APPENDIX-5 METEOROLOGY

Appendix A-5.1 Metcorology at NARS

Table A-5.1.1 Mean Daily Temperature at NARS

Day		2	3	4	5	6	7	8	9	10	I.	12	13	14	15	6	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Vie
15																																
Ju																		24.5	29.5	30.2	29.3	25.7	26.5	26.5	25.9	26.0	25.5	26.1	25.6	25.6	25.8	26.6
Aug	22.5	26.4	26.2	25.6	24.9	25.4	25.9	29.7	34.2	34.3	30.5	29.6	31.2	26.3	25.9	26.5	27.0	27.2	26.5	27.5	28.9	29.8	30.0	27.4	29.6	28.0	31.1	28.0	28.8	28.5	26.1	28.0
Sep	27.2	27.9	27.9	28.9	31.7	731.9	31.0	31.0	31.3	30.7	32.2	29.8	27.1	27.3	27.7	29.3	30.6	30.8	27.0	28.2	27.8	29.0	30.1	30.9	30.1	30.4	30.1	31.2	30.2	30.1		29.6
Oct	29.5	28.3	22.3	38.4	35.0	O 34.0	33.2	NA	36.7	33.9	33.0	33.3	32.6	31.9	33.2	34.1	32.2	33.0	34.1	34.4	33.3	32.9	26.7	29.7	31.4	31.7	NA	NA	VA	NA	31.9	32.3
Nov	28.3	26.9	27.6	27.5	27.5	- 29.8	29.3	28.2	29.0	25.9	26.6	32.3	27.9	28.3	26.4	28.1	21.4	NA	27.7	24.4	23.7	20.9	22.4	25.0		26.7						
Dec	25.5	23.8	25.5					22													24.9	25	20.2	23		236		2	,		NA	24.
1996																																
Jan	NA	A		23.2	19.1	18.1	23.	26.9	25.9	27	27	$2 ?$	23	24	26	24	22	26	NA	NA	NA	24.2										
Feb	NA	24.1	25.9	25.3	25.2	26.3	26.3	26.7	27.5	25.7	23.2	23.6	20	17	16	15	15	NA	23	22			22.7									
Ma	23	24.1	24.8	21.8	19.7	20.1	22.8	23.5	23.8	24.1	20.6	20.6	NA	22.																		
Apr	NA	NA	NA	NA	NA	NA	37.2	33.6	34.1	31.3	33.8	31.0	27.5	NA	24.1	26	27	31	28	26	27	30	26	25		29.3						
May	NA	32.8	30.0	25.6	23.9	28.7	NA	27.8	32.0	20.7	NA	NA	NA	31.5	28	29.2	26.7	27.6	27.3	24.3	30.2	35.1	35.9	32.8	29.5							
Jun	30.6	29.4	30.8	35.6	24.5	35.5	35.9	35.5	35.9	34.4	22.8	21.1	24.4	25.7	26.6	28.4	28.4	28.7	29.	28.6	27.3	27.3	27.3	22.8	31.7	27.8	27.8	27.1	27.5	27.5		29.2
Jui	27.7	26.9	26.4	27.8	28.0	27.8	29.1	29.8	29.7	27.5	28.1	26.5	27.3	27.0	27.1	29.5	32.1	32.7	34.8	34.2	34.5	34.0	32.2	31.9	32.4	31.6	30.8	30.2	30.7	29.9	26.5	29.8
Aug	32.5	32.0	31.8	32.8	32.2	30.7	31.0	33.2	34.0	34.3	35.1	34.6	33.8	33.2	33.0	33.2	32.7	32.6	$33: 9$	31.6	31.6	31.3	28.7	27.9	28.5	29.3	31.1	32.4	30.9	32.4		32.0
Sep	27.8	27.6	28.3	26.8	27.2	28.6	28.9	28.8	29.1	28.7	28.6	31.0	32.3	33.2	32.0	32.8	32.3	32.6	32.6	31.6	31.3	30.7	29.2	28.5	26.8	26.8	28.2	29.6	30.0	28.1		29.7
Oet	28	29	28	28.6	27.7	726.8	26.9	24.2	. 8	25.3	25.	. 3	25.0	23.5	24.1	25.7	25.1	25.5	26.1	23.9	28.3	26.3	25.3	23.7	23.6	23.2	24.1	24.6	18.0	NA	NA	25.

\footnotetext{
Table A-5.1.2 Mean Daily Relative Humidity at NARS

Table A-5.1.4 Daily Gust Maximum Wind Speed at NARS

Table A-5.1.5 Mean Daily Solar Radiction at NARS

Tabie A-5.1.6 Mean Daily Sunshine Duration at NARS:

Appendix A-5.2 Meteorology in South Oman

Table A-5.2. Climatological Condition at Salalab
Alitute: $\quad 21.78 \mathrm{ml}$ Lat: $\quad 17.03 \mathrm{~N}$ Lon.: 54.08 E

Descritions	unit	Jan.	$\mathrm{Fe}{ }^{\text {a }}$	ATar	Apr	May	Jun	Jul	Au8	Sep	Oct	Nov	Dec	Total	Meai	Max	Min
Icmperature																	
Mean-Mean	C.	23.0	24.1	25.9	27.9	29.4	29.4	26.4	25.2	263	26.7	26.2	24.4	\cdots	262	23.4	23.0
Mcan-Max	CO	263	27.2	293	30.9	31.6	33.0	29.1	27.7	28.8	303	30.6	28.9	\cdots	29.5	33.0	263
Mcan-Min	CO	19.2	20.8	22.6	24.9	27.0	27.2	24.4	23.4	23.7	22.9	22.2	19.7	\cdots	232	27.2	19.2
Extreammax	CD	323	33.8	367	436	42.3	44.7	33.0	31.0	32.2	40.1	37.4	34.2	\cdots	36.8	44.7	31.0
Extreand-Min.	CD	11.0	150	18.0	21.3	24.0	220	21.0	19.4	16.5	16.0	14.1	17.6	\cdots	180	24.0	11.0
Retaliveliumidity																	
Mear-Mean	\because	52.5	56.8	62.2	69.1	75.2	80.4	88.4	90.0	80.8	66.5	54.9	52.8	\ldots	69.1	90.0	52.5
Mean-Max	\%	73.7	77.9	79.0	80.9	82.9	88.9	95.8	97.2	930	81.8	71.2	73.7	\cdots	830	972	71.2
Mean-Min.	$\%$	192	18.0	28.4	41.6	61.3	63.4	75.1	79.9	65.8	405	27.1	23.4		453	79.9	180
Eviream-Max	$\%$	950	980	97.0	99.0	99.0	99.0	1000	1000	100.0	88.0	90.0	98.0	\cdots	97.8	1000	90.0
Extream-Min.	$\%$	10	4.0	50	5.0	6.0	40	10.0	580	240	7.0	6.0	6.0	\cdots	11.3	58.0	1.0
Wios																	
Prevaling Dircelion	Des	1716	189.0	185.5	1919	199.9	2028	1912	195.5	195.3	189.0	154.5	91.5	…	179.8	2028	915
Specdincan	Kinos	63	6.0	55	58	6.1	7.7	5.8	55	5.7	46	4.5	6.2	\cdots	58	7.7	45
	m'ses	28	2.7	25	26	2.7	3.4	2.6	2.5	25	2.1	2.0	2.8				
Spred, Max Gust	Knos	352	323	295	24.7	23.1	23.5	20.9	20.7	23.1	20.4	25.5	31.5		25.9	35.2	20.4
	m'sec	15.7	14.4	132	110	10.3	105	9.4	9.3	10.3	9.1	11.4	14.1				
Trecipitation																	
Monthy Total	mm	3.9	14.4	4.4	205	3.6	55	26.4	28.9	4.9	0.0	0.3	13	-..	9.5	289	0.0
Maxmum 24 hr	mm															0.0	00
Cramiation (PICHEs)																	
Nscan	mid	11.7	9.5	8.4	6.9	6.6	4.8	2.3	1.9	4.0	6.3	9.0	11.5		6.9	11.7	1.9
Arax	radd	30.7	28.9	27.3	16.8	9.8	8.6	4.6	3.7	65	11.5	17.8	26.7		16.1	30.7	3.7
Asin	mid	$\overline{4} \overline{0}$	3.7	4.1	37	4.2	2.4	0.7	0.4	1.5	4.0	4.9	4.3	…	53	4.9	0.4
Sotion Levipressure																	
Mean	MPI	1014.7	10132	1017	1009.1	1006.5	1002.1	10018	1002.4	10059	1010.5	1012.9	1014.7		1008.7	1014.7	1001.8
Afay	$b \mathrm{~F}$:	1020.0	1018.4	10168	10142	10113	1007.1	10059	10056	1011.3	10153	1017.6	10193		10136	1020.0	1005.9
$\lambda \sin$	Na_{2}	10095	1008.1	1003.9	10042	1000.8	997.0	998.8	998.0	1000.1	1005.0	1907.4	1009.7		10035	1009.7	996.8
Vapar Rresswr																	
Arean	HP_{2}	153	16.9	205	257	304	326	30.1	28.7	27.4	23.5	18.7	16.6		23.9	32.6	15.3
Max	hps	25.3	262	284	33.2	36.3	37.1	34.4	320	31.6	305	29.1	26.7	-	30.9	37.1	253
Min	hip	2.9	25	3.6	8.1	12.7	213	23.3	250	21.3	10.4	6.6	7.4	\cdots	12.1	250	23
Sun Shine lbous																	
Mean	br	9.4	9.1	9.6	10.	108	66	1.6	15	5.7	10.1	10.1	9.6		7.8	10.8	1.5
Max	h.	105	108	109	11.8	12.0	112	7.0	6.9	103	11.0	10.8	10.3		103	12.	6.9
Mi:\%	Br.	4.4	3.7	35	451	7.7	0.1	0.0	0.0	0.0	7.1	5.4	5.1		3 s	7.7	0.0

Table A-5.2.2 Climatological Condition at Thumrait
Althute $: 448.0 \mathrm{~m}, \quad$ Lat. $: 1740 \mathrm{~N}$ Lon. 5402 E

Descritions	unit	Jan.	Feb	Mar	Apr	May	Jun	Jol	Aug	Sep	Oct	Nov	Dec	Tolal	Mean	Max	Min.
Temperature																	
Mean-Mean	C. D	- 18.6	21.1	24.6	28.1	31.1	32.2	29.6	29.5	29.0	26.7	23.2	19.9		26.1	32.2	186
Mean-Max.	CD	25.0	27.3	31.4	34.7	38.3	392	36.6	37.3	36.1	33.8	29.0	25.4		32.8	39.2	25.0
Mean-Min:	CD	11.2	14.5	18.1	16.5	20.8	24.9	24.6	23.8	22.7	19.8	16.5	13.1	...	18.9	24.9	11.2
Extram-Max	CD	33.2	35.0	38.6	41.0	43.8	45.0	45.0	46.0	43.8	40.0	34.4	330		39.9	46.0	33.0
Extrean-Min.	C.D	6.0	8.7	13.2	16.6	19.4	21.0	19.0	17.0	12.0	9.0	5.0	13.8		13.4	21.0	5.0
Relative llumidit																	
Mean-Mean	\%	53.2	51.1	45.6	41.4	42.4	45.5	9.8	7.1	4.5	40.4	46.2	53.8		48.8	59.8	40.4
Mean-	\%	72.5	73.6	67.2	63.6	62.	66.1	14.0	72.3	70.2	62.6	67.3	72.4		68.7	74.0	62.6
Mcan-	\%	30.4	27.0	21.7	20.5	17.3	15.8	34.2	297	22.8	17.9	25.5	32		24.6	34	15.8
Exite	\%	100.0	100.0	1000	100.0	97.0	980	100.0	98.0	96.0	95.0	100.0	1000		98.7	1000	95.0
Extcram	\%	4.2	3.3	2.0	2.0	4.0	1.0	30	3.0	4.0	2.0	4.0	12		3.7	12.	1.0
Wind																	
Prevailing	Deg.	150.0	1500	162.9	171.4	1800	180.0	180.0	171.4	162.9	175.7	98.6	120.0		158.6	180.0	98.6
Speed, Mean	Knot	7.3	10.0	11.7	11.1	12.1	13.6	20.0	17.4	120	8.6	6.4	7.1		11.5	20.	6.4
	m/sec	3.3	4.5	5.2	5.0	5.4	6.1	9.0	7.8	5.4	3.9	9	3.2				
Specd, Max. Gust	Kno	27.8	34.7	38.1	33.6	31.6	34.8	38.5	40.1	31.2	29.4	25.2	25.3		32.5	40.1	25.2
	n'sec	12.4	15.5	17.1	15.0	14.1	15.5	17.2	17.9	14.0	13.1	11.2	11.3				
Precipitaion																	
Monthly Total	mim	0.5	6.4	19	15.8	0.0	8.7	00	5.0	0.0	0.2	0.0	$\bigcirc 0.4$		47	195	0
Maxmun 24 hr .	mm	0.4	2.6	26.5	12.9	0.0	12.9	0.0	1.9	0.0	0.3	0.0	0.5	…	4.8	26.5	0.0
Evaporation (PI CIE's)																	
Mean -	mil	8.7	10.9	14.9	17.2	19.5	19.1	15.8	16.0	15.7	160	11.8	8.9		14.5	9.5	8.7
Ma	mi/d	12.9	16.8	24.4	24.5	26.9	29.0	22.8	24	23.6	23.1	178	12.3	-	21.5	29.0	12.3
Min	mi/d	5.1	5.5	7.9	9.2	13.0	11.5	11.3	10.9	9.7	95	7.4	5.7	\cdots	8.	13.	5.1
Station Level																	
Mcan	hpa	9665	964.6	962.4	960.5	957.5	952.8	9508	9517	956.3	961.8	985.1	966.6	- \cdots	959.7	966.6	
Max	hPa	9735	971.9	969.6	966.4	${ }^{9628}$	958.1	955.3	956.7	962.4	967.5	970.1	972.7 960.9	-	965.6	973.5	
Min	hpa	9598	958.3	956.0	955.0	951.8	948.1	946.4	947.3	950.9	955.9	960.5	960.9	-	954.2	960.9	916.4
Vapor Pressure																	
Msan	hP	11.1	12.1	12.6	13.9	16.5	18.5	22.4	20.9	17.3	12.5	12.0	206		15.2	22.4	11.7
Max	hPa	19.7	20.9	23.1	25.6	28.6	30.2	28.2		26.4	23.8	21.5	20.6		24.7	0.2	27
Min	hPa	3.6	[3.1	3.1	3.9	4.0	2.7	61	6.2	4.6	2.9	4.6	4.8		4.	6.2	2.7

Table A-5.2.3 Mean Daily Tempcrature at Dauka

Table A-5.3.1 Mean Monthly Terpersture $\left({ }^{\circ} \mathrm{C}\right)$ at NARS and other selected locations in the Nejd Region

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Alean	Max	A in
NARS															
1995							26.6	28.0	29.6	32.3	26.8	24.2	27.9	32.3	24.2
1996	24.2	22.7	22.4	29.3	29.5	29.2	29.8	32.0	29.7	25.4			27.4	32.0	22.1
Dauka															
1995							36.0	31.9	34.3	29.8	24.2	24.7	30.7	36.0	24.2
1996	21.1	19.9	33.3	38.1	39.2	33.0	35.1	32.6	30.7	27.2			31.0	39.2	19.9
Salalah															
1995	23.3	24.1	25.9	27.9	29.4	29.4	26.4	25.2	26.3	26.7	26.2	24.4	26.3	29.4	23.3
1996	24.0	24.1	26.9	28.1	29.5	29.0	25.7	23.8	25.9				26.3	- 29.5	23.8
16 year averag	23.0	24.1	25.9	27.9	29.4	29.4	26.4	25.2	26.3	26.7	26.2	24.4	26.2	29.4	23.0
Thumrait															
- 1995	19.2	21.6	23.6	27.1	30.9	32.1	31.2	29.1	29.6	27.3	22.7	20.8	26.3	32.1	19.2
1936	20.3	21.1	24.6	28.1	29.3	29.4	28.0	' 26.9	28.6				26.3	29.4	20.3
16 year average	18.6	21.1	24.6	28.1	31.1	32.2	29.6	29.5	29.0	26.7	23.2	19.9	26.1	32.2	18.6

Table A-5.3.2 Mean Monthly Relative Hutidity (s) at NARS and other selected locations in the Nejd Region

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aus	Sep	Oct	Nov	Dec	Mean	Max	Min
NARS															
1995							53.5	53.6	42.0	40.7	39.0	56.9	47.6	56.9	39.0
1996	53.9	50.5	57.2	30.0	39.7	50.1	55.3	41.2	50.7				47.6	57.2	30.0
Dauka															
- 1995								41.1	28.2	21.8	25.0	39.7	31.2	41.1	21.8
1996	35.5	36.7	37.9	35.7	35.0	56.7	60.2	39.4	28.1	35.0			40.0	60.2	28.1
Salclah															
1995	53.7	60.8	62.8	65.4	74.3	82.7	88.4	93.3	82.3	67.0	52.5	63.6	70.6	93.3	52.5
1996	61.7	59.0	63.5	68.1	76.5	85.6	91.9	93.0	83.2				76.4	93.0	59.0
16 yeer average	52.5	56.8	62.2	69.1	75.2	80.4	88.4	90.0	80.8	66.5	54.9	52.8	69.1	90.0	52.5
Thumrait															
1995	46.4	47.6	50.8	44.1	30.7	39.8	45.3	59.3	42.2	39.7	38.2	59.9	45.3	59.9	30.7
1995	51.9	48.3	51.7	37.0	51.1	60.6	63.3	61.7	47.7				53.3	63.3	37.0
16 yeer Everagu	53.2	51.1	45.6	41.4	42.4	45.5	59.8	57.1	49.5	40.4	46.2	53.8	48.8	59.8	40.4

Table A-5.3.3 Monthly Average Wind Speed (m / s) at NARS and other selected locations in the Nedd Region

Month	Jan	Peb	Mar	Apr	May'	Jun	Jul	Aug	Sep	Oc	Nov	Dec	Mean	Max	Min
NARS															
1995							5.5	6.3	3.5	2.8	1.9	2.1	3.7	6.3	1.9
1996	2.6	2.3	4.5	2.7	4.3	4.6	6.4	5.9	3.4	3.0			4.0	6.4	2.3
Salalah															
1995	3.2	2.9	2.7	3.1	2.9	3.5	3.2	2.7	3.0	2.4	2.5	2.5	2.9	3.5	2.4
1996	3.0	2.6	3.2	2.8	3.8	3.8	3.0	2.5	2.7				3.0	3.8	2.5
16 year avarage	3.2	3.1	2.8	3.0	3.1 '	4.0	3.0	2.8	2.9	2.4	2.3	3.2	3.0	4.0	2.3
Thumrait							.								
1995	3.0	5.1	4.9	6.0	5.4	7.0	8.3	9.6	5.6	4.3	3.1	4.5	5.6	9.6	3.0
- 1996	3.3	5.5	7.2	5.7	8.4	7.8	11.5	9.9	6.0				7.3	11.5	3.3
16 year avtrage	3.8	5.1	6.0	5.7	6.2	7.0	10.3	9.0	6.2	4.1	3.3	3.7	5.9	10.3	3.3

Tabte A-5.3.4 Monthly Gust Maximum Wind Speed (m/s) at NARS and other selected locations in the Nejd Region

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Ott	Nov	Dec	Mean	Max	Min
NARS															
1995							19.0	16.5	13.8	13.8	11.8	12.0	14.5	19.0	11.8
1996	14.8	13.0	18.0	12.5	15.0	17.2	15.6	17.6	13.1	13.4			15.0	18.0	12.5
Salalah															
1995	14.4	15.9	15.9	12.9	11.3	14.4	10.8	13.4	9.3	10.3	10.3	17.5	13.0	17.5	9.3
1996	15.9	15.4	13.9	11.3	14.4	12.3	10.8	9.3	10.3				12.6	15.9	9.3
16 searaverage	18.1	16.6	15.2	12.7	11.9	12.1	10.8	10.6	11.9	10.5	13.1	16.2	13.3	18.1	10.5
Thumrait.															
1995	12.3	14.4	16.5	17.5	15.4	16.5	18.5	19.0	13.9	14.4	10.8	14.9	15.3	19.0	10.8
1996	17.5	17.0	22.6	14.4	15.9	15.9	20.6	20.6	15.9				17.8	22.6	14.4
16 yeuraverase	14.3	17.9	19.6	17.3	16.3	17.9	19.8	20.6	16.1	15.1	13.0	13.0	16.7	20.6	13.0

Table A-5.3.5 Prevailing Wind Direction at NARS and other Selected Locations in the Nejd Region

Month	Jan	Feb	Mar	Ajr	May	Jun	J[1]	Aug	Sep	Oct	Nov	Dec	Year
NARS													
1995							S	S	S	ENE	NE	SE	S
1996	E	E	S	S	S	S	S	S	S	ENE			S
Salalah													
$\therefore 1995$	S	S	S	SSE	SSE	SSE	ESE	SE	S	SSE	S	S	S
1996	SSE	SSE	SSE	SSE	S	S	SSE	SSE	SSE				SSE
16 year averase	S	S	S	SSW	SSW	SSW	S	SSW	SSW	SSE	S	E	S, SSW
Thumtait													
$\therefore 1935$	SSE	S	SSE	SSE	SSE	S	SSW	SSE	SSE	SE	SSE	SSE	SSE
1996	ESE	S	SSE	SSE	SSE	S	SSE	SSE	SSE:	SSE			SSE
16 year surase	SSE	SSE	SSE	S	S	S	S	S	SSE	S	E	ESE	S

Table A-5.3.6 Daily Mean Solar Radiation ($\mathrm{MJ} / \mathrm{m}^{2}$ day) at NARS

Month	Jan	Feb	Mar	Apr	May.	Jun.	Jul	Aug.	Sep	Ott	Nov	Dec	Mean	Max	Min
1995							18.55	20.98	NA	16.06	16.071	14.66	17.26	20.98	14.66
1996	$N A$	NA	18.73	21.43	$21: 20$	21.09	18.83	20.31	20.35	18.59			20.07	21.43	18.58

Table A-5.3.7 Daily Mean Sunshine Duration (Mrs) at NARS

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean	Max	M: ${ }^{\text {n }}$
1993							12.1	12.2	NA	11.0	10.8	10.7	11.4	12.2	10.7
1996	NA	N	11.3	12.0	11.8	12.5	12.3	12.3	11.7	11.4			11.9	12.5	11.3

Table A-S.3.8 Daily Eyaporation Rate (mm/day) measured at NARS and other selected locations in the Nejd Region

Month	Jan	Pob	Mar	Ar	May	Jon	10	Aus.	Sep	Oct	Nov	Dec	Mean	Max	Min	Arinual
NARS															:	
1993										10.5	6.9	5.4	7.6	10.5	5.4	
1996	6.4	7.0	10.0	13.6	14.1	12.3	13.1	14.2	11.9	10.5			11.3	14.2	6.4	3828.7
Shalah																
1995	13.6	11.7	9.8	9.1	7.1	5.0	13.6	1.6	4.2	7.0	10.9	8.2	8.5	13.6	1.6	3096.4
1996	10.0	8.8	8.1	7.8	6.2	4.1	2.1	1.5	3.8		:		5.9	10.0	1.5	2137.3
16 raramerase	11.7	9.5	8.4	6.9	6.6	4.8	2.3	1.9	4.0	6.3	9.0	11.5	6.9	11.7	1.9	2521.5
Thumat \%																
1995	8.9	11.2	106.0	13.6	19.2	18.7	16.9	12.9	15.4	15.4	11.4	7.9	21.5	106.0	7.9	4930.5
1996	8.2	10.0	11.4	17.3	14.5	12.0	12.8	11.6	14.8				12.5	17.3	8.2	4566.6
Wyarawase	8.7	10.9	14.9	17.2	19.5	19.1	15.8	16.0	15.7	16.0	11.8	8.9	14.5	19.5	8.7	5307.7

A $5-8$

APPENDIX-6 WATER USE

Appendix A-6.1 Groundwater Consumption at NARS
Table A - 6.1(1) Record of Groundwater Consumption (from NJD2 \& NJDA - 1995)

Table A-6.1(2) Record of Groundwater Consumption (from NJD2 \& NJD4-1996)

Table A-6.1(3) Record of Groundwater Consumption (from NJD2 - 1995)

Table A-6.1(4) Record of Groundwater Consumption (from NJD2 - 1996)

Table A-6.1(5) Record of Groundwater Consumption (from NJD4-1995)

Table A-6.1(6) Record of Groundwater Consumption (from NJD4-1996)

Appendix A-6.2 Water Use for Center Pivot
Table A - 6.2(1) Record of Water Application at Center Pivot (1995)

											unit: x	
Duse	J3n	Fes	Mar	Apr	May	5	J17	Avg	Sep	Oct	Nov	Dec
1	221		226	216	206	231	358	203	0	301	285	205
2	234	150	$21)^{\circ}$	221	280	$2 \mathrm{~N}^{-}$	85	385	0	-303'	247	222
3	36	130	0	285	278	156	0	362	192	-303	235	535
4	0	220	0	25	278	$168{ }^{\circ}$	211	355	362^{-}	351	152	241
5		112	0	226	280	190	133	365	307	281	525	235
6		220	235	236	215	0	358	355°	207	255	-125	238
7		212	239	0	280	0	152	374	201	0	123	238
8		114	339	288	278	0	331	355°	192	285	284	235
$\$$		221	359°	237	315	118	355	351	351	-295	82	242
10		225	135	223	350	230	350	331	185	278	71	235
11		131	237	221	333	151	369	331	293	115	69	241
12	214	205	238	226	336	370	132	306	182	0	155	245
13	220	226	238	311	336	404	332	62	770	259	135	235
1	212	223	235	0	280	335	351	356	224	281	156	235
13	239	229	217	237	261	245	159	338^{-}	220	295	162	243
16		216	218	216	151	224	279	353	230	295	274	223
17		167		0	381	365	249	336	364	292	$\frac{27}{2}$	231
18		213	162	162	384	236	252	335	361^{1}	295	282	352
19		224	321	521	381	\%	229	347	355	-292	$\mathbf{2 8 1}$	-337
20		220	199	791	381	411	199	359	298	292	-215	225
21		212	207	267	281	368	181	380	297	297	212	237
32		226	210	210	584	364	185	364	292	336	265	2.8
33		230	206	203	482	335	95	353^{-}	312	289°	${ }^{-} 275$	228
24		139		6	385	331	236	985	301	309	271	-235
25		235	331°	231	293	355	238	352	105	293	212	225
16		227	227	281	262^{-}	360	239	398	235^{-}	285	203	225
11		225	-220	220	282	335	216	-398	0	284	210	250
28		230	221	0	212	364	0	[33	-304	551	203	235
29			216	218	273	360	0	- 337	301	278	208	225
30			197	197	262	334		185	301	245	206	216
					266					213		228

x 10,	1373	301	3352	3356	9631	7781	780	9853	7155	8621	6236	24
m] ${ }^{\text {day }}$	4729	200.3	1788.4	I855	3113226	2593.7	2318.1	317.9	2387	2781	2088.7	2310.32
mmday	15	1.0	3.9	6.5	10.4	8	7.7	10.8	1.9	9.3	6.9	78

Table A-6.2(2) Record of Water Application at Center Pivot (1996)

Bate	J2n	Teb	Mar	A	May	Jun	Jov	Aug	Sep	Oct	Noy	Dex
1	3		66		265				366		0	
2		238	103°	264	263	0°	0		368	335	0	\bigcirc
3		229	101	254	266	262	313		364^{-}	232	0	0
S	4	219	30°	239	204	211			364		0	σ
5	83	219^{-}	300	231	211	211		- 363	- 865		0	σ
8	33	220	203	263	181		368	371	-361	271	0	σ
1		219	266	257	269	6	0	382	- 366			0
8	224	218	226	260	270	267	0	372	368		0	0
9	272	227	297	263	184		369	380°	- 364^{-}		0	θ
10	231	212	193 "	237	199	0		374	- 363	261	0	0
11	127	228	431	255^{-}	229	0	0	364	- 370		0	0
19	345	227	233	265	131		$368{ }^{-}$	361	365		0	0
13	215	228	216	235	205			380	364			σ
14		223	211	264	214			359°	338	267	0	0
	330			264	212		361	314	334	272	0	\%
16	243	225	304	261	265	0	0	374	351			\bigcirc
17	219	229	262	265	265			368	365		0	0
		218	263	267	268		365	371	360		0	0
19		217	267	260°	282		0	368	351			0
20	210	217	237	$268{ }^{\circ}$	265			369	240		0	0
21	220	218	264^{-}	265	263	374	224	397	224		0	
22	224	218°	285	263	283			374				0
	219	218	263°	263	283			373	221			0
24	221	213	$263{ }^{\circ}$	268	265	376	290	374	279			
25	221	218	268	267	263			312	255	0		0
	220		258	263	265		0	- 354	273			σ
		145	263 .	261			285	401	279			-
28	218	105	265	267	38			381	277			0
28	230		$\times 61$	264				384	255			0
30	231		265	267		$364{ }^{\circ}$	575	3335	218			δ
31	231		278		.		0	-316		0		δ
x 10 mman	3836	3935	7129	7883	8517	3134	3135	10331	9831	3868	0	σ
m》 ${ }^{\text {may }}$	1859	2180	7300	2818	2112	ITI	[093	3371	3810^{-}			σ
minday	63	71	7.7	8.8	7.0	37	36	TIT	10.7	63		00°

Appendix A-6.3 Water Use for Limear Movement

Table A - 6.3 Record of Water Application at Linear Move (1995)

A 6-5

Appendix A-6.4 Water Use for Tree

Table A-6.4(1) Record of Water Application for Trees (1995)

Table A - 6.4(2) Record of Water Application for Trees (1996)

APPENDIX - 7 EXPERIMENTAL TRIALS

Appendix 7

A-7.1 Main proceedings of Rhodes grass cultivation in 1996

A-7.2 Results of trials

Table A-7.2.1 Effect of manure application on yield of Rhodes grass (1996)

Treatment Manure	Location	Dry natter yield (ton/ha) September
	B.2	2.77
Applicd	C-2	1.79
	A-2	1.38
	D-2	0.52
Average		1.62
	B-1	3.69
Not applied	C-1	2.60
	A-1	1.95
	D-1	1.59
Average		2.46

Table A-7.2.2 Effect of potassium application on yicld of Rhodes grass (1996)

Treatment	Location	Dry matter yield (ton/ha)
Potassium	September	
Applied	$\mathrm{B}-1$	3.69
	$\mathrm{~A}-1$	2.77
	$\mathrm{~A}-2$	1.95
Average		1.38
	$\mathrm{C}-1$	2.45
Not applied	$\mathrm{C}-2$	2.60
	$\mathrm{D}-1$	1.79
	D-2	1.59
		0.52

A-7.3 Farm Works Observation on Harvesting of Rhodes Grass

1. Observation of farm works during the harvesting of Rhodes grass in September, 1995
1) Work Condition
(1) Farm Machinery

Tractors:	3	(MF 390, MF 390 and MF 290)
Mower:	1	(John Deer 135, width of culting ; 1.7 m)

Rake : 1 (4 wheels with fingers, 1 pass after drying one day, collecting 2 rows for baler. Since 12 September, oric wheel is removed, and raking is done with 3 wheels, because of reducing quantity of grass of a windrow to avoid the baler's trouble.)

Tight baler: $\quad 1(+1) \quad$ (Vicon SP 451, one baler is spare for mechanical trouble.) Trailer $2 .(9 \times 2.5 \mathrm{~m}$, being capable of loading 220 bales [$11 \times 5 \times 4$ layers $=220$ bales]. When one bater is transporting in field, another stays at the kecping place for heating up bales.)
(Buyer's truck Loading capacity : 2 tones, number of loading hay bales: 240 bales [$5 \times 6 \times 8$ layers $=240$ bales])
(2) Operators and labors

Operators: $\quad 3 \quad$ (Operators for tractors)
Labors : $6 \quad 3$ labors for picking up and loading the bales on the trailer, and 3 labors for heating up the bales at the keeping place where is at 100 meter's distance from the field and for loading bales to buyer's trucks.
(3) Workday

In the morning : $\quad 9: 00 \mathrm{a} \mathrm{m} . \sim 12: 30 \mathrm{a} . \mathrm{m}$. (3.5 hours)
In the aflernoon : $\quad 3: 00$ p.m. $\sim 6: 00 \mathrm{pm} . \mathrm{m}$ (3 hours)
(4) Division of the Center Pivot Field of 30 ha

To reduce of interrupting period of irrigation, the Center Pivot Field of 30 ha was divided into four parts. Alter the whole hay making works of each part, the works of the next part of field was started.

(S) Irrigation

Irrigated except the working parts of field.
Interrupted period of irrigation was four days in each divided part of field.
Irrigator's speed : 45\%.
(6) Weather

Fine

Max. temperature : $35 \sim 40 \mathrm{C}$
Min. temperature : $20 \sim 23 \mathrm{C}$
Humidity $\% \quad: 12 \sim 20 \%$ in the daytime(min.) and $70 \sim 80 \%$ in night(max)
Wind velocity $\quad: 1 \sim 6 \mathrm{~m} / \mathrm{sec}$ all day
2) Work schedule

2. Observation in November, 1995
i) Work schedule

Date		Tractor A		Tractor B	Tractor C
		Cutting	Raking	Baling	Transporting
Nov. 3	a.m.	0 field			
	p.m.	Dfield			
4	am.	D field			
	p.m.				
5	am.		D field		
	p.m.				
6	a.m.		D field	Dfield	D field
	p.m.			D field	D field
7	a.m.	C freld			D field
	p.m.	C field		D Dield	D field
8	am.	C field		0 field	D field
	p.m.				
9	a.m.				
	p.m.				
10	am.		C field		
	p.m.		C field	Cfield	
11	a.m.	A field		Cfield	C field
	p.m.	A field			Cfield
$\stackrel{12}{1}$	a.m.	\triangle field	A field		Cfield
	p.m.	B field		A field	C Field
13	a.m.	B field		A field	A field
	p.m.		B feld	A field	\wedge field
14	a.m.		B field		A field
	p.m.				
15	a.m.		B field	B field	B field
	p.m.			B field	B field
16	a.m.			B Bfild	B field
	p.m.				B field

A-7.4 Results of Lysimeter Trials

Table A-7.4.1 Soil moisture content in lysimeter

Treatment		ltems		Moisture (\%)					
Irrigation	Manure	Plot NO.	Depth	16-Jul.	22-Jul.	30-Jul.	S-Aug.	13-Aug.	20-Aug.
Control	Applied	1, 5	$0-20 \mathrm{~cm}$	14.0	6.2	6.5	9.0	14.0	9.4
			20~50	13.7	8.3	6.1	9.5	13.0	7.7
			$50 \sim 80$	15.9	12.7	11.6	14.1	14.6	12.5
	None	3,7	$0-20 \mathrm{~cm}$	13.1	7.9	8.4	10.0	13.0	10.1
			20~50	14.8	9.5	8.6	11.7	12.2	11.5
			$50 \sim 80$	16.1	12.5	12.6	13.6	15.9	13.4
		Average	$0 \sim 20 \mathrm{~cm}$	13.6	7.0	7.4	9.5	13.5	9.7
			20~50	14.3	8.9	7.4	10.6	12.6	9.6
			$50 \sim 80$	16.0	12.6	12.1	13.8	15.2	12.9
Lov	Applied	2, 6	$0 \sim 20 \mathrm{~cm}$	10.7	5.3	3.7	6.4	12.9	8.2
			20-50	12.3	8.8	7.6	8.4	12.9	9.2
			$50 \sim 80$	14.0	10.3	9.3	11.8	14.2	9.3
	None	4, 8	$0 \sim 20 \mathrm{~cm}$	10.6	5.3	7.8	5.5	9.4	6.6
			20~50	11.5	7.5	8.0	6.2	9.0	6.8
			$50 \sim 80$	14.7	12.9	12.4	11.3	12.3	11.0
			$0 \sim 20 \mathrm{~cm}$	10.6	5.3	5.8	5.9	11.1	7.4
		Average	20~50	11.9	8.1	7.8	7.3	10.9	8.0
			50~80	14.4	11.6	10.9	11.6	13.3	10.2

Table A-7.4.2 pH and EC of drainage water in lysimeter

(1) pH								
Irrigation	Manure	Date	18-Jun.	1-Jul.	7-Jul.	14-Jul.	21-Jul.	6.Aug
Control	Applied	Plot-1	7.8	7.6	7.6	7.7	8.2	7.7
		5	7.5	7.0	7.0	7.8	8.0	8.0
	None	Average	7.7	7.3	7.3	7.8	8.1	7.9
		3	7.6	7.3	7.3	7.8	8.1	8.2
		7	7.6	7.1	7.1	7.5	8.2	8.5
		Average	7.6	7.2	7.2	7.7	8.2	8.4
	Average		7.6	7.3	7.3	7.7	8.1	8.1
f.ow	Applied	2	7.6	7.5	7.5	7.9	8.3	8.4
		6	7.9	7.3	7.3	7.7	8.1	8.2
	None	Average	7.8	7.4	7.4	7.8	8.2	8.3
		4	7.7	8.2	8.2	7.8	8.2	8.4
		8	7.8	7.2	7.2	7.7	8.2	8.2
		Average	7.8	7.7	7.7	7.8	8.2	8.3
	Average		7.8	7.6	7.6	7.8	8.2	8.3
(2) EC (ms/cm)								
Irrigation	Manure	Date	18-Jun.	1-Jul.	7-Jul.	14-Jul.	21-Jul.	6-Aug.
Control	Applied	Plot-1	4.6	5.2	5.2	6.5	6.5	7.5
		5	4.9	5.6	5.6	5.9	6.3	5.9
	None	Average	4.8	5.4	5.4	6.2	6.4	6.7
		3	5.6	7.3	7.3	6.4	6.6	6.2
		7	5.5	5.6	5.6	6.6	8.2	6.7
		Average	5.6	6.5	6.5	6.5	7.4	6.5
	Average		5.2	5.9	5.9	6.4	6.9	6.6
Low	Applied	2	5.5	5.8	5.8	6	6.5	6.8
		6	5.3	5.6	5.6	7.9	8.9	9.3
	None	Average	5.4	5.7	5.7	7.0	7.7	8.1
		4	4.4	4.7	4.7	6.8	6.4	6.6
		8	5.9	7.1	7.1	7.6	7	8.8
		Average	5.2	5.9	5.9	7.2	6.7	7.7
	Average		5.3	5.8	5.8	7.1	7.2	7.9

Table 1-7.4.3 Yield of Rhodes grass in lysimeter

Treatment		Date	6.Apr. $\mathrm{kg} / 9 \mathrm{~m}$ 2	$\begin{aligned} & \text { 25-Jun. } \\ & \text { Kg/9m2 } \end{aligned}$	$\begin{aligned} & \text { 20-Aug. } \\ & \text { kg/9m2 } \end{aligned}$
Irigation	Manure				
Control	Applied	Plot-1	6.48	6.54	4.85
		5	4.64	5.72	7.48
		Average	5.56	6.13	6.16
	None	3	6.17	5.95	8.30
		7	6.59	4.76	9.00
		Average	6.38	5.36	8.65
	Av	rage	5.97	5.75	7.41
L.0w	Applied	2	9.77	5.53	9.71
		6	6.38	7.69	7.41
		Avcrage	8.08	6.61	8.56
	None	4	4.24	7.40	7.03
		8	5.92	8.45	6.41
		Average	5.08	7.92	6.72
		rage	6.58	7.27	7.64

A-7.5 Experimental Plan of NARS

No. Expected subjects	Objectives	Trial Field
1 Irrigation 1) Saving methods of irrigation water in summer in Rhodes grass cultivation	To clarify the methods of saving irrigation water so as to make the effect of interropted irrigation in summer on grouth of Rhodes grass as economically small as possible on the basis of experience in last summer.	Center Pivat field
2) Comparison of irrigation by Center Pivot system or Linear Movement system with drip irrigation in vegetable cultivation	To clarify the saving amount of water in the drip iarigation method in comparison with Center Pivot or I, inear Movement systems in vegetables cultivation.	Center Pivol field, I incar Movement field, vegetable field
3) Prevention against sali accumulation in surface soils by irrigation and drainage	To clarify the relationship of salt accumelation and drainage and leaching factor, besides montoring of soil in NARS and the pilot farms in Nejd.	L.ysimeter
1) Appropriate vater use in cultivation of various crops	To clarify the effects of amount of irrigation water use on growth and yield of various crops in each season to make the standard for effective irrigation water use.	Center Pivot field, Linear Movement field, vegetables lich
2 Crop cultivation 1) Sclection of suitable varieties of vegetables	To setect suitable variaties of carrot, onion, squash, green pepper, coosa, potatocs, cie. as winter vegetables and meton as summer vegetable.	Linear Movement field, regetables field
2) Selection of suitable fodder crops in winter	To select the suitable winter fodder crops such as Rhodes grass as annual winter crop, Italian ryegrass, alfaffa, barley, sorghum, etc.	Center Pivot field
3) Suitable cropping season of various crops	To clarify the suitable seding time for various vegetables in winter, melons in summer and annual fodder crops in winter.	Center Pivor field, Linear Movement ficld, vegetables field
4) Reasonable methods of fertitization and irrigation in crop cultivation	To clarify the effect of urea application by injection system and other fertilizer application by machine or hand on growth and yield of various crops and trees under the condition of various irrigation water use.	Center Pivot field, Lincar Movement field, vegetables field, fruits trees field, windbrak trees
5) Pot culture of vegeiables	To clarify the effects of sizes and naterials of pot, materials of nursery bed such as paste of clayey soil, fermented dung of ruminants, ete. and raising management of seedling on growth and yield of vegetables after transplanting.	vegeables field
6) Control nethods of weed and pests	To observe the seasonal prevalence of diseases, insects including the insects vector of virus and weeds, and to establish forcasting of occurrence of them. Besides, to clarify the effective methods of control for them by use of post-emergence herbicides and pesticides and by controls to prevent from occurtince on the basis of the forecasting of occurrence.	Center Pivot field, Lincar Mosement field. vegetables field, fruits trees field, windberak trees

No. Expected subjecis	Objectives	Trial Field
7) Diagnoses of macro- and microelements deficiency and excess and fertilization	To establish the standard application rates of fertilizers of macro- and micro-elements. Trials are planned when the symptoms of deficiency or excess of macrectements, such as N, P and K , and microckements, such as $\mathrm{Ca}, \mathrm{Mg}, \mathrm{B}, \mathrm{Mo}$, Cu and Zn , are observed and the monitoring results of chemical analysis of plant and soil show the apprehension of troubles on the growth of crops.	Center Pivot ficld, Linear Movement field, vegetables field, fruits trees field, windbreak trees
3 Mechanization 1) Method of subsoiling to improve the soll compaction induced by mechanization	To clarify the effects of subsoiling on growth of Rhodes grass to improve the soil compaction induced by farm machinery movement in the field	Center Pivot field
2) Methods of tillage, leveling and sowing in cultivation of crops following Rhodes grass	To clarify the sedding methods to obtain high accuracy of seeding work with machine under condition of much residues of Rhodes grass and minimal tillage to build up organic matter in the top soil.	Center Pivot field
3) Effective farm work methods in mechanized crop cultivation	To clarify the effectise mechanized working system in cultivation of various crops, firstiy the working system of Rhodes grass harvesting to shonten the interruption of irrigation as shon as possible for regrouth of grass.	Center Pivot field
4 Crop rotation 1) Cropping pattens suitable to the Nejd arca by farming size	To clarify the suitable cropping sequence of fodder crops and various vegetables to prevent from injury by continuous cropping.	Center Pivot field, Linear Movement field
S Livestock farming 1) Open yard feeding of goats	To clarify the feeding method of goats by open yard feeding in summer and feeding bay in winter, especially in consideration of deficiency or excess of some microelements, investigating quantity of feed intake, chemical components of feeds, gains in weight, animal hygiene, etc.	Center Pivot field

APPENDIX - 8 QUESTIONNAIRE SURVEYS

Appendix 8-1 Results of questionnaire survey of farmers in Salalah

A. Purpose of the survey

The Salalah Plain is bounded by the Jabal and the coast, extending 8 km from south to noth and 300 km from east to west and has been a center of the Dhofar Region. The purpose of this survey is to clarify the socio-economic and farming conditions in this area and to provide reference information to compare with those in Nejd and Jabal.

B. Methods of the survey

1) Time of survey: December, 1995
2) Location: Salalah in Dhofar

Al-O'kdain, Taqah, Al-Oarqd, Al-Owqdain, Salalah, Al-Shorgen, Al-Wadi, Ad-Dahariz and Al-Haffah in Salala-subregion
3) Sampling size: 20 farmers
4) Survey methods: Interview

C. Results of the survey

The results were mainly analyzed and summarized on the items for which relatively many replies could be received from the surveyed farmers among the items of the questionnaire. The results are as followed, supplementing with the results of FAO report (Soil survey and land classification project, Report on farming systems survey, Salalah Plain by farming system section, MAF and Food and Agriculture Organization of the United Nation, Muscat, April 1992; hereinafter refer to as "FAO report")

C-1. General background information of the Salalah Plain

Summarization of the FAO report on this paragraph is as follows;
(1) Annual average rainfall is 110 mm in the phain.
(2) The current total population in the plain is estimated at about 77,000 people divided in the ratio of $2: 1$ between nationals and expatriates. At present population grows at an estimated annual rate of 3.7% and local population is expected to triple within 20 years.
(3) In short the development of Salalah is now under way at an increasing speed.

Agriculture in this development society is loosing its importance as an income generating activity. Due to the high levels of non-farm income and exclusive use of expatriates labor, as well as the existence of all sorts of subsidy programs in both agriculture and non-agricultural sectors, land owners do not respond to price and nonprice incentives as if they were still subsistence farmers.
(4) The land use pattern in Salalah Plain is given in Table A.8.11. It shows that 3,543 ha are put in to agricultural use, out of which around 75% is used for the cultivation of various crops.

Table A-8.1.1 Land use pattem in Salalah plain (1991, FAO's report)

Type of use	Area (ha)	$\%$
Net cultivatcd area	2,676	76
Fallow (current \& permanent)	271	8
Cultivable waste land	357	10
Ornamental plants and park	40	1
Farm buidding	163	5
Other non-agricultural use	37	1
Total	3,543	100

Table A-8.1.2 Land Distribution Pattern in Salalah Plain

Size of Holding	No. of Fams	$\%$ of Total	Total area (Fedan)	\%	Average (Fcdan)	Average (ha)
<3	253	31.8\%	417.0	5.9\%	1.6	0.7
3.6	306	38.4\%	1,286.0	18.2\%	4.2	1.8
6-10	160	20.1\%	1,182.7	16.7\%	7.4	3.1
10-20	55	6.9\%	628.8	8.9\%	11.4	4.8
20-50	13	1.6\%	341.8	4.8\%	26.3	11.0
$50-100$	5	0.6\%	306.1	4.3\%	61.2	25.7
>100	4	0.5\%	2906.3	41.1\%	726.6	305.2
Total	796	100,0\%	7,068.	100\%	8.9	3.

Source : Land use teport, FAO, 1991
The above table shows that the 4 large farms, namely the Royal Farm, the Dhofar Cattlefeed Company, the Livestock Research Farm and one private farm, own 41% of total agricultural land, while 90.4% of farms are of less than 4.2 ha in size and own only 40.8% of the total area.
(5) Cropping pattern by size class of farms in Salatah are shown in the table below. As around 60% of operated land is put under perenial fruit trees and grasses, only 40% is available for cultivation during Khareef and Rabi season. Mostly vegetables are grown in these lands. Besides, conclusions by use of the data in this table are as follows;

1) About 13% of the operated land was kept fallow. The extent of fallow land increased with size of land holding.
2) There existed a marked difference in cropping pattern between different size class of farms. The marginal farms of size of holding less than 3 feddans had put more area under fruit trees (36.3%) and grasses (29.8%), while the farms of size group 6 to 7 had more area under vegetables (53.3%).
3) In the category of fruit crops, banana was the major crop followed by coconut. But it was observed that farmers try to grow all kind of fruit trees, the number may be even 3 to S plants, basically for self consumption.
4) As livestock is an important component of the farm household system, fodder and grasses got importance in allocation of area on marginal and small farms.
5) Among the vegetables, tomatoes were the most popular, followed by pepper and chilies. Tomatoes can be called the main vegetable crop of the area and is being supplied to other parts of Onian.
supplied to other parts of Oman.
6) A comparison of tand uses by salinity classes clearly shows that bananas practically disappear when the salinity is above 5 millimho's per cm , while also grasses are becoming more important. The area has attained a critical limit of salinity because only 30% of the area has safe water quality and 50% is in the critical zone of 3 to 7 $\mathrm{mS} / \mathrm{cm}$.

Table A-8.1.3 Cropping pattern by size class of farms in Satalah

Crops	\% crop area by size class (feddan)				All farms
	<3	$3-6$			
A. Fruit crops					
banana	12.8	8.8	8.3	7.9	9.6
banana \& papaya	15.0	5.8	1.8	23.2	8.9
coconut	6.1	9.7	4.8	-	6.6
mixed fruit trees	1.9	2.6	2.4	8.6	3.0
other fruit	0.5	-	0.4	-	0.2
Subtotal	36.3	26.9	17.7	39.7	28.3
B. Fodder and grasses					
Alfalfa	3.6	1.4	-	-	1.5
Elephant grass	9.8	6.4	1.2	-	5.3
Rhodes grasses	14.0	15.6	8.1		12.5
Sorghum for fodder	2.4	2.5	4	-	1.6
Subtotal	29.8	25.9	9.3		20.9
C. Vegetables					
Pepper and chilies	4.0	2.1	1.1	-	2.1
Tomatos	3.0	7.8	9.8	-	6.3
Cucumber	1.3	2.2	2.7	-	1.9
Mixed vegetables*	2.6	5.5	31.7	10.0	11.7
Other vegelables	6.5	4.8	8.2	-	5.7
Subtotal	17.4	22.4	53.5	10.0	27.7
D. Mixed crops					
Fruit and grasses	6.1	11.3	0.7	4.3	6.7
Fruit and vegetables	0.9	2.6	-	16.4	3.0
Subtotal	7.0	13.9	0.7	20.7	9.7
E. Fallow land	9.5	9.8	18.8	22.1	13.3
Grand total	100	100	100	100	100

* In Salalah plains, a large number of vegetables are grown and farmers try to grow them in very small plots, so small that sometimes it is difficult to measure the area under them. Such plots are shown in the category of mixed vegetables.
* Source : FAO Report, 1991
(6) Agricultural production in Salalah
i) The Governorate of Dhofar cultivates only about 3% of the total farmed area in Oman, fruit trees occlipy about 28%, field crops 21%, vegetables 28% and other crops about 10%. Dhofar occupies only 2% of the national area of fruits, 3.5% of the field crops, 2.5% of all vegetables and 5.5% of other crops.

Table A-S.1.4 Distribution of the cultivated area and production by Region (1989)

District	Area under					Total production
	Frints crops	Field crops	Vegetables	Oher crops	Total area	
	\%	\%	\%	\%	\%	\%
North Batinah	28	16	22.5	37	27	22.5
South Batimah	35	19.5	28	26	30	24
Starquya	15	22	16.4	11	16	18.6
Wousta	3	5	5	5	4	4.4
Dakahlia	8	19	13	7.5	10	14
Dahira	9	15	12.6	8	10	12
Dhofar	2	3.5	2.5	5.5	3	4.5
Total	100	100	100	100	100	100
\%of totalarea	60	16	11	13	100	100

ii) Salalah produces about 7.5% of the total vegetable production of Oman, on 2.5% of the total area planted with vegetables. The South Batinah produces 20%, on only 28% of the total area planted with vegetables. Although the composition of vegetables is not presented, it can safely be concluded that there are significant differences in productivity between Dhofar and the South Batinah.

C-2. Socio-economic conditions

(1) Family members of farmers in Salalah

Family size of the surveyed farmers' households in Salalah is about 8.

Hems	Family members			Number of persons engaged in farming			
					nily	Hired	Total
	Male Fcniale		Total	Male Female labors			
Average	4.2	3.9	8.1	0.3	0.1	2.6	3.1
Max.	10	6	15	3	2	5	9
Min.	1	0	2	0	0	1	1

Main jobs in the surveyed farmers' households are officials - 14 persons in 5 households; office workers - 16 persons in 7 households; employer, business man, teacher, police man, fireman, engineer, merchant, student and no job-2 persons. The farming practice in the area is such that the land owner carries out the supervision of the day to day work, while the actual work is performed by permanent expatriate labors.

(2) Off-farm income and living standard of farmers

Off-farm annuat income of the surveyed farmers' households, as replied by only 3 farmers, range from 7,800 OR to $10,800 \mathrm{OR}$, while the average off-farm income amounted to 10,000 OR per year in the FAO report.

The annual living expenditure of the surveyed farmers, as replied by 8 farmers, range from 4,224 OR to $8,820 \mathrm{OR}$. and the surveyed 19 farmers are thinking that most of them belong to a "middle class" in the country. And the ideal (or anticipation) of their annual incomes, as replied by 8 farmers, ranged from 7,800 OR to $42,000 \mathrm{OR}$.

Table 8.1.6 Farmers Intention on Living Standard of their Households in Salalah

Standard		gh		\qquad High Averape Low			Low	Total
	lig	era	Ov					
Number of households	2	0	0	3	11	3	0	19

It is very likely that the recorded off-farm income is underestimated, considering that households are in general very wealthy as mentioned in the FAO report.

C-3. Farming in Salalah

(1) Type of farming

The farming types of 19 farmers among to 20 surveyed farm households are shown in the table below.

Type of farming	crops	Livesteck	Number of Farms
Simplificd farming	Vegetables	-	1
		Catle	3
		Vanious livestock	
Diversified farmin	Vegelables	Catte	2
	Vegetables	Various livastock	4
	Vegetables	Chicken	1
	Fruits	Various livestock	1
	Veretables \& fruits	Catte	1
	Vegetables \& fruits	Various livestock	1
	Vegetables \& tea	Various livestock	1
			19

The farming types of the surveyed farms are classified into 3 categories, namely simplified farming of vegetables - one farmer; simplified farming of livestock - 7 farmers; and diversified farming with vegetables, fruits and livestock - 11 farmers.

(2) Hired Jabors

The actual farming work is performed by permanent expatriate labors, whom the surveyed farmer employs and number of foreign workers vary from 5 expatriates in maximum and one expatriate in the small farm household. The total number of permanent labors of the 18 surveyed farm households is 47 persons, consisting of 27 Indians, 17 Pakistanis, 2 Bangladeshis and an Egyptian.

Auntal labor cost in the 16 surveyed farm households is 1,400 OR in maximum, 480 OR in minimum and 845 OR in average. And the two surveyed farm houscholds pay 50% or 25% of the farming income to the labors.

(3) Land tenure and area under farm management

Table A-8.1.8 Farm Land Ownership of the Surveyed Farmers in Salatah

Ownership	Items	Number of Management area (ha/household)			
		houscholds	Average	Max.	Min.
			下a	ha	ha
Private		10	-	-	-
land	Fam land area	.	3.5	7.6	1.3
	Cultivated area	-	3.3	7.6	1.1
Lcased		10	-	\cdots	-
land	Farm land area	-	2.1	5.5	0.6
	Cultivated area		2.0	5.5	0.6
Total		19	-	-	\cdots
	Farm land area	-	2.9	7.6	0.6
	Cultivaled area	\cdot	2.8	7.6	0.6

I.and ownership patterns and tenurial arrangements of the 19 surveyed farms are privately owned land - 9 farms, leased land only - 9 farms and privately owned and leased land - one farm.

Table A-8.1.8 shows that average area under farm management and actually cultivated area of each farm is 3.5 ha and 3.3 ha in the privately owned land, and 2.1 ha and 2.0 ha in the leased land, respectively. Amual rent of leased land is 340 OR per feddan (0.42 ha).

And area under management per farm household of the 19 surveyed farms is 7.6 ha in maximuin, 0.6 ha in minimum and 2.9 ha in average, respectively.

The FAO report showed in detail on the fand tenure in Salalah Plain as mentioned below.
Several land tenure arrangement can be distinguished.
-1 Most land is privately owned and operated by owner. Around 59% of area is under owned and self operated class.
-2 Leased-out and leased-in land is more pracliced by land owners of size class 3 to 7 feddan. The leased land are given either on fixed rent or share cropping. Sharecropping is foremost limited to ammal/seasonal crops, especially vegetables.
-3 The other for tenure is contract farming. The payment is made for renting the land, and for the use of existing irrigation facilities including the pump (s), as well as the available farm premises. Contract farming might occur both on owned as well as on Awgaf.
-4 There is a form of land tenure called "Awgaf". This land belongs to the Ministry of

Justice, Awqaf \& Istamic Affairs. Awqaf land was usually distributed among the poor people at a nominal fee. The usufruct (right of use) of this land is passed on their heirs, regardless of the status of their income and well-being. However, to let benefit as many people as possible, only relatively small areas were distributed resulting in an average farm size of less than 3 feddan (1.3 ha). Of all farms in the survey, about 10% is Awqaf land.

(4) Irrigation

Water resources of the surveyed farms, as replied by 16 farmers, are deep wells in 9 farms, shallow wells in 5 farms and free flow - 2 farms.

Two farms are irrigated by furrow irrigation and modernized irrigation (with sprayers) and the others are irrigated by traditional (furrow) irrigation.

Pumping for irrigation, as replied by 8 farmers, is driven with diesel engines in 6 farms and with electric engines in 2 farms.

With regard to quantity and quality of irrigation water, as replied by 5 farmers, quantity of water is enough in all farms and quality of water is bad in one farm and good in the rest. Summarization of the FAO report on this paragraph is as follows;
-1 In Salalah plain Government policies of price support and subsidies to the livestock sector have induced change in the land use. These policies have encouraged the expansion of area under banama and grasses which have high water requirements thus further deteriorating the aquifer water balance.

- 2 Among the physical constraints in the study area climate, soils and water quality (salinity) are the most important. The study has shown that about 34% of the cultivated area is irrigated with brackish water having an electrical conductivity between 3 and $15 \mathrm{ds} / \mathrm{m}$.

(5) Cropping

Cultivated crops and number of farms cultivated each crop in the surveyed farms are as follows;

Vegetables : Tomatoes/7 farms, cucurbits/4 farms, pepper/3 farms, chili/l farm, okra/l farm
Fodder crops: Rhodes grass/12 farms, alfalfa/l farm
Fruits and other trees : Banana/3 farms, coconu/2 farms, papaya/2 farms, lemon/1 farm and tea/ farm

Cropping seasons of vegetables are as shown in the table A-8.1.9.

Table A-8.1.9 Cropping Season in Salalah

Crops	Sceding time		Traresting time
	fron	to	from to
Cucumber	September	December	December Marsh
Tomato	June	August	September November
Pepper	November	December	Pebruary March
Rhodes grass	July	August	every 40-60 days

(6) Herding of livestock

-1 Number of livestock and production costs

Number of livestock of the surveyed farm households, which are replied by 17 farmers, are as shown in the table below.

Table A-8.1.10 Number of Livestock per Household

Kind of livestock	Number of households raising livestock	Number of livestock/ houschold		
		Average	Max.	Min.
	Households	heads	heads	heads
Cattle	13	24.9	67	8
Sheep	6	43.0	85	22
Goat	11	36.7	120	8
Chicken	5	1,070.0	3,000	50

The 13 famers of the 17 surveyed farmers raise cattle for milk and meat. The number of cattles in each farm household is 67 heads in maximum, 8 heads in minimum and 25 heads in average. And sheep and goats are raised by 6 and 11 farmers and number of sheep and goats in each farm household is 43 heads and 37 heads in average. Chicken is raised by 5 farm households and number of chicken in each farm household is 1,070 in average.

Farm-gate prices are 250 to 300 OR per head of cattle, 20 to 35 OR of sheep, 20 to 40 OR of goat and 0.7 to 1 OR of chicken per head.

-2 Hay

Most farmers of 13 farm households who raise cattle cultivate Rhodes grass. Among them 9 farmers do not have enough hay and the rests have enough. Six of the 9 surveyed famers are in shortage of hay and intend to purchase hay contimously, and expect 0.5 O.R./bale as a reasonable purchase price which is half of the prevailing price.

On the other hand, 2 farmers of the 13 surveyed farmers have a intention to sell hay.

C-4. Farmers' intention for farming and living

(1) Farmers' intention to keep up farming

Replies on intention to keep up farming is obtained from 16 farmers of the 20 surveyed farmers. The 15 farmers of them intend to positively keep up farming and the rest intend to keep if they get the agricultural credit in succession. The reasons of keeping up farming are that farming generates a good income or produces foods for home consumption.

Successors of farming as supervisor for permanent labors of expatriates are kept in the 12 farm houscholds of the 15 surveyed farmers which replied to the question on presence of successors.

(2) View on increase of income

With regard to the ways to increase family income in near future, as replied by the 10 surveyed farmers, 4 farmers intend to increase income by agriculture, such as expansion of farm land, yields of crops, introduction of new crops and cattle and new irrigation facilities. The others intend to increase income by non-agriculture, such as employment of office worker and pension.

(3) View on agricultural credit and subsidies

The 3 farmers expressed their discontents about agricultural credit as below;

- 1 Repayment of the credit is difficult, because of high interest of credit.
-2 There is no merit of credit for farmers, because of the cheap buying price of agricultural products by public marketing agency.
-3 Repayment of the credit is difficult in case of an unforeseen accident.

(4) View on agricultural extension works

The 16 of the 17 replied farmers are satisfied with the present extension activities of the cxtension centers. The rest expects still more to increase the counseling on farming techniques. However, even in the satisfied farmers, they have the expectation of increasing the counseling, the exhibition plot of new farming techniques, expaision of subsidy activities, such as improvement of lease of farm machinery, raise of the rate of subsidy, ete.

Summarization of the FAO report on agricultural extension works is as follows;
-1 In the whole country there are 9 regional offices and 45 extension centers. 5 extension centers are located in the Governorate of Dhofar. The regional office is headed by one supervisor, under his direction 6 extension officers (50% are expatriates) render services to the farmers. In the whole country there only 10 subject mater specialists. Of these, none are stationed in Salalah.
-2 Plant protection activities are carried out by one engineer who is aided by 2 plant protection assistants. In total, there are 12 teams in Dhofar for the spraying of insecticides and one statistician assisted by 4 enumerators. With only 796 smallholders in the Salalah plain the extension officer/farmer ratio is relatively high when compared with other parts of the country.
-3 Activities of extension centers : visited regularly by the extension officers (about 5 to 7 farmers in a day), visiting the extension center themselves for advice, group meeting in which audio-visual techniques used, on-farm demonstrations.
-4 The extension service plays an important role in assisting new farmers in establishing their 5 to 10 feddan new farms. In 1987 the Govermment launched a program to establish 2,500 new farms in the country.
-5 The extension officers are in charge of the distribution of seeds, fertilizers and pesticides, while they also carry out spraying programs after field inspection. The farmer does not pay for the labor costs, while the pesticides are provided at 50% of the real cost. In most cases, the farmer is visited after the farmer has made a request for the supply of inputs. After substantiation, the farmer receives a voucher and can collect the approved inputs at reduced rate from certain companies.
-6 All farm mechanzation activities are performed by the tractor fleet of the extension centers at a subsidized rate of one OR per hour. At peak periods, the rate is unofficially raised to 2 OR per hour to cover payment of overtime to the drivers.

(5) Expectation from the Government

Expectations from the Government of the 12 surveyed famers are as shown in the following table.

Table A-8.1.11 Expectation of Farmers from the Government

| Items of farmers' expectation for Government | Number of |
| :--- | :---: | :---: |
| households | |
| Private ovnership of farm land | 7 |
| Grant-in-aid for buying farm machinery | 7 |
| Grant-in-aid for livelihood improvement | 5 |
| lomprovement of agricultural credit | 5 |
| Grant-in-aid for building storehouse of products | 5 |
| Constriction of irrigation facilities | |
| Preparation and maintenance of rural infrastructure | 4 |
| \quad (especially electric supply) | 4 |
| Grant-in-aid for building processing facilities | 3 |
| Grant-in-aid for building market | |

The main items greatly expected by the surveyed farmers in Salatah are the promotion of private ownership of farm land, grant-in aid for buying farm machinery, grant-in aid for liselihood improvement, improvement of agricultural credit and grant-in aid for building storchouse of products, etc.

Appendix 8-2 Results of Questiomaire Survey of Herders in Jabal (Mountain Area)

A. Purpose of the survey

At present, Rhodes grass is produced in NARS as the reclamation crop and has potential to become one of the main crops in future. The purpose of this survey is to clarify the prospect of hay production by means of surveying the Jabal's herders as purchaser of hay, and to clarify the possibility of the circulation between herders in Jabal and hay producers in Nejd.

B. Methods of the survey

1) Time of survey: September to December, 1995
2) Location: Jabal in Dhofar
3) Sampling size: 21 herders
4) Survey methods: Interview

C. Results of the survey

C-1 Family members of herders in Jabal

The average family size in Jabal is about 11. And average number of family persons engaged in herding is four, namely two men, one woman and a hired labor (Table A-8.2.1).

According to the Travers Morgan's Report ("Detailed land use study in Jabal Dhofar", Vol.3, 1994), tribal origin and afliliations are important amongst the Jabalis, especially in matters relating to land, grazing and settlement rights. The majority of Omani population in the survey area is Jabali by descent, language, custom and self identity. The small number of non-Jabalis are mostly govermment employees, some traders, or have married with Jabali families. Most of them are from within Dhofar, especially from area around Salalah.

C-2 Number of livestock in each herder

Number of catte in each herder is 18 heads of calves, 13 heads of immature catte, 49 heads of matured cattle and 81 heads in total. Birth rate of catte and number of sold catte is very low, and number of dead is high. These suggest poor cattle management and poor marketing of catte (Table A-8.2.2). According to the Travers Morgan's Report, livestock ownership is as follows;

Livestock ownership in Jabal is classified into 8 categories, such as cattle only - 56% of whole herders in Jabal, cattle and camel - 16%, catte and goats - 6%, camel and goats 8%, camel only -10%, camel and goats -5%, respectively. Category of our sturveyed herders is "catte only".

According to the Travers Morgan's Report, traditional herders' lives revolved around and focused on their livestock, upon which they were reliant for food and survival. It is clear that livestock are not kept with only one objective, 77% of the respondents claim to keep livestock for traditional reason, which include subsistence of the family. Liquid milk is not a commodity for sale, although some of the ghee made from cows milk is sold. Meat is a less important product than milk. The main output from the livestock is milk. More cow milk is now produced and consumed. This used to involve the slaughter at birth of nearly all male cattle and camels. Lately this has been modified and young male cattle are fed up to salable weight and sold to traders who export them to northern Oman, and to butchers in Salalah.

C-3 Location of vegetation in cattle grazing by season

Catte grazes mainly at plain and evergreen wood land in Khareef (July to September), at plain, evergreen wood land and grass land in Serb (October to December), at grass land in Shita (January to march) and Qayd (April to June). These suggest that range land in Jabal is hardly available from Shita to Qayd (from Jamary to June) for grazing (Table A-8.2.3).

C-4 Range land management

Growth of vegetation in range land have decreased very deeply in comparison with 10 years ago. The present use of range land is over grazing, because rain is less and rain season is not uniform, and number of catte increases due to poor livestock market to sell.

C-5 Amount of supplementary feeds in each herder's household by season

Quantities of concentrates, hay and sardines (kg/adult equivalent/day) are $2.0 \mathrm{~kg}, 1.9 \mathrm{~kg}$ and 1.2 kg in yearly average (Table A-8.2.4 and A-8.2.5). These data are nearly same with the data of the Travers Morgan's Report.

Daily amount of supplementary feeds is different by season. Concentrates are supplied more in Shita and Qayd than other seasons. Sardines are supplied in Serb and Shita only.

Daily quantities of hay in Khareef, Serb, Shita and Qayd per head in adult equivalent are $1.5,0.6,1.2$ and $3.8 \mathrm{~kg} /$ adult equivalent head/day, respectively. Amount of fed hay is the most in Qayd, followed by Khareef. Therefore, the demand for hay is the most and the unit price of hay is the highest in Qayd (April to June).

Sardines are traditional and valuable source of crude protein. They are fed mostly in Shita, but feeding may start in November. This coincides with the decline in protein levels in the range grazing.

C. 6 Herders' intention on purchased hay

Quantity of hay for raising cattle is very short in the whole surveyed herders. Hay is purchased at farmers' garden (76% herders of whole surveyed herders) or from traders'
lorries at herders' garden (100% herders of whole surveyed herders).
Purchased hay is produced in Salalah, Nejd and northern area of Oman (Muscat). Before three years, hay had been purchased from Saudi Arabia, but now it is home products only.

Percentage of herders who use hay produced at Salalah, Nejd and Muscat are $95 \%, 65 \%$ and 90%, respectively. And hay produced at Salalah, Nejd and Muscat are appreciated by $95 \%, 32 \%$ and 0% of herders for the best quality, respectively.
81% of surveyed herders want to purchase hay continuously in the future, if funds are available.

Troubles in feeding the purchased hay include loss due to deterioration cansed by high moisture in Khareef (38% of herders), high price of hay (29%) and low supply of hay after Shita (0.5%).

The surveyed herders expect 0.5 R.O./bale as a reasonable purchase price for hay which is half of the prevailing price.

C-7 Cattle feces treatment

The duration for which the cattle are kept in the byres, where resource of compost is produced, by the age of cattle are shown in Table A-8.2.6. The duration of cattle kept in the byres are 13 months for calves during four seasons, 4 months for immature and matured cattle in Khareef. The reasons for keeping in the byres are to protect from troubles for calves, to protect from cold and damage from biting flies in Khareef.

With regard to way of making compost, after drying and packing in bags, manure is sold in the herder's garden to traders. Periods of drying are usually one or two weeks. Sometimes manure is sold as in wet and then dried by traders. Diying and packing are done by labors.

Amount of compost sold by each herder is as shown in Table A-8.2.7. Herder's yearly income by sale of compost is 1,500 R.O. in maximum, 80 R.O. in minimum, and 506 R.O. in average.

The rest of the feces which were not sold are used to make smoke to prevent the biting flies' attack on catte in Khareef and used as bed for calves. Some herders sold all of feces.

With regard to constraints about catle feces treatment, herders can not dry and collect feces due to fog and rain in Khareef. And another problem is low price of compost.

Compost is so eagerly sought after by the traders that sometimes compost is sold when it is wet, and herders want to sell the compost though the price of produced compost is low.

C-8 Migration of herders in Jabal

It is generally known that herders' families in Jabal moved every season until 10 years ago, but now the majority of families stay in their residences throughout the year. According to the results of our survey, however, 62% of surveyed herders moved to Jerbecb (plain at base of Jabal) in Qayd (April to June) and 48% Of herders moved to Jerbeeb in Khareef (July to September).

C-9 Way to avoid the biting flies

Biting flies' attack on catle is a big problem. The problem of biting flies occurs from the beginning of Khareef to the end of Serb, and the peak of damage occurs mainly in the last monts of Khareef.

Herders are used to keep catte in the byres during daytime to avoid the biting flies' attack, and to make smoke by use of catte dry feces. Wali office sometimes sprayed pesticides but could not prevent perfectly.

C-10 Watering for cattle

There are onc to five Govermment's troughs in the range land which can be used by each herder. Numerous troughs have been established and geographically well spread. Number of trips in a day for watering for cattle are three in average, six in maximum, and hours spent for watering in a day are 2.4 hours in average.

C-11 Income and expenditure of herders' household

Income, expenditure and balance in the surveyed herders' household are shown in Table A82.8. Herders' household finances are in deficit in all surveyed herders. It was not available to clarify how the deficit is covered by each herder.

The rate of living expenditure and input cost for herding for total expenditure in herders' houschold are about 20% and 80%, respectively. And rate of concentrates' cost, hay cost and sardines cost for all input cost for herding are $46 \%, 38 \%$ and 10%, respectively.

D. Conclusion

Constraints in livestock management of herders in Jabal are as follows;

1) Objectives of herding catte in Jabal are mainly milk for home consumption, not meat production for sale. Herders in Jabal have no intention of selling meat and livestock products by nature.
2) Livestock and livestock produce marketing are poor. Therefore, the number of catte will increase inevitably by multiplier effect of herders' intention and poor marketing.
3) As a result of increase of cattle, range land deterioration has been induced by overgrazing and lower rainfall in Khareef lately, and the cost of supplementary feed in herding household, especially purchased hay, has increased. Herders' management are pressured by these feeding costs.
4) However, 81% of surveyed herders want to purchase hay continuously in the future if funds are available. And the surveyed herders expect 0.5 R.O./bale as a reasonable purchase price of hay which is half the prevailing price. On the other hand, about 20% of surveyed herders don't want to purchase hay in the future.
5) Hay producers should make efforts to supply more quantity in Qayd, higher quality of hay in all seasons and more cheap hay. On the other hand, herders should have a good idea to prevent the loss of hay due to deterioration caused by high moisture in Khareef.
6) Compost is so eagerly sought atter by traders that sometimes cattle feces is sold as it is wet, and herders want to sell the compost to earn money which is equivalent to yearly labor's cost. Therefore, it is difficult to circulate between compost of herders in Jabal and hay of producers in Nejd to increase the fertility of soil, because both of compost and hay are marketable goods.
7) The only solution for constraints of herding management in Jabal is the marketing development of cattle, including export of live catte and livestock produces.

Table A-8.2.1 Family members of herders in Jabal

	nily n	bers		umber	persons	aged	ding
Items						Hired	
	Male	Female	Total	Malc	Fenale	labors	Total
Average	5.1	5.5	10.6	1.9	1.3	0.9	4.1
Max.	14	9	23	4	3	1	8
Min.	1	2	3	1	0	0	1

Table A-8.2.2 Number of livestock in each herder in Jabal

Kind of livestock	Items	$\begin{aligned} & \text { Number } \\ & \text { of herds } \\ & \text { in } 1994 \end{aligned}$	Production in 1995		
			Birth	Sold	Dead
Calves		heads	heads	heads	heads
	Average	18.3	5.8	9.1	1.0
	Max.		27	15	4
	Min.		0	3	0
Immature cattle	Average	12.8	-	3.5	0.2
	Max.	.	-	8	3
	Min.	-	.	1	0
Mature cattle	Average	49.4	-	6.7	1.8
	Max.	-	-	17	7
	Min.	-	-	4	0
Total	Average	80.6	5.8	14.8	3.0
	Max.	151	27	36	9
	Min.	40	0	7	0

Note: Four herders of 23 herders consumed six cattle in all as beef at home.

Table A-8.2.3 Location of vegctation in cattle grazing by season

Vegetation types	\% of herders used each range			
	khareef	serb	shita	gayd
	\%	$\%$	19%	\%
Plain	86*	38*		14
Dry wood land	0	0	10	5
Dociduous wood land	14	19	14	14
Evergreen wood land	67 *	57*	19	14
Shrib zone	0	10	10	10
Grass land	10	67 *	67*	57 *
Short grass land	0	5	5	10

Table A-8.2.4 Anount of supplementary feeds in each herders' household by season

Catle feeds purchased		Itenis	Supplementary feeds by scason								
		khareef	serb		stita		93 dd				
		bags/day	kg/day	bags!day	kg/day	bags/day	kg/ay	bags/day	Kg^{\prime} day		
Concentrates			Av.	2.1	105	2.3	115	3.1	155	3.6	180
		Max.	5	250	5	250	6	300	7	350	
		Min.	1	50	1	50	2	100	2	100	
Пay	for calves			bales/day	kg/day	balcs/day	kg/day	bales/day	kg/day	bales/da	kg day
		Av.	3.4	44.2	3.5	45.5	4.5	58.5	5.7	74.1	
		Max.	7	91	10	130	30	390	50	650	
		Min.	2	26	2	26	2	26	2	26	
	for	Av.	5.2	67.6	0	0	2.3	29.9	15.6	202.8	
	other	Max.	30	390	0	0	10	130	40	520	
	cattle	Min.	0	0	0	0	0	0	0	0	
Sardines			bags/day	kg/day	bags/day	kg/day	bags/day	kg/day	bags/day	$\mathrm{kg} / \mathrm{day}$	
		Av.	0	0	3.7	148	4.3	172	0	0	
		Max.	0	0	10	400	10	400	0	0	
		Min.	0	0	0	0	0	0	0	0	

Table A-8.2.5 Daily anount of supptementary feeds by seasons

Cattle feeds purchased	Daily amount per head by season				$\begin{gathered} \text { Average } \\ \text { (year) } \end{gathered}$
	khareef	serb	shita	qayd	
	kg/ac/day	kg/a.e/day	kg/ac/day	kg/ac./8ay	kg/a.e/day
Concentrates	1.6	1.7	2.3	2.7	2.0
Hay	1.5	0.6	1.2	3.8	1.9
Sardines	0.0	2.2	2.5	0.0	1.2

Note: Average number of cattle in adull equivalents in survejed herder's households was 67.6 heads. a.e.: adult equivalent

TableA-8.2.6 Periods kept caltie in byres by age

$\begin{aligned} & \text { Age of } \\ & \text { catule } \end{aligned}$	Periods kept in byres			Reasons of keeping in the byres
	Season	Months	Range	
months months				
Calves	4 seasons	13.5	24.12	Protection from troubles.
Immatur	khareef	4.6	$7 \sim 1$	Prosection fron cold and damage frombiting
mature	kharcef	3.8	61	Alies in khareef and no grass in range land

Table A-8.2.7 Amount of compost sold by each herder

Hems	Compost sold for one year		Unit price	
	bags/ycar	ton/year	R.O./ year	Ro.bag
Average	3065	36.8	506	0.15
Max.	6000	72	1500	0.20
Min.	400	4.8	80	0.10

Note: One bag contains 12 kg of compost.
Retail price is $0.575 \mathrm{R} . \mathrm{O} . \mathrm{fag}$ of $35 \mathrm{~kg}(0.2 \mathrm{R} 0 . / 12 \mathrm{~kg})$.
Table A-8.2.8 Income and expenditure of herders' household

tems	Unit	Average	Max.	Min.	Items	Unit	Average	Max.	Min.
- .	Income				Expenditure				
1. Livestock sale					1. Input cost for herding A. Supplementary feeds 1) Concentrates (bags) Cost Unit price				
i) Calves	heads	9	15	3					
Unit price	R.O.	99	190	75		bags.ycar	1,011	1.980	540
2) Immature	heads	4	8	1		R. 0.150 kg -bag	4	4	4
Unit price	R.O.	118	150	90		R.O.lycar	4.400	8.613	2.349
3) Mature	heads	7	17	4	2) Hay(i) in kharect (baleUnit priceCost	bales/3 months	\bigcirc	\cdots	
\cdots Unit price	R.O.	203	280	150			778	2.970	180
Livestock sale						R.O./bale	1	1	1
of each herder	R.O./ycar	2.086	4.680	720		R.O. 3 month	677	2,970	180
2. Produce sale					(2) in serb (balcs)	bales/3 months	319	900	180
1) Cow's milk	ton/year	8	18	0	Cost Unit price	R.OSale	1	i	1
Unit price	R.O.hiter	0	0	0		R.O. 3 months	615	900	126
Income	R.O./year	1,100	2,160	0	(3) in shita (bales)	bales/3 months		2,700	180
2) Ghee	botte	202	360	48	Cost Unit price	R.O.\%ale R. 0.13 months	. 1	1	1
Unit price	R.O.bottic	4	5	4			608	2.700	162
Income	R.O. year	876	1,800	192	(4) in qayd (bales) Unit price	bales/3 months	1,916	4,500	7201
3) Compost	12xg-bags/year	3,065-	6,000	400		R.O.baleR. 0.3 months		2	
Income	R.O./year	506	1.500	80	Cost			5.850	864
Produce sale					Hay cost of each herder	R.O./vear	3.701	10.437	1.620
of cach herder	R.O./vear	1.939	4.200	0	3) Sardines	40kg-bags/year	720	1,800	0
3. Non-livestock income						R.O.foag R.O./year		$\begin{array}{r} 2 \\ 2.340 \end{array}$	1
i) Firgat	R.O./year	1,043	264	0	Cost Unit price				
2) Civil service	R.O./year	1,531.	5,400	0	Feed cost of each herder	R.O./vear	9.096	18.351	5,544
3) Trade	R.O.lyear	197	1,980	0	B. Labor cost	R.O./yearR.O./year	557	$\begin{aligned} & 720 \\ & 850 \\ & \hline \end{aligned}$	00
4) Allowance	R.O./year	80	600	0	C. Livestock purchases				
Non-livestock income					Input cost of each herder	R.O./vear	9.653	$19.92!$	5.544
of each herder	R.O./vear	2.851	5.400	1.500	2. Living expenditure				
4. Total income	R.O.Jvear	6.876	11.380	2.600	1) Electricity 2) Food	R.O.lyear R.O./year	$\begin{array}{r} 450 \\ 1,052 \end{array}$	1,500	0
							2,400	320
					3) Schooling	R.O./year	250	500	0
					4) Petrol etc.	R.O./year	555	1,000	0
Balance	R.O./year	-5,161		-14,502	5) Water	R.O./year	70	700	0
					6) Others	R.O./year	7	150	0
					Living expenditure of each berder	R.O./ycar	-	3.900	520
						R.O./Vear		$21.63!$	7.029

Appendix 8-3 Results of Questionnaire Survey of Herders in Nejd

A. Purpose of the survey

At present, Rhodes grass is produced in NARS as the reclamation crop and has potential to bccome one of the main crops in future. The purpose of this survey is to clarify the prospect of hay production by means of survey of Nejd's herders as purchaser of hay, and to clarify the research tasks in NARS.

B. Methods of the survey

1) Time of survey: December, 1995
2) Location: Nejd in Dhofar

Modhay, Rawyah, Habroot, Thahboor, Shisur and Thamrite in Nejd-subregion
3) Sampling size: 17 herders
4) Survey methods: Interview

C. Results of the survey

The current total population in Nejd is estimated at about 7,400 people. It is generally known that there are many herders who raise goats and camels in Nejd, and the number of them reaches about 70% of the whole households engaged in herding and farming in Nejd. According to the survey of the Extension Center, Salalah, 1995, the number of farm household in Nejd was 195. Therefore, it is estimated that the number of herders in Nejd is about 500 households. The survey was carried out on 17 herders of about 500 herders' houscholds in Nejd. The results of survey are as follows;

C-1. Family members of herders in Nejd

The average family size of herders' households in Nejd is 11. The average number of family members engaged in herding is four, namely two men and two women, and labors for herding were hired by only 3 herders of 17 surveyed herders in Nejd (Table A-8.3.1).

C-2. Number of livestock in each herder

Average number of livestock in each herder is one head of male goat, 57 heads of female goats, one head of male camel, 34 heads of female camels, respectively (Table A-8.3.2). Four herders of the seventeen surveyed herders raise camels only and others raise camels and goats.

Average birth rate of goats and camels for each total female are 27% and 25%, respectively. Rate of sold goats and camels for each total livestock are 17% and 10% in average, and average mortality rate of goats and camels are 6% and 0.9%, respectively.

Four herders of the seventeen surveyed herders consumed one to three goats as meat at each home in 1995.

C-3. Livestock grazing and watering

There are two types of livestock herding, leaving free and keeping in cage. In Nejd, geats are raised in cage all day long in most cases. On the other hand, camels are raised in cage or left free, 47% of the 17 surveyed herders are in the first category and 53% are in the later (Table A-8.3.3).

In case of leaving camels free, a herder shifts with camel traveling to range land which is 25 km to 10 km away from home and is in condition of over grazing at present.

8 of the 17 surveyed herders supply water to livestock from home well, 3 herders supply by tanker 10 to 15 times per month, and 6 herders take trip one time a day for watering of livestock.

Herder who cultivates fodder crops is only one in the surveyed herders. Therefore, livestock in Nejd has to depend on supplementary feeds and range land far away from home for feeding in most cases.

C-4. Amount of supplementary feeds in each herder's household by season

Quantities of concentrates (kg/adult equivalent/day/household) are about 30 kg in summer, 28 kg in winter for goats and 83 kg in stmmer, 29 kg in winter for camel in average. Quantitics of hay ($\mathrm{kg} /$ adult equivalentday/ household) are about 19 kg in summer, 18 kg in winter for goats and 43 kg in summer, 19 kg in winter for camel in average, respectively (Table A-8.3.4).

Daily amount of supplementary feeds per head changes with season. Concentrates are supplied 0.4 kg head /day in summer, 0.4 kg in winter for goat and 2.4 kg in summer, 0.9 kg in winter for camel in average. Daily quantities of hay in summer and winter per head in adult equivalent are 0.2 kg in summer, 0.2 kg in winter for goat, and 1.2 kg in summer, 0.5 kg in winter for camel in average (Table A-8.3.5).

Amount of fed hay is the most in stumer. Therefore, the demand for hay is the most and the unit price of hay is the highest in summer. Besides these concentrates and hay, one of the surveyed herders feed camels with sardines in summer and with wheat throughout the year.

C-5. Herders' intention on purchased hay

Quantity of hay used for raising livestock in Nejd is very low in all the surveyed herders.
Hay is purchased at produced farmers' garden or market (59% of the surveyed herders) or from traders' lorries at herders' garden (76% of the surveyed herders).

Purchased hay is produced at Nejd, PDO farm in Marmul and northem area of Oman (Sohar).

Percentage of herders who use hay produced at Nejd, Sohar and Marmul are 94%, 53% and 13%, respectively. And hay produced at Nejd is appreciated by 94% of herders as the best quality.

The whole surveyed herders want to purchase hay continuously in the future if funds are available. No herder expressed troubles in feeding the purchased hay.

The sturveyed herders expect 0.5 R.O./bale as a reasonable purchase price for hay which is half of the prevailing price.

C-6. Migration of herders in Nejd

According to the results of our survey, 47% of the surveyed herders, not accompanied by their families, shift with camels traveling to range land.

C-7. Raising camels for race

Five herders of the surveyed herders have one to three camels for race. Raising cost of a racing camel was 600 to 1,200 R.O. per year in 1995. One herder sold two racing camels at a rate of 500 R.O. /Camel in 1995.

C-8. Farning

Bight of the surveyed herders have private wells and cultivate vegetables, fodder crops and dates. Total field area of each herder's household is 12 ha in maximum, 0.25 ha in minimum and 3.2 ha in average, but the cultivated area is 2 ha in maximum, 0.25 ha in minimum and 1.1 ha in average in 1995.

There are five farming types in the surveyed herders' households, such as vegetables only one herder, vegetables and dates - one herder, dates only - four herders, fodder crops only one herder and fodder crops and dates - one herder.

In 1995, there was only one herder who produced and sold two to five tons of water melon, sweet melon, cucumber and coosa with 2,400 R.O. of yearly production cost for all the vegetables, and got income of 3,500 R.O. Other herders' farm products were consumed at their home (Table A-8.3.6).

C-9. Income and expenditure of herders' household

Income, expenditure and balance of the surveyed herders' household are shown in Table A8.3.7. Herders' household finance was in the deficit of about 1,200 R.O.in average. It was not available to clarify how the deficit is covered by each herder. In 1995, the balance in the surveyed herders' households was 2,453 R.O. in maximum and - 6,992 R.O. in minimum.

The rate of livestock sale for total income was 16% and the income of each household depended on the non-livestock income, such as wages of firgat and civil services. The percentage of living expenditure and input cost for herding in total expenditure in herders' houschold was about 38% and 62%, respectively. And rate of concentrates cost and hay cost in total input cost for herding were 65% and 35%, respectively.

D. Conclusion

The results of the survey with the seventeen herders in Nejd were summarized as follows;

1) Most herders in Nejd raise goats of about 60 heads and camels of about 35 heads. Livestock is raised mosily by family labors, and few herders hire labors.
2) Goats are raised in cages all day long in most cases in Nejd. On the other hand, camels are raised left free in half herders or in cage. In case of leaving camels free, a herder shifts with camel traveling to range land which is 25 km to 10 km away from home and is in condition of over grazing at present. Therefore, raising of all goats and camels in the surveyed herders mostly depend on the purchased supplementary feeds, except grazing at range land in half of the herders' households.
3) Concentrates are supplied at a rate of $0.4 \mathrm{~kg} /$ head /day for goat throughout the year and 2.4 kg in summer, 0.9 kg in winter for camel. Daily quantitics of hay in summer and winter per head in adult equivalent are 0.2 kg for goat throughout the year, and 1.2 kg in summer, 0.5 kg in winter for camel in average.

Amount of fed hay is the highest in summer. Therefore, the demand for hay is the highest and the unit price of hay is the highest in summer. Herders expect 0.5 R.O.fale as a reasonable purchase price for hay which is half of the prevailing price. And hay produced at Nejd is appreciated as the best quality.

Quantity of hay used for raising livestock in Nejd is very short in all the surveyed herders. However, all the surveyed herders want to purchase hay continuously in the fulure if funds are available.
4) Half herders of the surveyed herders have the own wells for watering of livestock and for farming. In an average, the surveyed herders have about one ha of field and culivate vegetables and dates for home consumption.
5) With regard to farm household economy, the income of each houschold depended on the non-livestock income, such as wages of firgat and civil services, and the rate of livestock sale to total income was 16% only. The rate of living expenditure for the total outgo in the surveyed herders' households was about 40% and the rest was the input cost for herding. The input cost of herding consisted of concentrates cost of 65% and hay cost of 35%.
6) The only solution for overcoming the constraints in herding management in Nejd is the marketing development of livestock.

Table A-8.3.1 Number of family members of herders in Nejd

	nil	ers		umbe	ersons	aged	ing.
Items						Hired	
	Male	Female	Total	Male	Female	labors	Total
Average	4.4	6.9	11.3	1.8	1.8	0.2	3.8
Max.	9	12	21	4	3	1	8
Min.	1	4	5	,	0	0	0

Table A-8.3.2 Number of livestock in each herder in Nejd

Kind of livestock	Items	Number of herds (in 1994)	Production (in 1995)		
			Bith	Sold	Dead
Goat (Male)		heads	heads	heads	heads
	Average	0.9	6.9	6.4	0.2
	Max.	3	20	20	3
	Min.	0	0	0	0
Goat (Female)	Average	57.4	8.6	3.4	3.1
	Max.	150	25	10	10
	Min.	12	0	0	0
Camel (Male)	Average	0.6	3.7	2.9	0.1
	Max.	1	10	9	2
	Min.	0	1	0	0
Camel (Ferna!e)	Average	340	4.8	0.7	0.2
	Max.	70	13	3	2
	Min.	6	0	0	0
Total	Average	82.6	-	13.4	3.5
	Max.	223	-	32	12
	Min.	30	-	2	0

Note: 1) Four herders in the 17 survejed herders raise camels only and others raise camels and goats.
2) Four herders of 17 herders consumed one to three goats as meal at each home in 1995.

Table A-8.3.3 Livestock grazing

Kind of	Type of Herding	\% of herders to the suivered	Hours kept in cage per day			Location of grazing* (km from home)		
Livestock		herders	Average	Max:	Min.	Average	Max.	Min.
Goat		\%	hris/day	hrsiday	hrs/day	km	km	km
	Leave free	0	-	-	\cdots	-	-	-
	Keca in cage	100	23.1	24	12	\cdots		-
Camel	Leave frec*	53	-	\bigcirc	-	16.7	25	10
	Keep in cage	47	165	24	12	-	-	-

Note 1) * In case of leaving camels free, a herder shifts with camel traveling to range land which is in the condition of over grazing now.
2) 8 herders in the 17 surveyed herders supply water to livestock from honte well, 3 herders supply by tanker 10 to 15 times per month, and 6 herders take trip one time a day for watering of livestock.
3) Herder who cultivate fodder crops is only one in the 17 surveyed herders.

Table A-8.3.4 Amount of supplementary feeds in each herders' household by season

Tivestock feeds	liems						Ca		
purchased		Sun	cer			Sum		Win	
		bags day	kgday	bags/day	kg/da)	bags/day	kglday	bags/day	kg/day
Concentrates	Av.	0.6	29.8	0.6	27.6	1.7	83.1	0.6	29.4
	Max.	2	100	2	100	3.5	175	2	100
	Min.	0	0	0	0	0	0	0	0
		balesiday	kg/day	bales/day	kg/day	bales/day	kg/day	balesiday	kg/day
Hay	Av.	1.5	19.0	1.4	17.6	3.3	43.2	1.5	19.1
	Max.	5	65	5	65	13	169	5	65
	Miti.	0	0	0	0	0	0	0	0

Note: Besides concentrates and hay, one herder of the seventeen surveyed herders feed camels with sardines in
summer and feed goats and camels with wheat throughout the year.
Summer: Aprit - September, Winter: October ~ March
TableA-8.3.5 Daily amount of supplenentary feeds per head by season

Kind of livestock	Goat		Camel	
Catlie feeds purchased	Summer	Winter	Summer	Winter
	kg/a e/day	kg/a.e/day	kg/a.e/day	kg/ae/day
Concentrates	0.4	0.4	2.4	0.9
Hay	0.2	0.2	1.2	0.5

Note: Average number of livestock in adult equivalents in surveyed herder's
houscholds was 58.3 heads. of goats and 34.6 heads of canels.

Table A-8.3.6 Farming in Ilerders' Houscholds in Nejd

Farming t)pe	$\begin{aligned} & \text { Herder's } \\ & \mathrm{NO} . \end{aligned}$	Kind of Crops	Total field area (ha)	Cultivated area(ha)	$\begin{gathered} \text { Cost } \\ \text { R.O./year } \end{gathered}$	Yield ton'sear	$\begin{gathered} \text { Sale } \\ \text { O.R./year } \end{gathered}$	Ilome consumption
Vegetables only	1	Water melon	2	0.5	24001	2.5	3,500/	-
		Sweet melon		0.5	4 crops	2~5	4 crops	-
		Cucumber		0.5		2-5		-
		Coosa (cassa.b	melon)	0.5		2-5		-
Vegctables \& Dates	2	Tomato :	1	-	600		0	all
		Cucumber		\% -	3 crops		0	all
		Coosa (cassa-batmuskmelon)		\% -			0	all
		Dates		-	240		0	all
Dates only	3	Dates	0.25	0.25			0	all
	4	Dates	1.5	1.5	720	3	0	all
	5	Dates	1	1			0	all
	6	Dates	2	2	1300		0	all
Fodder crop only	7	Rhodes grass Alfalfa	0.25	0.125			0	all
				0.125			0	all
Dates \&	8	Dates	0.5	0.2	200	1	0	all
fodder crop		Rhodes grass		0.3	50	10	0	all

Table A-8.3.7 Income and expenditure of herders' household.

[^0]2) Maximum and minimum values in input cost includes the raising cost of camel for race which four herders of seventeen surveyed herders raise.
3) Maximum values in input cost includes the cost of purchased cows which one herder of seventeen surveyed herders purchased.
Ma herders.
5) Average values in input cost do not include the raising cost of race camel, livestock purchases cost and farming cost

Appendix 8-4 Comparison between the three sub-segions in the Southern Region

A. Principles of agricultural development in the Southern Region

Principles of agricultural development in the Southem Region are as follows;
(1) Development of sustainable agriculture

1) to increase domestic production and to attain self-sufficiency in agricultural produce in the Southern region and in Onian, and
2) to conserve natural resources, especially water resources, and enviromment.
(2) Creation of new employment opportunitics in the area
to be helpful for nomads to settle at one location and to halt migration from rural areas to urban settements due to generating new incomes and diversifying the farming activities of the farmers in the area.

B. Distribution of the cultivated area in Oman

The population of Dhofar is 189,094 persons, including 34% of expatriates, and constitute 9.4% of the population in Oman. The Governorate of Dhofar accounts for nly about 3% of the total farmed area in Oman, and occupies only 2% of the national area under fruits, 3.5% of the field crops which is dominated by Rhodes grass, 2.5% of all vegetables and 5.5% of other crops.
C. Socio-economic characteristics of each sub-region in the Southern Region
(1) Metcorological characteristics

The Salatah Plain and Jabal in Dhofar have a climate distinct from the rest of the Arabian Peninsula and is affected by the monsoon (khareef) providing precipitation between June to September. Population and crop cultivation in the Southem Region are concentrated mostly in the Salatah Plain.

(2) Family size and number of persons engaged in farming

1) Salalah: Family size of the surveyed farmers' houscholds is about 8 in average. Their main jobs are officials, office workers, employer, business man, teacher, police man, fireman, engineer, merchant, etc. The land owner carries out the supervision of the day to day work, while the actual work is performed by expatriate labors. In an average three expatrate labors are employed by each household.
2) Jabal: Family size is about 11 in average. Number of family persons engaged in herding is 4 , namely 2 men, 1 woman and 1 permanent expatriate labor in average.
3) Nejd: Number of households in Nejd is about 200 farmers and about 500 herders, about totaling to 700. Family size of herders' households is about 11 in average. Number of family persons engaged in herding is 4 , namely 2 men, 2 women. Hired expatriate labors are hardly found.

(3) Farmer's economy

1) Salalah: In most of the households the major source of income is generated through non-agricultural activities. So the houschold income is more related to the household composition than the agricultural income. Non-farm annual income amounted to about $10,000 \mathrm{OR}$ in average. The annual living expenditure ranges from about 4,000 to 9,000 OR. Most of them consider that they belong to a "middle class" of the country. And their ideal annual income ranged from 4,000 to $8,000 \mathrm{OR}$.
2) Jabal: Herders in Jabal have three sources of income, namely livestock sale of about $2,000 \mathrm{OR}$, produce sale, which is cow's milk, ghee and animal compost, of about 2,000 OR and off-farm income, which is generated by firgat, civil service, trade and allowance, of about 2,800 OR per year, total of $6,800 \mathrm{OR}$ in average. The ammal living expenditure ranges from 520 to $3,900,2,300 \mathrm{OR}$ in average.
3) Nejd: Ammal income of herders in Nejd ranges from 2,000 to 14,000 OR, about 4,800 OR in average, which is composed of about 800 OR from livestock sale (goats and camel) and 4,000 OR from non-farm income, such as firgat, civil setvice, etc. The annual living expenditure ranges from 720 to $9,000 \mathrm{OR}$, and 2,300 OR in average.

Eight herders of the 17 surveyed herders have private farms and wells, and cultivate vegetables, fodder crops and dates. In 1995; only one herder who produced 2 to 5 tons of water melon, sweet melon, cucumber with a production cost of 2,400 OR earned an income of $3,500 \mathrm{OR}$. Other herders' farm products were consumed at their home.

(4) Land tenure

1) Salalah: There are 4 forms of land tenure in Salalah Plain, namely privately owned and operated by owner, leased land, contract farming and Awqaf. Awqaf belongs to the Ministry of Justice and is distributed among the poor people at a nominal fee. Right of use of this land is passed on their heirs. Most land is privately owned land (about 60% of total land) and about 10% is Awgaf land.
2) Jabal: Herders in Jabal do not have private land. Livestock grazes mainly at range land, but range land in Jabal is hardly avaitable from January to June. The present use of range land is over grazing, because sain is less and rain season is not uniform, and number of catte increases due to poor livestock market to sell.
3) Nejd: In Nejd, goats are raised in cages in most cases. Camels are raised in cages or left free. In case of leaving camels free, a herder shifts with camel traveling to sange land which is 10 km to 25 km away from home and is in condition of over grazing at present.

Some of herders in Nejd have the private shallow well and farm land, and cultivate vegetable, fodder crops and dates.

(5) Social infrastructure

In general, the social infrastructure facilities and services such as domestic water supply, electricity, health, etc. are not yet developed in Jabal and Nejd. Salalah and Thumrait urban area where these facilities and services are well established and functions as both administrative and commercial center of the Salalah Plain and Nejd region.

D. Agricultural characteristics and constraints of each sub-region in the Southern Region

(1) Type of farming and herding

1) Salalah: The farming types in Salalah Plain are mostly diversified farming with vegetables, fruits and livestock, and followed by simplified herding of livestock and simplified farming of vegetables. Two third of the farm-households keep stall-fed animals. About 40% keep dairy cattle, 50% keep sheep and goats, while 17% keep mixed cattle (local and crossbred) and 25% keep chickens.
2) Jabal: Herding of livestock use the range land in Jabal. Type of herding livestock is cattle only 56%, followed by catte and camel, camel only, camel and goats.
3) Nejd: There are famers of about 200 households and herders of about 500 households in Nejd. Type of farming is Rhodes grass cultivation, which is irrigated by groundwater with center pivot system and product is sold as hay to Jabal's herders. Vegetables and dates cultivation used groundwater with traditional irrigation method. Type of herding is camels only and camels and goats. Half of the herders have the private wells and cultivate vegetables, fodder crops and dates, which are mostly consumed at their home.

(2) Land use and area under management

1) Salalah: 3,543 ha are put to agriculture use, out of which around 75% (2,676 ha) is used for cultivation of various crops. Four large farms, namely the Royal Farm, the Dhofar Cattefeed Company, the Livestock Research Farm and one private farm, own 41% of total agriculturat land, while 90.4% of farms are of less than 4.2 ha in size and own only 40.8% of the total area. As around 60% of operated land is put under peremial fruit trees and grasses, and only 40% is available for cultivation. Mostly vegetables are grown in these lands. Among the vegetables, tomatoes are most popular, followed by pepper and chilies. Tomatoes can be called as the main vegetable crop of the area and is being supplied to other parts of Oman.
2) Jabal: Livestock grazes mainly at range land from July to December. In other seasons, livestock is fed with the supplementary feeds, such as purchased hay, sardines,
concentrates, etc. The present use of range land is over grazing, because rain is less and rain season is not uniform, and number of livestock increases due to poor livestock market.
3) Nejd: Sizes of fodder cultivation farms by center pivot system are ranged from 30 ha to 400 ha per farm. Average size of the private farms that cultivated vegetables and dates with traditional irrigation method is 5.7 ha. On the other hand, herders raise whole goats and half of camels in cages and feed them with supplementary feeds. Half of camels are lef free and herders shift with camel traveling to range land which is 25 km to 10 km away from home and is in condition of over grazing at present.

(3) Irrigation

1) Salalah: Irrigation water to the farms is supplied by rain in khareef and groundsater. The four large farms, owned 41% of total agricultural land, are irrigated with the modernized irrigation systems and the other private farms are mostly irrigated with traditional (furrow) irrigation.

In Salalah Plain Government policies of price support and subsidies to the livestock sector have induced changes in the land use pattern. These policies have encouraged the expansion of area under banana and grasses which have high water requirements thus further deteriorating the aquifer water balance. The FAO's survey has shown that the area has attained a critical limit of salinity because only 30% of the area has safe water quality and 50% is in the critical zone of 3 to $7 \mathrm{~ms} / \mathrm{cm}$.
2) Jabal: Vegetation in range land is supplied water by rain in khareef. Recently, rainfall is less and the rainy season is not uniform, and then growth of vegetation have decreased yery decply in comparison with 10 years ago.
3) Nejd: Irrigation water to the farms is supplied by fossil groundwater. Farms of Rhodes grass cultivation have deep wells and irrigate with good quality of Aquifer C water by center pivot system. The other farms have shallow well or flowing water and irrigate with poor quality of Aquifer A water by the traditional irrigation method.

(4) Livestock raising

(4)-1 Number of livestock

1) Salalah: Number of cattle, sheep, goats and chickens per household in the survey ranged from 8 to 67 heads of cattle, 22 to 85 of shece, 8 to 120 of goats and 50 to 3,000 of chickens, respectively.
2) Jabal: Number of cattle per household in the survey ranged from 151 to 40 heads.
3) Nejd: Number of goats and camels per household in the survey ranged from 12 to 153
heads of goats, 6 to 71 heads of camets, respectively.

(4)- 2 Fceding

1) Salalah: Most of the farmers who raise livestock cultivate Rhodes grass but do not have enough of roughage. Therefore, they purchase some green fodder and hay, besides sardines and concentrates. The large farms in Salalah produce hay and sell to Jabal's herders.
2) Jabal: Quantity of hay for raising catle is very short in Jabal and the whole herders purchase hay produced at Salalah, Nejd and northem area of Oman, besides sardines and concentrates. Amount of fed hay is the highest in April to June.
3) Nejd: Most of the herders purchase roughage and concentrates for goats and camels. Amount of fed hay is the highest in summer (April to September). Therefore, the demand for hay is the highest and the unit price of hay is the highest in summer. Purchased hay is mostly produced at Nejd and PDO farm in Marmul.

(4)-3 Manure production

Farm yard manure is extensively used in Salalah Plain. The Jabal remains as the main source of farm yard manure. Manure production is one of the sources of generating incomes for the Jabal's herders.

(5) Agricultural incomes and costs

1) Salalah: Banana is the most profitable crop, followed by coconut and tomatoes, while other crops are not profitable and are mainly cultivated for home consumption. The dairy enterprise is profitable due to high price of milk. Sheep and goats are not profitable and are mainly kept for home constmption.
2) Jabal: Income from herding are composed of livestock sale and sale of livestock produce, such as milk, ghee and manure. However, herder's finances are in the deficit in all the surveyed herders, because livestock and livestock produce marketing are poor and roughage is in short due to poor vegetation of range land and increase of livestock.
3) Nejd: Inconie from herding is only 16% of total houschold income, including off-farm income. It seems that balances in agriculture of most of farmers and herders are in the deficit, except the large farms of Rhodes grass cultivation with the modernized irrigation system.

(6) Constraints of farming and herding

The objective of farming is primarily to keep ties with the past. The ownership of fatm land and livestock raises the status of the family in the community. Farmers and herders have no intention of selling products by nature. There is a gap between Government policy
to increase agricultural production and the objectives of farmers. Agriculture in these regions would be not be materialized without subsidies and services of Government.

(6)-1 Salalah:

- 1 The soils of Salalah Plain are highly calcareous and low fertility. Deficiencies in micronutrients affect nearly all crops.
-2 The area has attained a critical limit of salinity because only 30% of the area has safe water quality and 50% is in the critical zone of 3 to $7 \mathrm{~ms} / \mathrm{c}$. This is caused by deteriorating aquifer water balance due to the expansion of area under banana and grasses which have high water requirements.
-3 In agricultural production, services and marketing, nearly all the labor forces are expatriates who are often involved in the management of farm and are more interested in immediate profit and therefore little motivated for long term conservation of natural resources. Besides, expatriates are often not familiar with agriculture and extension services do not function properly due to the problem of communications.
-4 Marketing of agricultural produce, especially vegetable, is a major problem for farmers. In peak production periods farmers are often obliged to sell their production at very low prices. Storage facilities are inappropiate and losses are high. PAMAP is trying to improve the situation but faces problems of excess supply altenating with periods of shortage.
-5 At present the milk herd in Salalah produces more than the demand for fresh milk especially during khareef season. Fresh milk in excess of the family needs is partly sold at the farm gate to regular buyers and partly fed to young animals due to lack of marketing facilities. The marketing of milk seems to be a serious constraint since no milk collection system exists.

Sales of live anmals are rare and mainly occur during religious festivals and wedding occasions normally held during khareef season.,

(6)-2 Jabal:

Marketing of livestock and its produce is poor. Therefore, the number of livestock increases inevitably by multiplier effect of herders' intention and poor marketing. As a result of increase of livestock, range land deterioration has been induced by overgrazing and lower rainfall in khareef lately, and the cost of supplementary feed in herding households, especially purchased hay, has increased. Herders' management are pressured by these feeding costs.

(6)-3 Nejd:

-1 The major constraint of agriculture in Nejd is water for farming and herding, which is only supplied by fossil groundwater. Intentional use of water under consideration to conserve water resources is required and reckless agricultural development should not be done.
-2 Social infrastructure, such as electricity, road for transportation, storage facilities of products, etc., is poor. And living standard of farmers is low, therefore, farmers could not invest in farming and herding. In this situation farmers could not employ the expatriates.
-3 Farmers can not receive the Government services, such as extension services, veterinary services, chemical spraying and tractor hire services, etc.
-4 Marketing of livestock and its produce is poor. Therefore, the number of livestock increases inevitably by multiplier effect of herders' intention and poor marketing.
Table A-8.5.1 Survey Results of small farms in the Study Area

Tabie A-8.5.1 Survey Results of small farms in the Study Area

No.	Area	Name of Farmer/ Company	Area	Faiming Period	$\begin{aligned} & \text { No. of } \\ & \text { Labours } \end{aligned}$	Livestock	Water	Ingation Systern	Soil		Imzation Water		Farmung
			fedan				Source		p:40:2.5)	ECC($1: 5$) $\mathrm{ms} / \mathrm{cm}$	pis	EC. $\mathrm{m} / \mathrm{l} / \mathrm{mm}$	Conditions
15.	Shisr	Mabrook Abmed Saicy Missam	100	25 ycars	4	$\begin{aligned} & \text { sbeep-60 } \\ & \text { camels- } 80 \end{aligned}$	$\begin{aligned} & \text { freciy } \\ & \text { nowing } \end{aligned}$	traditional	8.0 8.0 8.2	0.152 0 0.144 0.122	8.1	1.70	Dates, Rbodes $\begin{aligned} & \text { resss, Tomato. }\end{aligned}$ Esg plant, Cucumber, Lemon (Poor infrastructure)
16.	Shiss	Saiem Mobd, Salch Missan	100	25 years	3	$\begin{gathered} \text { sbeep-70 } \\ \text { camels-150 } \end{gathered}$	$\begin{gathered} \text { freely } \\ \text { flowing } \end{gathered}$	traditional	8.0 8.0 8.2	 	8.1	1.70	Dates, Rhodes grass, Tomato, Egs piant, Lemon Poor inftastructure)
17.	Shast	Aj-Gannah Musallam Missan	30	25 years	2	sbecp-120	$\begin{aligned} & \text { freely } \\ & \text { fowing } \\ & \hline \end{aligned}$	tradtional	8.0 8.0 8.2	$\begin{aligned} & 0.152 \\ & 0.144 \\ & 0.122 \end{aligned}$	8.1	1.70	Dates, water meion Tomsto, Esg piam, Lemon, Squash (Poor infustructure)
18.	Shast	Mohd. Salem Mobc. Missan	20	25 years	1	$\begin{aligned} & \text { sbeep-10 } \\ & \text { camcls-20 } \end{aligned}$	freely Sowing	raditional	$\begin{aligned} & 8.0 \\ & 8.0 \\ & 8.2 \end{aligned}$	0.152 0.144 0.122	8.1	1.70	Dates, Rhodes grass, s.melon Egg plant, Lemon, w.meion (Poor infrastucture)
119.	Shist	Muxallam Said Missan	30	25.years	1	$\begin{aligned} & \text { shecp-10 } \\ & \text { camels-30 } \end{aligned}$	$\begin{gathered} \text { froely } \\ \text { flowing } \end{gathered}$	traditional	8.0 8.0 8.2	0.152 0.144 0.122	8.1	1.70	Dates, Rhodes grass, Cucumber Egg plant, iemon (Poor inftrastructure)
20.	Shast	Ahmed Saich Mohd, Missan	60	25 years	1	$\begin{aligned} & \text { shecp-200 } \\ & \text { camels-s0 } \end{aligned}$	freely flowing	traditional	8.0 8.0 8.2	0.152 0.144 0.122	8.1	1.70	Dates, Rbodes grass. Tomato. Esg plant, Squash (Poor infrastructure)
22.	Shast	Musallam Abduliah Missas	100	25 years	4	$\begin{gathered} \text { shoep-50 } \\ \text { camels-100 } \end{gathered}$	$\begin{gathered} \text { freely } \\ \text { flowing } \end{gathered}$	raditional	8.0 8.0 8.2	0.152 0.144 0.122	8.1	1.70	Dates, Rhodes grass, Ess plant, Cucumber, w.melon (Poor infrastucture)
22.	Dawkah	Mohd. Said Mayah.		21 years	2	gosts0	$\begin{aligned} & \text { freoly } \\ & \text { nowing } \end{aligned}$	traditional	$\begin{array}{r} 8.0 \\ 8.11 \\ \hline \end{array}$	$\begin{array}{r} 5.170 \\ \hline \end{array}$	7.9	2.00	Dates, water melon, Tomato, Egg plant, Lemon, Squash (marketing probiems)
23.	Thumrait	Mubarak Houl Missan	20	13 years	1	No.	$\begin{aligned} & \text { freely } \\ & \text { flowing } \end{aligned}$	craditional	8.2	0.460	7.9	2.00	Dates (Sold in Salalah)
24.	Rawyab	Mobc. Ahmod Solim N-Shasaet	25	7 years	2	No	freeiy flowing	tradisonal	$\begin{array}{r} 8.2 \\ 8.4 \\ 8.0 \end{array}$	$\begin{array}{\|l\|l\|} \hline 2.170 \\ \hline & 0.594 \\ \hline \end{array}$	8.1	2.80	Dates, Onion, Cucumber S.melon, squash, w.meion (Sold in Salalah)

Table A-8.5.2 Survey Result of Big Farms in the Study Area

[^1]Table A-8.5.3 Assessment of soil pHI and EC for the farms and various locations of the Sudy Area

No.	Asea	Name of Farint Sampting location	$\mathrm{p}^{11}(1.2 .5)$		EC (1:5), mStm	
			Sample 1	Somple 2	Sample 1	Sample 2
	Center Pivot Farms					
1.	Hanfit East	Al-Thumre Co.	8.4	8.0	0.549	0.988
2.	Jlanfit Esat	AI-WAthika (Construction, just startad)	82		0.430	
3.	Hanfit last	Aloez Company	8.5	8.1	0.469	0.500
4.	Itanfit West	Alcez Company	8.1	8.1	0.530	0520
5.	Lhanfit West	Onan Gulf Co.	85	8.4	0.331	0.229
6.	Wedi Bani Khwacai	Musbllam Suhail (Village Chief)	85	8.5	1.747	1.130
7.	Daukah	Oman Gulf Co .	83	8.4	1.700	1.174
8.	Dankah	Oman Gulf Co. Under construction)	89		0.152	
9.	Shast	Ubar Agricutture	9.1	9.3	0.177	0.490
10.	Mailat-Al-Rakah	Ba Muhallah Co	8.8	8.2	0.267	0.833
11.	Hailat-Al-Rakah	Mubkhot Ali Said	8.2	8.1	2.170	2.660
12.	Hlailat-Al-Rakah	Mobd. Salem Kamedish	8.1	8.1	1.713	3.370
13.	Hilat-Al-Kakeh	Farah Al-Semsli (Center pivot sbondonad)	8.5		2.140	
14.	Hailat-Al-Rakah (N)	Albect ferm	8.7	8.9	0.567	0.437
15.	Hzilat-Al-Rakah (N)	Onan Gulf Co.	8.9		0.360	
16.	Hlailat-Al-Rakah (N)	Bakhit Bakhit	8.9		0.275	
17.	Hsilat-Al-Rakah (N)	Alecz Company	9.0		0.375	
	Small Farms					
1.	Heilat-Al-Rakah	Fareg ${ }^{\text {Afohd De-Mskalif }}$	7.9	8.0	0.265	0256
2.	Haitat-Al-Rakah	Musseliam Rahatel Gidad	8.3	8.5	0.376	0.301
3.	IEailat-A!-Rekah	Salim Aidhod Mohd. Gidad	8.3	8.2	0.423	0.315
4.	Hailat-Al-Rakah	Al-Abl Said Sasd Gidsd	85	85	0.514	0 Sos
5.	Mailat-Al-Rakah	Salem Suhail Wassil Ilazar	87	8.5	0.175	0.153
6.	Hailet-N-Reksh	Salim Suhail Sslem Al-Shassei	8.2	8.4	1.460	5.171
7.	Halat-Al-Rakzh	Salem Said Abdullah Al-Stasaei	8.1	8.3	0.154	0.143
8.	Hailat-Al-Rakah	Mubarak Houl Missan	8.2		0.460	
9.	Lailat-Ar-Rakah	Mohd. Abmed Salim A1-Shasoei	8.4	8.2	2.170	2.660
10.	Shiss	Bakit AbJullah Sslem Missan	7.9	8.0	0.265	0.256
11.	Shisr	Soid Mussalain Salem Missen	8.2	8.0	0.176	0200
12.	Shist	Alatullah Salem Missan	8.4	8.3	0.118	0.116
13.	Shist	Said Hamad Hotid Al-Ma shally	7.7	82	0.203	0.149
14.	Shisi	Mohammod Missan	80	8.2	0.144	0.122
15.	Daskbh	Mobd. Said Mayah	8.0	8.1	5.170	11.950
	Other Areas					
1.	Wadi Darkah	A0bon from Shisr towards Dawkal	93	9.2	0.096	0.135
2.	Wadi Quitbit	$18^{\circ} 02^{\prime} 97^{\circ} \mathrm{N} \quad 54^{\circ} 15^{\circ} 08^{\circ} \mathrm{E}$	9.4		0.100	
3.	Wedi Qutbit	$10^{\circ} 05^{\circ} 41^{\circ} \mathrm{N} .54^{\circ} 22^{\circ} 51^{\prime \prime} \mathrm{E}$	9.4	9.4	0.085	0.076
4.	Wadi Quibit	$18^{\circ} 18^{\circ} 24^{\circ} \mathrm{N}, 54^{\circ} 32^{\circ} 19^{*} \mathrm{E}$	9.5	95	0.070	0.074
5.	Itailst-Al-Rakoh	14 km North of NARS 9 km cast	85	8.7	0.275	0.353
6.	Wedi Beni Khwatar	18km Slorth of Dawka metco str.	8.2	8.2	2.190	3.380
7.	Daukah	Dawkeh (13 Skn off the raad)	8.9	8.7	0.183	0.261
8.	Henlit West	37 km south of NARS; 8 km west	9.1	9.0	0.085	0.123
9.	Ifanfit West	28 km sowth of the location I	8.9		0.173	
10.	Honfi West	8.5 km from location 1 to Shise	9.0	9.1	0.111	0.122
11.	1 Larfit West	15 km from location 3 lo Shisr	9.0	9.1	0.116	0.104
12.	Shisr	3.5lm from Shbsr road	9.1		0.126	
13.	Shise to Thumsait	$17^{\circ} 42^{\circ} 11^{\circ}$ N. $53^{2} 47^{\prime \prime} 14^{*} \mathrm{E}$	9.0		0.102	
14.	Wadi Quibit	18* $11^{\prime} 45^{\circ} \mathrm{N}, 54^{\circ} 32^{\prime} 45^{\prime} \mathrm{E}$	8.7	8.7	0.336	0.580
15.	Hanfil East	JICA well location	90		0.111	0.111
16.	1 lanfit East	$188^{\circ} 044^{\prime} 088^{\circ} \mathrm{N} \quad 34^{\circ} 10^{\circ}$ O1' E	83	8.3	0.906	1.204
17.	Wadi Mokhaution	180 $34^{\circ} 19^{\circ} \mathrm{M}$. $54^{*} 11^{\circ} 12^{*} \mathrm{E}$	8.4		0261	
18.	Wadi Moktawim		8.1	8.8	0.879	0.107
19.	Wadi Mokhawtim	$\left(18^{\circ} 38^{\prime} 45^{\circ} \mathrm{K} \quad 54^{\circ} \mathrm{la}\right.$	8.4		0.327	
20.	1laizat-A1-Rakah	$18^{\circ} 21^{\circ} 45^{\circ} \mathrm{H}, 53^{\circ} 53^{\circ} 20^{\circ} \mathrm{E}$	85		0.701	0.701
21.	Hailat-Al-Rakah	$18^{\circ} 25^{\prime} 14^{\circ} \mathrm{K}$	8.5	8.4	2.020	2850
22.	Ilsilat-Al-Rakah	$18^{\circ} 17^{\circ} 066^{\circ} \mathrm{M}, 55^{\circ} 54^{\prime} 07^{\prime \prime} \mathrm{E}$	8.5	8.4	1.053	0.493
23.	1taital-Al-Rakar	$180^{\circ} 14^{\circ} 20^{\circ} \mathrm{N}, 53^{\circ} 53^{\circ} 53^{\circ} \mathrm{E}$	8.1	8.1	1.713	3.370
24.	Hailat-A1-Rekah	36 $0^{\circ} 22^{\circ} 05^{\circ} \mathrm{N}, 53^{\circ} 55^{\prime} 49^{*} \mathrm{E}$	85		2.140	
25.	ILailat-A1-Rakah	$18^{\circ} 15^{\circ} 00^{\circ} \mathrm{N} \quad 54^{\circ} 01^{\prime} 15^{\circ} \mathrm{E}$	8.1	85	0089	0241

Table A-8.5.4 MWR Monitoring Wells in the Study Area

STEED		UMMGrid		Coondinate		WELL (m)	$\begin{array}{\|c\|} \hline \text { MP. } \\ \text { EIEV. } \\ \text { (manal) } \end{array}$	Aquifor	$\begin{gathered} \mathrm{EC} \\ \mu S / \mathrm{cm} \\ \hline \end{gathered}$	$\begin{gathered} \text { W.L from MP } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { DATE } \\ (1996) \end{gathered}$	W.L from MP DATE				Drawdown (m) (before 94-96)
		F	:	Lons	Let.											
$A^{5 \prime 2} 25208.4 A$	ISCAG	185000	2022550	5401181	1816071	295.0	(280) 1	C	1620	23.56	114-Oct	7.56	Aus 94	256.4	272.4	-16.0
AF827408 AA	गCAs	187000	2024800	$540223!$	181724 +	300.0	(275)	c	1643	23.00	14 -0ct	3.82	Aug 941	252.0	271.2	-19.2
AF 228801 An	NJD	188000	20281001	540250	181825	402.3	272.2	C	1600	21.93	21-0.at	1.91	Aux-94	250.3	270.3	20.0
AF828801 CA	NJD3	188188.	2025944	540302	181801	350.0	1272.2	c	1600	22.00	21003:	2.77	Aug.94	250.2	269.4	-19.2
AF829201 AA	H.Ragah	189000	2022100	540328	181559	269.0	(280)	C		25.96	12100t	10.48	Aug. 94	254.0	269.5	-15.5
AFP20700 AA		190000	202700015	540401	1818371	269.0	(275)	$A+B$	2750	Welded	Cap	44.9	Vary 92		230.0	
BE050838 AA	W.R.ibikut	200300	1960000	541032	174146	330.0	1456.0	c	3480	161.94	13-0.0t	159	Scp-93	294.1	297.0	2.9
BE.094486 M	Ribkut	204800	1994600	541301	180059	553.0	(340)	D	1850	46.93	$13.00+1$	46.43	Jub-94	293.1	293.6	0.5
BP000000 As	W. Ribkut	200058	2000074	541002	1804081	335.0	336.8	c	2380	66.78	$113-0 \mathrm{ct}$	63.3	.ul-93]	270.0	273.5	-3.5
BF040020 AA	W. Bainntawn	200129	2040052	5409431	:82546	336.0	2539	c	1775	5.07	12.0 ct	(3.60)	Jut-93	248.9	257.5	8.7
B.040020 BA	W. Baharawn	1200129	2040052	5409431	182546	215.0	253.5	B	3360	26.23	$1.120 \mathrm{ct} \mid$	29.1	Cot-93	227.2	224.4	2.9
BF080077 AA	B. Khastar	200741	2080773	540942	184749	-	(195)	C	1286	Howing	12.00 ct			242.0		(0.0)
BF263460 A ${ }^{\text {a }}$	Makhawrim	223662	2063643	542245	183857	400.0	225.0	($3+\mathrm{C}$	1620	fiowing	22-0.t	(0.50)	Nov-88	$225<$	225.5	(0.0)
BE410641 AA	W, OMbit Soum	240406	2013593	543249	181145	287.0	(300)	B+C	1680	36.11	$13-\mathrm{Oct}$	35.8	Aus.94	263.9	264.2	-0.3
BF470809 AA	Criboit	240002!	2078993	543203	1847061	-	(205)	(C)	二	8.4.95psic +3.5	120-Aug			208.5		
BF840101 AA	Ramnoha	280000\|	20400001	545501	182653	316.0	(240)	C	2920	40.39	26-Ses	42.1	Oct-93]	199.6	197.9	1.7
B6015793 AA	R.Ganim	205930	$2117300 \mid$	5412221	190742		(170)	c		f.93.18pasit 62.2	2:20-Aug			235.2		
BG117784 AA	B. Khrwtax	217800	2117400	541911	190743	95.0	142.0	A	2142	35.59	19-Sep	35.38	Nov-88	106.4	106.6	0.2
BGI17784 BA	B. Khawtar	2178001	21174001	541911	190743	95.0	143.0	A	-	35.42	19-Sce	35.32	Nov 88	107.6	107.7	0.1
BG203908 AA	Km. 165 BH	223000	2109000	542211	190355	347.0	150.0	$B+C$	2000	unconfirn	mod	(43.5?)	1 Jan-91			
BG317999 AA	Qitbir	1237900	2119900	543040	190917		(150)	c	-	f:51.4psi(+36.0	, 20-Aus	- -		186.0		
YA715978 AA	Shisr	'7762091	2019918 .	533642	381504	250.0	290.0	(B) + C	1365	0.11	30 -0ta	(0.14)	Mav-85	289.9	290.1	-0.3
YA933800 AA	Shisr	793881	20392361	5346271	182513	333.0	260.0	c	1425	flowing $12 \mathrm{~V} / \mathrm{m}$?	$14-\mathrm{Oct}$	f(SC1425)	1 Sep-931	$260<$	$260<$	(0.0)
YV760334 AA	W. Rana	7703001	1968400	533258	174710	412.0	400.0	C	1260	27.72	21-Sep	26.94	Aug-94	372.3	373.1	-0.8
YV892605 A	Bin Nawtash	1782000	1996	53	180245	106.5	325.0	A+(B)	1500	f:6prix+4.2)	! 13 -(0ct	(3.00)	ADr-85	329.2	3280	
YV822605 BA	Bin Nawtash	782000	1996900	533951	1802.35	106.0	334.0	(B)		flowing	29-()ct					
YV892605 CA	Bin Nawtash	782000	19\%600	53395:	180245	110.0	(325)	B	1560	unconfin	mad	(5.63)	Mat-86		330.6	
YV 892605 DA	Bin Nawnash	782000	1996900	533951	180233	60.0	(325)	A	1300	Cappe		36.09	Max-86		288.9	
YV955965 A	W, Mavorgra	7955001	19595001	534715	174212.	323.0	442.2	C	2480	98.18	13 -Ott	98.2	Oct-93.	344.	344.0	00
YV995858 AA	Shist	795193:	1999272	534729	180328	267.0	328.1	C	1440	56.98	13-0tet	29.5	Aux-93	271.2	298.6	-27.5
ZA035301 AA	PPAMR Damat	805000	2033100	535320	182148:	300.0	257.9	(B)+C.	1600	9.39	is-Ot	(7.14)	Fcb-91	248.5	265.0	46.5
ZA16380S AA	Daukah	813020	20685401	1535754	184101	350.0	198.6	C	1500	artesian (cios	ed valve)	(35.75)	Mar.92	188.66	234.4	
7A163 3 OS BA	Daukah	8:3000	206×500	535754	[184101	350.0	198.7	C	1650	f 33 psi (+23.1)	: $22-0 \mathrm{ct}$	(31.67)	Sepo-92	221.8	230.4	-8.6
ZA163805 CA	Daukah	$\times 13000$	2068500	535754	184101	280.0	198.7	B+C	2610	f:50psi 4 +35.0)	1 12-0tot	(37.71)	Oct-92	233.7	236.4	-2.7
7,163805 DA	Daukah	8.3000	20, 2 S001	535754.	[84101]	350.0	198.9	C	1681	f:36psi +25.2$)$	1120ct	(30.32)	Oct-92	223.9	229.2	-5.3
7 V 099779 AA	Hanfiect	809700	19979001	535513	180219	300.0	321.2	C	1550	51.95	13-0.0t	28.73	Aus.94	269.2	292.4	-23.2
ZV099779 BA	Hanfeet	809700	1997900	[53513]	180219	265.0	321.5	C	1323	52.38	13-0ct	29.02	Aug. 94	269.2	292.5	-23.4
ZV099779 CA	Hanfoct	809700	1997900	5355131	180219	270.0	320.0	C	1540	53.01	$13-0$ a	29.65	Aus-94	267.0	290.4	-23,4
7V182323 M	Hanicet	812200	1988300	5.5652	1757411	2×5.0	336.5	C	2450	69.73	13.0 ct	39.31	Aux-94	266.8	297.2	-30.4
7V182823 3A	Hanicer	812200	1988300	535652	[175741	189.0	336.7	B	4000	60.45	13-Ot	60.54	Aug.94	276.2	276.1	0.1
7V182824 AA	Hanfet	812200	19×400	5356521	179574	290.0	336.3	C	3000	69.50	i13-00t	39.12	Aug 94	266.8	297.2	30.4
ZV193035 MA	Hanicet	813300	1920500	\| $535730 \mid$	175849	200.0	329.0	,	3860	56.66.	$13-9$ ct	56.92	Aus.94	2723	272.1	0.3
7V:93035 BA	Hanfect	813300	1990500	5337301	175849	286.0	329.0	c	2300	62.25	$13-\mathrm{Cot}$	32.05	Aus.94	2×6.8	297.0	. 30.2
$7 \mathrm{VV193035CA}$	Hanfoct	813.300	1990500	$\underline{5} 35730 \mid$	175×29	285.0	329.0	C	-	62.30	13-0.0t	31.95	Aug. 94	266.7	297.1	-30.4
CV193045 M	Hantier	$\times 13400$	1990500	535730:	:175888	286.0	329.1	C	2500	62.10	$13-0 \mathrm{ct}$	31.64	Jun-94	267.0	297.4	-30.5

[^0]: Note: 1) Feeds cost includes the cost of sardines and wheat which were used by one herder of the seventeen surveyed herders.

[^1]:

