A A A A A A A A A A A A A A A                                                    | Т. д.  |          |              |                      |                                       |                               | · ·      |                              |                            | t'           |
|         | . ++ ·                                                          |                                       | sò                                                                                       |        | :        | E.           |                      |                                       | ÷.                            |          |                              |                            | ł            |
| 36      | #                                                               |                                       | joint with py                                                                            |        |          |              |                      |                                       |                               |          |                              |                            | F            |
|         |                                                                 |                                       | 20                                                                                       |        | :        |              |                      |                                       | 1.12                          |          |                              |                            | l            |
| 38      |                                                                 |                                       | and the second second second                                                             | 38.0   |          |              |                      |                                       | <u> </u>                      | ·        |                              |                            | <b> </b> -   |
| 11      | :++-: s :                                                       |                                       |                                                                                          |        | B-10014  | K 0.1        | <1                   | < 0.01                                | < 0.01                        | < 0.01   | < 0.01                       | - 1 I.                     | ł –          |
| 40      | · · · · · · · · · · · · · · · · · · ·                           |                                       |                                                                                          | 40.0   |          |              |                      |                                       |                               |          |                              |                            | -40          |
|         |                                                                 |                                       |                                                                                          |        | -        |              |                      |                                       |                               |          |                              |                            |              |
|         | <del>**</del> *                                                 | 42.0                                  |                                                                                          |        | B-10015  | < 0.1        | < 1                  | 0.01                                  | < 0.01                        | < 0.01   | < 0.01                       |                            |              |
| 42      | -#-; s :                                                        | · · ·                                 | 42.0-44.3m,dk grey f.ss silici.and<br>partly skarnized with py                           | 42.0   |          |              |                      |                                       |                               | 1.1      |                              |                            | <b>[</b> : • |
| •       | :;:+;                                                           |                                       | hereit summingen with hi                                                                 |        |          |              |                      |                                       |                               |          |                              |                            |              |
| 44      | -: <u>:++: s</u> :<br>                                          |                                       | 44.3-51.0m.dk.grey.alt(ss>>sl),                                                          |        |          |              |                      |                                       |                               |          |                              |                            | F            |
|         | - <del>11</del> - 5                                             |                                       | silici, and partly skarnized with py                                                     |        |          |              |                      |                                       | i e                           |          |                              | ÷.,                        |              |
| 46      | <u></u>                                                         |                                       |                                                                                          |        | ``.      | 1. A. B.     |                      |                                       |                               |          | $\sim 10^{-1}$               |                            | <b>-</b> ·   |
|         |                                                                 |                                       |                                                                                          |        |          |              |                      |                                       |                               |          |                              |                            | 1            |
| 48      | - <b>₩</b> - <b>5</b><br>- <b>1</b><br>- <b>1</b><br>- <b>1</b> |                                       |                                                                                          |        |          |              |                      | :                                     |                               |          |                              |                            | <b>-</b>     |
|         | <b>#</b> \$                                                     | :                                     | joint                                                                                    |        |          |              |                      |                                       | :                             |          |                              | - 1                        |              |
| 50      | ***<br>***                                                      | · · · · · · · · · · · · · · · · · · · | 40                                                                                       |        |          |              |                      |                                       |                               |          | · · · ·                      |                            | -50          |
|         |                                                                 |                                       |                                                                                          |        |          |              |                      |                                       |                               |          |                              |                            | ~~           |

|                                         |              |                                                                                                      |              |                      |                | 1       |                  |                                   |                  |                              | :                        |
|-----------------------------------------|--------------|------------------------------------------------------------------------------------------------------|--------------|----------------------|----------------|---------|------------------|-----------------------------------|------------------|------------------------------|--------------------------|
|                                         | :            |                                                                                                      |              |                      |                |         |                  |                                   |                  | :                            |                          |
|                                         |              | GEOLOGIC C                                                                                           | ORE          | ELC                  | 0G 0           | FMJ     |                  |                                   |                  |                              | 200                      |
| <u>MJ</u>                               | υε           | <u>10 (2/3) 50 m~</u>                                                                                | 10           | <u>m 0(</u>          |                |         | X<br>Y           | el 239, 1<br>68, 594,<br>92, 236, | 50m lin          | rection<br>clinatio<br>ength | \$25°)<br>n ~80<br>110.0 |
| L I THO-<br>LOGY                        |              | DESCRIPTIONS                                                                                         | DEPT:<br>(m) | SAMPLE<br>No.        | Au(g/t)        | Ag(g/t) | ASSAY<br>Cu(%)   | RESUL<br>As(%)                    | 1<br>Mo(%)       | WO <sub>3</sub> (%)          | LAB.<br>TEST             |
| · · · · · · · · · · · · · · · · · · ·   | 51.0         | 50. 3m, qz v, w=3cm                                                                                  | 50.0<br>51.0 |                      | < 0.1          | <1      | 0.01             | < 0.01                            | < 0.01           | 0.01                         |                          |
| × ×                                     | 52.2         | 51.0-52.2m, dk. grey dt<br>52.0m, gz.ý, w=0.5cm,<br>52.2.5t, dz. v. w=0.5cm,                         | 52.0         | 8-10017              | < 0.1          | .<.1    | 0.01             | < 0.01                            | < 0.01           | < 0.01                       |                          |
|                                         |              | 252.2-54.9m, silici.alt(ss>>sl)                                                                      | 53.0         | B-10018<br>B-10019   | < 0.1<br>< 0.1 | <1      | < 0.01<br>< 0.01 | < 0.01<br>< 0.01                  | < 0.01<br>< 0.01 | < 0.01<br>< 0.01             | B-10L1.<br>F             |
|                                         | 54.9         | 54.9-55.5m, pinkish grey syeno-dt                                                                    | 53.7         |                      |                |         |                  |                                   | V.V1             | [                            |                          |
|                                         | 35.8         | 55, 5~55, 9m, dk. grey silici, ss<br>55, 9-58, 2m, binkish, gray, avanada                            |              |                      |                |         |                  |                                   |                  |                              |                          |
| ××                                      | 58.2         | 56. 2-59. 7m weakly skaenized dt                                                                     |              | ŀ                    | :              |         |                  |                                   |                  |                              |                          |
| X X                                     | :            |                                                                                                      |              |                      | · · ·          |         |                  |                                   |                  |                              | 8-10L2                   |
| × ×                                     |              | 59.7-61.7m.dk grey silici.& weakty                                                                   |              |                      |                |         |                  |                                   |                  |                              |                          |
| · # · · · · · · · · · · · · · · · · · · | i -          | skarnized alt(ss>>sl) with py                                                                        |              |                      |                |         |                  | Ì ,                               |                  |                              |                          |
| × ×                                     | £1.7         | 61. 7-62. 7m, grey dt                                                                                |              |                      | 1              |         |                  | <b>.</b>                          |                  |                              |                          |
| icicii                                  | - · ·        | 4562, 7–66, 5m, grey silici, & skarnized<br>ss with py, rhodo<br>63, 5–63, 9m, yellowish green skarn |              | B-10020              | < 0.1          | <1      | < 0.01           | < 0.01                            | < 0.01           | < 0.01                       |                          |
| 5.5.5.5<br>-#5                          |              | 65.0-65.4m, yellowish green skarn                                                                    | 63.9         | 8-10021              | < 0,1          | <1      | < 0.01           | < 0.01                            | < 0.01           | 0.01                         |                          |
| \$ \$ \$ 5 5                            |              |                                                                                                      | 65.0<br>66.0 | 8-10022              | < 0.1          | .<1     | 0.01             | < 0.01                            | < 0.01           | < 0.01                       |                          |
|                                         | 67.2         | $\chi$ 66. 5-67. 2m, yellowish green skarn                                                           | 67.2         | 8-10023              | < 0.1          | -<1     | 0.01             | < 0.01                            | < 0.01           | 0.01                         | B-10L3                   |
| **• **<br>•*• *                         | 60.3         | X 67.2-73. On, grey silici ss with py<br>35<br>63.3-69.4m, grey dt                                   |              | 8-10024              | < 0.1          | 1       | 0.01             | < 0.01                            | < 0.01           | < 0.01                       | Â                        |
| x x x                                   | -88:1        | A 69. 4-69. 8m, dk grey dt                                                                           | 69.4         |                      |                |         | <u> </u>         |                                   |                  |                              |                          |
| ***<br>***                              | _70_9_       | 55<br>70.9-71.4m, ak grey dt                                                                         |              |                      |                |         |                  |                                   | :                |                              |                          |
| ****                                    |              |                                                                                                      | - 71.4       | 8-10025              | < 0.1          | <1      | 0.01             | < 0.01                            | < 0.01           | < 0.01                       |                          |
|                                         | 73.0<br>73.5 | 73.0-73.5m, greenish white is with wo                                                                | 73.0         |                      | < 0.1          |         | • <b></b> .      |                                   |                  |                              | B <u>~10L5</u><br>X      |
| 上上                                      | 74.5         | 73.5-81.0m dk grey silici &<br>skarnized ss wtih pv                                                  | 74.5         | 8-10026              | <u> </u>       | < 1<br> | < 0.01           | < 0.01                            | < 0.01           | < 0.01                       |                          |
| :#_1.<br>X                              | 76.2         | 74.5-75.2m.pinkish grey syeno-dt                                                                     |              |                      |                |         | · .              |                                   |                  |                              |                          |
| *: <b>†</b> .                           | 76.5         | 76.2-76.5m,dk grey dt                                                                                | 71.7         |                      |                |         |                  |                                   |                  |                              |                          |
|                                         |              |                                                                                                      | 78.7         | 8-10027              | < 0.1          | <1      | <b>&lt;</b> 0.01 | < 0.01                            | < 0.01           | < 0.01                       |                          |
| · · · · ·                               |              |                                                                                                      |              |                      |                |         |                  |                                   |                  |                              |                          |
| a)uno                                   | .81.9_       | 81.0-84.6m, dk grey dt                                                                               | :            |                      |                |         |                  |                                   |                  |                              | 1<br>14                  |
| aînuîz<br>X X                           |              | ) 81. 4-81. 47m, grey-dt dike<br>3081. 8-82. 1m, grey-dt dike                                        | 1.           |                      | ;              |         |                  |                                   |                  |                              |                          |
| ×××                                     |              |                                                                                                      |              |                      |                |         |                  |                                   |                  |                              |                          |
| $\lambda^{-1}$                          | _84_6_       | 84.6~110.0m,pinkish grey syeno-dt                                                                    |              |                      |                |         |                  |                                   | · ·              |                              |                          |
| ٦,                                      |              |                                                                                                      |              |                      |                |         |                  |                                   | ar ar<br>Arai    |                              |                          |
| 신                                       |              |                                                                                                      |              |                      | х<br>1         |         |                  |                                   |                  |                              |                          |
| L [신                                    |              | λαz v, w=1cm                                                                                         |              |                      |                |         |                  |                                   |                  |                              |                          |
| ित्र                                    | н., -        | joint<br>40                                                                                          |              | 1977<br>1977<br>1977 |                |         |                  |                                   |                  |                              |                          |
| <u>ا</u>                                |              |                                                                                                      |              |                      | н<br>н<br>н н  |         | 1                |                                   |                  |                              |                          |
| ¦≓-∕,                                   |              |                                                                                                      |              |                      | *              |         |                  |                                   |                  | r<br>t                       |                          |
|                                         |              |                                                                                                      |              |                      |                |         |                  |                                   | :                |                              |                          |
| λ                                       |              |                                                                                                      |              |                      |                |         | į.               |                                   |                  |                              |                          |
| ٦.                                      |              |                                                                                                      | 1 s          |                      |                |         |                  |                                   | :                |                              | }                        |
| ١.                                      |              | ¥97. 5m, ca1 v, w≈0, 3cm<br>40                                                                       |              |                      |                | :       |                  |                                   |                  | -                            |                          |
| $, ^{\wedge}$                           | ÷            |                                                                                                      |              |                      |                |         |                  | 13 -<br>13 -                      |                  | 1                            | , ľ                      |
|                                         |              |                                                                                                      |              |                      |                |         |                  |                                   |                  |                              |                          |

A-8

-100

|      | MJ             | UE                     | 3-10 (3/                               | 0LOG  <br><u>3) 10</u> 0                                                                                                                                                                                                                                                                                                                              |                                          |              |               |         |          |               | 1 239. 1<br>68, 594.<br>92, 236. |          | rection<br>clination<br>ogth | 200<br>S25 <sup>°</sup> W<br>-80 <sup>°</sup><br>110. Om |
|------|----------------|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|---------------|---------|----------|---------------|----------------------------------|----------|------------------------------|----------------------------------------------------------|
|      | LITHO-<br>LOGY | DEPTI<br>(m)           | DESCR                                  | IPTIONS                                                                                                                                                                                                                                                                                                                                               | 3                                        | DEPTI<br>(m) | SAMPLI<br>No. | Au(g/t) | Ag(g/t)  | ASSAY         | RESUL<br>As(%)                   | Ţ        | WO <sub>3</sub> (%)          | LAB.<br>TEST                                             |
| 100- | ۲<br>ر         |                        | -                                      |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 102- | A :            |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 104- | Δ.             |                        | 9                                      |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              | -                                                        |
| 106- | × ا            |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         | ·        |               |                                  |          |                              | -                                                        |
| 108- | кххх           | 198.9.<br>198.7        | 100. 0-100. JM, Fra                    |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              | -                                                        |
| 110- | ŝ              | 109 <b>.4</b><br>119.0 | 109.4-110.0m, fra<br>110.0m, Bottom of | ic zone<br>Ethe hole                                                                                                                                                                                                                                                                                                                                  |                                          |              |               |         | ·        | ,<br>         |                                  |          |                              |                                                          |
| 112- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         | <u>-</u> | на на на<br>1 | • .                              |          |                              |                                                          |
| 114- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       | ·<br>·                                   |              |               |         | •        |               |                                  |          |                              |                                                          |
| 116- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 118- |                | :                      |                                        | ·                                                                                                                                                                                                                                                                                                                                                     |                                          |              | 1.16          |         |          |               |                                  |          |                              |                                                          |
| 120- | :              | -                      |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          | :            |               |         |          |               |                                  |          |                              |                                                          |
| :    |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               | -       |          |               |                                  |          |                              | · 1                                                      |
| 122- |                | -                      |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               | 1       |          |               |                                  |          |                              |                                                          |
| 124- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 126- |                | •<br>- •               |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              | -                                                        |
| 128- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          | E<br>2       |               | ;       |          |               |                                  |          |                              | -                                                        |
| 130- | •              |                        |                                        | ,                                                                                                                                                                                                                                                                                                                                                     |                                          | -            |               |         |          |               |                                  |          |                              | -1                                                       |
| 132- |                | * • • •                | -                                      |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              | -                                                        |
| 134- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  | a da a   |                              | · · · · -                                                |
| 136- | 1.             |                        |                                        | а. на селото на селот<br>Посто на селото на се<br>Посто на селото на се |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 138- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 140- |                | •                      |                                        |                                                                                                                                                                                                                                                                                                                                                       | en e |              |               | . :     |          |               |                                  |          |                              | -1                                                       |
| 142- |                | 2                      |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 144- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          |               |                                  |          |                              |                                                          |
| 146- |                | :                      |                                        |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          | : .<br>:<br>: |                                  | 1:       |                              |                                                          |
|      |                |                        | -                                      |                                                                                                                                                                                                                                                                                                                                                       |                                          |              |               |         |          | :             | -                                |          |                              | ľ                                                        |
| 148- |                |                        |                                        |                                                                                                                                                                                                                                                                                                                                                       | ۲.<br>د                                  |              |               |         |          | н<br>Х        |                                  | 1 N<br>2 |                              | F                                                        |

# GEOLOGIC CORE LOG OF MJUB-11(1/4)

1/200

ł

| LITHO-DEPTH<br>LOGY (m) DESCRIPTIONS DEPTHSAMPLE<br>(m) No: Au(g/t) Ag(g/t) Cu(%) As(%) Mo(%) WQ <sub>3</sub> (%) TE<br>0-6.8m, sand with pebbles<br>2-111100-0-6.8m, sand with pebbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-<br>-      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŀ                |
| 4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 6-<br>6.8 6.8-8.0m, strongly weatherd silici.ss 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| $\frac{1}{100} = \frac{1}{100} = \frac{1}$ |                  |
| 10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| $12 - \begin{bmatrix} 1 & 1 \\ I & I \\ I & I$                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                |
| $\frac{14}{3}$ $\frac{14}{3}$ $\frac{14}{3}$ $\frac{14}{3}$ $\frac{14}{3}$ $\frac{143}{3}$ $\frac{143}{3}$ $\frac{143}{3}$ $\frac{1100}{3}$ $1$                                                       | F                |
| with dz, car veiniets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| $\frac{18}{18.00} rock fragments = \frac{18.00}{18.00} rock fragments = \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| 19.40   19.40   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01   10.01    10.01    10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + -              |
| 8-11014 < 0.1 2.4 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · [              |
| Acal         V. w=0. Scin         B-11015         < 0.1         3.6         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| 200<br><u>s = s = s = 27.2</u> 27.0-27.26, skarn(wo, diop)<br>B-H016 < 0.1 1.6 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |
| 8-11017 < 0.1 1.6 0.02 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 30 - 5 + 1 + 1 = 100 (we discover it is partly skarnized 29.9 B-11018 < 0.1 < 1 = 0.02 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 322 32 -35 2m dk gray se with 32.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 34-<br>35.2<br>35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| s s 35,2-38.5m, greenish white skarn 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 36.1           |
| 3a *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |
| $\frac{3}{5} \frac{1}{1} \frac{1}{1}$ 38.6-40.2m, skarnized is with act, wo 33.6<br>B-11024 < 0.1 < 1 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 40 \$ 1, 1 40, 2 40, 2-43. 8n, greenish white skarn 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -40              |
| s with diop, act, wo 3-11025 < 0.1 < 1 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| 42 0<br>B-11026 < 0.1 < 1 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŀ                |
| 3 3 43 8 43 8-82. 2m, silici. and weakly 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| 44 K 0 skarnized ss with py calveinlets<br>44.0-44.8m, frac zone<br>B-11027 < 0.1 1.2 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Γ                |
| 46 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| 31.2 46 7-47 On fest zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| 48 - 3 + 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŀ                |
| [世景]] [B-11029 < 0.1 ] < 1   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01   < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| 50 1 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L. <sub>50</sub> |

|            | M     | JUE            | GEOLOGIC (<br>3-11 (2/4) 50 m                                                                                               |              | Ξ ι <b>L</b> ,(    |                  |            | Leve<br>X<br>Y | 68, 627.<br>92, 249. | 13 m Di<br>66m In<br>90m Le | 1/<br>rection<br>clination<br>ngth | 200<br>\$25' W<br>-80<br>152, Om |
|------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|------------|----------------|----------------------|-----------------------------|------------------------------------|----------------------------------|
|            | LOGY  | DEPTH<br>(m)   | DESCRIPTIONS                                                                                                                | OEPTI<br>(m) | HSAMPLE<br>No.     | Au(g/t)          | Ag(g/t)    | ASSAY<br>Cu(%) | RESUL<br>As(%)       |                             | WO <sub>3</sub> (%)                | LAB.<br>TEST                     |
| 50-<br>52- | ¥     |                | silfci and weakly skaenized ss<br>with py                                                                                   |              |                    |                  |            |                |                      |                             |                                    |                                  |
| 54-<br>56- |       |                | <b>56. 5~56. 9m. s</b> yeno∽dt<br>28                                                                                        | -            |                    |                  |            |                |                      |                             |                                    |                                  |
| 58-<br>60- | _#    |                |                                                                                                                             |              |                    |                  |            |                |                      |                             |                                    |                                  |
| 62-        | ***   |                |                                                                                                                             |              | :                  |                  | 2          |                |                      |                             |                                    |                                  |
| 64-<br>66- | ***   |                |                                                                                                                             |              |                    |                  |            |                |                      |                             |                                    | *                                |
| 68-<br>70- | λ<br> | 67.90<br>69.90 | 1 67.9-69.9m, plakish grey syeno-dt<br>45                                                                                   |              |                    | -<br>-<br>-<br>- |            |                |                      |                             |                                    |                                  |
| 72-        |       | 73.00          | 33<br>70.5m,qz v.w=3cm<br>33<br>73.0-74.6m,greenish grey silici.<br>skarnized metaso                                        | 730          |                    |                  |            |                |                      |                             | ··· ··                             |                                  |
| 74-        | .#    | 74.60          | skarnized metaso<br>74.6-82.2m,silici.alt(ss>>sl)<br>with py.cal                                                            | 74.6         | 8-11030            | < 0.1            | 1.8        | < 0.01         | < 0.01               | < 0.01                      | 0.02                               |                                  |
| 78-        | +     |                | , 76. 4m, qz, v, w=4cm<br>40                                                                                                |              |                    |                  |            |                |                      |                             |                                    |                                  |
| 63         |       |                |                                                                                                                             | 79.4<br>81.0 | 8-11031            | 0.2              | 1.8        | 0.03           | < 0.01<br>< 0.01     | < 0.01                      | < 0.01                             |                                  |
| 82-<br>84- |       |                | 82.2-84.2m, whitish grey skarnized<br>with cal veinlets, wo                                                                 |              | B-11033            |                  | 2.4        | 0.03<br>0.02   | < 0.01               | < 0.01                      | < 0.01<br>< 0.01                   |                                  |
| 86-        |       | 85.00          | 84.2-85.0m,dk grey sillci, and<br>skarnized ss with cal veinlets<br>85.0-90.5m,grey partly skarnized s<br>with cal veinlets | 86.0         | 8-11034            |                  | < 1        | < 0.01         | < 0.01               | < 0.01                      | < 0.01                             |                                  |
| 88-        |       |                | 87.3-88.1m,b1k brecciated is<br>with magnetite matrix                                                                       | 88.0         | 8-11035<br>8-11036 |                  | 5.2<br>< 1 | 0.01           | < 0.01               | < 0.01<br>< 0.01            | < 0.01                             |                                  |
| 90-<br>92- |       | 1 90 50        | 89.4-90.6m, frac zone<br>90.5-101.6m, grey is with banded st<br>28 cal veintets                                             | 90.0         |                    |                  |            |                |                      |                             |                                    |                                  |
| 92-        |       |                | 40<br>50<br>93.4m frac zone with clay.w=Scm                                                                                 |              |                    |                  |            |                |                      |                             |                                    |                                  |
|            |       |                |                                                                                                                             |              |                    | 1.5              |            |                |                      |                             |                                    | 1.1                              |

#### GEOLOGIC CORE LOG OF MJUB-11 (3/4)

Direction \$25 W Inclination -80 Lovel 240.93 m 68, 627, 66m 92, 248, 90m MJUB-11 (3/4) 100 m~ X Y 150 m 152.0a Length ASSAY RESULT LITHO-DEPTH DEPTHISAMPLI LAB. DESCRIPTIONS LOGY (m) Au(g/t) Ag(g/t)Cu(%) As(%) Mo(%) WO<sub>3</sub>(%) (m) No TEST 00 113 100 100 2 100.2 [100, 2-10], 6m, skarnized is 1.1.1.1.0 8-11031 < 0.1 **č** 1 < 0.01 < 0.01 < 0.01 with wo (chodo) < 0.01 101.6 101. 6-107. Sm. skarnized 1s 02 Ξş ì with wo (rhodo) 8-11038 < 0.1 <1 0.02 < 0.01 < 0.01 0.02 104.0 8-11039 103.0 < 0.1 <1 < 0.01 < 0.01 < 0.01 < 0.01 04 105 0 8-11040 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 2.4 106.0 B-11041 < 0.01 < 0.1 < 0.01 **Č**1 < 0.01 < 0.01 .05 1 E 8-11042 < 0.1 ζT < 0.01 < 0.01 < 0.01 < 0.01 102.5. 107. 5-114. 1m, blk-dk grey 107.5 :03 alt(sl>>ss) with cal veinlets ------<u>...</u> 109.4-109.7m, whitish grey ozite 110 110 X111.6m,qz v,w≐10cm 35 B-116 ..... . . . :12 s s with hed, act, rhodo, wo 14 114.8 ζ1 < 0.01 B-11043 0.2 < 0.01 < 0.01 < 0.01 16 116.0 \$ < 0.1 < 0.01 < 0.01 B-11044 Ċ1 < 0.01 < 0.01 117.0 B-11045 < 0.1 ć1 < 0.01 < 0.01 < 0.01 < 0.01 6-11L7 17.8 T.X 18 118.1 119.0 with cal v. 119.0 life.0 123.3m, greenish grey skarn **< 0.1** Ċ1 < 0.01 < 0.01 < 0.01 B-11046 < 0.01 121.3 - 121.3 - 125.9 m, frac zone 123.3 - 123.3 - 128.0 m, greensih grey dt with py, cal veinlets 125.9 - 23 120.0 K 0.1 < 0.01 B-11047 < 1 < 0.01 < 0.01 < 0.01 20 120.0 120 B-11048 0.1 <1 < 0.01 < 0.01 < 0.01 < 0.01 121.0 122.0 B-11049 < 0.1 <1 < 0.0İ < 0.01 0.02 < 0.01 22 < 0.1 8-11050 <1 0.01 < 0.01 < 0.01 < 0.01 123.3 24 8-11051 0.5 48.6 0.01 < 0.01 < 0.01 < 0.01 125.9 26 × x х 8-1118 .... B-11052 < 0.1 1.2 0.01 < 0.01 < 0.01 < 0.01 X 127.4 128.0 128.0 128.0-129.0m, greenish grey silici. # 5 # 129.0 119.0-123.3m, greenish grey skarn with cal v. py 119.0-123.3m, greenish grey skarn with cal v. py 130.7 129.0-152.0n, syéno-dt 5 130.2m, py v. w=1cm, 5 127.4 28 129.0 8-11053 128.0 < 0.1 < 1 0.01 < 0.01 < 0.01 < 0.01 30 130  $\overset{}{\underset{\chi}{\overset{}}}$ 130. 7-132. 2m, frac zone 32 1132.2 1132.7 132.7-133.0m frac zone 133.5 34 Y 36 Y 38 40 140 42-44 Y X 46 Y 48-Y 49. 7*m*, joint Y

**Λ−12** 

50-

and the second

150

1/200

|            | LITHO-<br>LOGY | DEPTH | DESCRIPTIONS                | OEPTI  | ISAMPLE<br>No. |           |         | ASSAY | 1 240.9<br>68,627<br>92,248<br>RESUL | ŗ      | rection<br>clination<br>ngth<br>WO <sub>3</sub> (%) |       |
|------------|----------------|-------|-----------------------------|--------|----------------|-----------|---------|-------|--------------------------------------|--------|-----------------------------------------------------|-------|
| 0          | 1061<br>J      | (m)   | syéno-dt                    |        | No,            | Au(g/t)   | Ag(g/t) | Cu(%) | As(%)                                | Mo(%)  | WO₃(%)                                              | TEST  |
| 2-         | <u> </u>       | 152.0 | 152. Om, Bottom of the hole | .:<br> | ļ              |           |         |       |                                      |        |                                                     |       |
| 4-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     | :<br> |
|            |                | м. 1. |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 6-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 8-         | :              |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 0-         |                |       |                             |        |                |           | -       |       |                                      |        |                                                     |       |
| 2-         |                | r,    |                             |        |                |           |         |       |                                      |        |                                                     |       |
| <u>+</u> - |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
|            | -<br>-         |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 6-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| s-         |                |       |                             |        |                |           |         |       |                                      | · · ·  |                                                     | •     |
| 0-         |                | A.    |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 2-         |                |       |                             |        |                | · · · · ; |         |       | 1 .<br>1                             |        |                                                     |       |
| 4-         |                |       |                             |        |                | <br>      |         |       |                                      |        |                                                     |       |
| 6-         |                |       |                             | . **   |                |           |         |       |                                      |        |                                                     | . :   |
|            |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 8-         |                |       |                             |        |                | .*        |         |       |                                      |        | , t                                                 |       |
| 0-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 2-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 4-         |                |       |                             |        |                | •<br>•    |         | •     |                                      |        |                                                     |       |
| 6-         |                |       |                             |        |                | i .       |         |       | 4. T                                 |        |                                                     | * .   |
|            |                |       |                             |        |                |           | :       |       | - <u>.</u>                           |        |                                                     |       |
| 8-         | :              |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 0-1        | :              |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 2-         | . :            |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 4-         | :              |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 5-         |                |       |                             |        | · .            |           | 1       |       |                                      |        |                                                     | :     |
| 8-         |                |       |                             |        |                |           |         |       |                                      |        |                                                     |       |
| 1          |                |       |                             |        | · .            |           |         |       | :                                    | :<br>* |                                                     |       |

GEOLOGIC CORE LOG OF MJUB-11(4/4)

.

1/200

#### GEOLOGIC CORE LOG OF MJUB-12(1/4)

0

2

4 5

6 \$ . .

8

10

12

14

16

18-

20 \$ #

22

24

28

32-

34

36

38

40

42

44

46

48

50

5 \$

- 5 - -

. . 5

5 -++ 5

ĘŢ,

Ľŝ

\$ 4

-#-

Т, Г, ï 26

39\_20 30. 2-31. Om, syeno-dt

31.00 33.0-35.0m, greenish grey strongly 35. with cai v 34.5m, cai v, w=2cm, 30' 34.5m, cai v, w=2cm, 30' 35.4-53.4m, grey ss with cai veinlets.py

35. 7m, cal v. w=5cm, 5

5.

ï

۶X 30

XXX

11- S ·H

s #- s

<u># 5 </u>#

31.00

-35.06

۱ò

Direction S25 W Inclination -80 Level 243.38 m X i Y 68,656.57 m Inclination -80 Length 194.0m MJUB-12 (1/4) 0 m ~ 50 m 92, 261. 07m Length ASSAY RESUL LITTE DEPTH LOGY (m) DEPTHSAMPLE LAB. DESCRIPTIONS (m) No. Au(g/t) Ag(g/t)Cu(%) As(%) Mo(%) WO<sub>3</sub>(%) TEST 0-3 On sand with peobles \_3.00 3.0-5.0m brownish grey skarnized weathered skarn with cal v, limo 4.0 8-1201 3.0 <1 < 0.01 0.01 0.1 0.02 0.01 8-1202 < 0.1 14.8 0.02 0.02 < 0.01 < 0.01 \_5.00 5.0-8.0m, pinkish grey skarnized ss with cal, rhodo, fimo 63.5.8m, cal v.w=2cm, 45 63 5.0 8-1203 < 0.1 4.8 0.02 0.03 < 0.01 < 0.01 .... 60 B-1204 < 0.1 5.2 < 0.01 0.03 < 0.01 < 0.01 8-1211 3 2 8.0 8-1205 < 0.1 3.2 < 0.01 0.04 < 0.01 < 0.01 9.0 8-1206 < 0.1 < 0.01 < 0.01 < 0.01 1.2 < 0.01 11.0  $\bigotimes$ 0.07 0.8 104 0.02 < 0.01 < 0.01 8-1207 12,80 128 .13.80 14.00 14.00 14.0-18.0n, grey 1s weakly .15.00 15.0-17.0n, frae zone 16.0n, cal v, w=3cm, 5 8-1208 0.2 <1 < 0.01 0.03 < 0.0† < 0.01 140 B-1209 < 0.1 12 < 0.01 0.03 < 0.01 < 0.01 資 160 < 0.01 < 0.01 B-12010 < 0.1 < 1 0.03 < 0.01 18.00 18.0-21.3m,dk grey alt(ss>>sl), silici.partly skarnized 18.0 < 0.01 8-12011 < 0.1 ζ1 0.02 0.05 0.01 19. -20 < 01 < 0.01 < 0.01 < 0.01 8-12012 <1 0.03 <u>+ s</u> 21. 30 21. 3-23. On, whitish grey Is. **1** 21.3 skarnized with cal, wo < 0.01 < 0.01 8-12013 < 0.1 <1 < 0.01 < 0.01 8-1212 22 5 23.00 23.0-25.4m, grey ss silici. and partly skarnized 23.0 < 0.01 < 0.01 8-12014 < 0.1 < 1 < 0.01 < 0.01 ++++ 25.40 25.4-28.7m, grey is partiy skarnized with cal.limo 254 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 8-12015 8.2 27.0 **CO1** < 0.01 < 0.01 8-12018 < 1 < 0.01 < 0.01 28.70 28.7-33.0m, grey ss with st bands, py 28.7-30.2m, frac zone 28.7

ş 33.0 < 0.1 < 1 < 0.01 < 0.01 < 0.01 < 0.01 8-12013 34.0 35 0 8-12018 < 0.i < 1 < 0.01 < 0.01 < 0.01 < 0.01

40

-30

A-14

1/200

0

10

|                  | MJ                   | UE           | GEOLOGIC C                                                                                                       |              | <u>100</u> a  |              |     | Leve<br>X<br>Y | 68, 656.<br>92, 261. | 8 m ⊖i<br>57m In<br>07m Le | rection<br>clination<br>ngth | 200<br>\$25" W<br>1 -80"<br>194. Om |
|------------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------|-----|----------------|----------------------|----------------------------|------------------------------|-------------------------------------|
|                  | LITHO-LOGY           | DEPTH<br>(m) | DESCRIPTIONS                                                                                                     | DEPT)<br>(m) | SAMPLE<br>No. | Au(g/t)      | T   | ASSAY<br>Cu(%) | RESULT<br>As(%)      |                            | WO3(%)                       | LAB.<br>TEST                        |
| 50-              |                      |              |                                                                                                                  |              |               |              |     |                |                      |                            |                              |                                     |
| 52-              |                      |              |                                                                                                                  |              |               |              |     |                |                      |                            |                              |                                     |
| 54-              |                      | 33.32        | 53.4-68.4m.grey is with si bands<br>and cal veinlets                                                             |              |               |              |     |                |                      |                            | i i                          |                                     |
| 56-              |                      | 56.50        |                                                                                                                  |              |               |              |     |                |                      |                            |                              |                                     |
|                  |                      | 57.30        | 56, 5-57, 3m, frac. zone                                                                                         |              |               |              |     |                |                      |                            |                              |                                     |
| 58-              |                      |              | 25                                                                                                               |              |               |              |     |                |                      |                            |                              |                                     |
| 60-              |                      |              |                                                                                                                  |              |               |              |     |                |                      |                            |                              |                                     |
| 62-              |                      |              | X                                                                                                                |              |               | -            |     |                |                      |                            |                              |                                     |
| 64-              |                      |              | 40                                                                                                               |              |               |              |     | F              |                      |                            |                              |                                     |
|                  |                      |              |                                                                                                                  |              |               |              |     | l              |                      |                            |                              |                                     |
| -66              |                      |              |                                                                                                                  |              |               |              |     |                |                      |                            |                              |                                     |
| 68-              |                      |              | 68.2m, cal vein, 20<br>68.4-72.0m, silici, partly skarnized                                                      | 63.4         |               |              |     |                |                      |                            |                              |                                     |
| 70-              | • \$ -#<br>#<br>\$ # |              | 20 ss with cal                                                                                                   | 70.0         | 8-12015       | i            | < 1 | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 72-              | *<br>* *             | 71.70        | 71.6m, cal v.w=tcm,40°<br>3,71.7-72.0m, frac zone                                                                | 72.0         | 8-12020       | < 0.1        | <1  | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
|                  | 5                    |              | <ul> <li>71.7-72.0m, frac zone</li> <li>10 72.0-75.4m, dk grey ss with si<br/>bands, partly skarnized</li> </ul> | 73.5         | 8-12021       | < 0.1        | <1  | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       | B-1213<br>T                         |
| . <sup>74-</sup> |                      |              |                                                                                                                  | 75.4         | 8-12022       | < 0.1        | <1  | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 76-              |                      | 17.20        | 75.4-77.2m, skarnized is with py,<br>wo, cal.rhodo                                                               |              | 8-12023       | <b>く</b> 0.1 | <1  | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 78-              | ***                  |              | 17.0-78.4m, frac zone<br>\ 77.2-80.4m, dk grey alt(ss>sl)<br>10 with cal veinlets                                | 77.2         |               |              |     |                |                      |                            |                              |                                     |
| 80-              |                      | 80.40        |                                                                                                                  | :<br>80.4    |               |              |     |                |                      |                            |                              |                                     |
| 82-              |                      |              | 80.4-88.2m, grey is.partly<br>skarnized(wo,act)                                                                  | 82.0         | B-12024       | < 0.1        | 1.8 | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 04               |                      |              |                                                                                                                  |              | 8-12025       | < 0.1        | k i | 0.01           | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 84-              |                      |              |                                                                                                                  | 84.0         | 8-12026       | < 0.1        | <1  | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 86-              |                      |              |                                                                                                                  | 85.5         | B-12027       | < 0.1        | 1   | < 0.01         | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 88-              |                      | 88.20        | 88. 1m, cal. rhodo v. w=1cm, 10°                                                                                 | 87.0         | B-12028       | < 0.1        | <1  | 0.01           | < 0.01               | < 0.01                     | < 0.01                       |                                     |
| 90-              | -++<br>              | -            | <ul> <li>88.2-107.7m, dk grey ss with by &amp; s</li> <li>bands, silici. &amp; partly skarnized</li> </ul>       |              |               |              |     |                |                      |                            |                              |                                     |
|                  | **                   |              | A                                                                                                                |              |               |              |     |                |                      |                            |                              |                                     |
| 92-              |                      |              | λ91.6m.side v.w=0.7cm<br>40                                                                                      |              | 1             |              |     |                |                      |                            |                              |                                     |
| 94-              | • #• • •             |              | 01 8m ant u w-0 5 40                                                                                             | · .          |               |              |     |                |                      |                            |                              |                                     |
| 96-              |                      | (            | 94. 8m, cali v, w=0, 5cm, 40°                                                                                    |              | · ·           |              |     |                |                      | 1                          |                              |                                     |

|        |                                |                  | GEOLOGICC                                                               | OKF            | : L(               | DG OI   | F MJ              | UB1              | 2(3/                 | 4)               | 1/                                      | 200                   |              |
|--------|--------------------------------|------------------|-------------------------------------------------------------------------|----------------|--------------------|---------|-------------------|------------------|----------------------|------------------|-----------------------------------------|-----------------------|--------------|
| а.     | MJ                             | Ú                | 3-12(3/4) 100 m                                                         | ~              | <u>150</u> r       | n       |                   | Levi<br>X<br>Y   | 68, 656,<br>92, 261, | 57m 🔆 In         | rection<br>clination<br>ngth            | \$25<br>n80<br>194. 0 | •            |
|        | LITHO-<br>LOGY                 | DEPT)<br>(m)     | DESCRIPTIONS                                                            | DEPT}<br>(m)   | ISANPLE<br>No.:    | Au(a/t) | Ag(g/t)           | AS\$AY           | RESUL                | Mo(%)            | WO3(%)                                  | LAB<br>TEST           |              |
| ~      |                                |                  | dk grey ss with py & sl bands,                                          |                |                    |         | 1.6.6. 07         | Vu(///           | 113(10)              |                  | ee03(///                                |                       | +1           |
|        | ***                            | 101_76           |                                                                         |                |                    |         |                   |                  |                      |                  |                                         |                       |              |
| 2-     | ++ · s<br>\$ : ++              | 102.00           | 101. F 102. UN, IFBU 2010                                               |                |                    | · · · · |                   |                  |                      |                  | · · · · :                               |                       | F            |
| 4      | 4 . 5 .                        |                  | :<br>-                                                                  |                | i i                | Д       |                   |                  |                      |                  |                                         |                       |              |
|        | 4 5                            |                  |                                                                         |                |                    | 1       |                   |                  |                      |                  |                                         |                       | ſ            |
| 6-     | <u>+- 5</u>                    |                  | 105.8m, cal v, w=4cm, 20°                                               |                |                    |         |                   |                  |                      |                  |                                         |                       |              |
|        |                                | :                | 20                                                                      |                |                    | :       | 1.1               |                  | · · ·                |                  |                                         |                       |              |
|        | 5 -1                           | 392.70           | 10 .                                                                    | 107.7          |                    |         |                   |                  |                      |                  |                                         |                       | Ļ            |
|        | ++ · \$ ·<br>_\$ · ++ :        |                  | 107.7-135.0m, greensih grey alt<br>(ss>>sl)silici. & skarnized, with    | ÷.             | 8-12029            | < 0.1   | < 1               | < 0.01           | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
| 0-     | # 5<br>5 • #                   |                  | py(abundant), rhodo                                                     | 110.0          |                    |         |                   | ·                |                      |                  |                                         |                       | -            |
| ÷      | 5 #                            | ÷.,              |                                                                         |                | 8-12030            | < 0.1   | < 1               | < 0.01           | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
| 2-     | \$ (+)-/<br>+)- \$             |                  | 15                                                                      | 112.0          |                    |         |                   | ·····            |                      |                  | -                                       | 1.1.1                 | F            |
|        | <u>5 · + ·</u><br>+ · 5 ·      |                  | 15                                                                      | 1              | 8-12031            | < 0.1   | <1                | < 0.01           | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
| 4      | \$ • # ·<br>#•• \$ ·           |                  |                                                                         | 114.0          | 8-12032            | < 0.1   | <1                | 0.01             | < 0.01               | < 0.01           | < 0.01                                  |                       | F            |
| 5-1.   | \$ -#<br># • \$                |                  |                                                                         | 115.5          | }                  |         |                   |                  |                      |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | :                     |              |
| Ē      | +                              | 117.00           | 117, 0-121, Om, silici, skarnized                                       | 117.0          | 8-12033            |         | < 1               | 0.01             | < 0.01               | < 0.01           | < 0.01                                  |                       | ſ            |
|        | ∦ \$ <del>1 </del><br>\$ ++ \$ |                  | metaso, with druesy qz, cal, py                                         |                | 8-12034            | < 0.1   | <1                | 0.01             | < 0.01               | < 0.01           | < 0.01                                  |                       | Ļ            |
|        | * \$ *<br>\$ ++ \$             |                  | λ 119. On, gz. v, w≃1cm, 5*                                             | 119.0          | 8-12035            | < 0.1   | <1                | 0.01             | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
|        | <b># \$ -</b> ₩_               |                  | 5<br>119.8m, cal, side v, w=1.5cm, 20"                                  |                | 10-12030           | I S V.I | <1                | < 0.01           | < 0.01               | < 0.01           | < 0.01                                  |                       | ŀ            |
| Ē      | \$ <del>+</del> \$             | 121.00           | 28                                                                      | 121.0          | 8-12037            | < 0.1   | < 1.              | 0.01             | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
| - 1-   | + s<br>s +                     |                  |                                                                         |                | B-12038            |         | - < i             | 0.01             | < 0.01               | < 0.01           | < 0.01                                  | ·                     | -            |
|        | #<br>                          |                  |                                                                         | 123.0          |                    | ·       |                   |                  | ·                    | ·                |                                         |                       |              |
|        | * * *                          |                  |                                                                         |                | ::                 | •       |                   |                  |                      |                  |                                         |                       | F            |
| j      |                                |                  |                                                                         |                |                    |         |                   |                  |                      |                  |                                         |                       |              |
| ;<br>ج | \$ #                           |                  |                                                                         |                | . :                |         |                   |                  |                      |                  | ×.                                      |                       | Ē            |
| , l    | \$ <del> </del>                |                  |                                                                         |                |                    |         |                   |                  |                      |                  |                                         |                       |              |
| ŀ      | \$ #<br>+ \$                   |                  |                                                                         |                |                    | 1       |                   |                  | :                    |                  |                                         |                       |              |
| H      | + 5                            | ÷.,              |                                                                         |                |                    |         |                   |                  |                      |                  |                                         | :                     | -1           |
| Ē      | \$ +<br>+ \$                   |                  |                                                                         |                |                    | :       |                   |                  |                      |                  |                                         |                       |              |
|        | <u>, </u>                      | 131.80<br>132.30 | 131.8-132.3m, pinkish brown syeno-dt                                    |                | :<br>              |         |                   |                  |                      |                  |                                         |                       | ┝            |
| :      | * *                            | •                |                                                                         |                |                    |         |                   |                  |                      |                  | 1.1.100                                 |                       |              |
| 1      | # \$<br>\$•₩                   | 135,00           |                                                                         |                |                    |         |                   | ÷.               | 1 A A                |                  |                                         |                       | ŀ            |
| ľ      | 5                              | < ≈≭•,¥%         | 135.0-140. Im, brownish green skarn<br>with py, cp, ma                  | 135.0          | 8-12039            | 0.4     | <1                | 0.02             | 0.06                 | < 0.01           | < 0.01                                  |                       |              |
| -      | 5 S<br>5                       |                  |                                                                         | 136.0<br>137.0 | B-12040            | 0.4     | < 1               | 0.03             | 0.02                 | < 0.01           | < 0.01                                  |                       | ľ            |
|        | 5 5                            |                  |                                                                         | 138.0          | B-12041            | < 0.1   | < 1               | 0.04             | 2.5                  | < 0.01           | < 0.01                                  | 0-125                 |              |
| Т      | 55<br>555                      |                  |                                                                         | 139.0          | B-12042            | 0.1     | < 1               | 0.02             | 03                   | < 0.01           | < 0.01                                  | 8-12L5<br>P, X        | 136          |
|        | <u> </u>                       | 140.10           | 139. 5m. py. 5*                                                         | 140.1          | B-12043            | < 0.1   | <1                | 0.01             | 2                    | < 0.01           | < 0.01                                  |                       | -1           |
| •      | \$ #<br># \$                   |                  | s<br>140. 1-141, 8m, greenish grey alt                                  |                | 8-12044            | < 0.1   | ×1                | 0.01             | 0.14                 | < 0.01           | < 0.01                                  | •                     | 1            |
|        | <u>, +</u><br>+ +              | 111.80           | (ss>>sl), silici, and skarnized<br>141, 8-146. 9m, white silici, metaso | 141.8          | 0.00.00            |         |                   |                  |                      |                  |                                         | 8-126                 | <u> </u>     |
|        | *<br>* *                       | 1                | with py, ma<br>\142.8m, fault clay, w=2.5cm, 20                         | 143.0          | 8-12045<br>8-12046 | 0.1     | <pre>&lt;1 </pre> | < 0.01<br>< 0.01 | 0.14                 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01                        | P                     | 1:43         |
| -      | 1-=-X-                         |                  | 20                                                                      | 144.0          | 8-12047            | < 0.1   | - <u></u>         | < 0.01           | 0.93                 | < 0.01           | < 0.01                                  |                       | $\mathbf{F}$ |
|        | ++ _++<br>-+-                  |                  | λ144. 3m, syeno-dt ∨, w=2cm, 5'<br>5                                    | 145.0          | 8-12048            | < 0.1   | $-\frac{1}{1}$    | < 0.01           | < 0.01               | < 0.01           | < 0.01                                  |                       |              |
| 5      | + <b>⊢</b> _+ <b>↓</b>         | 116.90           |                                                                         | 146.0          | B-12049            | < 0.1   | <1                | < 0.01           | 0.06                 | < 0.01           | < 0.01                                  |                       | }-           |
| E      |                                |                  | 146.9-152.8m,dk grey dt<br>147.1-153.8m,frac zone                       | 146.9          |                    |         |                   |                  |                      |                  |                                         |                       |              |
| . I A  | - スーパート                        |                  | 148.0-148.7m.granite                                                    | 1              |                    |         |                   |                  |                      |                  | 100 B                                   |                       | 1            |
|        | ţXX;                           | 148.70           | 147,1-133.0m,17ac zona<br>148.0-148.7m,granite                          |                |                    | 1       |                   |                  |                      |                  |                                         |                       | 1            |

000 10 10 10 10/0/1 0.0010 Á

|         | 1./          | M                         | UUE                | 3-12                               |                     |         | IC C |              |                 |         | . 1         |       | 1 243, 3<br>68, 656<br>92, 261. |    | rection<br>clination<br>ngth                                                                                    | \$25'¥<br>n -80'<br>194,0r | ł        |
|---------|--------------|---------------------------|--------------------|------------------------------------|---------------------|---------|------|--------------|-----------------|---------|-------------|-------|---------------------------------|----|-----------------------------------------------------------------------------------------------------------------|----------------------------|----------|
| •       |              | LITHO-<br>LOGY            | DEPTI<br>(m)       | Ď                                  | ESCRI               | PTION   | S    | 0EP1)<br>(m) | ISAMPLI<br>No.  | Au(g/t) |             | ASSAY | RESULI<br>As(%)                 | ſ  | WO <sub>3</sub> (%)                                                                                             | LAB.                       | ]        |
| 1       | 50-          |                           |                    | dk erey d                          | lt .                |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | - 150    |
| 1       | 52-          |                           | 152.8              | 9<br>152, 8-194                    | L <b>Om, syer</b> k | o-dt    |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| Ŗ       | 54-          | $\chi$                    | 153.8              | 0<br>154. Om, jo                   | oint with           | py, 15' |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | <u>.</u> |
| 1       | 56-          | $\mathbf{x}_{\mathbf{y}}$ |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| Ľ       | 58-          |                           | 158. Q             | 2<br>158.0-158                     | .5m.frac            | zone    |      | ÷            |                 |         |             |       |                                 |    |                                                                                                                 |                            |          |
| 10      | 60-          |                           |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -160     |
| 10      | 62-          |                           | 162. 00<br>162. 50 | § 162. 0- t62                      | l. Sm, frac         | zone    |      |              |                 |         |             |       | н<br>1 - А                      |    |                                                                                                                 |                            | -        |
| 10      | 64-          | ^<br>۱                    |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 16      | 66-          | <u>ک</u>                  | 165.50             |                                    |                     |         |      |              |                 |         |             |       |                                 |    | -                                                                                                               |                            | -        |
| 16      | 68-          | ₩Ĵ                        | 167.6              | [166. 5-167                        | . 6m, frac          | zone    |      |              | :               |         |             | :*    |                                 | ÷. |                                                                                                                 |                            | _        |
|         | 70-          | ∖`<br>_`\                 | 170.10             |                                    |                     |         |      |              | 1.1             |         |             |       |                                 |    | -                                                                                                               | at s                       |          |
| -       | 72-          | ×                         |                    | 170. 1-172<br>Joint wi             |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 | B-1217                     | -170     |
| · 1.    | /2-          | <u>~</u>                  | 17240              | 20                                 |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 1       |              | الا<br>ب ال               | 1.5                |                                    | : '                 |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 1)<br>} | 76-          | አ<br>_                    |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 1       | 78-          | X<br>X                    | <br>  23-26        | 179.0-179                          | . 4m, frac          | zone    |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 18      | 30-          | х<br>  Х                  |                    |                                    |                     | . :     |      | ::           | 1               |         |             |       |                                 |    |                                                                                                                 |                            | -180     |
| 18      | 32-          | 2000<br>V                 | 182, 50<br>183, 00 | 182. 5-183                         | . Om, frac          | zone    |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -<br>-   |
| 18      | 34-          | <u>^</u> بر               |                    |                                    |                     |         |      |              | :               |         |             |       |                                 |    |                                                                                                                 |                            |          |
| 18      | 36-          | ал.<br>Т                  |                    |                                    |                     |         |      |              | a <sup>1</sup>  |         |             |       |                                 |    |                                                                                                                 |                            |          |
| 18      | 3 <b>8</b> - | <u>َ</u> ک                |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
| 19      | )o-          |                           |                    |                                    |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -190     |
| 19      | )<br>2-1     | zzd                       | 131-88             | 191.6-192<br>192.2m c              | . Om, frac          | žone    |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            | -        |
|         | } <b>4</b>   | ۲.                        | - 4 L              | 3, 192. 2m, c<br>50<br>194. On, Bo |                     |         |      |              |                 |         |             |       |                                 |    |                                                                                                                 |                            |          |
|         | )6-          |                           |                    |                                    | · · ·               | · ·     |      |              |                 |         |             |       |                                 |    | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                            | <br>L.   |
| ,       |              | ·<br>· .                  |                    |                                    |                     |         |      | 10<br>1      | 8-3<br>- 54<br> |         | •<br>•<br>: |       |                                 |    | :<br>                                                                                                           |                            | -        |
| 19      | 8-           |                           |                    |                                    |                     |         | 5    |              |                 |         | 1.<br>1     | · ·   | :                               | ý  |                                                                                                                 |                            | -<br>;   |

#### GEOLOGIC CORE LOG OF MJUB-13 (1/2)

1/200

Direction S20 W Level 234.04m Inclination --80 Length 100.0m 68, 295, 81m 93, 132, 81m MJUB-13 (1/2) 0 m~ X Y 50 m Length ASSAY RESULT DEPTH SAMPLE LA8. LI THO-DEPTI **DESCRIPTIONS** LOGY (m) No. Au(g/t) Ag(g/t) Cu(%) As(%) Mo(%) WO3(%) TEST (m) 0-٠n Ш Q-2.5m, brownish grey sand with peobles 2 2.5 2.5-4.0m, brownish grey storongly 4.0 weatered silici ss with limo 4.0-6.0m, brownish grey weatered ss Ī. Č. 4 6 X 8-8.1-10.7m, dk grey ss with limo 10 10.7 11.2 (0.7-11.2m, grey limey s) 11.2 with cal & limo 11.0-13.0m, imp with limo 10 12 13.0 13.0-13.7m, grey Is 13.7-19.8m, greenish grey imp 14 13.7-19.00, greensn grey m. with timo 15.3 13.7-15.3m, frac zone 15.3 14.7-15.8m, greensh grey 25. sitci Inp with timo 15.8-17.0m, frac zone 15.8-19.8m, greenish grey Imp 16 XXX 18-۷ V <u>19.8</u> 19.8-23.0m, silici lmp(?) with limo 19.8 -20 20 V-#-V 0.5 <1 0.02 < 0.01 < 0.01 < 0.01 8-1301 #-V # 21.Ò 22.0 B-1302 0.2 < 0.01 **< 0.01** <1 0.03 < 0.01 V + V 22--**∦- V** -⊮-23.0 B-1303 < 0.1 1.8 0.02 < 0.01 < 0.01 < 0.01 23.0 23.0-23.1m syeno-dt 5 23, 1-28, 5m, greenish grey silici 358 skarnized metaso qz, cal veinlets, py, limo 15 -)) 24 < 0.1 < 1 < 0.01 8-1304 0.02 < 0.01 < 0.01 -#]-. s 25.0 4 # 5 26-B-1305 0.3 **č**1 0.03 < 0.01 < 0.01 < 0.01 \$ -# 4 \$ -H-27.0 < 1 < 0.01 < 0.01 < 0.1 0.02 < 0.01 28-8-1306 -11-5 28.6 28.6-39.5m, dk grey ait (ss>>si) with oy, qz. cal veinlets silici & partly skarnized 28.6 5 # 5 -11-< 0.1 <1 0.02 < 0.01 < 0.01 < 0.01 8-1307 30 30.0 30 -# -11-< 0.1 <1 0.02 < 0.01 < 0.01 < 0.01 8-1308 - 5 ġī.Š 32-븝 -# < 0.1 < 0.01 < 0.01 <1 0.02 < 0.01 8-1309 33.0 33.0 3) 5 33.0-33.6m. gr. cal v. with py 25) 33.6-39.5m, dk grey alt (ss>>sl) with py, qz, cal 34 5 B-13010 < 0.1 <1 0.02 < 0.01 < 0.01 < 0.01 \* 35.0 -++-36 < 0.01 < 0.01 5 B-13011 < 0.1 <1 0.01 < 0.01 # 37.0 ₩ \_\_\_\_\_\_\_ 38 < 0.01 0.1 < 1 < 0.01 < 0.01 < 0.01 B-13012 -hŝ -39.5 39.5 39.5-42.5m, qz, cal v. brecciated 40.5 8-13013 40 2.8 < 1 < 0.01 < 0.01 < 0.01 < 0.01 40 B-13L1 A 41. 5m, fissure 25" < <u>0.01</u> 21 1.6 Č 0.01 Č 0.01 < 0.01 8-13014 415 42-8-13015 < 0.1 <1 < 0.01 < 0.01 < 0.01 < 0.01 12.5 42.5 35 42, 5-44, On, grey is with call v. 35 42, 6-42, Su, po 43, 5-43, 7m, po < 0.1 <1 0.02 < 0.01 < 0.01 < 0.01 6-13015 44.0 44 440 45.0 44.0-44.5m, dk grey silici metaso 44.5-45.0m, qz v. 45.0-47.8m, silici alt (ss>>sl) 45.0 8-1301 < 0.01 <u>< 0.01</u> <u>< 0.01</u> <u>< 0.1</u> <u>< 1</u> 0.03 8-13L2 .5 5 < 0.01 8-13018 < 0.1 <1 0.02 < 0.01 < 0.01 45.1 with py 48, 1-46, 7m, gz (cal) v. with py 48, 7-47, 8m, frac zone 46 46.1 46.7 < 0.1 < 1 < 0.01 < 0.01 く 0.01 < 0.01 8-13019 42.4. 45. 7-47. cm, 1100 Long 47. 8-50. 8m, grey 1s with cat Ŷ 47.8 48 < 0.1 1 ï < 0.01 < 0.01 8-13020 <1 < 0.01 < 0.01 49.0 1 < 0.1 2.4 < 0.01 < 0.01 50 0 8-13021 < 0.01 < 0.01 50

# GEOLOGIC CORE LOG OF MJUB-13 (2/2)

1/200

| ۰  |                 | MJ               | UE        | 3-13 (2/2) 50 m ~                                                                    | <u> </u> | <u>00</u> m             |                                               |                   | Le<br>X<br>Y   | vel 234<br>68, 295<br>93, 132 | 81m In    | rection<br>clination<br>ngth |             |            |
|----|-----------------|------------------|-----------|--------------------------------------------------------------------------------------|----------|-------------------------|-----------------------------------------------|-------------------|----------------|-------------------------------|-----------|------------------------------|-------------|------------|
|    |                 | LITHO-           | DEPTH     |                                                                                      | OFPTS    | SAMPL                   |                                               |                   | ASSAY          | RESUL                         | 1         |                              | LAB,        |            |
|    | .:<br>          | LOGY             | (ന)       | DESCRIPTIONS                                                                         | (m)      | No.                     |                                               | Ag(g/t)           | Cu(%)          | As(%)                         | Mo(%)     | WO3(%)                       | TEST        |            |
| -  | 50-             | 1.1.             | 50.8      | 50, 8-51, 3mbrecclated qz v.                                                         | 1 100    | 8-13022                 | 1                                             | <1                | < 0.01         | < 0.01                        | < 0.01    | < 0.01                       |             | -50        |
| ·  |                 | + +              | 51.3      | 51, 3-51, 9m, silisci ss with py                                                     | 50.8     | 8-13023                 |                                               | <1                | 0.02           | 0.06                          | 0.06      | 0.05                         |             |            |
|    | 52-             |                  | 52.3      | 51.9-51.3m, gz (cal) v, with py                                                      | 52.3     |                         |                                               |                   | 0.02           | 0.00                          | 0.00      | 0.03                         |             | •          |
|    |                 | 5 . 5            | 53.0      | A 53.0-53.7m, skárn (wo)<br>33 53.0-53.1m, frác zone with py                         |          | B-13024                 | < 0.1°                                        | <1                | 0.02           | 0.03                          | < 0.01    | 0.01                         |             |            |
|    | 54-             | <b>T</b> T       |           | 53.7-63.7m, grey is partly skarnized (wo) with call v.                               | 53.7     |                         |                                               |                   | <u> </u>       |                               | ]         |                              |             | -          |
|    | ÷               | TET.             |           | 55.0m, frac zone with clay (w=5cm)                                                   |          | 1.1                     |                                               |                   |                |                               |           |                              |             |            |
|    | 56-             |                  |           |                                                                                      |          |                         | 1                                             |                   |                |                               |           |                              |             | -          |
|    |                 | I.I.             |           |                                                                                      |          |                         | 1                                             |                   |                |                               |           |                              |             |            |
|    | -<br>58-        |                  |           |                                                                                      |          |                         |                                               | :                 |                |                               |           |                              |             | -          |
|    |                 | 1[               |           | 59.0m. fault clay w = 5cm                                                            |          |                         |                                               |                   | · .            |                               | •         |                              |             |            |
|    | 60-             |                  |           |                                                                                      |          |                         |                                               |                   |                |                               |           |                              |             |            |
|    |                 | τţτ              |           |                                                                                      | ł        |                         |                                               |                   |                |                               |           |                              |             | - 60       |
|    | ~~              | i tirt           | :         |                                                                                      | ľ        | . •                     |                                               |                   |                |                               |           |                              | :           |            |
|    | <del>6</del> 2- |                  |           |                                                                                      |          |                         |                                               |                   |                |                               |           | ·                            |             | -          |
|    |                 |                  | 63.2      |                                                                                      | 63.7     |                         |                                               |                   | :              |                               |           |                              |             |            |
|    | 64-             | 5 5 5<br>5 5     | 65. O     | 63.7-65.0m, greenish grey<br>silici metaso                                           | 1 1      | B-13025                 | < 0.1                                         | · <1              | < 0.01         | 0.04                          | < 0.01    | < 0.01                       |             | L          |
|    |                 | ++ ++-           | 65.8      | 65.065.8m, grey silici meta                                                          | 65.0     | · · · ·                 |                                               |                   |                |                               | · · · · · | l                            |             |            |
|    | 66-             |                  |           | 65.866.4m, syeno-dt                                                                  | 66.4     | 8-13026                 | < 0.1                                         | 2.8               | < 0.01         | < 0.01                        | < 0.01    | < 0.01                       |             | -          |
|    |                 |                  | 66.3      | 66.3m. gz v. w = 4cm                                                                 |          | 8-13027                 | < 0.1                                         | . <1              | < 0.01         | 0.03                          | < 0.01    | 0.01                         |             |            |
|    | 68-             |                  | 87.9      | A <sup>15</sup> 56. 4-67. 9m, gz v.<br>A <sup>59</sup> 67. 9-74. Om, grey silici alt | 67.9     | ]                       |                                               |                   |                |                               |           |                              | 5 E         | -          |
|    |                 | #<br>#<br>#<br># |           | 83 (ss>>sl) with qz v.                                                               |          |                         |                                               |                   |                | 1                             |           |                              |             |            |
|    | 70-             |                  |           |                                                                                      |          |                         |                                               |                   |                | · .                           | a se      |                              |             | -70        |
|    |                 | 1746 <b>-</b> 1  |           |                                                                                      |          |                         |                                               |                   |                |                               |           | i                            | н<br>1. Э   |            |
|    | 72-             | £                |           |                                                                                      |          |                         |                                               |                   |                |                               | · · · ·   | • .                          |             |            |
|    |                 | _₩<br>_₩₩_       |           | 35                                                                                   |          |                         | 1                                             | +                 |                |                               | 1.        |                              |             |            |
|    | 74-             | _₽?*             | 74.Q      | 74.0-82.5m, grey is partly                                                           | 74.0     | · · · · · · · · · · · · | · ·                                           |                   |                |                               |           |                              |             | <b>-</b> . |
|    |                 |                  |           | skarnized (wo)                                                                       | . :      | 8-13028                 | 0.1                                           | <11               | < 0.01         | < 0.01                        | < 0.01    | < 0.01                       |             | 1.1.1      |
|    | 76-             |                  |           | 1                                                                                    | 75.5     | 1 A A A                 |                                               |                   |                |                               |           |                              |             | <u>.</u>   |
|    |                 | ŢŧŢ              | •         |                                                                                      | 77.0     | 8-13029                 | < 0.1                                         | <1                | < 0.01         | < 0.01                        | < 0.01    | < 0.01                       | - 11<br>1   | ÷ .        |
|    | 78              |                  |           |                                                                                      |          | 1 A .                   |                                               |                   |                |                               |           |                              |             | :          |
|    | ••              |                  | 79.0      |                                                                                      | 79.0     | 8-13030                 | < 0.1                                         | _ <b>; &lt; 1</b> | < 0.01         | 0.02                          | < 0.01    | < 0.01                       |             | 1.1        |
|    | 80-             | とん               | - 141<br> | 79.0-80.4m, frac zone with clay                                                      |          | 8-13031                 | 0.3                                           | <sup></sup> <1    | < 0.01         | 0.02                          | < 0.01    | < 0.01                       |             |            |
|    |                 | L J              | 80.4      |                                                                                      | 80.4     | 0 1000                  | 0.0                                           |                   |                | 0.02                          | <u> </u>  | <b>V 0.01</b>                | B-13L4      | -80        |
|    |                 |                  | 1         |                                                                                      |          | 8-13032                 | 0.3                                           | < 1 -             | < 0.01         | < 0.01                        | < 0.01    | K 0.01                       |             |            |
|    | 82-             | <u>L</u>         | 82.5      | 82.5-82.8m, frac zone with clay                                                      | 82.8     | 0 10002                 | V.J                                           |                   | <b>V U U I</b> | 10.01                         | × 0.01    |                              |             | - :        |
|    |                 | 신신               | 82.8      |                                                                                      | 1.1      | 0.10010                 | 201                                           |                   | 2001           |                               | 1001      | 4001                         | 8-1315      | 81.5       |
|    | 84-             | 스치               | 84.7      | 84.7-84.9m, qz v.<br>84.9-85.4m gray se                                              | 84.7     | 8-13033                 | < 0.1                                         | <1                | < 0.01         | < 0.01                        | < 0.01    | < 0.01                       | N S         | •          |
|    |                 |                  | 86.9      | 84. 9-85. 4m, grey ss<br>85. 4-81. 0m, gr y,                                         | 04.7     | 8-13034                 | < 0.1                                         | · <1              | < 0.01         | 0.03                          | < 0.01    | < 0.01                       | 1.35        |            |
| 1  | 86-             |                  |           |                                                                                      | 86.0     | B-13035                 | 0.1                                           | <1                | < 0.01         | 0.03                          | < 0.01    | < 0.01                       |             | -          |
|    |                 |                  | 11        | 87.0-87.4m, sk grey ss<br>87.4-87.6m, py, ma v.<br>87.5-87.9m, qz v.                 | 87.0     |                         |                                               | <1                | 0.02           | 0.03                          | < 0.01    |                              | B-1316      | A7 5       |
| 1  | 88-             |                  | 21.2      | 87.5~87.9m, ož v.<br>87.9~87.91.7m, alt (ss>sl).                                     | 87.9     | <b>B-13</b> 036         |                                               |                   | 0.02           | 0.02                          |           |                              | 8           | -          |
|    |                 |                  | 89 7      |                                                                                      | .:       | 8-13037                 | 0.2                                           | <1                | < 0.01         | 0.02                          | < 0.01    | < 0.01                       |             | ••         |
|    | 90-             |                  | 1         | 89.7-91.0m, qz v.                                                                    | 89.7     | 8-13038                 | < 0.1                                         | 1.6               | 0.02           | 0.021                         | < 0.01    | 2001                         | 8-13L7<br>F | -90        |
|    |                 |                  | <u>.</u>  |                                                                                      | 91.0     | 0 10000                 | <b>, , , , , , , , , , , , , , , , , , , </b> |                   | 0.02           | 0.021                         | 10.01     | < 0.01                       |             |            |
| į  | 92-             |                  | 91.7      | 91. 7-100. On syeno-dt                                                               |          |                         |                                               |                   |                |                               |           |                              |             | - 3        |
|    |                 | 귀쉬               |           |                                                                                      |          |                         |                                               |                   |                |                               | - 14<br>  |                              |             |            |
|    | 94-             | 읐싔               | 95.0      | 94.0-95.6m, frac zone                                                                |          |                         |                                               |                   |                | 1 N F                         |           |                              |             | -          |
|    | Ì               | $\otimes$        |           |                                                                                      |          |                         |                                               |                   |                | 1                             |           |                              |             |            |
| •  | 96-             |                  | 38:8      | 96. O-96. 1m, ss                                                                     |          | 1 A.                    |                                               |                   |                |                               |           |                              |             | •          |
|    |                 | 치지               | 96.1      |                                                                                      |          |                         |                                               |                   |                | :                             | :         |                              |             |            |
|    | 38-             | 지지               |           | <b>}</b>                                                                             |          |                         |                                               |                   |                |                               | . :       |                              |             |            |
|    | ~               | XXX1             | 98.3      | <sup>5</sup> 93.3-99.0m, frac zone with clay                                         |          |                         | . [                                           |                   |                |                               |           |                              | i i         | -          |
| 10 |                 | <u>7 Y</u>       |           | 100.0 m, Bottm of the hote                                                           |          |                         | · · ·                                         |                   | :              |                               |           |                              |             | . 100      |
|    | ~-              |                  |           |                                                                                      |          | Α.                      | - 10                                          |                   |                | . <b></b>                     |           |                              |             | ·100       |

A-19

÷ .

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :            |                        |              | · ·             |          |                                | ·              |                             | ÷.                 | . ·             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|--------------|-----------------|----------|--------------------------------|----------------|-----------------------------|--------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 005          |                        |              |                 | in/.a    |                                |                |                             |                    |                 |
| GEOLOGIC C<br>MJUB-14 (1∕4) 0 m ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ORE<br>50    |                        | JG U         | - MJI           | Leve     | 1 235.02<br>58.332.39          | 2m Di<br>3m Lo | rection                     | n -80              | :               |
| LITHO-DEPTH DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTH<br>(m) | SANPLE                 | Autot        | Ag(g/t)         | ASSAY    | 93, 144, 74<br>RESULT<br>As(%) |                | ngth<br>WO <sub>3</sub> (%) | 161. On<br>LAB.    |                 |
| Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                        | VO(8/ (/     | <u>~8\8/ 1/</u> | 00(7)    | /15(//                         | 1/10(.47       | 1103(1)                     |                    | -0              |
| 2 20.0-4.0m, strongly weathered<br>silici alt (ss>>s1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0          | 8-1401                 | < 0.1        | <1              | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    |                 |
| 4 4.0-5.8m, weathered silici ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>4.0</b>   | 8-1402                 | < 0.1        |                 | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
| 6- 5.8 5.8-8.2m, frac zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1          | 8-1403                 | < 0.1        | < 1             | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | _               |
| 8 8.2<br>8 8.2<br>8 7 8.2-8.7m, sillci partly skarnized<br>V alt (ss>>s) with limo, py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5<br>8.7   | 8-1404                 | 0.1          | <u> </u>        | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
| 10-<br>V 10.5<br>10.5-17.6m, dk grey silici &<br>10.5-17.6m, dk grey silici &<br>partly skarnized ss with py, fimo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.5         | B-1405                 | < 0.1        | <br><1          | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      | <u>B-14L1</u><br>T | - 10<br>30. 3   |
| 12-14-15<br>12-14-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.5         |                        | · · · · ·    |                 | <u>.</u> |                                | <u> </u>       |                             |                    |                 |
| 14 $\frac{1}{10}$ joint with $qz w = 0.2cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.5         | 8-1406<br>8-1407       | < 0.1<br>0.2 | <1<br><1        | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0         | 8-1408                 | < 0.1        | <sup>™</sup> ≮1 | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
| 18- 4- 5<br>s - 4-<br>s - 4- 5<br>s - 4- 5 | 1 1          | B-1409                 | < 0.1        | < 1             | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
| 20- +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.5<br>21.5 | B-14010                | < 0.1        | < 1             | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -20             |
| 22-<br>***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 8-14011                | < 0.1        | < 1             | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -               |
| 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.2         | B-14012                | < 0.1        | ·<br><1         | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      | •                  |                 |
| 26-4 \$ 26.4<br>#-5<br>weakly skarnized with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.4         |                        |              |                 |          |                                |                |                             |                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ·                      |              | 1               |          |                                | 1              | · ·                         |                    | -               |
| 30-0-5 S 29.8-31.2m, greenish grey<br>s -0-<br>-0-5 S 11.2m, greenish grey<br>silici, skarnized (act) ss with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.8<br>31.2 | B-14013                | < 0.1        | <1              | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    | -30             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                        |              |                 |          |                                |                |                             |                    |                 |
| 34 5 m cal v. w=1cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | ÷.,                    |              |                 |          |                                |                |                             |                    | <b>.</b>        |
| 36 # # 31.2<br>W V 37.2 37.2-37.8m, greenish grey imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                        |              |                 |          |                                |                |                             |                    | -               |
| 38- 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                        |              |                 |          |                                |                |                             |                    | -               |
| AT 2m and y with an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | • •                    |              |                 |          |                                |                |                             |                    | <b>-40</b>      |
| 42-14. 42. 6<br>+ 42. 6 42. 8-44. 8n. greenish grey sitici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.8         |                        |              |                 |          |                                |                |                             |                    |                 |
| s the sharelized metaso with call act<br>44 - 45<br>$5 \pm 44.8$<br>V = V<br>with call v. py<br>with call v. py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 448          | B-14014                | < 0.1        | <1              | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    |                 |
| 46-V V 43.4 30<br>HE 5<br>46.4-65.7m, dk grey silici & partiy<br>skarnized ss with gz (cal) v. & py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.4         | B-14015<br><br>B-14016 | < 0.1<br>0.1 | <1<br><1        | < 0.01   | < 0.01<br>< 0.01               | < 0.01         | < 0.01                      |                    |                 |
| 48 49.07<br>48.0-49.5n, frac zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.0         | 8-14017                | < 0.1        | <1              | < 0.01   | < 0.01                         | < 0.01         | < 0.01                      |                    |                 |
| 50.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500          |                        |              |                 |          |                                | i              | 1                           | L                  | L <sub>50</sub> |

A---20

|     | <u>M</u> ,                              | JUE              | 3-14 (2/4) 50 m ~                                                         |              | <u>)0 m</u>        |                |           | Le<br>X<br>Y     | ++ (2./<br>ovel 235.<br>68, 332.<br>93, 144. | 02m 01<br>39m 1n<br>74m Le | rection<br>clination | 200<br>\$20° W<br>-80°<br>161, Oin | 1              |
|-----|-----------------------------------------|------------------|---------------------------------------------------------------------------|--------------|--------------------|----------------|-----------|------------------|----------------------------------------------|----------------------------|----------------------|------------------------------------|----------------|
|     | LOGY                                    | DEPJ<br>(m)      | DESCRIPTIONS                                                              | DEPT)<br>(m) | SAMPLE<br>No.      | Au(g/t)        | Ag(g/t)   | ASSAY<br>Cu(%)   | RESUL<br>As(%)                               | Mo(%)                      | WO3(%)               | LAB.<br>TEST                       |                |
| 50  | - 4+ · 8<br>+ +                         | 50.7             | 50.7m, py.wo v.w = 1-3cm                                                  | 50.0         | IB-14018           | < 0.1          | ·····     | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               | · <u> </u>                         | -50            |
| 52  | · # · 5                                 | 52.6             | so<br>52.6π, wo, py v.w ≂ 1−2cm                                           | 51.5         | B-14019            | < 0.1          | <1        | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    | -              |
| 54  | ·                                       |                  | 15 ver on, wo, py v. n - 1 ecos                                           | 53.4         |                    |                |           |                  |                                              |                            | <br>                 |                                    |                |
|     | + • • •                                 |                  |                                                                           |              |                    |                |           |                  |                                              |                            |                      |                                    |                |
| 56  | · · · · ·                               |                  |                                                                           |              |                    |                |           |                  |                                              |                            |                      |                                    |                |
| 58  |                                         |                  |                                                                           |              |                    |                |           |                  |                                              |                            |                      |                                    | ╞              |
| 60  | · · · · · · · · · · · · · · · · · · ·   |                  |                                                                           | 1 :          |                    |                |           |                  |                                              | 1                          |                      |                                    | -60            |
| 62  | <u># \$</u>                             |                  |                                                                           |              |                    |                |           | •                |                                              |                            |                      |                                    |                |
| ΰź  | • 5 • <del>  </del>                     |                  |                                                                           |              | ÷                  |                |           |                  |                                              |                            |                      |                                    |                |
| 64  | $\boxtimes$                             | 64.Q             | ou. unos, sm, trac zone                                                   |              |                    | :              |           |                  |                                              |                            |                      |                                    | -<br>          |
| 66  | Ŵ                                       | 65. <del>3</del> | 65. 7-68. 7m, frac zone                                                   |              |                    |                |           |                  |                                              |                            |                      |                                    | Ļ              |
| 68  | ····                                    |                  | 66.7-80.9m, grey silici & weakly<br>skarnized ss with py                  |              |                    |                |           |                  | ,                                            | •                          |                      |                                    |                |
|     | ·                                       |                  |                                                                           |              |                    |                |           |                  |                                              |                            |                      |                                    |                |
| 70  | ·····                                   |                  |                                                                           |              |                    |                |           | 14               |                                              |                            |                      |                                    | -70            |
| 72  | · + · · · · · · · · · · · · · · · · · · |                  |                                                                           |              |                    |                |           |                  |                                              |                            |                      |                                    |                |
| 74  | · <u>+</u> ·\$·                         |                  | 33, 73.1m, wo, side v, w = 0.5cm                                          |              |                    |                |           | ÷                |                                              |                            |                      |                                    |                |
| 76  | · · · · · · · · · · · · · · · · · · ·   |                  |                                                                           |              | i i                |                |           |                  |                                              |                            |                      |                                    |                |
| 10  | · · · · · · · · · · · · · · · · · · ·   |                  |                                                                           |              |                    |                |           | н<br>            |                                              |                            |                      |                                    |                |
| 78- |                                         |                  |                                                                           |              |                    |                |           |                  |                                              |                            | · 1                  |                                    |                |
| 60  |                                         | 60 B             | 80.5m, cal v. w = 1-1.5cm, 35"                                            |              |                    |                |           |                  |                                              | :<br>                      |                      |                                    | -80            |
| 82  | Ì₩,                                     | 82.2<br>82.3     | ps 80.9-81.7m, frac zone<br>81.7-82.3m, silici & skarnized                |              | 8-14020            | < 0.1          | 1 < 1 ·   | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    |                |
|     | V V<br>V                                | н у.             | metaso with py<br>82.63-85.4m, brownish grey Imp                          | 100.3        |                    |                | 1 ·       |                  |                                              | . *                        | ,<br>,               |                                    |                |
| 84- | - Y -                                   | 85.4             |                                                                           |              |                    |                |           |                  |                                              | · .                        |                      | 1. A.                              | - <sup>-</sup> |
| 86- | ¥ ¥<br># \$<br># #                      |                  | 85.4-89.3m, brownish grey silici &<br>skarnized metaso with cal.oz v.& py | 85.4<br>86.5 | B-14021            | < 0.1          | <1        | < 0.01           | < 0.01                                       | < 0.01                     |                      | <u>8-14</u> L2<br>P                | <b>13 4</b>    |
| 88- | ++ \$<br>++ *                           | 1.1              |                                                                           | 87.5         | B-14022<br>B-14023 | < 0.1<br>< 0.1 | <1<br><1  | < 0.01<br>< 0.01 | < 0.01<br>< 0.01                             | < 0.01                     | < 0.01<br>< 0.01     |                                    | Ļ              |
| 90- | 8 #<br># #                              | 89.3             | 89.3-90.0m, silici alt (ss>sl)<br>with oz veintets                        | 88.5<br>89.3 | <u>B-14024</u>     | < 0.1          | <u>(1</u> | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    |                |
| 20  |                                         | 31.0             | 90.8-91.0m oz v.<br>91.0-93.4m, alt (ls,sl,ss)                            | 91.0         | B-14025            | < 0.1          | 1.6       | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    | -90            |
| 92  |                                         |                  | with qz veiniets                                                          | :            | 8-14026            | < 0.1          | < 1       | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    |                |
| 94- |                                         | 93.4<br>94.8     | with py, qz veinlets                                                      | 93.4         | 8-14027            | 0.4            | < 1       | 0.05             | < 0.01                                       | 0.04                       | < 0.01               |                                    | :              |
| 96- | 10.00                                   | AP X             | 95.6-97.6m, frac zone with                                                | 95.0         | 8-14028            | < 0.1          | ·····     | 0.03             | < 0.01                                       | < 0.01                     | < 0.01               |                                    |                |
|     | $\bigotimes$                            | <u>}</u>         | white clay<br>96.0-99.0m, is with call veintets                           | 96.5         |                    | < 0.1          |           | < 0.01           | < 0.01                                       | < 0.01                     | < 0.01               |                                    |                |
| 98- | înî                                     | .98.0            | 98.0-100.0m, greenish grey Imp                                            | 98.0         |                    |                |           |                  | i                                            |                            |                      |                                    |                |
| 100 | v v                                     | l <u></u>        |                                                                           |              |                    |                |           |                  | ·                                            |                            |                      | ]                                  | 100            |

GEOLOGIC CORE LOG OF MJUB-14 (2/4) 1/200

|           |                                       |                         |                                                                                          | • .          |                                       |                 |                            |                 |                                  | :                 |                              |                       |          |
|-----------|---------------------------------------|-------------------------|------------------------------------------------------------------------------------------|--------------|---------------------------------------|-----------------|----------------------------|-----------------|----------------------------------|-------------------|------------------------------|-----------------------|----------|
| -         |                                       |                         | GEOLOGIC C                                                                               | ÓRÉ          | E LÒ                                  | DG OI           | r Mji                      | UB-1            | 4 (3/                            | 4)                | 1/                           | 200                   | ·        |
|           | MJ                                    | UE                      | 8-14 (3∕4) 100 m ~                                                                       | 15           | <u>iO m</u>                           |                 |                            | Le<br>X<br>Y    | vel 235.<br>68, 332.<br>93, 144. | 39m In            | rection<br>clination<br>ngth |                       | <b>)</b> |
| 100-      | LITHO-<br>LOGY                        | (m)                     | DESCRIPTIONS                                                                             | OEPTH<br>(m) | SAMPLE<br>No.                         | Au(g/t)         | Ag(g/t)                    | ASSAY<br>Cu(%)  | RESULT<br>As(%)                  | Mo(%)             | WO₃(%)                       | LAB.<br>TEST          | -100     |
| 100       | XXX                                   | 100.4<br>101.0<br>101.5 | 100.0-102.8m, silici partly<br>skarnized ss<br>100.4-101.0m, frac zone                   | 100.0        | 8-14030                               | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 102-      | 55                                    | 1:03 8                  | IVI.D"IVZ.DM, WHICO SKBIN (WO, SICO)                                                     | 101.5        | 8-14031                               | < 0.1           | <sup>1</sup> (1            | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       | ].                    |          |
|           |                                       | 102.8<br>103.8          | 102. 8-1. 3. 8m, qz v.                                                                   | 103.8        | 8-14032                               | < 0.1           | <1                         | 0.02            | < 0.01                           | <b>&lt; 0</b> .01 | < 0.01                       | 0.104                 |          |
| 104-      | , , , , , , , , , , , , , , , , , , , | 104 0                   | 10.3.8-104.9m, dk brownish grey<br>skarn with abundant py                                | 104 9        | 8-14033                               | < 0.1           | <1                         | 0.03            | < 0.01                           | < 0.01            | < 0.01                       | 8-14L4<br>X<br>8-14L5 |          |
| 106-      |                                       | 105.5.                  | 104.9-105.5m, qz v. with py<br>40106.0m, fault clay w = 5cm                              | 106.0        | 8-14034                               | <b>&lt; 0.1</b> | <1                         | 0.02            | < 0.01                           | < 0.01            | < 0.01                       | F                     | -        |
| 108-      |                                       |                         | 105.3-111.6m, whitish grey is<br>partly skarnized alt (ss)si)<br>with py & gz veinlets   | 108.0        | 8-14035                               | < 0.1           | ζ1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 100       |                                       | 108.4.<br>109.1         | 108. 4-109. 1m, qz, wo. v.                                                               | 109.1        | 8-14036                               | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 110-      | <u>. I \$ 1 4</u><br>1.\$1            | :                       | 23<br>110.îm, fault cly                                                                  |              | B-14037                               | < 0.1           | <sup>2</sup> <b>&lt; 1</b> | < 0. <b>0</b> 1 | < 0.01                           | < 0.01            | < 0.01                       |                       | -110     |
| 112-      |                                       | 111. <u>6</u><br>113.0  | 11.6-113.0m, grey silici & partly<br>skarnized alt (ss>sl) with<br>py & qz veinlets      | 111.1        | B-14038                               | < 0.1           | < 1                        | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
| 114-      |                                       | 113.3                   | ру 5 qz veiniets<br>113.0-113.3m, qz v.                                                  | 113.3        | B-14039                               | < 0.1           | <1                         | 0.01            | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
|           | \$#\$.3<br>###<br>XXXX                | 114.6                   | 114.6-114.9m, dk brownish grey<br>skarn with abundant py                                 | 114.6        |                                       |                 | 1                          |                 |                                  |                   |                              |                       |          |
| 116-      |                                       | 115.0                   | 116.0-119.3m, whitesh grey                                                               | 116.0        |                                       | <u> </u>        | <1                         | 0.12            | < 0.01                           | < 0.01            | 0.01                         |                       | -        |
| 118-      |                                       |                         | skarnized & frac Is with<br>wo, white clay                                               | 117.5        | 1                                     | 0.4             | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
|           | ЗХФ<br>С                              | 119.3                   | 119.3-120.81m, greenish grey                                                             | 119.3        |                                       | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 120-      | v v                                   | 120.8                   | skarnized Imp with cal, side v.<br>120.8–125.8m, whitish grey Is                         | 120.8        | B-14043                               | < 0.1           | <u>(1</u>                  | 0.01            | < 0.01                           | < 0.01            | < 0.01                       |                       | -120     |
| 122-      |                                       |                         | skarnized (wo)                                                                           | 122.5        | B-14044                               | < 0.1           | 2.8                        | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
| :<br>124- |                                       | 8-3<br>- 19             |                                                                                          | 124.0        | B-14045                               | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       | ~        |
|           |                                       | 125.4                   | 125.1m, cal side v. w = 2cm                                                              | 125.8        | 8-14046                               | < 0.1           | < 1                        | < 0.01          | < 0.01                           | <b>&lt; 0.01</b>  | < 0.01                       |                       |          |
| 126-      |                                       | 127.2                   | 125,8-127.2m, cal side v.                                                                |              | B-14047                               | < 0.1           | 1.2                        | < 0.01          | < 0.01                           | <b>&lt; 0</b> .01 | < 0.01                       |                       |          |
| 128-      | <u>3</u> [3]                          | 128-9-                  | 127.2-128.0m, grey is with cally.<br>128.0-128.4m, clay v.                               | 127.2        | B-14048                               | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | 0.01                         |                       | -        |
|           | + +<br>+ +                            |                         | 128.4-136.5m, whitish grey<br>silici metaso with by gz veinlets                          | 128.4        | B-14049                               | < 0.1           | 65.4                       | 0.17            | < 0.01                           | < 0.01            | 0.01                         |                       |          |
| 130-      | + +<br>+ +                            |                         |                                                                                          | 130.0        | 1.1                                   |                 |                            |                 | · · · · · ·                      |                   |                              |                       | -130     |
| 132-      | * *                                   | 132.0                   | 132.0–132.05m, fault clay                                                                | 132.0        | 8-14050                               | < 0.1           | 1.6                        | 0.01            | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
|           | v v                                   | 133.6                   | 132.05-133.6m, greenish grey<br>Imp with cal, wo veintets                                | 1226         | B-14051                               | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       | -<br>    |
| 134-      | + + +<br>+ +                          |                         |                                                                                          | 133.6        | B-14052                               | < 0.1           | 1.8                        | 0.02            | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
| 136-      | * *<br>* *                            |                         | 135.5m, cal v. w = 2cm 60°                                                               | 135.0        | B-14053                               | < 0.1           | 2.8                        | 0.01            | < 0.01                           | < 0.01            | < 0.01                       | ĺ                     |          |
| 150       | ++ ++                                 | 136.5                   | 138.5-137.6m, syeno-dt                                                                   | 136.5        |                                       | < 0.1           | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       | { .                   | ŕ        |
| 138-      | -1+ ++<br>                            | 137,3                   | 137.6-137.8m, cal side v.<br>137.8-144.0m, whitesh grey<br>skarnized Is 'wo, diop. side) | 137.6        | B-14055                               |                 | <1                         | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
| 140-      | XX                                    |                         | 139.0-142.5m, frac zone                                                                  | 140.0        |                                       |                 |                            |                 |                                  |                   |                              |                       | -140     |
| 142-      |                                       | • •                     |                                                                                          | 142.0        | B-14056                               | < 0.1           | <br>< 1 <sup>°</sup>       | < 0.01          | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 142-      |                                       | 142, 5                  |                                                                                          | +92.0        | 8-14057                               | < 0.1           | <1                         | 0.01            | < 0.01                           | < 0.01            | < 0.01                       | 8-14L7<br>X           | 142.9    |
| 144-      |                                       | 144.Q.                  | 144.0-158.7m, silici & weakly<br>skarnized alt (ss>sl)<br>with qz veinlets, py           | 144.0        | 8-14658                               | < 0.1           | 2.8                        | 0.04            | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 146-      | *<br>* *                              |                         | · · · · · · · · · · · · · · · · · · ·                                                    | 146.0        |                                       |                 |                            |                 |                                  |                   |                              |                       |          |
| 148-      | <u> </u>                              |                         | 60                                                                                       | 147.5        |                                       |                 | 1.8                        | 0.03            | < 0.01                           | < 0.01            | < 0.01                       |                       | -        |
| 149-      | 5 #<br>+                              |                         |                                                                                          | 149.0        | B-14060                               | < 0.1           | <1<br>                     | 0.03            | < 0.01                           | < 0.01            | < 0.01                       |                       |          |
| 150-      |                                       | l                       |                                                                                          | <b>ا</b>     | لــــــــــــــــــــــــــــــــــــ |                 | L                          | L               |                                  | L                 | I                            | L                     | -150     |

٠

|           | MJ               | UE               | GEOLOGIC CC<br>3-14 (4/4) 150 m ~                                |       | 1 <u>m</u>    | ·<br>· ·                              |                 |        | evel 235.<br>68, 332.<br>93, 144. |        | rection<br>clination<br>ngth | \$20"W<br>1 -80" | 71            |
|-----------|------------------|------------------|------------------------------------------------------------------|-------|---------------|---------------------------------------|-----------------|--------|-----------------------------------|--------|------------------------------|------------------|---------------|
|           | L I THO-<br>LOGY | DEPTI            | DESCRIPTIONS                                                     | DEPTH | SAMPLE<br>No, | × / //                                |                 | ASSAY  | RESUL                             | ſ      |                              | LAB              | ]             |
| 150-      | • ++ • \$ •      | V <sup>a</sup> V | silici & weakly skarnized<br>alt (ss)sl) with qz veinlets, py    | (iii) | л <u>о,</u>   | AU(g/ t)                              | Ag(g/t)         |        | As(%)                             | Mo(%)  | WO₃(%)                       | TEST             | -15           |
| 152-      | •#••\$           |                  | are (33/31/ with 42 vernices, p)                                 |       | [             |                                       |                 |        |                                   |        |                              |                  | -             |
| 154-      | #                |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  |               |
|           | <b>3</b> • ₩     |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  |               |
| 156~      | •••••            | -155_1           | 156. (*161. Off. greenish grey<br>silici & sharnized alt (ss)sl) | 156.7 | 8-14061       | < 0.1                                 | <1              | 0.05   | < 0.01                            | < 0.01 | < 0.01                       |                  |               |
| 158-      | *#***            |                  | with qz veinfets, py                                             | 158.0 | 8-14062       |                                       | 3.2             | 0.05   | < 0.01                            | < 0.01 | < 0.01                       |                  | -             |
| 180-      | - <u>+</u> t     |                  |                                                                  | 159.5 | 8-14063       |                                       | <1              | 0.02   | < 0.01                            | < 0.01 | < 0.01                       |                  | -16           |
| 162-      | • <u>.</u>       | _161_1           | 3 <u>161 On</u> Bottm of the hole                                | 161.0 |               | · · · · · · · · · · · · · · · · · · · | ·               |        |                                   | •••••  |                              |                  | ļ.            |
|           |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  |               |
| 164-      |                  |                  |                                                                  |       |               |                                       | -               |        | •                                 |        |                              |                  | -             |
| 166-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   | -      |                              |                  | ╞             |
| 168-      |                  |                  |                                                                  |       |               |                                       |                 |        | :                                 | -      | · .                          |                  | -             |
| 170-      |                  | 1                |                                                                  |       |               |                                       |                 |        |                                   |        |                              | :<br>: .         | -17           |
| 172-      |                  |                  |                                                                  |       |               | :                                     |                 |        |                                   |        |                              |                  |               |
|           |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  |               |
| 174-      |                  |                  |                                                                  |       |               |                                       |                 |        | · · · · · ·                       |        |                              |                  | -             |
| 176-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | -             |
| 178-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | -             |
| 180-      | :<br>:           | •                |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | -18           |
| 182-      |                  |                  |                                                                  | 1     |               |                                       |                 |        |                                   |        |                              |                  |               |
|           |                  |                  |                                                                  | 1     |               |                                       |                 |        |                                   |        |                              |                  |               |
| 184-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | ľ.            |
| 186-      |                  |                  |                                                                  |       |               |                                       | -               | -<br>- |                                   |        |                              |                  | -             |
| 188-      |                  |                  |                                                                  |       |               |                                       | *<br>- :<br>- : |        |                                   |        |                              | *                |               |
| 190-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | - <b>19</b> ( |
| :<br>192- |                  | -                |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  |               |
|           |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | -             |
| 194-      |                  | 14 A             |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | [             |
| 196-      |                  |                  |                                                                  |       |               |                                       |                 |        |                                   |        |                              |                  | -<br>         |
| 198-      | 1                | :                |                                                                  |       |               |                                       |                 |        |                                   | -      |                              |                  | <br>          |
| 200-      | •                |                  |                                                                  |       |               |                                       |                 |        | 2.0                               | :      |                              |                  | -200          |

### GEOLOGIC CORE LOG OF MJUB-15 (1/3)

1/200

|              | MJU                                    | B-15 (1∕3) 0m-                                                                                | ~            | <u>50</u> n | n        | -<br>-           | Leva<br>X<br>Y    | 1 239, 4<br>68, 591, 4<br>92, 394, 9 | 6m Inc<br>6m Len | ection (<br>lination<br>igth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$20° W<br>-80°<br>102. Om | •             |
|--------------|----------------------------------------|-----------------------------------------------------------------------------------------------|--------------|-------------|----------|------------------|-------------------|--------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|
|              | LITHO-DEP                              | DESCRIPTIONS                                                                                  | DÉPTI        | SAMPLE      |          |                  | ASSAY             | RESUL                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LÁB.                       |               |
| 0-           | LOGY (n                                |                                                                                               | (m)          | No.         | Au(g/t)  | Ag(g/t)          | Cu(%)             | As(%)                                | Mo(%)            | WO <sub>3</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TÈST                       | • 0           |
|              |                                        | 0-2. On, sand with pebbles                                                                    |              |             | 1 A A    |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ~ U           |
| 2-           | 2                                      | 2.0-5.8m, greenish grey weathered                                                             | 1.1          |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | L             |
| •            |                                        | Imp with limo                                                                                 |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | l             |
| 4-           |                                        |                                                                                               |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
|              |                                        | , , 4.7m, cal v. w = tcm 20*                                                                  |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 6            | ±                                      | <ul> <li>20 5.8~11.5m, grey weatherd silici<br/>ait (ss&gt;sl)with cal, qz v. limo</li> </ul> | 5.8          |             |          |                  |                   | <u>-</u>                             | <u> </u>         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | ┝             |
|              | 1                                      |                                                                                               |              | B-1501      | < 0.1    | 4.8              | < 0.01            | < 0.01                               | < 0.01           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5.1                      |               |
| 8-           | <u> </u>                               |                                                                                               | 8.0          |             |          |                  |                   | ·                                    |                  | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |               |
|              |                                        |                                                                                               | <sup>1</sup> | 8-1502      | < 0.1    | : K1             | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |               |
| 10-          |                                        | y9.5m, cal v. w = 0.2cm 30°<br>⊃                                                              | 10.0         |             |          |                  |                   | <u> </u>                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | - ti          |
|              | 11                                     | s                                                                                             |              | 8-1503      | < 0.1    | 1.6              | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                          |               |
| 12-          |                                        | 5.<br>11.5-13.0m, frac zone                                                                   | 11.5         | 8-1504      | < 0.1    | <1               | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | <b>⊢</b> •••• |
|              | <u>[XXX]</u> 11                        | 9<br>                                                                                         | 13.0         |             |          | <b></b>          |                   |                                      |                  | × 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |               |
| 14-          | <u>ite</u>                             | skarnized ss with gz.cal v.py.limo                                                            |              | 8-1505      | < 0.1    | 3.6              | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | r             |
|              |                                        | 110.2~10.0m. 1720 Zone                                                                        | 15.2         |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 16-          |                                        | 9                                                                                             |              | B-1506      | < 0.1    | 3.6              | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | ſ             |
|              |                                        | 2 16.5-17.2m, frac zone                                                                       | 17.2         |             | <u>.</u> |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <sup>1</sup> 3           |               |
| 18-          |                                        |                                                                                               | :            | B-1507      | < 0.1    | 1.2              | <b>&lt; 0</b> .01 | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | - ·           |
|              | ************************************** |                                                                                               | 19.0         |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | :             |
| 20-          | · · · · ·                              | 20 j                                                                                          | 20.5         | B-1508      | < 0.1    | 1.6              | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | -2            |
|              | · # · 3                                |                                                                                               | :            | 8-1509      | < 0.1    | < 1              | < 0.01            | < 0.01                               | < 0.01           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |               |
| 22-          | 22,                                    | 22.1-101.0m, grey silici &                                                                    | 22.1         |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
| 24-          | · · · · ·                              | weakly skarnized ss with py                                                                   |              | 1. A        |          |                  | • *               |                                      |                  | É.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |               |
| . 69-        |                                        |                                                                                               | 2            | 1 W.        |          |                  |                   |                                      |                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | -             |
| 26-          |                                        | 25.9m, q2 v. w = 3cm, 70"                                                                     |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | L.            |
|              |                                        | 73                                                                                            |              |             |          |                  | N I               |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
| 28-          | · ++ · · · · · · · · · · · · · · · · · |                                                                                               |              |             |          |                  |                   |                                      |                  | 1911 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1915 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 1913 - 19 |                            |               |
|              |                                        | 29.2m, gz v. w = 0.5cm, 25                                                                    |              |             |          |                  |                   | 2 - 3                                | 1 - E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 30-          | • • • • • • •                          | 23                                                                                            | ÷            |             |          | . '              |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -31           |
|              | • 4+ • • •                             | 25                                                                                            |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 32-          | · · · · · · · · · · · · · · · · · · ·  |                                                                                               |              |             | 5.6      |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
|              |                                        |                                                                                               |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 34-          |                                        |                                                                                               |              |             |          | a de Maria.<br>N |                   |                                      | 14 A.            | a a<br>Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | <u> </u>      |
| · .          | · · · · · · ·                          |                                                                                               |              |             |          |                  |                   |                                      |                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |               |
| 36-          |                                        | 335. 1m, cal v. w = 0.7cm, 45"                                                                |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
| 1.           | <u>.</u>                               | 37. On, q2 (py)1 v. w = 2cm, 60                                                               | ·            | ÷           |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 38-          |                                        | X                                                                                             |              | -           |          |                  |                   | 4<br>                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •             |
|              | • ++- ( 3 •                            | 50                                                                                            |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| <u>,</u> 40- |                                        |                                                                                               |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [                          | -4(           |
|              |                                        |                                                                                               |              |             |          |                  |                   |                                      |                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                          |               |
| 42-          |                                        | 60 42 5m, qz, cal v. w = 7cm, 60"                                                             |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •             |
| 1.1          |                                        | the second sign can be set tool, the                                                          |              | ÷.          |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
|              | <u>• ++-• \$ •</u>                     |                                                                                               |              |             |          |                  |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | •             |
| 44-          | ·                                      |                                                                                               |              | 1.1         |          | ÷                |                   |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · •                      |               |
| . 14         |                                        | 44.9m, calv.w=Scm,                                                                            |              |             |          | λ.               | · · ·             |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |
| 44-<br>46    |                                        | :44.9m, cał v. w = Scm,                                                                       |              |             |          |                  | -                 |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
| 46           |                                        |                                                                                               |              |             |          |                  | -                 |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |
| . D.         |                                        |                                                                                               |              |             |          |                  | -                 |                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -             |

|                                         |                     | GEOLOGIC C                                                          | ORE   | E L            | 0'G 0              | FMJ      |                |                                |                 |                                | 200                        |
|-----------------------------------------|---------------------|---------------------------------------------------------------------|-------|----------------|--------------------|----------|----------------|--------------------------------|-----------------|--------------------------------|----------------------------|
| MJ                                      | UE                  | 3-15 (2/3) 50 m ~                                                   | 10    | <u>m 01</u>    |                    |          | - X _          | vel 239.<br>68,591,<br>92,394. | 46m 📜 Ir        | irection<br>nolinatio<br>ength | 820'W<br>100 – 80<br>102 0 |
| LITHO                                   | DEPTH<br>(m)        | DESCRIPTIONS                                                        | (m)   | ISAMPLE<br>No. | Au(g/t)            | Ag(g/t)  | ASSAY<br>Cu(%) | RESUL<br>As(%)                 | 1 1 1 1 1 1 1 1 | WO <sub>3</sub> (%)            | LAB.<br>TEST               |
| ++ 5<br>++                              |                     | ), 50.5m, qz (py,dioo) v. w = 10cm,60<br>60                         | /     |                |                    | 1.1      |                | :                              |                 |                                | 1                          |
|                                         |                     |                                                                     |       |                |                    |          |                |                                |                 | ľ                              |                            |
| · · · · ·                               |                     | > 53.8m, druesy cal v, w = 2cm, 30*                                 | 53.0  | IR-15010       | < 0.1              | 1.2      | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         | B-1511<br>X                |
|                                         |                     | 53                                                                  | 54.1  | -              |                    |          |                |                                |                 |                                |                            |
| +-                                      |                     |                                                                     |       |                |                    |          |                |                                |                 |                                |                            |
| + .                                     |                     | 56.9-57.0m, qz, (py) v.                                             | 56.9  |                |                    | <u> </u> |                | /                              |                 |                                | B-15L2<br>F                |
|                                         |                     |                                                                     | 58.5  | B-15011        | < 0.1              | <u> </u> | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         | -                          |
| 3 #<br>• • • • •                        |                     | 59.6-59.8m, ca (act, py) v. 35<br>33.60.3-60.45m, cal (side, py) v. |       | B-15012        | < 0.1              | <1       | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         |                            |
| · · · · · · · ·                         |                     | 35 00.3 00.40m, cat (stoe, py) v.                                   | 60.5  |                |                    |          |                | ·                              |                 |                                |                            |
|                                         |                     |                                                                     |       |                |                    |          |                |                                |                 |                                | :                          |
| •                                       |                     |                                                                     |       |                |                    |          |                |                                | · ·             | 1                              | :                          |
|                                         |                     |                                                                     |       |                |                    |          | F              |                                |                 |                                |                            |
|                                         |                     | 65.8m, cal (py, side) w = 1cm<br>66.7m, qz v. w = 0.1cm,30'         |       |                |                    |          |                |                                | :               |                                |                            |
|                                         |                     |                                                                     |       |                |                    |          |                |                                | -               |                                |                            |
| •                                       |                     | · .                                                                 |       |                |                    | ÷        |                |                                |                 |                                |                            |
| · · · · + · · · · · · · · · · · · · · · |                     | X                                                                   |       |                |                    |          |                |                                |                 |                                |                            |
|                                         |                     | 60                                                                  |       |                |                    | , 14     |                |                                |                 |                                |                            |
|                                         |                     |                                                                     |       |                |                    |          |                |                                |                 |                                |                            |
| • • • • • • • •                         |                     |                                                                     |       |                |                    |          |                | · ·                            |                 |                                |                            |
|                                         | <u>15.2</u><br>75.4 | 45 75. 2-75. 4π, qz (py. side) v. 45"                               |       |                |                    |          | 11.<br>11. 11. |                                |                 |                                | 8-1513<br>X                |
| · # · · ·                               |                     |                                                                     | 77.2  |                |                    |          |                |                                |                 |                                |                            |
| · ++ · · · · · · · · · · · · · · · · ·  |                     | 78 1-78 2m, qz (py.act, side) v. 45'                                | 78.7  | 8-15013        | < 0.1              | <1       | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         |                            |
| · # · 3 ·                               |                     |                                                                     |       | B-15014        | <b>C</b> 0.1       | <1       | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         |                            |
| ····                                    |                     |                                                                     | 80.2  |                |                    |          |                |                                |                 |                                |                            |
| · + · · · · · · · · · · · · · · · · · · |                     |                                                                     |       |                |                    |          |                |                                |                 |                                | 4 P                        |
|                                         |                     |                                                                     | 2<br> |                |                    |          |                |                                |                 |                                |                            |
|                                         | 85_Q_               | 53 85. 0-85. 25m, cal (py, diop, qz v) 55                           | 85.0  |                |                    |          |                |                                |                 | · ·                            |                            |
| · · · · · ·                             |                     |                                                                     |       | 8-15015        | < 0.1 <sub>1</sub> | <1       | < 0.01         | < 0.01 ·                       | < 0.01          | < 0.01                         |                            |
| ****<br>***                             | 188                 | 87.0-88.0m, pinkish brown aplite                                    | 87.0- |                |                    |          |                |                                |                 |                                |                            |
|                                         |                     |                                                                     |       |                |                    |          |                |                                |                 |                                |                            |
|                                         |                     |                                                                     |       |                |                    | 1        |                |                                |                 |                                |                            |
|                                         |                     |                                                                     |       |                |                    |          |                |                                |                 |                                |                            |
| · · · · · · · · · · · · · · · · · · ·   |                     |                                                                     |       |                |                    |          |                |                                |                 |                                |                            |
|                                         | 94 4<br>94 63       | 94. 4-94. 65m, cal, qz(py,brown mine)                               |       |                |                    |          |                |                                |                 |                                | :                          |
|                                         |                     | QZ veins cut cal brown mine.<br>25                                  |       |                |                    |          |                |                                |                 |                                |                            |
| - <u>H</u>                              |                     | 97.4m, qz(py.brown mineral)v. w=8cm                                 | 97.4  |                | ····               |          |                |                                |                 |                                |                            |
|                                         | 98.6<br>98.8        | 13<br>93. 6-99. 8m. qz v. 45°                                       |       | 3-15016        | < 0.1              | <1       | < 0.01         | < 0.01                         | < 0.01          | < 0.01                         | 1                          |
|                                         | **. <b>4</b>   5    | 13                                                                  |       | 1.4            |                    |          |                |                                |                 | [                              |                            |

000000 15 10 10 oonr

## GEOLOGIC CORE LOG OF MJUB-15 (3/3)

| ſ  | 111.0                   | DCOT.    |                                                                                                                        | acár:         | C 1.11        |         |       | ASSAY | 68, 591<br>92, 394<br>RESUL              |      | T                   | 1.20         | n .<br>] |
|----|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------|-------|-------|------------------------------------------|------|---------------------|--------------|----------|
| Ì  | LITHO-<br>LOGY          | (m)      |                                                                                                                        | אויישט<br>(ה) | SANPLE<br>No. | Au(g/t) |       |       | As(%)                                    |      | WO <sub>3</sub> (%) | LAB.<br>TEST |          |
| }- |                         | 191.9    | 101.0-102.0m, blk alt(sl>ss) with py                                                                                   |               |               |         |       |       |                                          |      |                     |              | †1       |
| 2- | e e rejere<br>A statere |          | 102. On, bottm of the hole                                                                                             |               |               |         |       |       | :                                        |      |                     |              |          |
|    |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | L        |
| 1- |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
|    |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
| ;- |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | ŀ        |
|    |                         | 2        |                                                                                                                        |               |               | ·       |       |       |                                          |      |                     | •            |          |
| }- |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | F        |
| )- |                         |          |                                                                                                                        |               |               |         | χ     |       |                                          |      |                     |              | Ļ        |
| ł  |                         |          |                                                                                                                        |               |               | :       |       |       |                                          |      |                     |              |          |
| !  |                         |          |                                                                                                                        |               |               | 1.      |       |       |                                          |      |                     |              | ł        |
|    | -                       |          |                                                                                                                        |               |               |         |       | '     |                                          |      |                     |              |          |
| -  | 1                       | ·        |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | ŀ        |
| ;  |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
|    |                         |          |                                                                                                                        |               |               |         |       | 1.1   |                                          |      |                     |              | ſ        |
|    |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | -        |
|    |                         |          |                                                                                                                        |               |               |         |       | × 1   |                                          |      |                     |              |          |
| -  |                         |          | · · · · · · · · · · · · · · · · · · ·                                                                                  |               |               |         |       |       | :                                        |      |                     |              | ╞        |
| _  |                         |          |                                                                                                                        |               |               | •<br>•  |       |       |                                          |      |                     |              |          |
|    |                         |          |                                                                                                                        |               | ÷ 2           | · .     |       | :     |                                          |      |                     |              | ſ        |
| -  |                         |          |                                                                                                                        |               | :.[           |         |       |       |                                          |      |                     |              | Ļ        |
|    |                         |          |                                                                                                                        |               |               |         | -     |       |                                          |      |                     |              |          |
| 1  |                         |          |                                                                                                                        |               |               |         | · · ' |       | an a |      |                     |              | -        |
|    |                         | 1        |                                                                                                                        | -<br>1.       |               |         |       |       |                                          |      | 1 <sup>3</sup>      |              | ľ        |
|    |                         |          |                                                                                                                        | 1             | -             |         |       |       |                                          |      |                     |              | F        |
| -{ |                         | 1.00     |                                                                                                                        | -             |               |         |       |       |                                          |      |                     | .1           | L        |
|    | er de                   | 1        |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
| -  |                         | 1        |                                                                                                                        | . '           |               |         |       |       | х<br>Х.,                                 |      |                     |              | ŀ        |
|    |                         |          |                                                                                                                        |               |               |         | e p   |       | •                                        |      |                     | • •          | -        |
|    |                         |          |                                                                                                                        | :             | 1             |         |       |       |                                          |      |                     |              | ſ        |
| -  |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      | м<br>-              |              |          |
|    |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
| -  | - 1<br>- 12             |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | -        |
|    |                         | :        |                                                                                                                        |               |               |         |       |       |                                          |      |                     | -<br> -<br>  |          |
|    |                         |          |                                                                                                                        | 4             |               |         |       |       |                                          |      |                     | с.<br>С. н.  | -1       |
|    |                         |          |                                                                                                                        |               |               |         |       |       | . }                                      |      |                     |              |          |
|    |                         |          |                                                                                                                        |               |               |         |       |       | , j                                      |      |                     |              | ſ        |
| ļ  |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              | L        |
|    |                         |          |                                                                                                                        |               |               |         |       |       |                                          |      |                     |              |          |
|    | 1<br>1 1                | - 1<br>- |                                                                                                                        |               | 1             | х       |       |       | :                                        |      |                     |              | ┝        |
| 1  | -<br>-<br>-             | 1        |                                                                                                                        |               | :             |         |       |       | · .                                      | 1    |                     |              |          |
|    | ÷ .                     |          |                                                                                                                        |               |               |         | 1     |       | ·                                        |      |                     | ł            | ŀ        |
| 1  |                         | - ·      | 44)<br>1970 - 1971 - 1972 - 1973 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - | :             |               |         |       |       |                                          | 1.00 |                     |              | L        |

A-26

. :

1/200

GEOLOGIC CORE LOG OF MJUB-16(1/4) 1/200

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MJUB-16 (1/4) 0 m ~                                                            | 50   | m       |                                          |                   | X              | 1 242 5<br>68 633 0<br>92,403 8 | 0a Inc            | ection<br>lination<br>gth |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|---------|------------------------------------------|-------------------|----------------|---------------------------------|-------------------|---------------------------|-------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |      | SAMPLE  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                   |                |                                 |                   |                           |             |
| $\begin{array}{c} 2\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                | (m)  | No.     | Au(g/t)                                  | Ag(g/t)           | Cu(%)          | As(%)                           | Mo(%)             | WO <sub>3</sub> (%)       | TEST        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UTS. UT, sand with pecores                                                     |      |         |                                          |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |      |         |                                          |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>•++•••</u> 3.0-5.4m, weathered silici brownish                              | 3.0  |         |                                          |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c} - & - & - & - & - & - & - & - & - & - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 <u></u>                                                                      |      | B-1601  | < 0.1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | -           |
| $ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4-6.4m, qz (cat) v.                                                          | 5.4  | R-1602  | 201                                      | <u> </u>          | ( 0.01         | < 0.01                          | < 0.01            | ( 0.01                    | 8-16L1 5 a  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 6.4  |         |                                          | :                 |                |                                 |                   |                           |             |
| $ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 A A A A A A A A A A A A A A A A A A A                                        | 8.0  |         |                                          |                   |                |                                 | i                 |                           | -           |
| $ \begin{array}{c} 10 \\ 10 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>\$[\$[</u> skarnized with q2, cal v., py                                    | 9.0  |         | 1                                        |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |      | 8-1605  | < 0.1                                    | 16                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | -10         |
| $ \begin{array}{c} 14 \\ 14 \\ 16 \\ 16 \\ 16 \\ 18 \\ 18 \\ 20 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 18 \\ 22 \\ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{12}$ paartly skarnized with gz, cal v, py<br>11, 2m, gzv, w = 3cm 10 | F '  | B-1606  | < 0.1                                    | < 1               | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $ \begin{array}{c} 14 \\ \hline 16 \\ \hline 1$                                                                                                                                                                                                                                                                                                  |                                                                                |      | 5031-0  | < 0.1 <sup>1</sup>                       | 36                | 6 0.01         | 2 0.01                          | 2001              | 6.0.01                    |             |
| $ \begin{array}{c} 166 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 \\ 186 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 ++                                                                          |      |         |                                          | <b></b>           |                |                                 |                   |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |      | 8-1608  | < 0.1                                    | 2.4               | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $ \begin{array}{c} 180 \\ 180 \\ 20 \\ 180 \\ 21 \\ 180 \\ 22 \\ 180 \\ 180 \\ 22 \\ 180 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 180 \\ 22 \\ 22 \\ 180 \\ 22 \\ 22 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 180 \\ 22 \\ 22 \\ 22 \\ 20 \\ 22 \\ 22 \\ 20 \\ 22 \\ 22 \\ 20 \\ 180 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 16.0 |         |                                          |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |      | 8-1609  | < 0.1                                    | <1                | < 0.01         | < 0.01                          | <b>&lt; 0</b> .01 | < 0.01                    |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |      | a (2010 | ( ) )                                    |                   |                | (                               | ( 0.01            | (00)                      | · · ·       |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |      | B-19010 | ς υ.ι                                    |                   | < 0.01         | C 0.01                          | < 0,01            | < 0.01                    | -20         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sisisis 45 with cal valuate time                                               |      | B-16011 | < 0.1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $\begin{array}{c} 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 5 5 5 22.0<br>22                                                            |      |         |                                          |                   |                |                                 |                   |                           |             |
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | skarnized ss with py, limo                                                     |      | B-16012 | < 0,1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $ \begin{array}{c} 28 \\ \hline 32 \\ \hline 34 \\ \hline 3$                                                                                                                                                                                                                                                                                                  |                                                                                | 24.0 | B-16013 | < 0.1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $\begin{array}{c} 27.1 \\ 28.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18.1 \\ 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                             | 25.5 | 2 15214 | · · · · · · · · · · · · · · · · · · ·    |                   |                | ( 0.01                          |                   | ( 0.01                    |             |
| $ \begin{array}{c} 28 & 114 & 114 \\ 14 & 114 \\ 30 & 114 \\ 14 & 114 \\ 32 & 114 \\ 34 & 114 \\ 34 & 114 \\ 34 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114 \\ 38 & 114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.1                                                                           | 27.3 | D-10014 | <u> </u>                                 |                   | X 0.01         | X 0.01                          | <u> </u>          | <b>V 0.01</b>             | 8-16L2 27 3 |
| $\begin{array}{c} 30 \\ \hline 11 \\ \hline 12 \\ \hline 13 \\ \hline 12 \\ \hline 13 \\ \hline 13 \\ \hline 14 \\ \hline 14 \\ \hline 15 \\ 15 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |      | B-16015 | < 0.1                                    | ×۱۰               | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $\begin{array}{c} 1310 \\ 32-1111 \\ 11113 \\ 34-1111 \\ 33-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-1111 \\ 34-11111 \\ 34-1111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-11111 \\ 34-111111 \\ 34-111111 \\ 34-111111 \\ 34-111111 \\ 34-111111 \\ 34-11111111 \\ 34-11111111 \\ 34-111111111111111111111111111111111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |      |         |                                          |                   |                |                                 |                   |                           |             |
| $32 - \frac{11}{11 + 15} \\ 34 - \frac{11}{15 + 15} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | i    |         | < 0.1                                    | 1.8               | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |      |         | < 0.1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | · · · ·     |
| $\begin{array}{c} 34.5 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | 33.0 |         |                                          |                   | <u> </u>       |                                 | <u></u>           |                           |             |
| $36 - \frac{1}{44} + \frac{1}{5} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                          |      | B-16018 | < 0.1                                    | <1                | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | -           |
| $\begin{array}{c} 39.6 \\ \hline 39.6 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weakly skarnized ss with py                                                    |      | :       |                                          |                   |                | · · ·                           |                   |                           |             |
| $\begin{array}{c} 38 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |      | 1       |                                          |                   |                |                                 |                   |                           |             |
| $\begin{array}{c} 40 \\ \hline \begin{array}{c} 40 \\ \hline \begin{array}{c} 41 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |      |         |                                          |                   | 111 I.         |                                 |                   |                           | -           |
| $\begin{array}{c} 40 \\ \hline 40 \\ \hline 41.0 \\ \hline 40.8 \\ \hline 8-16019 \\ \hline 40.8 \\ \hline 8-16019 \\ \hline 40.8 \\ \hline 8-16019 \\ \hline 40.8 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 20.6 |         |                                          |                   | * 1<br>2 4 - 2 | 1.11                            | · · · ·           |                           |             |
| $\begin{array}{c} 42 \\ \hline 3 \\ \hline 42 \\ \hline 3 \\ \hline 42 \\ \hline 3 \\ \hline 43 \\ \hline 43 \\ \hline 43 \\ \hline 44 \\ \hline 45 \\ \hline 5 \\ \hline 46 \\ \hline 5 \\ \hline 5 \\ \hline 46 \\ \hline 5 \\ \hline 5 \\ \hline + \\ + \\ 5 \\ \hline \\ 46 \\ \hline 5 \\ \hline + \\ + \\ 5 \\ \hline \\ 46 \\ \hline 5 \\ \hline + \\ + \\ 5 \\ \hline \\ + \\ + \\ + \\ 5 \\ \hline \\ \\ + \\ + \\ 5 \\ \hline \\ \\ + \\ + \\ + \\ 5 \\ \hline \\ \\ + \\ + \\ \\ + \\ 5 \\ \hline \\ \\ + \\ \\ + \\ \\ + \\ 5 \\ \hline \\ \\ + \\ \\ + \\ \\ + \\ \\ - \\ \hline \\ \\ + \\ \\ - \\ \\ - \\ \\ + \\ \\ + \\ \\ + \\ \\ + \\ \\ + \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ - \\ - \\ \\ - \\ - \\ - \\ - \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |      | 8-16019 | < 0.1                                    | 3.2               | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | -40         |
| $\begin{array}{c} 42 \\ \hline 3 \\ \hline 3 \\ \hline 43 \\ \hline 5 \\ \hline 8 \\ \hline 5 \\ \hline 8 \\ \hline 8 \\ \hline 5 \\ \hline 8 \\$ | 41.0-41.2m. dk greenish grey                                                   | 40.8 |         |                                          |                   |                |                                 |                   |                           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |      |         |                                          |                   |                |                                 |                   |                           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44-++ s 43.7-50.2m, greenish grey                                              |      |         |                                          |                   | 100            |                                 |                   |                           | -           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with qz, py                                                                    | 45.0 |         |                                          |                   |                | · .                             |                   |                           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46-1                                                                           |      | 8-16021 | < 0.1                                    | <u>, <u></u> </u> | < 0.01         | < 0.01                          | < 0.01            | < 0.01                    | -           |
| + s B-16023 < 0.1 < 1 < 0.01 < 0.01 < 0.01 < 0.01<br>T, X 4 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |      | 8-16022 | < 0.1                                    | <1                | < 0.01         | < 0.01                          | <b>&lt;</b> 0.01  | < 0.01                    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>*0 S ++</b>                                                                 |      | B-16023 | < 0.1                                    | <u>,</u>          | < 0.01         | <b>C</b> 0.01                   | <b>C 0.01</b>     | < 0.01                    | 8-16-4 49 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 L                                                                           |      |         |                                          |                   |                |                                 |                   |                           | ТХ          |

A--27

| ·                                                                                                                           |              | -16 (2/4) 50 m ~                                                           | ř     | <u>i i i i</u>     |          |     | Y<br>ASSAY       | 92, 403.<br>RESULT |            | ngth     | -80<br>151.0<br>LAB. | n<br>] |
|-----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|-------|--------------------|----------|-----|------------------|--------------------|------------|----------|----------------------|--------|
| LITHO-<br>LOGY                                                                                                              | OEPTH<br>(m) | DESCRIPTIONS                                                               | (m)   | SAMPLC<br>No.      | Au(g/t)  |     |                  | As(%)              |            | WO3(%)   | TEST                 | ١.     |
| <br>                                                                                                                        | - 30, 2      | 50.2-51.2m, greenish grey silicci &<br>meakly sharnized as with py         | 50.1  |                    |          |     |                  |                    |            |          |                      | †5     |
| • • • •<br>• • • • •                                                                                                        |              |                                                                            |       |                    |          |     |                  |                    |            |          |                      |        |
| +                                                                                                                           | 52.3         | 51.2-51.3m weakly skarnized is                                             |       |                    |          |     |                  |                    |            |          |                      | L      |
| +                                                                                                                           |              |                                                                            |       |                    | х.<br>Х. |     |                  |                    |            |          |                      | ŀ      |
|                                                                                                                             |              |                                                                            |       |                    |          |     |                  |                    |            |          |                      |        |
| · · · · · · · · · · · · · · · · · · ·                                                                                       | 1            |                                                                            |       |                    |          |     |                  |                    |            |          |                      | ┢      |
| · • · · · · · · · · · · · · · · · · · ·                                                                                     | i.st         |                                                                            |       |                    |          |     |                  |                    |            |          |                      |        |
| · · · · · · · · · · · · · · · · · · ·                                                                                       | 58.4         | 58,4-59,2m,pinkish grey ap<br>59,1-61.0m, greenish grey silici             |       |                    |          |     |                  |                    |            |          |                      | F      |
| . <u>*</u> *                                                                                                                | 59.2<br>60.0 | 38 skarnized metaso                                                        |       |                    |          |     |                  |                    |            |          |                      |        |
| ***                                                                                                                         | 60.9         | 60.0-60.9m, pinkish grey ap<br>2 61.1-61.3m, pinkish grey ap               |       |                    | -        |     |                  |                    |            |          |                      | Ľ      |
|                                                                                                                             |              | 43.60.9-68.3m greenish grey silici.<br>& weakly skarnized is with py       |       |                    |          |     |                  |                    |            |          |                      | Ļ      |
|                                                                                                                             |              |                                                                            | •     |                    |          | :   |                  |                    |            |          |                      |        |
|                                                                                                                             |              |                                                                            |       |                    |          |     | · · · :          | ÷                  |            |          |                      | ┢      |
| · · · · · · · · · · · · · · · · · · ·                                                                                       |              |                                                                            |       |                    |          |     |                  |                    |            |          |                      |        |
| · · · · · · · · · · · · · · · · · · ·                                                                                       |              |                                                                            | 1.    |                    | :        |     |                  |                    |            |          |                      | F      |
|                                                                                                                             |              |                                                                            |       |                    | · ·      |     |                  |                    |            |          |                      |        |
|                                                                                                                             | 58.3         | 68.3-69.4m, greenish grey silici                                           | 68.3  | B-16024            | < 0.1    | 1.8 | < 0.01           | < 0.01             | < 0.01     | < 0.01   | ſ                    | ſ      |
| • <del>*</del>                                                                                                              | <u>69.4</u>  | å sskaarnized metaso oz, py<br>69.4-79.5m, greenish grey                   | 69.4  |                    |          | 1.0 | ,                |                    |            |          |                      | Ļ      |
| • ++•••••                                                                                                                   |              | silici & weakly skaarnized ss                                              |       |                    |          |     |                  |                    |            |          |                      |        |
|                                                                                                                             |              |                                                                            |       |                    |          |     |                  |                    |            |          |                      | ŀ      |
|                                                                                                                             |              |                                                                            |       | 1.1                |          |     |                  |                    |            |          |                      |        |
|                                                                                                                             | ·            |                                                                            |       |                    |          |     |                  |                    |            |          |                      | ╞      |
| · ++ · · · · · · · · · · · · · · · · ·                                                                                      |              | A 75.5m, cal v. w = 3cm 15°                                                |       |                    |          |     |                  |                    | ÷.,        | . ÷      |                      |        |
|                                                                                                                             |              | IS A REAL PROVIDENT OF A REAL PROVIDENT                                    | 1 · · |                    |          |     |                  |                    | *          |          |                      | ſ      |
| · # · · ·                                                                                                                   | 1            |                                                                            |       |                    |          |     | · · .            |                    | 14         |          | ·                    | L      |
|                                                                                                                             | 1            | 6Ò                                                                         |       |                    | NO T     |     | ;                |                    |            |          |                      |        |
|                                                                                                                             | .19.5        | 79.5-87.8m, greenish grey silici<br>skarnized ss with cal, oz, side v.4 py | 79.5  | B-16025            | < 0.1    | <1  | < 0.01           | < 0.01             | < 0.01     | < 0.01   | 1                    | ╞      |
|                                                                                                                             |              |                                                                            | 81.0  |                    |          |     |                  |                    |            |          | 1                    |        |
| <b>.</b>                                                                                                                    |              | <b>82.9m, qz (cal) v. w = 4cm 40°</b>                                      | 82.5  | B-16026            | 01       | <1  | < 0.01           | < 0.01             | < 0.01     | < 0.01   |                      | Ł      |
|                                                                                                                             |              | 49                                                                         |       | B-16027            | < 0.1    | <1  | < 0.01           | < 0.01             | < 0.01     | < 0.01   |                      |        |
| · · · · · · · · · · · · · · · · · · ·                                                                                       | 1            |                                                                            | 84.0  | B-16028            | < 0.1    | 3.6 | < 0.01           | < 0.01             | < 0.01     | < 0.01   |                      | ſ      |
| ·-#- 5                                                                                                                      | 85.3<br>85.9 |                                                                            | 85.3  | 8-16029            | < 0.1    | <1  | < 0.01           | < 0.01             | < 0.01     | < 0.01   |                      |        |
| XXX                                                                                                                         |              | 30<br>87.0-87.2m, frac zone                                                | 86.5  |                    | <b> </b> | <1  | < 0.01           | < 0.01             | < 0.01     | < 0.01   |                      |        |
|                                                                                                                             |              | 87.5-87.8m, frac zone<br>) 87.8-88.6m, qz (cal.side).py v.                 | 87.8  | 8-16030<br>8-15031 |          | 1   | <u>&lt; 0.01</u> | < 0.01             | < 0.01     | < 0.01   |                      | -      |
| <u>++</u> _\$                                                                                                               |              | 35 88.6-112.4m, dk grey silci                                              | 88.6  |                    |          | [   |                  |                    |            |          | ]                    |        |
|                                                                                                                             | 1 .          | weakly skarnized hornfels<br>with py                                       |       | · · ·              |          |     |                  |                    |            |          | 2                    | r      |
|                                                                                                                             |              | 89.9m, qz v. w = 3cm 25"                                                   |       |                    |          |     |                  |                    |            |          | , i                  |        |
| · · · · ·                                                                                                                   |              |                                                                            |       |                    |          |     |                  |                    |            |          |                      | ſ      |
| • 41- • 5                                                                                                                   |              |                                                                            |       |                    |          |     |                  |                    | х<br>1 - 1 |          |                      |        |
| XXX                                                                                                                         | 91.5         | 194 G-95 Stor Trac Zone with clay                                          |       |                    |          |     | 1 - 1<br>- 1     |                    |            |          |                      |        |
| <u><u></u><br/><u></u> <u></u> </u> |              | 3                                                                          |       |                    |          |     |                  |                    |            |          |                      | ╞      |
| - 5 -#                                                                                                                      |              |                                                                            | :     | :                  |          |     | :                |                    |            |          |                      | 1      |
|                                                                                                                             |              |                                                                            |       | <b>I</b> .         |          |     |                  |                    | ÷          | <u> </u> | ļ .                  | ŀ      |
| 1 + 5                                                                                                                       | :E           |                                                                            | 1     | 1                  | 1        | 1   | 1                | 1                  | 1          | 1        | 1                    |        |

### GEOLOGIC CORE LOG OF MJUB-16 (2/4) 1/200

|        | · · · · · · · · · · · · · · · · · · ·          | GEOLOGIC C                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                  | )G 0                                  | F×MJ                                  |                 | el 242.                        | 56m Dir       | rection             | /200<br>\$20" W  |
|--------|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|---------------------------------------|-----------------|--------------------------------|---------------|---------------------|------------------|
| Ē      |                                                | B-16 (3/4) 100 m ~                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>m 03</u>        | <u> </u>                              | · · · · · · · · · · · · · · · · · · · | X<br>Y<br>ASSAY | 68, 633.<br>92, 403.<br>RESUL1 | 84m Ler       | stination<br>agth   | 151.0            |
|        | UTHO-DEPT<br>LOGY (m)                          | H DESCRIPTIONS                                                            | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISAMPLI<br>No.     | Au(g/t)                               | Ag(g/t)                               |                 | As(%)                          |               | WO <sub>3</sub> (%) | LAE<br>TES       |
| 102-   | 101_C                                          | 101.0-101.8m, brecciated qz (cal)<br>side v.                              | 101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B-1603             | < 0.1                                 | < 1                                   | < 0.01          | < 0.01                         | < 0.01        | < 0.01              | <u>B-16</u><br>P |
|        |                                                | 103. 1-103. 5m, qz (py) v.                                                | 102.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | · · · · · · · · · · · · · · · · · · · | <1                                    | < 0.01          | < 0.01                         | < 0.01        |                     | 8:161<br>F       |
| 104-   |                                                | 33                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 106-   | ÷ S ·                                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 108    | \$_ <u>+</u>                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 110-1  | <b>\$</b>                                      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 112    | <u>s +</u><br>+<br>+                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| I<br>C | r I us i                                       | <b>11.</b>                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     | -                |
| 114-   | 5 - <del>41 -</del>                            | weakly skarnized norntels-ss<br>with py                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 116-   | 5                                              | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               | ÷                   |                  |
| 118    | <u>+</u> · · · · · · · · · · · · · · · · · · · |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | ÷                                     |                                       |                 |                                |               |                     |                  |
| 120    | · +                                            |                                                                           | , in the second se |                    | ÷.,                                   |                                       |                 |                                |               |                     |                  |
| 122-   | <u>+</u>                                       | 5\$ 120.85-121.0m, qz vein, 55*                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       | · · · · · · · · · · · · · · · · · · · | 41.11           | • • •                          |               |                     |                  |
| 124    |                                                | 123.7-124.0m, qz v.with py<br>124.0-127.2m, dk reddish grey               | 123.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P-1602             | 02                                    | 21                                    | (001            | < 0.01                         | < 0.01        | < 0.01              |                  |
| 126    | + <b>3</b> ·                                   | Asilisi & skarnized hornfels-ss<br>20                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B-16034<br>B-16035 | . < 0.1                               | <1                                    | < 0.01          | < 0.01                         | < 0.01        | < 0.01              |                  |
| Ę      | 127.2<br>A A<br>128.1                          | 1127 2-128 1 2000-01                                                      | 126.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-16036            | < 0.1                                 | < 1                                   | < 0.01          | < 0.01                         | < 0.01        | < 0.01              |                  |
|        | <u>₩ -                                   </u>  | 128.1-131.8m, dk reddish grey<br>silici & weakly skarnized<br>hornfels-ss |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · .                |                                       |                                       |                 |                                |               |                     |                  |
|        | + •<br>• •<br>• • 13).8                        | X45 130. 2-130. 32m, qz v. 45°<br>53 130. 5-130. 57m, qz v. 55°           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 132    |                                                | 131.8-133.7m, dk grey silici & skarnised ss                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 134    | 133.1<br>5.#                                   | 133.7-151.0m, dk grey-dk reddish<br>grev weakly silici & skarnized        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 136-   | <u></u>                                        | horáfels ss with py<br>135. 1–135. 2m, frac zone                          | - 44<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                |                                       | 1                                     | -               |                                |               | :                   |                  |
| 138-   |                                                | 33                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | · · ·                                 |                                       |                 |                                |               |                     |                  |
| · • •  | E E                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     | 1                |
| -      | <b>5 ++ - - - - - - - - - -</b>                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                | i se<br>secon |                     | -                |
| 142-   |                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               |                     |                  |
| 144-   |                                                | <b>10</b>                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                       |                                       |                 |                                |               | · · ·               |                  |
| 146    | +                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | ·                                     | *                                     |                 |                                |               |                     |                  |
| 148-   | <b>+ • •</b> •                                 |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                  | •                                     |                                       |                 |                                |               |                     |                  |

### GEOLOGIC CORE LOG OF MJUB-16 (4/4)

1/200

|   | 1TLIN          | DE DT4       |     | · · · · · · · · · · · · · · · · · · · |                 |             |            |    |     |           | 05074              | CINDI         | Ľ   | · · · · · · · | ····· | AS         | Y<br>SAY       | 68, 6<br>92, 4<br>RES |         |          |             | ngth  |       | 151.0        | <b>**1</b>   |
|---|----------------|--------------|-----|---------------------------------------|-----------------|-------------|------------|----|-----|-----------|--------------------|---------------|-----|---------------|-------|------------|----------------|-----------------------|---------|----------|-------------|-------|-------|--------------|--------------|
| ĥ | t THQ-<br>LOGY | DEPTI<br>(m) |     |                                       | ESCI            |             |            |    | 5   |           | (m)                | SAMPLI<br>No: | Au  | g/t)          | Ag(g/ |            | )u(%)          |                       | (%)     |          | (%)         | WO    | 3(%)  | LAB.<br>TEST |              |
|   |                | 151.         | 150 | 9-151<br>tin_01                       | . Om.<br>L. the | cal<br>holy | v.,        | 35 |     |           |                    |               |     |               |       |            | · ·            |                       |         |          |             |       |       |              | 1            |
| Į |                |              | \$5 |                                       | 3               |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              | ]            |
|   |                |              |     |                                       |                 |             |            |    | •   |           | •                  |               | •   |               |       |            |                |                       |         |          |             |       | . •   |              | I            |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                | }                     |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       | 1            |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            | •              |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           | :                  |               |     |               | · ·   |            | :              |                       |         |          |             |       |       |              | ſ            |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              | ŀ   |                                       |                 |             |            |    |     |           |                    |               | l   | ;             |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    | 1             |     |               |       |            |                |                       |         | 1        |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       |         |          |             |       |       |              |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       | · .     |          |             |       |       |              | ł            |
| - |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            | 1              |                       | :       |          |             |       |       |              |              |
| ĺ |                |              | ,   |                                       |                 |             |            |    |     |           |                    |               | :   |               |       |            |                |                       |         |          |             |       |       |              | ł            |
|   |                |              |     |                                       |                 |             |            | •  |     |           |                    |               |     |               |       |            | •              |                       |         |          |             | ł     |       |              |              |
|   |                | · .          |     |                                       | 1.1.1           |             |            |    |     |           |                    |               | :   |               |       |            |                |                       |         |          |             |       |       | ł            |              |
|   |                |              |     |                                       |                 |             |            |    |     |           |                    |               |     |               |       |            |                |                       | :       |          |             |       |       | i            | ļ            |
|   |                |              |     |                                       |                 | •           |            |    |     |           | . :                | -             |     | •             |       |            |                |                       |         |          |             | ŀ     |       |              |              |
|   |                |              |     |                                       |                 |             |            |    | :   |           |                    |               |     |               |       |            |                |                       | 1.<br>1 |          |             |       |       |              | ł            |
|   |                |              | ŀ   | •                                     | · .             |             | ÷.,        |    |     |           |                    |               |     |               | · · · |            |                |                       |         |          |             |       |       | į ,          |              |
|   |                | :            |     |                                       |                 | а,          |            | •  | •   | ÷ .       |                    | 1.4           | :   |               |       | ĺ          | 4 1<br>8 1 - 1 |                       | :       |          | ÷           |       |       |              | ł            |
|   |                |              |     |                                       |                 |             |            |    |     | - 14<br>- |                    |               |     |               |       | : : .      |                |                       |         |          |             |       | ·     |              |              |
|   |                |              |     | a d                                   |                 |             |            |    | i - |           |                    |               |     |               |       | ; <b> </b> | - 11           |                       |         | <b>.</b> |             |       |       |              | ŀ            |
|   |                |              |     | 4                                     | 4               | ÷           |            |    |     |           | - <sup>1</sup> - 1 |               |     |               |       | ľ          |                | *                     |         |          |             |       |       |              |              |
|   | e sta<br>sa    |              | ÷., |                                       |                 |             |            |    |     | -         |                    |               |     | ł             |       |            |                | 8.7                   | 1.1     |          | 1.1         |       |       |              | ļ            |
|   |                |              | ÷ . |                                       |                 | ·<br>· ·    | :          |    |     |           |                    |               | · · |               |       |            |                |                       |         | j        | :           |       | 1.1   | •            | ł            |
|   | •              |              |     |                                       | -               |             |            |    |     |           | *                  |               |     |               |       |            |                |                       | ÷       |          |             |       | :     |              |              |
| l |                |              |     |                                       |                 |             |            |    |     |           |                    | <b>I</b> .    |     |               |       |            |                |                       |         | 1        |             |       |       | •            | ŀ            |
|   | :              |              |     |                                       |                 |             |            |    |     |           |                    |               | ·   | · .           |       |            | 11<br>11<br>12 |                       | •       |          | -           |       |       |              |              |
|   |                |              |     |                                       | te i            |             |            |    | ,   |           |                    |               | - · | -             |       |            |                |                       |         |          |             |       |       |              | ſ            |
|   | :              |              |     |                                       |                 |             | 1975)<br>1 |    |     |           |                    |               | · . |               |       |            | :              | · ·                   | ÷ .     | ľ        | -<br>-<br>- |       |       |              |              |
|   |                |              |     |                                       | •               |             | · ·        |    |     |           |                    |               |     | •             | 1     |            | · .            | ÷.                    | ÷       |          |             |       |       |              |              |
|   | ÷              | 1            |     | :                                     |                 | · .         |            |    |     |           | l                  |               | ľ   | -1            | - 1   |            | - 1<br>-       | ł                     | 1       |          | •           |       |       | + + -        |              |
| : |                |              |     | :                                     |                 | 1           |            |    |     | ÷ .       |                    | :             |     |               |       |            |                |                       |         | · .      | :           |       |       | 1.1          |              |
|   |                |              |     |                                       | •               |             | · ·        |    |     |           |                    |               |     |               |       |            | ·              |                       |         |          | ·<br>· ·    |       |       |              | $\mathbf{F}$ |
|   | :              |              | - · |                                       |                 | •           |            |    |     |           | ł :                |               |     | :<br>1        |       |            | :              |                       |         |          | :           |       | - : 1 |              | I            |
|   |                |              |     | •                                     |                 |             |            |    |     |           |                    |               |     |               |       |            |                | <b>.</b> .            |         |          |             | [ · · |       |              | ł            |
|   |                |              |     |                                       |                 |             | · .        | :  |     |           |                    | :             |     |               |       |            |                |                       | :       |          |             |       |       |              | I            |
|   |                |              |     |                                       |                 |             |            |    |     |           | [                  |               |     | į             |       | 1          |                |                       |         | I        | 1.0         | ł     |       |              | ŀ            |

A--30

GEOLOGIC CORE LOG OF MJUB-17(1/2)

1/200

| [                                                        | ••                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                    | <b>J</b>       |              | Y S<br>ASSAY | 2, 828, 53<br>RESULT |                   | ngth              | 100. 0n      | 1                |
|----------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------------|--------------|--------------|----------------------|-------------------|-------------------|--------------|------------------|
| LTTHO-                                                   | 0691H<br>(m)                 | DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OEPTH<br>(m)              | SAMPLE<br>No.      | Au(g/t)        |              |              | As(%)                | Mo(%)             | WO3(%)            | LAB.<br>TEST | r I              |
|                                                          | 3.0                          | 0-3.0m, sand with peobles<br>3.0-11.fm, brownish grey strongly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a a a a a a a a a a a a a |                    |                |              |              |                      |                   |                   | -            |                  |
|                                                          |                              | weathered silici ss with limo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0                       | B-1701             | < 0.1          | <1           | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              |                  |
|                                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0                       | 8-1702             | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              |                  |
|                                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8                       | 8-1703             | < 0.1          | <1           | < 0.01       | < 0.01               | < 0.01            | < 0.01            | -            | ſ                |
| *                                                        | 11.1                         | 11.1-19.6m, brownish grey weathered<br>silisi.metaso with limo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                      | B-1704             | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            | :            |                  |
| ++<br>-++                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 8-1705             | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | <b>&lt; 0</b> .01 |              |                  |
| +<br>+<br>+                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.0                      | B-1706             | < 0.1          | < 1          | < 0.01       | < 0.01               | <b>&lt; 0.0</b> 1 | < 0.01            |              |                  |
| *<br>*<br>*                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | B-1707             | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              |                  |
| +<br>+<br>V V                                            |                              | 19.6-19.8m, gry is with cal v.<br>19.8-23.4m, greenish grey Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.8                      | 8-1708             | < 0.1          | 1.2          | < 0.01       | < 0.01               | < 0.01            | < 0.01            | B-1712       | ,                |
| v Čv<br>v                                                |                              | with limo, cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                    |                |              | · · ·        |                      |                   |                   | T            | -                |
| ×<br>×××<br>v                                            | 23.4<br>24.0                 | r) 24.0~25.0m, imp with cal veinlets<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 8-1709             | 0.6            | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              |                  |
|                                                          | 25.0<br>25.5<br>25.7<br>28.4 | 25.0–25.5m, frac. zone with clay<br>25.5–25.7m, cal, v. with py<br>25.7–26.4m, fault clay<br>26.4–30.5m, dk grey ss with cal, py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0<br>26.4              | 8-17010            | 2              | <1           | 0.03         | 0.04                 | < 0.01            | < 0.01            |              | -                |
| +                                                        |                              | LOLY OUL ONL ON ELCY SS BILLI CAT, PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.0                      | 8-17011<br>8-17012 | 0.1<br>< 0.1   | <1<br><1     | 0.01         | 0.04                 | < 0.01            | < 0.01            |              | -                |
| * *                                                      | 30.5<br>31.0                 | 30,5-31.0m, dk grey sikici ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.5                      | R-17013            | (01            | <b>&lt;1</b> | < 0.01       | 0.04                 | < 0.01            | < 0.01            |              |                  |
| $\infty $                                                | 32.1<br>32.8                 | arth doubleast car, qr, py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.5<br>32.8              | 8-17014<br>8-17015 | 0.4<br>< 0.1   | 8.4<br>< 1   | 0.05         | 0.2<br>0.08          | < 0.01<br>< 0.01  | < 0.01<br>< 0.01  |              | ŀ                |
|                                                          | 34.5                         | 32.8-35.5m, whitish grey qzite<br>with py<br>34.5-35.5m, greenish grey skarnized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.5                      | 8-17016<br>8-17017 | < 0.1<br>< 0.1 | 2.4          | < 0.01       | < 0.01               | < 0.01<br>< 0.01  | < 0.01            | B-17L3       |                  |
| iğili<br>ultrat<br>ultrat                                | 35.5                         | qzite with hed, act, diop,rhodo<br>35.5-38.7m, dk grey ss with qz, py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.5                      | 8-17018            |                | 6            | < 0.01       | < 0.01               | < 0.01            | < 0.01            | X<br>X       | -                |
| -#-<br>1377.22<br>7.1.\$1                                | 38.7                         | 38.7-44.8m, grey is partly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 8-17019            | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            | · ·          | F                |
|                                                          |                              | skarnized (wõ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.0                      | 8-17020            | < 0.1          | < 1          | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              | -                |
| 1 . s. L<br>1 . s. L<br>1 . s. L<br>1 . s. L<br>1 . s. L |                              | $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$ | 43.0                      | B-17021            | < 0.1          | < 1          | 0.03         | < 0.01               | < 0.01            | < 0.01            | · .          | ŀ                |
|                                                          | 44.8<br>45.6                 | 50<br>44.8-45.6m, whitesh grey qzite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.8                      | B-17022            |                | <1           | < 0.01       | 0.02                 | < 0.01            | < 0.01            |              | $\left  \right $ |
|                                                          | 49, 2 .<br>40, 9             | 45.6-46.2m, dk grey silici ss<br>46.2-46.9m, skarnized Is with hed<br>46.9-49.7m, dk grey silici &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46.2<br>46,9              | 8-17023<br>8-17024 | 0.2            | < 1<br>4.4   | 0.15         | < 0.01<br>0.02       | 0.01<br>< 0.01    | < 0.01<br>< 0.01  |              | -                |
|                                                          | 50. G                        | skarnized ss with py<br>48.8-49.3m, greenish grey Imp<br>49.7-49.9m, greenish grey Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.5                      | 8-17025            | < 0.1          | <1           | < 0.01       | < 0.01               | < 0.01            | < 0.01            |              | ŀ                |

A=31

#### GEOLOGIC CORE LOG OF MUUB-17 (2/2)

#### 1/200

|      | M                            | υυε           | 3-17 (2/2) 50 m ~                                                 | 1              | <u>00</u> m        |                |             | . X (    | el 233.68<br>68,372.88<br>92,828.53 | 3 m. Di<br>3 m. to                    | rection S<br>clination | 35' W<br>-80'<br>100. On | 14          |
|------|------------------------------|---------------|-------------------------------------------------------------------|----------------|--------------------|----------------|-------------|----------|-------------------------------------|---------------------------------------|------------------------|--------------------------|-------------|
|      | LITHO-<br>LOGY               | DEPT:<br>(m)  | DESCRIPTIONS                                                      | OEPTI<br>(m)   | SAMPLE<br>No.      | Au(g/t)        |             | ASSAY    | RESULI<br>As(%)                     | Mo(%)                                 | WO <sub>3</sub> (%)    | LAB.<br>TEST             |             |
| 50   |                              | 50.4          | 50.4-58.8m, grey whitish<br>skarnized 1s (wo)                     |                |                    | < 0.1          | 1.6         | < 0.01   | 0.04                                | < 0.01                                | < 0.01                 |                          | -50         |
| 52   |                              | 51.8<br>52.0  | 51. 8-52. On, syeno dt                                            | 51.8           |                    |                | 1.2         | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | -           |
| 54-  |                              |               | 20                                                                | 53.5           |                    |                | 1.2<br><1   | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | -           |
|      |                              |               |                                                                   | 55.0           |                    |                |             | <b>-</b> |                                     |                                       | · ·····                |                          |             |
| 56-  | <b>3</b> 333                 |               | 56, 4-56, 5m, frac zone<br>56, 8-57, 1m, skarn (wo)               | 56.8           | <b>B-17030</b>     | < 0.1          | <1          | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | -           |
| 58   |                              | 58.8          | 58.8-62.4m. syeno dt                                              | 58.8           | B-17031            | < 0.1          | 4.8         | 0.03     | 0.03                                | 0.01                                  | < 0.01                 |                          | -           |
| 60   | L K                          | -             | oo, o oz. Ha, syeno de                                            |                | ľ                  |                |             |          |                                     |                                       |                        |                          | -60         |
| 62-  | 사                            |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        | . · ·                    |             |
| νz   | LITE                         | £2_4          | 62.4-64.0π, grey skarnized Is                                     | 62.4           |                    | < 0.1          | <1          | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | ľ           |
| 64-  |                              |               |                                                                   | 64.0           |                    | < 0.1          | <1          | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | F           |
| 66-  |                              | .65.Q         | 66.0–69.4m, grey qzite with ss                                    | 66.0           |                    |                |             |          |                                     |                                       |                        |                          | -           |
| 68-  |                              |               |                                                                   | 67.5           |                    |                | 6.4         | < 0.01   | 0.06                                | < 0.01                                | < 0.01                 |                          | -           |
|      | ium<br>Ium                   |               | 69.4-73.5m, dk grey alt (sl=ss)                                   | 59.4           | B-17035            | < 0.1          | < 1,        | < 0.01   | 0.03                                | < 0.01                                | < 0.01                 |                          |             |
| 70-  |                              | 71 5          | 50                                                                | · ·            | B-17035            | < 0.1          | <1          | < 0.01   | < 0.01                              | < 0.01                                | < 0.01                 |                          | -70         |
| 72-  |                              | 71.9          | 71.5-71.9m, qzite                                                 | 71.5           | 8-17037            | < 0.1          | 4.8         | < 0.01   | 0.02                                | < 0.01                                | < 0.01                 | · ·                      | -           |
| 74-  | ** s<br>** s<br>**           | 73.5<br>74 A  | , 73.9-70.78, stict & skaarnized<br>Nimetaso, with abundant pv.ma | 73.5           | 8-17038            | < 0.1          | 3.6         | 0.1      | 0.02                                | < 0.01                                | 0.01                   |                          | -           |
| 26   | # 5<br>5 #                   |               | 53 74.8-75.0m, py, po, cp vein                                    | . 74.8<br>75,5 | 8-11019            | 6              | 23.8        | 0.33     | 0.75                                | <u>&lt; 0.01</u>                      | < 0.01                 | 8-17L4                   | - 75. 4     |
| 76-  | ++ 5<br>++ 5<br>++ 5<br>++ 5 |               |                                                                   | 10.5           | 8-17040<br>8-17041 | < 0.1<br>< 0.1 | 16.6<br>< 1 | 0.31     | 0.03                                | < 0.01<br>< 0.01                      | < 0.01<br>< 0.01       |                          |             |
| 78-  |                              | 78.7          |                                                                   | 77.5           | 8-17042            |                | 8.4         | 0.12     | 0.4                                 | < 0.01                                |                        | χ<br>B-17L5              |             |
|      | $\mathbf{\lambda}_{1}$       |               | 78.7-90.9m, syeno-dt                                              | 78.7           |                    |                |             |          |                                     | · · · · · · · · · · · · · · · · · · · |                        | B-1716<br>P              | 18.6        |
| 80   | 1 ×                          |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        | · ·                      | - 80        |
| 82-  | $ \lambda _{1}$              |               |                                                                   |                |                    |                |             |          |                                     |                                       | Т                      | •                        |             |
|      | <u>, ^</u>                   |               |                                                                   |                | 1.1                |                |             | ÷ .<br>: |                                     |                                       | N g A                  |                          | : `.        |
| 84-  | J.                           |               | 84.0-90.9m, syeno-dt with py                                      |                |                    |                |             |          |                                     |                                       | _                      | + ·                      | - ·         |
|      | ΙX)                          | . *           | 84.0-90.9m, syeno-dt with py                                      |                |                    |                |             |          | :                                   |                                       |                        |                          |             |
| 86-  | [ 시                          |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        | ;                        | ŀ           |
| 88-  | 人.                           |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        |                          |             |
|      | λÎ                           | 1             |                                                                   |                |                    |                |             |          |                                     |                                       | 1 · · ·                | •                        | [           |
| 90-  | 入                            |               | 388.8-qz, py v.₩ = 2cm 15°                                        |                |                    |                |             |          |                                     |                                       |                        |                          | - 90        |
| i k  | xx                           | .90,9<br>91,1 | 90. 9-100.0m, grey dt<br>90. 9-91.2m, frac zone                   |                |                    |                |             |          |                                     |                                       |                        |                          |             |
| 92-  | ××                           |               |                                                                   |                | :                  |                |             |          |                                     |                                       |                        |                          | <b>-</b> 1, |
| 94-  | Ŷ×Ŷ<br>× ×                   | j.            |                                                                   |                |                    |                |             |          |                                     |                                       |                        |                          | <u>.</u>    |
|      | ×                            |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        |                          |             |
| 96-  | ××                           |               |                                                                   |                |                    |                |             |          |                                     | 1944<br>1944                          | 4<br>                  | ·                        |             |
| 98-  | × ×<br>、×、                   |               | 98.0-100.0m, frac zona                                            |                |                    |                |             | :        |                                     |                                       |                        | ·                        |             |
| 100- | × ×                          |               | 100. Gn. Bottm of the hole                                        |                |                    |                |             |          |                                     |                                       |                        | · · ·                    | L 100       |
|      |                              |               |                                                                   |                |                    |                |             |          |                                     |                                       |                        |                          | 100         |

|     | M.              | <u>.</u> | 3 <u>−18 (1∕4) 0 m ~</u>                                                                                  | 5      | 50 m           |              |          | X (            | el 233, 1<br>68, 395, 20 | ni mé  | irection<br>nolinatio | ni -80°            |
|-----|-----------------|----------|-----------------------------------------------------------------------------------------------------------|--------|----------------|--------------|----------|----------------|--------------------------|--------|-----------------------|--------------------|
|     | <b></b>         | DEPT     | J                                                                                                         | i      | 1              | 1            |          | Y<br>ASSAY     | 92, 848. 2<br>RESUL      | m Le   | ength                 | 154.0              |
|     | LOGY            | (m)      | DESCRIPTIONS                                                                                              | (m)    | ISAKPLI<br>No. | Au(g/t)      | Ag(g/t   |                |                          | Mo(%)  | WO <sub>3</sub> (%)   | - LAB.<br>) TEST   |
|     |                 |          | 0-3.Om, sand with peobles                                                                                 |        |                |              |          |                |                          |        |                       | -                  |
| 2   |                 |          |                                                                                                           |        |                |              | 1 E      | ι.             |                          |        | j .                   |                    |
|     | ЬЩ.             | 3.0      | 3.0-13.5m, sluge & strongly                                                                               |        |                | 1 ·          |          |                |                          |        |                       | ľ                  |
| 4   |                 |          | weatherd silici ss with limo<br>3.0-21.4m fractured                                                       |        |                |              |          |                | 1                        |        |                       |                    |
|     |                 |          |                                                                                                           |        |                |              |          |                |                          |        |                       |                    |
| 6   |                 |          |                                                                                                           |        |                | Ì            |          |                |                          |        |                       |                    |
| •   |                 |          |                                                                                                           |        |                | :            |          |                |                          |        |                       |                    |
| 8   | 1XXX            |          |                                                                                                           |        |                | :            |          |                | · ·                      |        |                       | ĺ                  |
| 10  | $\mathbb{X}$    | ]        |                                                                                                           |        |                |              |          |                | -                        |        |                       |                    |
|     |                 | 1 :      |                                                                                                           | 1.1    |                |              |          |                |                          |        |                       |                    |
| 12  | $\mathbb{X}$    | 1        |                                                                                                           |        | :              |              |          |                | 1                        |        |                       |                    |
|     |                 | 13.5     | 13.5m gz v. w = 5cm                                                                                       |        |                | :            |          |                |                          |        |                       |                    |
| 14  | 1XXX            |          | 13.55-18.0m, brownish grey<br>weatherd silici ss with                                                     | 13.5   |                |              |          |                |                          |        |                       | 1                  |
| ·   |                 | 1        | abundant limo                                                                                             |        | B-1801         | < 0.1        | <1       | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
| 16  |                 |          |                                                                                                           | 16.0   |                |              |          |                |                          |        |                       |                    |
| 18- | XX              | 18.0     |                                                                                                           | 18.0   | 8-1802         | < 0.1        | 1.2      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | XXX             |          | 18.0-20.2m, greenish grey imp<br>with gz veinlets                                                         | 10.0   |                | < 0.1        | 0.0      | 1001           |                          |        |                       | . •                |
| 20- | XX              | 20.2     |                                                                                                           | 20.2   | B-1803<br>-    | <u> </u>     | 3.6      | < 0.01         | <b>&lt; 0</b> .01        | < 0.01 | < 0.01                | 1997 - A.          |
|     | $\bigotimes$    | 21.4     | 20.2-23.6m, brounish grey<br>weatherd silici metasoma                                                     |        | 8-1804         | < 0.1        | 3.2      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                | <b>1</b> .         |
| 22  | #<br> #         |          | with abundant limo                                                                                        | 22.0   |                |              | v.e      |                | × 0.01                   | × 0.01 |                       | ·                  |
|     | -+              | 23.8     | 23.6-24.0m, frác zone                                                                                     |        | 8-1805         | < 0.1        | 1.8      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
| 24- | -+- s           | 27.1     | 24.4-25.7m, brounish grey<br>weathered silici & skarnized                                                 | 24.0   |                |              |          |                |                          |        |                       | <u>B-18L1</u><br>F |
| 26- | 5 #             | 25.I     | metaso<br>$\lambda$ 25.2m, qz v. w = 4cm, 60°<br>60 25.7-45.0m, greenish grey<br>sillici skarnized metaso | 26.0   | 8-1806         | <b>¢</b> 0.1 | 1.6      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | 5 -#-           |          |                                                                                                           |        | 8-1807         | < 0.1        | <1       | < 0.01         | 1001                     | ( 0.01 |                       |                    |
| 28- | ++- \$<br>\$ ++ |          | with qz, cal v, py                                                                                        | 28.0   | 5 1001         |              | <u> </u> | × 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | ++ \$<br>\$ + - |          |                                                                                                           |        | 8-1808         | < 0.1        | 1.2      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                | 1999 - A.          |
| 30- | -ti- S          |          | Α 29.8-30.0π, qz, ργ ν. 60<br>60                                                                          | 30.0   |                | <u>.</u>     |          |                |                          |        |                       |                    |
|     | s #<br># s      |          |                                                                                                           | 31.5   | 8-1809         | < 0.1        | 1.8      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                | ÷.,                |
| 32- | s ++            | 32.8     |                                                                                                           |        | B-18010        | < 0.1        | 1.6      | < 0.01         | < 0.01                   | < 0.01 | 0.01                  | 8-1812             |
| 34- | V v V           |          | 32.8-34.2m, brownish grey 1mp<br>33.9m, joint with gz v. w = 0.2cm                                        | . •    |                |              |          |                | · · ·                    |        |                       | I IOLE             |
|     | ₩.V<br>++ \$    | _34.2    | 23                                                                                                        | 34.2   |                |              |          |                | ·                        |        |                       |                    |
| 36- | s +⊦<br>V V     | 35.9     | 35.9-37.0m, greenish grey Imp                                                                             | 35.9   | 8-16011        | < 0.1        | <1       | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | <br>-⊪s         | 37.0     |                                                                                                           | 37.0   |                |              |          |                |                          |        |                       |                    |
| 38- | s ++-           |          |                                                                                                           | i      | B-18012        | < 0.1        | 2.4      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | ++ s<br>s∶-+⊦   |          |                                                                                                           | 39.0   |                |              |          |                |                          |        |                       |                    |
| 40- | ++ S<br>S ++    |          |                                                                                                           | den er | B-18013        | < 0.1        | <1       | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
| 40  | 4 <b>-</b> 5    |          |                                                                                                           | 41.0   |                |              |          | ~ <u>~~~</u> , |                          |        |                       | ···                |
| 42- | ** *            | -        | 42.0-42.3m, frac zone                                                                                     |        | 3-18014        | < 0.1        | 1.2      | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
| 44- | s -⊪<br>#- s    |          | 3                                                                                                         | 43.0   | B-18015        | < 0.1        | <1       | < 0.01         | < 0.01                   | < 0.01 | < 0.01                |                    |
|     | s +             | 45.0     | 45.0-245.7m, grey brecciated Is<br>45.7-45.75m, frad zone with clay                                       | 45.0   |                |              |          |                | × 0.01                   | × 0.01 | × 0.01                | - ** , <b>}</b>    |
| 46- | ALAL<br>ALAL    |          | 40. /0-45. 4m, brecciated oz v.                                                                           | E      | 3-13016        | < 0.1        | - < 1    | < 0.01         | < 0.01                   | < 0.01 | < 0.01                | Į                  |
|     | <b>∨</b> _ ∨    | 40.4     | 46.4-47.5m, greenish grey imp<br>with call side v.                                                        | 46.4   | 3-18017        | < 0.1        | <1       | < 0.01         | < 0.01                   | < 0.01 | 0.01                  |                    |
| 48- | 1               |          | with call side v.<br>47.5–47.6m, frac zone with clay<br>47.6–49.0m, clay v.<br>48.0m, fault clay w ≈ 5cm  | 47.5   | 3-18018        | 0.3          | 4.4      | < 0.01         |                          |        |                       | B-18L4             |
|     | en de la        | -12. 2.  | 19. 0-50. On, silici skarnized metaso                                                                     | 49.0   |                |              |          |                | 9.90                     | V.VI   | N V.VI                |                    |

GEOLOGIC CORE LOG OF MJUB-18 (1/4)

Å-33

GEOLOGIC CORE LOG OF MJUB-18 (2/4)

1/200

|      | М.          | <u>ו ט נ</u>         | 3-18 (2/4) 50 m ~                                                                                           | <u> </u>     | <u>)0 m</u>   |                 | :<br>:     | . X (          | el 233, 17<br>68, 395, 26<br>92, 848, 21 | m le             | irection (<br>clination<br>angth | S35'₩<br>n. ~80"<br>154,0m              |
|------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------|------------|----------------|------------------------------------------|------------------|----------------------------------|-----------------------------------------|
|      | LITHO       | 0EP1<br>(m)          | DESCRIPTIONS                                                                                                | OEPII<br>(m) | SAMPLE<br>No. | Au(g/t)         | Ag(g/t)    | ASSAY<br>Cú(%) | RESUL<br>As(%)                           | Mo(%)            | WO3(%)                           | LAB,<br>TEST                            |
| 50   | ×××         |                      | 50. 0-51. 1m, dh greenish grey dt                                                                           | 50 0         | 8-18020       | •               | 4.4        | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
|      | XXX         | 51.1                 | with cal veinlets, py. fault clay<br>51.1-51.7m frac zone with fault clay<br>51.7-52.0m, str.silici, metaso | 51.1         | 8-19021       |                 | <1         | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
| 52   |             | 1.22                 | with gz v.                                                                                                  | 52.2         | B-18022       |                 | - 21       | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
| 54   |             |                      | with gz v.<br>52.0-52.2m, gz (cai )v.<br>52.2-55.0m, gk grey dt.<br>52.2-54.5m, frac zone                   | 33.0         | B-18023       | •               | <1         | < 0.01         | < 0.01                                   |                  |                                  |                                         |
| 54   | XX          | 54.5<br>55.0         |                                                                                                             | 55.0         |               | × 0.1           |            | 10.01          | N 0.01                                   | < 0.01           | < 0.01                           |                                         |
| 56   |             | 55.0<br>55.5<br>51.0 | 55.0-56.0m, frac zone with fault clay<br>56.0-63.4m, pinkish grey syeno dt<br>56.0-56.5m, frac zone         |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 58   |             | 52.6                 | 57, 0-57, 8m, frac zone                                                                                     |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 60   | λ           | 60.0                 | INF 11-01 76 1720 7004                                                                                      |              |               |                 |            |                |                                          |                  |                                  | -60                                     |
|      | Ĭ,Ĭ         | 60.7<br>61.4         | 61.4-61.8m, frac zone                                                                                       |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 62-  | 1X T        |                      |                                                                                                             |              |               |                 |            |                |                                          |                  |                                  | -                                       |
| 64-  | ÊÊ          |                      | 63.0-63.4m, frac zone<br>63.7-65.0m, grey di with qz v.                                                     |              |               |                 |            |                |                                          |                  |                                  |                                         |
|      | XXX         | 65.0                 |                                                                                                             |              |               | :               |            | •              |                                          |                  |                                  |                                         |
| 66-  | Ŵ           | .55.0<br>66 J        | 65.0-65.6m, syano-dt with cally.<br>65.6-66.3m, frac zone with clay                                         |              |               |                 |            |                |                                          |                  |                                  |                                         |
|      |             | }                    | 66.3-70.6m, grey silici alt (ss>>sk)<br>with qz veinlets, py                                                | 66.3<br>67.5 | 8-18024       | < 0.1           | <1         | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
| 68-  |             | 58.7                 | 60 7-60 m from the state of the state                                                                       |              | 8-18025       | < 0.1           | 1.2        | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           | X -<br>8-1815                           |
| 10   | ++          | 69.0<br>69.5         | 68.7-69.0m, frac zone with clay<br>69.0-69.5m, dqz, cø, py v.                                               | 69.0<br>69.5 | 8-18035       | 9.8             | 72.8       | 3.5            | 0.45                                     | <u>ال</u> 0.07   | 0.02                             | B-1815<br>B-1816 (13)                   |
| 70-  | -++ -++-    | <u> </u>             | 70, 1-70, 35m, qz (py) v.<br>70, 6-77, 1m, grey Is, partiy<br>sharnizad with wa shita stav                  | 70.6         | 8-18027       | 0.1             | 4.8        | < 0.01         | 0.02                                     | < 0.01           | < 0.01                           | <u>B-1817</u> -70<br>F <sup>70</sup> .1 |
| 72-  |             | 72 4                 | soprifice with we, write eley                                                                               |              |               | <u>∶</u> < 0.1  | 1.8        | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
|      | ┠╘╦╎╂╌┰╵    | 73.0                 | 72.4-73.0m, syeno dt                                                                                        | 72.4         | 8-18029       | < 0.1           | 3.6        | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           | -                                       |
| 74-  |             | <u>_74.0</u><br>74.3 | 74.0-74.3m, syeno dt                                                                                        | 74.0         |               |                 |            |                |                                          |                  |                                  |                                         |
| 76-  |             |                      | <b>SU</b>                                                                                                   |              | 111           |                 | -          |                |                                          |                  |                                  |                                         |
| .70  | l Giri      | 11.1                 |                                                                                                             |              |               |                 |            |                |                                          |                  |                                  | -                                       |
| 78-  | ×××         |                      | 40 slarnized of with cal veinlets                                                                           |              |               |                 |            |                |                                          | )                |                                  | 8-181.8 27.4                            |
| :    | ×××         |                      |                                                                                                             |              | •             |                 |            | :              |                                          | ÷ .              | 1.1                              |                                         |
| 80-  | XX          | 80.5                 |                                                                                                             | х с<br>1     |               | ·               | т. н.<br>С |                |                                          |                  |                                  | -80                                     |
|      |             | 89.7.<br>AL.0        | 80. 5-80. 7m, frac zone :<br>3 80. 1-80. 7m, igz v. 25                                                      |              |               |                 |            |                |                                          | -                |                                  |                                         |
| 82-  | Î^×^        |                      | 20                                                                                                          |              |               |                 |            |                |                                          |                  |                                  |                                         |
|      | ĺĴ×Ĉ        | ÷                    |                                                                                                             |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 84-  | ××          | :                    |                                                                                                             |              |               |                 |            |                |                                          |                  |                                  | -                                       |
|      | ×××         |                      |                                                                                                             | 1            |               |                 |            |                |                                          |                  |                                  |                                         |
| 86-  | ×××         | 88.8                 |                                                                                                             |              |               | · [             | 1          |                |                                          |                  |                                  | -                                       |
| 88-  |             |                      | 86.8-88.6m, whitish grey<br>sharnized Is (wo)                                                               | 86.8         | 8-18030       | 0.1             | 4.8        | < 0.01         | < 0.01                                   | < 0.01           | < 0.01                           |                                         |
|      | × ×         | 18.6                 |                                                                                                             | 88.6         | <u> </u>      |                 |            |                | · · · · · · · · · · · · · · · · · · ·    | <u></u>          |                                  |                                         |
| 90-  | ×××         |                      | 1 <sup>55</sup> 89.5m, sya∩o∸dt dyke w = 1cm, 60<br>60                                                      | :            |               |                 |            |                |                                          |                  |                                  | - 90                                    |
|      | × ×         |                      |                                                                                                             | · .          |               |                 |            |                |                                          |                  |                                  |                                         |
| 92-  | <b>.</b> X. |                      | ) 91.7m, cat v. w ≕ 3cm 35*<br>35                                                                           |              |               |                 |            |                |                                          |                  | 1                                |                                         |
|      | λλ          | 92.9                 | 92.9-97.2m, pinkish grey-<br>greenish grey syeno-dt                                                         |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 94-  | بر ا        |                      | 3. 94.9-95.0m, silici ss                                                                                    |              |               |                 |            | а с. с.<br>1   | • • • • · · ·                            |                  |                                  |                                         |
| 96-  | 지지          | •                    | 10                                                                                                          |              | n<br>Na se    |                 |            |                | -                                        | -                |                                  |                                         |
|      | X           | 21.2                 | 97. 2·98. On, gz v.                                                                                         | 97.2         |               |                 |            | 7              |                                          |                  |                                  | :                                       |
| 98-  |             | .98.Q                | 98.0-100.1m, blk st with py                                                                                 | 98.0         | B-18031       | <u>&lt; 0.1</u> |            | < 0.01         | < 0.01                                   | <u>&lt; 0.01</u> | < 0.01                           |                                         |
|      |             |                      |                                                                                                             |              |               |                 |            |                |                                          |                  |                                  |                                         |
| 100- | ·           |                      | ·······                                                                                                     | 1            | 1<br>- ۸      |                 | I          | 1              | l                                        | !                | l.                               | L-100                                   |

A--34

|      |                                |        | GEOLOGIC C                                                                         |             |                |         |            |                 | vel 233.            | 12 m Di | rection             | s 35° w |
|------|--------------------------------|--------|------------------------------------------------------------------------------------|-------------|----------------|---------|------------|-----------------|---------------------|---------|---------------------|---------|
|      | <u>М J</u><br>цітно-           | r      | 3-18 (3/4) 100 m ~                                                                 | Γ           | 0 m<br>ISAMPLE |         |            | Ŷ<br>ASSAY      | 92. 848.<br>RESUL 1 | 21 m Le | clination<br>ngth   | 154. C  |
| 100- | LOGY                           | (m)    |                                                                                    | (m)         | No.            | Au(g/t) | Ag(g/t)    | Cu(%)           | As(%)               | Mo(%)   | WO <sub>3</sub> (%) | TES     |
|      | -+)- \$<br>51i-                | 101 6  | 100, 1-100, 2m, greenidh grey sillei 8<br>skarnized metaso with py<br>101 S-101 S- | 101.6       | 8-18032        | < 0.1   | 1.8        | 0.02            | < 0.01              | 0.01    | 0.04                |         |
| 102- |                                | }      | 25 102.0-102.2m, frac zone<br>25 102.4-103.0m, str. silici metaso                  | 103.0       | B-18033        | < 0.1   | <1         | < 0.01          | < 0.01              | 0.01    | < 0.01              |         |
| 104- |                                |        | with druesy oz<br>103.0-109.9m, whitesh grey is<br>with skarn (wo) sulphide v.     |             | 8-18034        | < 0.1   | :<br><1    | < 0.01          | < 0.01              | k 0.01  | < 0.01              |         |
| 100  |                                |        |                                                                                    | 105.0       | 8-18035        | < 0.1   | <b>4</b> 1 | < 0.01          | < 0.01              | < 0.01  | < 0.01              |         |
| 106- |                                |        |                                                                                    | 106.5       | B-18036        |         | 1.6        | < 0.01          | < 0.01              | < 0.01  | < 0.01              |         |
| 108- |                                |        | 108.1-1068.2m, py, ma, po v.                                                       | 108.0       |                |         | <1         | < 0.01          | < 0.01              | < 0.01  | l                   | B-181   |
| 110- | T T                            | 109.9  | 108, 4-108, 5m, py, ma, v.<br>109, 9-110, 5m, grey dt                              | 109.0       | 8-18038        | < 0.1   | 2.8        | < 0.01          | < 0.01              | < 0.01  | < 0.01              |         |
|      | Â                              | 1110.5 | 40<br>110.5-113.0m, greenish grey syeno-di                                         |             |                |         |            |                 |                     |         |                     |         |
| 112- |                                | 113.0  |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 114- | μ.                             |        | 113,0-154.0m, pinkish grey syeno-dt                                                | ĺ           |                |         |            |                 |                     |         | 4                   |         |
| 116- |                                |        |                                                                                    | ļ           |                |         |            |                 |                     |         |                     |         |
| 110- | ] . ㅅ                          |        |                                                                                    |             |                |         |            |                 |                     |         | :                   |         |
| 118- | ∖<br>↓                         |        |                                                                                    |             |                |         | 1          |                 |                     |         |                     |         |
| 120- | L.                             |        | A 119.2m, qz v. w = 0.2cm<br>60                                                    |             |                |         |            | :               |                     |         |                     |         |
|      | 1, ^                           |        |                                                                                    |             |                |         | ,          |                 | :                   |         |                     |         |
| 122- | ٦,                             |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 124- |                                |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 126- | $\overline{\lambda}_{\lambda}$ |        | A 124.7m, qz (py) v. w = 4cm                                                       | · .         |                |         |            |                 |                     |         |                     |         |
| 120  | λŰ                             |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 128- | 1 : <b>)</b><br>1 :            |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 130- |                                |        | A Jaine 15                                                                         | 1           |                |         |            |                 |                     |         |                     |         |
|      | ۱.                             |        | 3 joint 45                                                                         |             |                |         |            | ана<br>1941 — П |                     |         |                     |         |
| 132- |                                | 133-8  | 132.6-133.0m, frac zone                                                            |             |                |         |            |                 |                     |         |                     |         |
| 134- | λ:<br>λ                        |        |                                                                                    |             |                |         |            |                 |                     |         |                     | 1.1     |
| 136- | 11 -                           | 135.8  | qz v. w = 0.2cm                                                                    | <b> </b> -: |                |         |            |                 |                     |         | 1.<br>              |         |
|      | $^{1}$                         |        | 16.4                                                                               |             |                |         | :          |                 |                     |         |                     |         |
| 138- | ٨,                             |        |                                                                                    | . :         |                |         |            |                 |                     |         |                     |         |
| 140- |                                |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
|      | <b>^</b>                       |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 142- | <u>ا</u> ا                     |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 144- |                                |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 146- | ١.                             |        |                                                                                    |             |                |         |            |                 | ÷.                  |         |                     |         |
|      | l^ .                           |        |                                                                                    |             |                |         |            |                 |                     |         |                     |         |
| 148- | λĈ                             |        | a joint                                                                            |             |                |         |            |                 |                     |         |                     |         |

| MJ              | UB        | -18 (4/4) 150             | m ~         | 1            | <u>54m</u>           | :            |         | ¥              |                        |       | rection &<br>clination<br>ngth | 35' W<br>-80<br>154. 0 | 1       |
|-----------------|-----------|---------------------------|-------------|--------------|----------------------|--------------|---------|----------------|------------------------|-------|--------------------------------|------------------------|---------|
| . ITHÓ-<br>LOGY |           | DESCRIPTIONS              |             | DEPT}<br>(m) | SAMPLE<br>No.        | Au(g/t)      | Ag(g/t) | ASSAY<br>Cu(%) | RESULI<br>As(%)        | Mo(%) | WO <sub>3</sub> (%)            | LAB.<br>TEST           |         |
| ٨               |           | pinkish grey syeno-dt     |             | `            |                      |              |         |                |                        |       |                                |                        | -150    |
| хÎ              | 4 .       |                           |             |              |                      |              |         |                |                        |       | :                              |                        | -       |
|                 | 154.0     | 154.0m, Bottm of the hole |             |              | · · · <b>· ·</b> · · |              |         |                |                        |       |                                | •                      | -       |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           |             |              | · · ·                |              |         |                |                        |       |                                | •<br>•                 |         |
|                 |           |                           |             |              | e.                   |              | 1. A    |                | E.                     | :     |                                |                        |         |
|                 | -         | ·                         |             |              |                      |              |         |                | en en en<br>State Brit |       |                                |                        | -160    |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                | :                      | -       |
|                 |           |                           | •           | · .          |                      |              |         |                |                        |       |                                |                        | .<br> - |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                |                        | _       |
|                 |           | :                         |             |              |                      | н<br>1911 г. |         |                |                        |       |                                |                        |         |
|                 | ÷ .       |                           |             |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           | ;<br>;      |              | ·                    |              |         |                |                        |       |                                |                        | -170    |
|                 | н<br>1    |                           | 1<br>1<br>1 |              |                      |              |         | . •            |                        | •     |                                |                        | -       |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           | :           |              |                      |              |         |                |                        |       |                                |                        | _       |
|                 |           |                           | -           |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           |             |              | 14<br>13<br>14       |              |         |                |                        |       |                                |                        |         |
|                 | -         |                           |             |              |                      |              |         |                |                        |       |                                |                        | -180    |
| -               | 2<br>21 - |                           |             |              |                      |              |         |                |                        | · ·   |                                | :                      | -       |
|                 |           |                           |             |              |                      |              |         |                |                        | • •   |                                |                        | 2       |
| an at s<br>an s |           |                           |             |              | , ÷                  |              |         | 1 .            |                        |       |                                |                        |         |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                | -                      |         |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           |             |              | · .                  |              |         |                |                        |       |                                | 8 - S                  | - 190   |
|                 |           |                           |             |              |                      |              |         |                |                        |       |                                |                        |         |
|                 |           |                           |             | 4 .          | <br>                 |              |         |                |                        |       |                                |                        |         |
| ÷.              | :         |                           |             |              |                      |              |         |                |                        |       |                                |                        | 1.0     |

| GEOLOG | I C CORE | LOG OF | MJUB-19 | ) (1/3) |
|--------|----------|--------|---------|---------|

1/200

| L'ITHO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH | DESCRIPTIONS                                                                          |                                                | SAMPLE  |         |                                       | ASSAY        | RESULI        |           |                     | LA        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|------------------------------------------------|---------|---------|---------------------------------------|--------------|---------------|-----------|---------------------|-----------|
| 0 106Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (m)   | DESGRIFITONS                                                                          | (m)                                            | Nò.     | Au(g/t) | Ag(g/t)                               | Cu(%)        | As(%)         | Mo(%)     | WO <sub>3</sub> (%) | 31        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 0-3.0m, sand with pebbles                                                             |                                                |         |         |                                       |              |               | · · ·     |                     |           |
| 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0   |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| 4-++-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 3.0-9.4m, brownish grey silici &<br>skarnized alt (ss>>sl) with limo                  | 3.0                                            | 8-1901  | < 0.1   | <1                                    | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| <del>3 4</del><br>+ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                       | 5.0                                            |         |         |                                       |              |               |           |                     |           |
| 6-<br>++<br>5<br>++<br>5<br>++<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                       |                                                | 8-1902  | < 0.1   | <1                                    | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| 8- <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | }     |                                                                                       | 7.0                                            | 1       | 2.01    |                                       | 0.01         | (             | 2001      | 1001                |           |
| \$ <del>  </del><br>-#- \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.4   | 9.4-10.8m whitish grey partly                                                         | 9,4                                            | 8-1903  | < 0.1   | 1.8                                   | 0.01         | < 0.01        | < 0.01    | < 0.01              | <u> </u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.8  | skarnized la with limo                                                                | 10.8                                           | 8-1904  | < 0.1   | <1                                    | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| 12-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·   | 10.8-12.8m, greenish grey fractured<br>silici & skarnized alt (ss>>s1)<br>with limo   |                                                | 8-1905  | < 0.1   | 6.4                                   | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| - (\$∕}⊕<br> _1\$1<br> ↓∓_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.8  | 12.8-14.0m, whitesh grey partly skarnized is                                          | 12.8                                           | B-1906  | < 0.1   | <pre></pre>                           | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| 14 13 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0  | 14.0-18.5m, silici & skarnized<br>hornfels ss with gz veinlets py                     | 14.0                                           | B-1907  | < 0.1   | 3.2                                   | < 0.01       | < 0.01        | < 0.01    | < 0.01              | ĺ         |
| 16- #- \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                                       | 15.5                                           |         | < 0.1   | <1                                    | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| 18-<br>18-<br>18-<br>18-<br>18-<br>18-<br>18-<br>18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                       | 17.0                                           |         | < 0.1   | <1                                    | < 0.01       | < 0.01        | < 0.01    | < 0.01              |           |
| 18 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.5  | 18.5-22.5m, greenish dk grey silici<br>8 skarnized hornfels ss                        | 18.5                                           |         |         |                                       |              | <b>V</b> 0.01 | × 0.01    |                     |           |
| 20 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | with py, lino                                                                         |                                                |         |         |                                       |              |               |           | 1 1                 |           |
| 22- 5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| λ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .22.5 | 22.5-24.0m, pinkish grey corse<br>A sycho-dt with limo                                |                                                |         |         |                                       |              |               |           |                     |           |
| 24 + #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.0  | 24.0-35.8m, dk grey-greenish grey<br>silici & skarnized bornfets ss                   | 24.0                                           | 1.1.5   |         | , , , , , , , , , , , , , , , , , , , |              | 1 0 01        |           |                     |           |
| 26-<br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u><br><u>++</u> <u>++</u> |       | with py                                                                               | 26.0                                           | B-19010 | < 0.1   | <b>C</b> 1                            | < 0.01       | < 0.01        | < 0.01    | 0.05                |           |
| * ++*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                       | 21.7                                           | B-19011 | 0.1     | < 1                                   | < 0.01       | < 0.01        | < 0.01    | < 0.01              | 8-19<br>X |
| 28- <u>5</u> #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                       |                                                |         |         |                                       |              |               |           |                     | . X       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| • <u>•</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , .   |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| 32- #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br> |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| 34- ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :     | 85                                                                                    |                                                |         |         | -<br>-                                |              |               |           |                     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                       | -                                              |         |         |                                       |              |               |           |                     |           |
| 36-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 35.8-43.4m, dk grey weakly silici &<br>skarnized alt (ss>si) with<br>gz veinlets & py |                                                |         |         |                                       |              | · · · ·       |           |                     |           |
| 38-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                       |                                                | 101     |         |                                       | а<br>1 У - К |               |           |                     |           |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| ™ <u>::#::s:</u><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.4  |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| 42 <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :     | 43.4-47.5m, greenish dk grey<br>silici 5 skarnized hornfels ss                        |                                                |         |         |                                       |              |               |           |                     |           |
| 44- <u>3</u> +±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -     | with py                                                                               |                                                |         |         |                                       |              |               |           |                     | 1         |
| 44<br>++<br>++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ł.    |                                                                                       | 1.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |         |         |                                       |              |               |           |                     |           |
| 46- ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                       |                                                |         |         |                                       |              |               |           |                     |           |
| 48- L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.5  | 47.5-48.9m, pinkish grey syeno-dt                                                     |                                                |         |         |                                       |              |               |           |                     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48. 9 | 48.9-50.7m, greenish grey slici                                                       |                                                |         |         |                                       | :            |               | -         |                     |           |
| 50 5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·     | & sharnized as which py                                                               | L]                                             | L]      | L       |                                       |              | للمبينية      | Ĺ <u></u> | L1                  |           |

### GEOLOGIC CORE LOG OF MJUB-19 (2/3)

1/200

|                              |                  |                                                                                    | T             | <b>1</b>       | Υ                  |           | Y              | 93, 010, 4                            |          |                       | 150. Qrn<br>T  |
|------------------------------|------------------|------------------------------------------------------------------------------------|---------------|----------------|--------------------|-----------|----------------|---------------------------------------|----------|-----------------------|----------------|
| LITHO-<br>LOGY               | DEP 111<br>. (m) | DESCRIPTIONS                                                                       | DEPTH<br>(m)  | ISAMPLE<br>No. | Au(g/t)            |           | ASSAY<br>Cu(%) | RESULT<br>As(%)                       | Mo(%)    | WO <sub>3</sub> (%)   | LAB.<br>TEST   |
| 11 5<br>5 11<br>11 5<br>5 12 | 50.7             | 50.7-51.8m, greenish dk grey silic<br>Skarnized metaso wo with py & qz             | i             | :              |                    |           |                |                                       |          |                       | [              |
| <u>  3 +</u><br>↓            | .51.1.           | 10 51.3m, qz.v. w = 8cm, 10                                                        |               | ļ              |                    |           |                |                                       |          |                       |                |
| Âλ                           |                  | 51.8-55.0m, plinkish grey syeno-dt<br>53.7m, joint with py, 55°                    |               |                |                    |           |                |                                       |          |                       |                |
| ۱X –                         | 55.0             |                                                                                    |               |                | · ·                |           |                |                                       |          |                       |                |
| - <b>*</b> \$<br>-++         | 4                |                                                                                    |               | 1.5            |                    |           |                |                                       |          |                       |                |
| 5 0-<br>++                   | -                |                                                                                    |               |                | ÷                  |           |                |                                       |          | 1                     |                |
| + s<br>1                     | 58.2             | 58.3-60.1m, plnkish grey                                                           |               |                |                    |           |                |                                       |          |                       |                |
| <u>^ k</u>                   | . 69. 1.         | ers syeno-dt                                                                       |               |                | 2<br>2<br>1        |           |                |                                       | 1. A. A. |                       |                |
| s +<br>V V                   | 61.0             | 360. 1-62. Om, greenish grey-<br>37 dk grey silloi & weakly<br>38 skarnized metaso | 60.1          | 8-19012        | < 0.1              | 1.6       | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
| <u> </u>                     | Q.\$8.           | with network oz, py<br>61.0-61.4m, greenish grey imp                               | 62.0          | - <u> </u>     |                    |           |                | · · · · · · · · · · · · · · · · · · · |          |                       | 8-1912<br>P    |
| មរិហ្វ័រ<br>ស្វេពីថ្         |                  | 62.0-68.8m, grey silici & weakly<br>sharnized grite with network gz, py            | 63.3          | B-19013        |                    | <1        | < 0.01         | < 0.01                                | < 0.01   | < 0.01                | ŀ              |
| (ដឺ)<br>រដ្ឋភ្               |                  |                                                                                    | 65.0          | B-19014        | < 0.1              | <1        | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
| ាភិវិត<br>ព្រំបំពុំ          | •                |                                                                                    |               |                | < 0.1              | -<br>K1   | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
|                              |                  | 67.0-569.0m, y frac. zóne                                                          | 67            | ·              |                    | · <b></b> |                |                                       |          | ·                     |                |
| $\otimes$                    | 68.8             |                                                                                    | 68.8          | 8-19016        | < 0.1              | < 1       | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
|                              |                  | 68.8-70.5m, dk grey tmp                                                            |               | 8-19017        | < 0.1              | ζį.       | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
| XX                           | .29.5.           | 70.5-73.7m, dk grey silici weakly<br>skarnized metasoma network qz,py              | 70.5          | 8-19018        | <u>۲</u>           | 2.8       | < 0.01         | < 0.01                                | < 0.01   | < 0.01                | 1. A. A.       |
| **<br>*                      |                  |                                                                                    | 72.0          | 8-19019        | < 0.1              | <1        | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
| <u>s</u> +<br>∨ v            | .13.5.           | 73.5-80.5m, dk grey Imp                                                            | 73.5          |                | × v.1              |           | × v.vi         |                                       | × 0.01   | <u> </u>              |                |
| . v. 1                       |                  |                                                                                    | ÷.,           |                |                    |           | а.<br>А. (     |                                       | 2        |                       |                |
|                              | 1 A              |                                                                                    |               |                |                    |           |                |                                       |          |                       |                |
| V V                          |                  | joint with cal ( $w = 0.2$ cm), 35°                                                |               |                |                    |           |                |                                       |          |                       |                |
| V V                          |                  |                                                                                    |               |                |                    |           |                |                                       |          |                       |                |
| viv                          |                  |                                                                                    |               |                |                    |           |                | 1<br>1<br>1                           |          |                       | 14 A.          |
|                              |                  | 3 81.0-81.5m, cal v. 25*                                                           |               |                |                    | -         | 1. A.          |                                       |          |                       |                |
|                              | 83.0             |                                                                                    | *<br>•        |                |                    |           |                |                                       |          | e a<br><del>,</del> e |                |
|                              | 81.5             | 83.0-83.5m, grey Is<br>83.5-84.3m, cal v.                                          | 8 <b>3</b> .5 |                |                    |           |                |                                       |          |                       |                |
|                              | 85.0             | 85.0-87.3m, dk grey imp skarnized                                                  | 85.0          | 8-19020        | < 0.1              | <1        | < 0.01         | <b>&lt; 0</b> .01                     | < 0.01   | < 0.01                |                |
| V                            |                  | alt (ss>>sl) with py.                                                              |               |                |                    |           |                |                                       |          |                       |                |
| V V<br>5 II-                 | 123              | 87.3-92.0m, dk grey silisi & weakiy                                                | 83.5          |                |                    |           |                | <u>_</u>                              |          |                       |                |
| + s<br>s ++                  |                  | skarnized metasoma with oz & py                                                    | 69.0          | 8-19021        | < 0.1              | 3.6       | < 0.01         | < 0.01                                | < 0.01   | < 0.01                |                |
| ** 5                         |                  | 90. 1-90. 2m, qz. py v. 90"                                                        | 90.5          | 8-15022        | < 0.1              | <1        | < 0.01         | < 0.01                                | < 0.01   | < 0.01                | B-19L3<br>F, P |
| s ++<br>++ s                 |                  | <b>3V</b>                                                                          |               | 8-19023        | < 0.1              | ۲)        | 0.01           | < 0.01                                | < 0.01   | <b>&lt; 0.01</b>      |                |
| × ×                          | .92.9.           | <ul> <li>92.0-94.7m, reddish grey dt</li> <li>with abundant biotite</li> </ul>     | 92.0          |                |                    |           |                |                                       |          |                       |                |
| × ×<br>× ×                   |                  |                                                                                    |               | н.<br>Н 1      | a B<br>Varge       |           |                |                                       | and a    |                       |                |
| ×<br>•                       |                  | 94.7-97.0m, dk grey silici &<br>sharnized so with py                               | 94.7          |                | <u> </u>           |           |                |                                       | ·        | ·                     |                |
| # 8<br>5 1                   | 97.0             | and the state by                                                                   | 1 1           | B-19024        | <sup>+</sup> < 0.1 | <1        | 0.01           | < 0.01                                | < 0.01   | < 0.01                |                |
| × ×<br>×                     |                  | 97.0-99.2m, reddish grey dt<br>with abundant biotite                               | 97.0          |                |                    |           |                | - <del></del>                         | ·        |                       | 8-1964         |
| 1 ^ 1                        |                  |                                                                                    | 1 1           |                | 1.1                |           |                |                                       |          |                       | p 1 - 1        |

GEOLOGIC CORE LOG OF MJUB-19 (3/3) 1/200 Level 235.05 m Direction \$20° W

|             | MJ                                         | UB                             | GEOLOGIO GG                                                                                 | :              | 0_m                |          |                                       | Leve<br>X<br>Y | 68, 339.<br>93, 010. | 05 m Dir<br>69 m Inc<br>41 m Ler | ection S<br>lination |                    | 1                |
|-------------|--------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|----------------|--------------------|----------|---------------------------------------|----------------|----------------------|----------------------------------|----------------------|--------------------|------------------|
| 100         | LITHO-<br>LOGY                             | DEPTH<br>(m)                   | DESCRIPTIONS                                                                                | DEPTH<br>(m)   | SAMPLE<br>No.      | Au(g/t)  | Ag(g/t)                               | ASSAY<br>Cu(%) | RESULI<br>As(%)      | Mo(%)                            | WO₃(%)               | LAB.<br>Test       | -100             |
|             | ++ S<br>S ++                               | <u>101.3</u><br>101.5<br>102.3 | 35 skarnized Is<br>102.1-102.3m, cal v.<br>102.3-106.0m, greenish grey silici &             | 101.3<br>102.3 | 8-19025<br>8-19026 |          | 3.4                                   | 0.02           | < 0.01               | <u>&lt; 0.01</u><br>< 0.01       | < 0.01<br>< 0.01     |                    | -                |
| 104-        | *                                          |                                | skarnized metaso wo, with py<br>104.5-105.5m, frac zone with clay                           | 104.0          |                    |          | 7.6                                   | 0.02           | < 0.01               | < 0.01                           | < 0.01               |                    | -                |
| 106-        | ***                                        | 106.0                          | 10.6109.6m, dk grey silisi A<br>weakly skarnized ss with py                                 | 106.0          |                    |          |                                       |                |                      |                                  |                      |                    | -                |
| 108-        | ¥                                          |                                |                                                                                             |                |                    |          |                                       |                |                      |                                  |                      |                    |                  |
| 110-        | # \$                                       | 109.6                          | 109.6-111.5m, greenish grey-<br>dk grey silici & skarnized metaso<br>with cal veinlets & py | 109.6          | B-19028            | < 0.1    | <1                                    | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -110             |
| 112-        |                                            | 111.5<br>112.3                 | 1111 5-112 2m deens le part etarciand                                                       | 111.5<br>112.5 | 8-19029            | < 0.1    | < 1                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -                |
| 114-        |                                            | 114.2                          | 112.5m, cal v.<br>114.2-118.3m, grey is partly                                              | 114.2          | 8-19030            | ·····    | <sup>1</sup> < 1                      | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    |                  |
| 116-        |                                            |                                | skrnized (wo, rhod)<br>114.7-m, cal v.                                                      | \$16.0         | 8-19031            | < 0,1    | <1                                    | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | Ļ.               |
| 118-        |                                            | .118,3                         |                                                                                             | 118.3          |                    |          | < 1                                   | 0.01           | < 0.01               | < 0.01                           | < 0.01               |                    |                  |
| 120-        | **************************************     |                                | 118.3-121.Qm, dk grey silici<br>alt (ss>>s!) with network qz,py                             | 119.5          | B-19033<br>B-19034 |          | < 1<br>2.8                            | 0.01           | < 0.01<br>< 0.01     | < 0.01                           | < 0.01               |                    | -120             |
| 122-        |                                            | 121.0                          | 121.0-128.2m, grrey-greenish grey<br>partly skarnized is (wo)<br>121.5-122.0m, frac zone    | 121.0<br>122.0 | 8-19035            | < 0.1    | <1                                    | 0.02           | < 0.01               | < 0.01                           | < 0.01               | 8-1916             |                  |
| 124-        |                                            |                                | 122.0-123.2m, clay-like cal                                                                 | 123.2          | 8-19036<br>8-1903] |          | <1<br><1                              | 0.01           | < 0.01               | < 0.01                           | < 0.01               | <u>8-1916</u><br>X | 122 5            |
| 126-        | ┨┰╘┋┵<br>┎┇┋┰<br>┇┎┇┋┰                     |                                |                                                                                             | 125.0          |                    |          | 1.8                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    |                  |
| 128         |                                            | 128.2                          |                                                                                             | 126.5          | B-19039            | < 0.1    | < 1                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               | <br>               |                  |
|             | *                                          |                                | 128.2-132.3m, dk grey silici alt<br>(ss>>s)) with qz veinlets, py                           | 128.2          | 8-19040            | < 0.1    | 3.6                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | 120              |
|             |                                            | - C                            | <b>70</b>                                                                                   | 130.0          | 8-19041            | < 0.1    | 4.8                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -130             |
|             |                                            | _132_0                         | A 132.3-133.0m, qz v.45<br>45 133.0-136.5m, dk grey qzite<br>30 with qz veintets, py        | 132.3          | 8-19042            | < 0.1    | < 1                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    |                  |
|             | )                <br>                 <br> |                                |                                                                                             | 134.5          | 8-19043            | < 0.1    | 1.8                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -• .             |
|             | <br>:#::                                   | 136.5                          | 136.5-139.0m, dk grey silici alt<br>(ss>>si) with oz veinlets, py                           | 136.5          |                    | <u> </u> | < 1                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    |                  |
| 138-        | ·*************************************     | 112.5                          | searce tost out buttering Rich                                                              | 138.0          |                    |          | · · · · · · · · · · · · · · · · · · · | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -                |
| 140-        |                                            | _140.C                         | crs.syano-dt<br>140.0-144.4m, grey-whitesh grey Is<br>partry skarnized (wo)                 | 140.0          | 8-19046            | < 0.1    | 3.6                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -140             |
| 142-        |                                            |                                |                                                                                             | 1420           |                    |          |                                       |                |                      |                                  |                      |                    |                  |
| 144-        |                                            | 141.4                          | 144, 4-150. On, dk. grey silici                                                             | :<br>144.4     | B-19047            | < 0.1    | < 1                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -                |
| 146-        | *                                          |                                | alt (ss>>sl) with q2 veinlets & py                                                          | 146.6          |                    |          |                                       | ···            |                      |                                  |                      |                    |                  |
| 148~        | *                                          | •                              | <u>ک</u>                                                                                    | 1480           | 8-19048            |          | 1.8                                   | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | -                |
| 15 <b>0</b> | #                                          | 150.0                          | sò<br>Bottom of the hole                                                                    | 1500           | 8-19049            | < 0.1    | · < 1                                 | < 0.01         | < 0.01               | < 0.01                           | < 0.01               |                    | L <sub>150</sub> |

|     |                    |               |                                                                                                 |            |              |               |                            |         |            |                      | ÷.        |                     |             |               |
|-----|--------------------|---------------|-------------------------------------------------------------------------------------------------|------------|--------------|---------------|----------------------------|---------|------------|----------------------|-----------|---------------------|-------------|---------------|
|     | . [                |               | GEOLOGIC                                                                                        | °C(<br>:   |              |               | )G´Qł                      | Z∃ MJI  |            | 1 222.               | 92 m Di   | rection             |             | •             |
|     | MJ                 | UE            | <u>3-20 (1 / 9 ) 0 m</u>                                                                        | ~          | 5            | <u>0 m</u>    |                            |         | Ŷ          | 69, 188.<br>92, 326. |           | clination<br>ngth   | 440, Om     | 1 - 42        |
|     | LITHO-             |               | DESCRIPTIONS                                                                                    |            | OEPTH<br>(m) | SAMPLE<br>No: | A. ( - (1)                 |         | ASSAY      | RESULT               |           |                     | LAB.        |               |
| 0   |                    | (m)           | 0-4.2m sand with gebbles                                                                        |            | (m)<br>      |               | Au(g/t)                    | Ag(g/t) |            | As(%)                | Mo(%)     | ₩O <sub>3</sub> (%) | TEST        | 0             |
|     |                    |               |                                                                                                 |            |              |               |                            |         |            |                      |           |                     | n in<br>New |               |
| 2-  |                    | <u>с</u> ,    |                                                                                                 |            |              |               |                            |         |            |                      | 1999 - A. | 1                   |             | - ·           |
| 4-  |                    | 4.2           |                                                                                                 |            |              |               |                            |         |            |                      |           |                     |             | -             |
|     | •#                 |               | <ol> <li>2-9.0m strongly weathered and<br/>dk grey silici.ss</li> </ol>                         | frac.      |              |               |                            |         |            |                      |           |                     |             |               |
| 6-  | • ++ • • •         |               |                                                                                                 |            |              |               |                            |         |            | A.                   |           |                     |             | -             |
| 8-  | ·                  |               |                                                                                                 |            |              |               |                            |         |            |                      |           |                     |             | Ŀ             |
| 9   | · # · · ·          | 9.0           | 9.0-12.5m.weathered dk grey sili                                                                | r i        |              |               |                            |         |            |                      |           |                     |             |               |
| 10- |                    |               | ss with qz veinlets, py, limo                                                                   | <b>、</b>   |              |               |                            |         | a<br>A A A |                      |           |                     |             | -10           |
|     |                    | 12            |                                                                                                 |            |              |               |                            |         | :          | ан са<br>1910 - Ал   |           |                     |             |               |
| 12- | ww                 | 12.8          | 12.5-12.9m, frac.zone with clay                                                                 |            | 12.9         | (             |                            |         |            |                      |           |                     |             |               |
| 14- | * *                |               |                                                                                                 |            | 14.1         | 8-2001        | < 0.1                      | 6.8     | 0.01       | < 0.01               | < 0.01    | < 0.01              |             | - · :         |
|     |                    |               | 14.1-16.0m,black alt(s1>>ss)with<br>oz veinlets                                                 | · ·        |              | 8-2002        | < 0.İ                      | 1.6     | 0.01       | < 0.01               | < 0.01    | 0.01                |             |               |
| 16- |                    | 15.0          | 15.0-17.0m.qz vein                                                                              |            | 16.0<br>17.0 | 8-2011        | < 0.1                      | 1.8     | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             | F             |
| 18- | +                  | 18.0          | 17.0-19.9m,dk grey silici.<br>alt(ss>>sl) with qz veinlets,li<br>18.0-19.5m,frac zone with clay | лo         |              | B-2004        | <b>₹ 0.1</b>               | 7.2     | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             | L             |
|     | $\bigotimes$       | 19.5          | 18.0-19.5m, frac zone with clay                                                                 | ļ          | 18.5         | B-2005        | <b>&lt; 0.1</b>            | 3.2     | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             |               |
| 20- | · · · · · ·        | 18.1          | 19.9-31.2m,dk grey silici. & wea                                                                | kiy -      | 19.9         |               |                            |         |            |                      |           |                     |             | -20           |
| 22- | ****               | 21.5          | skarnized alt (ss>>sl) with py, l                                                               | 100        |              |               |                            |         |            |                      |           |                     |             | L             |
|     | • *                | Ŧ             | ÷                                                                                               | :          |              |               |                            | :       |            | 14 A.                |           |                     |             |               |
| 24- | · · · s ·          | :             |                                                                                                 |            | :            |               |                            |         |            |                      | - Est     |                     | :           | ╞             |
|     | · • \$             |               |                                                                                                 |            |              |               |                            |         | 1.2.1      |                      |           |                     |             |               |
| 26- | ·                  | 27.0          | 50                                                                                              | t., .      |              | -             |                            |         |            |                      |           |                     |             |               |
| 28- | $\bigotimes$       |               | 27. 0-28. 8m, frac. zone                                                                        |            |              |               | •                          |         | 1 ()<br>1  |                      |           |                     |             | -<br>-        |
|     | XXX                | 28.8          |                                                                                                 |            |              |               |                            |         |            |                      |           |                     |             |               |
| 30- | $\infty$           | 30.5          | 29. 7-30. 5. frac. zone                                                                         | ۰          |              |               |                            |         |            |                      |           | · .                 |             | -30           |
| 32- | ++ \$              | 31.2<br>.32.1 | 31.2-37.0m greenish grey silici.<br>& weakly skarnized metaso: with                             | ov.        | 31.2         | 0 0000        |                            |         |            |                      |           | < 0.01              |             | : (<br>-      |
|     | (XX)<br># \$       | - 32. 1.      | druesy oz<br>32. 1-32. 7m, frac. zone                                                           |            | 33.0         | 8-2006        | < 0.1                      | < 1     | < 0.01     | < 0.01               | < 0.01    | <u>&lt; 0.01</u>    |             | ·             |
| 34- | 5 -#-<br>-4- 5     |               |                                                                                                 |            | · · ·        | 8-2007        | < 0.1                      | <1-     | ÷ 0.01 j   | < 0.01               | < 0.01    | < 0.01              |             | -             |
| 36- | s -⊪-<br>⊪: s      |               |                                                                                                 |            | 35.0         | 8-2008        | < 0.1                      | ·       | 0.01       | < 0.01               | < 0.01    | < 0.01              |             | ĺ .           |
| 30  | Sec. #-            | 37.0          | 36.8-37.0m, frac.zone                                                                           |            | 37.0         | 1             | <u> </u>                   |         | 0.01       | × 0.01               | X 0.01    |                     |             |               |
| 38- | • # • • • • • •    |               | 37.0-40.0m,dk grey silici.8 weak<br>skarnized alt(ss)si)                                        | зy         | 38.5         | 8-2009        | < 0.1                      | <1      | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             | <b>-</b> .    |
|     |                    |               | with gr, cal veinlets                                                                           | i i<br>E i |              | B-20010       | < 0.1                      | 3.2     | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             |               |
| 40- |                    | 12.0          | 40.0-44.2m,dk grey silici.8 weak<br>skarnized alt (ss>sl)                                       | ly .       | 40.0         |               | ┝- <u>━-</u> +-, <u></u> ; |         |            |                      |           |                     |             | -40           |
| 42- |                    |               |                                                                                                 |            |              |               | 5.<br>1                    | 1       |            |                      |           |                     |             | . :           |
|     |                    |               |                                                                                                 |            | • :          |               |                            | :       |            |                      |           |                     |             |               |
| 44- |                    |               | 44.2-45.5m, whitish grey silici.<br>metaso. with druesy qz, cal,                                |            | 44.2         | F i           |                            |         |            |                      |           |                     | 1.1         | - <sup></sup> |
| 46- | ++ ++<br>• + • • • | 45.5          | 2545.5-56.4m, dk grey silici. 8                                                                 |            | 45.5         | 8-20011       | < 0.1                      | <1      | < 0.01     | < 0.01               | < 0.01    | < 0.01              |             |               |
|     | · · · \$           |               | weakly skarnized alt(ss)s1) w                                                                   | rith       | ¥ Č          |               | 1                          |         |            |                      | . 1       |                     | ÷           |               |
| 48- | • •                |               | \$0                                                                                             |            |              |               |                            |         |            |                      |           | •                   |             | r ·           |
| 60  | * #                | •             |                                                                                                 |            |              |               |                            |         | :          |                      |           |                     |             | 50            |
| 50- |                    |               |                                                                                                 |            |              |               | -40                        |         |            |                      |           |                     |             | -50           |

| 2   | M                                     | JUE          | 320 (2 ⁄9 ) 50 m ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 10         | <u>m 0(</u>      | •           | :          | X<br>Y         | 68, 188, 2<br>93, 326, 0 | 26 m In<br>)7 m Le | rection S<br>clination<br>ngth | 20 W<br>-80<br>440.0 | ł        |
|-----|---------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------|------------|----------------|--------------------------|--------------------|--------------------------------|----------------------|----------|
|     | LITHO<br>LOGY                         | DEPTI<br>(m) | DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OEPT)<br>(m) | HSAMPLE<br>- No. | Au(g/t)     |            | ASSAY<br>Cu(%) | RESULI<br>As(%)          |                    | WO <sub>3</sub> (%)            | LAB.<br>TEST         |          |
| 50- | <del></del>                           |              | dk grey silici & weakly skarnized<br>alt (ss)sl) with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 1                |             |            |                |                          |                    |                                |                      | -50      |
| 52- | +                                     |              | . <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  | · ·         |            |                |                          |                    |                                |                      | ŀ        |
| 54- |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             |            |                |                          |                    |                                |                      | -        |
| 56- | + 5                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             |            |                |                          |                    |                                |                      |          |
| ł   | <u> </u>                              | 56.4<br>57.1 | <sup>03</sup> 56.4-57.7m, greenish grey silici<br>& skarnized alt (ss>sl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |             | -          |                |                          |                    |                                |                      |          |
| 58- | ******                                |              | 20 57.3m, qz. cal v, w = 0.3cm, 20<br>57.7~61.7m, greenish grey silici &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |             |            |                |                          |                    | н<br>                          |                      | -        |
| 0   | -11 - S                               |              | weakly skarnized alt (ss)sl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |             |            |                |                          |                    |                                |                      | -6(      |
| 2-  | · · · · ·                             | <u> 61.7</u> | 61.7-66.0m, greenish grey silici &<br>skarnized alt (ss)si) with oz, py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.7         | 1.               | · · · · · · |            |                |                          |                    |                                |                      | -        |
| 4-  | · <u>+</u>                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.0         | 8-20012          | < 0.1       | < 1        | < 0.01         | < 0.01                   | < 0.01             | < 0.01                         |                      |          |
| 6   | • #• \$                               | 66.0         | 66.0-68.8m, greenish grey po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.0         | 8-20013          | < 0.1       | < 1        | < 0.01         | < 0.01                   | < 0.01             | < 0.01                         |                      |          |
| Ţ   | *                                     |              | with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |             |            |                |                          |                    |                                | 8-2011               | 58.4     |
| 8-  | ¥ ¥<br>↓<br>_1 <u> - \$</u>           | 63.8         | 68.8-73.5m, greenish grey silici &<br>meakly skarnized alt (ss>sl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |             |            | 1<br>1         |                          |                    |                                |                      | ŀ        |
| 0   | -#-<br>                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             | ×.         | ÷.             |                          |                    |                                |                      | -ĸ       |
| 2-  | ••#<br>•#• \$                         |              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |             | t, a       |                |                          |                    |                                |                      | -        |
| 4-  |                                       | 73.5         | 73.5-92.5m, greenish grey silici &<br>weakly skarnized alt (ss)s)) with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |             |            |                |                          |                    |                                |                      |          |
| •   | ;#                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | a i<br>i         |             |            |                | ·                        | 1. B.              |                                |                      |          |
| 6-  | ·#- 3                                 |              | $\mathbf{X}$ is the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 10 B         |                  | 1           |            |                |                          |                    |                                |                      |          |
| 8-  | · <u>+</u> ·                          |              | <b>55</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :            | -                |             |            |                |                          |                    |                                |                      |          |
| 0-  | · · · · · · · · · · · · · · · · · · · |              | ), 79.2m, cat v. w = 2cm 55'<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ,          |                  |             |            |                |                          |                    |                                |                      | -8(      |
| 2-  | <br>*_;                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •            |                  |             |            |                |                          |                    |                                |                      | - :<br>- |
| 4-  | •                                     |              | 83.3m, qz cal v, w = 10cm 75*<br>7\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |             |            |                |                          |                    |                                |                      |          |
|     |                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             | 1 <u>2</u> |                |                          |                    |                                |                      |          |
| 6-  | · · · · · · · · · · · · · · · · · · · |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             |            |                |                          |                    | E.                             |                      | -        |
| 8   | +-<br>+5                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             |            |                |                          |                    | : .                            |                      | -        |
| 0   |                                       |              | 90.8m, qz cal v, w ≃ 7cm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |             |            |                |                          |                    |                                |                      | -90      |
| 2-  | 5 -i+ •<br>-i+ •                      | 92.5         | 91.2m, qz cə1 v, w = 1-3cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |             |            |                |                          |                    |                                |                      |          |
| 4-  | <u> </u>                              |              | 92 S-117.6m, greenish grey silici &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |             |            |                |                          |                    |                                | •                    |          |
|     | *<br>*<br>*<br>*                      |              | weakly skarnized alt (ss>s1) with py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <br>             |             |            |                | a se sodie a             |                    |                                |                      |          |
| 6-  | • <del>11</del> • • • •               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             |            |                |                          | 2<br>-             |                                | ŝ                    | -        |
|     |                                       | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |             | 1          |                |                          |                    |                                | 7                    |          |

|      |                                                  |                | GEOLOGIC CO                                                                                  | ORE          | E L(          | <b>)</b> G: 0 | F. MJI   |                              |                                 |          |                              | 200                      | •       |
|------|--------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|--------------|---------------|---------------|----------|------------------------------|---------------------------------|----------|------------------------------|--------------------------|---------|
|      | MJ                                               | UE             | i−20 (3∕9) 100 m ~                                                                           | 15           | <u>0 m</u>    |               | · ·      | X                            | 1 222.9<br>69.188.2<br>92.326.0 | 6 m inc  | ection S<br>lination<br>with | 20° W<br>-80°<br>440. Om |         |
|      | LITHO-<br>LOGY                                   | DEPTH<br>(m)   | DESCRIPTIONS                                                                                 | DEPTH<br>(m) | SAMPLE<br>No. | Au(g/t)       | Ag(g/t)  | ASSAY<br>Cu(%)               | RESUL1<br>As(%)                 |          | WO3(%)                       | LAB.<br>Test             |         |
|      | .##                                              |                | \ 101.0m, breccisted cal, qz v.<br>45 w = 7cm, 40                                            | 101.0        |               |               |          |                              | -                               |          |                              |                          | -100    |
| 102- |                                                  |                |                                                                                              |              | 8-20014       | < 0.1         | < 1      | < 0.01                       | < 0.01                          | < 0.01   | 0.01                         |                          | ſ       |
| 104- |                                                  |                | 105.8-105.8m, cal- oz v.                                                                     | 104.0        | B-20015       | < 0.1         | <1       | < 0.01                       | < 0.01                          | < 0.01   | < 0.01                       | • .                      |         |
| 106- |                                                  |                |                                                                                              | 105.8        | 8-20016       | < 0.1         |          | < 0.01                       | < 0.01                          | < 0.01   | < 0.01                       |                          | -       |
| 108- |                                                  |                | 108.2m, qz cal v. w = 6cm,                                                                   | 108.2        |               |               |          |                              |                                 |          |                              |                          |         |
| 110  | - <del>1</del><br>5 4                            |                | ∖ 110.8m, ¥a v, wi≍4cm, 25°                                                                  |              |               | <br>          |          | 1.0                          |                                 |          |                              |                          | -110    |
| 112- | -<br>-<br>-                                      |                | 3                                                                                            |              |               |               |          |                              |                                 |          |                              |                          | :       |
| 114- | <b>*</b>                                         |                |                                                                                              |              |               | j.            |          |                              | -                               |          |                              |                          |         |
| 116- |                                                  |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          | -<br> - |
| 118- | - L, L                                           |                | 117.6-118.8m, dk grey is<br>with cal veintets                                                |              |               |               |          |                              |                                 |          |                              |                          | -       |
| 120- |                                                  | 118.8.         | 118.8-129.3m, dk grey weakly silici<br>alt (ss>sl) with py                                   |              | · .           |               |          |                              |                                 |          |                              |                          | -120    |
| 122- | • • •                                            |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          |         |
|      |                                                  |                |                                                                                              |              |               |               |          |                              |                                 |          | -                            |                          |         |
| 124- | #<br>*                                           |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          |         |
| 126- |                                                  |                | 30                                                                                           |              |               |               |          | -                            | · · ·                           | 1 A.     | :                            |                          |         |
| 128- | ++                                               | 129.3          | 129.3-134.0m, greenish grey silici<br>& weakly skarnized alt (ss)sl)                         | 129.3        |               |               |          |                              | · · ·                           | <u> </u> |                              |                          | -       |
| 130- |                                                  |                | with qz-cal v & py<br>30 129,3m, qz. cal v, w = 1-3cm 30<br>131.3m, qz. cal) v, w = 10cm, 30 | 131.3        | B-20017       | < 0.1         | < 1      | < 0.01                       | < 0.01                          | < 0.01   | < 0.01                       |                          | -130    |
|      | 5 <del>4</del>                                   |                | 133.2m, qz. v, w = 10cm, 60°                                                                 |              | 8-20018       | < 0,1         | < 1      | < 0.01                       | :<br>< 0.01                     | < 0.01   | < 0.01                       | 8-2012                   | 133.2   |
| 134- | XXX                                              | 134.0<br>134.8 | 134.0-134.6m, frac zone<br>with clay py<br>134.6-150.0m, graviticit maskin                   | 134.0        |               |               | <u> </u> |                              | · · ·                           | ·        |                              | F                        | -       |
| 136- |                                                  |                | 134.6-150.On, grey silici & weakly<br>skarnized alt (ss>sl) with py                          |              |               | . ÷           |          |                              |                                 |          |                              |                          | -       |
| 138- | · ++ · S<br>>                                    | Т.             |                                                                                              |              |               |               |          | 5<br>1 - 1<br>1 - 1<br>1 - 1 |                                 |          |                              |                          | -       |
| 140- | •••• <u>₩</u> *••••<br>•• <b>\$</b> •• <b>•₽</b> |                |                                                                                              |              |               |               |          |                              | liti i i<br>Filipi              |          |                              | •.                       | ~140    |
| 142- |                                                  |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          | -       |
| 144- | \$ ++<br>• • #<br>• •                            |                | BÒ                                                                                           |              |               |               |          |                              |                                 |          |                              |                          |         |
| 146- | े <b>म</b><br>                                   |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          | -       |
| 148  | ## \$                                            |                | 147.5m, qž (cal) v, w = 7cm 85"<br>85                                                        |              | ÷.            |               |          |                              |                                 |          |                              |                          | -<br>-  |
| 150- |                                                  | 150,0          | 149.93m, qz v, w = 7cm                                                                       | 149.9        |               |               |          |                              |                                 |          |                              |                          | -150    |
|      |                                                  |                |                                                                                              |              |               |               |          |                              |                                 |          |                              |                          |         |

Λ-42

| • |          |          |            |          |      |     |
|---|----------|----------|------------|----------|------|-----|
|   | GEOLOGIC | CORE LOG | OF MJUB-20 | (4/9     | ) 1/ | 200 |
|   |          |          | 1          | 227 D2 - | 01   | -   |

|               | M                                               | UUE          | 3-20 (4/9) 150 m ~                                                                                                 | 20             | <u>m 04</u>   |                                               |                                       | X              | 1 222.9<br>69,188.2<br>92,326.0 | 6 m Ind | ection S<br>lination<br>gth |              |           |
|---------------|-------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|----------------|---------------|-----------------------------------------------|---------------------------------------|----------------|---------------------------------|---------|-----------------------------|--------------|-----------|
|               | LITHO-<br>LOGY                                  | DEPTH<br>(m) | DESCRIPTIONS                                                                                                       | DEPTH<br>(m)   | SAMPLE<br>No, | Au(g/t)                                       |                                       | ASSAY<br>Cu(%) | RESULI<br>As(%)                 | Mo(%)   | ₩O <sub>3</sub> (%)         | LAB.<br>TEST |           |
| 151           | )<br>•#•\$<br>•*                                | 151.0        | 150.0-1451.0m, greenish grey silici.<br>8 skarnized alt(ss)si)with qz v.8 py<br>151.0-161.1m, greenish grey silici | 151.0          | 8-20019       | < 0.1                                         | <1                                    | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      | · ·          | -150      |
| 15:           | 2                                               |              | & weak skarnized alt (ss)sl) with<br>az veintets & py                                                              | 1              |               |                                               | ·                                     |                |                                 |         |                             |              | -         |
| 15            | 4-<br>                                          |              |                                                                                                                    |                |               |                                               |                                       |                |                                 | :       |                             |              | -         |
| 15            | 5 <del></del>                                   |              | 60                                                                                                                 |                |               |                                               |                                       |                |                                 |         |                             |              | -         |
| 15            | 3- <mark></mark>                                |              | 157.8m, qz v. w = 5cm, 60°                                                                                         | 157.8          | 8-20020       | < 0.1                                         | <1                                    | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              |           |
| 16            |                                                 |              | 50                                                                                                                 | 159.5          |               | < 0.1<br>< 0.1                                | <u> </u>                              | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              | -160      |
| 16            |                                                 | 4            | 161.1-162.3m, blk dol with cal & brecciated gz                                                                     | 161.1          |               |                                               |                                       |                | × 0.01                          |         |                             |              | L .       |
|               | 1.1<br>                                         |              | 162.3-163.2m, ddk grey Is<br>163.2-169.9m, dk grey silici<br>alt (ss)sl) with py                                   |                |               |                                               |                                       | •<br>•         |                                 |         |                             |              |           |
| 16            | ·                                               |              | λ 165.1m, qz v. w = 5cm, 40°<br>40                                                                                 |                |               |                                               |                                       |                | -                               |         |                             |              | -         |
| 16            | 5                                               |              | 166.5m, Tour, py ore side? v.<br>w = 0.5cm, 10                                                                     |                |               |                                               |                                       |                | -<br>                           |         | 5                           | B-2014<br>X  | - 166.5   |
| 16            | B                                               |              | 168.5-169.7m, whitesh grey dt                                                                                      |                |               |                                               |                                       |                | * :                             |         |                             |              | <b></b> . |
| 170           | 0 <mark>× ×</mark><br>+#÷5                      |              | 169.9-170.5m, whitesh grey dt<br>1 170.5-177.0m, dk grey weakly<br>160 - silici.alt (ss)si)                        |                |               |                                               |                                       |                | · ·                             |         |                             |              | -170      |
| 17            | 2 . 3 . #                                       |              |                                                                                                                    |                |               |                                               |                                       |                |                                 |         |                             |              | <b>-</b>  |
| 17            | <b>€</b>                                        |              |                                                                                                                    |                |               |                                               |                                       |                |                                 |         |                             |              | -         |
| 17(           | 6                                               |              |                                                                                                                    |                |               |                                               |                                       |                |                                 |         |                             |              |           |
| 17            | ++ s<br>s ++<br><u>-++ s</u>                    | 178.0        |                                                                                                                    | 177.0<br>178.0 | B-20022       | < 0.1                                         | <1                                    | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              |           |
| 18(           | int.                                            |              | 20 silici & skarnized alt (ss>sl)                                                                                  |                |               |                                               |                                       |                |                                 |         |                             |              | -180      |
| 18            |                                                 |              | 60<br>181.7m, qz. py v. w = 0.3cm, 10°                                                                             |                |               |                                               |                                       |                |                                 |         |                             |              |           |
| e<br>Her je t | -                                               |              | 192,7-184.2m, abundant cal,<br>side & py v.                                                                        | 182.7          | 8-20023       | < 0.1                                         | 1.8                                   | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              |           |
| 18            | • <b>•</b> • • •                                |              |                                                                                                                    | 184.2          | 8-20024       | < 0.1                                         | < 1                                   | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              |           |
| 18            | 5-<br>- <u>5</u> - <del>+</del><br><del>+</del> |              | <b>65</b>                                                                                                          | 186.0          | 8-20025       | < 0.1                                         | < 1                                   | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              | -<br>     |
| 18            | 3- <u>-+-</u> 5<br>- <u></u> ₩                  |              |                                                                                                                    | 188.0          | B-20026       | < 0.1                                         | < 1                                   | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              | -         |
| 19            |                                                 |              |                                                                                                                    | 189.8          |               |                                               |                                       |                |                                 |         |                             |              | -19Ò      |
| 19            | 2-1-5-++                                        | 192.9        | 192.9-193.2m, cal (q2) v. 50"                                                                                      | 192.9          | <u> </u>      |                                               |                                       |                |                                 |         |                             |              | - ;       |
| 19            | t+                                              | -            | so 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                           |                | 8-20027       | < 0.1                                         | : <b>&lt;</b> 1                       | 0.01           | < 0.01                          | < 0.01  | < 0.01                      |              | - · ·     |
| 19(           |                                                 |              |                                                                                                                    | 195.0          | 8-20028       | < 0.1                                         | · <1                                  | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      |              |           |
| 19            | 3<br><del>XX</del>                              | 198.2        | 197, 2-197, Gm, greenish grey skarn<br>with cal<br>198, 2-198, Bm, frac zone of skarn<br>zone with clay            | 197.2          | B-20029       | < 0.1                                         | · · · · · · · · · · · · · · · · · · · | < 0.01         | < 0.01                          | < 0.01  | < 0.01                      | -            |           |
| 200           |                                                 |              | zone with clay<br>199.9-201.4m, grey 1s veinfets                                                                   | 199.9          | {             | , <b>, , , , , , , , , , , , , , , , , , </b> |                                       |                | × 0.01                          |         | <u> </u>                    |              | -200      |

A-43

### GEOLOGIC CORE LOG OF MJUB-20 (5/9)

1/200

| MJ                                                                               | UE               | <u>1−20 (5/9) 200 m ~</u>                                                                                    | 25    | <u>0 m</u>    | ·       |            | <u> </u>       | 69, 188, 20<br>92, 326, 0 | 7 m Ler | lination<br>ogth | -80<br>140. 0m |      |
|----------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|-------|---------------|---------|------------|----------------|---------------------------|---------|------------------|----------------|------|
| LITHO-                                                                           | DEPTH<br>(m)     | DESCRIPTIONS                                                                                                 | HT930 | SAMPLE<br>No. | Au(g/t) |            | ASSAY<br>Cu(%) | RESULT<br>As(%)           |         | WO3(%)           | LAB.           |      |
|                                                                                  | 201_1            | 201.4-202.8m, grey silici<br>alt (ss.sl) with py<br>202.8-205.5m, greey Is<br>with cal veinlets              |       |               |         | 1 16(5) (7 |                |                           |         |                  | -              | -200 |
|                                                                                  | 205.0            | 205.5-207.6m, bik dol                                                                                        |       |               | -       |            |                |                           |         |                  | -              | -    |
| )-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>- |                  | 207, 6-214, 6m, grey is<br>with cal veinlats                                                                 |       |               |         |            |                |                           |         |                  |                | -21  |
|                                                                                  |                  |                                                                                                              |       |               |         |            |                |                           |         |                  |                | -    |
|                                                                                  |                  | 214.6-216.5m, whitish grey<br>silici. ss with qz, Wo & py<br>216.5-218.3m, grey Is, partly<br>skarnized (Wo) | 216.5 | B-20030       | < 0.1   | <1         | < 0.01         | < 0.01                    | < 0.01  | < 0.01           |                | •    |
|                                                                                  | л.<br>1          | 218.3221.0m, grey is<br>with cal veinlets<br>221.0-222.4m, dk grey silici<br>alt (ss>sl) with py             | 218.3 |               |         |            |                | <br>                      |         |                  |                | -22  |
|                                                                                  |                  | alt (ss>sl) with oy<br>222.4-225.2m, grey-dk grey do}<br>65                                                  |       |               |         |            |                |                           |         |                  |                | -    |
|                                                                                  | _225_2<br>_226_0 | 22.5-226.0m, blk sl with py<br>226.0-229.9m, grey dol & wo                                                   |       |               |         |            |                | <br>-<br>-                |         |                  |                | -    |
|                                                                                  | . 229_9          | 229.9-246.7m, grey silici<br>alt (ss>sl) with py                                                             |       |               |         |            |                |                           |         |                  |                | -23  |
| + - + - - + - <br> + - + - + - + - + - + -                                       |                  |                                                                                                              |       |               |         |            |                |                           |         |                  |                | •    |
| +<br>+<br>+<br>+<br>+                                                            | :                | 63<br>236.5m, qz v. w = 7cm, 70°<br>70                                                                       |       |               |         |            |                |                           |         |                  |                | -    |
| +<br>+<br>+<br>+                                                                 |                  |                                                                                                              |       |               |         |            |                |                           |         |                  |                | -24  |
| + + + +                                                                          |                  | <b>55</b>                                                                                                    |       |               |         |            |                |                           |         |                  |                | -    |
| + + + + + + + + + + + + + + + + + + +                                            | 245.7            | 245.3m, qz v. w = ĭcm, 45°<br>43<br>246.7-269.7m, dk reddish grey<br>silici hornfels alt (ss>sl)             |       |               |         |            |                |                           |         |                  |                | •    |
|                                                                                  |                  | 45                                                                                                           |       |               |         |            | *.             |                           |         |                  |                | •    |

A--44

|              |                                         | τ   | Lanana                                                            | 0FPTH | SAMPLE    |     | <br> |          | ASSAÝ | 69, 188. 2<br>92, 328. 0<br>RESUL |                   | rection S<br>clination<br>ngth | 440. 0m | 1            |
|--------------|-----------------------------------------|-----|-------------------------------------------------------------------|-------|-----------|-----|------|----------|-------|-----------------------------------|-------------------|--------------------------------|---------|--------------|
|              | LITHO-DEF<br>LOGY (r                    |     | DESCRIPTIONS                                                      | (n)   | No.       | Au( | g/t) | Ag(g/t)  | Cu(%) | As(%)                             | Mo(%)             | WO <sub>3</sub> (%)            | TEST    |              |
| )-           |                                         | 6   | ik reddish grey sitici, hornfets<br>sit (ss>sl)                   |       |           |     |      |          | 1 1 M |                                   |                   |                                |         | ŀ            |
|              |                                         |     |                                                                   |       |           | ·   | :    |          |       | · ·                               |                   |                                |         | L            |
| Ì            | **                                      |     |                                                                   |       |           |     |      |          | •     |                                   | l                 | Į.                             | -       | ļ            |
| -            | ······································  |     | 0                                                                 |       |           |     |      | а.<br>19 |       |                                   |                   |                                |         | ┞            |
|              |                                         |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         |              |
| \$-{         | · · · + · · · · · · · · · · · · · · · · |     | 256.5m, qz v. w = 4cm, 60°                                        |       |           |     |      |          |       |                                   |                   |                                |         | ŀ            |
|              |                                         | ľ   | 0                                                                 |       |           |     |      |          |       |                                   |                   |                                |         | l            |
| '            |                                         | ļ   |                                                                   |       |           | l   |      |          |       |                                   |                   |                                |         | ſ            |
| $\mathbf{F}$ | <u>-1</u> +€                            |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         |              |
|              | • • •                                   |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         |              |
| 2            | <u> </u>                                |     | :                                                                 |       |           | ÷   |      |          | -     |                                   |                   |                                |         | $\mathbf{F}$ |
|              |                                         |     | 5                                                                 |       |           |     |      |          |       | ľ                                 |                   |                                |         |              |
| H            |                                         |     |                                                                   |       |           | ļ   |      |          | 1     |                                   | l                 | 1                              |         | ŀ            |
| -            |                                         |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         | L            |
|              | · <b>#</b> :                            |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         | ſ            |
| ÷            |                                         |     | 55                                                                |       |           | 1   |      |          |       | 1                                 |                   |                                | н.<br>1 | ŀ            |
|              | 26                                      |     | 55 268.4m, qz v. w = 3cm 15°                                      |       |           |     | -    |          |       |                                   |                   |                                |         |              |
| Ч            |                                         |     | 289.7-280.2m, dk grey weakly<br>silici alt (ss>>sl)               |       |           |     |      |          |       |                                   |                   |                                |         | ŀ            |
|              | +                                       |     |                                                                   |       |           |     |      | 4        |       | 1.1                               |                   | 1 - 4<br>                      |         |              |
|              | ·                                       |     |                                                                   |       | :         |     |      |          |       |                                   |                   |                                |         | ſ            |
| -            | #                                       |     |                                                                   |       |           | ÷   |      |          |       |                                   |                   | 1 ·                            |         | L            |
|              |                                         | 5.2 | 275 2m ninkish white anlite                                       |       |           | 4   |      |          | :     |                                   | $A = \frac{1}{2}$ |                                |         |              |
|              | -++                                     |     | 275.2m, pinkish white aplite<br>45275.9m, gz v. w = 1cm, 15<br>15 | :     | 19 A.     | 1   |      |          |       |                                   |                   |                                |         | ╞            |
|              |                                         |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         |              |
| Ч            |                                         |     |                                                                   |       |           |     | 1 1  |          |       |                                   |                   | 19                             |         | ŀ            |
| ļ            |                                         |     |                                                                   |       | i i       | Ι.  |      |          |       |                                   |                   |                                |         | ļ            |
|              |                                         | -   | 280.2-285.6m, weakly silici<br>akt (ss/sk)with cal, qz veinlets   |       |           |     |      |          |       |                                   |                   |                                | -       |              |
|              |                                         | 1   |                                                                   |       |           | :   |      |          |       |                                   |                   |                                |         | Ļ            |
|              | -++-                                    |     |                                                                   |       |           |     |      |          | · · . |                                   |                   |                                |         |              |
|              |                                         | 1   | 283.7m, cal (qz) v. w = 4cm, 20'                                  |       | •         |     |      |          | · · · |                                   |                   |                                |         | ŀ            |
|              | # 25                                    | 5.6 | 285.6-300.5m, grey weakly silici                                  |       |           |     |      |          |       | 1                                 |                   |                                |         |              |
| ÿ            | -11-                                    |     | alt (ss>>sl) with cal, veinlets                                   |       |           |     |      |          |       |                                   | :                 |                                |         | ľ            |
|              |                                         | . [ |                                                                   |       |           |     |      |          |       | 1.1.1                             |                   |                                |         | Ļ            |
|              |                                         |     |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         |              |
| -            | -#+                                     | - 8 | is a                                                              | 1     |           |     | 1    |          |       |                                   |                   |                                |         | ŀ            |
|              | HP                                      |     | 291.2m, qz v. w = 3cm, 55°                                        |       | 1.4       |     |      |          |       |                                   |                   |                                |         |              |
| -            | #                                       | ſ   | • <u>1</u> 1                                                      |       | 11. A. A. |     |      |          |       |                                   |                   | ·                              |         | ŀ            |
|              | •                                       | ļ   |                                                                   |       |           | ľ   |      |          |       |                                   | :.                |                                |         |              |
|              | *                                       | •   |                                                                   |       |           |     |      |          |       |                                   |                   |                                |         | ſ            |
|              |                                         | È   | 295.8m, joint, 20°                                                |       |           |     |      |          |       |                                   | 4<br>17           | 1 - 1                          |         | ļ.           |
| Ì            | *                                       |     | ν.<br>·                                                           |       |           |     |      |          |       |                                   |                   |                                |         |              |
|              | HE                                      |     | · · ·                                                             |       | .*        |     |      |          | •     |                                   |                   |                                |         | ┡            |
|              | -H-                                     |     |                                                                   |       |           |     | * :  |          |       | ļ                                 |                   |                                |         |              |
| )- <b>I</b>  | -#-:                                    | _1  |                                                                   | L]    |           | I   |      | L        |       |                                   | L                 | L                              |         | ١.,          |

GEOLOGIC CORE LOG OF MJUB-20(6/9) 1/200

|                           |            | GEOLOGIC CO                                                                  | ORE      | . L(           | DG OI        | = MJI                                    | JB+2             | 0(7/                     | 9)                | 17                  | 200     |                  |
|---------------------------|------------|------------------------------------------------------------------------------|----------|----------------|--------------|------------------------------------------|------------------|--------------------------|-------------------|---------------------|---------|------------------|
| 1.1                       |            | · · · · · · · · · · · · · · · · · · ·                                        |          |                |              |                                          |                  | 1 222.9                  |                   | rection S           |         | 1                |
| <u>M</u> .                | JUE        | 3-20 (7/9) 300 m ^                                                           | <b>*</b> | 350 m          | ۱.           | n n<br>N N                               | Ŷ                | 69, 188, 2<br>92, 326, 0 |                   | clination<br>ngth   | 440. Om |                  |
| LITHO                     | DEPTH      | DESCRIPTIONS                                                                 | DEPTH    | SAMPLE         |              |                                          | ASSAY            | RESULT                   | 7 1 .             |                     | LAB.    |                  |
| 200 LOGY                  | <u>(m)</u> |                                                                              | . (m)    | No.            | Au(g/t)      | Ag(g/t)                                  | Cu(%)            | As(%)                    | Mo(%)             | WO <sub>3</sub> (%) | TEST    | -300             |
| ·**                       | 300.       | 300.5-320.5m, dk grey neakly<br>a silici & skarnized alt (ss)sl)             | 1.1      |                |              |                                          |                  |                          |                   |                     |         |                  |
| 302                       | 3          | with py, qz v<br>300.8m, qz cal v, w = 1.5-2cm 20*                           |          |                | 1 1          | a da |                  |                          |                   |                     |         | -                |
|                           |            | 302.8-304.0m. qz cał v. š veinlets                                           | 302.8    | B-20031        | < 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| 304                       |            |                                                                              | 304.0    | 8-20031        | <u> </u>     |                                          | C 0.01           | C 0.01                   | 10.01             | <u> </u>            |         | - ·              |
|                           |            |                                                                              | ]        | }              |              |                                          |                  | ]                        |                   |                     |         |                  |
| 306 1 5                   | į.         |                                                                              |          |                |              |                                          |                  |                          |                   |                     |         | -                |
|                           |            |                                                                              |          |                | - 2<br>      |                                          |                  |                          |                   |                     |         |                  |
| 308-                      |            |                                                                              |          |                |              |                                          |                  |                          |                   |                     |         | -                |
| ····                      |            | 60                                                                           |          |                |              |                                          |                  |                          |                   |                     |         | 1                |
| 310                       |            | 310.5-310.7m. gz. rhodo vein                                                 |          |                |              |                                          |                  |                          |                   |                     |         | -310             |
|                           | ÷          |                                                                              | :        | ļ              |              |                                          |                  | ļ                        |                   |                     |         |                  |
| 312-                      | ÷          |                                                                              | · · .    | ÷.             |              |                                          |                  |                          |                   |                     |         | ſ                |
| 314-                      |            |                                                                              | 1        |                |              | · · ·                                    |                  |                          |                   |                     |         | _                |
|                           |            |                                                                              |          |                |              |                                          |                  |                          |                   |                     |         |                  |
| 316- # 1                  |            |                                                                              |          |                |              |                                          |                  |                          |                   |                     |         | -                |
|                           |            | h i i i i i i i i i i i i i i i i i i i                                      |          |                |              |                                          |                  |                          |                   |                     |         |                  |
| 318                       |            | 65                                                                           |          |                |              |                                          |                  |                          |                   |                     |         | -                |
|                           |            |                                                                              | 319.3    | <br>           |              |                                          |                  |                          |                   |                     |         |                  |
| 320                       | 329.5      | 319.3-322.6m, cal v. 55*                                                     | 320.5    | 8 20032        | < 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         | -320             |
| ++- \$<br>\$ ++<br>++- \$ | - 1 - C    | · · · · · · · · · · · · · · · · · · ·                                        |          | 8-20033        | < 0.1        | <1                                       | <b>&lt;</b> 0.01 | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| 322- 5 -                  | 322.0      |                                                                              | 322.6    |                |              |                                          |                  |                          |                   |                     |         | h .              |
|                           |            | 322.6-329.0m, dk grey silici weakly<br>skarnized ss with py                  |          |                |              |                                          |                  |                          |                   |                     |         |                  |
| 324-5-                    | E di G     |                                                                              |          | Ē              | :            | 4 <sup>1</sup>                           |                  |                          |                   |                     |         |                  |
| 226                       | 116 1      |                                                                              |          |                |              |                                          | 5                |                          |                   |                     |         | L                |
| 326-5-+                   |            | 327, 1m. gz v. w=1cnt 65                                                     |          |                | a            |                                          |                  |                          | 1                 |                     | · .     | -                |
| 328 3 -                   |            |                                                                              |          |                |              |                                          | •                |                          |                   |                     |         |                  |
|                           | 329. (     | 329,0-333.4m, dk grey dk reddesh                                             | 1 T.     |                |              |                                          |                  |                          |                   |                     |         |                  |
| 330                       |            | grey weakly silici & skarnized<br>alt (ss)s1), hornfels                      |          |                | 1            |                                          |                  |                          |                   |                     |         | -330             |
|                           |            | 331.5m uz (py. pyrh, ma) v. w=5cm 50"                                        |          |                |              |                                          |                  |                          |                   |                     |         |                  |
| 332-                      |            |                                                                              |          |                |              |                                          |                  |                          |                   |                     | 5 E     | -                |
|                           | <b>TI</b>  | 43<br>333.4-338.2m, whitesh frey silici 6                                    | 333.4    |                | · · · · ·    |                                          |                  |                          |                   |                     |         |                  |
| 334-[1111                 | 4          | weakly skarnized gzite                                                       |          |                | 201          |                                          | 2001             | 2001                     | < 0.01            | 6001                | :       | · • `            |
|                           | <u>d</u>   | ane a ane a                                                                  |          | 8-20034        | < 0.1        | <1                                       | < 0.01           | < 0.01                   | X 0.01            | < 0.01              |         |                  |
| 336-1111                  | 335.       | 336.2-336.9m, grey is partly skarnized (wo) with cal veinlets                | 336 2    | 1 ·            |              |                                          |                  |                          | ter and a         | · · · · ·           |         | -                |
| 338- <sup>++</sup> s      | 1.1        | 336,9-341,7m, greenish grey silici<br>& weakly skarnized metaso, with py     | 338.0    | 8-20035        | < 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
|                           |            |                                                                              | 330.0    | 1              | < 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| 340- <sup>1+</sup> 3      |            |                                                                              | 340.0    | <b>B-20036</b> | <b>\ U.1</b> |                                          | <b>V U.U</b>     |                          | <b>V U U i</b>    | <b>V 0.01</b>       |         | -340             |
| S - 4                     | - N        |                                                                              |          | 8-20037        | 0.1          | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              | · ·     | 0,0              |
| 342                       | 341.       | 341.5m, qz, cal v. w= 7cm, 50<br>50 341.7-342.5m, grey Is partly             | 341.7    |                | <b> </b>     |                                          |                  | <u> </u>                 |                   |                     |         | - · .            |
|                           | <b>u</b> – | skarnized (wo) with cal veinlets<br>342.5-343.6m, grey ozite                 |          | 8-20038        | < 0.1        | 1 <1                                     | < 0.01           | < 0.01                   | < 0.01            | < 0.01              | 1       |                  |
| 344-                      | -r : -     | 1343 6-344 So grandish gravesh                                               | 343.6    |                |              |                                          |                  |                          |                   |                     |         | - <sup>1</sup> 1 |
| <u>** *</u>               | :          | grey skarnized with cal, side v.<br>344.5-348. Gm, grey-greenidh grey        | 215.5    | B-20039        | < 0.1        | 1.8                                      | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| 346-                      | -          | with qz, slde v.                                                             | 345.5    | B-20040        | < 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| + 5<br>+<br>+<br>+        |            |                                                                              | 347.0    | ·              | ·            |                                          |                  |                          |                   |                     |         | l                |
| 348                       | 348.0      | 340 6.264 Am annualish many allest A                                         | 348.6    | 8-20041        | < 0.1        | ··· <1                                   | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         | ŀ                |
| ++ 5<br>5 ++<br>++ 5      | -          | 349,6-354.4m, greenish grey silici &<br>skarnized metaso, with py.qz.side v. |          | 8-20042        | × 0.1        | <1                                       | < 0.01           | < 0.01                   | < 0.01            | < 0.01              |         |                  |
| 350-                      |            | <b>.</b>                                                                     | 1.822.7  |                | -46          |                                          |                  | <b>.</b>                 | • • • • • • • • • | b                   |         | -350             |

GEOLOGIC CORE LOG OF MJUB-20 (7/9)

1/200

|            | MJ                                            | <u>U B</u>   | -20 (8/9) 350 m ~                                                                                                        | <u>~</u>            | <u>400</u> л       |                | · .     | Leve   | 0 (8/<br>69, 188, 2<br>92, 326, 0<br>RESULT | 2 nn Dù<br>6 nn In<br>7 nn Lei | rection :<br>clination<br>ngth | n -80°<br>440,0m | 1<br>]     |
|------------|-----------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------|---------|--------|---------------------------------------------|--------------------------------|--------------------------------|------------------|------------|
| ,          | LITHO-<br>LOGY                                | H1930<br>(m) | DESCRIPTIONS                                                                                                             | <b>(</b> m <b>)</b> |                    | Au(g/t)        | Ag(g/t) |        | As(%)                                       | Mo(%)                          | WO₃(%)                         | LAB.<br>TEST     | -350       |
|            | ++ S<br>S ++<br>*+ S                          | :            |                                                                                                                          | 350.0               | 8-20043            | < 0.1          | < 1     | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | 0.00       |
| 2-1        | 5 <del>" </del><br>- <del> +</del> 5<br>5 -++ |              | 2,353.5m, gz v. w = 6cm, 60°                                                                                             | 352.0               | 8-20044            | < 0.1          | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | -          |
| <b>!</b> - | -#- \$<br>-#                                  | 354. 4       | 6ò<br>354.4-359.7m, dk grey-reddish grey                                                                                 | 354,4               |                    |                |         |        |                                             |                                |                                |                  | _          |
| 5          |                                               |              | weakly silici & skarnized<br>alt (ss>sl) hornfels                                                                        |                     |                    |                |         |        |                                             |                                |                                |                  | -          |
| 3          | ••• <u></u>                                   |              |                                                                                                                          |                     |                    |                | :       |        |                                             |                                |                                |                  | -          |
| Я          |                                               | 359.7        | 359.7-364.3m, dk grey -greenish                                                                                          | 359.7               |                    | ·<br>-         |         |        |                                             | · <u>·</u>                     |                                |                  | -360       |
|            | • <b>\$</b> • #                               |              | grey silici & weakly skarnized ss<br>with pý, qż, side veinlets                                                          | 2617                | 8-20045            | < 0.1          | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | -300       |
| 2-         | - <b>H</b> S                                  | Δ.           | X<br>13 362.2m, qz v. w = 3cm, 15'<br>1363.6m, qz, sida, (cal) v. w = 0,2cm, 55'                                         | 361.7<br>363,0      | 8-20046            | ÷              | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | -          |
| •          | 5 <del>11</del>                               | 364.3        | 55                                                                                                                       | 364.3               | B-20047            | < 0.1          | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | -          |
| 3          | <u>s</u><br><u>+</u>                          |              | 364,3-372.Om,dk gréy silici 6 weakly<br>skarnized alt (ss>sl) with qz, cal<br>veinlets<br>X                              |                     |                    |                |         |        |                                             |                                |                                |                  | -          |
| 3-         | <b>S</b> • <b>H</b>                           |              | 30                                                                                                                       | -                   |                    |                |         |        |                                             |                                |                                |                  | <b>.</b>   |
|            | -#-,8,-<br>                                   |              |                                                                                                                          |                     |                    | · .            |         |        | t                                           |                                |                                |                  | 0.70       |
| Н          | • • • <b>#</b>                                |              |                                                                                                                          |                     |                    |                |         |        |                                             |                                |                                |                  | -370       |
| 2-         | v v<br>v                                      | .372.0       | 372.0-374.3m, dk greenish grey<br>25 weakly skarnized imp with cal<br>veinlets                                           |                     |                    | •<br>1 1       |         |        |                                             |                                |                                | :                | -          |
| <b>4</b> - | V V<br>-⊪- 5                                  | 374.3        | 374.3-375.6m, grinish grey silici &<br>skarnized metaso with qz, side                                                    | 374.3               | •                  |                |         |        |                                             |                                |                                | 8-2018<br>T      | 373.8      |
| 5-         | \$ ++<br>++ • 5<br>                           | 375,6        | 3) veinlets<br>3) 375.6-389.3m, dk grey silici &<br>skarnized alt (ss)si) hornfels                                       | 375.6               | B-20048            | < 0.1          | 2.4     | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | - · ·      |
| 3          | 5 <del>  </del><br>++ <u>3</u><br>5   +       |              | 375.8m, cal, side v. w = 0.8cm, 30<br>377.2-378.7m, qz v. (chl, act.)                                                    | 377.2               | 8-20049            | < 0.1          | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | <br> -     |
| Я          | + +<br>* +<br>* +                             |              | À 379.5m, Imp, w = 2cm 15*                                                                                               | 378.7               |                    |                |         |        |                                             |                                |                                |                  | -380       |
| ר<br>י     | ++ 5<br>5 ++<br>-+ 5                          |              | аза ан, ткр. и ~ сон та<br>15<br>40                                                                                      |                     |                    |                |         |        |                                             |                                |                                |                  | 300        |
| 2-         | + +<br>+<br>\$ +<br>+                         |              |                                                                                                                          |                     |                    |                |         |        |                                             |                                |                                |                  |            |
| <b>1</b> - | \$ -#<br>-#-<br>                              |              |                                                                                                                          |                     |                    |                |         | 1 1 E  |                                             |                                |                                |                  | -          |
| 5-         | + 5<br>+ +<br>5 +                             | -            |                                                                                                                          |                     |                    |                |         |        |                                             |                                |                                |                  | -          |
| 3-1        | ++ +<br>5 ++<br>-++ 5                         |              | 40<br>387.5m, act. v.<br>00                                                                                              | •                   |                    |                |         |        |                                             |                                |                                | B-201.9<br>X     | 38), 4<br> |
| ;<br>)-    | + 5<br>+ 5<br>+ 5<br>+ 5                      | 389.3        | 2 389.3-398.2m, dk greenish grey                                                                                         | 389.3               |                    |                |         |        |                                             |                                |                                |                  | -390       |
|            | - ÷                                           |              | silici & skarnized hornfels alt<br>(ss>>sl) with qz veinlets, py,<br>pyrho                                               | 391.0               |                    |                | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  |            |
| 2~         | ++ 5<br>+ 1<br>+ 5<br>+ 5                     |              | 389.3m, qz, act. v. w = 32cm, 25°.<br>40                                                                                 | 392.5               |                    | < 0.1<br>< 0.1 | 1.6     | < 0.01 | < 0.01                                      | < 0.01<br>< 0.01               | < 0.01<br>< 0.01               |                  |            |
| <b>1</b> - |                                               |              | 394.2m, qz, py v. w = 2cm, 30°.<br>394.5-395.0m, frac zone                                                               | 394.0               | 8-20052<br>B-20053 |                | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | -          |
| 5-         | -##-<br>-#\$<br>\$#-                          |              | 1 <sup>33</sup> 395, 4m, qz, py v. w = 3cm, 45 <sup>4</sup><br><sup>40</sup> 398, 2m, qz, py v. w = 3cm, 60 <sup>*</sup> | 395.5               |                    | <b></b>        | × 1     | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         |                  | Ļ          |
|            | -#- +                                         | 1 · · ·      | 3                                                                                                                        | 397.0               |                    |                | <1      | < 0.01 | < 0.01                                      | < 0.01                         | < 0.01                         | 1 :              |            |

A-47

### GEOLOGIC CORE LOG OF MJUB-20 (9/9)

#### 1/200

|              | MJ                                     | ÜE           | 3-20 (9∕9) 400 m ~                                        | <u> </u>     | <u>440</u> n  | 1        |     | Let<br>X<br>Y  | el 222.<br>69, 188.<br>92, 326.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | clinatio   |                     | ;<br>} |
|--------------|----------------------------------------|--------------|-----------------------------------------------------------|--------------|---------------|----------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------------|--------|
|              | LITHO-                                 | DEPTH<br>(m) | DESCRIPTIONS                                              | OEPTH<br>(m) | SAMPLE<br>No. | Au(g/t)  |     | ASSAY<br>Cu(%) | RESUL1<br>As(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo(%)         | WO3(%)     | LAB.<br>TEST        |        |
| 00-          | #                                      |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | -4     |
|              | * *                                    | 11           |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ĺ      |
| 02-          | -#+<br>                                |              |                                                           | <b>.</b> .   | · •           |          | · · |                | ) - t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]             |            |                     |        |
| 04           | ************************************** |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ŀ      |
|              | * *                                    |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1          |                     |        |
| <u>0</u> 6-  | *                                      |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ┢      |
|              | *                                      |              | 50                                                        |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 08-          | -++<br>-++                             |              | 408. 4m, qz, py, pyrho v. w=2cm, 60°                      | ļ            |               | 1        | ]   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | Ĩ      |
| 10           |                                        |              | 409.7-411.4m, qz. act veinlets                            | 409.7        |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | 4      |
|              |                                        |              | 411.4m, pinkish white granite.<br>)w = 2cm, 10            |              | 8-20058       | < 0.1    | < 1 | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01        | < 0.01     |                     |        |
| 12-          | ** · · ·                               | 3010         | 10 w = 2cm, 10<br>411, 1-418.6m, greenish grey            | 411.4        | 8-20057       | < 0.1    | 4.8 | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01        | < 0.01     |                     | ŀ      |
|              | -#                                     |              | - silici alt (ss>>sl) oz,áct,ko,v<br>A bv.ovrho           | 413,0        |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 14-          | #                                      |              | 43 413. 4m, qz, diop. py, v. w=4cm, 45                    | 414.5        | 8-20058       | < 0.1    | 4.8 | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01        | < 0.01     | { :                 | F      |
|              |                                        |              |                                                           |              | B-20059       | < 0.1    | 1.2 | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01        | < 0.01     | 6-22.10             | 413    |
| 16-          | *                                      |              | 416. 8m, qz. wo, py, pyrho v. w=3cm, 30                   | 416.5        |               | <u>+</u> |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            | 8-201.11            | 418    |
| 18-          | ****<br>****                           |              | 417 9m oz dioo act ov v w=5cm 30"                         |              | B-20060       | < 0.1    | <1  | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01        | < 0.01     | 8-20112             | 413    |
|              | #                                      |              | 418.0m, grrnish white grano dt<br>3 w = 2  cm, 25         | 418.6        |               |          |     | ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 20-          | *                                      |              | 418.6-426.4m, dk grey silici<br>alt (ss)>sl) with by      |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ┞┥     |
|              |                                        |              | 35                                                        |              |               | 1        |     | · .            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | l      |
| 22-          |                                        |              | 122.3m, pinkish grey srs syeno-dt.                        |              |               |          |     |                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |            |                     | F      |
|              |                                        |              | $^{35}$ w = 3 cm, 40°                                     |              |               |          |     | · · .          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 24-          | *                                      |              | 425.4-425.6m, grey 1s, partly                             |              |               |          | · · |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 26-          | XXX<br>I CLL                           | .428.4       | skarnized (wo,diop)<br>426.4-426.7m, grey-whitesh grey is |              | :             |          |     |                | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |            |                     | ŀ      |
|              | XXX                                    | 420.7        |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 28-          | x^x<br>≇                               | 426.3        | 428.3-437.6m, Ck grey silici                              |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ╞      |
|              | -11-<br>Expanded and<br>-11-           |              | A alt (ss>>s!) with py<br>40 429,1-429.3m, wo, gz v. 40   |              |               |          | 1 I |                | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |            | <u>B-20L13</u><br>X | L      |
| 30-          | *                                      | -            | 169, 1 TAV. UN, NV, YE 1. TV                              |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | -4     |
| ;<br>32-     |                                        |              |                                                           |              | 1.14          |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | L      |
| 2            | * *                                    |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | - <u> </u> |                     |        |
| 3 <b>4</b> - | -#-<br>#                               |              | 433. 5m, cal (qz) py, v. w = 2cm, 25                      |              |               |          |     | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ŀ      |
| 1            | -#-<br>-#-                             |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 36-          | *                                      |              |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | F      |
| 38-          | #                                      | .497_6       | A 437.6-440.0m, greenish dk grey                          | 437.6        |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | Ĺ      |
| 20           | -  -<br>  -<br>  +<br>  +              |              | silici hornfels ss. with gz.cal,<br>vains                 |              | B-20051       | < 0.1    | 3.2 | < 0.01         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>≺ 0.01 - | < 0.01     |                     |        |
| 40-          | ***                                    | 440.0        |                                                           | 440.0        |               |          | ·   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | 4      |
|              |                                        | а.<br>-      |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | 1      |
| 42-          |                                        |              |                                                           |              | · ·           |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | -      |
|              |                                        |              |                                                           | ÷            |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     |        |
| 44-          |                                        |              |                                                           |              | :             |          |     | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ľ      |
| 46-          |                                        |              |                                                           |              |               |          | 1.0 |                | 1997 - 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 |               | Sec. 2     | :                   | L      |
|              |                                        | ÷            |                                                           |              |               |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |            |                     | ł      |
| 48-          |                                        |              |                                                           |              | :             |          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | · .        |                     | 1      |
|              |                                        | l I          | 1 · · · · · · · · · · · · · · · · · · ·                   | I .          | i i           | 1        | 1   |                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 .           | 1          | 1 1                 | 1      |

A-48

| ·    | . *                                                                                                          |        | GEOLOGIC                                                               | ORE      | E LO               | DG I OI                  | ≈-M3I      | UB-2             | 1 (1/                                |                              | 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. | 200                       |
|------|--------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------|----------|--------------------|--------------------------|------------|------------------|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|      | MJ                                                                                                           | បខ     | <u>-21 (1/3) 0 m -</u>                                                 | <u> </u> | <u>50</u> n        | <b>1</b> .               |            | Leve<br>X<br>Y   | 1 233, 2<br>68, 310, (<br>93, 003, ( | 3 m 01<br>04 m 1n<br>05 m Le | rection<br>clination<br>ngth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S20" W<br>-80"<br>105. On |
|      | LITHO-                                                                                                       |        | DESCRIPTIONS                                                           |          | SAMPLE             |                          |            | ASSAY            | RESULT                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAB.                      |
| ò    | LQGY                                                                                                         | (m)    | Q-7. 3m, sand with pebbles                                             | (m)      | No.                | Au(g/t)                  | Ag(g/t)    | Cu(%)            | As(%)                                | Mo(%)                        | WO₃(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEST                      |
|      |                                                                                                              |        | ors, and sand with peoples                                             |          |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 2    |                                                                                                              |        |                                                                        |          |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|      |                                                                                                              |        |                                                                        |          |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 4    | 1                                                                                                            |        |                                                                        | .        |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l i                       |
| 6    |                                                                                                              |        |                                                                        |          |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                         |
|      |                                                                                                              | 7.30   | 7.3-7.6m.<br>whitish grey silici.ss with limo                          | Ì        |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 8    | 5.                                                                                                           | 7.60   | 7.6-8.1m,<br>A whitish grey is with calling                            | 73       | 8-2101             | < 0.1                    | 3.2        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·                     |
|      | $\otimes$                                                                                                    | 9.30   | <sup>20</sup> 8 1-9 3n brownish grey brecciated                        | 93       | B-2102             | < 0.1                    | 1.2        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 10   | -lŸ∵Ÿ                                                                                                        |        | 3.9.3m, cal vein, w≏tcm, 15°<br>159.3-11.8m, greenish grey Imp         |          | 8-2103             | < 0.1                    |            | < 0.01           | 2001                                 | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -10                       |
|      | v v                                                                                                          | 11.89  | 11.8-16.7m, brownish grey-greenish                                     | 118      |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 12   | 1 " °.                                                                                                       |        | with qz, cal and limo                                                  |          | B-2104             | < 0.1                    | <:1        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| ••   | s -+                                                                                                         |        |                                                                        | 130      | B-2105             | < 0.1                    | <1         | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 14   | ]** \$<br> \$ ++                                                                                             |        |                                                                        | 15.0     | 8-2106             | < 0.1                    | 2.4        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 16   | + s                                                                                                          | - 1    |                                                                        | 160      | 8-2107             | < 0.1                    | <u> </u>   | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|      | S #                                                                                                          | 15.90  | 15.9-22.0m, greenish grey silici. &                                    | 17.0     | 8-2108             | < 0.1                    | < 1        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 18   |                                                                                                              |        | oskarnized alt(ss>>sl) with gz.cal<br>vein & limo                      | 18.0     | 18-5109            | <u>&lt; 0.1</u><br>< 0.1 | 3.6        | < 0.01<br>< 0.01 | < 0.01<br>< 0.01                     | < 0.01                       | <u>&lt; 0.01</u><br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                         |
|      | + 5<br>- 5 +<br>+ 5                                                                                          |        | 4                                                                      | 19.0     | 8-21010<br>8-21011 | < 0.1                    | 4.4        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 20   | · · · · · · · · · · · · · · · · · · ·                                                                        |        |                                                                        | 20.0     | 8-21012            | < 0.1                    | <1         | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -20                       |
|      | <del>++</del> - <del>5</del> - <del>++</del> - <del>5</del> - <del>++</del> - <del>5</del> - <del>++</del> - | .22.00 | 35                                                                     | 21.0     | B-21013            |                          | 1.2        | 0.01             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 22   | -11- 1                                                                                                       |        | 22.0-26.2m, brownish grey-greenish<br>grey silici. & skarnized metaso. | 22.2     | B-21014            | < 0.1                    | <1         | 0.03             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 24   |                                                                                                              |        | with qz                                                                | 24.0     | 8-21015            | < 0.1                    | <1         | 0.02             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|      | \$ <del>+</del><br>+ \$                                                                                      |        |                                                                        | 25.0     |                    |                          | 7.4        | 0.03             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B-21L1 25 2               |
| 26   | - <u>s</u> ++                                                                                                | 26.20  |                                                                        | 26.2     | B-21017            | <b>&lt; 0.1</b>          | < 1        | 0.03             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.X -                     |
|      | V.                                                                                                           |        | 26.2-28.8m, greenish dk-grey Imp<br>45                                 |          | B-21018            | < 0.1                    | 3.2        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| .28  | 1 <sup>×</sup> • <sup>×</sup>                                                                                | 28.80  |                                                                        |          | 1                  |                          | 0.2        |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| • •  | # S ·                                                                                                        | ÷ .    | 28.8-31.2m, greenish grey silici. &<br>Weakly skarnized alt(ss>>sl)    | 28.8     | 8-21019            | < 0.1                    | 1.6        | 0.02             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B-2112 .3                 |
| 30   | ·#· 5<br>·#· 5                                                                                               | 1. 1.  | with py<br>31.0-31, 2m, cal v.                                         | 30.0     | 8-21020            | < 0.1                    | < 1        | 0.02             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F -29.7                   |
| 32   |                                                                                                              |        | 31. 2-35. 5m, greenish dk-grey lop                                     | 31.2     | B-21021            | 0.1                      | <1         | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|      |                                                                                                              |        | 32.7-32.9m, fault clay, 55°                                            | 32.7     |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 34   | - V                                                                                                          |        | 53                                                                     |          | 8-21022            | < 0.1                    | ÷ <1′      | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|      | V V                                                                                                          | 35, 50 |                                                                        | 35.5     | · · · · · · · · ·  |                          |            |                  | ·····                                | · .                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 36   |                                                                                                              |        | 35.5-39.8m, greenish grey-dk grey<br>silici, & skarnized alt(ss>>sl)   |          | 8-21023            | < 0.1                    | <1         | 0.03             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                         |
|      | <u>\$</u> #<br>++ \$<br>\$ #                                                                                 |        | with py, gz veinlets                                                   | 37.0     | 8-21024            | < 0.1                    | 1.8        | < 0.01           | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 38   | 1 + <u>5</u><br><u>5</u> + <u>+</u><br>+ <u>+</u> · <u>5</u>                                                 |        |                                                                        | 38.5     | <b> </b>           |                          |            | <u> </u>         |                                      |                              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |
| 40   |                                                                                                              | 39.80  | 39.8-40.8m, greenish dk grey Imp                                       | 39.8     | 8-21025            | <u> &lt; 0.1</u>         | 1.2        | 0.03             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B-2113-40                 |
| 17   | <mark>-₩</mark>                                                                                              | 40.80  | 7040.8-44.7m, greenish grey-dk grey<br>silici. & skarnized ait(ss>>st) | 40.8     | B-21026            | < 0.1                    | <u> </u>   | < 0.01           | < 0.01                               | <b>&lt; 0</b> .01            | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| 42   |                                                                                                              |        | 70 with gz. py                                                         |          | 8-21027            | < 0.1                    | <b>\$1</b> | 0.02             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| · .  | ++ 5<br>                                                                                                     |        |                                                                        | 42.5     |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| . 44 | <b>5 *</b><br><b>*</b><br><b>*</b>                                                                           | 44, 70 |                                                                        |          | 8-21028            | 0.1                      | 1.2        | 0.05             | < 0.01                               | < 0.01                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|      | TIL                                                                                                          |        | 44.7-47.2m, grey weakly skarnized is with cal                          | 44.7     | <b>[</b>           |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 46   | 1111                                                                                                         |        |                                                                        |          |                    |                          |            |                  |                                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 48   |                                                                                                              | -17:88 | 47.2-47.4m, frac zone with clay<br>47.4-47.6m, dk grey silici.8        |          |                    |                          |            |                  | х<br>1<br>1                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                         |
| 10   | ]° √ °                                                                                                       |        | 55 sharnized ss<br>47.6-52.6m, greenish dk grey Imp                    |          |                    |                          |            |                  |                                      | :                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| 50   | V V                                                                                                          | L      |                                                                        | L        | L                  |                          | l          | L                | l                                    |                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                         |
|      |                                                                                                              |        |                                                                        |          |                    | - 10                     |            |                  | · · ·                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |

A--49

|         |                                                  |                | GEOLOGIC C                                                                                               |              | :                  |                    | M91                                   | Leve                                  | I ≈ (22<br>I ≈ 233, 24<br>68, 310, 0 | i0 m 6           | 1/2<br>rection S<br>clination | 20° W          |
|---------|--------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|--------------|--------------------|--------------------|---------------------------------------|---------------------------------------|--------------------------------------|------------------|-------------------------------|----------------|
| r       | <u>м</u> ј                                       |                | <u>-21 (2/3) 50 m -</u>                                                                                  | · · · · ·    | 100 r<br>ISAMPLE   | r                  | ·                                     |                                       | 93, 003. 0<br>RESUL1                 | 5 n. Le          |                               | 105. On        |
| Ľ       | LOGY                                             | (m)            | DESCRIPTIONS                                                                                             | (m)          | NO,                | Au(g/t)            | Ag(g/t)                               | Cu(%)                                 | As(%)                                | Mo(%)            | WO3(%)                        | TEST           |
|         | <b>V</b>                                         |                |                                                                                                          |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
| -       | u⊢<br>\$∰                                        | 52.6           | 52.6-58.4m, dk grey -greenish grey<br>silisi & parly skarnized alt(ss>>sl)<br>with qz (cal) veinlets, py | 52.6         | 8-21029            | < 0.1              | <1                                    | 0.02                                  | < 0.01                               | < 0.01           | < 0.01                        |                |
|         | ++ • \$ •<br>++ • \$ •                           |                |                                                                                                          | 54.5<br>:    | B-21030            | <sup>1</sup> < 0.1 | < 1                                   | 0.02                                  | < 0.01                               | < 0.01           | < 0.01                        |                |
|         | <u>}</u><br>5 - 1≹ -                             |                |                                                                                                          | 56.5         | l                  | :<br>< 0.1         | < 1                                   | 0.02                                  | < 0.01                               | < 0.01           | < 0.01                        | B-21L4 5,      |
| 'i<br>1 | TIC                                              | 58.5           | 58.4-58.5m, fault clay<br>skarnized (Wo) Is                                                              | 58.5         |                    |                    | <1                                    | < 0.01                                | < 0.01                               | < 0.01           |                               | Р              |
| 1       | .L. <sub>T</sub> L.                              | 60.5           | 60.5-63.0m, greenish dk grey<br>silisi 8 weakly skarnized                                                | 60.5         | 8-21032<br>B-21033 |                    | 1.6                                   | 0.03                                  | < 0.01                               | < 0.01           | < 0.01                        | 8-2115 59<br>X |
|         |                                                  | 63.0.          | A alt (ss>>s) with qz(cal) veinlets<br>45<br>63.0-63.3m, frac, zona                                      | 620          | B-21034            | < 0.1              | ( 1                                   | 0.03                                  | < 0.01                               | < 0.01           | < 0.01                        |                |
| ¥<br>1. |                                                  |                | 63.3-64.9m, greenish dk grey -<br>whitish grey skarnized is with<br>cal veinlets                         | 63.3         | 8-21035            |                    | ··· · · · · · · · · · · · · · · · · · | < 0.01                                | < 0.01                               | < 0.01           | < 0.01                        |                |
|         | <u>+</u><br>#<br>*                               | 64.9<br>55.1   | 64.9-66.1m, greenish dk grey<br>silisi skarnized alt (ss>>sk)<br>cal v.py                                | 64.9<br>66.1 | 8-21036            |                    | < 1                                   | 0.03                                  | < 0.01                               | < 0.01           | < 0.01                        | 8-21L6<br>X    |
| X       | Ϋ́́́                                             |                | 66.1-71.On, grey partly skarnized (Wo) is                                                                |              | B-21037            | < 0.1              | <1                                    | < 0.01                                | < 0.01                               | <b>&lt; 0.01</b> | < 0.01                        |                |
| i.      |                                                  |                | 66. 4-66. 8m, frac zòne                                                                                  | 67.8         | 8-21038            | < 0.1              | <1                                    | < 0.01                                | < 0.01                               | < 0.01           | < 0.01                        |                |
| 1<br>1  |                                                  | 11.0           | 71.0-72.4m, grey att                                                                                     | 69.8         |                    |                    |                                       | · · · · · · · · · · · · · · · · · · · |                                      |                  | ·                             |                |
|         | ι, ι<br>Τ'Τ'Τ<br>τιττ                            | .72.4          | (1s>>dk grey ss)<br>72.4-76.8m, gray is with cal                                                         |              |                    |                    |                                       |                                       |                                      |                  | :                             | -              |
| 1       |                                                  |                | veinlets                                                                                                 |              | ÷                  |                    |                                       |                                       |                                      |                  |                               |                |
| 1<br>1  |                                                  |                |                                                                                                          |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
| 1       | 1I.<br>                                          | 76.6           | 76.8-105.0m, pinkish gray yellowish-                                                                     |              |                    |                    |                                       |                                       |                                      | 4 - 1 -<br>-     |                               |                |
| ſ       | Ì.                                               | •              | grey coarse syeno dt                                                                                     |              |                    | an<br>An Ang       |                                       |                                       | -                                    |                  | : 1                           |                |
| ľ       |                                                  |                |                                                                                                          |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
|         | λĵ                                               |                | A 80.4m, qz-sutphide (py,asp)<br><sup>55</sup> vein, π=tcm, 35                                           |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
|         | 시                                                | 1              |                                                                                                          |              |                    |                    |                                       |                                       | -                                    | 1                |                               |                |
| ľ       | ٦.                                               |                |                                                                                                          |              | \$1. F             |                    |                                       |                                       |                                      |                  |                               | _ <u>-</u>     |
| ľ       |                                                  |                | 85.3m, qz v, w=0.2cm                                                                                     |              |                    |                    |                                       | 1.2                                   |                                      |                  |                               | -              |
| b       | (°Â                                              |                | · ·                                                                                                      | ÷            |                    |                    | <i></i>                               |                                       |                                      |                  |                               |                |
|         | 골시                                               | ×€r<br>L⊒      |                                                                                                          |              |                    | 4                  | 1                                     |                                       |                                      |                  |                               |                |
| ľ       | `.,                                              | . 11<br>       |                                                                                                          |              | · ·                |                    |                                       |                                       |                                      |                  |                               | · · ·          |
|         |                                                  |                |                                                                                                          |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
| X       |                                                  | 92.6           | 92.6-94.2m, frac, zone                                                                                   | ļ            |                    |                    |                                       |                                       |                                      |                  |                               | , i            |
| ß       | X                                                | 94. 2<br>94. 8 | 01 9-06 5m f                                                                                             |              |                    |                    | :                                     |                                       |                                      |                  |                               | · · · -        |
| X       |                                                  |                | 94.8-96.5m, frqac zone                                                                                   | <u>.</u>     |                    | . *                | •                                     |                                       |                                      |                  |                               |                |
| þ       | $\left( \begin{array}{c} \\ \end{array} \right)$ | . 26. 5.       | 97. 5-93. On, frac zone                                                                                  |              |                    |                    |                                       |                                       |                                      |                  |                               |                |
| ₽       | θŦΗ                                              |                |                                                                                                          | 1            | ł                  | 1                  | 1                                     | I .                                   |                                      |                  | 1. 1                          | ( <b>.</b> .   |

A-50

θŪ

,

| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | ÷    | MJ             |              | 3-21 (3/3)              | 100 m ~     | 1            | <u>05</u> m   | :                                                                                                                                                                                                                                   | <br>X                 | 1 233.23<br>68,310.04<br>93,003.05 |       |        |              | 1          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|----------------|--------------|-------------------------|-------------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|-------|--------|--------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 100  | LITHO-<br>LOGY | DEPTH<br>(m) | DESCRIPTIC              | DNS         | 08PTH<br>(m) | SAMPLE<br>No. | Au(g/t)                                                                                                                                                                                                                             |                       |                                    | Mo(%) | WO₃(%) | LAB.<br>TEST | - 100      |
| 104       105       105       00       Batton of the fole         105       108       110       112         110       112       114         116       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118         118       118       118 <td></td> <td>  </td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> |                                          |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    | -     |        |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 104- | ٨,             |              | 105 On Batton of the ba | t.a.        |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                        | 106- |                | 102.9        |                         |             |              |               |                                                                                                                                                                                                                                     | <br>· · · · · · · · · |                                    |       |        |              | <br> .<br> |
| 112-       114-         116-       116-         116-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         122-       116-         123-       116-         133-       116-         134-       116-         134-       116-         134-       116-         134-       116-         134-       116-         134-       116-         134-       116-         134-                                                                                                                                                                                                          |                                          | 108- |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 110- |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | -11        |
| 116 $118$ $120$ $122$ $124$ $124$ $128$ $130$ $130$ $130$ $131$ $132$ $132$ $134$ $136$ $138$ $138$ $138$ $138$ $138$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                        |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       | i                                  |       |        | • .          |            |
| 120-<br>122-<br>124-<br>126-<br>126-<br>130-<br>130-<br>132-<br>132-<br>134-<br>134-<br>134-<br>136-<br>136-<br>136-<br>136-<br>136-<br>136-<br>140-<br>142-<br>144-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |      | -              |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |      | -              |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | -12        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                                        | 122- |                |              |                         |             |              |               | i de la composición de la composición de la composición de la composición de la composición de la composición d<br>Esta composición de la |                       |                                    |       |        |              | -          |
| 128-<br>130-<br>132-<br>134-<br>136-<br>140-<br>142-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 124- |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | <b>.</b>   |
| 130-<br>132-<br>134-<br>136-<br>140-<br>142-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an an an an an an an an an an an an an a | 126- |                |              |                         | ·<br>·<br>· |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
| 132-<br>134-<br>136-<br>140-<br>142-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
| 134-<br>136-<br>138-<br>140-<br>142-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |      |                |              |                         |             |              | •             |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | -1:        |
| 136-<br>138-<br>140-<br>142-<br>144-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
| 138-<br>140-<br>142-<br>144-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |      | н<br>          |              |                         |             |              |               |                                                                                                                                                                                                                                     | . :                   |                                    |       |        | * •          | F          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Υ.                                       |      |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        | -            | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 140- |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        | · · · ·      | - 74       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 142- | Ţ              |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 144- |                |              |                         |             |              |               |                                                                                                                                                                                                                                     |                       |                                    |       |        |              | <b>}</b> : |

|  |   |             |     |             | : |   | : |   |
|--|---|-------------|-----|-------------|---|---|---|---|
|  |   | ·           |     |             |   | : |   | · |
|  | : | ·<br>·<br>· | . * | •<br>•      |   |   |   |   |
|  |   |             |     |             |   |   |   |   |
|  |   |             |     | •<br>•<br>• |   |   |   |   |
|  |   |             |     |             |   |   |   |   |
|  |   |             |     |             |   |   |   |   |

# Appendix 2.Result of Laboratory Works

|                                                          | Quanti               | ty                   |        |
|----------------------------------------------------------|----------------------|----------------------|--------|
|                                                          | Trench survey        | Drilling survey      | Total  |
| Itens                                                    | Bulutkan<br>district | Bulutkan<br>district |        |
| 1. Thin section                                          | 20                   | 20                   | 40     |
| 2.Polished section                                       | 18                   | 18                   | 36     |
| 3.X-ray diffraction analysis                             | 20                   | 30                   | 50     |
| 4. Fluid inclusion test                                  | 19                   | 16                   | 35     |
| 5.Ore analysis<br>(Au. Ag. Cu. As. No, WO <sub>3</sub> ) | 652                  | 562                  | 1, 214 |
| Total                                                    | 729                  | 646                  | 1.375  |

### Appendix 2-1 List of Laboratory Works

}

Microscopic Observations of the Thin Sections(1/2) Appendix 2-2

| No. Sample No.    | o. Location             | Rock name                                        | Primary minerals         | Se                | Secondary minerals                    | Remarks                        |
|-------------------|-------------------------|--------------------------------------------------|--------------------------|-------------------|---------------------------------------|--------------------------------|
|                   |                         |                                                  | Ho Cox Sph AP C To Me Zr | Ga Cord Hemi Op 0 | Oz Childer Tr Bp P                    | Ser   C                        |
| 1   T- 11   L     | T-11 L 3 T-11 88.8m     | Pyroxene skam                                    | 0                        |                   |                                       |                                |
| 2 T- 11 L         | T-11 L 4 T-11 155.0m    | Homblende skam                                   |                          | · · ·             | • • • •                               | With conndum-biotite homfels   |
| 3 T-12 L          | T-12 L 1 T-12 4.0m      | Homblende-biotite granodionite                   |                          |                   |                                       | brecciated                     |
| 4 T-12 L          | T-12 L 4 T-12 38.0m     | Porphyrite                                       |                          |                   | •                                     | △ Sericitized                  |
| 5   T-13 L        | 2 T-13 75.0m            | Aplitic biotite granite                          | ·<br>•<br>0000           |                   | · · · · ·                             |                                |
| 6 T-14 L          | 2 T-14 74.0m            | Sericitized granite                              |                          |                   | • • • • •                             | △ Qz : sutured texture         |
| 7 T-16 L          | , 3 T-16 75.0m          | Biotite-muscovite homfels                        |                          | (•)               | •                                     | ss-sh alternation, limonitized |
| 8 T-18 L          | T-18 L 1 T-18 44.5m     | Biotite-muscovite homfels                        |                          | (·)               |                                       | Corundum-bg                    |
| 9 T-18 L          | T-18 L 5 T-18 90.0m     | Pelitic phyllite                                 |                          | V                 |                                       | Op : graphite                  |
| 10 T-19 I         | , 1 T-19 33.5m          | 10 T-19 L 1 T-19 33.5m Chlorite-muscovite schist |                          |                   | <b>∠</b>                              | Microcorrugation               |
| 11 T-19 L         | T-19 L 3 T-19 35.0m     | Muscovite homfels                                | O □ 0                    |                   |                                       |                                |
| 12 T- 19 L        | 5 T-19 41.0m            | Biotite granite                                  |                          |                   | •                                     | Fine-grained                   |
| 13 T-20 I         | · ·                     | Muscovite homfels                                |                          | •                 | · · · · · · · · · · · · · · · · · · · | Limonitized                    |
| 14 T- 23 I        | 14 T 23 L 2 T-23 36.0m  | Crystalline limestone                            |                          | •                 |                                       |                                |
| 15 T-23 I         | 15 T-23 L 3 T-23 78.5m  | Pyroxene skam                                    | · ·  0                   |                   |                                       |                                |
| 16 T- 26          | 16 T- 26 L 3 T-26 36.3m | Quartzite                                        |                          | ÷                 |                                       | Relict bedding structure       |
| 17 T. 26 L 3 T-26 | L 3 T-26 50.0m          | Cordierite-biotite homfels                       |                          | •                 |                                       | Cordiente : pinitized          |
| 18 T. 28          | 18 T- 28 L 1 T-28 30.3m | - 1 I                                            |                          | •                 |                                       |                                |
| 19 T- 28          | 19 T- 28 L 2 T-28 89.0m | Lamprophyre                                      |                          | · · · · · ·       |                                       |                                |
| 20 T- 20          | 20 T- 29 L 1 T-29 53.5m | Ouartz vein                                      | 0                        | •                 |                                       | Limonitized                    |

Oz: quartz. Pl: plagiociase, Kf: K-feldspar, Bi: biotite, Ko: homblende, Cpx: clinopyroxene, Sph: sphene, Ap: apatite C:carbonate. To: tourmaline, Ms: muscovite, Zr: zircon, Ga: gamet, Cord:cordiente, Hem: hematite, Op: opaque mineral

Controllate, to contrastite, the investity, an airveit of guilter we convert

Circle: abundant, Triangle: common, Dot: minor constituents

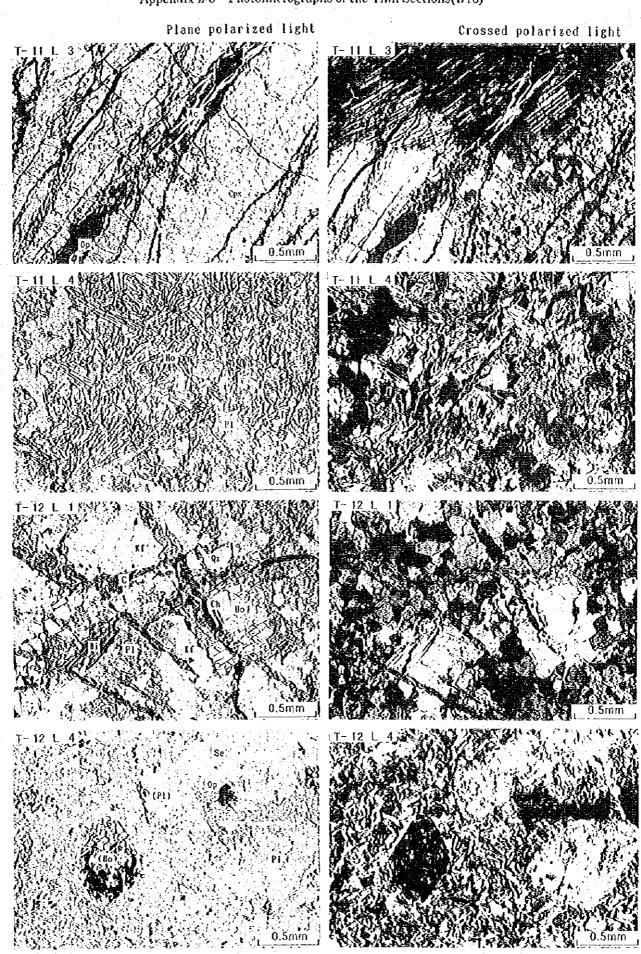
) : pseudomorph

Appendix 2-2 Microscopic Observations of the Thin Sections(2/2)

| Location<br>MJUB-8 34.2m<br>MJUB-8 34.2m<br>MJUB-8 92.7m<br>MJUB-10 58.0m<br>MJUB-11 117.9m<br>MJUB-12 171.2m<br>MJUB-12 171.2m<br>MJUB-12 171.2m<br>MJUB-12 171.2m<br>MJUB-13 83.5m<br>MJUB-13 83.5m<br>MJUB-18 32.8m<br>MJUB-18 32.8m<br>MJUB-20 66.4m<br>MJUB-20 66.4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rock name     Primary       2.7m     Rock name     0x     n       2.7m     Pyroxene skam     0x     n       2.7m     Pyroxene skam     0x     n       2.7m     Pyroxene skam     0x     n       38.0m     Biotite-homblende diorite     0     0       117.9m     Camet-pyroxene skam     0     0       130.1m     Ramet-pyroxene skam     0     0       131.2m     Rombhyrite     0     0       131.2m     Porphyrite     0     0       20.4m     Porphyrite     10     0       21.3.8m     Chlorite-muscovite homfels     0     0       21.8m     Porphyrite     1     0       21.8m     Porphyrite     1     0       21.5.3m     Porphyrite     0     0       215.3m     Lamprophyre     1     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location<br>MJUB-8 3<br>MJUB-8 3<br>MJUB-10<br>MJUB-11<br>MJUB-12<br>MJUB-12<br>MJUB-12<br>MJUB-14<br>MJUB-14<br>MJUB-14<br>MJUB-14<br>MJUB-16<br>MJUB-19<br>MJUB-20<br>MJUB-20<br>0 MJUB-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An         An<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No. 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation ation UB-8 34 UB-8 34 UB-8 34 UB-8 34 UB-12 28 UB-12 28 UB-12 1 1 UB-12 28 UB-12 1 1 UB-12 20 UB-12 1 UB-12 0 UB-20 
| · [X ] 카키키키키키키키키키키키키 - [커키키카                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample         Sample           Nample         Nample           Nample | Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       Sample No.       S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

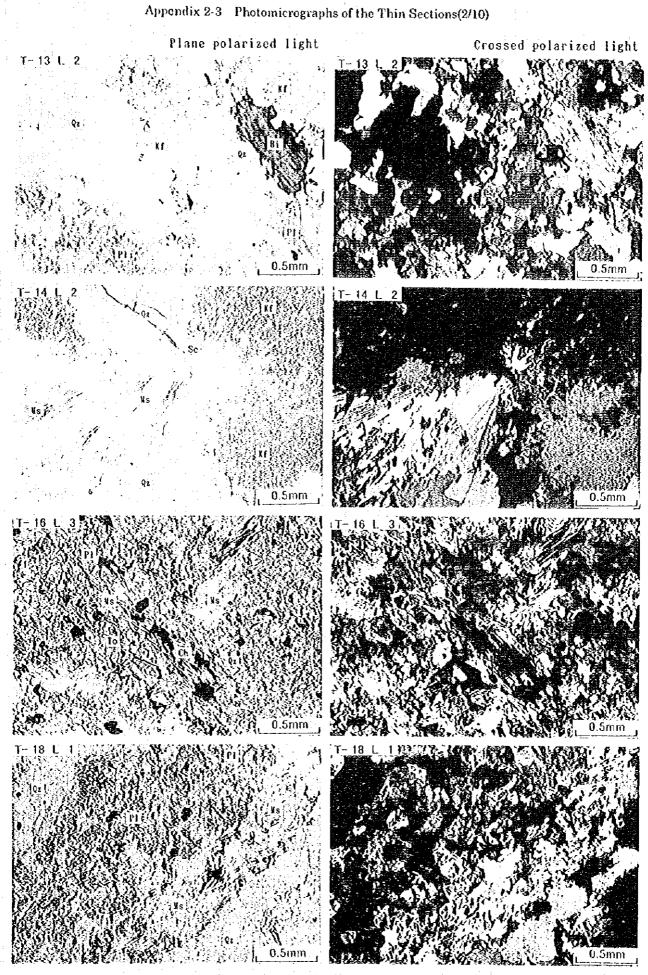
Oz: quartz. Pl: plagioclase. Kf: K-feldspar, Bi: bionite, Ho: homblende, Cpx: clinopyroxene, Sph: sphene, Ap: apatite C:carbonate, To: tourmaline, Ms: muscovite, Zr: zircon, Ga: gamet, Hem: hematite, Op: opaque mineral

Chl: chlorite, Act: actinolite, Tritremolite, Priprehnite, Sensencite


Circle: abundant, Triangle: common, Dot: minor constituents (): pseudomorph

## Appendix 2-3 Photomicrographs of the Thin Sections

()


### **Abbreviations**

| Ac   | : Actinolite    | Lim : Limonite      |
|------|-----------------|---------------------|
| Ap   | : Apatite       | Ms : Muscovite      |
| Au   | : Augite        | Op : Opaque mineral |
| Bi   | : Biotite       | Pl : Plagioclase    |
| C    | : Carbonate     | Qz : Quartz         |
| Ch   | : Chlorite      | Ru : Rutile         |
| Cord | : Cordierite    | Ser : Sericite      |
| Срх  | : Clinopyroxene | Sph : Sphene        |
| Ga   | : Garnet        | To : Tourmaline     |
| Ко   | : Hornblende    | Tr : Tremonite      |
| Kf   | : K-feldspar    | ( ): Pseudomorph    |



Appendix 2-3 Photomicrographs of the Thin Sections(1/10)

; **;** ;



A--60