JAPAN INTERNATIONAI, COOPERATION AGENCY (JICA)
THE MINISTRY OF AGRICULTURE AND FISHERIES, THE GOVERNMENT OF THE SULTANATE OF OMAN

THE STUDY
 ON
 AGRICULTURAL DEVELOPMENT PROJECT

IN
THE NEJD REGION
(Phase II Study, Work III)

FINAL REPORT

VOLUME II

APPENDICES

MAY, 1997

PACIFIC CONSULTANTS INTERNATIONAL

THE STUDY ON

AGRICULTURAL DEVELOPMENT PROJECT

IN

THE NEJD REGION
 (Phase II Study, Work III)

FINAL REPORT

VOLUME II APPENDICES

MAY, 1997

TABLE OF CONTENTS OF APPENDICES

Appendix 1 General

A-1.1 List of Persons Contacted A 1-1
A-1.2 List of Equipment and Other Items Provided by ICA Study Team A 1-3
Appendix 2 Crop Production
A-2.1 Monitoring items for the cultivation of Rhodes grass A 2-1
A-2.2 Cultivation method of Rhodes grass before April, 1995 A 2.4
A-2.3 Guidance for Rhodes grass cultivation A 2-5
A-2.4 Plan and result of fertilization for Rhodes grass A 2-11
A-2.4.1 The Fertilization Plan and Application Results from May to December, 1995 A 2-11
A-2.4.2 The Fertilization Plan and Application Results from January to July, 1996 A 2-12
A-2.4.3 The Fertilization Plan and Application Results from August to November, 1996 A 2-13
A-2.4.4 Actual application of urea in 1996 A 2-14
A-2.5 Actual irrigation use A $2-14$
A-2.6 Growth characteristics of Rhodes grass A 2-15
A-2.6.1 Growth Characteristics of Rhodes Grass by Season A 2-15
A-2.6.2 Effects of various factors on growth characteristics of Rhodes grass (31 August, 1996) A 2.16
A-2.7 Growth of windbreak trees A 2-17
A-2.7.1 Growth of windbreak trees in 1995 A 2.17
A-2.7.2 Growth of windbreak trees in 1996 A $2-18$
A-2.8 Change of moisture content of cut grass in the field A 2.19
A-2.9 Contents of Nutrients of Hay A 2-20
Appendix 3 Soil
A-3.1 Measurement of pH, EC and Organic Matter A 3-1
A-3.2 Summary of Pit Excavation Survey A 3-2
A-3.3 Results of Soil Chemical Analysis A 3-8
A-3.4 Infiltration Rate of the Center pivot field of NARS A 3-17
A-3.5 Measurement of Saturated Hydraulic Conductivity A $3-18$
A-3.6 Available Water Capacity (AWC) of NARS Soil A 3-19
A-3.7 Soil Moisture Tension (pF) Measurement in the Center Pivot Field by Tensiometers A 3-20
A-3.8 Soil Moisture Contents Measured Before and After Irrigation A 3-21
A-3.9 Measurement of Field Capacity in the Center Pivot Field A 3-22
A-3.10 Previous Soil Surveys A 3-23
A-3.11 Abbreviations and Glossary (Soil) A 3-32

Appendix 4 Groundwater

A-4. 1 Depth of Water Surface at NARS A 4-1
A-4.2 Hydrogeology in the Study Area A 4.9
A-4.3 Hydrogeolocial Cross Section A 4.9
Appendix 5 Metcorology
A-5.1 Meteorology at NARS A 5-1
A-5.1.1 Mean Daily Temperature at NARS A 5-1
A-5.1.2 Mean Daily Relative Humidity at NARS A 5-1
A-5.1.3 Daily Average Wind Speed at NARS A 5-2
A-5.1.4 Daily Gust Maximum Wind Speed at NARS A 5-2
A-5.1.5 Mean Daily Solar Radiation at NARS A 5-3
A-5.1.6 Mean Daily Sunshine Duration at NARS A 5.3
A-5. 2 Metcorology in South Oman A 5 -4
A-5.2.1 Climatological Condition at Salalah A $5-4$
A-5.2.2 Climatological Condition at Thumrait A 5.5
A-5.1.7 Mean Daily Temperature at Dauka A 5-6
A-5.1.8 Mean Daily Relative Humidity at Dauka A 5-6
A-5.3.1 Mean Monthly Temperature at NARS and other Selected Locations in the Nejd Region A 5-7
A-5.3.2 Mean Monthly Relative Humidity at NARS and Other Selected Locations in the Nejd Region A 5-7
A-5.3.3 Monthly Average Wind Speed at NARS and Other Selected Locations in the Nejd Region- A 5-7
A-5.3.4 Monthly Gust Maximum Wind Speed at NARS and other Selected Locations in the Nejd Region A 5.8
A-5.3.5 Prevailing Wind Direction at NARS and other Selected Locations in the Nejd Region A $5-8$
A-5.3.6 Daily Mean Solar Radiation at NARS A $5-8$
A-5.3.7 Daily Mean Sunshine Duration at NARS A 5.8
A-S.3.8 Daily Evaporation Rate Measured at NARS and Other Selected Locations in the Nejd Region A 5.8
Appendix 6 Water Use
A6.1 Groundwater Consumption at NARS A 6-1
A.6.2 Water Use for Center Pivot A 6-4
A. 6.3 Water Use for Linear Movement A 6.5
A-6.4 Water Use for Tree A 6.6
A-6.5 Location Map of Wells in NARS A 6.7
A-6.6 The Results of Water Quality Analysis A 6.8
A-6.7 Future Trend of Water Level A 6.9

Appendix $7 \quad$ Experimental Trials

A-7.1 Main proceedings of Rhodes grass cultivation in 1996 A 7-1
A-7.2 Results of trials A 7-1
A-7.2.1 Effect of manure application on yield of Rhodes grass (1996) A 7-1
A-7.2.2 Effect of potassium application on yield of Rhodes grass (1996) A 7-1
A-7.3 Farm Works Observation on Harvesting of Rhodes Grass A 7-2
A-7.4 Results of Lysimeter Trials A $7-5$
A-7.4.1 Soil moisture content in lysimeter A 7.5
A-7.4.2 pH and EC of drainage water in lysimeter A 7.6
A-7.4.3 Yield of Rhodes grass in fysimeter A 7-6
A-7.5 Experimental Plan of NARS A 7-7
Appendix $8 \quad$ Questiomaire Survey
A-8.1 Results of questionnaire survey of farmers in Salalah A 8-1
A-8.1.1 Land use pattern in Salalah plain (1991, FAO's report) A 8.2
A-8.1.2 Land Distribution Pattern in Salalah Plain A 8-2
A-8.1.3 Cropping pattern by size class of farms in Salalah A 8-3
A-8.1.4 Distribution of the cultivated area and production by Region (1989) A 8.4
A-8.1.5 Family Members of Farmers in Salalah A 8-4
A-8.1.6 Farmers' Intention on Living Standard of their Households in Salalah-- A 8-5
A-8.1.7 Type of Farming in Satalah A 8.5
A-8.1. 8 Farm Land Ownership of the Surveyed Farmers in Salalah A 8.6
A-8.1.9 Cropping Season in Salalah A 8.8
A-8.1.10 Number of Livestock per Household A 8.8
A-8.1.11 Expectation of Farmers from the Government A 8-10
A. 8.2 Results of Questionnaire Survey of Herders in Jabal (Mountain Area) A 8-11
A-8.2.1 Fanily members of herders in Jabal A 8-16
A-8.2.2 Number of livestock in each herder in Jabal A 8-16
A-8.2.3 Location of vegetation in catle grazing by season A 8-16
A-8.2.4 Amount of supplementary feeds in each herders' houseliold by season A 8-17
A-8.2.5 Daily amount of supplementary feeds by seasons A $8-17$
A-8.2.6 Periods kept cattle in byres by age A 8-17
A-8.2.7 Amount of compost sold by each herder A 8-17
A-8.2.8 Inconie and expenditure of herders' household A 8-18
A-8.3 Results of Questionnaire Survey of Herders in Nejd A 8-19
A-8.3.1 Number of family members of herders in Nejd A 8-23
A-8.3.2 Number of livestock in each herder in Nejd A 8-23
A-8.3.3 Livestock grazing A 8-23
A-8.3.4 Amount of supplementary feeds in each herders' household by season A 8-24
A-8.3.5 Daily amount of supplementary feeds per head by season A 8-24
A-8.3.6 Farming in Herders' Households in Nejd A 8-24
A-8.3.7 Income and expenditire of herders' household A $8-25$
A-8.4 Comparison between the three sub-regions in the Southern Region A 8-26
A-8.5.1 Survey Results of small farms in the Study Area A 8.33
A-8.5.2 Survey Results of big farms in the Study Area A 8.35
A-8.5.3 Assessment of soil pH and EC for the farms and various locations of the Study Area A 8.36
A-8.5.4 MWR monitoring wells in the Study Area A 8.37
Appendix $9 \quad$ Agricultural Development Plan
A-9.1 Socio-economic Situation of Oman A 9-1
A-9.1.1 Economic Situation A 9.1
A-9.1.2 Agricultural Situation A 9.5
A-9.2 Development Plan A 9.7
A-9.2.1 National Development Plan A 9.7
A-9.2.2 Agricultural Sector Development Plan A 9.10
A-9.2.3 Water Resources Sector Development Plan A 9.11
A-9.2.4 : Regional Development Plan A 9.12
A-9.2.5 Points of Issue of Agricultural Development A 9.18
A-9.3 Present Situation of the Study Area A $9-20$
A-9.3.1 \therefore General Outline A 9-20
A-9.3.2 Natural Conditions A 9-20
A-9.3.3 Population A 9.21
A-9.3.4 Land Use A 9-21
A-9.3.5 Agriculture and Livestock A 9.22
A-9.3.6 Social Infrastructures A 9-22
A-9.4 Development Strategies A 9-23
A-9.4.1 Background A 9.23
A-9.4.2 Agricultural Development Policy A 9-25
A-9.4.3 Present Situation on Agricultural Development in the Nejd Region A 9.26
A-9.4.4 Restrictive Factors and Potentiality of Development A 9-27
A-9.4.5 Basic Concept for Development A 9.28
A-9.5 New Pilot Farm Plan A 9.31
A-9.5.1 : Objective A 9.31
A-9:5.2 Scale A 9.31
A-9.5.3 Selection of Locations A 9-31
A-9.5.4 Farmers A 9-32
A-9.5.5 Farming A 9-32
A-9.6 Project Evaluation of the New Pilot Farm Plan A 9-36
A-9.6.1 Cost and Benefit Flow of FIRR A 9-36
A-9.6.2 Cost and Benefit Flow of FB/C and FNPV A 9-37
A-9.6.3 Cost and Benefit Flow of FIRR (Case 2: 15% Subsidy) A 9.38
A-9.6.4 Cost and Benefit Flow of FIRR (Case 3: 33\% Subsidy) A 9-39
A-9.6.5 Cost and Benefit Flow of FIRR (Case 4: 55\% Subsidy) A 9.40
A-9.7.1 Staffing Plan of NARS A 9.41
Appendix 10 Bibliography A $10-1$
Appendix 11 Scope of Work and Minutes of Meetings A 11-1

APPENDIX - 1
 GENERAL

Appendix 1 General

A-1.1 List of Persons Contacted

Ministry of Ariculture and Fiheries (MAF)

MAF Head Ouaters in Muscat

H.E. Mohamed bin Abdullah bin Zaher Al Hinai	Minister of Agriculture and Fisheries
H.E. Sayyed Sultan Ahmed Al Busaid	Undersecretary of Agriculture and Fisheries
Mr. Abdulla Al-Mawli	Director of Minster's Office
Mr. Tariq bin Suhail bin Mohamed Al-Zidzali	Agricultural Expert, Minister's Office
Mr. Ahnaf bin Omar Al Zubaidi	Advisor to the Minister
Mr. Habeeb Abdultah Al-Hasani	Acting Director of Technical Cooperation
Mr. Faisal Ali Salman	Translater Technical Cooperation
Mr. Hassan Shehatta	Economic Expert
Mr. V. Shah	Economic Expert
Mr. Wazir Hassan	Agronomy Expert

Rumais Agricultural Research Station

Mr. Saud bin Salim Al-Harthy
Mr. Assad Alla bin Ahmed Taqi
Mr. Saud Al Farsi
Dr. Andre G. Lepiece
Mr. Emad Abdull Majecd

DG of Rumais Agricultural Research Station (Ex.)

Soil Scientist

Engineer of Soil
Soil Specialist
Director Gencral of Irrigation

Dircctorate General of Planning and Projects

Mr. Ibrahim Saleh Al Gahilalani
Mr. Khalifa Al-Shaqsi
Mr. Mohammed Moor

Department of Agricultural Statistics

Mr. Salem Mohamed Al-Ghamari

Mr. Mohamed Salah

Ministry of Development

Mr. Sabir Al-Haibi

Mr. Ali Alghufaili
Mr. Mohamed Al-Riyyami

MAF, DG Planning \& Project
MAF, DG Planning \& Project
MAF, DG Planning \& Project

Director of Agricultural Statistics
Expert of Agricultural Statistics

National Accountant
Officer
Officer

Ministry of Vater Resources (MWR)

H.E. I Yamid bin Said al Aufi

Mr. Alcy bin Ahmed Al Marjeby
Mr. Seif Al-Shaqsy
Mr. Mohamed Khalifa Al Kalbani
Mr. Bob Rowt
Mr. Ali Gharbi
Mr. Graham Smith
Mr. Ahmed bin Mohammed Al-Ghafri
Mr. Ismail Al-Sarinani
Mr. Hamad Salim Al-Mahrouqi
Mr. Ahmed Said Al Baruwani
Ms. Izabela Dyras
Mr. Abdul Aziz
Mr. Nasser Al-Magbali
Mr. Majid Bilarab Al-Batashi
Mr. Salem bin Salam Al-Mawali

MWR, Salalah Orfice

Mr. Salem Bin Ahmed Al Hash
Mr. Abdullah Mohd. Ali Bawain
Mr. Mohd. Abdullah Mohd. Al Amri
Mr. Chris O'Boy

Other Departments

Mr. Elhag Bakhit Ahmed
Mr. Mohd. bin Dhofar bin Ahmed Al-Rawas
Mr. Musallem Saced Al-Mashani
Mr. Mohd. Ali Al-Tager
Mr, Bhanu Pratap Singh

Salalah Airport

Mr. Salim Awadh
Mr. Mohd. bin Dhofar bin Ahmed Al-Rawas
Mr. Musallem Saeed Al-Mashani
Mr. Mohd. Ali Al-Tager
Mr. Bhanu Pratap Singh

Other Organizations

Mr. Abmed Al-Fareed
Mr. George Heading

Minister of Water Resources
Director General of Water Resources Assessment
Director General of Water Resources Management
Acting DG of Water Resiurces Management
Expert of DG of Water Resources Management
Department of Water Resources Management
Deputy Director General of Water Resources Assessment
Controller General of fnformation and Awareness Centre
Director General, Regional Affairs, MWR
Director of Statistics and Ficld Data,MWR
Director of Surface Water, MWR
Head, Remote Sensing Section
Staff, Remote Sensing Section
Acting Director of Dams
Deputy Director, Dept. of Dams
Technician, Department of Dams

Director, MWR Salalab Regional Office
Engineer, MWR Salalah office
Engineer, MWR Salalah office
Expert, MWR Salalah office

Range Ecologist, Range \& Forest Dept.
Deputy Director
Chief of Metcorology section
Staff of Meteorology section
Mcteorologist

Director of Salatah Airport
Depuly Director
Chief of Meteorology section
Staff of Meteorology section
Meteorologist

Ministry of Commerce $\&$ Industry
Farm Management, Desert Agriculture Project

A-1.2 List of Equigment and Other Items Provided by JICA Study Team

SI.No.	Descriptions	Specifications	Qty.
1	Electronic Balance	FX-300	1 set
2	Permeameter	DIK-405	1 set
3	EC meter	CM-20S	1 set
4	Water quality checker	WQC20A	1 set
5	Soil auger	AF-108, screw type	1 set
6	Soil sampler	AF-111	2 sets
7	Cylinder kit for soil sampler	6cilinders/set	9 sets
8	Soil sampling kit	AF-112	1 set
9	Standard color for horticultural plant	CF-300	1 set
10	Soil humus test kit	BF-232	1 set
11	Sub-surface irrigation kit	PRO-AGR.FM-05	1 set
12	Thermo-hygrograph set	N0.3C	1 set
13	Oven, constant temp.	Model 082-408	1 set
14	Weighing scale	Model NBS-150K	1 set
15	Small soil sieve set	Metal \# 2, 1, 1/2, 1/4mm	1 set
16	Soil three phases meter	DIK-1121	1 set
17	Soil tensiometer / 20 cm	DIK-833	14 Nos.
18	Soil tensiometer $/ 40 \mathrm{~cm}$		1 No.
19	pH meter	HORIBA B-212	1 set
20	Chatts for existing meteo station		
21	Ink for existing meteo-station		
22	Chatts for Thermo-hygrograph set		
23	Chart for rain gauge	IKEDA-KEIKI	
24	Pen for rain gauge	IKEDA-KEIKI 510	
25	Chart for existing thermo-hygrograph		
26	Pen for existing thermo-hygrograph		

APPENDIX - 2
 CROP PRODUCTION

Appendix 2

A-2.1 Monitoring items for the cultivation of Rhodes grass

(1)Detailed observation of plant growth

1) Plant growth

Purpose	To identify the growth characteristics of the Rhodes grass in Nejd
Frequency	Every seven days during cultivation in two seasons (during harvet, 7days in Summer and 14 days in Winter)
Items	Leaf color Number of plants Plant height Roots extension (20cm depth) Number of leaves Fresh weight of top and roots Number of headings Dry weight of top and roots Number of stems
Methods	Collection of all plants in 50 cm 2 quadrat 3 plots in healthy, normal and poor condition for each treatment
Necessary Equip.	Measure, scale, shovel, scissors, balance, drying oven, paper bag, pen, camera, rope with 4 poles, bucket, observation sheet

2) Analysis of moisture contents curve in the plant

Purpose	To identify the vater stress in Rhodes grass These data will be utilized for the effective water frequency		
Frequency			
Once in every 3 months			
(Winter, Spring, Summer, Fall)			Moisture in leaves and stems
:---			
Methods			
Necessary Equip.		Ecissors, paper bag, drying oven, balance, pen, observation shect	
:---			

3) Analysis of the effect of subsoiling on the plant growth

Purpose	To study the effect of subsoiling on the growth of Rhodes grass
Frequency	After treament of subsoiling, 2 plots from the field
Items	Leaf color Number of plants Plant height Roots extension (20cm depth) Number of leaves Fresh weight of top and roots Number of headings Dry weight of top and roots Number of stems
Methods	After subsoiling, observed items are collected once in every 2 weeks
Necessary Equip.	Measure, scale, shovel, scissors, balance, drying oven, paper bag, pen, camera, rope with 4 poles, bucket, observation sheet

(2)Daily observation of plant growth

Purpose	To observe the growth condition of Rhodes and for disease control Frequency
Daily or Occasionally Growth stage Plant activities (any significant symptonis) Leaf color Pests and diseases Soil moisture condition Extension of Rhodes satons Heading	
Methods	Randomized area for each treatments

(3) Ilay analysis

1) Analysis of moisture contents curve in the hay

Purpose	To identify the drying condition of hay These data will be utilized for determining the suitable drying condition for hay baler
Frequency	4 times in a year (February, May, August and November)
Items	Moisture in leaves and stens
Methods	Every 3 hours after cutling of plants for each isrigating treatment Necessary equip.

2) Quantity and quality of produced bay

Purpose	To identify the productivity of Rhodes for hay baler
Frequency	Every harvesting time Items Moisture content in the hay Weight of selected 20 hays Color, flavor Gloss, rate of heading stems
Methods	Measurement of weight, for each treatment
Necessary Equip.	Balance, leaf color sheet, scissors, paper bag drying oven, observation sheet

3) Estimation of harvesting loss of fodder

Purpose	To identify the loss of fodder for making hay baler and to estimate the total production of Rhodes grass
Frequency	Each harvest Items plot from each treatment Methods Necessary equip.Rope (30m), pole (4), big bag, balance, observation sheet

4) Analysis of nutrients and mineral contents in hay

Purpose	To identify the hay quality and toxic content 2 times in a year (At stimmer and winter harvest)
Frequency	NO3-N, P, K, Ca, Mg and NO2-N as Toxicity Micro elements, digestibility value, metabolizable energy Crude protein
Methods	Sampling from each treatment and oven dry Chemical analysis will be carried out at MAF laboratory
Necessary equip	Scissors, paper bag, nylon bag, drying oven, balance

[Bfonitoring of Tree Cuffivation

Purpose	To study the grovth rate tor each variety
Frequency	4 times in a year (February, May, August and November)
Items	Tree height Canopy (X, Y) Diameter of the stem at bottom
Methods	Selected 10 trees for each variety
Necessary equip.	Measure (5 m), pole, caliper Plate should be fixed to selected trees.

A-2.2 Cultivation method of Rhodes grass before April, 1995

The cultivation of Rhodes grass was started in September, 1994 at the newly constructed NARS. After the land preparation activities such as land leveling and plowing, the Rhodes grass was sown on virgin soil, and the harvest was carried out twice until April, 1995.
These cultivation activities had been carried out by the DGAF, SLL. However, during this period, the permanent staffs were not appointed and therefore cultivation and other activities had been managed by some contractors who had also managed the irrigation system and construction of buildings.

The cultivation practices are summarized as follows.

Soil preparation:
Center Pivot field and Linear Movement field were plowed by disk harrow in the end of August, 1994, leveled by harrow from 7th to 14th September, 1994, irrigated from 15th September, 1994 and followed by the application of chemical complex fertilizer (N20-P10K10) of 500 kg per ha and organic manure of 15 tones per ha by broadcaster before seeding.

Seeding:
Cultivar Pioneer was sown in Center Pivot field on 15th September, 1994 and cultivar Callide was sown in Linear Movement field on 18th September, 1994 by seed drill, respectively. Seeding rate of both fields was 19 kg per ha.

Harvesting:
First harvesting and second harvesting were carried out by mowers, rakes of four wheels with fingers, square baters and trailers in January and April, 1995. The hay production in first and second harvesting was 0.49 and 1.21 tones per ha in Center Pivot field and 0.46 and 0.98 tones per ha in Linear Movement field, respectively.

Fertilization after harvesting:
Urea of $1,200 \mathrm{~kg}$ per ha was applied only once after the first harvest for Center pivot field in Jantiary, 1995.
A-2.3 Guidance for Rhodes grass cultivation

Source: 1) The desert Agricultural Project- A Report on Project Development to March 1988. PDO., Apr, 1988. 2) Detailec investigations for Development of up to 1000 ha of Irrigated land: Nejd Region-
Hydrogeology, interim Report(Final). Mott MacDonaid International Led.,Feb. 1991, 3) The Study on the Agricultural Development Project in the Nejd Region(Phase II)-Detailed Design Report, JiCA, Dec. 1991.
A-2.4 Plan and result of fertilization for Rhodes grass
Table A-2.4.1 The Fertilization Plan and Application Results from May to December, 1995

Date	May		June		July		August		Scptember		October		November		December	
	Plan	Result	Plan	Resuit	Plan	Result	Plan	Result								
	Ures TSP	Urea : TSP	Urea TSP	Lrea TSP	Urea TSP	Urea TSP	Urea' TSP	Urea : TSP	Urea TSP	Urea TSP						
1)			0.45		0.45	0.45 :	-	-	-	!	-	,	i	
2	!				0.45	,	0.45	0.45		-					0.45	0.45
3		,	0.45		0.45	-	\cdots	0.45	2.7		!	0.45			0.45	0.45
4			0.45	!	0.45	0.45		0.45	2.7		!	0.45	0.45	!	0.45	0.45
5	\bigcirc		0.45	1	0.45	0.45	,	0.45	2.7	I		0.45	0.45	;	0.45	0.45
6	0.45	0.45	0.45			0.45		0.45		,		0.45	0.45		0.45	0.45
7	0.45	0.45	0.45			0.45	I	0.45		1	0.45	0.45	0.45			
8	0.45	0.45				0.45	1	0.45	$!$	0.45		0.45			!
9	0.45	0.45		1		0.45	1	0.45	0.45		0.45		.		:	1
10	0.45	0.45	0.45		2.7	0.45	1		0.45		0.45	1	\cdots		,	!
11			0.45		2.7		\because	\cdots	0.45		0.45		$+$			
12		!	0.45		2.7		0.45	0.45	0.45					,		
13		;	0.45	0.45		1	0.45:	-	0.45					i		
14		!	0.45	0.45			0.45									
15		1		0.45	0.45		0.45	0.45					S		1	
16				0.45	0.45	,	0.45	0.45			!				0.45	0.45
17			0.4	0.45	0.45						!				0.45	0.45
18			0.45		0.45				-u......	4.05			0.45	0.45	0.45	0.45
19			0.45	1	0.45			$!$		4.05		!	0.45	0.45	0.45	0.45
20	0.4512 .7	$0.45=4.05$	0.45							0.45:		0.45	0.45	0.45	0.45
21	0.45 2.7	0.45	0.45							0.45	0.45		0.45	0.45	-	
22	$0.45 \quad 2.7$	0.45								0.45	0.45		0.45	0.45	,	
23	0.45	0.45			1				0.45	0.45	0.45			\bigcirc	:	
24	0.45 .	0.45							0.45	0.45	0.45	\cdots		-	!	
25					- - -				0.45		0.45				.	
26						0.45		0.45						;	
27	\cdots			0.45			0.45		0.45							
28	.	',		0.45			0.45	,	${ }^{-}$							
29	:	,		0.45	0.45		0.45								'	
30					0.45		0.45	i	-	;	,	,		$!$	0.45	
31	i	-			$0.45 \cdots$	\cdots	\cdots	:	\cdots					.	0.45	
Sum	4.5 : 8.1	$4.5 \quad 3.1$	6.750	3.60	5.85:8.1	3.15 0	5.40	5.4: 0	$4.5: 8.1$	2.25 8.1	$4.5 ; 0$	2.25: 0	4.5: 0	2.25 0	5.4 :	4.5 -

Table A-2.4.2 The Fertilization Plan and Application Results from January to July, 1996

Table A-2.4.3 The Fertilization Plan and Application Results from August to November, 1996

NO. of Harvest	Date of Harvest	Cutting Interval	Planned water use days from last cuting	Actual water use days from last cucting	Treatments of irrigation in Trial 1	Planned amount of water	Actual amount of water in the irrigated day	Average of actual amount of water in the period
9	4-May	$67^{\text {day }}$	52	52	High level	$\mathrm{mm} / \mathrm{day}$ 12	$\mathrm{mm} / \mathrm{day}$ 10.3	$\mathrm{mm} /$ day 10.8
	14-May				Low level	8	6.4	6.4
10	20-Jul. -	77	66	31	High leve!	15	11.6	5.5
	28-Jul.				Low level	10	7.7	3.6
11	20-Sep.-	62	53	48	High !evel	12	14.7	13.3
	1-Oct.				Low level	8	9.8	8.9
12					High leve!			
					Low level			

applied once in every three days due to impossible pumping up water.
A-2.6 Growth characteristics of Rhodes grass
Table A-2.6.1 Growth Characteristics of Rhodes Grass by Scason

Items	May, 1995			July			August			October			January 1996		
	21-May	30-May	Increse during 10 davs	4-Jul	14-jul	$\begin{gathered} \text { Increse } \\ \text { during } 10 \text { davs } \end{gathered}$	14-Aug	29-Aug	Increse during 16 davs	16.0ct	31-Oct	$\begin{gathered} \text { Increse } \\ \text { during } 15 \text { davs } \end{gathered}$	20-Jan.	: 0 -Feb.	$\begin{gathered} \text { Increse } \\ \text { Curing } 21 \text { davs } \\ \hline \end{gathered}$
Plant height (cm)		75-90	-	58-87	85-110	23-27	62~149	98	-	35-55	70-113	35-58	20-30	35-55	15-25
Number of Stems (/m2)		\cdots		1,472	1,540	68.0	1,340,0	1.184	-1560	1.620 .0	1,592	-28.0	2,888	2,256	68.0
Number of Mcacing (/m2)				24	46	392.0	40.0	344	3040	136	468	3320	0	60.	60
Rate of Heading (\%)		.		1.6	27.0	25.4	3.0	29.1	26.1	8.4	29.4	21.0	0.0	2.7	2.7
Fresh Weight (/m2)															
Top above 10 cm .	2,290.4	4,144.0	1.853 .6	2,328.8	4,660.4	2.331 .6	1,974.8	162.8	188.0	1,827.2	2,838.4	1,011.2	906.4	1,424.0	5:7.6
Botom top (0-10 cm)	1,578.0	1,396.4	-1816	2,4016	2,1220	279.6	1,874.4	9408	66.4	822.8	1,540.0	717.2	3,604.4	3,6780	73.6
Rcots (dcpth: 20 cm)	1.568 .4	3,463,2	1,8948	3,136.0	724.0	-2,412.0	922.0	379.6	- 542.4	318.8	947.2	628.4	520.8	914.8	394.0
Dry Weight (g/m2, 60C)															
Top above 10 cm	606.4	18477.6	8112	554.0	920.8	366.8	502.4	580.0	77.6	444.8	805.2	360.4	226.8	377.2	150.4
Botrom top ($0-10 \mathrm{~cm}$)	655.6	392.0	-263.6	903.6	402.0	-501.6	862.4	768.0	-94.4	3148	660.8	346.0	1.565 .6	1,559.6.	-6.0
Roots (depth: 20 cm)	482.8	455.2	-27.6	1.471.2	176.8	-1,294.4	421.2	266.4	-1.54.8	173.6	357.6	184.0	245.2	432.4	187.2
Dry Mauter Weight ($(\mathrm{m} 2,130 \mathrm{C}$)															
Top above 10 cm	-	-	-	533.3	857.5	324.2	454.2	548.6	94.4	398.3	763.5	365.2	213.9	583.8	369.9
Botiom top ($0-10 \mathrm{~cm}$)			-	867.0	3820	4850	7498	739.4	10.3	300.3	6114	311.1	1,456.2	1.699 .2	243.1
Roos (depth: 20 cm)		-	-	1,426.9	167.2	-1.259.6	408.4	256.2	-152.3	164.2	339.1	174.9	238.5	422.6	184.1
Ratio of Dry Matter Weight (\%)															
Top above 10 cm		-		189	661.0	\cdots	28.2	35.5	-	46.2	4.5		11.2	21.6	-
Bottom top ($0-10 \mathrm{~cm}$)		-		30.7	27.2		46.5	47.9		34.8	35.7		76.3	62.8	-
Roots (depth : 20 cm)				50.5	11.9	-	253	16.6		19.0	19.8		12.5	15.6	
Ory Mater \% Sor Fresh Weight(60C)															
Top above 10 cm	26.5	34.2	2.7	23.8	19.8	4.0	25.4	26.8	1.4	24.3	28.4.	4.1	25.0	26.4	1.4
Bottom top ($0-10 \mathrm{~cm}$)	41.5	28.1	-334	376	18.9	-18.7	46.0	39.6	-6.4	38.3	42.9	4.6	43.4	42.4	-1.0
Roots (depth: 20 cm)	30.8	13.1	-177	469	24.4	-22.5	45.7	70.2	24.5	54.5	37.8	-16.7	47.1	47.3	02
Dry Matter \% for Fresh Weight (130)															
Top above 10 cm				22.9	18.4	4.5	23.0	254	2.4	21.3	26.9	5.1	23.6	25.3	8.7
Bottom top ($0-10 \mathrm{~cm}$)		-	-	36.1	18.0	-18.1	40.0	38.1	-19	36.5	39.7	3.2	40.4	41.0	0.6
Rooss (depth : 20 cm)				455	23.1	-22.4	44	. 67.5	23.2	-515	35.8	-15.7	45.8	46.2	0.4
Time of Harvest		6-1en			17.5ul			4-Ses			3-Nov.			27-Feb.	

Note: Observation was carriec out on the samples of 50 cm square in healthy growth condition.
Table A-2.6.2 Effects of various factors on growth characteristics of Rhodes grass (31 August, 1996)

Treatments Irrigation \& urea Potassium Compost			Items Location	Number of Rate of stems-m2 heading \%		Dry matter Weight g/m2			Increase during 14days	Ratio of dry matter weight \%			
			Top			Bottom	Root	Top		Bottom	Root		
High leve! High level	Applied			B-1	1.900	6.9	502.6	970.1	115.2	294.9	31.7	61.1	7.3
	Applied	Applied	B-2	1.808	8.4	548.1	781.5	103.5	273.4	38.2	54.5	7.2	
			Average	1.854	7.7	525.4	875.8	109.4	284.2	35.0	57.8	7.2	
High level		-	C-1	1,500	1.3	329.2	799.8	132.1	166.8	26.1	63.4	10.5	
High level		Applied	C-2	1,500	5.8	730.5	953.8	167.5	413.7	39.4	51.5	9.0	
			Average	1,650	3.6	529.8	876.8	149.8	290.2	32.8	57.5	9.8	
	Average			1.752	5.6	527.6	876.3	129.6	287.2	33.9	57.6	8.5	
Low levelLow level	Applied	\cdots	A-1	1.580	3.5	264.7	963.7	111.7	-24.1	19.7	71.9	8.3	
	Applied	Applied	A-2	1.720	6.0	435.8	1,296.0	200.7	273.7	22.5	67.1	10.4	
			Average	1,650	4.8	350.2	1,129.8	156.2	124.8	21.1	69.5	9.4	
Low level			D-1	1.640	6.8	335.6	1,597.4	205.6	135.2	15.7	74.7	9.6	
Low leve!		Applied	D-2	2,080	5.2	285.2	1,133.4	176.4	44.9	17.9	71.1	11.1	
			Average	1,860	6.0	310.4	1,365.4	191.0	90.1	16.8	72.9	10.3	
	Average			1,755.0	5.4	330.3	1,247.6	173.6	107.4	19.0	71.2	9.8	

A-2.7 Growth of windbreak trees

Table A-2.7.1 Growth of windbreak trees in 1995

Kind of Trie	J.ocation	Itenıs	22-M3)	21 Aug.		23 Ott		13-Nov.	
			Average	Average	Incrase during 3 months	Average	Increase during 2 noonths	Average	increase during 3 months
J : Prosopis jutiflora	Fence	Height		- ${ }^{\mathrm{cm}}$	$\overline{\mathrm{cm}}$	[${ }^{\text {cm }}$	cm	${ }^{\text {cm }}$	c!m
	Main Ro3d		1925	263.0	70.5	252.5	-10.5	-	-
S : Ziziphus spina-christi	Fence		177.5	217.4	39.9	\cdots	--	3360	118.6
	Main Road		200.5	275.5	75.0	310.0	34.5	-	-
T: Prosopis sineraria	Fence		117.0	91.0	-26.0	-	1720	81.0
	Main Rosd		108.5	118.0	9.5	169.5	51.5	-	--
C: Acasis fortitis	Fence		-	-	-	\cdots	-1.		
	Main Road		157.5	231.0	63.5	285.0	54.0		
L: Conocarpus lancifolia	Fence		254.0	307.0	53.0	-		3900	83.0
	Main Road		223.0	279.3	563	319.5	402	-	-
P: Pithecolobium dulace	Fence		157.0	194.	37.1			290.0	95.9
	Main Road		161.5	212.9	51.4	243.3	30.4	-	
J : Prosopis julinora	Fence	Canopy	\%	-	-	-		-	-
		Y	${ }^{-}$	-	-	-	-	-	-
	Main Road	\mathbf{X}	3835	450.8	67.3	325.9	-124.9	-	-
		Y	355.7	441.4	85.7	323.4	-1180	-	-
S : Ziziphus spina-ciristi	Fence	X	156.5	198.8	423	.-.	326.0	127.2
		Y	1520	166.2	142	-	-1................	2850	118.8
	Main Road	\mathbf{X}	177.5	2322	547	2093	-22.9	\cdots	-
		Y	157.5	174.4	16.9	198.1	23.7	-	-
T: Prosopls cincracia	Fence	X	142.5	180.4	37.9	\cdots	\cdots	2860	105.6
		Y	144.5	160.4	15.9	-	-	264.0	1036
	Main Road	X	156.5	2019	45.4	190.9	-110	\bigcirc	-
		Y	143.0	1930	50.0	177.5	-15s	-	-
C: Acasia tortitis	Fance	X	\cdots	- -1	-1.........	-	-		
		Y	-	-	-	-	-		
	MainRoad	X	142.5	2916	149.1	2133	78.3		
		Y	159.0	288.0	129.0	2236	-64.4	\bullet	\cdots
L: Corcorarpus lancifolia	Fence	X	1550	217.5	62.5	-	……	280.0	82.5
		Y	172.0	203.6	31.6	\cdots	-1...........	270.0	65.4
	Main Road	X	1580	1938	358	200.6	6.8	\cdots	-
		Y	158.5	188.7	30.2	201.9	132	-	\cdots
P: Pithecolobium dulace	Fence	X	1680	237.6	69.6	-	\cdots	420.0	182.4
		Y	1685	201.6	33.1	-	-	400.0	188.4
	Aain Read	X	197.5	261.4	669	2085	. 52.9	\bigcirc	……..........
		Y	195.5	227.3	31.8	232.5	52	- -
…...									

Table A-2.7.2 Growth of windbreaktrees in 1996

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Kind of Trees \& Location \& \begin{tabular}{l}
22-May \\
Average
\end{tabular} \& \begin{tabular}{|c|}
21 Aug.. 1995, \\
Increase \\
during \\
3 months
\end{tabular}\(|\) \& 23 Oct....
\begin{tabular}{c}
Increase \\
during
\end{tabular}
2 months \& 13-Nov.
Average

Increase
during

months \& \begin{tabular}{|c|c|}
\hline 23-Mar., \& 1996

Increase

Average

during

\& 5 months

 \& Average

Increase

during

 months \&

6-Aug.

Average | nerease |
| :---: |
| during |
| 5 months |

\hline
\end{tabular}

\hline Height

J: Prosopis julifiora \& Fence \& | m |
| ---: |
| $\times 9$ | \& \[

$$
\begin{array}{cc}
\mathrm{m}_{1} & \mathrm{~m} \\
\hdashline 2.6 & 0.7
\end{array}
$$

\] \& \square \& $\begin{array}{rrr}m \\ & \mathrm{~m} \\ & \end{array}$ \& | m | m |
| :---: | :---: |
| 2.7 | 0.2 | \& $m \quad 1{ }^{m}$ \&

\hline \multirow[t]{2}{*}{S : Żziphus spina-christi} \& Fence \& 1.8 \& 2.2 - 0.4 \& \cdots \& $3.4 \quad 1.2$ \& - \& 3.50 .1 \& - - -

\hline \& Main Road \& 2.0 \& 2.8 \& 3.1 \& - - \& 3.9 \& - \& 3.9

\hline \multirow[t]{2}{*}{$r:$ Prosopis cincraria} \& Fence \& 1.2 \& $0.9-0.3$ \& $\cdots \quad$. \& $1.7-0.8$ \& - - \& $2.2-0.5$ \& - -

\hline \& Main Road \& 1.1 \& 1.2 \& 1.7 \& - - \& 1.9 \& - - \& 2.2

\hline \multirow[t]{2}{*}{C: Acasia tortilis} \& Fence \& \cdots \& - - \& - - \& - - \& - - \& - \& - -

\hline \& Main Road \& 1.7 \& 2.3 \& 2.9 0.5 \& - - \& 3.4 \& - \& 3.7

\hline \multirow[t]{2}{*}{L. Conocarpus lancifolia} \& Fence \& 2.5 \& 3.100 .5 \& - - \& $3.9 \quad 0.8$ \& $\therefore \quad-$ \& $3.9 \quad 0.0$ \& - -

\hline \& Main Road \& 2.2 \& 2.8 . 0.6 \& 3.2 \& - \quad - \& 3.8 \& - - \& 3.9

\hline \multirow[t]{2}{*}{P : Pithecolobium dulace} \& Fence \& 1.6 \& $1.9-0.4$ \& $=-$ \& $2.9 \quad 1.0$ \& \& $3.8 \quad 0.9$ \& \cdots - -

\hline \& Main Road \& 1.6 \& 2.10 .5 \& $2.4<0.3$ \& - - \& 3.5 1.1 \& - - - \& 3.60 .1

\hline \multirow[t]{2}{*}{| Canopy |
| :--- |
| J: Prosopis julifiora |} \& Fence \& \& $\mathrm{m}^{2} \quad-\mathrm{m} 2$ \& $\mathrm{m}^{2}-\mathrm{m} 2$ \& $\mathrm{m}^{\mathrm{m}}-^{\mathrm{m} 2}$ \& | m 2 | m 2 |
| :---: | ---: |
| - | - | \& $\mathrm{m}^{2} \quad-{ }^{m 2}$ \& \[

m^{2} \quad m^{2}
\]

\hline \& Main Road \& 10.7 \& 15.6 \& 8.3. 3.7 .3 \& - - \& 12.2 : \& \& 11.0 - 1.2

\hline \multirow[t]{2}{*}{s: Ziziphus spina-christi} \& Fence \& 1.9 \& 2.6 i 0.7 \& - - \& $7.3-4.7$ \& \& $4.7 \quad 0.0$ \&

\hline \& Main Road \& 2.2 \& 3.21.0 \& 3.3 \& - \& 7.1. \& -.................. \& 6.6

\hline \multirow[t]{2}{*}{T: Prosopis cineraria} \& Fence \& 1.6 \& $2.3 \quad 0.7$ \& - - \& $5.9-3.7$ \& - - \& $5.5 \quad 1.9$ \& - -

\hline \& Main Road \& 18 \& 3.1 \& 2.7 , -0.4 \& - - \& 3.6 \& - - \& 5.1

\hline \multirow[t]{2}{*}{C : Acasia tortilis} \& Fence \& - \& - - \& - \quad - \& - - \& - - \& - - \& - -

\hline \& Main Road \& 1.8 \& 6.6 \& 3.7 \& - - \& 5.1 \& - - \& 8.0

\hline \multirow[t]{2}{*}{L: Conocarpus lancifolia} \& Fence \& 2.1 \& 3.51 .4 \& - - - \& $5.9 \quad 2.5$ \& - - \& 3.8 1.3 \& - -

\hline \& Main Road \& 2.0 \& 2.9 \& 32.20 .3 \& - - \& 4.0 \& - \& 4.7 : 0.7

\hline \multirow[t]{2}{*}{P: Pithecolobium dulace} \& Fence \& 2.2 \& $3.8 \quad 1.6$ \& - - \& 13.2 9.4 \& - - \& 10.20 .8 \& - -

\hline \& Main Road \& 3.0 \& 4.7 : 1.7 \& $\begin{array}{lll}3.8 & -0.9\end{array}$ \& - - - \& | 12.2 | 8.4 |
| :--- | :--- | \& - - \& 9.6 -2.6

\hline
\end{tabular}

Note: Area (m2) of canopy was calculated with regarding the projection of tree as circle.
A-2.8 Change of moisture content of cut grass in the field

A-2.9 Contents of nutrients of hay

APPENDIX - 3 SOIL

Table A-3.1 Measurement of $\mathbf{p H}, \mathrm{EC}$ and Organic Matter

Sample No.	pH(1:2.5)					$\mathrm{EC}(1: 5), \mathrm{mS} / \mathrm{cm}$					Organic Matter (\%)				
	May. 95	Aug. 95	Apr. 96	July. 96	Oct. 96	May. 95	Aug. 95	Apr, 96	[July, 96	Oct. 96	May. 95	Aug. 95	Mar, 96	June. 96	Oct. 96
A-1	8.1	8.2	8.1	8.2	8.0	0.276	0.640	0.445	0.833	0.240	0.20	0.00	0.25	0.50	1.00
A-2	8.2	8.4	8.0	8.2	7.7	0.226	0.730	0.346	0.751	0.260	0.10	0.00	0.25	0.50	0.50
3-1	8.0	8.2	8.1	7.6	7.8	0.237	0.558	0.302	0.339	0.243	0.10	0.00	0.25	0.50	0.75
B-2	7.9	8.1	7.9	8.1	7.8	0.332	0.510	0.499	0.605	0.200	0.10	0.00	0.75	0.50	1.00
C-1	8.0	8.4	8.2	8.2	7.8	0.258	0.380	0.489	0.570	0.245	1.0	0.00	0.50	0.50	1.50
C-2	7.9	8.2	8.2	8.1	7.9	0.361	0.662	0.371	0.560	0.224	1.75	0.00	0.25	0.50	1.00
D-1	8.1	8.3	8.1	8.0	8.0	0.264	0.643	0.553	0.720	0.305	0.10	0.00	0.25	0.50	0.75
D-2	7.8	8.2	8.1	8.0	7.8	0.339	0.742	0.438	0.446	0.605	0.20	0.00	0.25	0.50	0.50
N-1	8.0	8.3	8.1	8.3	8.1	0.311	0.671	0.242	0.218	0.155	0.00	0.00	1.00	0.50	1.75
N-2	8.3	7.9	8.1	8.1	8.0	0.187	0.880	0.280	0.220	0.230	0.10	0.00	1.00	0.50	2.00
S-1	7.8	8.5	8.1	8.0	8.0	0.275	0.573	0.459	0.251	0.209	0.10	0.00	0.75	1.00	2.00
S-2	8.0	8.4	7.8	8.0	7.9	0.507	0.489	0.485	0.232	0.255	0.10	0.00	0.75	1.00	1.00

$A=$ North East Quanter in C.P.
$B=$ North West Quarter in C.P.
$C=$ South West Quarter in C.P.
$D=$ South East Quarter in C.P.
$S=$ South Windbreak trees
$N=$ North Windbreak trees

Appendix A-3.2 (1) Summary of Pit Excavation Survey (Pit - 1)
Date of Survey: May 1, 1995
location : Nejd Agricultural Research Station, Center pivot northern direction

1) Site Information

USDA Classification : Typic Calciorthids (Calcids)
FAO Classification: Calcic Yemosols
Elevation : 282 m
Slope : < 1%
Micro relief : Even
Landuse : Rhodes grass
2) Information of the Soil

Surface feature : Loose sand and gravel
Drainage : Moderately well
Evidence of erosion : None
Sand hazard by wind : Slight
3) Brief description of the profile

Top layer consists of sandy loam. More grass roots are found at the top 30 cms There is a high calcium carbonate through out the profile Gypsum occurs continously below 30 cms
4) Profile description
Horizon
Apk $(0-30 \mathrm{~cm})$
B12k ($30-65 \mathrm{cmin})$

Appendix A-3.2 (2) Summary of Pit Excavation Survey (Pit - 2)

Date: May 1, 1995
Location : Nejd Agricultural Research Station, Center pivot Southern direction

1) Site Information

USDA Classification : Typic Calciorthids (Calcids)
FAO Classification : Calcic Yemosols
Elevation : 282 m
Slope : < 1%
Micro relief : Even
Landuse : Rhodes grass
2) Information of the Soil

Surface feature : Loose sand and gravel
Drainage : Moderately well ; water standing in some locations nearby after the irrigation
Evidence of erosion : None
Sand hazard by wind : Slight

3) Brief description of the profile

Top layer consists of sandy loam. More grass roots are found at the top 30 cms There is a high calcium carbonate through out the profile Gypsum occurs continously below 15 cms .
4) Profile description
Horizon
Ap $(0-15 \mathrm{~cm})$
A1 $(15-35 \mathrm{~cm})$
B1 $1 \mathrm{~km}(35-65 \mathrm{~cm})$

Appendix A-3.2 (3) Summary of Pit Excavation Survey (Pit - 3)

Date : May 2, 1995
Location : Nejd Agricultural Research Station, Near meteorological station

1) Site Information
2) Information of the Soil

USDA Classification : Typic Calciorthids
FAO Classification : Calcic Yemosols
Elevation : 283 m
Slope : < 1%
Micro relief : Even
Landuse : No crop as on May 2, 1995

Surface feature : Loose sand and gravel
Drainage : Moderately well
Evidence of erosion : None
Sand hazard by wind : Slight
3) Brief description of the profile

Virgin soil and no cultivation is done until now.
Top layer consists of sandy loam.
There is a high calcium carbonate through out the profile
continously below 30 cms . The layers are very hard after 30 cms and is slightly more harder after 80 cms .
4) Profile description

Horizon	Description
Ak ($0-30 \mathrm{~cm}$)	Color is bright brown (7.5 YR 5/6) ; Sandy loam ; dry and slightly hard; $>30 \%$ gravel; single grains ; violent reaction to HCl ; no crop growth
B11km (30.80 cm)	Color is dull orange (7.5 YR 6/4) gravelly loamy sand; dry and very hard subangular blocky; Violent reaction to HCl
B12km (65-100 cm)	Color is dull orange (7.5 YR 6/4) gravelly loamy sand; dry and very hard subangular blocky; More harder than the upper layer; violent reaction to HCl

Appendix A-3.2 (4) Summary of Pit Excavation Survey (Pit - 4)

Date of Survey : September 10, 1995
Location : Nejd Agricultural Research Station, Center pivot northern direction

1) Site Information

USDA Classification : Typic Calciorthids (Calcids)
FAO Classification : Calcic Yemosols
Elevation: 282 m
Slope : < 1%
Micro relief : Even
Landuse : Rhodes grass
2) Information of the Soil

Surface feature : Loose sand and gravel
Drainage : Moderately well
Evidence of erosion : None
Sand hazard by wind : Slight
3) Brief description of the profile

More grass roots (70%) are found at the top 20 cms .
Fewer roots (25%) were observed at the second layer.
There is a high calcium carbonate through out the profile.
4) Profile description

Horizon		Description
Apk (0-20cm)	$\begin{aligned} & y \times 1 x \\ & x \times y \\ & x \times x \\ & x x \times x \end{aligned}$	Color is bright yellowish brown (10 YR 6/6) ; Sandy loam; loose and very friable; more roots are concentrated; violent reaction to HCl .
B1k (20-61 cm)	$\begin{aligned} & x \\ & x x \\ & x x \end{aligned}$	Color is Yellowish Brown (10 YR 5/8) Sandy clay loam; Loose and friable; Fewer roots (25%) are concentrated ; Violent reaction to HCl .
B12k (61-100 cm)	$\times \times$	Color is yellow orange (10 YR 8/6); Loam ; subangular blocky structure; this layer is more harder than the upper layer. Violent reaction to HCl

Appendix A-3.2 (5) Summary of Pit Excavation Survey (Pit - 5)

Date of Survey: September 10, 1995
Location : Nejd Agricultural Research Station, Center pivot western direction

1) Site Information

USDA Classification : Typic Calciothids (Calcids)
FAO Classification : Cafcic Yemosols
Elevation : 282 m
Slope : < 1%
Micro relief : Even
Landuse : Rhodes grass
2) Information of the Soil

Surface feature : Loose sand and gravel
Drainage : Moderately well
Evidence of erosion : None
Sand hazard by wind : Slight
3) Brief description of the profile

More grass roots (70%) are found at the top 30 cms .
Fewer roots (20%) were observed at the second layer.
There is a high calcium carbonate through out the profile.
4) Profile description

Horizon		Description
Apk (0-32 cm)	$\begin{aligned} & y x+x \\ & x \times x \\ & x \times x \\ & x \times x x \end{aligned}$	Color is dull yellowish orange (10 YR 6/4) ; Sandy loam; loose and very friable ; more roots are concentrated; Violent reaction to HCl
B1k (32-70 cm)	$\begin{aligned} & x \\ & x x \\ & x x \end{aligned}$	Color is bright yellowish brown (10 YR 6/6); Sandy loam ; Loose and friable ; Fewer roots (20%) are concentrated ; Violent reaction to HCl .
B12k (70-100 cm)	$x \times$	Color is bright yellowish brown (10 YR 6/6); Sandy loam ; Loose and friable ; Violent reaction to HCl

Appendix A-3.2 (6) Summary of Pit Excavation Survey (Pit -6)

Date of Survey : September 11, 1995
Location : Nejd Agricuttural Research Station, Center pivot northern direction

1) Site Information

USDA Classification : Typic Calciorthids (Calcids)
FAO Classification : Calcic Yemosols
Elevation : 282 m
Slope: < 1%
Micro relief : Even
Landuse : Rhodes grass
2) Information of the Soil

Surface feature : Loose sand and gravel
Drainage : Moderately well
Evidence of erosion : None
Sand hazard by wind : Slight
3) Brief description of the profile

More grass roots (70\%) are found at the top 30 cms .
Fewer roots ($10-12 \%$) were observed at the second layer.
There is a high calcium carbonate through out the profile.
4) Profile description

Table A-3.3 (1) Results of Soil Chemical Analysis

Sampling	Sampling Location	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\begin{aligned} & \mathrm{EC}(1: 5) \\ & \mathrm{ms} / \mathrm{cm} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{ECe} \\ \mathrm{~ms} / \mathrm{cm} \\ \hline \end{array}$	Total Avail. $(\%)$ (ppm)		Micro Nutrients, ppm				CaCO_{3} (\%)	Gypsum (\%)	Organic mater (\%)	$\begin{aligned} & \text { Exch. } \\ & \mathrm{Na}^{+} \end{aligned}$	$\begin{gathered} \text { CEC } \\ (\mathrm{me} / 100 \mathrm{~g}) \end{gathered}$
No.							Fe	Mn	Cu	Zn					
1	P1-H1	7.5	0.320	2.80	0.006	Trace	1.56	1.48	0.22	0.20	51.4	Trace	Trace	2.2	4.8
2	P1-H2	7.7	0.250	2.60	0.006	Trace	1.20	0.74	0.16	0.08	50.6	Trace	Trace	2.0	4.9
3	P1-H3	7.7	0.330	2.40	0.004	Trace	1.18	0.68	0.16	0.04	53.5	Trace	Trace	2.4	5.8
4	P2A-H1	7.3	2.200	4.00	0.007	Trace	0.90	0.40	0.12	0.08	35.1	8.2	Trace	2.5	6.5
5	2 CHl	7.4	2.200	5.00	0.010	Trace	1.44	0.64	0.14	0.08	40.7	2.5	Trace	1.8	4.3
6	P2-H2	7.3	2.400	6.80	0.006	Trace	0.78	0.40	0.12	0.36	39.8	5.2	Trace	2.5	5.7
7	$22-13$	7.4	6.200	38.00	0.011	Trace	0.86	0.06	0.14	0.16	43.4	1.1	Trace	1.6	4.5
8	93-H1	7.5	1.600	14.00	0.010	Trace	0.82	0.34	0.16	0.62	52.3	Trace	Trace	1.9	4.1
9	P3-H2	7.6	1.000	10.00	0.005	Trace	0.84	0.40	0.16	0.90	55.7	Trace	Trace	2.1	3.5
10	P3-H3	7.6	1.000	12.00	0.008	Trace	0.98	0.26	0.26	0.30	57.8	Trace	Trace	2.0	3.3

Sampling No.	$\begin{aligned} & \text { Sat'n } \\ & \% \end{aligned}$	Soluble cations (meo/l)				SAR	Soluble anions (me/l)			C.Sand	F.Sand	Silt	Clay	Texture
		Ca^{++}	Mg^{++}	Na^{+}	K^{+}		Cl	SO4*-	$\mathrm{HCO}_{3}{ }^{-}$					
1	34.4	12.0	32.0	9.9	1.0	2.1	20.0	24.9	10.0	14.66	62.1	13.1	10.1	Sandy loam
2	39.1	8.0	20.0	9.9	0.8	2.6	10.0	24.6	4.0	7.80	71.1	1.0	20.1	Sandy clay loam
3	45.5	10.0	24.0	9.2	0.8	2.2	20.0	21.9	2.0	5.28	45.4	21.2	28.2	Sandy clay loama
4	40.1	12.0	50.0	9.0	1.0	1.6	20.0	60.0	2.0	5.80	55.9	6.6	31.7	Sandy clay loam
5	31.6	32.0	50.0	13.2	0.8	2.1	30.0	64.0	2.0	7.76	64.5	6.0	21.7	Sandy ciay loam
6	42.8	34.0	58.0	22.0	1.5	3.2	40.0	73.6	2.0	7.58	51.3	11.0	30.1	Sandy clay loam
7	42.6	86.0	170.0	21.7	6.7	1.9	400.0	117.6	4.0	4.20	60.7	9.4	25.7	Sandy clay loam
8	32.0	62.0	108.0	46.7	1.8	5.1	80.0	133.9	4.0	10.86	48.0	15.0	26.1	Sandy clay loam
9	36.4	32.0	80.0	41.1	2.1	5.5	100.0	51.2	2.0	6.20	40.7	29.0	24.1	Sandy clay loam
10	31.6	30.0	62.0	47.0	2.6	6.9	100.0	39.5	4.0	8.90	42.0	27.0	22.1	Loam

[^0]Table A-3.3 (2) Results of Soil Chemical Analysis

$\begin{gathered} \text { Sampling } \\ \text { No. } \end{gathered}$	Sampling Location	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\operatorname{EC}(1: 5$ $\mathrm{mS} / \mathrm{cm}$	ECe $\mathrm{mS} / \mathrm{cm}$	Total NAvail. R(\%) (ppm)		Micro Nutrients, ppm				$\begin{array}{\|c\|} \hline \mathrm{CaCO} 3 \\ (\%) \\ \hline \end{array}$	Gypsum (\%)	$\begin{array}{\|c\|} \hline \text { Organic } \\ \operatorname{matter}(\%) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Exch. } \mathrm{Na} \\ \text { (me/ } 100 \mathrm{~g}) \end{array}$	$\begin{gathered} \text { CEC } \\ \text { (me/100 } \mathrm{g} \end{gathered}$
							Fe	Mn	Cu	Zn					
11	L1	7.9	0.280	3.2001	0.011	Trace	1.60	0.98	0.22	0.18	47.6	Trace	Trace	2.17	4.26
12	12	8.0	0.200	1.600	0.009	Trace	2.68	0.56	0.12	0.26	43.3	Trace	Trace	1.91	4.00
13	13	8.0	0.230	1.800	0.010	Trace	2.64	1.12	0.20	0.56	47.1	Trace	Trace	2.09	4.26
14	24	7.9	0.240	2.700	0.014	Trace	3.32	1.30	0.16	0.38	57.8	Trace	Trace	1.741	4.96
15	L5	7.9	0.380	4.400	0.012	Trace	2.20	0.92	0.16	0.20	53.6	Trace	Trace	2.17	8.09
16	16	8.0	0.220	2.200	0.014	Trace	3.88	1.02	0.14	0.44	47.1	Trace	Trace	2.00	8.61
17	L7	7.9	0.370	3.600	0.014	Trace	1.96	3.04	0.26	0.48	43.7	Trace	Trace	2.35	4.70
18	L8	8.0	0.320	3.800	0.014	Trace	2.50	1.14	0.18	0.34	57.8	Trace	Trace	2.00	3.48
19	L9	7.5	2.100	4.000	0.034	Trace	2.02	1.06	0.18	0.82	44.6	1.3	Trace	2.17	6.70
20	L10	8.0	0.230	2.000	0.011	Trace	3.72	1.98	0.20	1.28	53.6	Trace	Trace	1.91	8.43
							-								

Sampling No.	$\begin{gathered} \text { Sat'n } \\ \% \end{gathered}$	Soluble cations (me/l)				SAR	Soluble anions (me/I)			C.Sand	F.Sand	Silt	Clay	Texture
		Ca^{++}	Mg^{++}	Na^{+}	K^{+}		Cl	SO^{-}	$\mathrm{HCO}_{3}{ }^{\text {- }}$					
II	31.0	8.0	32.0	11.78	0.77	2.6	20.0	28.5	4.0	10.8	68.1	9.0	12.1	Loamy Sand
12	27.3	4.0	20.0	6.17	0.25	1.8	-10.0	16.4	4.0	9.3	77.6	3.0	10.1	Loamy Sand
13	26.6	4.0	16.0	7.04	0.51	2.2	20.0	3.6	4.0	25.0	55.9	7.0	12.1	Loamy Sand
14	24.2	12.0	28.0	10.04	0.77	2.2	20.01	26.8	4.0	25.0	57.9	5.0	12.1	Loamy Sand
15	24.5	14.0	46.01	13.61	1.79	2.5	30.0	41.4	4.0	21.4	57.5	1.0	20.1	Sandy clay loata
16	22.8	12.0	20.01	5.13	0.77	1.3	20.0	15.9	2.0	23.7	55.2	3.0	18.11	Sandy loam
17	32.4	10.0	46.0	12.26	1.54	2.3	30.0	33.8	6.0	11.0	55.9	15.0	18.1	Sandy loam
18	25.8	8.0	34.0	13.50	1.54	2.9	30.0	23.0	4.0	27.5	41.4	13.0	18.1	Sandy loam
19	32.2	16.0	64.0	8.26	0.77	1.3	20.0	65.0	4.01	4.0	54.9	15.0	26.1	Sandy clay loam
20	30.0	6.0	20.01	6.91	0.51	1.9	20.0	9.4	4.0	18.6	56.3	7.0	18.1	Sandy loam

The samples were collected at the upper horizons at various locations of the field.
LS - Southeast quater of L.M. L6 - Northeast quater of L.M; IT - Northweast quater of L.M; L8 - Southwest quater of L.M I9 - Southern side windoreak trees; MiO-Northern side windbreak trees
Appendix A-3.3 (3) Soil Samping Locations - (1/2)

Dauka farm is located at around 40 km from NARS

A 3-10
Appendix Table A - 3.3 (3) Sout Sampling Locations - (2/2)

Samaple No	Sampling Location	Sample No	Samapling Location	Samole No	Sampling Location
Center pivot irrigation location		Lysimeter		Dauka Farm	Center Pivot
NARS-1	Profile 1, Horizon 1 (0-20cm)	NARS-22	Subsurface Irrigation 3 ($0-30 \mathrm{cmom}$	DAUKA-1	Location 1, 0-30 cm
NARS-2	Profile 1, Horizon 2 ($20-61 \mathrm{~cm}$)	NARS-23	Subsurface Irigation $3(60-90 \mathrm{~cm})$	DAUKA-2	Location 2, 0-30 cm
NARS-3	Profile 1, Horizon 3 ($61-100 \mathrm{~cm}$)	NARS-24	Subsurface Irrigation 4 ($0-30 \mathrm{~cm}$)	DAUKA-3	Location 3, 0-30 cm
NARS-4	Profile 2, Horizon $1(0.32 \mathrm{~cm})$	NARS-25	Subsurface Irrigation $4(60-90 \mathrm{~cm})$	DAUKA-4	Location 4, 0-30 cm
NARS-5	Profile 2, Horizon 2 ($32-70 \mathrm{~cm}$)			DAUKA-5	Location 5, 0-30 cm
NARS-6	Profile 3, Horizon 3 ($70-100 \mathrm{~cm}$)	Windbreak trees locations		DAUKA-6	Location 6, 0-30 cm
NARS-7	Profile 3, Horizon 1 ($0-25 \mathrm{~cm}$)				
NARS-8	Profile 3 , Horizon 2 ($25-57 \mathrm{~cm}$)	NARS-26	Southern side, sataple 1	Nejc Farma Center Pivot	
NARS-9	Profile 3, Horizon 3 ($57-100 \mathrm{~cm}$)	NARS-27	Southern side, sample 2		
		NARS-28	Southern side, sample 3	NEJD-1	Location 1, 0-30 cm
Lysimeter		NARS-29	Northem side, sample 1	NEDD-2	Location 2, 0.30 cm
		NARS-30	Northern side, sample 2	NEID-3	Location 3, 0-30 cm
NARS-10	Surface Irrigation $1(0-30 \mathrm{~cm})$	NARS-31	Northern side, sample 3	NESD-4	Location 4, $0-30 \mathrm{~cm}$
NARS-11	Surface Irrigation $1(60-90 \mathrm{~cm})$			NESD-5	Location 5, 0-30 cm
NARS-12	Surface Irrigation 2 (0-30 cm)	Orchard		NEJD-6	Location $6,0.30 \mathrm{~cm}$
NARS-13	Surface Yrigation $2(60.90 \mathrm{~cm})$				
NARS-14	Surface Irigation $3(0.30 \mathrm{~cm})$	NARS-32	Orchard, Sample 1		
NARS-15	Surface Inrigation 3 ($60-90 \mathrm{~cm}$)	NARS-33	Orchard, Sample 2		
NARS-16	Surface Irrigation 4 (0-30cm)	NARS-34	Orchard, Sample 3		
NARS-17	Surface Inrigation $4(60-90 \mathrm{~cm})$				
NARS-18	Subsurface Irrigation $1(0-30 \mathrm{~cm}$	Kinear Mov	ve Irrigation		
NARS-19	Subsurface Inigation $1(60.90 \mathrm{~cm}$				
NARS-20	Subsurface Irrigation $2(0.30 \mathrm{~cm}$	NARS-35	Linear Move Irrigation, L1		
NARS-21	Subsurface trigation 2 ($60-90 \mathrm{c}$	NARS-36	Linear Move irrigation, L2		
		NARS-37	Linear Move Irrigation, L3		
		NARS-38	Linear Move Yrigation. L4		

Table A-3.3 (4) Results of Soil Chemical Analysis

Sampling No.	Sampling Location	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\begin{gathered} \mathrm{C}(1: 5 \\ \mathrm{mS} / \mathrm{cm} \end{gathered}$	$\begin{gathered} \mathrm{ECe} \\ \mathrm{mS} / \mathrm{cm} \end{gathered}$	Total N Avail. P.(\%) (ppm)		Micro Nutrients, ppm				CaCO_{3}(\%)	Gypsum (\%)	Organic matter(\%)
							Fe	Mn	Cu	Zn			
1	NARS 10	6.7	2.100	6.700	0.000	0.54	1.50	0.50	0.24	0.40	55.71	Trace	0.02
2	NARS 11	6.6	1.800	6.200	0.002	1.34	1.50	0.44	0.24	0.30	51.32	Trace	0.16
S	NARS 18	7.0	2.800	22.000	0.008	7.53	1.60	1.12	0.28	0.62	60.53	Trace	0.03
4	NARS 19	6.8	1.800	6.600	0.000	6.08	1.26	0.48	0.26	0.22	53.08	Trace	0.02
5	NARS 26	7.2	0.420	4.400	0.053	23.76	8.24	3.30	0.48	1.90	49.13	Trace	0.13
6	NARS 29	7.2	0.360	4.000	0.061	23.05	7.66	6.46	0.42	2.62	43.86	Trace	0.18
7	NARS 35	7.2	0.480	5.600	0.001	20.99	3.42	2.00	0.36	0.52	56.60	Trace	0.02
8	DAUKA 1	7.3	0.460	4.500	0.038	20.34	3.64	2.18	0.32	0.40	63.16	Trace	0.15
9	DAUKA 2	7.3	0.610	5.400	0.065	21.46	4.76	2.98	0.32	0.56	80.27	Trace	0.05
10	NEDD 1	7.4	0.770	5.300	0.022	25.26	2.64	3.18	0.42	0.30	44.74	Trace	0.01
11	NEID 2	7.0	1.700	4.900	0.015	24.77	1.78	2.56	0.48	0.50	38.16	Trace	0.14

Sampling No.	Sampling Location	Exchangeable cations (me/100g)				$\begin{aligned} & \text { CEC } \\ & \mathrm{e} / 100 \end{aligned}$	$\begin{aligned} & \text { ESP } \\ & \text { (\%) } \end{aligned}$	Soluble cations (me/l)				Soluble anions (me/l)			SAR
		Ca^{++}	Mg^{++}	Na^{+}	K^{+}			Ca^{+}	Mg^{+-}	Na^{+}	K^{+}	Cl	$\mathrm{SO}_{1}{ }^{-}$	$\mathrm{HCO}_{3}{ }^{-}$	
1	NARS 10	2.9	1.6	0.40	0.31	5.04	7.94	28.0	30.0	30.9	1.54	45.0	43.84	1.6	5.74
2	NARS 11	2.2	1.9	0.40	0.56	4.17	9.59	16.0	34.0	37.0	1.03	40.0	45.43	2.6	7.40
3	NARS 18	2.7	1.6	1.10	0.72	6.00	18.33	51.0	63.0	167.8	9.00	21.5	72.60	3.2	22.23
4	NARS 19	3.01	1.5	0.45	0.62	4.87	9.24	11.0	45.0	38.3	1.30	40.0	52.20	3.4	7.24
5	NARS 26	3.0	1.3	0.25	0.56	5.52	4.53	15.0	21.0	16.1	0.26	35.0	10.36	7.0	3.79
6	NARS 29	2.9	1.2	0.30	0.56	5.22	5.75	12.0	16.0	16.1	0.26	40.0	7.44	11.8	4.30
7	NARS 35	3.1	0.6	0.30	0.46	4.43	6.77	12.0	27.0	29.1	0.77	45.0	17.77	6.1	6.59
8	DAUKA 1	2.3	1.2	0.30	0.41	4.10	7.32	14.0	15.0	19.6	0.26	30.0	11.06	7.8	5.15
9	DAUKA 2	3.2	1.3	0.50	0.41	5.80	8.62	13.0	26.0	31.3	0.26	45.0	14.66	10.9	7.09
10	NEJD 1	2.4	2.6	0.30	0.46	5.39	5.57	25.0	33.0	25.7	0.26	30.0	49.16	4.8	4.77
11	NED 2	3.2	1.6	0.35	0.46	6.43	5.46	17.0	33.0	20.9	0.26	25.0	40.76	5.4	4.18

[^1]Table A-3.3 (5) Results of Soil Chemical Analysis (1/2)
Date: September 23, 1995

$\left[\begin{array}{l} \text { SI. } \\ \mathrm{No} \end{array}\right.$	Sampling Location	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\|\mathrm{EC}(1: 5)\|$ $\mathrm{mS} / \mathrm{cm}$	$\begin{gathered} \% \\ \text { C.Sand } \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { F.Sand } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Silt } \end{aligned}$	$\begin{gathered} \% \\ \text { Clay } \end{gathered}$	Texure	$\begin{gathered} \mathrm{CaCO}_{3} \\ (\%) \end{gathered}$
1	NARS - 1	7.7	0.540	35.6	42.1	10.6	11.7	Sandy Loam	54.9
2	NARS - 2	7.7	0.480	15.6	43.9	18.6	21.7	Sandy Clay Loam	50.0
3	NARS - 3	7.1	2.200	7.3	44.9	38.1	8.7	Loam	50.4
4	NARS - 4	7.7	0.300	12.0	67.7	8.6	11.7	Sandy Loam	57.0
5	NARS - 5	7.8	0.400	9.6	58.1	16.6	15.7	Sandy Loam	42.1
6	NARS -6	7.9	0.320	5.7	60.2	14.4	19.7	Sandy Loam	44.7
7	NARS - 7	7.8	0.420	15.0	50.3	20.4	13.7	Sandy Loam	54.8
8	NARS - 8	7.7	0.540	6.7	43.2	30.4	19.7	Loam	57.5
9	NARS -9	7.8	0.520	4.6	43.3	32.4	19.7	Loam	60.1
10	NARS - 10	7.5	2.200	20.3	51.6	14.4	13.7	Sandy Loam	53.1
11	NARS - 11	7.6	1.700	18.5	51.4	18.4	11.7	Sandy Loam	6.1
12	NARS - 12	7.6	2.000	21.5	54.4	12.4	11.7	Sandy Loam	4.8
13	NARS - 13	7.4	2.200	14.4	53.5	16.4	15.7	Sandy Loam	52.2
14	NARS - 14	7.6	1.500	22.2	53.7	10.4	13.7	Sandy Loam	60.1
15	NARS - 15	7.5	2.200	18.5	47.8	20.0	13.7	Sandy Loam	48.7
16	NARS - 16	7.6	1.800	14.6	50.5	17.8	17.1	Sandy Loam	61.8
17	NARS - 17	7.6	2.600	10.3	57.8	12.2	19.7	Sandy Loam	54.8
18	NARS - 18	7.5	3.000	21.7	54.2	10.4	13.7	Sandy Loam	58.3
19	NARS - 19	7.6	2.000	18.9	53.0	20.0	13.7	Sandy Loam	61.8
20	NARS - 20	7.6	2.400	19.9	51.2	17.8	13.1	Sandy Loam	64.4
21	NARS - 21	7.6	2.400	11.0	53.3	18.0	17.7	Sandy Loam	65.3
22	NARS - 22	7.5	3.600	16.8	53.5	18.0	11.7	Sandy Loam	63.1
23	NARS - 23	7.6	2.000	44.8	26.9	12.6	15.7	Sandy Loam	54.8
24	NARS - 24	7.5	2.600	21.6	53.1	11.6	13.7	Sandy Loam	58.8
25	NARS - 25	7.0	2.200	6.5	61.8	20.0	11.7	Sandy Loam	54.8
26	NARS - 26	7.5	0.420	26.3	45.4	17.6	9.7	Sandy Loam	52.
27	NARS - 27	7.5	0.300	13.2	54.9	10.2	11.7	Sandy Loam	44.4
28	NARS - 28	7.4	1.800	9.8	55.9	20.6	13.7	Sandy Loam	46.6
29	NARS - 29	7.4	0.360	14.9	53.2	20.2	11.7	Sandy Loam	46.1
30	NARS - 30	7.5	0.600	12.2	68.7	9.4	9.7	Loamy Sand	54.4

Table A-3.3 (5) Results of Soil Chemical Analysis (2/2)
Date: September 23, 1995

$\begin{array}{\|c\|} \hline \text { SII } \\ \text { No. } \end{array}$	Sampling Location	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\left\|\begin{array}{c} \mathrm{EC}(1: 5) \\ \mathrm{mS} / \mathrm{cm} \end{array}\right\|$	$\begin{gathered} \% \\ \text { C.Sand } \end{gathered}$	$\begin{gathered} \% \\ \text { F.Sand } \end{gathered}$	$\begin{gathered} \% \\ \text { \% } \\ \text { Silt } \end{gathered}$	$\begin{gathered} \% \\ \text { Clay } \end{gathered}$	Texure	$\begin{gathered} \mathrm{CaCO}_{3} \\ (\%) \end{gathered}$
31	NARS - 31	7.5	0.400	23.0	57.9	15.4	3.7	Loamy Sand	57.0
32	NARS - 32	7.8	0.560	33.3	44.8	11.2	11.7	Sandy Loam	49.6
33	NARS - 33	7.7	0.260	31.0	53.9	7.4	7.7	Loamy Sand	51.3
34	NARS - 34	7.6	0.300	33.6	48.7	8.0	9.7	Loamy Sand	36.0
35	NARS -35	7.5	0.350	16.9	67.4	12.0	3.7	Loamy Sand	63.7
36	NARS - 36	7.5	0.700	38.8	53.5	6.6	1.1	Loamy Sand	57.9
37	NARS - 37	7.7	0.280	37.1	58.9	2.9	1.1	Loamy Sand	59.9
38	NARS - 38	7.1	0.620	35.0	55.0	2.9	7.1	Loamy Sand	63.6
39	NEJD - 1	7.5	0.700	4.3	69.4	14.3	12.0	Sandy Loam	38.6
40	NEJD - 2	7.4	1.600	6.3	70.0	13.4	10.3	Sandy Loam	7.7
41	NEJD - 3	7.3	2.400	9.1	68.6	11.2	11.1	Sandy Loam	41.2
42	NEID - 4	7.2	0.620	6.9	75.1	4.9	13.1	Sandy Loam	64.5
43	NEID - 5	7.2	1.300	6.8	73.5	15.7	4.0	Loamy Sand	46.5
44	NEJD - 6	7.0	2.800	8.2	72.8	5.9	13.1	Loamy Sand	39.5
45	DAUKA -1	7.5	0.350	38.3	44.5	8.1	9.1	Loamy Sand	60.5
46	DAUKA -2	7.2	0.560	39.9	47.5	5.5	7.1	Loamy Sand	43.4
47	DAUKA -3	7.4	0.500	25.4	60.9	5.4	8.3	Loamy Sand	55.3
48	DAUKA 4	7.1	2.200	31.3	52.4	8.0	8.3	Loamy Sand	51.8
49	DAUKA - 5	7.5	2.100	25.6	64.5	11.7	8.3	Loamy Sand	53.1
50	DAUKA -6	7.4	1.600	42.6	40.5	11.8	5.1	Loamy Sand	60.1

Table A - 3.3 (6) Results of Soil Chemical Analysis

Sampling No.	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\begin{gathered} \mathrm{EC}(1: 5) \\ \mathrm{mS} / \mathrm{cm} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ECe} \\ \mathrm{mS} / \mathrm{cm} \end{gathered}$	$\begin{aligned} & \text { Avail. P } \\ & \text { (ppm) } \end{aligned}$	Micro Nutrients, ppm					CaCO_{3} (\%)	Gypsum (\%)	$\begin{array}{\|c\|} \hline \text { Organic } \\ \operatorname{matter}(\%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Exch. } \mathrm{Na} \\ (\mathrm{me} / 100 \mathrm{~g}) \end{array}$	$\begin{array}{\|c\|} \hline \text { CECC } \\ \text { (me/loog } \\ \hline \end{array}$	$\begin{aligned} & \text { ESP } \\ & (\%) \end{aligned}$
					Fe	Mn	Cu	Zn	B						
A-1	7.5	0.64	6.81	0.03	1.16	0.46	0.12	0.32	0.20	51.57	trace	0.98	1.13	8.70	12.99
A-2	7.6	0.80	8.96	0.02	0.76	0.50	0.30	0.34	0.30	44.09	trace	0.93	0.96	10.17	9.44
B-1	7.7	0.45	3.55	0.01	0.96	0.46	0.52	0.24	0.30	56.15	trace	0.93	1.30	6.70	19.40
B-2	7.7	0.53	3.95	0.01	0.96	0.52	0.34	0.30	0.50	54.07	trace	1.03	0.87	9.91	8.78
C-1	7.7	0.56	4.68	0.02	0.58	0.52	0.26	0.32	trace	46.58	trace	1.09	1.04	9.74	10.68
C-2	7.7	0.53	4.38	0.01	0.68	0.54	0.26	0.32	trace	45.33	trace	1.03	1.22	11.65	10.47
D-1	7.5	1.20	8.62	0.04	1.04	0.56	0.28	0.26	trace	49.66	trace	0.98	0.70	10.52	6.65
$\overline{\mathrm{D}} 2$	7.7	0.65	4.41	0.04	1.04	0.60	0.12	0.40	trace	52.68	trace	0.88	0.78	10.35	7.54
L3C	7.7	0.45	2.74	0.04	1.82	1.10	0.18	1.34	0.40	54.19	trace	1.55	1.04	11.83	8.79
LAC	7.7	0.38	1.97	0.04	2.02	0.86	0.46	1.00	trace	51.82	trace	1.50	1.13	8.35	13.53
L7N	7.7	0.50	3.91	0.02	1.28	1.08	0.28	1.00	1.60	47.07	trace	1.34	1.04	13.30	7.82
L2N	7.7	0.68	5.54	0.04	2.48	1.24	0.36	1.00	2.10	52.25	trace	1.40	0.87	12.17	7.15

Sampling No.	$\begin{gathered} \text { Sat'n } \\ \% \end{gathered}$	Soluble cations (me/l)				SAR	Soluble amions (me/l)			C. Sand	F.Sand	Silt	Clay	Texture
		Ca^{++}	Mg^{++}	Na^{4}	K^{+}		Cl	SO4*	$\mathrm{HCO}_{3}{ }^{-}$					
A-1	18.30	12.00	23.50	40.30	6.59	9.57	42.50	37.40	2.50	24.36	60.74	10.60	4.30	Loamy sand
A-2	20.30	15.50	31.50	47.74	4.59	9.85	65.00	32.30	2.00	14.00	67.10	12.60	6.30	Loamy sand
B-1	16.90	7.00	13.00	23.30	4.82	7.37	22.50	23.60	2.00	29.76	66.34	1.60	2.30	Sand
8-2	18.40	7.00	13.50	25.61	6.33	8.00	22.50	27.40	2.50	23.40	67.70	6.60	2.30	Sand
C-1	20.00	8.00	16.00	29.13	9.64	8.41	27.50	32.80	2.50	11.96	69.14	12.60	6.30	Loamy sand
C-2	20.60	8.50	16.00	27.70	8.38	7.91	30.00	26.10	2.50	12.80	74.30	9.60	3.30	Sand
D-1	20.40	31.00	34.50	40.52	7.62	7.08	50.00	61.60	2.00	22.16	68.94	6.60	2.30	Sand
D-2	19.60	9.00	15.50	27.52	6.49	7.86	30.00	26.10	2.50	15.60	66.50	8.60	9.30	Loamy sand
L3C	22.50	8.00	12.00	13.87	5.80	4.39	12.50	24.20	3.00	12.42	60.66	17.60	9.30	Sandy loam
LAC	20.90	3.50	9.50	10.70	3.64	4.20	7.50	16.80	3.00	11.46	62.64	19.60	6.30	Sandy loam
L7N	22.00	9.50	12.50	22.78	7.79	6.87	27.50	21.10	4.00	12.28	68.82	14.60	4.30	Loamy sand
$\underline{2} 2 \mathrm{~N}$	-20.90	11.00	18.50	33.83	10.90	8.81	35.00	35.70	3.50	15.14	61.96	4.30	18.60	Loamy sand

[^2]Table A-3.3 (7) Results of Soil Chemical Analysis

Sampling No.	$\begin{gathered} \mathrm{pH} \\ (1: 2.5) \end{gathered}$	$\begin{aligned} & \mathrm{EC}(1: 5) \\ & \mathrm{mS} / \mathrm{cm} \end{aligned}$	$\begin{array}{r} \mathrm{ECe} \\ \mathrm{mS} / \mathrm{cm} \\ \hline \end{array}$	Total N$(\%)$	Avail: ? (ppm)	Micro Nutrients, pom					Exchangeable Cations (me/io0s)				CECme/ 100 s	Sat'n \%
						Fe	Mn	Cu	Zn	3	Ca^{+}	Mg^{-}	Na^{+}	K^{+}		
$\mathrm{P} 1-\mathrm{H} 1$	8.9	4.34	6.60	0.014	2.90	2.90	0.40	0.70	1.60	1.70	0.10	3.40	1.30	0.20	5.00	50.10
PI-H2	7.2	2.78	5.44	0.003	0.70	2.30	0.30	0.50	1.10	2.00	1.60	2.80	2.00	0.20	6.60	59.50
P1-H3	7.4	2.60	4.37	0.002	0.70	1.80	0.20	0.60	1.60	4.50	0.80	3.00	1.90	0.20	5.90	54.90
P2-H1	7.9	0.33	1.76	0.006	2.70	3.50	1.00	0.70	1.40	1.70	3.00	1.00	1.10	0.20	5.30	42.50
$\mathrm{P} 2-\mathrm{H}_{2}$	7.7	0.23	1.32	0.006	3.90	2.70	0.30	1.50	2.40	0.90	8.30	0.40	1.10	0.20	10.00	41.00
$\mathrm{P} 2-\mathrm{H} 3$	7.6	0.59	2.21	0.004	4.70	2.60	0.30	1.00	1.50	0.90	2.50	1.40	1.20	0.30	5.40	38.20
P3-611	7.7	0.35	2.35	0.004	5.90	3.30	0.90	0.60	1.60	1.10	1.50	3.80	1.10	0.20	6.60	48,40
$\mathrm{P}_{3}-\mathrm{H} 2$	7.7	0.26	1.68	0.004	5.70	2.90	0.60	1.20	1.70	1.40	1.40	3.60	1.00	0.30	6.30	44.20
$\mathrm{P} 3-\mathrm{H} 3$	7.8	0.33	2.24	0.003	5.70	2.30	0.40	1.10	1.90	0.40	3.60	2.00	1.30	0.30	7.20	43.20

Sampiing No.	Soluble cations (me/l)				SAR	Soluble anions (me/l)			CaCO_{3} (\%)	Gypsum (\%)	C.Sand	F.Sand	Silt	Clay	Texture
	$\mathrm{Ca}^{\text {+ }}$	Mg ${ }^{+}$	Na^{+}	${ }^{+}$		Cl	$\mathrm{SO}_{1}{ }^{-1}$	$\mathrm{HCO}_{3}{ }^{-}$							
$\mathrm{Pl}-\mathrm{H} 1$	26.00	18.00	26.80	1.50	5.71	34.00	40.90	1.40	44.70	5.02	6.80	60.30	13.00	19.90	Sandy loam
Pl-H2	27.00	18.00	21.60	1.80	4.55	36.00	31.20	1.20	36.80	18.71	7.20	56.90	9.00	26.90	Sandy clay loam
P1-H3	29.00	10.00	17.80	1.80	4.03	17.00	41.00	0.60	38.80	14.62	7.80	58.30	13.00	20.90	Sandy clay loam
$\mathrm{P} 2-\mathrm{H}$	7.80	4.40	8.70	0.50	3.52	11.00	8.80	1.60	56.80	1.27	13.00	62.10	18.00	6.90	Sandy loam
$\mathrm{P} 2-\mathrm{H2}$	4.40	3.60	7.90	0.40	3.95	17.00	1.90	1.20	54.80	0.43	5.40	52.70	31.00	10.90	Sandy loam
P2-H3	7.20	6.20	12.60	0.70	4.87	9.00	16.70	1.00	56,80	0.29	8.00	56.10	29.00	6.90	Sandy loam
P3-H1	8.60	6.80	11.50	0.60	4.14	12.00	14.30	1.20	62.30	0.29	4.20	63.90	28.00	3.90	Sandy loam
$\mathrm{P} 3-\mathrm{H} 2$	5.20	4.60	11.00	0.60	4.97	10.00	9.20	1.20	58.30	0.43	6.40	46.70	36.00	10.90	Sandy ioam
P3,-H3	5.40	4.40	15.40	1.10	6.96	10.00	14.90	1.40	61.40	0.29	15.80	38.30	39.00	6.90	Sandv loam

The samples were collected at the Nejd Asticultural Research Station; P1, P2 and P3 corresponc to profiles 1,2, and 3;
$\mathrm{H1}, \mathrm{H} 2$ and H 3 correspond to Horizons 1, 2 and 3 . Locations : Profile P1-Southwestern comer of center pivot where there is high gypsum; P2 - Western Side of the Centerpivot and P3 - Northern side of Centerpivot

Appendix A - $\mathbf{3 . 4}$ Infil(ration Rate of the Center pivot field of NARS

Location	Basic Infiltration Rate(BIR), mm/h						Time required to reach BIR; min
	Sample 1	Sample 2	Sample 1	Sample 2			
L3	66.3	63.2	211.3	193.0			
L2	57.5	37.8	199.7	227.0			
L3	375.5	198.0	63.5	77.3			

Table A-3.5 Measurement of Saturated Hydraulic Conductivity

Table A-3.6 Available Water Capacity (AVC) of NARS Soil

AWC $=6.98 \times 1.60$ (Bulk density $)=11.17 \%=111.7 \mathrm{~mm}^{\prime} \mathrm{m}$ of soil

Table A-3.7 Soil Moisture Tension (pF) Measurement in the Center Pivot Fiold by Tensiometers

Date	Time	A-1	A-2	B-1	B-2	C-1	D.2
20/10/96	6:00	- .---	-	-	-	-	-
	12:00	1.92	1.80	1.81	1.91	2.10	1.82
	18:00	2.22	2.31	2.25	2.30	2.42	2.28
21/10/96	6:00	2.12	1.90	1.50	1.92	2.10	1.80
	12:00	2.10	1.70	1.70	1.82	1.91	1.88
	$18: 00$	2.20	2.26	2.20	2.25	2.39	2.25
22/10/96	6:00	2.14	1.92	1.50	1.70	2.10	1.70
	12:00	2.10	1.72	1.80	1.92	2.01	1.95
	18:00	2.25	2.26	2.22	2.26	2.33	2.20
23/10/96	6:00	2.10	1.50	1.50	1.70	2.10	1.81
	12:00	2.00	1.70	1.50	1.80	2.10	1.80
	18:00	2.25	2.20	2.20	2.25	2.30	2.20
24/10/96	6:00	2.00	1.54	1.80	1.90	2.10	1.90
	12:00	2.10	1.70	1.82	1.90	2.12	1.90
	18:00	2.20	2.20	2.20	2.25	2.30	2.20
25/1096	6:00	2.00	1.50	1.50	1.80	2.04	1.80
	12:00	2.00	1.55	1.70	1.84	2.10	1.84
	18:00	2.25	2.23	2.20	2.38	2.35	2.25
26/10/96	6:00	2.00	1.70	1.80	1.90	2.00	1.80
	12:00	2.10	1.80	1.84	1.92	2.10	1.80
	18:00	2.20	2.35	2.25	2.35	2.35	2.13
27/10/96	6:00	2.12	1.50	1.50	1.80	2.04	1.80
	12:00	2.04	1.80	1.80	1.90	2.10	1.90
	18:00	2.35	2.35	2.25	2.35	2.35	2.35
28/10/96	6:00	2.10	1.50	1.50	1.70	2.09	. 84
	12:00	2.01	1.50	1.50	1.82	2.10	1.80
	18:00	2.33	2.30	2.22	2.33	2.32	2.21
29/10/96	6:00	2.02	1.50	1.50	1.52	2.10	1.80
	12:00	2.00	1.70	1.70	1.80	2.08	1.90
	18:00	2.25	2.20	2.20	2.35	2.30	2.20
30/10/96	6:00	2.00	1.50	1.50	170	2.09	1.70
	12:00	2.10	1.70	1.80	1.93	2.10	1.90
	18:00	2.25	2.20	2.15	2.25	2.35	2.19
	6:00	2.06	1.61	1.56	1.76	2.08	1.80
Average	12:00	2.04	1.70	1.72	1.87	2.07	1.86
	18:00	2.25	2.26	2.21	2.30	2.34	2.22

Note: A,B,C, and D represent the four quarters of the Center Pivot Field

Table A-3.8 Soil Moisture Contents Measured Before and After Irrigation

BEFORE IRRIGATION

Location	Depth	14/10/96	21/10/96	$27110 / 96$	Average
$\begin{gathered} \text { Location } \\ \mathrm{A} \end{gathered}$	0.30	12.42	12.07	13.91	12.80
	30-60	13.66	13.44	14.14	13.74
	60.90	16.06	16.50	17.53	16.69
	-90	14.90	16.30	17.15	16.12
$\begin{aligned} & \text { Location } \\ & B \end{aligned}$	0-30	12.96	14.95	11.88	13.26
	30-60	15.10	14.58	15.12	14.93
	60-90	16.90	16.96	16.44	16.77
	-90	15.52	16.48	16.05	16.02
$\begin{aligned} & \text { Location } \\ & \mathrm{C} \end{aligned}$	$0-30$	13.22	14.95	15.95	14.71
	30.60	15.81	16.84	15.51	16.05
	60.90	15.19	16.13	18.05	16.46
	-90	17.11	16.82	19.11	17.68
$\begin{gathered} \text { Location } \\ \mathrm{D} \end{gathered}$	0.30	9.64	15.10	13.44	12.73
	30-60	12.56	13.86	16.50	14.30
	$60-90$	14.25	13.87	16.20	14.77
	-90	13.26	14.84	17.21	15.10

AFTER IRRIGATION

location	Depth	14/10/96	21/10/96	$27 / 10 / 96$	Average
$\begin{gathered} \text { Location } \\ A \end{gathered}$	0-30	11.51	11.07	14.26	12.28
	30.60	--	13.86	15.84	14.85
	60.90	19.15	16.55	15.65	17.12
	-90	19.15	15.56	16.46	17.05
$\begin{aligned} & \text { Location } \\ & \text { B } \end{aligned}$	$0 \cdot 30$	15.55	13.26	13.98	14.26
	30-60	14.80	13.83	14.02	14.22
	60.90	17.26	16.26	14.86	16.13
	-90	16.74	16.00	14.77	15.84
$\begin{gathered} \text { Location } \\ \mathbf{C} \end{gathered}$	0.30		15.89	15.62	15.75
	30.60	13.01	15.03	14.17	14.07
	$60-90$	15.28	16.58	18.63	16.83
	-90	15.80	16.85	20.10	17.58
$\begin{gathered} \text { Location } \\ \text { D } \end{gathered}$	0-30	10.75	14.99	22.61	16.11
	30.60	13.50	13.67	18.55	15.24
	$60-90$	15.00	13.63	19.02	15.88
	-90	14.51	13.70	17.54	15.25

Table A-3.9 Measurement of Field Capacity in the Center Pivot Field

Location	Depth	11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug
$\left\|\begin{array}{c} \text { Location } \\ 1 \end{array}\right\|$	0-30	17.81	14.85	12.21	13.57	16.13	15.79	14.25	13.14
	30-60	17.73	14.86	15.61	17.32	17.01	15.90	14.27	14.28
	60-90	17.82	13.76	15.49	15.27	15.17	15.05	14.08	14.91
	-90	17.36	14.14	15.92	15.59	15.51	14.89	14.80	15.21
$\left\lvert\, \begin{gathered} \text { Location } \\ 2 \end{gathered}\right.$	0-30	15.62	15.31	13.1	15.9	14.22	14.	14.98	11.22
	30.60	15	14.73	15.65	16.	16.3	15.15	16.41	14.70
	60-90	14.59	14.8	14.73	16.35	14.78	15.31	14.9	13.76
	-90	15.59	14.6	16.30	16.92	15.7	16.57	14.68	15.43
$\begin{array}{\|c\|} \text { Location } \\ 3 \end{array}$	0.30	18.62	15.0	13.61	13.5	15.30	14.23	14.38	13.85
	30.60	16.48	. 0	15.11	16.67	15.51	15.3	15.19	15.43
	60-90	15.	15.2	15.6	9.4	14.7	14.09	14.3	14.95
	-90	15.	16.48	15.	17.09	15.18	13.95	15.30	16.21
Average	0-30	17.35	15.08	12.99	14.36	15.2	14.9	14.5	12.73
	30-60	16.50	15.22	15.46	16.76	16.30	15.45	15.29	14.80
	60-90	15.93	14.63	15.28	13.70	14.91	14.82	14.45	14.54
	-90	16.25	15.08	16.06	16.53	15.50	15.14	14.92	15.62

Appendix A-3.10 Previous Soil Surveys

Various preliminary and detailed soil surveys have been carried out in the Study Area by MAF (1996), GRM International (1995), MMI (Mot MacDonald International, 1992), JICA (phase-I, 1989), GDC (1987), Gibb (1984) and other agencies and these reports provide a good and valid information on the soil conditions of the study area. The locations of the previous soil surveys are shown in Fig. A-3.10 (1). A brief summary of these surveys are discussed below :

1) Halcrow Study (1975)

Purpose: To examine the land and water resources in Dhofar
Area: Dauka (10ha), Wadi Dauka (50 ha), Shasr (Sha), Wadi Quitbeet (100ha)
Method: Auger hole / soil pit investigation
Conclusion : Marginally suitable soils/land for irrigation does not match with the availability of suitable water quality.
2) MAF Survey (1982)

Purpose: To delineate the soils suitable for irrigated agriculture
Area : Wadi Quitbeet and Hanfeet
Survey and results: Wadi Quitbeet
Gravel, 4 sites, 4 pits excavated and investigated shallow to moderately deep ($0.3-1.0 \mathrm{~m}$), irrigation quality $2.520 \mathrm{mS} / \mathrm{cm}$ Unsuitable / marginally suitable

Hanfeet
Loose sand and gravel, low CEC, clay content is proportional to soil depth Moderately/ marginally suitable for agriculture
3) Gibb Study (1984)

Purpose: To justify the funds required for detailed soil and water investigations in 93,000 ha
Area: $\quad 17^{\circ} 20^{\prime}$ to $17^{\circ} 48^{\prime} \mathrm{N}, 53^{\circ} 32^{\prime}$ to $53^{\circ} 56^{\circ} \mathrm{E}$
Conclusions: 73% unsuitable, 25,400 ha have some potential 9400 ha - Moderately suitable (S2), 16,000 ha - restricted suitability (S3)
4) Harza Study (1985)

Purpose: To determine whether or not soil and water resources of the Nejd region are adequate for refined evaluation
Area: Dauka, Shast and Wadi Mokhwarim
Conclusion: 16 soil types were identified

- 9 soil types, 80% of the area $(42,020 \mathrm{ha})$ not suitable for agriculture
-7 soil types, 20% of the area ($14,160 \mathrm{ha}$) suitable for agriculture
- Dauka - 2450 ha, Shasr - 4920 ha and Wadi Mokhawrim- 6790 ha

Fig. A-3.10 (1) Locations of Previous Soil Surveys
5) GDC Study (1987)

Purpose: To determine the potential for irrigated agriculture ($400 \mathrm{sq} . \mathrm{km}$)
Area: Ilanfeet and Quitbeet
Conclusion: 12% of the Hanfeet block is suitable for irrigated agriculture
S1-40 ha (require flood protection), $\mathrm{S} 2-585$ ha (high in CaCO)
S3-4260 ha (high ESP), 88% (35,115 ha is not suitable)
Quitbeet
Out of $100 \mathrm{sq} . \mathrm{km}, 6 \%$ is suitable for agriculture; $140 \mathrm{ha}-\mathrm{S} 2$ and $420 \mathrm{ha}-\mathrm{S} 3$.
6. JICA Study (Phase - I, 1989)

Purpose: To survey groundwater and soil resources in 5 areas from the view point of agricultural development
Area : \quad Nagha area (ililat-Al-Rakah), Dauka, Shasr and Wadi Mokhawrim
Conclusion: $550 \mathrm{sq} . \mathrm{km}$ suitable for irrigated agriculture; $361 \mathrm{sq} . \mathrm{km}$ marginally suitable Detaited survey of 120 ha $\& 50$ ha is entirely suitable where Nejd Agriculture Research Station is established Soil Classification map and Land suitability map are shown in ligg A-3.10 (2) and Fig A-3.10 (3).

7. MMI (1992)

Purpose: To select and develop upto 1000 ha of virgin desert land in the Nejd
Area : Hanfeet west - 800 ha, Hanfeet east - 300 ha, Shasr - 300 ha, Dauka - 620 ha, Total - 2020 ha
Conclusion : Land suitable (S3) for development is distributed as follows:

Survey block	ha	Area
Hanfeet west	746	$\%$
Hanfect east	196	93
Shasr	131	65
Dauka	510	44
Total	1,583	82

General conclusions and recommendations of this survey are as follows:

- All suitable lands are only marginally suitable
- The soil is not suitable for basin ircigation due to high infiltration rate
- Not suitable for root crops due to gravel content
- Land evaluation concludes that the soil is suitable for Rhodes grass with center pivot irrigation, tomatoes with drip irrigation and lime trees with bubbler irrigation. With careful management several crops can be cultivated; however poorly controlled irrigation can lead to severe salinisation.
- Nejd land suitability as defined by MMI is shown in Table A-3.10 (5)

$$
\begin{aligned}
& \text { *100 ha of } 570 \text { na belongs to Dauka } \\
& \text { Fig. A- } 3.10 \text { (2) } \\
& \text { Land Suitability Classification Map }
\end{aligned}
$$

4———品
 Fig. A- 3.10 (3)
Soil Classification Map

Table A-3.10 (4) Land Suitability Classes according to FaO Classification

Order	Class	Designation	Description
S		Suitable	Land on which the sustained use of the kind under consideration is expected to yield benefits which justify the inputs and development costs, without unacceptable risk of damage to land resources.
	SI	Highly Suitable	Land having no significant limitations to sustained application of a given use. It may include minor limitations that will not reduce productivity, benefits or costs below the lower boundary set for the class.
	S2	Moderately Suitable	Land having limitations which, in aggregate, are moderately severe for sustained application of a given use. It may The limitations may reduce physical productivity, benefits or costs compared with S1 land to a lower limit set for the class.
	S3	Marginally Suitable	Land having limitations which, in aggregate, are severe for sustained application of a given use and will so reduce physical productivity, benefits or costs compared with S1 land to a lower limit set for the class.
	Sc	Conditionally Suitable	Land baving a conditional suitability for agriculture or they are limited to a special agricultural use.
N		Not Suitable	Land having the qualities which appear to preclude sustained use of the kind under consideration.
	NI	Currently not Suitable	Land is marginally not suitable and having limitations which may be surmountable in time, but can not be corrected under present social conditions to give acceptable physical productivity.
	N 2	Permanently not Suitable	Land is permanently not suitable for the given use usually because of physical fimitations.

Source: Guidelines: Land evaluation for irrigated agriculture,
1AO Soils Bulletin 55, 1985

Table A-3.10 (5) Nejd Iand Suitability

Land suitability classes and subclasses	Soil characteristics			Area (ha)	

8. GRM Study (1995)

Purpose: Soil and land suitability assessments of land at Dameet and Wadi Bani Khwater
Area : Wadi Bani Khwatar (1300ha), Dameet (800ha)
Conclusion: 1640 ha is suitable for irrigated agricultural development
This study also reviews the MMI findings for the Hanfeet and Dauka areas. The highest level of suitability identified in this study and in the MMI study is Marginally Suitable (S3) and encompasses lands that can technically produce acceptable yields but would require substantially high tevels of management and material inputs to obtain those yields. Soils allocated to class $S 3$ are usually physically suitable for irrigation and in arid regions where suitable soils and water are scarce their coexistence then be enough justification for agricultural development regardless of purely economic considerations.

The major land attributes considered important in the Nejd for spray and trickle irrigation systems are as follows :
-adequate soil permeability to allow leaching of salts - most soil series other than those with a contact to limestone or mudstone within 1.5 m of the land surface would meet this criteria -an appreciable available soil water capacity - this is a consistent limitation across all soils -an effective rooting depth adequate for most crops - soils with a lithic contact or hard cemented pan would fail this criteria
-low salinity levels
Applying these cypes of criteria within the FAO UNESCO framework for land suitability classification results in the following areas being ranked as overall marginally suitable (S3) for irrigation development :
Hanfeet - 1002 ha ; this includes 700 ha previously nominated by MMI as a development area, Dauka - 505 ha of soils identified by MMI as $\$ 3$ rating. 300 ha of this area had been previously nominated by MMI as a development area. Much of these areas can not be recommended for development without extensive subsoil drainage works.

Even on the suited soils, a number of crop and water related variables have to be carefully managed if crops are to yield to their maximum. Key areas of attention include :
. \quad The need to regularly monitor irrigation water quality

- the need to maintain maximum levels of soil nutrients in these highly permeable, easily leached soils
- . The careful matching of irrigation capacity to crop water requirement

9. MAF (1996)

Purpose : To examine in detail the soils of 2000 ha , and to evaluate them for a range of potential irrigated cropping systems.
Area: \quad The survey area is located at $17^{\circ} 54^{\prime}$ Nand $53^{\circ} 58^{\circ} \mathrm{E}$, about 2.5 km to the south west of a rrack that leaves the Salalah-Muscat highway.
Conclusion: This study identified a marginally suitable land (S3) of 1530 ha. Hanfeet west land suitability as defined by MAl ${ }^{1}$ is shown in Table A-3.10 (6)

Table A - $\mathbf{3 . 1 0}$ (6) Hanfeet West Land Suitability

Land suitability classes	Soil characteristics of subclasses	Area (ha)
Marginally Suitable Land Class S3 Land with one or more limitations which are so severe for sustained application of overhead irrigated Rhodes grass that expenditure will only be marginally justified	S3g - High gravel content in tho topsoil and subsurface horizons are the limiting factors to the given use	696.4
	S3wg - Limited available water capacity and high gravel content are the limiting factors	836.2
Unsuitable Land - Class N2 land with extreme physical conditions that permanently preclude its application for. overhead irrigated Rhodes grass	N 2 z - High salinity is the limiting factor	221.0
	N2rz - Very high salinity and restricted rooting volume are the limiting factors	202.5
	N 2 wr - Restricted rooting volume and low available water capacity are the Jimiting factors	25.8
	N2wry - High gypsum content, restricted rooting volume and low available water capacity are the limiting factors	18.1

It is important for the future planning of agricultural development and of further soil surveys to know how much suitable land has been identified in the Nejd. Because of overlapping field areas and also because of the cautionary notes of the authors, it is best to treat the estimates of the recomaissance and semi-detailed surveys only as recommendations for the detailed soil surveys.

Appendix A-3.11 Abbreviations and Glossary (Soil)

Aridic : A moisture regime that characterizes soils that have no moisture available for plants for long period of time. Crops can not be grown under such a climate without irrigation.

Calcarcous Soil : Soil containing sufficient free CaCO 3 and or MgCO 3 usually contain 100 to 200 g per kg of CaCO 3 equivalent

Cation Exchange Capacity (CEC) : The sum of exchangeable cations that a soil can adsorb, expressed in centimoles per kg of soil.

Available Water Capacity : Available Water Capacity (AWC), also called as Available Water Holding Capacity or Available Water Retention Capacity is defined as the volume of water retained in the root zone between field Capacity and wilting point. The classes of AWC are as follows: low - less than 60 mm , Moderate $-60-120 \mathrm{~mm}$, Moderately high -120-180 mm and Higl - above 180 mm .

Field Capacity : Field Capacity (FC) is the term used to describe the maximum water content that the soil will hold following free drainage.

Permanent Willing Point : Permanent Wilting Point (PWP) is arbitrarily defined as the soil water content at which the plants wilt permanently. the dry soil.

PHI, soil : It is an indication of acidity or basicity (alkalinity) of the soil. Ranges of pH are as follows: Low - Less than 5.5 (acid soils); Medium-5.5-7.0 (preferred range for most crops); High - 7.0-8.5, Very High - >8.5 (Alkaline soils).

Salinity : The concentration of dissolved solids or salts in water; Salination is the process whereby soluble salts accumulate in soil. The electrical conductivity of the saturation extract is the standard measure of salinity. The classes of the salinity are Nonsaline 0 to $4 \mathrm{dS} / \mathrm{m}$, Slightly saline $-4-8 \mathrm{dS} / \mathrm{m}$, Moderately Saline $-8-16 \mathrm{dS} / \mathrm{m}$ and Strongly saline - above $16 \mathrm{dS} / \mathrm{m}$.

Saline-Sodic Soil : A soil containing sufficient exchangeable sodium to interfere with growth of most plants and containing appreciable quantities of soluble salts. The Exchangeable Sodium Percentage (ESP) is greater than 15 (or SAR greater than 13), the conductivity of the saturation excract greater than $4 \mathrm{dS} / \mathrm{m}$.

Sodic Soil : Sodic soil has an SAR of the saturation extract of 13 or more but has low salt content.

APPENDIX - 4
 GROUNDWATER

Appendix A-4.1 Depth of Water Surface at NARS
Table A-4.1(1) Depth of Water Surface in Nejd 1 (1993)

Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Scp	Oat	Nov	Dec
1												1.56
2												1.55
3												1.56
4												1.58
5												159
6												1.60
7												1.61
8												1.62
9												1.62
10												1.61
11												
12												
13												
14												1.66
15												1.63
16										1.44		1.67
17										1.42	1.55	1.69
18						1				1.42		1.72
19										1.42		174
20						,				1.42		1.72
21										1.43		1.70
22										1.40		1.69
23				1						1.38		1.68
24							;			1.38		1.66
25										1.38		1.64
26										1.38		1.68
27										1.39		1.68
28										1.39		1.66
29		.-......								1.40		1.66
30									-	1.59	1.67
31			\cdots						--......	
Average										1.40	1.57	1.65
MAX.										1.44	1.59	1.74
MIN										1.38	1.55	1.55

Table A-4.1(2) Depth of Water Surface in NJD1 (1994)

(Therecorded figure is the highest level in the day)												(meters)
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1.67	1.66	1.64	1.60	1.47	1.64	1.74	1.84	1.87	1.49		
2	1.66	1.68	1.64		1.48	1.64	1.76	1.82	1.89	1.51		
3	1.66	1.69	1.65		1.51	1.64	1.76	1.82	1.86	1.56		
4	1.66	1.71	1.65		1.54	1.63	175	1.80	1.98	1.65		
5	1.67			1.75	1.56	1.64	1.74	1.76	2.08	1.20		
6	1.64			1.71		+1.65	1.74	1.74	2.09			
7	1.64	1.68	1.62	1.64	1.56	1.64	1.74	1.77	2.02			
8	1.70	1.68	1.60	1.57	1.59	1.64	1.71	1.78	2.05			
9	1.65	1.72	1.59	1.54	1.58	1.62	1.70		2.05			
10		1.72	1.60	1.56	1.56	1.64	1.70	1.79	2.04			
11		1.70	1.56		1.55	1.65	1.72	1.80	2.01			
12		1.66	1.56		1.57	1.66	1.71	1.78	2.02			
13		1.66	1.58		1.59	1.70	1.72	1.78	2.03		2.12	1.12
14		1.67	1.58		1.60	1.72	1.74	1.78	2.03		1.62	
15		1.66	1.58		1.64	1.72		1.77			1.46	
16		1.68	1.58		1.64	1.72	1.72	1.77			1.36	
17		1.70	1.60		1.65	1.72	1.72	1.76			1.31	
18		1.69	1.64	1.56	1.64	1.72	1.70	1.74	2.23		1.10	
19		1.67	1.64	1.54	1.64	1.74	1.70	1.71	1.87		1.04	
20		1.70	1.62	1.52	1.62	1.74	1.70	1.70	1.89		2.10	
21		1.69	1.60	1.51	1.63	1.74	1.70	1.69	1.94		1.12	
22		1.65	1.58	1.48	1.64	1.75	1.70	1.71	1.90		1.11	
23		1.63	1.59		1.64	1.76	1.68	1.72	1.80			
24	1.68	1.62	1.59	1.48	1.63	1.75	1.70	1.76	1.64			
25	1.62	1.64	1.57	1.47	1.65	1.72	1.71	1.78	1.89			
26	1.62	1.66	1.57	1.46	1.66	1.72	1.70	1.74	1.86			
27	1.63	1.64	1.59	1.44	1.64	1.72	1.70	1.74	1.76			
28	1.66	1.64	1.62	1.46	1.65	1.72	1.73	1.88	1.54			
29	1.66	….....	1.64	1.46	1.68	1.72	1.72	1.90	1.68			
30	1.65	…....	1.64	1.46	1.66	1.74	1.72	1.87	1.44			
31	1.66	1.62	1.66	-	1.86	1.90	\cdots		-	
Average	1.65	1.67	1.60	1.54	1.60	1.69	1.72	1.78	1.91	1.48	1.43	1.12
MAX.	1.70	1.72	1.65	1.75	1.68	1.76	1.86	1.90	2.23	1.65	2.12	1.12
MIN.	1.62	1.62	1.56	1.44	1.47	1.62	1.68	1.69	1.44	1.20	1.04	1.12

Table A-4.1(3) Depth to Water Surface in NJD1 (1995)

(The recorded figure is the highest level in the day)												
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1					10.10	10.88	12.25	11.20		13.71	14.28	13.75
2						10.86	11.60	11.85		13.80	14.60	13.73
3						10.96	11.08	12.35		13.94	14.44	13.81
4						10.77	10.97	12.18		14.05	14.33	13.80
5						10.98	11.54	12.61		14.20	14.02	13.99
6						10.55	11.55	12.76		14.16	13.91	14.02
7						10.51	11.82	12.59		14.07	13.91	14.02
8					9.87	10.28	11.97	12.68		13.59	13.80	14.02
9					9.86	10.27	11.80	12.85		14.00	14.10	14.04
10					10.21	10.15	12.39	12.69		14.12		14.02
11					10.15	11.67	12.05	12.98		14.15	13.52	13.99
12					10.30	11.01	12.10	12.96		14.25	13.43	13.94
13					10.50	11.79	12.06	12.57	13.18	13.74	13.49	14.01
14					10.48	11.88	12.19	12.28	13.01	14.05	1354	14.05
15					10.32	11.27	12.22		13.34	14.23	13.56	14.12
16					10.33	10.89	11.89		13.21	14.20	13.50	14.06
17					10.35	11.84	11.85		13.25	14.28	13.74	14.16
18					10.36	11.86	11.75		13.84	14.22	13.78	14.19
19					10.31	11.08	11.70		13.85	14.35	13.85	14.25
20					10.48	10.95	11.77		13.63	14.35	13.87	14.24
21					10.80	11.70	11.69		13.59	14.42	13.89	14.26
22					10.49	11.72	11.69		13.50	14.48	13.85	14.31
23					10.45	12.04	11.64		13.64	14.48	13.86	14.36
24				10.64	10.60	11.89	11.46		13.71	14.50	13.86	14.31
25				10.48	10.64	12.04	11.64		13.68	14.55	13.88	14.32
26				10.46	10.55	12.10	11.76		13.27	14.45	13.86	14.43
27				9.85	10.54	12.08	11.77		13.29	14.48	13.82	14.42
28				9.43	10.75	11.94	11.65		12.92	14.52	13.83	14.45
29			9.31	10.78	12.24	11.39		13.47	14.59	13.84	14.47
30			10.15	10.81	12.04	1122		13.76	14.47	13.80	14.51
31				10.81	11.12		…...	14.37		14.50
Average				10.05	10.43	11.34	11.73	12.47	13.45	14.22	13.87	14.15
MAX.				10.64	10.81	12.24	12.39	12.98	13.85	14.59	14.60	14.51
MIN.				9.31	9.86	10.15	10.97	11.20	12.92	13.59	13.43	13.73

Table A-4.1(4) Depth to Water Surface in NJD1 (1996)

(The												meters
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	14.46	14.89	14.92	17.06	17.66	18.18	19.65	19.64	22.16		22.35	
2	14.22	14.83	15.04	17.02	17.66	18.18	19.30	19.58	22.24		22.33	
3	14.08	14.86	15.08	17.02	17.78	18.22	19.22	19.91	22.32			
4	13.97	14.90	15.13	17.04	17.68	18.68	19.22	19.66	22.30	22.40		
5	14.06	14.94	15.11	17.06	17.63	18.82	19.36	19.63	22.26	22.50	22.36	
6	14.09	14.98	15.44	17.08	17.65	18.86	19.26	20.50	22.33	22.18	22.46	
7	14.06	15.05	15.45	17.14	17.61	18.78	19.66	20.76	22.30	22.22		
8	14.31	15.01	15.56	17.16	17.72	18.72	19.36	20.86	22.32	22.44		
9	14.52	15.11	15.69	17.16	17.82	19.10	19.26	21.08	22.33	22.12		
10	14.60	15.15	15.88	17.08	17.59	18.94	19.48	21.00	22.36	21.99		
11	14.50	15.21	15.82	17.13	17.68	18.83	19.28	21.19	22.34	22.02		
12	14.59	15.22	16.48	17.06	17.98	18.62	19.24	21.08	22.32	21.99		
13	14.65	15.23	16.18	17.07	17.90	18.44	19.74	20.97	22.48	22.00		
14	14.68	15.19	16.14	17.04	17.97	18.35	19.54	21.01		21.92		
15	14.64	1520	16.06	17.09	18.09	18.32	19.50	21.36		22.02		
16	14.70	15.22	15.79	17.02	18.16	18.64	19.84			22.03		
17	14.75	15.26	16.18	17.06	18.32	18.47	19.58			21.96		
18	14.74	15.18	16.25	17.13	18.38	18.42	19.54			21.94		
19	14.70	15.02	16.28	17.16	18.42	18.78	19.70			21.94		
20	14.70	15.01	16.42	17.23	18.46	18.59	19.52			21.83		
21	14.65	15.12		17.36	18.44	18.54	19.38			21.93		
22	14.65	15.16	16.36	17.37	18.48	18.96	19.52			22.02		
23	14.67	1520	16.44	17.57	18.54	18.82	19.30		22.14	21.93		
24	14.70	15.20	16.50	17.64	18.57	18.82	19.26		22.22	22.03		
25	14.74	15.21	16.56	17.75	18.51	19.32	19.50		22.22	22.08		
26	14.77	15.18	16.58	17.60	18.56	19.06	19.46		22.10	21.99		
27	14.79	15.02	16.68	17.68	18.56	19.02	19.40	22.26	22.16	22.10		
18	14.81	15.00	16.84	17.70	18.56	19.36	19.63	22.15	22.28	22.08		
29	14.80	14.93	16.92	17.74	18.40	19.18	19.55	22.00	22.31	22.15		
30	14.82	16.97	17.66	18.28	19.12	19.58	22.08	22.18	22.32		
31	14.81	\cdots	16.96		18.25	19.89	21.99		22.27	
Avemage	14.56	15.09	16.06	17.26	18.11	18.74	19.47	20.94	22.27	22.09	22.38	
MAX.	14.82	15.26	16.97	17.75	18.57	19.36	19.89	22.26	22.48	22.50	22.46	
MIN.	13.97	14.83	14.92	17.02	17.59	18.18	19.22	19.58	22.10	21.83	22.33	

Table A - 4.1(5) Depth to Water Surface in NJD3 (1993)

(The recorded figure is the highest level in the day)												
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Ner	Dec
1											2.22	2.40
2											2.22	2.39
3											2.23	2.39
4											2.23	2.40
s										2.01		2.42
6										2.00	2.21	2.43
7										2.01	2.22	2.4 .1
8										2.01	2.23	2.44
9										2.00	2.22	2.44
10										2.07	2.23	2.44
11										2.12	2.24	2.44
12										2.15	2.25	2.45
13										2.22	2.24	2.46
14										2.30	2.22	2.49
15										2.33	227	2.47
16										2.30	2,29	2.50
17										2.26	2,31	2.53
18										2.24	2,32	2.55
19										2.24	2.32	2.57
20										2.24	2.33	2.55
21										2.25	2.33	2.54
22										2.22	2.36	252
23										2.22	2.35	2.52
24										2.20	2.38	2.50
25										2.20	2.38	2.48
26										2.22	2.38	2.51
27										2.22	2.35	2.52
28										2.21	2.36	2.50
29		\ldots								2.22	2.38	2.49
30		.-.....								222	2.40	2.50
31		,		\cdots		\ldots			.	2.22	-	
Average										2.18	2.29	2.48
MAX.										2.33	2.40	2.57
MIN.										2.00	2.21	2.39

Table A - 4.1(6) Depth to Water Surface in NJD3 (1994)

(The tecorded figure is the highest kevel in the day)												
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2.50	2.47	2.46	2.49	2.36	2.52	2.60	2.89	2.90	2.49	3.42	2.10
2	2.49	2.50	2.46	3.40		2.52	2.62	2.86	2.94	2.50	3.21	2.02
3	2.49	2.50	2.48	3.02		2.52	2.62	2.84	2.90	2.55	3.06	1.96
4	2.49	2.52	2.48	2.92		2.51	2.62	2.82	3.00	2.64	3.02	2.02
5	2.49	2.50	2.46	2.83		2.51	2.62	2.80	3.10	2.26	2.98	2.13
6	2.46	2.49	2.44	2.78		2.52	2.60	2.76	3.14	2.14	3.70	2.17
7	2.47	2.49	2.44	2.70		2.52	2.60	2.78	3.07	2.52	3.38	2.14
8	2.47	2.50	2.42	2.64		2.52	2.58	2.80	3.10	2.62	3.12	2.07
9	2.48	2.52	2.41	2.62		2.50	2.58	2.78	3.11	2.63	3.06	2.03
10		2.52	2.42	2.60		2.51	2.58	2.80	3.09	2.35	3.04	1.94
11		2.50	2.39	2.57		2.52	2.58	2.82	3.06	2.45	3.44	1.88
12		2.48	2.38	2.53		2.54	2.58	2.80	3.08	2.39	3.14	1.89
13		2.48	2.39	2.52		2.56	2.58	2.79	3.09	2.15	2.90	2.12
14		2.48	2.40	2.50		2.59	2.60	2.80	3.09	2.12	2.72	2.80
15		2.48	2.40	2.49		2.58		2.80	3.11	2.02	2.57	2.19
16		2.50	2.40	2.48		2.58	2.59	2.79		1.98	2.48	2.24
17		2.52	2.42	2.46	2.53	2.58	2.60	2.78		1.95	2.41	2.03
18		2.51	2.46	2.44	2.52	2.58	2.56	2.76	3.15	2.25	2.21	2.12
19		2.48	2.46	2.44	2.52	2.60	2.56	2.73	285	2.34	2.13	2.18
20		2.51	2.44	2.42	2.51	260	2.56	2.72	2.86	2.30	2.33	2.21
21		2.50	2.41	2.40	2.52	2.60	2.56	2.72	2.90	2.19	2.09	1.94
22		2.47	2.40	2.38	2.52	2.60	2.56	2.74	2.88	2.02	2.18	2.03
23		2.46	2.41	2.37	2.51	2.61	2.55	2.74	2.77	2.54	2.16	2.12
24	2.48	2.44	2.40	2.36	2.52	2.61	2.56	2.79	2.64	2.86	2.19	2.04
25	2.44	2.46	2.38	2.36	2.53	2.58	2.57	2.70	2.76		1.84	2.25
26	2.14	2.48	2.38	2.34	2.54	2.58	2.56	2.78	2.83		1.74	2.21
27	2.45	2.46	2.40	2.34	2.53	2.59	2.56	2.78	2.71		1.93	2.22
28	2.48	2.46	2.43	2.33	2.54	2.59	2.58	2.90	2.54		2.10	2.24
29	2.48	2.45	2.36	2.55	2.59	2.58	2.94	2.67		2.12	2.18
30	2.46	2.45	2.36	2.55	2.62	2.58	2.90	2.45		2.13	2.18
31	2.48	2.42		2.54	2.76	2.93	-.....-		
Avorage	2.47	2.49	2.42	2.55	2.52	2.56	2.59	2.80	2.92	2.34	2.63	2.12
MAX.	2.50	2.52	2.48	3.40	2.55	2.62	2.76	2.94	3.15	2.86	3.70	2.80
MIN.	2.44	2.44	2.38	2.33	2.36	2.50	2.55	2.70	2.45	1.95	1.74	1.88

Table A-4.1(7) Depth of Water Surface in NJD3 (1995)

(The recorded figure is the highest level in the day)												(meters)
Date	Jan.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1					10.38		12.34	11.51		14.05	14.61	14.14
2					10.10		11.66	12.18		14.14	14.91	14.15
3					10.14		11.29	12.66		14.26	14.78	14.18
4					10.10		11.56	12.50		14.38	14.68	14.16
5					10.15		11.81	12.93		14.50	14.36	14.15
6					10.20		11.83	13.06		14.49	14.27	14.19
7					10.09		12.08	12.91		14.32	14.25	14.20
8					10.27		12.20	13.02		13.94	14.17	14.19
9					10.27		12.08	13.18		14.33	14.44	14.20
10					10.56		12.40	13.04		14.41		14.20
11					10.57	11.26	12.35	13.30		14.49	13.89	14.18
12					10.58	12.06	12.43	13.29		14.55	13.81	14.12
13					10.78	11.96	12.40	12.95	13.54	14.10	13.88	14.19
14					10.75	12.06	12.51	12.65	13.39	14.49	13.91	14.21
15					10.62	11.30	12.54		13.68	14.55	13.95	14.28
16					10.63	11.18	12.25		13.58	14.54	13.90	14.23
17					10.65	12.04	12.28		13.62	14.61	14.11	14.32
18				10.50	10.66	11.69	12.15		14.14	14.55	14.16	14.34
19				9.55	10.61	11.26	12.09		14.17	14.59	14.22	14.40
20				9.64	10.78	11.69	12.05		13.99	14.68	14.24	14.40
21			3.50	9.77	10.99	11.94	12.08		13.95	14:73	14.26	14.42
22	2.64		\because	9.86	10.79	11.95	12.08		13.96	14,79	14.24	14.46
23	2.21			9.94	10.75	12.24	12.02		14.00	14.81	14.23	14.51
24	2.24			9.99	10.90	12.14	11.85		14.07	14.84	14.24	14.47
25	2.25			10.63	10.94	12.26	12.01		13.95	14.91	14.26	1.1 .48
26	2.27			10.70	10.95	12.34	12.14		13.64	14.78	14.25	14.57
27	2.54			10.11	10.95	12.31	12.14		13.59	14.82	14.21	14.57
28	2.58			9.74	11.05	12.20	12.11		13.32	14.86	14.20	14.60
29	2.56-		9.64		12.45	11.76		13.79	14.91	14.21	14.62
30		……		10.42		12.28	11.60		14.09	14.82	14.16	14.65
31	-.....		\ldots	11.49		14.71	\cdots	14.55
Average	2.41		3.50	10.04	10.58	11.93	12.05	12.80	13.80	14.55	14.23	14.33
MAX.	2.64		3.50	10.70	11.05	12.45	12.54	13.30	14.17	14.91	14.91	14.65
MIN.	2.21		3.50	9.55	10.09	11.18	11.29	11.51	13.32	13.94	13.81	14.12

Table A-4.1(8) Depth to Water Surface in NJD3 (1996)

Table A-4.2 Hydrogeology in the Study Area

Formation	$\begin{aligned} & \text { Thickness } \\ & \text { (meren) } \end{aligned}$	Litholegy	Comments
Danmam Fromation	$0-90$	$\begin{aligned} & \text { intertodded white pink. } \\ & \text { crystlline limertona red. } \\ & \text { yollow mari, dolomaite } \\ & \text { and soft chaliky limestone } \end{aligned}$	Dammam base picked at frrs appearance yeliow-white limetione. Locally aquifer forming (aiso called Hashibe)
Rus Formation Upper Lower	$30-50$ $50-100$	Limestosc, cream brown or yellow-pink, with dolomito, chaik and mart Doiomite, chaliky limearene with sypsum interteda	A aquifer: Ressistivo bods of gypsum occur within $5-20 \mathrm{~m}$ of UER contacl Poor quality water associated with ennac Rus
Uram Er Radhuma Upper Lower	$: 00-150$ $250-300$	White-gray marly limestone with interbesded gry -quea mart and shale Fossififerous, spany massive, hard, gray sparry limesteno with thin black carbonacoous laminse	8 squifer zone : associated with distinctive 3 gamma peak marker. First appoarance of index fossi's (Sakesaria coffent; Nummuttites desori) Major C aquifer, in top of lower UER; associatod with strong gamme merker zone. Abundant index Sossis (Sakesaria duthani Dietyoikathina simplex) appoar at Palecceno boundary, D aquiter developed in isolated fissures in mid hower part
Shammar	$\begin{gathered} 5-20 \\ \text { (icaslly } 0 \text {) } \end{gathered}$	Shalcmarl	Goophysical gamma log marker

Fig. A-4.3 Hydrogeological Cross Section

[^0]: Note : P1, P2 and P3 correspond to proxiles 1,2 , and 3 ; $H 1$, H2 and H3 correspond to Horizons 1,2 and 3 .
 Locations : P1 - Northern side of Center pivot; Profile P2 - Southwestern comer of center pivot where there is high gypsum.
 P3 - Virgin soil near the metcorological station

[^1]: The samples were collected at the following locations:
 Locations : NARS 10 - Lysimeter surface irrigation (0.30 cm), NARS 11 - Lysimeter surface irrigation ($60-90 \mathrm{~cm}$), NARS 18 - Lysimeter Subsurface irrigation ($0-30 \mathrm{~cm}$), NARS $11-$ Lysimeter Subsurface irrigation ($60-90 \mathrm{~cm}$). NARS 26 - Southem side windbreak trees, NARS 29 - Northem side windbreak trees, NARS 35 - Fruit trees DAUKA1,2 - Dauka Farm Center Pivot Irrigation system, NEJD1,2 - Nejd Farm Center Pivot Irtigation system

[^2]: The samples were collected at the Nejd Agricultaral Research Station, in the top layer ($0-30 \mathrm{~cm}$)
 Locations : 1,2-Eastern side of Center Pivot (C.P): 3,4 - Northern side of C.P; 5,6-Western side of C.P; 7,8-Southern side of C.P. L3C,L4C - Southern side windbreak trees; L7N,L2N - Northern side windbreak trees

