REPORT

INO ILLA

M-b.W.

, J., R .97/10621

ONI

THE MINERAL EXPLORATION

IN THE OTAVI MOUNTAINLAND AREA THE REPUBLIC OF NAMIBIA

PHASE II

FEBRUARY 1997

1136934 [5]

WARAN INTERNATIONAL COOPERATION AGENCY METAL MINING AGENCY OF JAPAN

REPORT

i

ON

THE MINERAL EXPLORATION

THE OTAVI MOUNTAINLAND AREA THE REPUBLIC OF NAMIBIA

PHASE II

FEBRUARY, 1997

JAPAN INTERNATIONAL COOPERATION AGENCY METAL MINING AGENCY OF JAPAN

.

•

!

1136934 (5)

.

()

ŗ

PREFACE

In response to the request of the Government of Namibia, the Japanese Government decided to conduct a Mineral Exploration in the Otavi Mountainland Area Project and entrusted the survey to the Japan International Cooperation Agency (JICA) and the Metal Mining Agency of Japan (MMAJ).

The JICA and MMAJ sent a survey team to Namibia headed by Mr. Tetsuo Hatasaki from 26 August to 28 November, 1996.

The team exchanged views with the officials concerned of the Government of Namibia and conducted a field survey in the Otavi Mountainland area. When the team returned to Japan, further studies were made and the present report has been prepared.

We hope that this report will serve for the development of mineral deposits and contribute to the promotion of friendly relations between the two countries.

We wish to express our deep appreciation to the officials concerned of the Government of Namibia for their close cooperation extended to the team.

February 1997

į l

Kimio FUJITA President Japan International Cooperation Agency

清读局之朝

Shozaburo ΚΙΥΟΤΑΚΙ

President

Metal Mining Agency of Japan

.

.

(

ļ

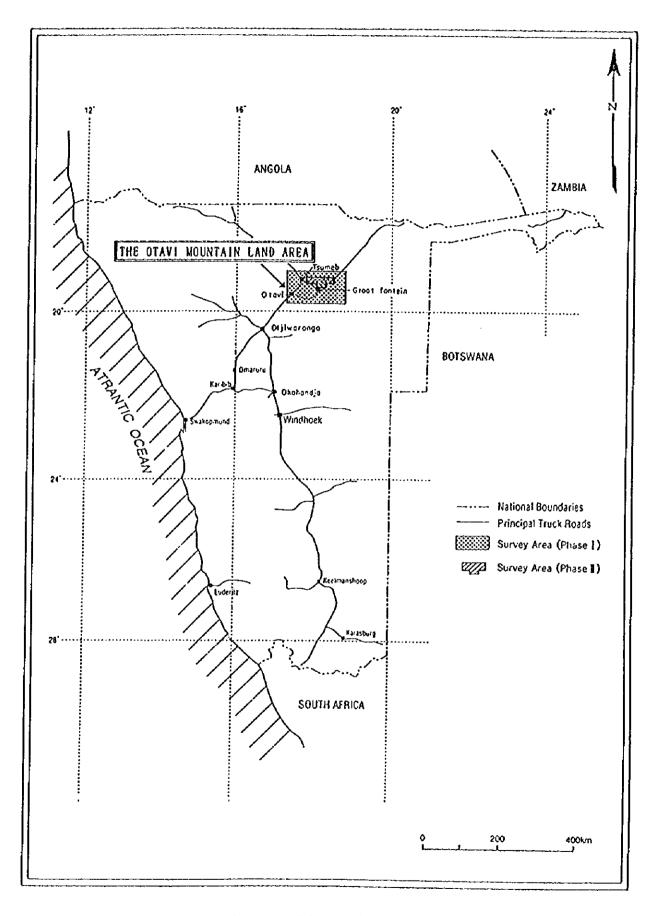


Fig. I - 1 - 1 Index map of the Otavi Mountain Land Area

. . .

1

I.

Summary

The phase II exploration programme consisted of an airborne electromagnetic frequency domain survey which was flown over a portion of the Phase I aeromagnetic survey area and the investigation of four isolated aeromagnetic anomalies, which were delineated by the Phase I aeromagnetic survey, by drilling. The geophysical properties of the drill core were determined in order to compare these measurements with the airborne geophysical data.

The drill hole MJNM-1 intersected a lead and zinc mineralisation. The most significant mineralisation showed 4.52% lead and 1.58% zinc over 0.32 m. The average grade of lead and zinc over 9.16 m are 0.23% and 0.38 % respectively. It is of low grade but should be noteworthy as it is situated some 30 km from the known mineral occurrences of the Otavi Mountain Land.

Detail logging of cores and microscopic observation suggest that the mineral occurrence has been derived of deep-seated brines in the thick carbonate sediments similar to classic Mississippi Valley-type deposit.

Previous exploration located a great number of low to medium grade lead and zinc mineral occurrences which are hosted within T5 or T6 in the Tsumeb and Kombat areas. The mineralisation intersected by MJNM-1 seems to be the equivalent of this T5 or T6 type mineralisation.

An electromagnetic survey was conducted and the results are represented as three resistivity maps representing the different frequencies. The maps indicate that resistivity trend is roughly conformable to geological structures and lithology. It is noted that some of the low resistivity anomalies within high resistivity zone lie in a lineament oblique to the geological trend. The interpretation of the low anomalies along with aeromagnetic anomalies indicate that the linear low resistivity zones or spots are possibly related to massive sulphides that are mainly composed of copper sulphides, and high grade lead zinc and/or and fracture zones associated with the deposits. The favourable low resistivity anomalies located are thus recommended as targets for the Phase III programme.

(j.

1

)

•

CONTENTS

.

Preface

The Locality Map the Survey Area

Summary

1 J

.

Page

Part I General Remarks

	Part I General Remarks	
Chapter 1	Introduction	1
1-1	Background and Objective of the Survey	1
1-2	Conclusion of Phase I and Recommendation for Phase II · · · · · · · · · · · · · · · · · ·	1
1-3	Summary of the Phase II ·····	7
Chapter 2	Physical Features	
21	Location and Access	11
2-2	Topography and Drainage System	
2-3	Climate and Vegetation	
Chapter 3	General Geology of the Survey Area	
Chapter 4	Compilation and Interpretation	
4-1	Characteristics and Structural Control of Mineralisation	15
4-2	Relationship between Resistivity Anomalies of AEM survey, Geological	
	Structure and Mineralisation	15
4-3	Possible Ore Potential ·····	
Chapter 5	Conclusion and Recommendation	17
5-1	Conclusion ·····	17
5-2	Recommendation for the Phase III	17

Part II Details of the Survey

Chapter 1	Drilling Survey	19
1-1	Outline of the Survey	19
1-2	Method and Equipment	19
13	Drilling Work ·····	19
1-4	Result of the Survey	30
1-5	Chemical Assays	46

1-6	Lead Isotope Analysis	46
1-7	Discussion	54
Chapter 2	Geophysical Properties of Core Samples	60
21	Geophysical Property and Sample Number	60
2-2	Equipment and Sample Preparation	60
2-3	Results and Interpretation	61
2-4	Discussion	75
Chapter 3	Airborne Geophysical Survey	77
3-1	Objective and Method of AEM ·····	77
32	Survey Specifications and Equipment	79
3-3	Data Acquisition	83
3-4	Data Processing	84
3-5	Result and Interpretation	89
3-6	Discussion	107
Chapter 4	Compilation and Interpretation	114

Part III Conclusion and Recommendation

Chapter 1	Conclusion	117
Chapter 2	Recommendation for the Phase III	117
Bibliograph	y	119
Appendices		

-

.

i)

Figures		Page
Fig. I - 1 - 1	Index map of the Otavi Mountain Land Area	
Fig. I - 1 - 2	Model for ore deposits and aeromagnetic anomalies	
	based upon the Phase I survey	3
Fig. [- 1 - 3	Compilation and interpretation map of the Phase I survey	5
Fig. I • 1 - 4	Flow chart of the Phase II survey	8
Fig. I - 3 - 1	Regional geologic map of the Otavi Mountain Land Area	13
Fig. II - 1 - 1	Location of the drilling survey	
	and the airborne geophysical survey	20
Fig. II - 1 - 2	Geological logs for drill holes	31
(1)~(13)		
Fig. 11 - 1 - 3	Lead isotopes for known ore deposits	53
Fig. 11 - 1 - 4	Geologic cross section of drill holes	57
Fig. II - 1 - 5	Sketch of mineralised cores	59
Fig. II - 2 - 1	Magnetic susceptibility distribution of drill holes	71
Fig. II - 2 - 2	Core sample resistivity v.s. IP value	76
Fig. II - 3 - 1	Concept of EM induction	78
Fig. II - 3 - 2	Diagram of phase relationship	78
Fig. II - 3 - 3	Flight path map •••••••••••••••••••••••••••••••••••	
Fig. II - 3 - 4	AEM instruments in use ·····	82
Fig. II - 3 - 5	Phasor diagram	88
Fig. II - 3 - 6	Flow chart of the electromagnetic survey	90
Fig. II - 3 - 7	Resistivity map for 56000Hz ·····	93
Fig. II - 3 - 8	Resistivity map for 7200Hz ·····	95
Fig. II - 3 - 9	Resistivity map for 900Hz	97
Fig. II - 3 - 10	Electromagnetic image processing map for 56000Hz	99
Fig. II - 3 - 11	Electromagnetic image processing map for 7200Hz	101
Fig. II - 3 - 12	Electromagnetic image processing map for 900Hz	103
Fig. П - 3 - 13	Resistivity cross sections	05
Fig. II - 4 - 1	Compilation and interpretation map	11
Fig. II - 4 - 2	Model for geological setting, ore deposits	
	and airborne geophysical anomalies	13

: .

2

Tables		Page
Table I - 1 - 1	Specifications of the Survey	9
Table I - 3 - 1	Stratigraphic Succession in the Otavi Mountain Land Area	14
Table II - 1 - 1	Coordinates of the Drill Holes	19
Table II - 1 - 2	Specifications of Equipment for Drilling	21
Table П - 1 - 3	Amount of Used Diamond Bit and Reamer	• 22
Table II - 1 - 4	Amount of Consumables	• 23
Table II - 1 - 5	Time Schedule of Drilling	25
Table II - 1 - 6	Summary of Drilling Work	26
(1)~(4)		
Table II - 1 - 7	Microscopic Identification of Minerals in Thin Section	• 48
Table II - 1 - 8	Microscopic Identification of Minerals in Polished Section	• 49
Table II - 1 - 9	Result of X-ray Diffractometry	• 50
Table II - 1 - 10	Result of Chemical Assays	• 51
Table II - 1 - 11	Result of Lead Isotope Analysis	• 52
Table H - 2 - 1	Equipment for Measurement of Geophysical Properties	• 60
Table II - 2 - 2	Result of Geophysical Test of Core Samples	• 62
Table II - 2 - 3	Magnetic Susceptibility of Drill Cores	· 63
(1)~(6)		
Table II - 2 - 4	Acquired Values of Resistivity and IP of Samples	· 69
Table II - 2 - 5	Mean Values of Magnetic Susceptibility by Drill Hole	
	and Lithofacies	70
Table П - 2 - 6	Mean Values of Resistivity and IP values by Lithofacies	70
Table II - 2 - 7	Electric Conductivity of Ground Water	72
Table II - 3 - 1	Boundary Points of the Survey Area	80
Table II - 3 - 2	Specifications of Equipment	
	for Airborne Electromagnetic Survey	82
Table II - 3 - 3	Production Summary of Airborne Electromagnetic Survey	85
	,	

ŧ

ł

.....

Appendices

- A 1 Photographs of the Survey
- A 2 Microphotographs of Thin Section
- A 3 Microphotographs of Polished Section

Part I General Remarks

!

Part I General Remarks

Chapter 1 Introduction

(

I-1-1. Background and Objective of the Survey

This survey is part of a three year-mineral exploration project which started in 1995. The survey is conducted in the Otavi Mountainland Area of Namibia, which is one of the most promising base metal provinces of the country. Three operating mines; Tsumeb, Kombat and the new Khusib Springs and several dormant mines as well as many mineral deposits are situated in this area. The area has been explored by several companies in the past. Exploration mainly focused on the areas of outcrop where most of the deposits were located. However, exploration in areas overlain by calcrete and Kalahari sediments was minimal due to the difficulties in assessing the underlying geology. The depletion of ore reserves in the operating mines and the favourable geological setting of this area has necessitated the urgent appraisal of mineral potential and exploration in the eastern extension of the Otavi Mountain Land. The Government of Namibia, through the Ministry of Mines and Energy has thus requested the Japanese Government to conduct a proper exploration survey in this area by means of bilateral technical aid.

Initially the Japanese government embarked on the survey by conducting a high resolution geophysical survey as well as research and compilation of the previous exploration information. This phase will be followed up by more detailed surveys and if warranted, drilling.

I-1-2. Conclusion of Phase I and Recommendation for Phase II

I-1-2-1. Conclusion of Phase I

The survey of Phase I included research and compilation of the existing data, geological survey and airborne geophysical survey. The conclusion of the survey is summarized below.

1. Some features of the known ore deposits and mineralisation of the survey area are similar to those of so called Mississippi Valley-type ore deposits.

2. The ore deposits are hosted in the Karst related sediments which filled caves formed in the carbonate rocks of Otavi Group of upper Proterozoic Damara sequence.

3. The karst related sediments are principally permeable areneous sediment unconformably lying in the carbonate rock and these karsts result in conduits for deeper mineralized fluids.

4. The Damara sequence of the survey area was subject to several types of deformation to form multiple synchronia and anticlinora with an east trending fold axis. Deformation of the primary fold axis has occurred under an east-west compressional stress during later deformation.

5. The fold structures and geometry of the basement complex are believed to be controlled by NE-SW or ENE-WSW trending basement faults. These deep-seated faults and fracture system are important

conduits for mineralized fluids from the depth.

6. Magnetic lineaments and which may represent possible seated faults and folding structure were interpreted from an area east of Grootfontein which is mainly calcrete covered.

7. The portions in the east and north of the survey area are underlain by the basement complex and thick carbonates of the Damara sequence. Fold structures of the Mulden and Otavi Group were delineated by a faint difference in magnetic intensity between the two Groups.

8. Radiometric lineaments that coincide with magnetic lineament were also identified. These are interpreted as lineaments originating from the depth.

()

1

 $\left(\right)$

9. It seems that the known ore deposits are primarily controlled by NE-SW trending lineament and fracture systems that occur west of Tsumeb and Kombat and extend through Harasib, Border, Khusib Springs to Abenab. The intersection of the primary with various secondary trends of fracture system related to folding also appears to be of importance. Of particular interest is that Tsumeb and Kombat are localized at the distorted primary

synclinorium where NE-SW trending faults or fractures are duplicated.

10. Based upon the aeromagnetic and aeroradiometric anomaly maps from the survey, favourable areas of mineral potential were selected.

A model for geological setting and ore deposits as of Phase I was prepared (Fig.I-1-2).

I-1-2-2. Recommendation for the Phase II

Based upon the result from the survey, followed by total interpretation and discussion, the following exploration programme for Phase II was recommended.

(1) Survey area (Fig.I-1-3)

The location of the area is represented by the alphabetical letter combined with the number which are given to each section five by five minutes in the flown area.

- (1) G3 central area : Aregoas 282 Farm
- (2) E3/E4 border area : Cleveland 706 Farm
- (3) B3 northeast area : Aarhus 659 and Accra 660
- (4) H3 north area : Guinab 277
- (5) D4 north area : Cadix 678 and Christiana 705
- (6) G2 south area : Vogelsang 284
- (7) D3 central area : Demerara 699

(2) Method

A massive copper-lead-zinc sulphide ore deposit is targeted. It may be of a steeply emplaced pipe like-geometry at a depth of 50 to 100 metres. Resistivity methods, using the resistivity contrast between ore and host rock is most effective for the search of such ore deposit. Taking the surface condition into consideration, Time Domain Electromagnetic Method was considered to be the most

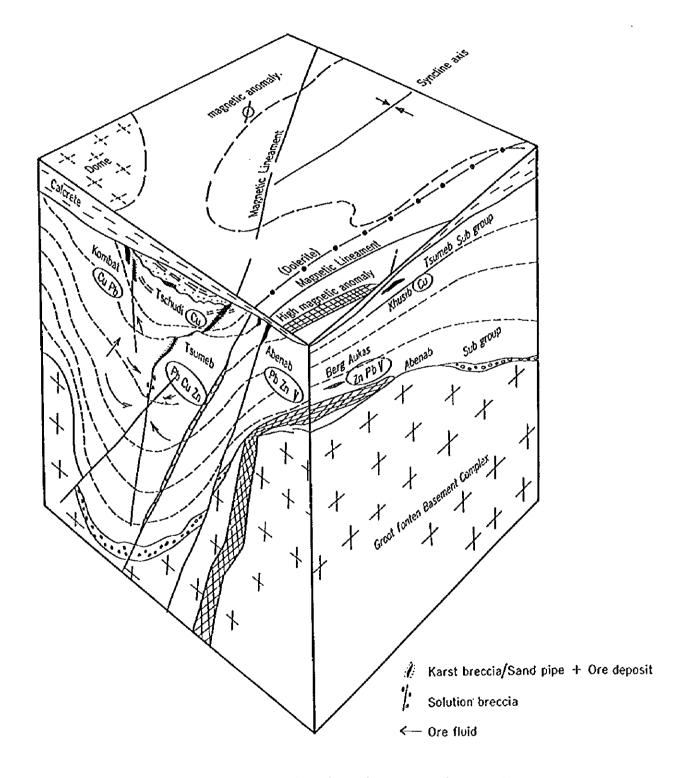


Fig. I - 1 - 2 Model for ore deposits and aeromagnetic anomalies

)

! .

;)

()

()

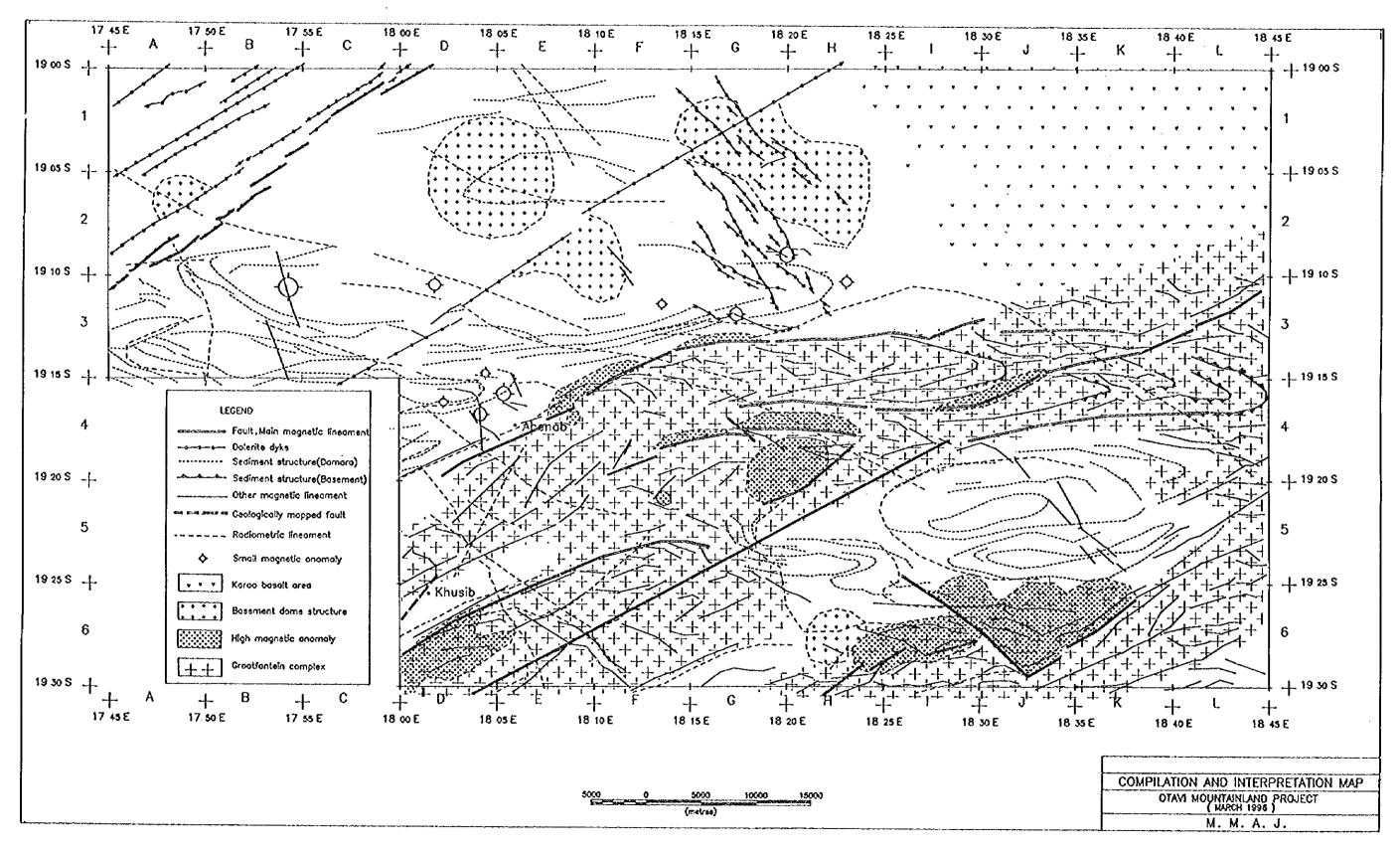


Fig. I - 1 - 3 Compilation and interpretation map of the Phase I survey

favourable.

÷

į

Coil disposition is of in loop capable of both vertical and horizontal surveys with loop size of 100 meters to 200 meters square for grid sampling.

Subsequent drilling exploration is also recommended when the result of the ground geophysical survey reveals favourable.

1-1-3. Summary of the Phase II

I-1-3-1. Survey area

The survey area is illustrated in Fig.I-1-1.

I-1-3-2. Objective of the survey

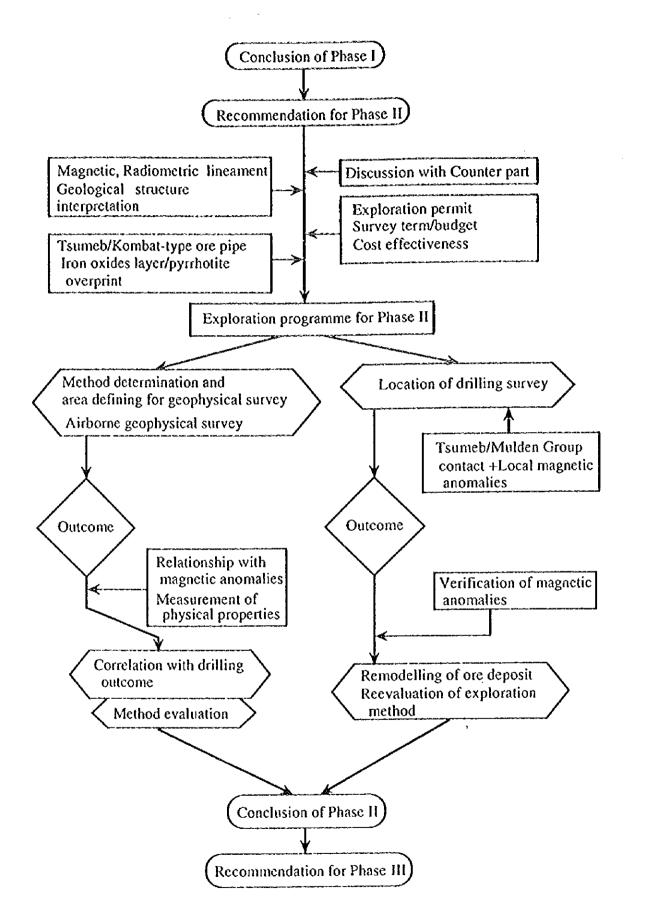
The objectives of the survey of Phase II is to evaluate the ore potential by means of drilling at sites which were deemed to be favourable for ore formation based on the Phase I survey.

At the same time as the drilling programme an air-borne electromagnetic survey was conducted over the favourable areas selected from the early aeromagnetic survey of Phase I. The aim of the survey is to define some low resistivity zones which may imply the sulphide mineralisation.

I-1-3-3. Survey methods

Flow chart of the Phase II survey is shown in Fig.I-1-4.

(1) Airborne geophysical survey


As suggested in the Phase I report, initially ground TDEM (Time Domain Electromagnetic) survey was planned for the seven sections selected. The cost effectiveness and efficiency were taken into account and the programme was modified to an airborne electromagnetic survey. The data acquisition and processing were contracted by the local contractor; Geodass. The preliminary resistivity maps were used for ground checking. The airborne electromagnetic survey was conducted using a helicopter parallel to the aeromagnetic survey.

(2) Drilling survey

The Phase I report also recommended drilling subsequent to a ground geophysical survey. However, the drilling was programmed on the three sections out of the seven sections as mentioned above taking the inferred geological structure, previous exploration by private mining houses and current situation of mineral licenses into consideration. Four holes were recommended targeting the subsurface geological sequences and the sources of the aeromagnetic anomalies.

The drilling was contracted by South Africa based contractor who conducted diamond drilling.

The details of the surveys are illustrated in Table I-1-1(1). The Specifications of the Survey is shown in Table I-1-1(2).

0

1

Fig. I - 1 - 4 Flow chart of the Phase II survey

Items	Deta	iled Specifica	tions and Amo	unt
Airborne Geophysical Survey	Frequency domain electromagnetic Coverage: 904 km ² Total line kilo: 4,895 km			
Drilling Survey	Hole No.	Depth	Inclination	Direction
	MJNM-1	300 m	-90°	
	MJNM-2	300 m	-90°	
	MJNM-3	150 m	-90°	
	MJNM-4	150 m	-90°	
Total depth 900 m				

 Table I-1-1
 Specifications of the Survey(1)

Table I-1-1 Specifications of the Survey(2)

Items of Laboratory Test	Number
(1) Microscopic Identification of Thin Section	10 samples
(2) Microscopic Identification of Polished Section	5 samples
(3) X-ray Diffractometry	5 samples
(4) Chemical Assay of Ore	30 samples
(Au, Ag, Cu, Pb, Zn, Cd, Ga ,V)	
(5) Analysis of Lead Isotope	7 samples
(6) Measurement of Geophysical Property	40 samples
(Magnetic Susceptibility, Resistivity, and	
Chargeability)	

I-1-3-4. Members of the Survey

:

į 1

The following members were organized for the survey team, planning of the project and negotiations between the two countries.

Planing and Negotiation:				
Japanese Representative	Namibian Representative			
Mr.Kenji Nakamura	Dr.Gabriele I.C. Schneider			
(Metal Mining Agency of Japan)	(Director: Geological Survey of Namibia)			
Mr. Haruhisa Morozumi	Mr. Herbert Roesener			
(Metal Mining Agency of Japan)	(Chief Geologist			
	Geological Survey of Namibia)			
Mr.Katsuhisa Ohno	Mr. Volker Petzel			
(Metal Mining Agency of Japan)	(Chief Geologist			
	Geological Survey of Namibia)			

Survey:	and a second State Sector in the second of the second state of the second state of the second state of the
Japanese Member	Namibian Member
Mr. Tetsuo Hatasaki	Mr. Herbert Roesener
Chief of the mission	(Chief Geologist
Organization of	Geological Survey of Namibia)
Airborne Geophysical Survey and	
Drilling Survey	
(Dowa Engineering Co., Ltd.)	
Mr. Yoshiaki Karino	
Airborne Geophysical Survey	
(Dowa Engineering Co., Ltd.)	

I-1-3-5. Terms of the Survey

The survey was conducted as the following programme.

Surrey mas contained a	0. 0				
Total Period Overseas:	From 26 August	to 28 November 1996			
Drilling Survey:	From 31 August	to 24 November 1996			
Airborne Geophysical S	urvey:				
	From 19 September	to 16 October 1996			
Preliminary Data Analysis and Measurement of Geophysical Properties:					
	From 28 October	to 24 November 1996			

İ

.

(]

Chapter 2 Physical Features

I-2-1. Location and Access

}

The survey area is located in the northeast of the republic of Namibia centered by Tsumeb and Grootfontein extending from 19° 08' 00" to 19° 17' 00" south latitude and from 17° 45' 00" to 18° 24' 00" east longitude.

The area is situated about 500 km north of Windhoek and is accessible by road (B1) from Windhoek via Otjiwarongo to Tsumeb. Air Namibia's is also flying from the Eros airport in Windhoek to Tsumeb and Grootfontein.

I-2-2. Topography and Drainage System

Namibia covers 820,000 square kilometers, more than twice the size of Japan. It is bordered by Angola, Zambia, South Africa, Botswana and the Atlantic Ocean.

The land is geographically divided into three zones; the forest zone in the northern part, the savanna zone of inland plateau, and the desert zone along the Atlantic Ocean. While the forest zone and the desert zone are of flat relief, the inland plateau is of high relief and mountainous.

The Otavi Mountainland is situated in the savanna zone. The geomorphology of the survey area is controlled by the underlying geology. The area underlain by basement complex shows gentle relief, whilst the terrain consisting of the overlying Damara carbonate rocks shows considerably rigid topography particularly at the axial cores of anticlinorium. The eastern part of the survey area is flat and covered by calcrete and recent sediments. The flat areas range in height between 1,200 metres and 1,600 metres. The highest peak in the mountainland is 2,155 metres above the sea level. The southwest corner of the survey area is the highest and flattens towards the north and east. No well developed fluvial systems are present in the survey area.

I-2-3. Climate and Vegetation

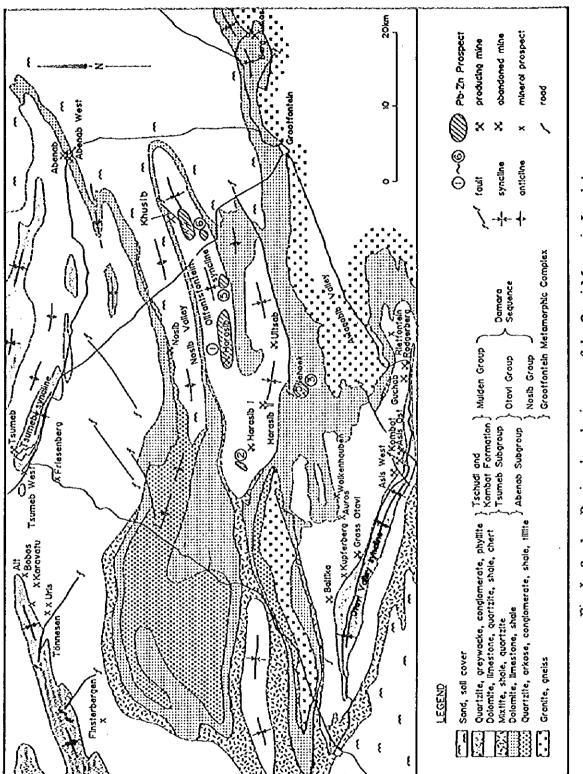
The climate of the Namibia is between semi-arid and subtropical. The highest mean temperature for Windhoek is 23 deg. centigrade in November and the lowest mean temperature is 17 deg. centigrade in July. The annual average rainfall is 600 milimetres in the northern forest zone, 20 milimetres in the desert zone, and 350 milimetres in the inland plateau. The wet season is in summer (October to April) with rare winter rains occurring in the extreme south of the country. The temperatures at Tsumeb are 2 to 3 deg. centigrade higher than in Windhoek while the annual average rainfall for Tsumeb is 572 milimetres. The vegetation in Namibia is also variable. The forest zone is covered with broad-leaved trees. The inland plateau is spotted with stunted acacias while the desert zone is covered by scattered shrub and lichen.

Chapter 3 General Geology

Regional stratigraphy is presented by Geological Survey of Namibia(1982) and the Geological Society of South Africa(1983). There were five main periods of lithogenic activity and these are as follows.

1.9

()


ę,

Tertiary to Recent (<65 Ma) Carboniferous to lower Cretaceous (345 to 120 Ma) Namibian (1,000 to 570 Ma) upper Mokolian (1,800 to 1,000 Ma) Vaalian to lower Mokolian (2,100 to 1,800 Ma)

The oldest rocks occur within metamorphic complexes of Vaalian (2620 to 2070 million years) to early Mokolian age (Mokolian: 2070 to 1080 million years). These form a basement to younger sedimentary and volcanic successions, the oldest of which are of mid-Mokolian age and of limited regional extent. The next major phase of activity involved the formation of the Rehoboth-Sinclair magmatic arc and the Namaqua Metamorphic Complex during the late Mokolian. The Damaran orogenic phase is the third main event; it started with intracontinental rifling and sedimentation about 900 million years ago and lasted approximately 450 million years. Extensive peneplanation preceded the fourth phase which was the deposition of the Karoo Sequence between the Carboniferous and early Cretaceous. Cretaceous to Recent deposits cover many of the older stratigraphic units. Lower cretaceous to tertiary sediments and minor volcanics which are probably underlain by Karoo Sequence rocks form a thick offshore succession.

The distribution of pre-Tertiary rocks divides the country roughly into three regions. the Damara Sequence covers most of the northern half of the country. The southern half is divided along an approximate north-south line into a western third, underlain by rocks older than about 600 million years, and an eastern two-thirds underlain largely by the Nama Group and Karoo Sequence: older rocks are exposed in the far south of the latter portion. Tertiary deposits of the Kalahari Sequence cover large areas in the eastern and northern parts of the country. Much of the coastal region is covered by sand seas, deflation lag deposits and fluviatile sediments of the Namib Desert.

Mineralisation in the survey area includes two broad types: the Tsumeb-type and the Berg-Aukas type. The Tsumeb type is characterised by complex sulphide ores containing Cu, Pb, Zn, Ag, As, Ge, Cd and Ga. The ore minerals occur in several loci: pipes, solution breccias, shear zones, dilation fractures etc.. These ore bodies are not stratabound and are generally confined to the upper Tsumeb Subgroup and appear to be related to the disconformity between the Tsumeb Subgroup and the Mulden Group.

The Berg Aukas type is similar to the Pb-rich Mississippi Valley type deposits. The sulphide ore contains Pb, Zn and V with little or no Cu. Enrichment of Ag, Ge, Ga and Cd is less than those in the Tsumeb type ore deposits. The Berg Aukas type deposits are generally confined to the Abenab Subgroup and the middle-lower part of the Tsumeb Subgroup. The mineralisation occurs in breccia bodies and may be stratabound or discordant. Brecciation and karst structures are important in the localisation of the ore bodies.

Sequence	Group	Subgroup	Formation	Informat Lithozone	Lithology	Average thickness (m)
	Mulden		Kombat and Tschudi		Kombat Formation: state; sub-arkose and pebbly sandstone near base Tschudi Formation: feldspathic sandstone, sub- greywacke; argilhte and conglomerate interbeds in basal portion	> 700
	·		—→ Discon	ormity		· · · · · · · · · · · · · · · · · · ·
				TS	Dolomite, bedded light to medium grey; oolitic chert and stromatolite layers near top	240
			Hüttenberg	Τ7	Dolomite, bedded dark grey; limestone, shale and chert interbeds	300
				T6	Dolomite, bedded light grey; abundant chert: stromatolite interbeds in lower part	300
		Tsumeb	Elandshoek	T5	Dotomite, bedded and massive light grey	1 200
				T4	Dolomite, massive light grey	
Damara	Otavi		Maieberg	T3	Dolomite, thinly bedded light and dark grey	150
				T2	Limestone, bedded light and dark grey	700
			Chuos	ŢI	Tillite, quartzite, shale, minor dolomite and limestone	200
			Auros	ormity ——	Dolomite, bedded and massive light to medium grey; limestone, marl, shale, oolite and stromatolite interbeds	350
		Abenab	Gauss		Dolomite, massive light to dark grey; local oblite and stromatolite interbeds	750
			Berg Aukas — Discon	armity	Dolomite, laminated and massive light and datk grey; black limestone, shale	550
			Varianto		Quartzite, conglomerate, arkosic mixtite, dolomite, ferruginous shale	
	Nosib		Askevold		Phyllitic agglomerate, tuff: epidosite	750
			Nabis — Unconf		Feldspathic quartzite, arkose, conglomerate	
Grootfontein	Basement C	omplex	Uncont	onny	Granite, gneiss, mafic schist	

 Table I - 3 - 1
 Stratigraphic Succession in the Otavi Mountain Land Area

-14-

()

1

i

Chapter 4 Compilation and Interpretation

(

ċ

; `;

I-4-1. Characteristics and Structural Control of Mineralisation

Comprehensive interpretation and discussion of the result of Phase I survey together with that of Phase II survey produced Fig.II-4-1.

The low to medium grade lead and zinc mineralisation intersected by the Phase II drilling programme showed no characteristic potential structures (such as karst breccia and dissolution breccia) as are associated with the Tsumeb-Kombat type ore deposits. The sulphide assemblage of the mineralisation also differs from the Tsumeb Kombat type. Microscopic identification revealed that the host rock is mostly grainstone and had been subjected to dolomitization, followed by silicification which is associated with the sulphide mineralisation. The mineralisation intersected is thus considered to be of classic Mississippi Valley-type deposits.

Previous literature reported that potential MVT mineralisation is hosted in the dolomite of the Gauss Formation, Abenab Subgroup; Huttenberg Formation, of the Tsumeb Subgroup; and in particular in the grainite of the Elandshoek Formation(T5) and the Huttenberg Formation(T6). The host rock to the mineralisation intersected in MJNM-1 is correlated to the T6.

I-4-2. Relationship between Resistivity Anomalies of AEM Survey, Geological Structure and Mineralisation

The resistivity maps produced from the airborne electromagnetic survey are conformable to the existing geological maps. The Phase II survey area is principally underlain by calcrete, the Mulden group, dolomite of the Tsumeb subgroup or Abenab subgroup and the basement complex. Shales and aquifers within calcrete form a low resistivity zone and massive dolomite and the basement form the high resistivity zones. In areas covered by calcrete, resistivity images show that the shale interbedded with the dolomite is an important marker horizon that can be used to define geological structures. The local low resistivity anomaly zones cross cutting the geological trend are significant for exploration as these zones may be faults and fracture zones associated with massive sulphide mineralisation.

Physical properties measured from the core, indicate that a low grade lead and zinc mineralisation as intersected in borehole MJNM-1 of Phase II is unlikely to be reflected as a low resistivity anomaly. If the mineralisation is of Tsumeb or Kombat type, which contains chalcocite and chalcopyrite, the mineralisation could well be reflected as a low resistivity anomaly. Tests on the drill core suggests that the origin of the isolated magnetic anomalies, on which Phase II target selection was based, stems from iron oxides in a red argillaceous zone of dolomite shortly below the unconformity. This suggest that isolated magnetic anomalies may not necessarily be effective for the exploration of Tsumeb-Kombat-type deposit.

-15--

I-4-3. Possible Ore Potential

The exploration targets for this survey were classic Mississippi Valley Type as well as the massive sulphide type deposits. The Phase II drilling survey confirmed this potential but these deposit types are not expected to respond to geophysical surveys due to the thick calcrete overburden. The helicopter borne electromagnetic survey delineated the subsurface Mulden group, which in turn indicates potential for Tsumeb/Kombat-type massive sulphide ore deposits. Further exploration is recommended placing emphasis upon the aeromagnetic and low resistivity anomaly zones which cross cut the geological trend of the Mulden group.

÷

()

Chapter 5 Conclusion and Recommendation

I-5-1. Conclusion

t i

÷

. .

The Phase II survey included an airborne geophysical survey (airborne electromagnetic survey) and a drilling programme with measurements of geophysical properties on the drill core. The conclusions of the programme are discussed in detail below:

The targets based on aeromagnetic anomalies delineated during Phase I were drilled. Four drill holes were sunk. One hole MJNM-1 intersected disseminated low grade lead and zinc mineralisation.
 The mineralisation showed average grade of 0.23% lead and 0.38% zinc over 9.16m.

Within 9.16 metre, the mineralised portions showing more than 1 percent concentration, are as follows.

111.58m-111.69m(0.11m)	Pb=1.45%	
112.30m-112.62m(0.32m)	Pb=4.52%	Zn=1.58%
245.75m-246.25m(0.50m)		Zn=1.76%
246.25m-246.65m(0.40m)		Zn=2.28%

3. The occurrences under microscope and chemical assays indicate that the mineralisation formed in a similar way to Mississippi Valley-type ore deposits.

4. No specific relationship between the mineralisation and aeromagnetic anomalies is recognized.

5. Geophysical properties of core samples suggested that the mineral occurrence of this type would give very poor resistivity response for electromagnetic signals.

6. The electromagnetic survey by frequency method produced three resistivity plan maps of three depths corresponding to three frequencies. The maps would explain the lithological contrast and general trend of geology. Some local low resistivity anomaly zones within a high resistivity zone traversing the geological trend are important for mineral potential of massive sulphide ore pipe in particular, when overlapped with aeromagnetic lineaments.

7. The favourable area thus delineated for further exploration programme of Phase III was encompassed. The area is situated to the west of MJNM-1 and extends 8 kilometre east to west by 5 kilometre north to south including a part of Guinab 277, Aris 283 and Vogelsang 284.

I-5-2. Recommendation for the Phase III

Based upon the result of the survey and subsequent discussion and interpretation of all the data available, the following exploration programme for Phase III is proposed.

(1) Survey area

The area is illustrated in Fig.II-4-1. It is located in the east end of Phase II survey area and extends within Guinab 277, Aris 283 and Volgelsang 284 encompassing 8 kilometres east to west and 5 kilometres north to south.

(2) Exploration method

Drilling survey is proposed following to the Phase II survey aiming at the subsurface evaluation of airborne electromagnetic anomalies. Necessary depth of holes is estimated at 300 metres each and the calcrete underlying first 80 metres from the surface has no potential for ore deposit and therefore coring is not needed.

.

.

1]

()

Part II Details of the Survey

;

Part II Details of the Survey

Chapter 1 Drilling Survey

(

ŧ

II-1-1. Outline of the Survey

The location of the drifling survey is illustrated in Fig.II-1-1. The drifling was assigned to the local contractor based at the Republic of South Africa. The logging was recorded to the logging sheets at a scale of 1:200. The mineralised portions were taken at an appropriate interval for chemical assays. The thin sections and polished sections of typical rock facies and mineralisation were prepared for microscopic test. The altered or argillaceous parts were collected for X-ray diffractometry. Some of the mineralised portion with lead and zinc were analyzed for lead isotopes. All the cores were marked showing up side direction and packed in steel made core boxes and recorded on the colour photos. The core boxes were housed in the core depository of GSN.

The coordinates of the drill holes determined by GPS are shown in Table II-1-1.

				Lat	itude		Long	tude
	Hole No.	Farm	o	,	"	0	1	"
l	MJNM-1	Guinab 277	19	10	26.530S	18	23	00.540E
2	MJNM-2	Aris 283	19	12	01.570S	18	17	19.800E
3	MJNM-3	Christiana 705	19	16	15.810S	18	02	30.420E
4	MJNM-4	Cadix 678	19	14	36.110S	18	04	27.520E

Table II - 1 - 1 Coordinates of the Drill Holes

II-1-2. Method and Equipment

The equipment and the consumables necessary for drilling were provided by GEOMECHANICS CC. The normal method was applied to the holes drilled with SECO12 rig and the wire line method with L-38 rig. Cementing and installation of the casing pipes were needed where the rock condition was not favourable. The important equipment and the consumables are listed in Table II-1-2 and Table II-1-3.

II-1-3. Drilling Work

(1) Transportation and Access Road

The farm roads were used for transportation to the nearest point to drilling sites and thereafter, the bush was slashed for a new road to the site. In the case of MJNM-3, three days with 6 workers were

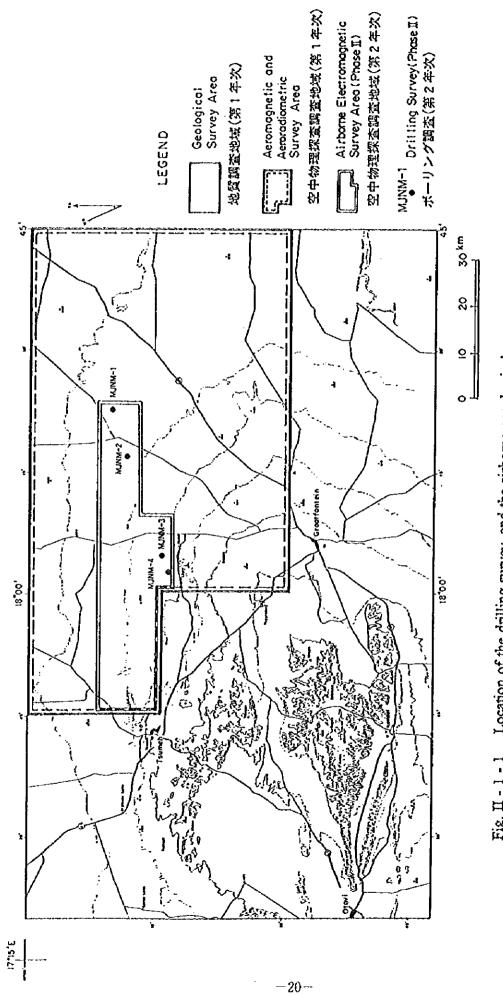


Fig. II - 1 - 1 Location of the drilling survey and the airbome geophysical survey

į

ţ

Ý,

Table II - 1 - 2 Specifications of Equipment for Drilling

;

()

Item	Model	Specifications	Amount	Remark
Drilling Rig	SECO12	Capacity : 350 m	1	
		Transmission: 8 Speed-Ford		
		Diesel Engine : Type-Deutz F5L912		
		Air Cooled		
		86 HP / 2300 R.P.M.		
	L-38	Capacity: 800 m	1	
	(Long Year)	Transmission: 8 Speed-Ford		
		Diesel Engine : Type-2Cyl Hatz F4L912		
		Air Cooled		
		68 HP / 2300 R.P.M.		
Pump		Type : Bean R35B	1	
		Max.Pressure : 50 kg/cm2		
		Max rate : 140 litres/min		
		Diesel Engine : 2Cy Hatz Z79Q		
		20 HP / 3000 R.P.M.		
		Type : Bean R20B	1	
		Max.Pressure : 46 kg/cm2		
		Max rate : 76 litres/min		
		Diesel Engine : Yanmar L100		
		10 HP / 1800 R.P.M.		
Rođ	NQ	3.00m / 70.00mm ¢ x60.3mm ¢	150	
	NQ	6,00m / 70.00mm ¢ x60,3mm ¢	36	

•

Table II - 1 - 3 Amount of Used Diamond Bit and Reamer

.

Item	Type	Specifications	Amount (MJNM-1)	Amount (MJNM-2)	Amount (MJNM-3)	Amount (MJNM-4)	Total
Diamond Bit							
	TNW	75.31mm & ×60.81mm ¢		2		7	16
	NWD4	75.44mm $\phi \times 54.74$ mm ϕ	2				S
	0 N	75.31mm & ×47.63mm &			4	Ċ	600
Reamer							
	TNW	75.69mm ¢	4	F		2	7
	NWD4	75.69mm ¢				Ĩ	2
	ŊQ	75.69mm ¢			ŝ	3	7
Casing Shoe Bit	(Composite)						
	IMP	92mm & X77mm		1		-	4
		outer diametre X inner diameter	otor				

outer diametre × inner diameter

-22-

1

:)

(j)

.

:

Item	Specifications	Unit	Amount	Amount	Amount	Amount	Total
			(I-MNRM)	(MJNM-2)	(MJNM-3)	(MJNM-4)	
Outer Tube (TNW)	73.0mm × 60.3mm × 3.0m	No	I			P	3
Outer Tube (NQ)	73.0mm×60.3mm×3.0m	No			2		e
Inner Tube (TNW)	64.0mm×60.5mm×3.0m	No	1				
Inner Tube (NQ)	55.6mm×50.0mm×3.0m	No	1	L.			
Inner Tube Head	TNW	Set			F-4	1	2
Inner Tube Head	DN	Set		••••			7
Overshot	TC(Vertical)	No	F				6
Overshot	NX(Vertical)	No No			1		F 1
Wire for Wireline	6mm & ×300m	Role		1			
Casing Pipe (NX)	89.1mm×80.8mm×3.0m	X	13.5	17	ŝ	60	
Casing Pipe (NW)	$89.1 \text{ mm} \times 76.4 \text{ mm} \times 3.0 \text{ m}$	0N			1	1	
Core Lifter	ÖN	oN.	13	12		5	~~
Core Lifter	TNW	No	10		15	15	
Core Lifter Case	QN	oN	9	8			
Core Lifter Case	TNW	°Z	5		S	7	
Diesel Fuel		Litre	4,000	4,300	2,200	3,000	13,500
Petrol		Litre	460	400	80	380	1,320
Turbine Oil		Litre	80	80	50	20	200
Cement		Kg	800	200	200	800	2,000
Bentonite		Kg	160			240	400

.

Table II - 1 - 4 Amount of Consumables

; J

Ę, i

needed for 3.6 kilometre clearing.

(2) Setting

One 10 ton truck and three 4 ton trucks were used for transportation of the drilling equipment from Johannesburg to the drilling site. The crew camped near the site.

ţ

(3) Working shift

The drilling was undertaken on the one or two shifts a day with ten hours per shift.

(4) Interhole Move and Demobilization

The trucks were used for interhole move and demobilization after completion of the whole work as the mobilisation. The ground damage was restored and the hole mouths were cemented.

(5) Drilling and Coring

The core size is 60.8 m/m(TNW) near the surface and is 47.6 m/m(NQ) or 54.7m/m(MD4) in the deeper than that. In MJNM-4, percussion drilling replaced the core drilling between 36.4 m and 60.0m because of the cavities, therefore the rock chip was used for geological logging. The whole schedule of drilling is shown in Table II-1-4 and The summary of drilling of each hole is shown in Table II-1-5 through Table II-1-8. The progress of the holes was as follows.

MJNM-1

For the formation from the surface down to a depth of 166.75 m the normal method was used and thereafter down to 300m deep the wire line method replaced In the calcrete formation from the surface to a depth of 85.40 m the drilling efficiency was elevated to 14 m/shift in average, 24 m/shift in maximum though, since the formation changed to dolomite it was fluctuated from 7 to 8 m/shift in average. The water was transported from the farmer's well over 2.5 kilometres by a 4 ton truck on which two bousers of 2.5 m3 each were mounted. Casing pipes were installed from the surface down to a depth of 13.5 m. The wire line method sustained an average efficiency of 12.7 m/shift.

MJNM-2

The hole was drilled only by the wire line method. Shortly after the formation changed to dolomite at a depth of 61 m, jamming caused by the wall collapse and trouble at the core barrel followed by a break for installation of a pump, resulted in the significant decrease of efficiency of drilling. It was revealed that as the formation dips steeply in the vertical hole, even a thin bed of chert caused an unfavourable efficiency of drilling which attained to less than 7.5 m/shift throughout the hole. The water was available from the well and the reservoir for cattle which are just beside the hole. But because the water was pumped by means of wind mill in the daytime, it ran short at night, therefore a new pump was installed to clear the problem.

Hole No.	September	October	November	Remarks
		6	04	- Drilling
		SECO	1 -38)
M J NM – 2		01 061 11 30	*	/Disjointing
		1 7-38 1 7-38 1 1 1		Waiting
M J NM – 3	5			Restoration
M J NM - 4	19 24	11-12 22	01 07 12	
	1.38	Percussion SEC012	~~~	

. Table II - 1 - 5 Time Schedule of Drilling

()

. .

Ę

-25-

		<u></u>	Pe	erio	d of Drillir	ng			
							Details of th	e Period	·
Working Item							Working		Numbers o
		Pc	riod			Total Days	days	Offdays	Person da
Set up	1996/09	0/18~09/19	9, 10/20~10/	21	 _	2	2	0	12
Drilling	1996/09	0/20~09/24	4, 10/22~11/	12	. <u> </u>	38	24	14	182
Tear Down	1996/09	0/30, 11/13·	~11/14			3	3	0.0	18
مرور و	 	• • • • • • • • • • • • • • • • • • •				43	29	14	212
		Total Dep	oth			Core Rec	overy Rate	per 100 m	eters
Planned Depth		150.00 m	Soi1		<u>3.0 m</u>		Core	Recovery	Cumulativ
						Depth(m)	length	Rate	Rate
Additional depth		0.00 m	Core Length		111.80 m	$0.00 \sim 101.40$	64.10 m	63.21 %	63.21 9
Total Inspected De	opth	150.60 m	Recovery Ra	te	74.2 %	101.40 ~ 150.60	47.70 m	96.95 %	74.24 9
	Break	Down of th	e Working T	ime			m	%	
Net Drilliog		198,0 h	45.9 %	6	40.0 %				
Rod Raising and I	nsert	90,0 h	20.9 %	, D	18.2 %				
Inner Tube Operat	ion	16.0 h	3.7 %		3.2 %		Drilling Eff	eciency	
Contingent		5.0	1.2		1.0	Total Depth/Total	Days	3.50	m/day
Recovering from 1	rouble	122.0 h	28.3 %	,	24.6 %	Total Depth/Work	ing Days	5.19	m/day
Others		0.0	0.0		0.0	Total Depth/			
Subtotal		431.0 h	100.0 %	;	87.1 %	Drilling Day	S	3.96	m/day
	Inter	rhole Movi	ng			Total Depth/			
Set Up		40.0 h	~		8.1 %	Net Drilling	Days	6.28	m/day
Tear Down		24.0 h			4.8 %	Total Depth/Total	Person•day	0.71	m/P•day
Grandtotal		495.0 h			100.0 %	Net Drilling Perso	n•day/		·
		Casiog				Total D	epth	1.21	P•day/m
		D (1 100	D						
Casing Diamtre an	đ	B/Ax100	Recovered		-				
Cased Length		(%)	<u> </u>	(%		· ·			
86mm	60.0	39.8			0.0	Remarks			
		l				A:Total Depth			
			<u></u>			B:Cased Depth			

Table II - 1 - 6 (1) Summary of Drilling Work [MJNM-1]

-26-

()

;

:)

			Per	riod	of Dritti	ng			
							Details of th	ne Period	
Working Item							Working		Numbers o
		Pe	riod			Total Days	days	Off days	Person•day
Set up	1996/10	0/06~10/0	7, 11/03			4	3	0	21
Drilling	1996/10)/08~10/1	3,11/04~11/1	0		22	19	0	107
Tear Down	1996/11	/19, 11/11	~11/15			6	6	0.0	42
				h.]		35	32	3	170
	<u> </u>	otal Depth	·	'r	····	Core Rec	overy Rate	per 100 n	leters
Planned Depth		300.00 m	Soil		1.0 m	L.	Core	Recovery	Cumulative
						Depth(m)	length	Rate	Rate
Additional depth			Core Length	·	296.50 m		103.70 m		
Total Inspected De			Recovery Rate		98.8 %	$107.50 \sim 205.70$	95.50 m	97.25 %	96.84 %
	Break l	1	e Working Tir	ne		205.70 ~ 300.08	97.30 m	103.09 %	98.81 %
Net Drilling		199.0 h	50.8 %		46.3 %	, 	<u> </u>		
Rod Raising and In	sert	<u>109.0 h</u>	27.8 %		25.3 %				
Inner Tube Operati	מה	53.0 h	13.5 %		12.3 %		Deilling Ff	anian au	<u> </u>
Contingent		<u> </u>	13.3 70		12.5 70	Total Depth/Total	Drilling Eff	8.57	
	<u>.</u>					Total Deput total	1)ajs	0.31	m/day
Recovering from Ti	ouble	31.0 h	7.9 %		72%	Total Depth/Work	ing Dave	9.38	n√day
Others						Total Depth/			
Subtotal		392.0 h	100.0 %		91.2 %	1 .	s	13.54	m/day
	Inter	hole Movi	ng			Total Depth/			
Set Up		18.0 h			4.2 %		Days	15.79	m/day
Tear Down		20.0 h			4.7 %	Total Depth/Fotal	Person · day	1.77	m/P•day
Grandtotal		430.0 h			100.0 %	Net Drilling Perso	n•day/		
		Casing				Total De	epth	0.36	P∙day/m
Casing Diamtre and		B/Ax100	Recovered (Casi	ng				
Cased Length		(%)		(%)					
77mm	13.5	4.5			100.0	Remarks			
						A:Total Depth			
						B:Cased Depth			

Table II - 1 - 6 (2) Summary of Drilling Work [MJNM-2]

)

		Per	iod of Drilli	ng		-	
					Details of th	ne Period	
					Working		Numbers of
_	Pe	riod		Total Days	days_	Off days	Person • day
1996/0	9/30~10/0	l		2	2	0	12
1996/1	0/02~10/3	0	· · · · · · · · · · · · · · · · · · ·	29	29	0	297
1996/1	0/31			1	1	0.0	10
		ma mintrajtipas da zatati ina artiztar		32	32	0	319
	· · · · · · · · · · · · · · · · · · ·	I		· · · · · · · · · · · · · · · · · · ·	overy Rate	r	·
	<u>300.00 m</u>	Soil	<u>1.4</u> m	1	Core	Recovery	Cumulative
				Depth(m)	length	Rate	Rate
	1						
				 ۶ ۱۰			96.84 %
Break	T		1	· · · · · · · · · · · · · · · · · · ·	93.80 m	96.11 %	96.60 %
	239.0 h	46.0 %	43.5 %) 			
ntert	601	12 %	1 1 0/		-		
	0.0 11	12 70				· ·	
ion	60.0 h	11.5 %	10.9 %		Drilling Eff	eciency	
	0.0	0.0	0.0				m/day
rouble	···· - ···· - · ·				ing Days	9.38	m/day
				1 1			
	L		94.5 %		<u>`\$</u>	10.36	m/day
Inter	г- <u> </u>	ng		1 -			
	}				·		m/dav
						0.94	nı/P•day
			100.0 %	· ·		0.00	
					pin j	0,99	P∙day/m
d	B/Ax100	Recovered C	asing				
	(%)	((%)				
17.0	5.7		100.0	Remarks			
				A:Total Depth			
				B:Cased Depth			
Drilling 19 fear Down 19 fear Down 19 ined Depth 19 itional depth 19 itional depth 19 itional depth 19 itional depth 19 all Inspected Depth Br Drilling 19 Raising and Insert 19 r Tube Operation 10 tingent 10 overing from Trout 10 iffs 10 Jp Down udtotal 10 ng Diamtre and 10 d Length 10	1996/10 1996/10 1996/10 epth Break nsert tion Frouble Inter	1996/09/30~10/0 1996/10/02~10/31 1996/10/31 Total Deg 300.00 m 0.00 m cpth 300.30 m Break Down of th 239.0 h ion 6.0 h 0.00 frouble 215.0 h 0.0 520.0 h Interhole Movi 18.0 h 12.0 h 550.0 h Casing d B/Ax100 (%)	Period 1996/09/30~10/01 1996/10/02~10/30 1996/10/02~10/30 1996/10/31 1996/10/31 300.00 m 300.00 m Soil 0.00 m Core Length 300.30 m Recovery Rate Break Down of the Working Tir 239.0 h 46.0 % nsert 6.0 h 11.5 % 0.0 0.0 0.0 60.0 h 11.5 % 0.0 0.0 0.0 11.5 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 % 0.0 12.0 h 12.0 h 12.0 h 550.0 h Casing d B/Ax100 (%) <	Period 1996/09/30~10/01 1996/10/02~10/30 1996/10/02~10/30 1996/10/02~10/30 1996/10/31 Total Depth 300.00 m Soil 1.4 m 0.00 m Core Length 290.10 m cpth 300.30 m Recovery Rate 96.6 % Break Down of the Working Time 239.0 h 46.0 % 46.0 % 43.5 % nscrt 6.0 h 12 % 1.1 % tion 60.0 h 11.5 % 0.0 0.0 0.0 0.0 0.0 0.0 frouble 215.0 h 41.3 % 39.1 % 0.0 0.0 0.0 0.0 520.0 h 100.0 % 94.5 % Interhole Moving 18.0 h 3.3 % 12.0 h 22 % 550.0 h 100.0 % Casing (%) (%) (%)	Period Total Days 1996/09/30~10/01 2 1996/10/02~10/30 29 1996/10/02~10/30 1 1996/10/02 1 1996/10/02 1 1996/10/031 1 1996/10/031 1 100.00 m Soil 1.4 m 300.00 m Soil 1.4 m 0.00 m Core Length 290.10 m 0.00 ~ 102.60 202.70 Break Down of the Working Time 202.70 ~ 300.30 239.0 h 46.0 % 43.5 % nsert 6.0 h 11.2 % 1.1 % 10.9 %	Period Details of the Working days 1996/10/02~10/01 2 2 1996/10/02~10/30 29 29 1996/10/02~10/30 29 29 1996/10/02~10/30 29 29 1096/10/02~10/30 29 29 1096/10/02~10/30 1 1 302.00 1 1 1 30.00 Soil 1.4 m Core Recovery Rate 300.00 m Soil 1.4 m Core 0.00 m Core Length 290.10 m 0.00 ~ 102.60 99.25 m epth 300.30 m Recovery Rate 96.6 % 102.60 ~ 202.70 97.05 m Break Down of the Working Time 202.70 ~ 300.30 93.80 m 239.0 h 46.0 % 43.5 % nsert 6.0 h 11.2 % 1.1 %	Period Total Days Working days Off days 1996/09/30~10/01 2 2 0 1996/10/02~10/30 29 29 0 1996/10/02~10/30 29 29 0 1996/10/031 1 1 0.0 300.00 m Soil 1.4 m Core Recovery Rate per 100 m 300.00 m Soil 1.4 m Depth(m) length Rate 0.00 m Core Length 290.10 m 0.00 ~ 102.60 99.25 m 96.73 % cpth 300.30 m Recovery Rate 96.6 % 102.60 ~ 202.70 97.05 m 96.95 % Break Down of the Working Time 202.70 ~ 300.30 93.80 m 96.11 % nsert 6.0 h 1.2 % 1.1 % Interbole Interbole Prilling Effectency 0.0 0.0 0.0 Total Depth/Vorking Days 9.38 frouble 215.0 h 41.3 % 39.1 % Total Depth/Vorking Days 9.38 0.0 0.0 0.0 Total Depth/Total Days

Table II - 1 - 6 (3) Summary of Drilling Work [MJNM-3]

()

:

()

	· r		Pe	riod	of Drilli	ng			
					,,		Details of th	o Period	
Working Item							Working]	Numbers o
	ļ	P	eriod			Total Days	days	Offidays	Person•da
Set up	1996/0	09/18~09/1	9			2	2	0	8
Drilling	1996/0	09/20~10/0	6			17	16	1	54
Tear Down	1996/1	0/06				1	1	0.0	4
a a gang a dia dia dia dia dia dia dia dia dia d						20	19	1	66
		Total De	pth			Core Rec	overy Rate	per 100 m	eters
Planned Depth	·	150.00 m	Soil		2.3 n	1	Core	Recovery	Comulative
						Depth(m)	length	Rate	Rate
Additional depth		0.00 m	Core Length		147.70 m	0.00 ~ 97.90	95.60 m	97.65 %	97.65 %
Total Inspected De	pth	150.30 m	Recovery Rate		98.3 %	97.90 ~ 150.30	52.10 m	99.43 %	98.27 %
	Break	Down of th	e Working Tir	ne					
Net Drilling		95,0 h	63.8 %		57.6 %	D			
Rod Raising and In	sert	44.0 h	29.5 %		26.7 %				
Inner Tube Operati	on	0.0 h	0.0 %		0.0 %		Drilling Eff	eciency	
Contingent		0.0	0.0		0.0	Total Depth/Total	Days	7.52	nı/dəy
Recovering from Tr	ouble	10.0 h	6.7 %		6.1 %	Total Depth/Work	ing Days	7.91	nv/day
Others		0.0	0.0		0,0	Total Depth/			
Subtotal		149.0 h	100.0 %		90.3 %	Drilling Day	's	8.84	m/day
•	Inte	rhole Movi	ng			Total Depth/		·	
Set Up		10.0 h			6.1 %	Net Drilling	Days	9,39 1	m/day
Tear Down		6.0 h			3.6 %	Total Depth/Total	Person•day	2.28	nı∕P∙day
Grandtotal		165.0 h			100.0 %	Net Drilling Person	n•day/		<u>-</u>
		Casing				Total De	pth	0.36 I	P∙day/m
							(-		
Casing Diamtre and		B/Ax100	Recovered C	asin	g	-			
Cased Length		(%)	((%)				-	
86mm	3.0	2.0		1	00.0	Remarks			
						A:Total Depth			
		I T				B:Cased Depth			

Table II - 1 - 6 (4) Summary of Drilling Work [MJNM-4]

1

• E

.

.

The hole was drilled exclusively by the normal method. The drilling efficiency reached 8.8 m/shift with substantially one shift per day because of comparatively short recovering time from mechanical break down. Monotonous condition of dolomite formation was also favourable cause for the moderate efficiency. The water was transported from the irrigation well 2 km far from the site by 4-ton truck.

MJNM-4

Shortly after the drilling was commenced by the wire line method, it was disturbed by total lost circulation caused by cavities and dissolution fractures development. These parts of geological disturbance were cemented in vain and the drilling was interrupted at a depth of 35.4 m. From 35.4 m to 60.0 m percussion drill was introduced to determine the necessary depth of casing depending on the ground condition. Thereafter, the hole was drilled by the normal method to the end. The wire line method took one shift per day and the normal method usually two shifts and the completion of the hole eventually required three months including the waiting time for engine repairs and grouting. Thus the true drilling efficiency was 5.8 m/shift which was the lowest of the four holes. The water was introduced by pumping from the irrigation well 150 m apart from the hole.

(6) Water

The groundwater of the farm lands was pumped for drilling. MJNM-1 and MJNM-3 were distant from the water holes and the water was transported with the bousers on a truck. On the other hand, MJNM-2 and MJNM-4 were provided with water directly to the hole by pumping up from the irrigation cistern. The water was used with environment friendly type polymer. Bentonite was also used when lost circulation or wall rock collapse occurred

II-1-4. Result of the Survey

The geological column sections are illustrated in Fig.II-1-2(1) through Fig.II-1-2(13), and the geological profiles in Fig.II-1-4. The result of microscopic identification of thin sections, polished sections and X-ray diffractometry are shown in Table II-1-7 through Table II-1-9. The geological summary for each hole is as follows.

MJNM-1

0.00m- 85.40m Calcrete

The calcrete is post Tertiary sediment overlying unconformably over the dolomite of Damara system in the upper Proterozoic age being pale brown and massive or stratified. The basal facies include gravels over 25 metres. From 50 metre to 30 metre deep the rough size-grading of gravels is recognized. Local development of the cavities elongated parallel to the bedding plane may form an

()

• }

 $\left(\right)$

LEGEND

,)

ì

, I .

			######################################
	SYMBOL	ROCK NAME	LITHOFACIES
ary			
Tertîary		CALCRETE	Less stratified calcrete
Ţ	• • • • •		Gravel bearing calcrete
$\sim\sim$	<u> </u>		Unaver bearing caldete
U	·!	DOLOMITE	Massive dolomite
• 			
0			Well bedded dolomite
N O			Sandy dolomite
2			
e	<u> </u>		Oolitic dolomite
**	NAM		Character Pater Antonia
0	<u> </u>		Stromatolitic dolomite
ь С			Stylolite developed
ب			Brecciated,flextured
с b	annes	CHERT	
4 0,			
D		SHALE	
		ADCH	A soille coous sous
	~~~~~~	ARGIL	Argillaceous zone
	X,		
	×, X		Fractured zone ( young and open )
	××		Crackled zone ( old and closed )
	75		Crackled zone ( old and closed )
		MINERALISATION	Pod,dot,speck
			Veinlets

ABBREVIATIONS

COLOR AND FORM	ALTERRATION
wht : white	cal : calcitization
blk : black	dol: dolomitization
ppt : purple	arg : argillization
bra : brown	ox : oxidation
irreg : irregular	sil : silicification
MINERAL	sel : selicitization
sp : sphalerite	VEIN MINERAL
hmt : hematite	Qtz : quartz
clay : clay mineral	Cal : calcite

## Fig. II - 1 - 2 (1) Geological logs for drill holes

## 0m-75m

1

	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VEN		5.1.10	LE	6.22				1C.N				<u> </u>
(m)	COLUMN	NAVŒ		ALT.	NO.	From (m)	To (m)	Length (m)	Au (ppb)	tbbu) YS	Cu (ppm)	РЪ 166-ші	Zn Ipçini	Cđ Ippmi	G1 •FFF1)	
		CALCRETE	cream to baht brown													
	<u></u>		showing breecia texture, bedding in part													
5										1						
10																
	<u> </u>		10.70m -pricel externe showing ben rimmed bre 3cm Ø													
В			16.15m -massive to stratified colorete											:		
			druse calcite in part													
20																
25																
			23 30-28,70m pebbles comented with													
30		CALCRETE	pou deny material								:					
-																
			34 50m gradulally sandy grains/pebbles													
35			increase													
	•		sandy calcrele													
40			40.50m ~ 1cm Ø round to angular pobble													
			pobble.wht-orange, grey calorete round <sora td="" ø<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sora>													
45	• • •															
	••••••															
45	0 0 0 0 0															
	000		\$1.58m massive colorete with horizontal vogs													
ĺ																
55			\$5,83m sandy calcrete								Í					
			57.30in pebble calerete 57.85m massive calerete with horizontal vugs			ĺ										
æ			60.30m		i											
	°°°															
65	• •															
	• • • • •		67,60m coarse polities 10cm Ø										ļ			
	° 0		a stand and a second													
76			20.00m matrix red,65h brown arglaceous pebble grey datanite													
	••••		leade Bel activite													
	· · ·															

Fig. II - 1 - 2 (2) Geological logs for drill holes

(])

)

:

:

75m-150m

DEPTH		ROCK	LITHOLOGICAL DESCRIPTION	VED.	No	SAND From	PLE To	11		/ <b>**</b>		EC AL			r <del></del>	<b>.</b>
(m)	COLUMN	NANE	· · · · · · · · · · · · · · · · · · ·		. No.	(m)	(m)	Length (m)	Au Ippb	-Ag •PCint	Cu tppat	Łb ippmi	Zn (ppm)	(C) C)	Gs (¢¢m)	4550 1550
80	* 0 0 0 0															
		CALCREVE												:		
85	$\sim$	DOLONSTE	85.40m grey to dark grey doiomite													
		0010,512	83.60-89.50m argit	ərg bırət	X-01	83										
90			sandy dol. 2 30° 91 35m well bedded grey dol. 2 20-30° 92.60m chalcocite-malachile specks 92.40-94.90m bit dol. distorted		P-01	916										
95	  		med. to ors sandy grainite with irregular lenses of ohert 1-20m	-												
100		DOLONGIE	100.45m cracks with reddish matrix 101.86-102.26m disseminated sphalenie mineralisation		A-01 1-01	101 SS 101 SS	102 26 161 96	0 10 0 10	<1	2 4 5	P	1-16	811	4	<1	
105			-102.20m Ernish grey dol. with reddish argil 103.95m yellow veinlets of vanatium 104 10-104.70m breecia dolamite	અદ્વ કરો	S-05 A-02 A-03 A-04	102-10 104-01 104-81 106-10	194 #1 104 65 15* 66	0 13 0 25		0 50 0 50 0 50	6 30 4	11 67 8	10" 211 25	<1 1 4	<) <) <)	
110	 		104.45-104.66m blk dots or stains of sphalerite or vanadium 110.51-110.90m cinnabar red and black vinites V or Zn 110.10m sphalerite along styletite plane		A-05 A-06 A-07	810 91 61 E 09 14 E 58	110 94 111 29 111 69	0 43 6 20 0 11	र। दा	0 20 1 49 7 66	-	55 374 14560	35 134 1406	<1	दा दा	
113		DOLOMITE CHERT: OOLITE	well bedded dol, 240-45 111.60m spholenie 112.30-112.55m golena-spholenie pods 113.20m spholenie vein/speeks		1-02 A-03 P-02 1-0J	111.55 112.36 112.30 112.30	111-69 112-62 112-82	0 11 0 32 0 80	<1	19 00	35	45260	15576	N.	4	< 1
120			113 97m sphalerite dots 114.15m sphalerite veirdets		1-04 N-02 A-09	612-47 112-96 113-91	112 62 114 12	0 13 0 21	<۱	0 60	•	161	43	<1	<1	
125			well bedded dol		A-10	123 85	124 68	0 30	<1	<b>G</b> 30	8	136	226	< i	-1	
130			massive dol. 125 Jm grey to whit finely bedded dol. 2 20° portly sil, irreg, bonds 129.10m dork grey dol. 129.45m green vanadium films	sð												
135			129,95m-131,00m dark grey sandy dol. showing distorted lamina 131 00m-bedded dol, chert or sil beds 134,30m eakite box work druse 135,30m dark grey dol.	ទា												
			135.36m crs to med sandy grey dol. 136.10m vano-Jium film in crack ers graphilic carbonaceous grainite findy bedded 2 20'													
140			141.50m -creamy bin to light grey dol. With vertical cracks Zn+V matwise non bedded 144.47m sphylerite speek		S-01 A-11 P-0J A-12	141 66 141 55 141 63 143 70	1433) 1433)	0 33 0 30	sا ۲>	0 TV 0 52	4 25	120. 26.	909 3506	15 12	<   <	2
1+5	Kim		146.65m doil.>chert 2-5cm thick bods													
150	0255															

Fig. II - 1 - 2 (3) Geological logs for drill holes

### 150m-225m

.

	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VEIN	<u> </u>	5.1\0	1.E		[ ••• •••		CIŒM	ICAL .		<u>s</u>		]	
(m)	COLUNE	NAVE		ALT.	NO.	From (m)		Length (m)	Au (ppb)	Ag ipçmi	Cu	Pb (ppm)	Zn	<b>ट</b> व		V Ippin-	
155		SHALE	<ul> <li>132.40-,65m chert or sil sandstone 2 20°</li> <li>153.25-,65m dark grey dolomitic shale</li> <li>153.65-155 55m med sandy dol.</li> <li>155.55m- brn grey functy bedded dol.</li> <li>157.30-158 50m fine Zn veinlets along sizep cracks</li> </ul>		д13 д14	15. 32	1,17 \$5	0 63		9 0- 0 ^c	8	125	23	<۱	<1	12	
160 165		DOLOMITE	benish grey to grey dolorrile fune massive fractured locally 167.80m- grey dolorrite 230°														
170			light grey 174.35-178.45m crackles doloniste 175.55-175.65m Vanodium minerol veinlets grey doloniste ∠ 50-60°														
180		DOLONITE	182.70:0- crackled dolomire 186.00-186.05m Zn or V		A-31	155 93	135 0*	614	. 1	0.40	ŗ	8.5	77	<1	< ا	13	£)
190			189.90-189.95m V?														
200			198,85m Vənədīum ələng styləlik= HCI ∆														
205			203 55m transparent calcite open fracture w*1em 206.65m dark grey fine datomite 208.10m Eght grey to bruish grey dol.	Cal v=tor													
210			210.20-210.2Gm chert bed contact irregular 2/10° 210.85m Vanalium fån in cracks stylelite predaminate 211.65m V or Za in stylelite 211.95-212.00m sphalenie specks 212.93-213.10m black Za ere specks	cat	A-15 A-16 A-17 S-01	21151	213.37 212.65 213.15	01	د ۲	3 19 1 55 2 90	11	E17	\$95		۱ ۱ - ۱ ۱ - ۱	13 27 57	<b>i</b> .
220		DOLOMITE	sandy doloniste 216.15-216.35m chert Z 20° 217.25m Cu axide d.st in breecis massive dat styloffe			21*15	-		<i< td=""><td>0.50</td><td></td><td></td><td></td><td></td><td>&lt;1</td><td>12</td><td></td></i<>	0.50					<1	12	
225			222.75-222.83m Cu-Zo(2) oxide dots 223.12-223.67m Sphaterite(2) dots 223.98m green Vanadium in cavity calcite		A-19 A-20		222 85 223 6*	03: 060		2.60 @ 80						,	

Fig. II - 1 - 2 (4) Geological logs for drill holes

-

: }

ţ.;

### 225m-300m

	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VEN		\$.410		<b></b>	- <u>-</u>	r• :		OCAL			<b></b>	<b>-</b>
n)	COLUMN	NAVŒ		ALT.	No.	From (m)	0T (m)	Leagth (m)		ЧÇ та	Cu (pp.a.)	10 166001	Za Igeni	Cd ipport	் Ga • हृद्रका	۰£
-†				1												<u> </u>
Ì	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		grey med dol.													
ł	m		Eght bruish grey dol. massive 228.45-229.30m chert beds													
32			228.43-229.30m (nett beas													
ł	Jup Ju															
33	Japaha															
-	mhy															
	m															
140	<u> </u>		bruish grey bedded dol. fine colcifized	દગ							:					
_			242 90-243.00m Sphalente pods and vein-		A-21	242.76		0 21	5	<b>16 0</b> 0	+250	179	3	<1	31	
			lets in druse 245.60-245 91 m Sphalerite Galena	sit	1-05 S-02	343.76 343.50	242.97	021								
245-			in horizontal cracks and pods		A-22 A-23	245.75				270. 2003	1990 781		45 72		8	
					P-04	2+5 25 2+5 25							,,,		B	
ŀ			pale benish grey dol. roughly bedded	sì	A-24 S-03	2+5 90 2+5 00		0 25	2	13.00	172	6119	24		2	
250-	<u>6</u>			dol	1-06	225 0*		0 ki								
-					Î I											
55																
					X-03	257,40										
					A-25	258 95	2930	055	3	19 00	<u>19</u>	2630	39	1	30	
æ	╌└╌┎┝		253 95-259 50m Sphalenite dots and voln- lets in druse													
-	- <u>-</u> L															
			263.20-264.20m Sphalenite dots /		A-26	253 26	254 04	0 61	- 1	6 CC	539	D.	<1	1	ж	
65-		-	Vanadium in the upper part 265.32- 34m sphalente in calcifized					Í								
F	and the second	00101015	layer													
┝		DOLOMITE	265,43-265,52m chert		A-27	263 10	268 20	010	,	<b>1</b> 00	- 114	ξL	۲١	1	:0	
ĸ																
			271,50-271,53m Galena Sphalerite thin		A-28	271 50	273.58	0 6 5	7	15 X	4960	15.3	ų	<1	13	
	Ē		patches		<b>д-2</b> 9	273 64	273 69	0.03	\$	1.00	45-0	32	<۱	<1	Ð	
٦,			274.00m Sphalenie,galena speeks W#1cm		1-07	273 61		0.65								
75	त्वर्यन	1	275.65-275.77m chert 2 30'													
┢			277.74-277.83m chert 277.93-278.03m breccias cemented with													
80			delespar	dol							1				ľ	
20	വ്ഥാ		280.25-280.35m chert 280.58-280.64m chert													
Ţ	1		282 30-282 60m vertical crocks with Zn film													
ſ	Ţ <u></u> ;		284.00m Sp(Zn) specks													
85			284.45m local Sp(Zn) small pous or speeks crack vendets				1									
ſ			285.00m upper most block shale 285.50m Cu oxide in flecture of roddish			1		1								
ŀ	╧╧╼╤╴┨		focies			1										
70	╼╌┰╼┖╌╏	1	287, 50-247, 75m shale st.													
	┉┧┉╢		محمد المنافعة المتعام المتعادية والتبيية المتعادية													
			massive dolocule intercolated with chert													
25			bedded dolonite Z10° 295.85-296 05m strematolite polite										İ			
E	G.C.C.															
4	www.		15cm thich chert 220° red dots											[	Ì	
υO 🗂			300.03 STOP												1	

Fig. II - 1 - 2 (5) Geological logs for drill holes

МЛ	NM-2	r	·····	r	r				1				·	0	<u>m-7</u>	<u>5m</u>
	GEOLOGIC	ROCK NAME	LITHOLOGICAL DESCRIPTION	VEIN		SAVE	PLE				CIES	OC.U	.455.41	5		
(m)	COLUMN	NAME		ALT.	N0.	From (m)	To (m)	Lergh (m)	Au Ippbi	Ag • pçin 3	Cu spçms	Pb (ppm)	Zn ipșmi	Cd (ppm)	Ga	N Opçmo
	0.	CALCRETE	whi to pale trown breecia >>matrix				[									
		CIRCIDIT.	with the part of the officer of a logist					ļ								
5	•						[									
	°, °,															
	• • •															
10	· · ·															
	۰. ۰						ļ									
	•••															
			15 10m lost circulation				1									
13			13 Tourion enconnon													
	• • •															
	• • •															
26	<b>.</b>		whi to ben Som Ø angular del bec													
25																
36		CALCRETE	druse calcite on stats													
	••									Í						Ì
35																
	•		37.50m + soundant breecias,													
	• • • •		reddish bra to dak gay 1-2cm Ø dominant													
40	° °															[
	• • •												i			
	• • •										1					
45																
	۰° ۰												ľ			
50											1					
55											1					
	• • •															
	• •			Í												
50														1		- 1
	$\sim$		60 96m gry with white spats dol.											1		
[			calcrete filling goth and cavifics										ł			
55				1					Í							
		00100005													1	
	-h}	DOLOMITE	obscure bedding 230°	ļ												
70			69.89-70.00m venical chere'dol													ł
~~L		ł	ppl grey with whit dolospor spots	dət												
l	~~~~~		72 20m weathered zone clay											1		
],			steenhy diamina stabilite	I												
75	l	l	steeply dipping stylolite	l.	l	l		I	<b>-</b>		L		L	l.	l.	<b>I</b>

Fig. II - 1 - 2 (6) Geological logs for drill holes

()

I

()

**(**];

•

.

### 75m-150m

	GEOLOGIC		LITHOLOGICAL DESCRIPTION	VEIN		\$.4.10		1 <del>11.1.1.1</del>		·		OCAL.				<b>e</b>
(m)	COLUMN	NAME		ALT.	No.	From (m)	Tə (m)	Length (m)	ла 1956)	-78 (ppm)	Cu 1ppm)	Eb (ppm)	Zn 1pçm)	Cd (ppm)	Ga Iççini	(PF
	~~~~~ <<<<>>		13:4565m anglaceous zone 17:12m chert 2 dol, chert 2 20° boundary vertical	3.3				1								
80)	~~~~~		78.0020m clay	arg												
		1														
85	<u> </u>	1	85 00m -ppl gry wht dots HC1 ×	৫৩া												
	427729	DOLONGTE														
90		Į	\$7.00m - chert'dol, steep but irreg.													
¥2	land	ł	90.86m • dol∠chen ootific ∠80° 90.96m green motochile speck in chert													
	aut -		93.1Cm													
95			drk grey dollichert irreg, bands boudinage like			Î										
	<u> </u>															
100			100.60m -blk dolomilie shale													
			with whit dots HCL & or O 102 30m spor vain druse some part chert bands intercolated													
105																
110			bik dolomitic shale bedding obscure Z 30-40?													
			111.00-111.61m fractured with reddish cream argil													
115			colcoreous blk shole 116.12m	Qiz												
			wide space fracturing qtz-cat veinning	215												
120			stylolite vertical 121.70m shale //chert with (ossil like													
	9333320		icsture, Z70-80°													
125		SHALE	124.85m bik caicarcous shale 126.0m													
			bedded shale													
130			had fine a second block of the history													
			bodding vertical bik to dork grey med, shert thin bods intercolored													
135																
110																
			142.40m - red.tich arcidized shale ∠80° 143.60m	54												
145	~~~~~~		144,70-145,10m fractured zone argilaceous zone	w - Lein arg												
	- ~ ~ ~															
150												Į			Ì	

Fig. II - 1 - 2 (7) Geological logs for drill holes

	NM-2	ſ		T	r				[]	. .		· _ · · ·	I .	JUIL	1-225n
HT93C		ROCK	LITHOLOGICAL DESCRIPTION	VEIN		SAND		 					<u>A\$5.41</u>		
(m)	COLUMN	NAVE		ALT.	No.		To	Length (m)		Ag	Cu	89	Za	Cd	G1 V
			151 60m cheat < bik shale		 	(m)	(m)	(Liaj	44	(pçin)	(FFCI)	(pig)	(ppm)	(FLW)	stews steve
į			chert te is almost vertical		Į			1							
		{													
ļ		Í			ł										
155		{			ł										
					[
					1										
160					i i										
					[1		
			white transparent vein minerals HCE ×		[
			bit shale stratified												
		ł	or sure same		ļ								i .		
165			166.52m voirning 245'	C.31											
			tawater rearing to the	N=											
				0.5cm	1										
					1										
170															
			few bods of chert							·					
										ŀ					
					1										
175															
									[ſ					
					1										
		ł			1					ſ					
160		SHALE	180 96m avidized zone of shale	ex											
169		SILCLE	189 Yor 10 Ourges zone er stane	l v	Į										
		1			S-12	182.59								1	
	Z	ł	giz-clay white year	Qtz+	1										
	==== 12		184.0-185 30m fracture3	clay	1										
185				· ·											
			bik shale												
		1	187,97m 230° qtz+ a vein	QIZ				E							
		1													
i								1							
190								1							
	10000	DOLONITE	192.70m												
	T		colitic chert intercatated dolomite												
	<, , <		194.30m -Chert			1									
195	624	CHERT		\$ो	5.07	196 00									
	<u>`</u> <` < <	CHENT		C 3	J-07	1.000									
			193.00m - black dolomitic sondstone 4		I										
-		SHAJ.E	shole all.	1	I I										
200		-	199.00-202.80m veining	Q1z-	I										
	·····		201.80m - dark gruish grey dol. // chert	Cal	l										
	01110	DOL#	black patched defenite to sandy	1	[·							
1	dino.	CHERT		1											
			204.95m • blk ers dolonite to sandstone	1					1						
205				1	1										
				1											
	!	DOL#SS.	208.10m colorete gosh w≠3em cream bra	હત								•			
			101 O	1											
210	~		209.76m erange film vanadium?	1	I I										
*10		SHALE # 55.	blk shale med sandy det alt.	1	I I										
	7		210 30m- their this lense//dol.	1	S-08	210.50									
	1		213 36-80m beygonal crystal	1	⁻ -										
			214 00m dolomitic shale med to ers sandy	1											ł
215	T L			1											
	Ⅎ╾┯╼┶			1	l										
				1	1			1							
			fine grey dol/'ss.	1	8-09	218,40									
	<u></u>		218.50-219.12m crs.ss to conglomerate	ərg											
220	~~~~~		argil loyer w#lem	bint											
	~~~~	pol ol cra	and the state of the second law of the												
		DOLOMITE	dolomite Vargil interse white veiring												
				1											

į

 $\left| \right\rangle$ 

43

Fig II - 1 - 2 (8) Geological logs for drill holes

. į

Ŋ

(`)

### 225m-300m

.

14111	NIVI-Z		F	۲	<b>_</b>				<b></b>					2.511	-50	vill
DEPTH	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VEN		\$.110	LE				CHEM					
(m)	COLUNES	NAME		ALT.	No.	From (m)	To (m)	Length (m)	Au (ppb)	. <u>३.२</u> (हड्राज)	Cu (ppm)	[3 (bom)	Za	Cd •p;m.	Ga	¥ menti
	~~~~~~		226 59-227 50m clay	213		Luch	(inj	(11)	19501	- <del>131</del> 31	. 12-003	. 1.7.10.1	-16m.	-193 m.i	.Phur	(ppint)
			ers sand 290"													
		SANDSTONE	229.20m													
230			sporadic chere lense													
			sporalic chert lense													
			blk sandy shale to ss dol./ chert beds													
235			Gol. Cherreeds													
					i i											
	<u></u>															
240																
	╞╍╌┫╾╍┲═		blk sand-tone													
	<u>•</u>				1											
245			246 Som- dolomite intercolated with													
	┝╼╌┍╾┶╸━╴		argil layers	·	1											
		DOLOMIE														
250	}	LOLO.UTE		·	1											
	┝╍┰╼╍┸╌┧															
	┠━┚┯╌┙		253.40-254.60m while veining ∠ 20*	ಕೆಂಗ												
	┠╍┍╍╍┰╵															
255																
	ಯಾರ್ಯ		257.09-257.60m argit 257.60m dol: sandy to sondstone	arg												
	ahaaa	DOLOMBTE	with srgd beds													
260	~~~~~	# \$\$.														
	22222	CHERT#DOL SHALE	263.60-264.95m chertildet shate													
265		STIMUS							Į							
	┝┷╍┓┥╬	DOLOMITE	267.70-271.90m brecciated dol.>>chert													
		Docontro	censiled argit X-ray													
270			matrix reddish brown+spar.quartz?							:						
	4):															
	L		grey massive dot, with borizontal wht veining-white spots												Ī	
			stylelie vertical													
275																
1																
	┝┷╍┍┢		277.85-285.25m crockled datamite													
280	 ;															
			massive dotomite													
285		DOLOMITE	285.00-286 \$3m delichert vertical bedding													
	artico															
	 		nossive d-domite													i
290																
290	l															
												ŀ				
295	===		294,07m chertiers quartz sandstend grey dol alt.									1				
	<u></u>		296 50m grey msv dolomite													
			299.50m greenish grey ork grey dataruite													
300	· · · · · · · · · · · · · · · · · · ·		360 30th stop]

Fig. II - 1 - 2 (9) Geological logs for drill holes

.

MJNM	-3
------	----

0m-75m

 $\left(\right)$

МЛ	NM-3		······································	r	r				r	<i>.</i>				0	m-7	δm
DEPTH		ROCK	LITHOLOGICAL DESCRIPTION	VEIN	<u> </u>	\$.4.10		Length			CHEN		455.41			· · · · · · · · · · · · · · · · · · ·
(m)	COLUNE	NAME		ALT.	No.	From (m)	01 (m)	(m)		A8 (ppm)		EP IL	Zn Iffai	Cd Ippm-	Ga •ppmu	1550
	∇T		0-2.30m Soil Non-core													
5			grey to purple brown, parily argillaceous, gravel to bedded texture													-
		CALCRETE	rowe with													
ļ				ļ												
10																
	*1		12 00m -gry roughly bedded showing strematolisis learning													
15	1		16.40m flat hing bedded dol.													
			reddish gry to purplish 17 30-17 SOm angular blobs dol.													
20	┠─┸╾┬╴		massive dal, parily algale(fibrous) vuggy													
			23 30m partly thin bedded													
25			cracks filled with calcite and quartz													
			stylebre by ers and thinly bedded dol. ∠ 5-10°													
30	<u> </u>	DOLOMITE	Grey sandy dot. 2 20-30° bedding endulated													
	LE		32 20-32 90m fractured steeply: \angle 70°		ļ											
35	┝┰═╌╵╴		36 64m calcite gash with malachite speck													
	╞╧╌╌╴╧		36.60-40.85m verticel fractures filled with calcite													
			39,35-,45m 10cm thick chert bed													
40			∠5° 40.60m hematice bed 1-2cm thick ∠15°													
	┟╌┰╸┛		43.00-45.00m massive dol dark gay													-
45			dolospar	dəl												
1			46.4565m whitenineral voluming cavilies magnesite? HCEX													
			48.60-50.38m light gry dol. stromotolitic texture		ļ											
50	66666 66666		50.38m argillaceous green brown mineral maxive to flat hing dol.													
			massive to roughly bedded in part													
55	<u> </u>]															
			\$7.1020m hematite fracture \$8.00m	hari												
60			light gyr to reddish dol. 62 00-62,50m wht spots dolomite	વગ												
			63.10m sphalerite grains with whit vein 63.5560m green vanadium fün in cracks		1-05	63.55										
63			65, 60-70 60;n vertical to steep cracks 2.60'													
	₽ <u>-</u> {⁄}															
70	<u>├</u> - <u>-</u> - <u>८</u>		black stains(vanadium?) in crack													
	anata		72 354.60m cheit bed ∠15° 73 25m vanadium mineral in crack													
75	BB-L-	C11336TA1#	73.5060m chert bed 74.60-76.45m calcareous sandstone													

Fig. II - 1 - 2 (10) Geological logs for drill holes

Ū

ł

:)

.

t :

.

75m-150m

	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VERN		5.00		*	L				<u>45541</u>			
(m)	COLUMN	NAME		ALT.	No.	From (73)	To (m)	Length (m)	Au Ippbi	Ag Ippini	Cu •pçm•	110	Zn	Cd (prin-	Ga -zeru	Ň
		CIEDE	med to fin 2 10°			<u> </u>	· · · · ·	-					(A) LU	· 49-143	-yçru	<u>.eb</u>
	COL	CHERT	** 20m chert ** 70m crystalline dolomite partly													
			thin beds of chert intercalated													
8¢																
		DOLOMITE	bght fry fin dol. 783.45m ∠ 39°				-									
			· • • • • • • • • • • • • • • • • • • •	i i												
85																
		CHERT														
	CIII)		\$3 13-25m object 10cm thick 83 05m argifaceous matter-hait 3cm thick													
ઝુ		CHERT	\$9.25+.45m chert				İ									
į	Cutto		91.60th fractured over 60cm magnesite vug	teb												
ĺ			92 50m irreg wht to pink chert in dol. 93 38m													
95			94.20m light gry med sandy dol. bedding flat		Ì											
			95.60m drk grey del, veinning crystal-	Cət	1											
	┟┎╍╌╵╍╍┰┨		line calcite													
100	╞┸╌┰╌╾┸┨	DOLOU ****	sandy dolomite bedded ∠ 5-10"													
		DOLOMITE	100 69-101.33m fine dol. sandy parily chert horizontal beds											ĺ		
			10cm thick		ſ											
105						[1				1		
			fine light grey dol.											ł		
												1				
110					1						Ì					
ł			fractured with wht minerals(dolospar?)	ಕ್ರತ		i								ĺ		
ľ			260-70 ² <5mm	004				Ì								
115					1											
	<u> </u>		315 20m gy med dol, sandy ∠ 20°								Ì					
			118.00-118.15m irreg chert beds					[i				
120	ରମ୍ ହାର		118 70-119.50m thinly bedded dol hem banings stremotolitic									- 1				
	32223		120.75m chert													
			120.85-121.40m pale bin grey ers sandy 123.70m green/red blk clay mineral?							j						
125	<u></u>		massive med en stallized dot 2 20° en graded dot													
			-	Į												
ļ			127.45-50m hematite layer 127.80-128 50m mettled ors defamile	Í						1						
130		DOLOMITE														
ŀ	·L	OOLONITE	131.20m-fine grey dol.					1								
┟			132 Sóm-steeply or vertical fractured						1							
								1								
135		i	136 Cm													
Į			gry fine to med def. 138,30m- ineg, fracture with whity cin													
			whit to greenish ben													
140}-										1						
h	···· •		whit spore dist.	dol.					1							
45			med to five gay dat.													
╞			erea ezanic gaji ani.													
ļ_																
50			150.30m stop	1								1	1			

Fig. II - 1 - 2 (11) Geological logs for drill holes

0m-75m

.

~~~	NM-4			1								<u> </u>	<u></u>		m-7	
EPIH (m)	GEOLOGIC COLUMN	ROCK NAME	LITHOLOGICAL DESCRIPTION	VEIN ALT.	No.	SAVE From (m)	LE To (m)	Length (m)	Au	Ag	Cu	BC.A. Fb	Za	Cđ	Gı	
	·····	CULCEETE	u ha alar 'dala-'ra far a blad a			(m)	(10)	(m)	روغل	(ppm)	işçmi	ւենալ	ippar	(ppen)	IFFIN-	1 <u>156</u> 4
		CALCRETE	whit clay idolomize frag. blocks													
5	-		5.55m gy bedded dol.					ľ								
	~~~		sandy in part black grains													
		DOLOMITE	dark grey what banded dol. Z60'													
10	······		sall vuggy persons 12 50m thirdy bedded dark gry del.													
			14 20-,40m black shale frag.													
15																
	I		black stripes of argillaceous dol.													
20			19.00m open fracture' calcite, quanz 20.36m cavity	Qtz - Cal												
		SHALE	21.46-22.00m black calcareous shale bedding ∠39°													
		SHALE	22.00m orange Vanadium mineral? 24.00-24.57m blk shafe													
25																
ł			27.45-28 55m cave?													
30			Intercolated with 5-20cm thick chert												•	
			bonds ∠30° reddish to giy fine dol.													
35		CHERT	35.00m- whichert ∠45°												Ì	
_ (11111	CHENT	35.40-60.00m Percussion drill chip togging													
ļ	eard _		(brownish grey dolomite + chert)													
40	L					ĺ										
		DOLOMITE	(brewnish grey dolomite)													
45																
-	┰┸╾┰╡															
	╶┖──┰╌┖┨		(grey dolomite)										ł			
50																
			(dark grey orgilaceous dolomite											ł		
51			or shale)					-							1	
	<u></u>		ekter de state social sociales													
2 20 20		SHALE	(black shale >dolamite) bik sandy shale													
Ē		DOLOMINE	60.80m grey well bedded DOLOMITE thin chert beds 240-45													
4			64.50-65 80ns fractured core brittle													
65	<u></u>		66.80m v cia	Q12+												
			∠45° styledite and bediling	Cəl		ĺ										
70		1	estatized? bat HCLX	বর্তা										Ì		
┢			71 30m chort clasts sediment delichert bods 243°													
-	┯━╹━╏		74.30m fractured over 20cm													

Fig. II - 1 - 2 (12) Geological logs for drill holes

}

;

ŧ,

75m-150m

E9TH	GEOLOGIC	ROCK	LITHOLOGICAL DESCRIPTION	VEIN		SAND							45541			
(m)	COLUNN	NAVE		ALT.	No.	From (m)	To (m)	Lenga (m)	Ad Festa	Ag ippm³	Cu	85 19900	Za 'FP:n'	Cd	Ga	- 25
	TX		76 05-78.00m black shate		1									<u></u>		<u>"</u>
	X															
			79.50-80.00m fractured													
80		}	80 00m cavity crystol HCI O	1.												
	1 ×	Į	\$0.00-30.30m good fracture for minerali- sation	દગ												
			\$2 05-83.50m cavity													ŀ
		ĺ														
85	┟╌╍┠┰╼╼┉╶┸		well bedded dol "ppl chen 245"													ŀ
		1														ŀ
	<u>⊢</u> ⁄₂	1	87.65-99.55m brinle fractured zone dol.													
90	3133500 X	1	88 55-89.00m dot with eavisies grey dot with this cheet beds													
20	SELEC		calcitization	- 12												
			90.60-92.90m dck grey to wht sandy del													
	<u> </u>		dəl əlı 93.60m well tedded dol													
53	000		93 60-94.00m cream limestone HCLO													
	0 0 0-	J	dark grey dol, with druse													
		SHALE	weil bedded shale stripes 96 12-59,10m black shale													l
100	┝╌┲╼╼┛╌╌┰╴		dol with block and white stripe													
		DOLOMITE	101.65m ootisie beds 16cm thick \angle 30°	1	l I											1
		f .	103.20-104.70m													
			grey sandy dot "dolomitic blk shole well bedded													
105	-+		det sandy dol 2 20-30°		[
	<u> </u>		calcitized to small druse													
	4		107,25-109.65m black shale													
110			109,23-109.05m black \$85.c													
			112 45m													
			calcarcous shale with spot druses fine stripes HCl $O = \angle 20^{\circ}$		5-10	113.20						:				
		SHALE	massive dol. Eght grey to cream													Į
115																
1			117.00m bedded dol. 245°													
			118.80m druse abundant dolls 245													
	0 0 0 0		fille 3 with caloite													
129	~ ~		121.00m well bedded dat, with chert leases										1			
		DOLOMITE	partly distorted											1		
125																
	<u>~~~</u> ↓_		125,50-125,75m druse rich dot, block and													
			well bedded del. Z30'	1												
	┟┎╼╌┸╼╍┰┙		∠45*	1												
130			∠ 60°	1												
i			132.50-133,45m druse rich dol.													
			133,45-134,40m well bedded dol. pink!													
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		grey at. ∠ 45° argillaceous 134.40-136.70m druse dat.		N-03	133.60			·						i	
,	~ ~ ~		13+.40-130. (010 GLOVE GSC													
				1												
			133.00m-partly druse calcite fight cream braish grey dolomite													
1N	- <b>I</b>		fractured filled with delospor	ડન												
													1			
	· · · · · · · · · · · · · · · · · · ·					Í										
		SHALE	143.35in bedded dol.													
145			143.65-143.80m black shale 144.00-144.25m fractured													
			dol, with small druses											ł		
	~~ T		145.20-145.55m black shale	ser								Į	ľ			
150			ervity bedded dol. Z30°							1						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		148.15-150 60m chert intercalated dot.								Į	ŀ				
			with sericite layers													
- 1	,		150.60m STOP	i	l					1						

Fig. II - 1 - 2 (13) Geological logs for drill holes -43-

aquifer of groundwater.

85.40m-300.08m Dolomite

The dolomite is greyish white to grey and occasionally pale brown. The lithofacies are less variable except for thin beds of chert some centimetre to ten centimetre thick over the formation and beds of black to dark grey shale within the section from 92.40 m 94.90 m and around 153.50 m. The dolomite is massive or well bedded where the bedding planes cross the hole at 60 to 80 degree. It gives tiny bubbles against chloric acid. The stylolite develops over the massive facies from 210 m to 240 m deep. Along the undulating plane the thin argillaceous layer occurs including iron oxides. Grainite which is composed of medium to coarse grained dolomite underlies the shale.

ļ

()

 $\left\{ \right\}$

Onlitic dolomite occurring locally within the formation seems to have undergone silicification during the diagenesis stage. The small mound textures which seem to stromatolite were observed at around a depth of 296.0 m with onlitic texture. The formation may be correlated to T6 of the Tsumeb subgroup according to the overall lithological sequence.

The mineralisation occurs intermittently over 12 metres from 102 m to 114 m deep and from 212 m to 285m deep including principally sphalerite and galena in the form of pods, irregular network and dots associated with silicification in dolomite. The mineralisation is also restricted to the fine fractures at the proximity of the stylolite and is conformable to the bedding plane giving possible model of strata-bound type lead and zinc mineralisation.

Copper mineralisation includes a coveline-galena dot at 92.60 m and a green copper mineral at 285.50 m deep. Vanadium mineralisation basically overlaps the above mentioned mineralisation filling the young fractures with the characteristically green to orange-coloured showing.

MJNM-2

0.00m-60.96m Calcrete

The calcrete is white to pale brown and includes a large number of breccias less than 5 centimetre in diametre. The breccia is commonly dolomitic showing grey to reddish brown. The calcrete between 25 m and 37 m deep includes elongated cavities where crystalline calcite occurs. The water circulation was lost at 15.10 m deep.

60.96m-100.60m Dolomite

The formation is light grey and fine grained dolomite including white spots of dolospar. Local lenses of chert and silicified onlite are intercalated. The bedding planes are approximately parallel to the drill hole. A dot of green copper mineral is embedded in the thin bed of chert at 90.96 m deep.

100.60m-204.95m Shale

The formation is black shale rarely intercalated with red chert. The shale is identified with calcareous shale because of the reaction with chloric acid. The angle between the bedding plane and

drill hole varies from 10 to 20 degrees. The formation is fractured at around 111 m and 145 m deep to form argillaceous matter.

204.95m-300.30m Dolomite

The formation is composed of dark coloured coarse to medium-grained sandy dolomite with argillaceous intercalation and conglomerate at around a depth of 219 m.

At depth it changes to fine grained dolomite. Old crackled zone develops between 267.70 m and 285.25 m. The bedding plane runs almost parallel to the drill hole. No mineralisation was recognized.

MJNM-3

1

· ·

0.00m-12.00m Calcrete

The formation is grey to purplish brown and is sometimes stratified with vugs.

12.00m-150.30m Dolomite

The massive facies are dominant with thin beds of chert. The dolomite from 74.60 m to 76.45 m, from 94.20m to 100.60 m and from 120.85 m to 128.50 m shows medium grained sandy facies. Remarkable stromatolitic texture is recognized at around 50 m deep. The angle between the bedding plane and drill hole varies from 60 to 85 degrees. Mineralisation includes a dot of green cupriferous mineral which is associated with dolospar filling the fractures within dolomite at 36.64 m and a large grain of sphalerite at 63.10 m as well as descloizite film at 63.55 m.

MJNM-4

0.00m-5.58m Calcrete

The calcrete is composed of white argil and dolomitic gravels.

5.58m- 50.00m Dolomite

The formation is grey bedded or massive dolomite intercalated with black shale some ten centimetre thick and chert. The bedding plane gives 45 to 60 degrees with the drill hole. Orange coloured mineralisation in the form of veinlets at round 22 m deep is possibly vanadium.

50.00m-117.00m Dolomite/Shale alternate

The formation is composed of bedded dolomite, sandy dolomite, black shale and chert. Within the dolomite with black carbonaceous stripes, a large number of vugs which vary from 0.5 to 1.0 centimetre in diametre characterize the formation.

117.00m-150.60m Dolomite

The formation includes well bedded pale brownish grey dolomite with thin beds of black carbonaceous dolomite. The carbonaceous facies show stripe texture and are rich in vugs formed by dissolution. The formation is also characterized by pink coloured sericitic layers deeper than 133 m.

The bedding plane gives 45 to 60 degrees with the drill hole. No mineralisation was encountered.

II-1-5. Chemical assays

The mineralised cores were quartered using diamond blade and cut into samples more than 10 centimetre long. Each sample was prepared for chemical assay of eight elements including Au, Ag, Cu, Pb, Zn, Cd, Ga and V. The result is shown in the geological column sections as well as Table II-1-10. The analytical methods were atomic absorption method for Au, Ag, Cu, Pb Zn and Cd using Hitachi Z-6000 and Z-8100 (flameless) and absorbance optical density method for Ga and V.

 $\left\{ \cdot \right\}$

1

Ģ

Detection limit for Au and Ag is 1 ppb whereas that for Cu, Pb, Zn, Cd, Ga and V is 1 ppm. The cumulative length of the mineralised cores reaches to 9.16 metres, while the cumulative value of the mineralised lengths by assay values amounts to 2.125 metre×percent (m×%) for Pb and 3.461 m ×% for Zn with 5.586 m×% for Pb+Zn. Of the assayed samples, the mineralised sections which gave

more than 1 % are as follows.

111,58m-111,69m(0.11m)	Pb=1.45%	
112.30m-112.62m(0.32m)	Pb=4.52%	Zn=1.58%
245.75m-246.25m(0.50m)		Zn=1.76%
246.25m-246.65m(0.40m)		Zn=2.28%

Almost all Au assays are less than detection limit and the values over 1 ppb of Au come from the samples in which Pb and Zn are concentrated. Silver assays show a remarkable positive correlation with Pb assays with 19 ppm for a sample which assays 4.52 % Pb. Copper assays are approximately correlative to Pb and Zn assays as well with maximum value of 59 ppm. The relation between Pb and Zn is obscure. The one group shows considerably obvious relations while another group show deviant relations. Cadmium assays are definitely proportional to Zn content. Comparison with Tsumeb ore which contains 3% Zn with 400 ppm Cd in average, may indicate that the core samples show lower Cd content for Zn assays than Tsumeb ore. Gallium is less than detection limit for most of the samples. Vanadium is in order of some tens ppm with maximum assay of 57 ppm however, the assays are higher for the concentration of Pb and Zn compared to Tsumeb ore.

H-1-6. Lead Isotope Analysis

; **!** . .

()

-47-

Table II - 1 - 7 Microscopic Identification of Minerals in Thin Section

Remarks											
Minerals	Dol Cal			0	0		4		0		-
Secondary	Ser Qz Dol Cal		0	0		٢	0				0
21619nild			-								* *
γεεξεσελ	Hm Mt	*	4	4		4	⊲	4	4	4	×
Constituen Minerals	Qz Cal Dol Hm Mt Ap Zr	0	0	0	0	0		0	0	0 0 0	
	Qz C	٩	٩			0	0	⊲	٩	4	0
Rock Name		Shale	Sandy dol	Dolomite	Calcitizaiton	Oolite	Chert	Dol/Shale	Sandy dol	Calc shale	Argil
Depth (m)		141.00	242.80	246.00	212.00	102.10	196.00	210.50	218.40	113.20	182.39
Hole No.		I-MNNM	I-MNNM	I-MNIM	I-MNMM	I-WNWW	MJNM-2	MJNM-2	MJNM-2	MJNM-4	MJNM-2
Sample No.		S-01	S-02	S-03	S-04	S-05	S-07	S-08	S-09	S-10	S-12

©:abundant O:common ∆:rare *:trace

Abbreviations Q2:quartz Cal:caleite Dol:dolomite Hm:hematite Mt:magnetite Ap:apatite Zr:zircon Ser:sericite

()

ų

1

1

				Sulph	Sulphide mineral	neral	
				Primary	ک ک		Secondary
Sample No.	Hole No.	Depth(m)	Gn	Sp Ds Py	Ds	Py	CV
				-			
P-01	I-MNUM	O 91.6	0				*
P-02	I-MNIM	112.3	0	0		 	*
P-03	I-MNIM	141.63 💥	*	0			*
P-04	I-MNUM	246.25	0	0		*	*
P-05	S-MNNM-3	63.55			0		

Table II - 1 - 8 Microscopic Identification of Minerals in Polished Section

: /

!

©: abundant O: common X: poor abbreviations: Gn: Galena Sp: Sphalerite Ds: Descloizite Cv: Covelline Table II - 1 - 9 Result of X-ray Diffractometry

		Rensarks		<u>aun pat</u> v }				
	s	Galena		⊲			1	
rc L	Minerals	Pyrchotite		0.				
er O	Ä	Pyrite	[
Carbonate	als	Serussite)		4			
arbo	Minerals	olomite			0	0	0	0
Ű —	Σ	Calcite)				4	
-		əjidlA		 				
		K-Feldspar			<u> </u>	 		
		Quartz		0	0	0	0.	0
		ીંતાડ		 	 			0
Silicate Minerals		Hydrated halloysite		<u> </u>	 			
		Palygorskite		4	 	<u></u>	 	
		Kaolin						
		Sericite	<u> </u>	4			4	
	crals	Chlorite	4				٩	
	Clay Minerals	Sericite/Mont.						
	lay Ì	Chlorite/Mont.			 			
	Ü	stinoqs2						
		Montmonte	ı—					4
Minerals			Rock Name	Reddish argil	Sillicification	Dolospar	Dolospar + Sp	Scricitic dolomite
		səlqmıs	Depth	89.0 m	112.3 m	257.4 m	63.1 m	134.0 m
			Well No.	I-NWIW	I-NWIM	I-NWIW	S-NMUM	MJMN-4
	-		No.		~	ŝ	4	Ś

.

.

.

ŝ

i

--50--

	Sample	Hole	From	To	Width	CHEMICAL ASSAY (ppb for Au, ppm for others)							
No.	No.	No.	(m)	(m)	<u>(m)</u>	Au	Ag	Cu	РЪ	Zn	Cd	Ga	V
1	A-01	MJNM-1	101.86	102.26	0.40	<1	2.18	14	1710	851	4	<1	Ĺ
2	A-02	MJNM-1	104.01	104.41	0.40	<	0.50	6	154	107	<]	<1	- 49
3	A-03	MJNM-1	104.41	104.66	0.25	<1	0.50	30	605	244	1	<1	47
4	A-04	MJNM-1	106.70	107.00	0.30	<1	0.50	4	99	35	<1	<1	12
5	A-05	MJNM-I	110.81	110.94	0.13	<1	0.20	4	85	35	<1	<1	2:
6	A-06	MJNM-I	111.09	111.29	0.20	<]	1.49	7	374	139	2	<1	42
7	A-07	MJNM-I	111.58	111.69	0.11	<1	7.06	12	14500	1420	5	<1	
8	A-08	MJNM-1	112.30	112.62	0.32	<1	19.00	59	45200	15800	32	<1	<
9	A-09	MJNM-1	113.94	114.15	0.21	<1	0.60	5	161	43	<1	<1	l
10	A-10	MJNM-1	123.88	124,08	0.20	<1	0.30	8	136	226	<1	<1	2
11	A-11	MJNM-1	141.55	141.93	0,38	18	0.79	25	267	909	15	<1	2
12	A-12	MJNM-1	143.70	144.00	0.30	<1	0.89	9	150	3500	12	<1	1
13	A-13	MJNM-1	157.25	157.88	0.63	<1	0.70	8	128	49	<1	<1	Ľ
14	A-14	MJNM-1	158.08	158.78	0.70	<1	0.70	3	69	67	<1	2	1
15	A-15	MJNM-1	211.57	211.77	0.20	<1	2.10	8	102	302	2	1	13
16	A-16	MJNM-1	211.91	212.08	0.17	<1	1.80	11	147	998	5	<1	2
17	A-17	MJNM-1	213.00	213.15	0.15	<1	2.90	13	605	5710	21	<1	57
18	A-18	M/NM-1	217.15	217.30	0.15	<1	0.80	8	86	55	<1	<1	12
19	A-19	MJNM-1	222.60	222.85	0.25	<1	2.00	32	156	2300	10	1	
20	A-20	MJNM-1	223.07	223.67	0.60	<1	0.80	22	165	3160	15	<1	9
21	A-21	MJNM-I	242.76	242.97	0.21	<1	5.49	16	4280	179	3	<1	3
22	A-22	MJNM-1	245,75	246.25	0.50	<1	4.00	29	1990	17600	46	1	8
23	A-23	MJNM-1	246.25	246.65	0.40	13	4.57	20	781	22800	74	<1	13
24	A-24	MJNM-1	246.92	247.17	0.25	2	1.69	13	172	6110	24	1	2
25	A-25	MJNM-1	258.95	259,50	0.55	<1	3.48	19	353	7610	29	<u> </u>	30
26	A-26	MJNM-1	263.20	264.04	0.84	<1	1.39	6	539	137	<1	1	36
27	A-27	MJNM-I	268.10	268.20	0.10	<i< td=""><td>0.79</td><td>4</td><td>114</td><td>49</td><td><1</td><td>1</td><td>20</td></i<>	0.79	4	114	49	<1	1	20
28	A-28	MJNM-1	271.50	271.58	0.08	<1	7.25	18	4960	183	1	<1	13
29	A-29	MJNM-1	273.64	273.69	0.05	<1	5.46	7	4870	33	<1	<1	13
30	A-31	MJNM-I	185.93	186.07	0.14	1	0.60	5	85	72	<1	<1	13

Table I - 1 - 10 Result of Chemical Assays

()

· ,

L I

.

II-1-7. Discussion

11-1-7-1. Mineralisation

Lead and zinc mineralisation similar to that of MJNM-1 is reported to occur throughout the Otavi Mountainland area The occurrences as described in previous exploration reports are listed below. The heading number corresponds to those in Fig.N-3-1.

(I)

1. . ,

(1). Harasib 317- Nosib block III 655

Lead -zinc occurrences hosted by the Elandshoek Formation are present on the farm Harasib 317 and three smaller deposits of the same type occur on the farm Nosib Block III 655. One of these prospects is situated on the southern limb of a syncline and consist of a brecciated zone within the Elandshoek Formation dolomite. Mineralisation intersected by diamond drilling assayed from 0.1 to 8.0% lead, and 0.1 to 5.7% zinc over widths ranging from 1.0 to 6.0 m.

(2). Nosib block III 648

Disseminated galena and sphalerite are exposed in a prospecting shaft in the Karuchas zone of the Elandshoek Formation. Underground prospecting showed vanadium ore averaging 7% lead and up to 13.5% zinc.

(3). Driehoek 768-Gauss 46

These farms, situated about 15 km north of Kombat and a number of lead-zinc occurrences are present on them. Concentrations of up to 3% were intersected within the uppermost 65 m of a biohermal dolomite of the Abenab Subgroup.

(4). Border prospect

This prospect is situated in the southeast of Nosib Block III 655. This area is underlain by a lower dolomite, a fine-grained limestones and an upper massive, quartz-rich dolomite. The main ore minerals are sphalerite and galena with minor chalcopyrite and very minor tetrahedrite and pyrite. The mineralisation occurs within highly brecciated zones and ore and gangue minerals fill the interstices of the fragments. The mineralised zones are stratigraphically controlled and occur principally in the upper, massive dolomites. The mineralisation control is modified by jointing striking north-northwesterly. A reserve of 30 million t at a cut-off grade of 5.8% lead and zinc combined has been calculated.

(5). Olifansfontein 9

A number of lead-zine occurrences in different geologic settings are present on this farm. They occur on both limbs of the Harasib-Olifansfontein syncline and notably in the Elandshoek Formation.

The six major prospects are described briefly below:.

South Ridge Prospect: A diamond hole intersected 1 m of patchy galena mineralisation at a depth of 200m at the upper contact of unit B.

Pickaxe Prospect: A number of trenches revealed high-grade pockets of galena and sphalerite, accompanied by descloizite in massive dolomite of the Elandshoek Formation. Mineralised quartz veins show the same mineral assemblage.

Tiger Tunnel Prospect: Mineralised zones totaling 43 m in thickness and averaging 0.3% lead and 3.2% zinc were intersected in a diamond drill hole at depths between 120 and 200 m. The zinc mineralisation occurs as smithonite and zincite.

Butterfly Prospect: Patchy concentration of galena and sphalerite occur immediately below a zone of stratiform stromatolite and chert concretions. Patches of chalcocite and malachite occur within quartz veins.

Dogleg Prospect: A prominent clast-supported mineralised breccia occurs here.

Hambone Prospect: Mineralisation is associated with a prominent lithological break in the dolomites along the limestone/dolomite interface of the Maieberg Formation.

No characteristic structures such as karst breccias and sand pipes which are associated with the Tsumeb and Kombat-type ore deposits, were intersected by MJNM-1 hole. The mineral assemblage may also suggest that the mineralisation is of different type from that of Tsumeb and Kombat. Detailed observations of the mineralised sections of cores and observations under microscope revealed that the lead and zinc minerals are associated with fine chalcedonic quartz which has formed in separate stages. It is thus believed that the mineralisation is of classic Mississippi Valley-type which implies mineral precipitation at comparatively low temperature during diagenesis. Schematic mineralised sections are shown in Fig.II-1-5. The sketches indicate that galena and sphalerite occur as fillings in microfractures, subparallel to the stylolitic planes. Microfractures cutting the stylolitic planes are rare and intermittent. It is therefore suggested that the mineralisation appears to be restricted to a specific stratigraphic horizon or lithofacies.

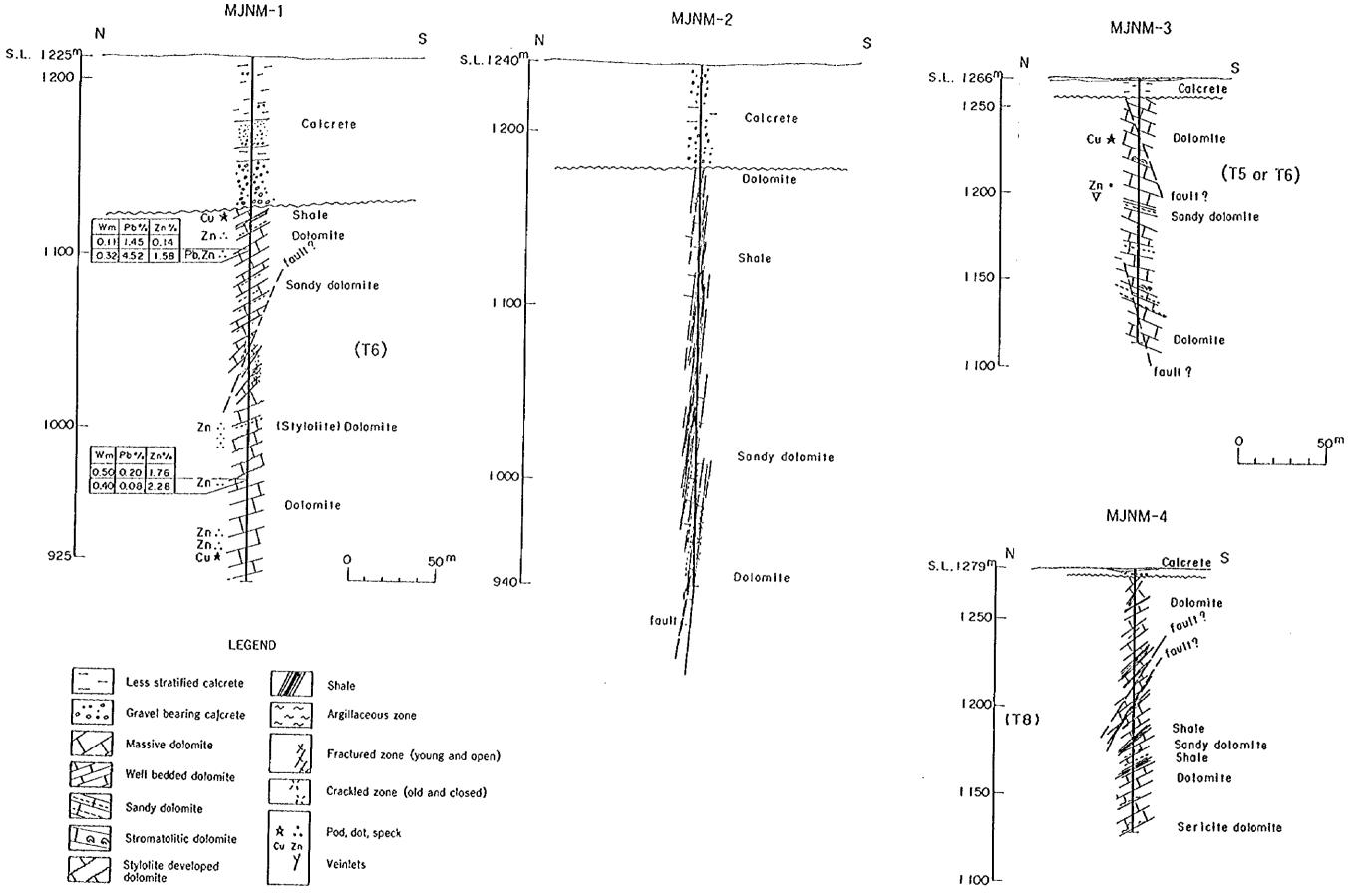
()

í,

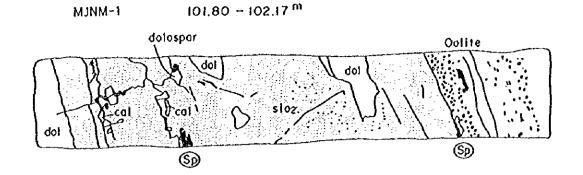
The occurrences related to the strata-bound MVT are hosted by dolomites of the Gauss Formation, Abenab Subgroup through to the Huttenburg Formation of the Tsumeb Subgroup. Most frequently these occur within the Elandshoek Formation of middle Tsumeb Subgroup. Combined lead and zinc ore grade of the occurrences varies from less than 5 % to 10 %. In the recent years ore reserve estimates and a feasibility study was done on one prospect only, but the results obtained were negative. However, the known zone of MVT type occurrences covers the Khusib Springs copper deposit which has been recently developed. The mineral assemblage of this deposit, which consists of chalcocite, tetrahedrite, chalcopyrite and pyrite indicates that the deposit is obviously different from MVT deposit. It is thus possible that in the survey area, both copper ore deposits and MVT deposits could occur in close proximity.

II-1-7-2. Structural geology

The interpretation of subsurface geological structure is difficult due to the limited outcrop. The only outcrop occurs in the vicinity of the drill hole MJNM-4. However, the geological structure around drill holes, which is inferred from the angles between drill cores and the beds, is conformable to that deduced from the airborne magnetic lineaments. MJNM-1 is located at the synclinal axis plunging west and MJNM-2 is situated in the south limb of a synclinorium which is also transected by some faults. Steeply dipping formations were recorded in this borehole. MJNM-3 and MJNM-4 are situated respectively on the northern and the south limbs of the same synclinorium.

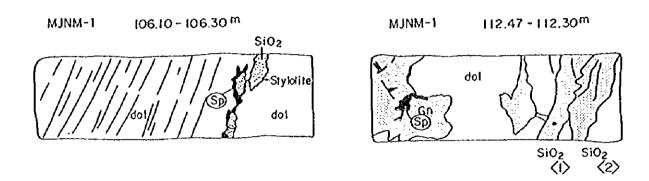

. 1

• }


2

The MVT deposits and the Khusib Springs copper deposit are hosted in the dolomites of the Abenab and Tsumeb Subgroup which form the Harasib-Olifantsfontein syncline. The eastern extended of this syncline seems to have lesser ore potential as the syncline is plunging westwards. The aeromagnetic survey indicates a shallow depth to basement in this area which means that overlying Damara sequence rocks are thinner. The Tsumeb syncline which hosts the Tsumeb deposits probably extends to the east. Based on the geological map and aeromagnetic anomaly map, the orientation of the fold axes is seen to change towards the east-northeast and back to the east again. The Tsumeb deposit is located in the fold axis and the Abenab ore deposits in the south limb of the syncline. Based on the combined interpretation of the resistivity and aeromagnetic anomalies, the eastern extension of the syncline, in the vicinity of boreholes MJNM-1 and MJNM-2 is targeted for additional drilling during Phase III.

-56---



.Fig. II - 1 - 4 Geologic cross section of drill holes

Ę

ţ

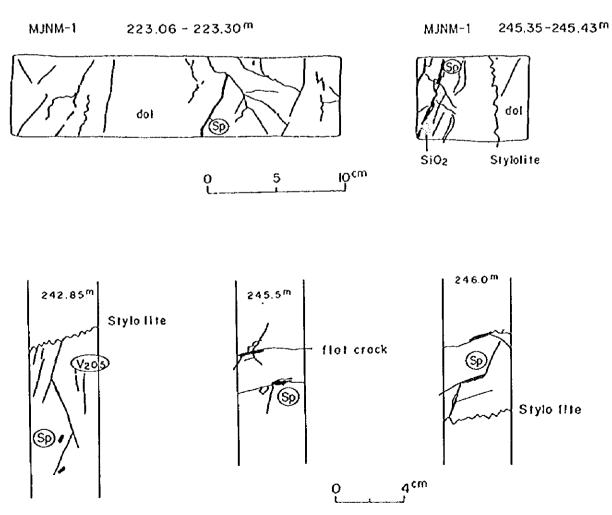


Fig. II - 1 - 5 Sketch of mineralised cores -59-