- b. Pollution load substances settled during dry season is flushed out during rainy season.
- c. Some extent of pollution load reduction ratio is assumed in the calculation before reaching to rivers. It may be regarded that inaccuracy of assumptions of those reduction ratios are adjusted in the calculation of self-purification coefficients of lakes.

Using these pollution load and the water balance, pollution load run-off models for present pollution analysis of lakes were formulated as presented in Figures 9.4.3 to 9.4.5 for COD, T-N and T-P, respectively (refer to details in Figure 9.4.2 to 9.4.4, Section 9.4, Chapter 2, Supporting Report).

9.5 Present Water Pollution Analysis

9.5.1 General

In the pollution analysis of rivers, pollution load remaining ratios of respective rivers were identified in terms of BOD₅ under the condition of dry season. These ratios were adopted in future pollution analysis. While, for pollution analysis of lakes, Self-purification Coefficients (Vollenweider Model) of respective lakes were computed in terms of T-N, T-P and COD under the annual average condition. These coefficients were also adopted in future pollution analysis.

9.5.2 Rivers

T.

The self-purification coefficient of river is usually computed in the similar pollution analysis to express the self-purification capacity of rivers referring to pollution load discharge location (refer to Figure 9.2.1 and Section 9.5, Chapter 2, Supporting Report). However, sufficient data on time of flow, flow rate and water quality for each sub-section of rivers are essential for the analysis. Because of the lack of these data in the study area and limited period for the study, pollution load remaining ratios of each river section were roughly computed.

Pollution load remaining ratios of respective rivers were computed using pollution load run-off model as presented in Table 9.5.1. Muzururu River shows comparatively high self-purification capacity, i.e. 6% of pollution load remaining ratios, while Manyame River (downstream) and Marimba River show rather low self-purification capacity, i.e. 36% and 32%, respectively.

These remaining ratios imply not only self-purification capacity of the river, but also adjustment factor on assumptions of concentration ratios and generated pollution loads. Pollution load remaining ratios for the application to future pollution analysis were modified as presented in Table 9.5.2.

Table 9.5.2 Pollution Load Remaining Ratio of Rivers

River	Calculated PLRR	Applied
Manyame R. (upstream)	18.6%	20%
Ruwa R.	17.4%	20%
Nyatsime R.	29.3%	30%
Mukuvisi R.	18.6%	20%
Manyame R. (downstream)	35.9%	35%
Marimba R.	31.5%	30%
Muzururu R.	6.0%	10%
Gwebi R.	21.7%	20%

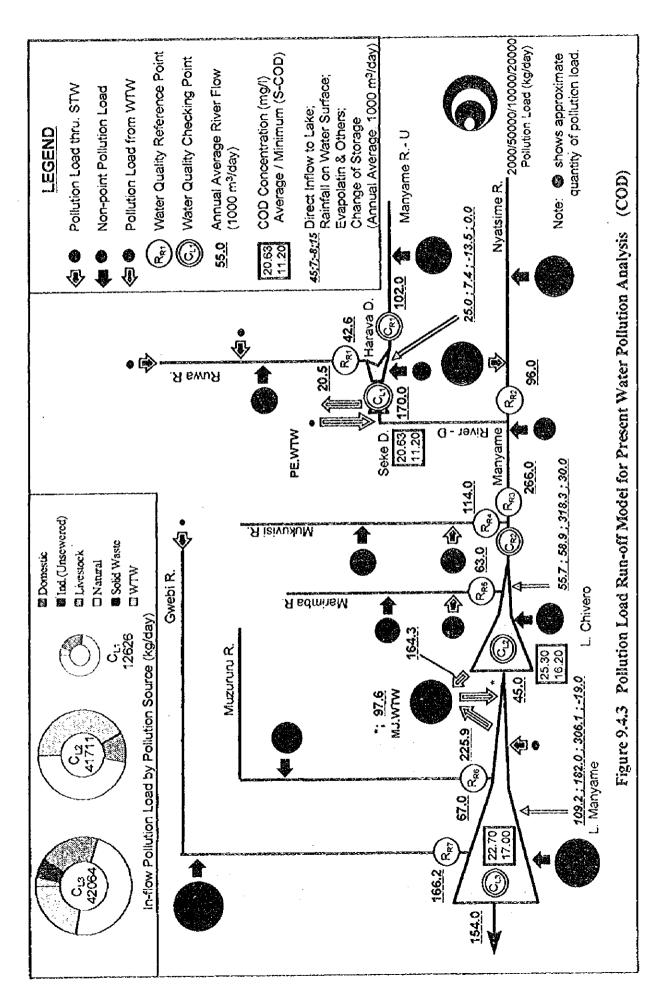
9.5.3 Lakes/Dams

Based on the pollution load run-off models presented in Figures 9.4.3 to 9.4.5, self-purification coefficients of lakes for each pollutant were computed as presented in Tables 9.5.3 to 9.5.5. Calculation results are summarised in Table 9.5.6. These values were adopted for future pollution analysis of lakes.

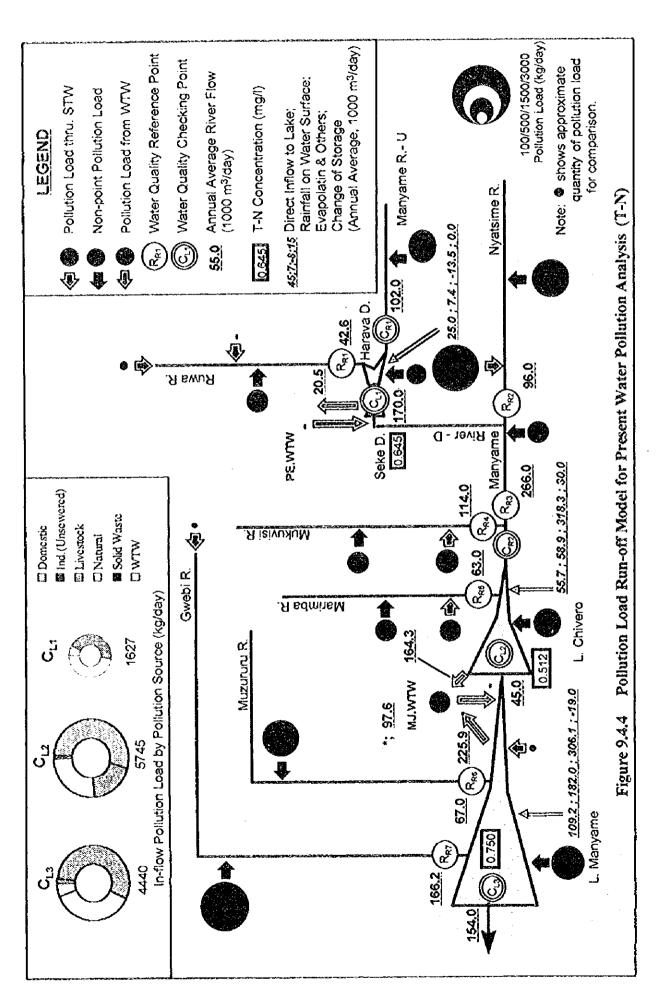
Table 9.5.6 Self-purification Coefficients of Lakes

Coefficients*	Seke & Harava Dams	Lake Chivero	Lake Manyame
σN	0.18797	0.04270	0.01151
σР	0.20574	0.00868	0.02769
σCOD	0.07551	0.00908	0.00440
α(N)	82.5%	100.2%	42.9%

^{*:} Self-purification coefficients in following formula (refer to Tables 9.5.3 to 9.5.5);


٤

€.


 $N = L(N)/((\rho w + \sigma N) \times V)$

 $P = L(P)/((\rho w + \sigma P) \times V)$

COD = $L(COD) / ((\rho w + \sigma COD) \times V) + \Delta COD$ $\Delta COD = \alpha(N) \times T - N \times 17.73$

()

)

de marie

9-43

Pollution Load Remaining Ratio of Rivers (Present, BOD, Dry Season) Table 9.5.1

Water		Run-off BOD	Concentrated	CO Co	COZ	ato Q molt	Run-off BOD	Pollution Load
Quality Checking Points	Sub-basin	Load at Upstream (kg/day)	BOD Load in Sub-basin (kg/day)	Load Load (kg/day)	Concentration at Downstream (mg/l)	at Downstream (m3/day)	Load at Downstream (kg/day)	Remaining Ratio (%)
تن	1. Manyame R. (Upstream)	0	183	183	7	31,000	.34	18.6%
RR1	2. Ruwa River	0	297	297	3.8	13,600	52	17.4%
C ₁₁	3. Seke & Harava Dams	98	77	163	7.6	40,000	\$	ı
RPC	R _{P.2} 4. Nyatsime River	0	243	243	2.1	33,900	7.1	29.3%
RR4	R _{R4} S. Mukuvisi River	0	581	581	2.0	54,000	108	18.6%
C _{R2} R _{R3} *	R _{R3} * 6. Manyame R. (Downstream)	135	71	206	1.0	73,900	74	35.9%
RRS	R _{Rs} 7. Marimba River	0	280	580	8.7	21,000	183	31.5%
C_{L^2}	8. Lake Chivero	365	896	1,333	2.4	16,000	39	i,
RRG	R _{R6} 9. Muzururu River	0	. 167	167	0.5	20,000	10	6.0%
RRT	R _{R7} 10. Gwebi River	0	369	369	1.6	50,200	80	21.7%
$c_{\rm Li}$	11. Lake Manyame	129	1,146	1,275	2.0	211,000	413	1

Note: 1. Before confluence of Mukuvisi River.

2. Run-off BOD load at upstream for the Manyame River (downstream) is the pollution load from Prince Edward WTW. 3. Total BOD Load of Manyame River (downstream) includes Run-off Load from Nyatsime River.

6

Volume of Dams:		12,406,000		m3
Inflow Water Volume	:	190,500		m3/day
Rivers;	Manyame;		102,000	m3/day
	Ruwa;		42,600	m3/day
Direct Inflo	w;		25,000	m3/day
Rainfall;			7,400	m3/day
Evaporation	n & Others;		13,500	m3/day
Outflow Water Volum	ne:	190,500		m3/day
Manyame I	River;		170,000	m3/day
Prince Edw	ard WTW;		20,500	m3/day
Detention Time of Da	ım Lake:	65.1		days

Pollution Load Inflow: (kg/day)

_	T-N	T-P	COD
Manyame	874	101	7,102
Ruwa	471	57	3,536
Direct	282	34	1,988
Total	1,627	192	12,626

Present Water Quality: (mg/l)

T-N	T-P	COD	Min. COD (soluble COD)
0.645	0.070	20.63	11.20

Formula for Poliution Analysis: (Vollenweider Model)

 $N = L(N) / ((rw+sN) \times V)$ P = L(P) / ((rw+sP) x V)

 $COD = L(COD) / ((rw+sCOD) \times V) + DCOD$

where;	N:	Concentration of Nitrogen of lake (g/m3)	=	0.645
•	P:	Concentration of Phosphorus of lake (g/m3)	=	0.070
	COD:	Concentration of COD of take (g/m3)	=	20.63
	L(N):	Quantity of inflow Nitrogen to lake (g/day)	=	1,627,000
	L(P):	Quantity of inflow Phosphorus to lake (g/day)	=	192,000
	L(COD):	Quantity of inflow COD to lake (g/day)	=	12,626,000
	īw:	Rate of change of water (1/day)	=	0.015355
	sN:	Self-purification (reduction) coefficient for Nitrogen		
	sP:	Self-purification (reduction) coefficient for Phosphorus		
	sCOD:	Self-purification (reduction) coefficient for inflow COD		
	V:	Volume of lake (m3)	=	12,406,000
	DCOD:	Secondary produced COD		
		, <u> </u>		

Computation of Self-purification Coefficients:

$sN = (L(N)/(N \times V)) \cdot rw =$	0.18797	
$sP = (L(P)/(P \times V)) - cw =$	0.20574	
$sCOD = (L(COD)/(COD \times V)) - rw =$	0.07551	(adopted Min.COD)

Computation of Conversion Rate for DCOD:

DCOD = $a(N) \times T - N \times 17.73$ or $a(P) \times T - P \times 128.70$

Conversion rate of Nitrogen to DCOD where; a(N); Theoretical COD (assumed to be 90% of TOD) quantity produced 17.73; by phytoplankton from unit nitrogen quantity Conversion rate of Phosphorus to DCOD a(P); Theoretical COD (assumed to be 90% of TOD) quantity produced 128.70; by phytoplankton from unit phosphorus quantity Average COD · Minimum COD (COD without effect of phytoplankton) DCOD; $a(N) = ((COD - Min.COD)/(T-N \times 17.73))$ = 82.5% $a(P) = ((COD - Min.COD)/(T-P \times 128.70))$ = 104.7% P = 0.07

N/P = 9.2 < 20 and P = 0.07 > 0.02 Nitrogen is regarded to be the Restriction Factor for secondary production of COD. Conversion Rate of a(N) will be adopted for Future Pollution Analysis.

Table 9.5.4 Water Pollution Analysis of Lakes (Present, Lake Chivero)

Volume of Dams:	257,181,000		m3		
Inflow Water Volume:	239,300	244.000	m3/day		
Rivers; Manyame;		266,000			
Mukuvisi; Marimba:		114,000 63,000	m3/day m3/day		
Direct Inflow;		55,700	-		
Rainfall:		58,900			
Evaporation & Others;		(318,300)	•		
Outflow Water Volume:	239,300	(,500)	m3/day		
lake Manyame;		45,000	•		
Morton Jaffray WTW;		164,300	m3/day		
Water Level Increase:		30,000	m3/day		
Detention Time of Lake:	1,075		days		
Dallation I and Labour Continue					
Poliution Load Inflow: (kg/day)	T-N	1-P	COD		
Manyame	3,807	325	25,120	Seke + Nyatsime	4 Manyame
Mukuvisi	669	144	5,906	ocke i trjasime	, i manjamo
Marimba	546	95	5,122		
Direct;	723	102	5,564		
Total	5,745	667	41,711	•	
Present Water Quality: (mg/l)	m n	~^n	16- COD /-	. t. t	
T-N	<u>T-P</u>	COD	Min. COD (se	encon COD)	
0.512	0.270	25.30	16.20		
Formula for Pollution Analysis: (V N = L(N) / ((rw+sN) x V P = I(P) / ((rw+sP) x V) COD = L(COD) / ((rw+s)	') COD) x V) + DCOI	D	to total		0.512
where; N:	Concentration of	•		=	0.512
P:	Concentration of	-		=	0.270 25.30
COD: L(N):	Concentration of Quantity of inflow		~ .	=	5,745,000
L(N). L(P):	Quantity of inflov	•		=	667,000
L(COD):	Quantity of inflov	•		=	41,711,000
rw:	Rate of change of			=	0.000930
sN:	Self-purification (rogen	
sP:	Self-purification (reduction) coe	fficient for Pho	ephorus	
sCOD:	Self-purification (reduction) cox	fficient for infl	low COD	
V:	Volume of lake (r	n3)		=	257,181,000
DCOD;	Secondary produc	tion COD			
Computation of Self-purification C	'oofii clanter				
$sN = (L(N)/(N \times V))$		0.04270			
$sP = (L(P)/(P \times V)) -$		0.00868			
sCOD = (1(COD)/(CO		0.00908	(adopted Min.	COD)	
Computation of Conversion Rate f	or DCOD:				
$DCOD = a(N) \times T - N \times 1$	` *				
where; a(N);	Conversion rate o	•			
17.73;	by phytoplankton) quantity produce	d
a(P);	Conversion rate of		•		
128.70;) quantity produce	đ
100,001	by phytoplankton	•			_
DCOD;				t effect of phytopia	ankton)
a(N) = ((COD - Mir)	_		,	, . ,	-
= 100.2% a(P) ≈ ((COD - Min	i.COD) / (T-P x 128	3.70))			
= 26.2% N/P= 1.9	< 20 and	D -	0.27	>0.02	
Nitrogen is regarded to b		_	-	-	
Conversion Rate of a(N)					

9-46

Table 9.5.5 Water Pollution Analysis of Lakes (Present, Lake Manyame)

)

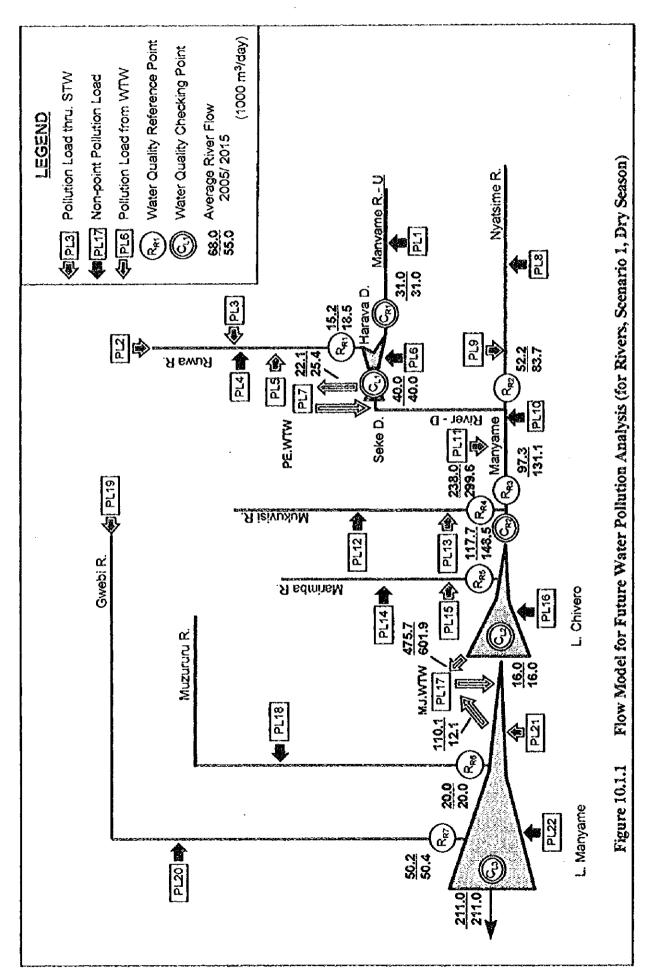
			_		
Volume of Lake:	480,236,000		m3		
Inflow Water Volume:	360,900		m3/day		
Rivers; Lake Chivero;		45,000	m3/day		
Магагога		67,000	m3/day		
Gwebi		166,200	m3/day		
Direct Inflow;		109,200	-		
Rainfall;		182,000	•		
Evaporation & Others;		(306,100)			
Morton Jaffray WFW;		97,600	m3/day		
Outflow Water Volume:	360,900		m3/day		
Manyame River;		154,000			
Morton Jaffray WTW;		225,900	•		
Water Level Decrease:		(19,000)	m3/day		
Detention Time of Lake:	1,331		days		
Pollution Load Inflow: (kg/day)	TN	Т-Р	COD		
	T-N				
Lake Chivero;	23	12	1,139		
Muzururu	1,022	139	6,228		
Gwebi	2,199	291	14,296		
Direct;	1,196	159	20,402		
Total	4,417	601	42,064		
Present Water Quality: (mg/l)					
T-N	T-P	COD	Min. COD (solu	ible COD)	
0.750	0.044	22.70	17.00		
Formula for Pollution Analysis: (Voller N = L(N) / ((rw+sN) x V) P = L(P) / ((rw+sP) x V) COD = L(COD) / ((rw+sCOD) x V) + DCOD				0.250
where; N:	Concentration of N	itrogen of lak	e (g/m3)	=	0.750
Р:	Concentration of Pl			=	0.044
COD:	Concentration of O			=	22.70
L(N):	Quantity of inflow l			=	4,417,000
L(P):	Quantity of inflow			=	601,000
L(COD);	Quantity of inflow		(g/day)	=	42,064,000
rw:	Rate of change of w	valer (1/day)		=	0.000752
sN:	Self-purification (re	eduction) coe	therent for Nitrog	en.	
sP:	Self-purification (re	eduction) coe	incient for Phospi	orus oor	
sCOD:	Self-purification (re		incient for inflow		480,236,000
V:	Volume of lake (m.	•		=	450,250,000
DCOD:	Secondary producti	ion COD			
Computation of Self-purification Coeff	Iclents:				
$sN = (L(N)/(N \times V)) \cdot rw$	= (0.01151			
$sP = (L(P)/(P \times V)) \cdot rw =$		0.02769			
sCOD = (L(COD)/(COD x)	V))-rw=	0.00440	(adopted Min.O	OD)	
Computation of Conversion Rate for D	COD:				
$DCOD = a(N) \times T - N \times 17.73$	or a(P) x T-P x 128	.70			
where; a(N);	Conversion rate of	Nitrogen to I	COD		
17.73;	Theoretical COD (assumed to be	e 90% of TOD) qu	rantity broduce	ed .
	by phytoplankton f	rom unit nitro	ogen quantity		
a(P);	Conversion rate of	Phosphorus t	to DCOD		
128.70;	Theoretical COD (assumed to b	e 90% of TOD) qu	antity produce	: તે
,	by phytoplankton f	rom unit phot	sphorus quantity		
DCOD;	Average COD - M	inimum CO D	(COD without of	fect of phytopi	ankton)
a(N) = ((COD - Min.CO))					
= 42.9%					
a(P) = ((COD - Min.CO = 100.7%	D)/(T-P x 128.70)))			
N/P = 17.0	< 20 and	P :	= 0.04	0.02	
Nitrogen is regarded to be the				D.	
Conversion Rate of a(N) will	be adopted for Futur	e Pollution A	nalysis.		
• •					

CHAPTER 10 FUTURE WATER POLLUTION ANALYSIS

CHAPTER10 FUTURE WATER POLLUTION ANALYSIS

10.1 General

Future water pollution analysis was undertaken to predict the water quality at water quality checking points using a simulation model established through the present water pollution analysis. Flow diagrams for future water pollution analysis of rivers and lakes are presented in Figures 9.1.1 and 9.1.2, respectively.

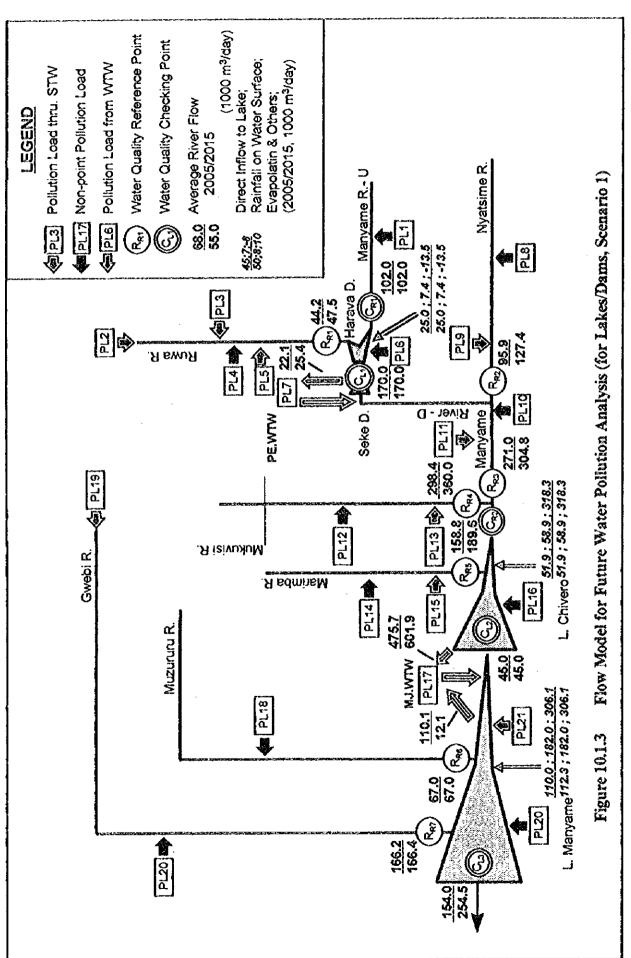

Water pollution loads cover both human and natural pollution loads generated by point and non-point sources. Flow model of entire study basin for future water pollution analysis was established using daily average flow rate during last 10 years as discussed in the sub-section 7.2. Since population projection was conducted in two scenarios, future water pollution analysis was carried out for each scenario. The adopted flow models for each scenario are illustrated in Figures 10.1.1 to 10.1.4.

The projection of water quality is usually conducted assuming the condition without any countermeasures for pollution load reduction. In this study, however, development of two sewage treatment works was assumed for future pollution analysis, confirming with the local authority that they have high possibility to be implemented in the future. In addition, augmentation of the existing sewerage systems in application of BNR process was assumed.

10.2 Frame Values and Pollution Load by Sub-basin

10.2.1 Domestic/Commercial/Institutional Sewage

The population in the years 2005 and 2015 projected in sub-section 6.2 were distributed to sewered and unsewered areas for two scenarios as shown in Tables 10.2.1 to 10.2.2, respectively. Wastewater quantities by sub-basin were calculated for each scenario as summarised in Tables 10.2.3 to 10.2.4. Generated and discharged pollution loads were calculated by sewered/unsewered area applying unit pollution load of domestic sewage discussed in sub-section 8.2 (refer to Section 10.2, Chapter 2, Supporting Report).



()

0

A subsura

Charact S.

)

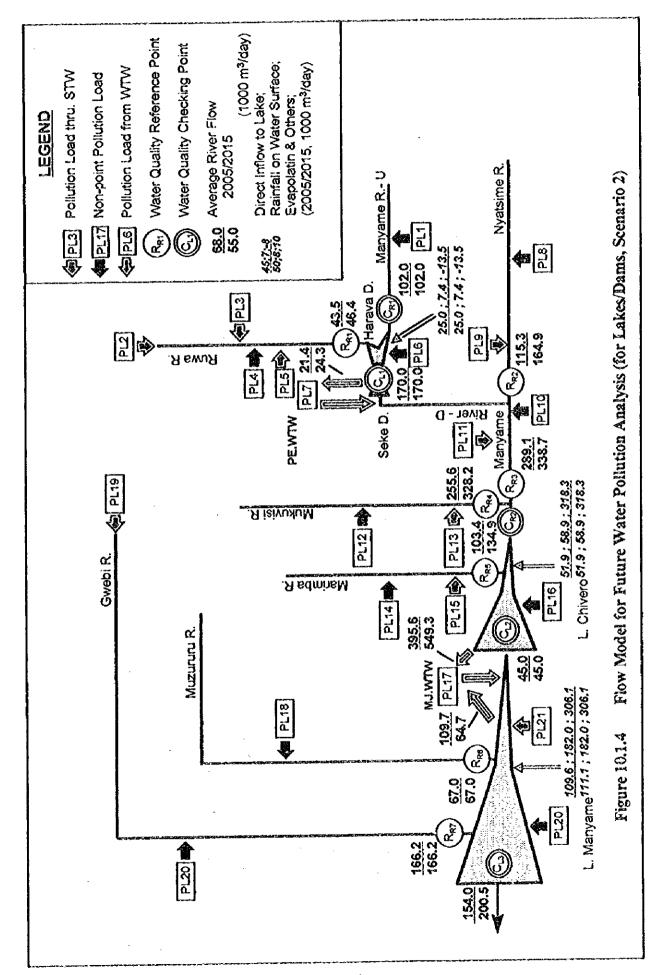


Table 10.2.1 Population by Sewered/Unsewered by Sub-basin (Scenario 1)

S
2002
XEAR
~

X EAR LOUS											
Sub-basin/District	Total Population	pulation	Projected		Sewered Area	Area	-		Unsewered Area	ed Area	
	Sewered	Unsewered	Sewered %	Low	Medium	High	Total	Low	Medium	High	Total
1. Manyame River (U.stream) S/B	-	34.679	0.0%	-			4	•		34,679	34.679
2. Ruwa River S/B	232,426	12.502	94.9%	11,328	810	220,288	232,426	-	•	12,502	12.502
3. Seke & Harava Dams S/B	53,813	4.085	92.9%	3.960	1	49,853	53,813	,	'	4.085	4,085
4. Nyatsime River S/B	370.675	21.638	94.5%	•	15.075	355.600	370,675	•	•	21.638	21,638
S. Mukavisi River S/B	786,247	52,132	93.8%	42,451	98,029	645,768	786,247	49.356	_	2,776	52,132
6. Manyame River (D. stream) S/B	202.610	5,201	97.5%	•	20.610	182,000	202,610	•		5,201	5,201
7 Manimba River S/B	861,729	3,218	29.6%	53,923	94.807	713,000	861,729	-	•	3,218	3,218
S. Lake Chivero S/B	162,000	9,871	94.3%	,	-	162,000	162,000 }	•		9,871	9,871
9. Muzunnu River S/B	150,000	16,797	89.9%	•	,	150.000	150,000	1	1	16.797	16.797
10. Gwebi River S/B	12,576	68,802	15.5%	12,576	,	•	12.576	29,184		39,618	68.802
11. Lake Manyame S/B	62,358	22,410	73.6%	6,468	9,540	46,350	62,358	•	•	22,410	22,410
Grand Total	2,894,434	251.335	92.0%	130,706	238,870	2.524.859	2,894,434	78.540	•	172,795	251,335

YEAR 2015											
Sub-basin/District	Total Po	Total Population	Projected		Sewered Area	Area	K ^o 7⊷ha		Unsewered Area	ed Area	
	Sewered	Unsewered	Sewered %	Low	Medium	High	Total	Low	Medium	High	Total
1. Manyame River (U.stream) S/B		41,758	20.0			•		-	•	41.758	41,758
2. Ruwa River S/B	311,215	15,055	95.4%	11,328	11,970	287,917	311.215]	•	15.055	15,055
3. Seke & Harava Dams S/B	55,048	4,919	91.8%	3,960	-	51,088	55.048	-	•	4,919	4.919
4. Nvatsime River S/B	504.338	26,056	95.1%	2,568	37,170	464,600	504,338	-	-	26.056	26.056
S. Mukuvisi River S/B	847,082	52,699	94.1%	44,407	98,029	704,647	847,082	49,356	-	3,343	52,699
6. Manyame River (D.stream) S/B	\$45,210	6.263	98.9%		20.610	524,600	545,210	}	•	6,263	6,263
7. Marimba River S/B	585'966	3,875	266%	60.180	107.435	828,971	585'966	1	•	3.875	3,875
8. Lake Chivero S/B	194,800	11.887	94.2%	ı	-	194,800	194,800	4	•	11.887	11.887
9. Muzunn River S/B	150,000	20.226	88.1%	•	-	150,000	150,000	_	•	20.226	20,226
10. Gwebi River S/B	21,324	81,486	20.7%	21,324	,	•	21.324	33,780	•	47,706	81.486
11. Lake Manyame S/B	118,290	26,984	81.4%	21,540	24,750	72,000	118,290	_	1	26.984	26.984
Grand Total	3,743,892	291,208	92.8%	165,307	299,963	3,278,623	3,743,892	83,136	-	208.072	291,208

Note: 1. Estimated population and land use are based on Section 12.2.3., Chapter 2, Supporting Report 2. Population in rural districts is categorised to high-density area.

6

.

Table 10.2.2 Population by Sewered/Unsewered by Sub-basin (Scenario 2)

0

	u	n
•	۶	2
	č	١
	ρ	4
	4	1
	Ĺ	1

totate()/used-car	Total P	Total Population	Projected		Sewered Area	1 Area	-		Unsewered Arca	2d Arca	
	Sewered	Unsewered	Sewered %	پهري م	Medium	High	Total	Low	Medium	High	Total
1. Manyame River (U.stream) S/B	1	34.679	0.0%	,	r	•	,		,	34,679	34,679
2. Ruwa River S/B	170,655	12,502	93.2%	155	11	170,489	170,655	,	•	12,502	12,502
3. Seke & Harava Dams S/B	13,047	4,085	76.2%	280	-	12,467	13,047 {	•	•	4.085	4,085
4. Nyatsime River S/B	526,688	21,638	96.1%	,	21,420	505.268	\$26.688			21,638	21,638
5. Mukavisi River S/B	826,611	39,123	%5'56	42,446	89,664	694,502	826.611	36,347		2,776	39.123
6. Manyame River (D.stream) S/B	151,465	5,201	%2.96	•	1,517	149,948	151,465	٠	•	5,201	5,201
7. Marimba River S/B	678,007	3.218	%5'66	40,072	79,619	558,316	678,007	,	,	3.218	3.218
8. Lake Chivero S/B	•	9,871	0.0%	,	t	,	iner	,	,	9.871	9.871
9. Muzururu River S/B	ŀ	16,797	%0.0	1	4	,	•	1	•	16,797	16,797
10. Gwebi River S/B	13,068	130,696	9.1%	13,068		,	13,068	91.078		39,618	130,696
11. Lake Manyame S/B	27,362	22,410	82.0%	1,487	2,193	23,681	27,362		1	22,410	22,410
Grand Total	2.406,903	300.220	88.9%	97,807	194,423	2,114,672	2,406,903	127,425	;	172,795	300,220

Sub-basin/District	Total Population	uogend	Projected		Sewered Area	1 Area			Unsewered Area	ed Area	
	Sewered	Unsewered	Sowered %	Low	Medium	High	Total	Low	Medium	High	Total
1. Manyame River (U.stream) S/B	-	41,758	0.0%		-		-	•	•	41,758	41,758
2. Ruwa River S/B	215.680	15,055	93.5%	153	191	215,366	215,680	1		15,055	15,055
3. Seke & Harava Dams S/B	16.342	4.919	26.9%	751	•	165,21	16,342	,	ŀ	4,919	4,919
4. Nyatsime River S/B	758,507	26.056	%2.96	3.862	55,902	698,742	758,507	1	1	26,056	26,056
S. Mukuvisi River S/B	1.068.077	50.395	%5'56	53,691	108.314	906,073	1,068,077	47,052	,	3,343	50,395
Manyame River (D.stream) S/B	216,697	6,263	97.2%		551	216,146	216,697	1	1	6,263	6.263
7. Marimba River S/B	877,690	3,875	29.66	47,516	102,633	727,541	877,690	,	l.	3,875	3.875
8. Lake Chivero S/B	•	11,887	%0.0		•	,	4	•	,	11.887	11.887
Muzururu River S/B	ı	20,226	%0.0	,	,	•	1	•	'	20.226	20,226
10. Gwebi River S/B	16,917	165,608	9.3%	16,917	•	1	16,917	117,902	ŀ	47,706	165,608
11. Lake Manyame S/B	32,947	26,984	55.0%	3,440	3,953	25.554	32.947	4	,	26,984	26,984
Grand Total	3,202,857	373,026	89.6%	126,330	271,515	2,805,013	3,202,857	164,954	•	208.072	373,026

Note: 1. Estimated population and land use are based on Section 12.2.3., Chapter 2. Supporting Report 2. Population in rural districts is categorised to high-density area.

Table 10.2.3 Projected Wastewater Quantity by Sewered/Unsewered Area by Sub-basin (Scenario 1)

Year 2005							THE RESIDENCE					
				Gener	ated/Discha	Generated/Discharged Wastewater Quanity (m3/day)	water Ouar	utv (m3/da	<u> </u>			
Sub-basin/District			Sewere	Sewered Area		May 2 mp −			Unsewe	Unsewered Area		
		Domestic		Sm. &	Indust-			Domestic		வே. &	Indust-	
	wo.1	Medium	High	Inst.	rial	Total	wo.]	Medium	High	lost.	rial	Total
1. Manyame River (Upstream) S/B			-	•	-	•	•	•	2,254	,	•	2,254
2 Ruwa River S/B	3.568	170	14,319	559	3,545	22,161	•		813	•		813
3 Seke & Haraya Dams S/B	1,247	_	3,240	20	•	4.508	•	•	266	,		566
A Nyatsime River S/B	,	3,166	23,114	1,898	1,401	26,280	•	•	1,406	•	•	1.406
S. Mukuvisi River S/B	13.372	20,586	41,975	55 931	37,932	169,796	15,547	-	180	٠	325	16,053
is Manyame River (D. stream) S/B	,	4,328	11,830	•	39,533	55.691	٠	•	338	•	•	338
7 Marimha River S/B	16,986	19,909	46.345	13,965	11,392	108,597	•	•	209	,		505
8 Take Chivero S/B	,	ļ	10,530	•	٠	10.530		•	642		•	642
9. Muznnun River S/B		,	9,750		,	9.750	•	•	1.092		٠	1,092
110 Gwehi River S/B	3,961		•	•	•	3,961	9.193	•	2,575	•	'	11.768
11. Lake Manyame S/B	2,037	2,003	3,013	353	3,386	10,792	t	•	1.457	-	3,451	4,908
Grand Total	41,172	50,163	164,116	72,726	97,189	422,066	24,740	•	11,232	•	3,776	39,748

				Gene	ated/Disch	Generated/Discharged Wastewater Quanity (m3/day)	water Quar	hty (m3/da	(A)			
Sub-basin/District			Sewere	Sewered Area					Unsewered Area	ed Area		
		Domestic		Com. &c.	Indust-			Domestic		Com. &	Indust-	
	You	Medium	High	Inst.	rial	Total	Low	Medium	High	Inst.	rial	Total
1. Manyame River (Upstream) S/B			,		-	-	-	·	2.923	-	•	2,923
2 Ruwa River S/B	3,568	2,514	20,154	176	30,274	57,287	•	٠	1,054	•	,	1,054
3. Seke & Harava Dams S/B	1,247		3,576	26	•	4.849	•	•	344	•	ı	344
A Nyatsime River S/B	608	7,806	32,522	3,869	10,740	41.137	•	•	1.824	•	•	1.824
S Mukawisi River S/B	13,988	20,586	49,325	78,545	41,762	204,206	15,547	•	234	•	325	16,106
6 Manyame River (D. Stream) S/B		4,328	36,722	,	41,557	82.607	•	•	438	Þ	•	438
7 Varimba River S/B	18,957	Ľ	58,028	19,613	11,392	130,551	,	,	171	-	•	271
8. Lake Chivero S/B		-	13,636	•	-	13,636		•	832	1		832
69 Muzurun River S/B		,	10,500		•	10,500	•	•	1,416	•	,	1,416
10 Gwebi River S/B	6.717	<u> </u>	١,	,	,	6.717	10,641	•	3,339		•	13,980
111. Lake Manyame S/B	6,785	5,198	5,040	851	18,042	35,916	t	٠	1.889	•	3,451	5,340
Grand Total	\$2,072	62,092	229,504	103,679	153,767	587 405	26.188	-	14,565	•	3,776	44,529

Note: 1. Estimated population and land use are based on Section 12.2.3., Chapter 2, Supporting Report 2. Population in rural districts is categorised to high-density area.

3

Table 10.2.4 Projected Wastewater Quantity by Sewered/Unsewered Area by Sub-basin (Scenario 2)

Year 2005												
				Gener	ated/Disch	Generated/Discharged Wastewater Quanity (m3/day)	water Ouar	nty (m3/d:	iy)			
Sub-basin/District			Sewered Area	d Area					Unsewe	Unsewered Area		
		Domestic		Com. &	Indust-			Domestic		Com. &	Indust-	
	MOJ	Medium	High	Inst	rial	Total	YOW	Medium	High	Inst.	rial	Total
1. Manyame River (Upstream) S/B						,		•	2,254	,	•	2,254
2. Ruwa River S/B	6\$	2	11.082	190	3,545	14,868	-	•	813	•	-	813
3. Seke & Harava Dams S/B	183	•	810	20	•	1.013	_	•	266	•	1	799
4. Nyatsime River S/B	-	4,498	32,842	1,910	1,401	37,341	-		1.406	٠	-	1.406
5. Mukuvisi River S/B	13,370	18,829	45.143	49,240	37.932	164,514	11,449	•	180	•	325	11,955
6. Manyame River (D.stream) S/B	,	319	9.747		39,533	49,598	•	,	338	1	•	338
7. Marimba River S/B	12,623	16,720	36,291	12,292	11,392	89,317	•	,	209	٠	1	209
8. Lake Chivero S/B	-	-			•	e te	b	•	642	•	-	642
9. Muzurura River S/B	٠	•	-	,	•	-	•	•	1,092	•	•	1,092
10. Gwebi River S/B	4,116	,	•	1	•	4,116	28.690	,	2,575	•	•	31,265
11. Lake Manyame S/B	468	461	1,539	123	3386	5,978	•	•	1,457	•	3.451	4,908
Grand Total	30,809	678.07	137,454	63,776	97,189	366,745	40,139	1	11,232	•	3,776	55.147

Sub-basin/District				Gener	rated/Discha	Generated/Discharged Wastewater Quanity (m3/day)	water Oual	nity (m3/da	iy)			
			Sewered Area	d Arca					Unsewe	Unsewered Area		
		Domestic		Com. &	Indust-			Domestic		Som. &	Indust-	
	Low	Medium	High	Inst.	rial	Total	Low	Mcdium	High	fnst.	riai	Total
. Manyame River (Upstream) S/B		,	•	ı	,		ı	•	2.923	•		. 2,923
2. Ruwa River S/B	48	34	15,076	247	30,274	45,679		•	1,054	•	-	1,054
3. Seke & Harava Dams S/B	236	•	1,091	56	•	1,353	1	-	344	-	•	344
4. Nyatsime River S/B	1.217	11,740	48,912	3,142	10,740	61,868	•	•	1.824	-	•	1.824
. Mukuvisi River S/B	16,913	22.746	63,425	89,642	41,762	234,488	14.821	-	234		325	15,380
6. Manyame River (D.stream) S/B		116	15,130		41.557	56,803	•	•	438	-		438
7. Marimba River S/B	14,968	21.553	50,928	22,387	11.392	121.228	•	•	271		,	171
8. Lake Chivero S/B		,	-	<u> </u>	,	•	1		832		-	832
. Muzurura River S/B		•	•	•	-			-	1,416		•	1,416
10. Gwebi River S/B	5.329	•	1	-	•	5,329	37.139	1	3,339	-	•	40,479
1. Lake Manyame S/B	1,084	830	1,789	185	18.042	21,930	•	•	1,889	•	3,451	5,340
Grand Total	39,794	57,018	196,351	115,629	153,767	548,677	51,961	•	14,565	•	3,776	70,302

Note: 1. Estimated population and land use are based on Section 12.2.3., Chapter 2, Supporting Report 2. Population in rural districts is categorised to high-density area.

The pollution load collected from the sewered area is discharged at sewage treatment works. The discharged pollution load was calculated using planned treatment efficiency. Calculation results are presented in Tables 10.2.5 to 10.2.6. In the calculation, following conditions were assumed on the future arrangements of sewerage systems.

- Existing trickling filters of the Crowborough, Firle and Zengeza STWs will be maintained with its present planned capacity. Treated effluent will be discharged to irrigation farm.
- New BNR plants will be constructed to cope with increasing raw sewage inflow at the Crowborough, Firle and Zengeza STWs. Treated effluent will be discharged directly to nearby rivers.
- New STWs, namely the Harare East STW and the Harare South STW with BNR process, are planned to cope with increasing population in southern and eastern areas of Harare city.
- Wastewater Stabilisation Pond in the Marlborough, Donnybrook and Ruwa STWs will be maintained and expanded to cope with increasing sewage inflow.
- Augmentation of the Norton STW will be carried out adopting Trickling Filter method based on the existing plan.

Treatment efficiencies of STWs were assumed by respective treatment methods as follows:

Table 10.2.7 Treatment Efficiency by Treatment Method

Treatment	Treatment E	ficiency (Poll	ution Load Rec	luction Ratio)
Method	BOD₅	COD	T-N	T-P
Biological Nutrient Removal	95%	90%	80%	75%
Trickling Filter	90%	85%	30%	30%
Wastewater Stabilisation Pond	90%	85%	50%	30%

It was also assumed that 8% of the pollution load transferred for irrigation reuse reaches to the subject water bodies as concentrated load.

Calculation results are presented in Table 10.2.8 (refer to Section 10.2, Chapter 2, Supporting Report).

Table 10.2.5 Pollution Load from Sewage Treatment Works (Scenario 1)

COD T-N T-P BOD COD T-N T-P BOD (4m) 42,160 4,048 465 1,955 6,794 2,894 325 156 96,437 9,260 1,063 2,236 9,644 1,852 266 2,236 80,747 3,628 448 2,200 7,612 2,540 314 176 201,336 14,395 1,777 4,364 20,134 2,879 444 4,364 1,258 1,63 18 82 189 82 17 5 9,310 1,156 127 4,364 2,0134 2,879 444 4,364 7,611 951 18 189 82 189 87 190 140,109 3,581 642 2,600 14,011 676 160 2,600 15,017 1,504 3,417 622 2,600 14,417 652 78 29,843 9,32 112	Sub-basin	Sewage Treatment	Average	imigation	\Gai	Influent Pollution Load (kg/day)	Load (kg/da	y) (Disch	Discharged Pollution Load (kg/day)	tax) peor ou	(veb)	Совоев	trated Polluti	Concentrated Pollution Load (kg/day)	/day)
Crowborough (TR) 36,000 100% 49,540 40,048 465 1,955 6,374 2,834 235 156 Crowborough (TR) 82,471 0% 4,048 3,620 1,063 2,276 9,644 1,872 266 2,236 Firle (TP) 36,000 100% 21,099 50,747 3,628 448 2,200 7,612 2,540 314 176 Firle (TP) 36,000 100% 4,727 201,336 14,395 1,777 4,364 2,879 444 4,364 Marlborough (WSP) 3,477 100% 4,655 9,310 1,164 127 4,66 1,397 8,89 177 4,364 2,630 37 100 Harare Baset (BNR) 5,732 0% 3,417 951 1,061 1,061 1,063 1,461 10 761 1,061 1,063 1,063 1,063 1,063 1,063 1,063 1,063 1,063 1,063 1,063 1,063		Works	Flow (m3/d)	Reuse (%)	GOS	ဓ	7. N.	۳.	GOS	ဝေသ	Y.N	T-P	BOD (drv)	COD	N	T.P
Crowbonough (BNR) 82,447 0% 44,716 0%,437 0,266 1,063 2,246 0,644 1,852 266 2,236 Firle (TF) 36,000 100% 21,999 50,747 3,628 448 2,200 7,612 2,540 314 176 Firle (BNR) 1,42,R29 0% 1,258 1,477 446 2,879 444 4,364 Marlborough (WSP) 3,961 100% 4,585 9,310 1,154 127 466 1,397 2,879 444 4,364 Marlborough (WSP) 5,732 0% 4,585 9,310 1,164 127 466 1,397 2,879 444 4,364 Harare South (BNR) 5,5314 0% 5,483 1,40100 3,381 442 2,439 2,439 2,443 2,439 1,401 2,439 1,401 0 2,439 2,439 2,439 2,439 1,401 0 0 0 0 0 0 0	Marimba R.	Crowborough (TF)	36,000	100%	19,549	42,160	4,048	465	1,955	6,324	2,834	325	156	206	777	92
Firtle (TF) 36,000 100% 21,999 50,747 3,628 448 2,200 7,612 2,540 314 176 Firtle (BNR) 142,R29 0% 7,7279 201,336 14,395 1,777 4,264 20,134 2,879 444 4,364 Marlborough (WSP) 3,961 100% 4,655 9,310 1,164 127 466 1,397 582 89 37 Harare South (WSP) 5,732 0% 3,405 7,611 951 100 761 100 2,630 14,011 676 160 2,630 Harare South (BNR) 55,314 0% 52,594 3,417 385 1,459 2,439 2,439 2,439 2,630 Zengeza (TF) 20,400 100% 7,403 15,017 1,734 385 1,439 2,439 2,392 2,630 Zengeza (TF) 10,792 100% 7,403 15,017 1,734 3,44 4,439 2,392 2,630	op	Crowbonough (BNR)	82,347	0%	44,716	96,437	9,260	1,063	2,236	9,644	1,852	266	2,236	250,0	1,852	366
Firle (BNR) 142,R29 0% V7,279 201,336 1,777 4,264 20,134 2,879 444 4,364 2,864 20,134 2,879 444 4,364 3,64 1,288 1,777 4,265 1,288 1,777 4,66 1,397 82 89 37 Donnyhook (WSP) 6,877 1,00% 4,655 9,310 1,164 127 466 1,397 582 89 37 Harare South (BNR) 5,532 0% 3,405 7,611 951 10 761 190 2,630 Harare South (BNR) 55,314 0% 52,594 3,417 385 1,459 2,439 2,392 10 Zengeza (TF) 20,400 100% 7,403 15,017 1,734 3,439 1,439 2,439 2,392 2,60 Zengeza (TF) 10,352 0% 7,403 15,017 1,734 3,83 1,439 2,392 2,63 1,17 Norton (TF) 10,792	L Chivero	Fire (TP)	36,000	100%	21,999	50,747	3,628	448	2,200	7,612	2,540	314	176	609	203	સ
Marlborough (WSP) 3,961 100% 62.9 1,258 163 18 63 189 82 12 5 Donnyhook (WSP) 6,487 1,00% 4,655 9,310 1,164 127 466 1,397 582 89 37 Harare South (BNR) 5,572 0% 3,405 7,611 951 104 761 190 26,00 1,600 2,630 14,011 676 160 2,630 1,600 2,630 1,601 1,70 2,630 1,601 1,600 2,630 1,601 1,70 2,630 1,601 1,70 2,630 1,601 1,70 2,630 1,600 1,70 1,70 2,630 1,401 676 1,60 1,70 <td>Mukawisi R.</td> <td>Firte (BNR)</td> <td>142,829</td> <td>%0</td> <td>62.23</td> <td>201,336</td> <td>4,395</td> <td>1,777</td> <td>4,364</td> <td>20,134</td> <td>2,879</td> <td>444</td> <td>4,364</td> <td>20,134</td> <td>2,879</td> <td>444</td>	Mukawisi R.	Firte (BNR)	142,829	%0	62.23	201,336	4,395	1,777	4,364	20,134	2,879	444	4,364	20,134	2,879	444
Donnyhozok (WSP) 6,187 1,00% 4,655 9,310 1,164 127 466 1,397 582 80 37 Hanze Rart (BNR) 5,573 0% 3,405 7,611 951 104 100 761 190 26 190 26.00 Harare South (BNR) 55,314 0% 52,591 140,100 3,381 642 2,630 14,011 676 160 2,630 Zengeza (TF) 20,400 100% 7,403 15,017 1,734 136 2,392 20 117 Zengeza (BNR) 10,352 0% 7,403 15,017 1,734 195 370 1,502 370 Norton (TF) 10,792 100% 8,843 29,843 932 112 884 4,477 652 78 71 Ruwa (WSP) 11,463 100% 27,820 1,291 147 583 2,303 645 103 47 Total 422,066 27,630	Gwehi R.	Marlborough (WSP)	3,961	100%	629	1,258	163	ХI	63	189	28	12	5	15	4	-
Harace Banth (BNR) 5,732 0% 3,805 7,611 951 104 150 761 190 761 190 26 190 2,630 190 190 2,630 190 190 2,630 190 190 2,630 190 190 2,630 190 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630 190 2,630	Ruwa R.	Donnybrook (WSP)	6,877	100%	4,655	9,310	1,164	127	466	1,397	582	86	37	112	47	7
Harare South (BNR) 55,314 0% 52,591 140,109 3,381 642 2,630 14,011 676 160 2,630 Zengeza (TF) 20,400 100% 14,589 29,594 3,417 385 1,459 2,439 2,392 269 117 Zengeza (BNR) 10,352 0% 7,403 15,017 1,734 195 370 1,502 347 44,17	op op	Harare Fast (BNR)	5,732	%J)	3,405	1,611	156	101	190	761	190	2%	360	761	190	26
Zengeza (TF) 20,400 10,580 29,594 3,417 385 1,459 2,392 2,392 2,69 117 Zengeza (BNR) 10,352 0% 7,403 15,017 1,734 195 370 1,502 347 49 370 Norton (TF) 10,792 100% 8,843 29,843 932 112 884 4,477 652 78 71 Ruwa (WSP) 11,463 100% 5,880 15,752 1,291 147 538 2,363 645 103 47 Total 422,064 271,038 649,175 44,365 5,483 17,404 72,851 15,77 10,309	Manyame RD	- 1	55,314	%0	52,591	140,109	3,381	642	2,630	14,011	929	160	2,630	14,011	979	091
Zengezza (BNR) 10,352 0% 7,403 15,017 1,734 195 370 1,502 347 69 370 Norton (TF) 10,792 100% 8,843 29,843 932 112 884 4,477 652 78 71 Ruwa (WSP) 11,463 100% 5,880 15,752 1,291 147 588 2,363 645 103 47 Total 422,064 271,038 639,175 44,365 5,483 17,404 72,851 15,571 2137 10,309	Nyatsime R.	Zengeza (TF)	20,400	100%	14,589	29.594	3,417	385	1,459	4,439	2,392	592	117	355	191	E3
Nonon (TF) 10,792 100% 8,843 29,843 932 112 894 4,477 652 78 71 71 8 4	Nvatrime R.	Zengeza (BNR)	10,352	250	7,403	15,017	1,734	195	370	1,502	347	67	370	1,502	347	67
Ruwa (WSP) 11.463 100% 5.880 15.752 1.291 147 588 2.363 645 103 47 Total 422.064 22.364 2.351 15.671 2.137 10.309	L. Manyame	Norton (TF)	10,792	100%	8,843	29,843	932	112	884	4,477	652	78	11	358	25	ç
422,044 22,844 639,175 44,365 5,483 17,404 72,861 15,671 2,137 10,399	Ruwa R.	Ruwa (WSP)	11.463	100%	8'880	15.752	1,291	147	588	2,363	645	103	47	186	25	S
		Total	422,066		271,938	639,175	44,365	5,483	17,404	72,851	15.671	2,137	10,399	44,195	6.722	9.

W. Marinba R. Crowbor	Sewage Treatment	Average	Imganon	ufful	Influent Pollution Load (kg/day)	Load (kg/d:	(Á)	Discha	Discharged Pollution Load (kg/day)	a Load (kg/	(deb)	Concen	Concentrated Pollution Load (kg/day)	ion Load (kg	/day)
	Works	Flow (m3/d)	Reuse (%)	g08	goo	T.N	T-P	BOD	COD	N-F	T-P	BOD (dry)	aoo	Z.	T.P
	Crowborough (TF)	36,000	100%	18,594	39,759	3,947	450	1,859	5,954	2,763	315	149	477	221	K
do Crowboro	Crowborough (BNR)	105,051	0.00	54,260	116,019	11,517	1,313	2,713	11,602	2,303	328	2,713	11,602	2,303	ğ
L. Chivere Firte	Fire (TF)	36,000	100%	21,318	48,788	3,623	443	2,132	7,318	2,536	310	171	SXS	203	સ
Mukuvisi R. Firle	Firle (BNR)	179,900	%0	106,530	243,805	18,105	2,213	5,327	24,380	3,621	553	5,327	24,340	3,671	553
Gwebi R. Marlboro	Marlborough (WSP)	6,717	100%	1,066	2,132	277	90	107	320	130	21	*	92	1.	ς,
Ruwa R. Donnybe	Donnybrook (WSP)	10,710	100%	6,732	13,464	1,683	184	£29	2,020	8	129	4	162	63	ş
do Harare E	Harare East (BNR)	33,075	250	30,471	89,609	2,029	300	1,524	8,8	A),4	8	1,524	×,8	20g	8
Manyame RD Harare Sc	Harare South (BNR)	180,081	%0	67,665	170,258	7,149	1,053	3,383	17,026	1,430	263	3,383	17,026	1,430	263
Nyatsime R. Zenge	Zengeza (TF)	20,400	100%	27,575	58,929	4,776	129	2,758	8,839	3,343	430	221	101	267	35
do Zengez	Zengeza (BNR)	17,577	950	13,993	206'62	2,423	318	202	2,990	485	30	700	2,990	485	۶
L. Manyame Norte	Norton (TP)	35,916	100%	41,028	158,515	2,309	200	4,103	27,777	1.617	300	328	1.902	523	12
Ruwa R. Ruwa	Ruwa (WSP)	15.979	2001	7,626	20,466	1,673	192	763	3,070	837	134	61	346	29	=
Total		\$87,405		396.859	991,646	59.512	7,520	26,040	116,267	20,320	2,881	14,637	250.65	9,211	1.449
Note: 1) Concentration ratios of pollution loads are;	whon ratios of pe	ollution loads an		Direct Discharge:		100%	Impation reuse:		388	for BOD dur	(for BOD during dry season	§	**		

Concentration ratios of pollution loads are;
 Direct Discharge;
 Direct Discharge;
 Direct Discharge;
 Direct Discharge;
 Direct Discharge;

3) Concentrated BOD is calculated for dry season.
4) Pollution load reduction efficiency at STWs;

8 808 808 808 80% 80% 80% SNS SNS

7.P 75% 30% 30%

5) Efflurnt from Zengezza (TF) is transferred to outside of the study basin. ₹. ¥S¥

Table 10.2.6 Pollution Load at Sewage Treatment Works (Scenario 2)

	300		Terror Control	MERCELL FORDINGS TOWN (AND ONL)			ESSO.	Discharged Pollution Load (Kg/day)	OF LOW VAR	//			(Application of the control of the c	(VED/
Works	Flow (m3/d)	Reuse (%)	BOD	COD	N-T	T-P	BOD	മഠാ	N-T	T.P	BOD (drv)	aoo	N-L	T.P
Crowborough (TF)	36,000	100%	19,093	42,244	3,657	430 }	1,909	6,337	2,560	301	153	502	205	ጸ
Crowborough (BNR)	53,317	950	23,277	62,565	5,416	637	1,414	6,256	1,083	159	1,414	6,256	1,083	159
Firle (TF)	36,000	100%	21,106	49,615	3,272	400	2,111	7,442	2,256	286	169	595	180	23
Fitle (BMR)	127,017	%O	74,466	175,055	11,370	1,442	3,723	17,506	2,274	361	3,723	17,506	2,274	361
Marlbomugh (WSP)	4,116	100%	683	1,307	170	18	99	361	88	13	5	16	7	1
Donnybrook (WSP)	7,327	2001	4,9%	0,920	1,240	135	\$95	1,48X	620	8	04	119	05	×
Karare East (BNR)	\$,732	560	3,805	7,611	156	104	190	761	061	26	190	192	190	32
Harare South (BNR)	40,993	%O	45,265	125,458	1,543	4/1	2,263	12,546	306	110	2,263	12,546	309	110
Zengeza (TF)	20,400	100%	14,2KS	28,845	3,420	381	1,428	4,327	2,794	267	114	346	192	21
Zengeza (BNR)	26,146	% 0	18,308	34,969	4,383	488	915	3,697	77.8	122	915	3,697	223	13
Norton (TF)	8,078	100%	7,132	26,422	200	65	713	3,963	350	45	57	317	25	7
Ruwa (WSP)	3,720	100%	2,629	9.250	472	28	263	1,387	236	41	23	111	19	3
	366,745	rapo.	239,980	875,259	36,343	4,609	15,492	45,906	13,232	1,826	9,045	42,777	5,413	298
CIPICKLIAIPIALI	RNR)		20,400 20,400 20,400 20,146 5,978 3,720 3,678	5.772 100% 5.772 0% 40,993 0% 20,400 100% 1 5,714 0% 1,720 100% 3,720 100%	5,722 0% 3,405 40,905 0% 45,265 20,400 100% 14,285 26,144 0% 18,308 5,978 100% 7,132 5,978 100% 2,629 366,745 239,980	5,772 0% 4,960 9,920 5,772 0% 3,805 7,611 20,400 100% 45,265 125,458 26,144 0% 18,308 36,969 5,978 100% 7,132 26,422 7,720 100% 2,629 3,66,745 239,980 575,239 3	7,27 100% 4,960 9,920 1,240 60,993 0% 3,805 7,611 951 20,400 100% 45,265 125,458 1,543 20,400 100% 14,285 28,845 3,420 5,978 100% 7,132 26,942 500 7,720 100% 2,629 9,250 472 366,745 2,567 3,657,45 3,633	7.127 100% 4,980 9,920 1,240 135 5.772 0% 3,405 7,611 951 104 40,993 0% 45,265 125,458 1,543 441 20,400 100% 14,285 28,845 3,420 381 26,146 0% 18,708 36,969 4,383 488 5,978 100% 7,132 26,422 50 65 7,720 100% 2,629 9,250 472 58 366,745 366,745 36,450 37,323 36,343 4,609 1	7.327 100% 4,960 9,920 1,240 173 495 5,732 0% 3,805 7,611 951 104 190 20,400 100% 45,265 125,458 1,543 441 2,263 1 20,400 100% 14,285 28,845 3,420 381 1,428 1 20,400 100% 18,308 36,946 4,387 488 915 1 5,978 100% 7,132 26,422 500 65 713 3,507 100% 2,629 9,250 477 58 263 3,66,745 239,980 575,259 36,343 4,609 15,492 6	7.327 100% 4,960 9,920 1,240 175 490 1,240 5.732 0% 3,865 7,611 951 104 190 761 20,400 100% 45,265 125,458 1,543 441 2,265 12,546 20,400 100% 14,285 28,845 3,450 381 1,428 4,327 26,146 0% 18,308 36,969 4,383 488 915 3,697 3,720 100% 7,132 26,422 50 65 713 3,967 3,56,745 2,259 4,72 58 263 1,387 366,745 239,990 575,259 36,343 4,609 15,492 65,906	7.727 100% 4,960 9,920 1,240 178 490 1,620 1,240 178 490 1,620 1,240 178 6,20 5,772 0% 45,266 12,548 1,543 441 2,266 12,546 309 20,400 100% 14,286 28,845 3,420 381 1,428 4,327 2,394 20,400 100% 18,308 36,989 4,383 488 915 3,697 877 3,720 100% 2,629 9,250 472 58 713 3,983 350 3,66,745 2,239,990 875,239 36,343 4,609 15,492 45,900 13,232 1	7.327 100% 4,960 9,920 1,240 135 456 1,240 134 456 1,240 134 456 1,240 134 456 1,240 134 156 16	7.727 100% 4,960 9,920 1,240 175 490 1,640 100 1,640 100 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 10 2,640 11 4,040 4	7.127 100% 4,980 9,920 1,240 175 490 1,440 175 490 1,440 175 490 1,440 190 26 190 761 174 5,772 0% 45,265 1,543 4,41 2,264 309 110 2,264 36 11 3,246 3 20,400 100% 14,285 28,845 3,420 381 1,428 2,394 267 114 346 1 20,400 100% 18,308 36,986 4,383 441 2,268 3,567 877 122 915 3,697 87 317 3 5,978 100% 2,632 5,08 472 58 25 57 317 3

Sub-basin	Sewage Treatment	Average	Imigation	To T	Influent Pollution Load (kg/day)	Load (kg/da)	×	Dische	Discharged Pollution Load (kg/day)	on Load (kp	(day)	Concent	Concentrated Pollution Load (kg/day)	on Load (kg	(/day)
	Works	Flow (m3/d)	Reuse (%)	300	COD	7-N	T-P	GOS	αoo	Z L	Т.Р	BOD (dry)	aoo	N.T	T-P
Marimba R.	Crowborough (TF)	36,000	100%	17,796	38,583	3,632	419	1,780	5,787	2,542	293	142	463	203	23
ફ	Crowborough (BNR)	85,22x	260	42,131	91,342	8,597	166	2,107	9,134	1,719	248	2,107	9,134	1,719	2,48
L Chivero	Fire (TP)	36,000	100%	19,361	44,435	3,260	400	1,976	\$99'9	2,282	230	155	533	183	z
Mukuvisi R.	Firle (BNR)	196,546	%0	105,706	242,596	17,797	2,182	5.285	24,260	3,559	546	5,285	24,260	3,559	546
Gwehi R.	Marthorough (WSP)	8,329	100%	846	1,692	220	24	85	254	110	17	7	20	6	1
Ruwa R.	Donnybrook (WSP)	10,215	100%	6,421	12,841	1,605	175	(42	1,926	803	123	51	152	\$	10
ę	Harare East (BNR)	33,075	%0	14508	89,609	2,029	300	1,524	196'8	404	100	7251	8,961	406	100
Manyame RD	Harare South (BNR)	41,320	%0	45,481	125,891	1,597	447	2,274	12,589	319	112	2,274	12,589	319	112
Nyatsime R.	Zengeza (TF)	20,400	100%	956'52	54,408	5,092	625	2,596	8,161	3,564	438	20%	653	282	35
ор	Zengeza (BNR)	692,78	% 0	33,267	69,732	6,526	108	1,663	6,973	1,305	200	1,663	6,973	302.1	200
L. Manyame	Norton (TF)	21,930	100%	36,847	150,155	1,249	184	3,685	22,523	87.8	129	562	1,802	02	0,
Ruwa R.	Ruwa (WSP)	4,867	100%	3,426	12,067	614	7	343	1,810	307	54	22	145	25	4
	Total	548,677		367,710	933,349	52,217	6,725	23 918	109 044	17,792	2,538	13.77.K	65.687	8,148	1,312
Note	Note: 1) Concentration ratios of nollution loads are:	pollution loads an		Direct Discharge:		100%	migation reuse:		% X X	(for BOD during dry season	nno dry sea	. 50	, %8 %8		

Direct Discharge; Note: 1) Concentration ratios of pollution loads are;

CO %2% %3% %3% 805 80% 80% 80% 2) Intruded water to sewer (groundwater, etc.) is not included in sewage flow.
3) Concentrated BOD is calculated for dry season.
4) Pollution load reduction efficiency at WTWs:
BOD BNR

7-7 8-27 8-08 8-08

TF WSP Stilumt from Zeageza (TF) is transferred to outside of the study basin.

8

Table 10.2.8 Concentrated Pollution Load by Pollution Source

		Correct Actions)	(kg/day)
	Ď	Dom./Com./Ins. Sewage	9	Industrial		Natural	Solid	Water	
Pollution Indices Scenario,	Sewered	Unsewered	Total	Unsewered*	Livestock	Pollution	Waste Dumping	Treatment Works	Total
BOD, Dry Season									
Scenario 1, 2005	10,282	809	10,890	657	589	248	•	113	12,497
Scenario 1, 2015	14,417	732	15,149	259	589	248	E.	219	16,862
Scenario 2, 2005	8,951	380	9,331	657	685	248	þ	113	10,938
Scenario 2, 2015	13,530	458	13,988	657	685	248	•	193	15,676
σοο		:							
Scenario 1, 2005	47,840	1,216	49,056	2,765	14,725	45,946	149	1,261	113,903
Scenario 1, 2015	68,357	1,465	69,822	2,765	14,725	45,946	199	1,695	135,152
Scenario 2, 2005	42,431	760	43,191	2,765	14,725	45,946	113	866	107,738
Scenario 2, 2015	65,034	916	65,950	2,765	14,725	45,946	149	1,542	131,077
T-N									
Scenario 1, 2005	6,531	152	6,683	π	4,225	3,845	43	29	14,837
Scenario 1, 2015	8,943	183	9,126	11	4,225	3,845	57	36	17,302
Scenario 2, 2005	5,221	56	5,316	11	4,225	3,845	33	. 22	13,453
Scenario 2, 2015	7,863	114	7,977	11	4,225	3,845	43	27	16,130
T.P									
Scenario 1, 2005	610,1	21	1,036	1	199	320	,	44.	2,031
Scenario 1, 2015	1,414	12	1,426	2	199	320	•	20	2,429
Scenario 2, 2005	841	10	851	r	199	320	-	10	1,843
Scenario 2, 2015	772,1	12	1,289	61	199	320	•	19	2,291
				, ,					

*: Pollution load of industries in sewered area is counted as a part of domestic pollution load of sewered area.

10.2.2 Industrial Wastewater

(1) Wastewater Quantity

Future industrial wastewater quantity was calculated by multiplying the unit industrial wastewater quantity per employee and the number of employees in the future as shown in Table 9.3.7.

8

(2) Pollution Load

Future pollution load was calculated by multiplying the unit pollution load of industrial wastewater per employee and the number of employees in the future as presented in Table 9.3.8.

(3) Sewered/Unsewered Wastewater

Future wastewater quantity and pollution load were calculated by sub-basin under the category of sewered and unsewered area based on the present sewerage service coverages. The results are shown in Table 9.3.9. Pollution load of industrial wastewater in the unsewered area is also presented in Table 10.2.8. Industrial wastewater in the sewered area is considered as a part of effluent discharged from STWs in the same table (refer to Section 10.2, Chapter 2, Supporting Report).

10.2.3 Other Pollution Load

In addition to aforementioned pollution loads, those caused by the following pollution sources were considered in the calculation as presented in Table 10.2.8 (refer to Section 10.2, Chapter 2, Supporting Report).

(1) Livestock

Number of major livestock presented in Table 9.3.10 was assumed to be constant through the future as discussed in sub-section 6.4. Therefore, generated and concentrated pollution load calculated for present analysis in Table 9.3.11 was also adopted for the future analysis.

(2) Farmland / Natural Land

The pollution loads calculated for each sub-basin as shown in Table 9.3.12 using the area of each sub-basin and unit pollution load presented in Tables 8.4.11 was assumed to be

constant through the future. The pollution load may be defined as concentrated pollution loads.

(3) Solid Waste Dumping Sites

The leachate volume at dumping sites in the future was projected to increase in proportion to population of respective local authorities as discussed in sub-section 6.6. Adopting the concentration of leachate pollution load presented in Table 8.4.11, calculation was made as presented in Table 10.2.9 for the future analysis. Concentration ratio was assumed to be 80% (nil for BOD during dry season) taking into account of the location of dumping sites.

(4) Water Treatment Works

Wastewater generated through backwashing process at the Morton Jaffray WTW is presently discharged to nearby water way without any treatment. Introduction of backwashing wastewater treatment facilities were assumed for the purpose of the future pollution analysis. Water intake amount by the Morton Jaffray and Prince Edward WTWs was decided as discussed in sub-section 7.2. (refer to Section 10.2, Chapter 2, Supporting Report).

10.3 Pollution Load Run-off Model

10.3.1 Rivers

(1) River flow run-off model

The future pollution analysis of rivers was also conducted in terms of BOD₅ under the dry season condition. The river flows to be adopted in the analysis was those in dry season based on average figures in dry season of last 10 years as discussed in sub-section 7.2 (Table 7.2.25). Applying those flows, the river flow run-off model was illustrated with pollution load discharging points and water quality checking points as presented in Figure 7.2.19.

(2) Pollution load run-off model

Concentrated BOD load presented in Table 10.2.8 was allocated to each pollution load discharging point (refer to Section 10.3, Chapter 2, Supporting Report). Integrating these data, the pollution load run-off model for future pollution analysis of rivers was formulated as illustrated in Figures 10.3.1 and 10.3.2.

Table 10.2.9 Concentrated Pollution Load at Solid Waste Dumping Site (Future)

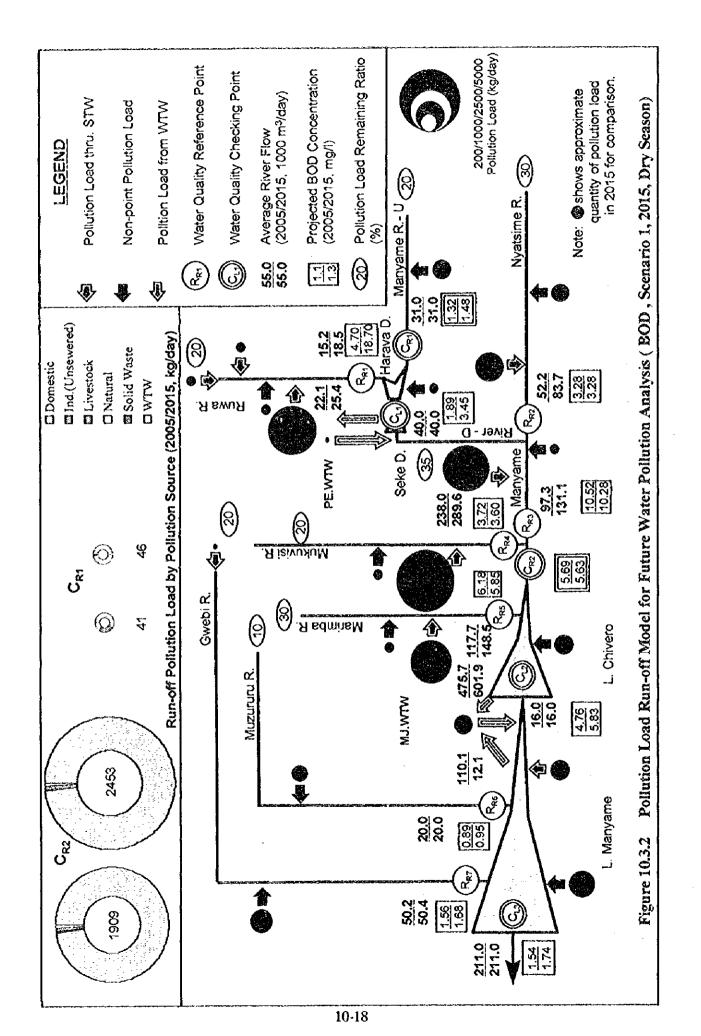
Quantity of Leachate (m3/year)

Local	Authority	Harare	Harare	Chitungwiza	Norton	Ruwa/Epworth
Sub	-basin	Marimba R.*	Gwebi R.	Nyatsime R.	L. Manayame	Ruwa R.**
Present Q.	on-going	13,200	3,300	6,600	3,300	1,650
	completed	12,000	2,000	0	0	0
Population Increas	e Rate					
Scenario 1	2005		1.93	1.09	1.93	1.87
<u> </u>	2015		2.45	1.49	3.66	2.34
Scenario 2	2005		1.34	1.59	1.23	1.23
İ	2015		1.73	2.29	1.48	1.48
Future Leachate Q	uantity					
Scenario 1	2005	-	58,892	7,201	6,362	3,093
ľ	2015	-	74,758	9,839	12,068	3,858
Scenario 2	2005	-	40,850	10,507	4,047	2,023
	2015		52,881	15,132	4,873	2,436

^{*:} Existing dumping site is assumed to be closed. Same load is assumed to be transferred to Gwebi R. Sub-basin.

Concentrated Pollution Load (kg/day)

Local	Authority	Harare	Harare	Chitungwiza	Norton	Ruwa/Epworth
	-basin	Marimba R.*	Gwebi R.	Nyatsime R.	L. Manayame	Ruwa R.**
Present	BOD***	28	6	7	4	2
Concentrated	COD	50	10	13	7	3
Pollution	T-N	14	3	4	2	i
Load	T-P		-	•	-	-
Population	Scenario1					· · · · · · · · · · · · · · · · · · ·
Increase	2005		1.93	1.09	1.93	1.87
against	2015		2.45	. 1.49	3.66	2.34
1995	Scenario2					
	2005		1.34	1.59	1.23	1.23
	2015		1.73	2.29	1.48	1.48
	ted Pollution Load				, <u></u>	
Scenario1						
2005	BOD***	-	66	88	8	44
	COD	l	116	14	13	6
	T-N		33	4	44	2
	Т-Р	-	-		-	-
2015	BOD***	· · · · · · ·	83	10	15	5
	COD	·	147	19	26	7
	T-N	· · · · · · · · · · · · · · · · · · ·	42	6	7	2
	Т-Р	-	-	-	-	
Scenario2						
2005	BOD***	<u> </u>	46	11	5	2
	COD		80	21	9	4
	T-N	·	23	6	2	1
	T-P	-	•			-
2015	BOD***	-	59	16	6	3
1	COD	·	104	30	10	4
	T-N		29	9	3	<u>l</u>
	T-P	-		<u> </u>	<u> </u>	<u> </u>


^{*:} Existing dumping site is assumed to be closed. Same load is assumed to be transferred to Gwebi R. Sub-basin.

Î

^{**:} Dumping site for Epworth is assumed to be developed in Ruwa R. Sub-basin.

^{**:} Dumping site for Epworth is assumed to be developed in Ruwa R. Sub-basin.

^{***:}Nil during dry seasom.

(

10.3.2 Lakes/Dams

(1) Water balance of lakes/dams

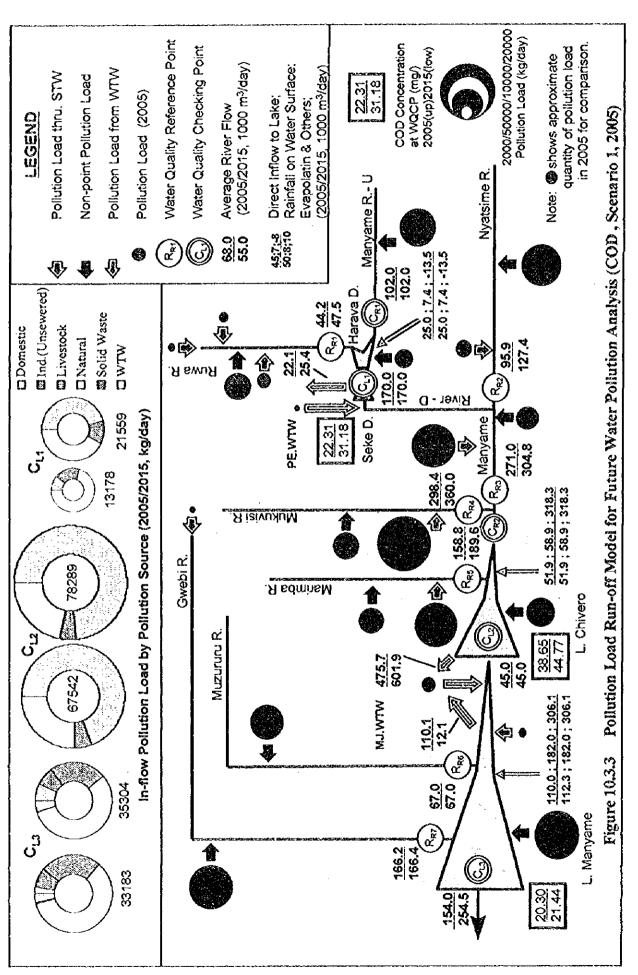
The pollution analysis of lakes was conducted under the annual average condition. The water balance of lakes to be adopted in the analysis is those based on annual average figures in the last 10 years as discussed in sub-section 7.2 (refer to Table 7.2.26). Applying the water balance, the run-off model was illustrated with pollution load discharging points and water quality checking points as presented in Figure 7.2.20.

(2) Pollution load run-off model

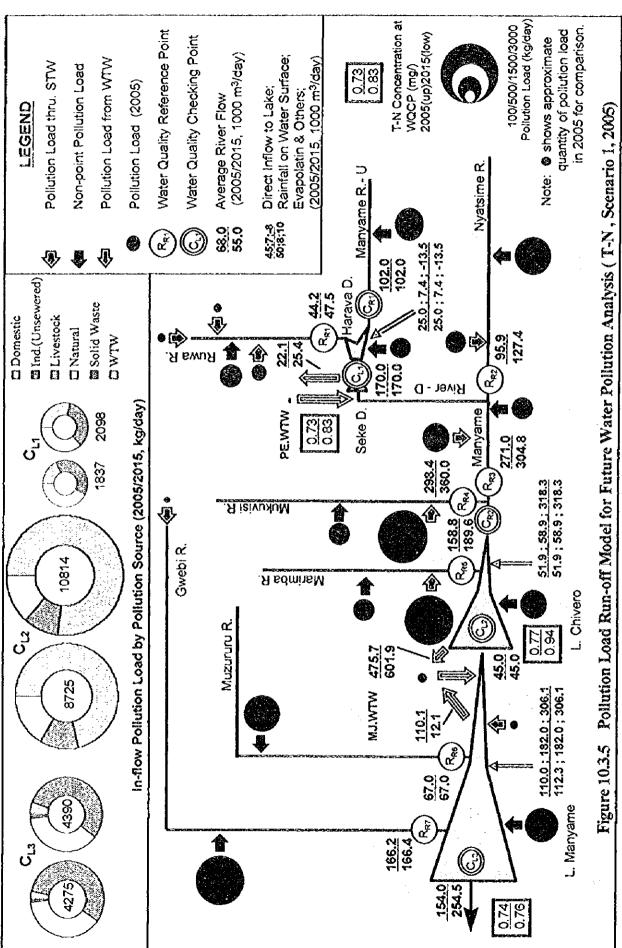
The concentrated pollution load was calculated in the previous section by each scenario for COD, T-N and T-P, respectively. Integrating the flow run-off model and the calculated concentrated pollution load, the pollution load run-off models in terms of COD, T-N and T-P was formulated by each scenario as shown in Figures 10.3.3 to 10.3.8. These pollution loads were assumed to reach to the subject lakes without reduction (purification) in the main river because of the reason stipulated in sub-section 9.4.2 (2).

10.4 Future Water Pollution Analysis

10.4.1 General

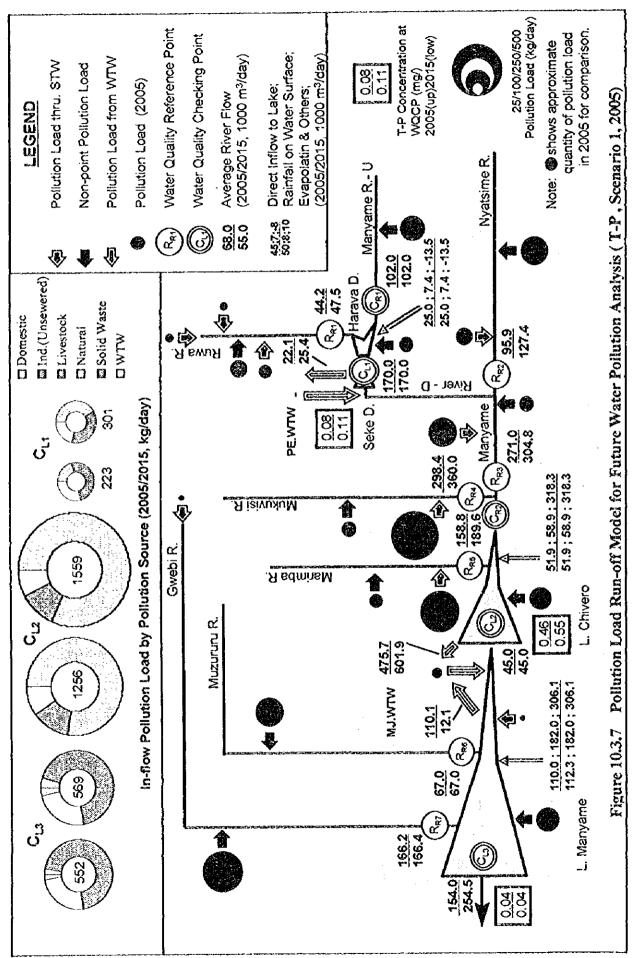

The pollution load remaining ratios of respective rivers in terms of BOD₅ identified in the present pollution analysis were adopted for the future pollution analysis. While, self-purification coefficients of respective lakes in terms of T-N, T-P and COD computed in the present analysis were also adopted for the future pollution analysis of lakes.

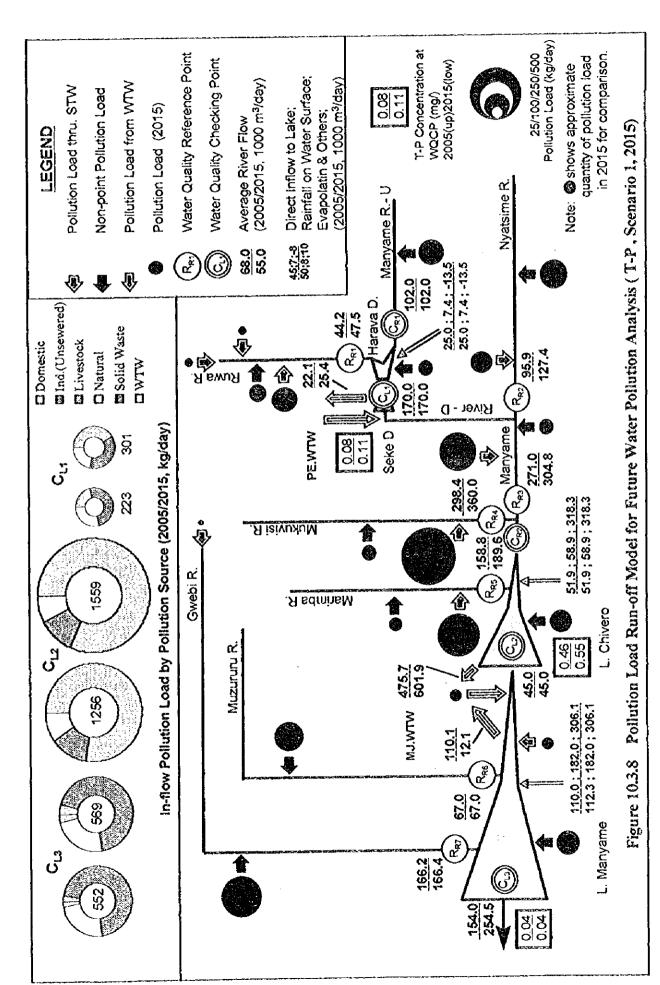
10.4.2 Rivers


Based on the BOD load run-off model established in sub-section 10.3, projection of BOD concentration at water quality checking points of rivers was conducted for each scenario as summarised in Table 10.4.1 (refer to Section 10.4, Chapter 2, Supporting Report).

(

3




(F

()

1

忿

Table 10.4.1 Projected Future BOD Concentration at WQCPs

6

	WQ	Stan-		Scena	rio 1	Scen	ario 2
River	CP	dard	Present	2005	2015	2005	2015
Manyame (u/s)	C_{R1}	<3	1.1	1.32	1.48	1.03	1.13
Ruwa	R_{R1}	•	3.8	4.70	18.70	4.38	19.24
Nyatsime	R _{R2}	-	2.1	3.28	3.28	4.56	4.57
Manyame (d/s)	R _{R3}	•	1.0	10.52	10.28	8.20	6.38
Mukuvisi	R _{R4}		2.0	3.72	3.60	3.87	3.99
Manyame (d/s)	C _{R2}	<5	1.4	5,69	5.63	5.48	4.90
Marimba	R _{R5}	-	8.7	6.18	5.85	7.68	7.29
Muzururu	R _{R6}	_	0.5	0.89	0.95	0.78	0.82
Gwebi	R _{R7}	-	1.6	1.56	1.68	1.35	1.43

(unit: mg/l)

Table 10.4.1 shows serious calculation results at some reference points; Ruwa (R_{R1}), Manyame (R_{R3}) and Marimba (R_{R5}) rivers, i.e. more than 5 mg/l of BOD concentration, all of which are affected by the discharge of effluent from the STWs in the sub-basin. However, BOD concentration at other points are within allowable level of water quality.

With regard to the checking point, BOD concentration at C_{R1} will be kept below the value of the environmental water quality standard. However, the value at the point C_{R2} is projected to be roughly water quality standard level.

10.4.3 Lakes/Dams

Based on the pollution load run-off models, projection of water quality of lakes and dams in the future was conducted as summarised in Table 10.4.2 (refer to Section 10.4, Chapter 2, Supporting Report).

Table 10.4.2 Projected Future Pollution Load Concentration at WQCPs of Lakes

	WQ	Quality S	Standard		Scena	rio 1	Scena	ario 2
River	CP	2005	2015	Present	2005	2015	2005	2015
T-N (mg/l)								
Seke & Harava	C_{L1}	<0.4	<0.2	0,65	0.73	0.83	0.71	0.80
L. Chivero	C ₁₂	<0.4	<0.2	0.51	0.77	0.94	0.66	0.86
L. Manyame	Cr3	<0.4	<0.2	0.75	0.74	0.76	0.73	0.74
T-P (mg/l)								
Seke & Harava	CL1	<0.05	<0.01	0.07	0.08	0.11	0.08	0.11
L. Chivero	C ₁₂	<0.10	<0.01	0.27	0.46	0.55	0.41	0.51
L. Manyame	C_{L3}	<0.03	<0.01	0.04	0.04	0.04	0.04	0.04
COD* (mg/l)								
Seke & Harava	CLI	<10	<6	20.63	22.31	31.18	21.86	30.57
L. Chivero	C _{1.2}	<16	<6	25.30	38.65	44.77	35.51	42.69
L. Manyame	C _{1.3}	<16	<6	22.70	20.30	21.44	19.92	21.02

^{*:} Standard value of COD presented in Table 7.1.14 is indicated as COD_{Mn}. COD in this table is presented as COD_{Cr} assuming as two times of COD_{Mn}.

The improvement of water quality of lakes/dams from the present status seems to be difficult through the future as presented in Table 10.4.2, even though utmost possible sewage treatment including development of new two STWs and augmentation of the existing STWs was assumed in the calculation for projection. Generally, projected values in the scenario 2 (lower development) is better than those in the scenario 1. However, water quality of the Lake Manyame and the Seke & Harava dams show comparatively stable water quality. Nevertheless, this projection implies that assumed sewage treatment, which is recognised as practical, is indispensable and even if depression of development in the basin may be considered.

The projected water quality of the Lake Chivero is serious among others. The future water quality level may be regarded to be on the same level or some deterioration comparing with the present water quality level under the available data base.

CHAPTER 11 STUDY ON POLLUTION LOAD REDUCITON

CHAPTER 11 STUDY ON POLLUTION LOAD REDUCTION

11.1 General

9

The pollution load (PL) to be reduced by target year at each water quality checking point (WQCP) was calculated by comparing the run-off load calculated in sub-section 10.4 with the allowable PL calculated based on the environmental water quality standard at each WQCP discussed in sub-section 7.1. The allowable PL by different pollution source at each WQCP may be determined in proportion to the composition of their present run-off load. The allocation of PL to be reduced by the relevant pollution source shall be made considering different countermeasures against the respective pollution sources; these countermeasures include the expansion and upgrading of sewerage systems for domestic/commercial/institutional sewage, effluent control to industrial wastewater, effluent control/improvement of wastewater treatment for livestock, wastewater treatment at WTWs, and leachate treatment at solid waste dumping site. Figure 11.1.1 shows the manner of calculation for allowable PL by pollution source.

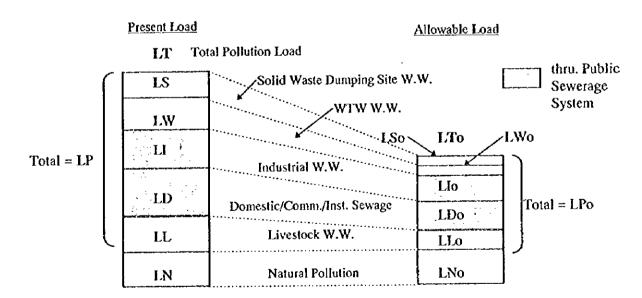


Figure 11.1.1 Manner of Calculation for Allowable Pollution Load by Pollution Source

In Figure 11.1.1, the allowable PL by pollution source is expressed as follows:

 $LSo = LPo \times LS/LP$

 $LWo = LPo \times LW/LP$

 $LIo = LPo \times LI/LP$

 $LDo = LPo \times LD/LP$

 $LLo = LPo \times LL/LP$

LNo = LN

11.2 Composition of Present Pollution Load by Pollution Source at Respective WQCPs

The composition of the present PL by pollution source at each WQCP was studied to come up with the percentages for allocation of total allowable load discussed in sub-section 11.3.

11.2.1 Rivers (BOD)

The WQCPs to be studied for the composition of run-off load caused by different pollution sources are C_{R1} and C_{R2} . The point C_{R1} covers only the Manyame river (upstream) sub-basin while the point C_{R2} covers 6 sub-basins, namely, the Manyame River (upstream), the Ruwa River, the Seke and Harava Dams, the Nyatsime River, the Manyame River (downstream), and the Mukuvisi River. The concentrated BOD load of the respective sub-basin flows down being affected by the purification of the rivers. Therefore, the rivers' self-purification effect was considered in the calculation of the run-off BOD load by pollution source. The result of the calculation is summarised in Table 11.2.1 (refer to Table 11.2.1, Section 11.2, Chapter 2, Supporting Report).

Table 11.2.1 Composition of Present Run-off BOD Load by Pollution Source

WQCP	Sub-basin	PL Source Category	Run-off	BOD Load	at WQCP	(kg/day)	Comp	oosition
		carogory	Direct Inflow	Inflow from Direct Upstream	Inflow from C _{R1}	Total	Total	excl. Natural
		Domestic	18.6			18.6	55%	65%
		Industrial (Unsewered)	0.0			0.0	0%	0%
	Manyame	Livestock	9.8			9.8	29%	35%
C_{R1}	-	Natural	5.6	N.A.	N.A.	5.6	16%	
1	Upstream	Solid Waste	0.0			0.0	0%	0%
		WTW	0.0			0.0	0%	0%
		Total	34.1			34.1	100%	100%
		Domestic	0.0	132.8	2.6	135.4	74%	80%
		Industrial (Unsewered)	0.0	11,4	0.0	11.4	6%	7%
Í	Manyame	Livestock	0.0	20.3	1.4	21.6	12%	12%
C _{R2}	-	Natural	0.0	11.7	0.8	12.5	7%	_
	Downstream	Solid Waste	0.0	0.0	0.0	0.0	0%	0%
		WTW	0.0	0.9	0.0	0.9	1%	1%
		Total	0.0	177.1	4.8	181.9	100%	100%

Note: Composition of Run-off Load

Total; Share in Total Run-off Load (including upstream WCP) excl. Natural; Share in Run-off Load of Direct Inflow and Upstream Inflow (excl. natural load)

N.A.; Not Applicable

The following were found form calculation results shown in Table 11.2.1:

- At the point C_{R1}, where there is no STW in the catchment area, the run-off BOD load consists of Domestic PL (55%), Livestock PL (29%) and Natural PL (16%). This domestic PL is discharged from unsewered sewage (refer to Table 9.4.1).
- At the point C_{R2}, where five STWs exist including the Zengeza and Firle STWs, the runoff BOD load consists of Domestic PL (74%), Unsewered-Industrial PL (6%), Livestock
 PL (12%), Natural PL (7%) and WTW PL (1%).
- At the point C_{R2}, the share of run-off load from C_{R1} is minimal at less than 3% because
 of the purification effect of the Seke and Harava Dams and the Manyame River (down
 stream section).

11.2.2 Lakes/Dams (T-N, T-P and COD)

The water quality checking points to be studied are C_{L1}, C_{L2} and C_{L3}. The following are the composition of covered water bodies by each WQCP:

C_{L1} (Seke & Harava Dams); Manyame River (upstream)

Ruwa River

Seke and Harava Dams

C₁₂ (Lake Chivero);

 C_{L1}

Manyame River (downstream)

Nyatsime River

Mukuvisi River

Marimba River

Lake Chivero

- C₁₃ (Lake Manyame);

 C_{12}

Muzururu River

Gwebi River

The results of the calculation are summarised in Table 11.2.2 (refer to Tables 11.2.2 to 11.2.4, Section 11.2, Chapter 2, Supporting Report). The following are found form the table:

At the point C_{L1}, where no STW exists in the sub-basin, the inflow PL mainly consists of livestock PL and natural PL. The total of these two pollution load exceeds 90% of total

Table 11.2.2 Composition of Present Inflow Pollution Load by Pollution Source at WQCPs (T-N, T-P and COD)

		ting ral	100	160	80		1%	2%	0%C	%	88	80		88	88		0%C	%	80	8		1/2	80		8
	Composition*	excluding Natural	25.8%	0.0%	74.1%	'	0.1%	0.0%	100.0%	81.2%	1.0%	17.3%	'	0.3%	0.2%	•	100.0%	3.5%	12.6%	40.2%	•	0.1%	43.7%	•	100.0%
COD	Compo	Total	6.9%	0.0%	19.9%	73.2%	0.0%	0.0%	100.0%	41.2%	0.5%	8.8%	40.8%	0.2%	0.1%	8.4%	100.0%	1.7%	6.3%	20.3%	46.8%	0.0%	22.1%	2.7%	100.0%
	Inflow PL	(kg/day)	873.0	0.0	2,513.4	9,236.3	3.3	0.0	12,626.0	17,189.0	217.6	3,665.7	17,035.3	62.7	33.8	3,507.1	41,711.3	735.0	2,668.7	8,546.3	19,674.3	17.0	9,284.7	1,138.5	42,064.5
-	Composition*	excluding Natural	11.8%	0.0%	88.2%	•	0.0%	0.0%	100.0%	69.4%	0.2%	30.4%	ı	0.0%	0.0%	,	100.0%	2.2%	0.4%	85.4%	1	0.0%	12.0%		100.0%
T-P	Compo	Total	7.8%	0.0%	58.6%	33.6%	0.0%	0.0%	100.0%	55.8%	0.2%	24.4%	17.8%	0.0%	0.0%	1.8%	100.0%	1.7%	0.3%	64.2%	22.8%	0.0%	9.0%	2.0%	100.0%
	Inflow PL	(kg/day)	15.0	0.0	112.3	64.3	0.0	0.0	191.6	372.0	1.2	162.8	118.6	0.0	0.1	11.9	9.999	10.0	1.7	6.285	136.9	0.0	54.3	12.2	601.0
	Composition*	excluding Natural	14.6%	0.0%	85.3%	•	0.1%	0.0%	100.0%	74.0%	0.1%	25.5%	•	0.4%	0.0%	•	100.0%	2.7%	0.4%	87.6%	•	0.2%	9.2%	•	100.0%
Z-L	Compo	Total	7.7%	0.0%	44.8%	47.5%	0.1%	0.0%	100.0%	54.3%	0.1%	18.6%	24.8%	0.3%	0.0%	1.9%	100.0%	1.7%	0.2%	54.6%	37.1%	0.1%	5.7%	0.5%	100.0%
	Inflow PL	(kg/day)	125.0	0.0	728.3	773.0	6.0	0.0	1,627.2	3,117.0	2.9	1,071.4	1,425.8	17.4	1.1	109.7	5,745.2	76.0	10.5	2,425.7	1,646.6	4.7	253.5	23.0	4,440.1
	PL Source	Category	Domestic	Ind.(Unsewered)	Livestock	Natural	Solid Waste	wIw	Total	Domestic	Ind.(Unsewered)	Livestock	Natural	Solid Waste	WIW	ບິ	Total	Domestic	Ind.(Unsewered)	Livestock	Natural	Solid Waste	WTW	C_{L2}	Total
	Sub-basin		Seke &	Harava	L	J		· · · · · ·		Lake	Chivero							Lake	Manyame		<u> </u>				
	WQCP		ن							ن ئ						-		_ဥ							

Note: Composition of Inflow Pollution Load
Total; Share inTotal Inflow Po

Share in Total Inflow Pollution Load (including PL from upstream WQCP)

excl. Natural; Share in Inflow Pollution Load (excluding PL from upstream WQCP and natural load)

E

inflow PL in terms of T-N, T-P and COD. The share of livestock PL increases to 85%, 88% and 74% of the controllable PL (PL excluding natural PL and the influence of the inflow PL from upstream WQCP) in terms of T-N, T-P and COD, respectively. These figures imply the difficulty of PL reduction.

- At the point C₁₂, to which effluent is discharged from five STWs including the Zengeza, Firle, and Crowborough STWs, the main inflow PLs are domestic PL, livestock PL and natural PL. Because of high sewerage service coverage for many population, domestic PL dominates around a half of total PL for all pollution indices. The domestic shares are 74%, 69% and 81% of the respective controllable PLs in terms of T-N, T-P and COD.
- At the point C_{L3}, where two small STWs exist, i.e. the Marlborough and Norton STWs, main inflow PL are livestock PL and natural PL. The shares of livestock PL are 88%, 85% and 40% of the respective controllable PL in terms of T-N, T-P and COD.
- At the points of C_{1,2} and C_{1,3}, the influence of inflow PL from upstream WQCP is minimal.
- Influence of leachate from solid waste dumping site is negligible at all WQCPs.
- Share of PL discharged from the Morton Jaffray WTW is 9%, 12% and 44% of the respective controllable PL in terms of T-N, T-P and COD.

11.3 Allowable Pollution Load and Required Pollution Load Reduction

11.3.1 Rivers (BOD)

The allowable PL at each checking point was calculated using the environmental water quality standard and the established flow rates. The following are the conditions/assumptions adopted to calculate allowable PL and PL to be reduced.

- PL run-off model: models established in Chapter 10
- Natural PL: the load is fixed as a non-controllable load at the respective checking point.
- PL from upstream WQCP: allowable PL calculated based on the environmental water quality standard.

The calculation results for the two scenarios are presented in Table 11.3.1 which indicates that the reduction of PL is not necessary for C_{R1} because of the projected BOD concentration is lower than assumed water quality standard. Projected water quality at C_{R2} seems to be critical, however the level meets almost the requirement.

Table 11.3.1 Allowable Polllution Load and Required Pollution Load Reduction (BOD)

Scenario 1	₽ =#						Scenario 2						
Water	Planned	Water	Allowable	BOD Load Run-off	Projected Run-off	Required Pollution	Water	Planned	Water	Allowable	BOD I gad	Projected Run-off	Required Pollution
Quality		Quality	س	Source	Pollution		Ouality	Flow	Ouality	Run-off	Source	Pollution	Load
Checking		Standard	road	Category	Load	Reduction	Caecking	Kate	Standard	103d	Category	Load	Reduction
Point	(m3/day)	(mg/1)	(Kg/a)		(kg/day)	(kg/d)	rount	(m2/day)	(1/2/m)	(xg/a)		(kg/day)	(kg/d)
2005							2005						
ජී	31,000	5.0	149	Others	35	-114	ڻڙ	31,000	5.0	149	Others	56	-123
-			9	Natural	9	0				9	Natural	9	0
4			155	Total	41	-114	-72-			155	Total	32	-123
2 2 1-6	335,300	5.0	1,638	Others	1,870	232	ဌီ	310,600	5.0	1,511	Others	1,660	150
			12	Natural	12	0				12	Natural	77	0
			92	హ్	26	0				30	S.	30	0
			1,677	Total	1,909	232				1,553	Total	1,703	150
2015							2015						
رچ ک	31,000	3.0	87	Others	40	47	ێ	31,000	3.0	4.8	Others	29	-58
			9	Natural	9	0	de la constantina de			9	Natural	9	0
			93	Total	46	47				93	Total	35	-58
ૡ	430,700	5.0	2,131	Others	2,403	273	Z ^z	432,800	5.0	2,141	Others	2,099	42
O WILLIAM C			12	Natural	23	0				27	Natural	2	0
			10	က်	10	0	and the second			11	ပ္မွ	11	0
		-	2,154	Total	2,426	273				2,164	Total	2,122	-42

11.3.2 Lakes/Dams (T-N, T-P and COD)

)

The allowable PL at each WQCP of the lakes/dams was calculated using the environmental water quality standards and the water balances established in sub-section 7.2. The conditions/ assumptions adopted to calculate allowable PL and PL to be reduced are as follows:

- PL run-off model: models established in Chapter 10
- Natural PL: the load is fixed as a non-controllable load at the respective checking point.
- PL from upstream WQCP: allowable PL calculated based on the environmental water quality standard.

The calculation results are presented in Tables 11.3.2 to 11.3.4; they indicate that pollution road to be reduced is quite large at all WQCPs for all pollution indices, especially for the year 2015. The implementation of practical countermeasures, i.e. sewage treatment projects in the future and the introduction of WTW wastewater treatment facilities, were already assumed in the calculation. Other countermeasures, regarded as impractical or hard to implement, are not considered in the calculation.

11.4 Allowable Pollution Load and Required Pollution Load Reduction by Pollution Source

Based on the composition of the present PL by pollution source at the WQCPs presented in Table 11.2.2 and the allowable PL presented in Tables 11.3.2 to 11.3.4, the allowable PL by pollution source in terms of T-N, T-P and COD was calculated respectively for each scenario as shown in Tables 11.4.1 to 11.4.2.

In these Tables, the PL discharged from land and upstream WQCPs were fixed at the present level or calculated with the water quality standard concentration, respectively. In the year 2015, most of the allowable PL becomes less than the natural PL because of the assumed strict water quality standards.

Tables 11.4.3 to 11.4.5 present the PL to be reduced by pollution source, applying the allowable PL presented in Tables 11.4.1 and 11.4.2. These tables indicate the large requirement of PL reduction, especially by the domestic and livestock pollution sources. As stated previously, the implementation of practical countermeasures was already counted in

6

Table 11.3.2 Required Pollution Load Reduction (T-N)

Scenario 1						
Woter Ourlier	N-T wolful	T-N Load from	Total Inflow	Allowable Inflow	Total Inflow Allowable Inflow Required Pollution	Percentage of PL
Theology Doing	Load	Upstream WQCP	T-N Load	Pollution Load	Load Reduction	Reduction against
Cuccang rom:	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(kg/dav)	Inflow T-N
2005						
J	1,837	1	1,837	1,010	827	45%
ဌ	8,725	89	8,793	4,601	4,192	48%
$c_{\rm L3}$	4,275	18	4,293	2,317	1,976	46%
2015						
G	2,098	1	2,098	505	1,592	76%
S	10,814	34	10,848	2,326	8,522	26%
$\mathcal{C}_{\mathrm{L3}}$	4,390	6	4,399	1,159	3,240	74%

Water Onality	N-T wolfar	T-N Load from	Total Inflow	Allowable Inflow	Allowable Inflow Required Pollution	Percentage of PL
Checking Point	Load	Upstream WQCP	T-N Load	Pollution Load	Load Reduction	Reduction against
5 × Cmr.	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(kg/day)	Inflow T-N
2005						
J.	1,789	,	1,789	1,009	780	44%
ដូ	7,457	89	7,525	4,569	2,956	40%
ວິ	4,207	18	4,225	2,317	1,908	45%
2015						
S.	2,031	•	2,031	505	1.526	75%
S _I	9,826	34	9,860	2,315	7,545	777%
C_{L3}	4,272	0	4,281	1.159	3,122	73%

Table 11.3.3 Required Pollution Load Reduction (T-P)

(Sales)

Inflow T-P	T-P Load from	Total Inflow	Allowable Inflow	Allowable Inflow Required Pollution	Percentage of PL
Load	Upstream WQCP	T-P Load	Pollution Load	Load Reduction	Reduction against
(kg/day)	(kg/day)	(kg/day)	(kg/day)	(kg/day)	Inflow T-P
222.8	•	223	137	98	38%
1,256.3	8.5	1,265	275	066	26%
552.2	4.5	557	407	150	27%
301.1	,	301	27	274	91%
1,559.1	1.7	1,561	53	1,532	%86
568.7	0.5	569	136	433	76%

Scenario 2						
11/2020	Inflow T-P	T-P Load from	Total Inflow		Allowable Inflow Required Pollution	Percentage of PL
water Quanty	Load	Upstream WQCP	T-P Load	Pollution Load	Load Reduction	Reduction against
Checking Foint	(kg/dav)	(kg/day)	(kg/day)	(kg/day)	(kg/day)	Inflow T-P
2005						
J	216.4	1	216	137	79	37%
ឡ	1,083.4	8.5	1,092	267	825	76%
C ₁₃	543.3	4.5	548	407	141	26%
2015						
C_{ij}	294.2	1	294	27	267	91%
S.	1,436.2	1.7	1,438	88	1,410	%86
ဌ	560.2	0.5	561	136	425	26%

Table 11.3.4 Required Pollution Load Reduction (COD)

OCCURAL IO	,					
	Inflow COD	COD Load from	Total Inflow	Allowable Inflow	Allowable Inflow Required Pollution	Percentage of PL
water Quanty	Load	Upstream WQCP	COD Load	Pollution Load	Load Reduction	Reduction against
Checking Point	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(kg/dny)	Inflow COD
2005						
J.	13,178	1	13,178	4,687	8,491	64%
ට්	67,542	1,700	69,242	25,393	43,849	%59
	33,183	720	33,903	30,813	3,090	926
2015						
ن ^ت	21,559	•	21,559	3,483	18,077	84%
<u>ئ</u>	78,288	1,020	79,308	7,293	72,016	92%
្ត ប្	35,304	270	35,574	10,663	24,912	71%

# A1 KINAAA						
	Inflow COD	COD Load from	Total Inflow	Allowable Inflow	Allowable Inflow Required Pollution	Percentage of PL
water Quality	Load	Upstream WQCP	COD Load	Pollution Load	Load Reduction	Reduction against
Checking Point	(kg/day)	(kg/day)	(kg/day)	(kg/day)	(kg/day)	Inflow COD
2005						
Ü	12,970	•	12,970	4,684	8,286	64%
บ็	62,136	1,700	63,836	24,681	39,155	63%
S	32,633	720	33,353	30,808	2,545	8%
2015						
C	21,286	•	21,286	3,479	17,806	84%
ប	75,050	1,020	76,070	7,164	906'89	92%
ပ်	34,741	270	35,011	10,656	24,354	20%

8

Table 11.4.1 Allowable Pollution Load by Pollution Source at WQCPs (Scenario 1)

Present Composition*1 Allowable PL by PS°2 (Quiday)						1-N				T-P				COD	
Scirc & Domestic 7.7% 14.6% 34.6 39.2 70.31 86.64 2005 2015 70.31	WOCP	Sub-basin	PL Source	Present Cor	pposition*1	Allowable PL b	y PS*2 (kg/day)		mposition 1	Allowable PL b	/ PS*2 (kg/day)	Present Cor	aposition 1	Allowable PL b	Allowable PL by PS*2 (kg/day)
Solic & Domestic 77% 14.6% 34.6 -39.2 7.8% 11.8% 8.6 -4.3 6.9% Harava Doms Domestic of Color 0.05 0.0 </th <th>-</th> <th></th> <th>Category</th> <th>Total</th> <th>exel. Natural</th> <th>2005</th> <th>2015</th> <th>Total</th> <th>exel. Natural</th> <th>2005</th> <th>2015</th> <th>Totai</th> <th>exci. Natural</th> <th>2005</th> <th>2015</th>	-		Category	Total	exel. Natural	2005	2015	Total	exel. Natural	2005	2015	Totai	exci. Natural	2005	2015
Harnva Livestock At-8% S5.3% One 0.00	ű	Soke &	Domestic	7.7%	14.6%	34.6	-39.2	7.8%	11.8%	8.6	4.3	6.9%	25.8%	-1,171.6	-1,481.8
Dams Livestock of 44.8% 85.3% 201.7 -228.1 58.6% 88.2% 64.3 -52.5 19.9% Natural**3 47.5% - 773.0 773.0 33.6% - 64.3 64.3 64.3 75.2% Solid Waste 0.1% 0.1% 0.3 -0.3 0.0% 0.0% 0.0		Harava	Ind.(Unsewered)	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0
Natural*3 47.5% 773.0 773.0 33.6% 64.3 64.3 73.2% 73.2		Dams	Livestock	44.8%	85.3%	201.7	-228.1	58.6%	88.2%	64.3	-32.5	19.9%	74.1%	-3,373.1	4,266.3
Solid Waste 0.1% 0.1% 0.3 -0.3 0.0% 0.0% 0.0% 0.0 0.0 0.0 0.0%			Natural 3	47.5%	•	773.0	773.0	33.6%	•	64.3	64.3	73.2%	•	9,236.3	9,236.3
WTW 0.0%			Solid Waste	0.1%	0.1%	£.0	-0.3	%0.0	0.0%	0.0	0'0	0.0%	0.1%	4.4	-5.5
Lake Domestic 55.3% 74.0% 2.00 - - 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 0.0 - - 0.0 0.0 0.0 - - 0.0 0.0 0.0 - - 0.0 0.0 - - 0.0 0.0 0.0 - - 0.0 0.0 0.0 - - 0.0 0.			wrw	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0
Total 100.0% 1,009.6 505.5 100.0% 137.2 27.5 100.0% 100.0% 1,009.6 2,300.5 641.1 56.8% 694% 102.8 -63.5 45.0% 45.0% 2,300.5 641.1 56.8% 694% 102.8 -63.5 45.0% 45.0% 2,300.5 100.0% 1,425.8			U/S WOCP*4	•	•	0.0	0.0	•	-	0.0	0.0	•	•	0.0	0.0
Lake Domestic 55.3% 74.0% 2.300.5 641.1 56.8% 694% 102.8 -63.5 45.0% Chiver Iod.(Usexwered) 0.1% 0.1% 2.1 0.6 0.2% 0.2% 0.3 -0.2 0.6% Chiver Livestock 19.0% 25.5% 790.8 220.4 24.9% 30.4% 45.0 -77.8 9.6% Natural*3 25.3% . 1,425.8 1,425.8 18.1% - 118.6 118.6 44.6% Solid Waste 0.3% 0.4% 12.9 3.6 0.0% 0.0% 0.0			Total	100.0%	100.0%	1,009.6	505.5	100.0%	100.0%	137.2	27.5	100.0%	100.0%	4,687.2	3,482.7
Chivero lod, Ousewered) 0.1% 0.1% 2.1 0.6 0.2% 0.2% 0.3 -0.2 0.6% 0.6% Livestock 19.0% 25.5% 790.8 220.4 24.9% 30.4% 45.0 -27.8 9.6% Natural*3 25.3% - 1,425.8 18.1% - 118.6 118.6 44.6% 25.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	년 건	Lake	Domestic	55.3%	74.0%	2,300.5	641.1	26.8%	69.4%	102.8	-63.5	45.0%	81.2%	5,406.0	-8,739.1
Livestock 19.0% 25.5% 790.8 220.4 24.9% 30.4% 45.0 -27.8 9.6% Natural*3 25.3% . 1,425.8 1,425.8 18.1% . 118.6 118.6 44.6% Solid Waste 0.3% 0.4% 12.9 3.6 0.0% 0.0% 0.0 0.0 0.0 0.0% WTW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Lake Domestic 1.7% 2.7% 17.9 -13.6 1.7% 2.2% 5.9 0.0 0.0 0.0% Lake Domestic 1.7% 2.7% 17.9 -13.6 1.7% 2.2% 5.9 0.0 0.0 0.0% Manyame Ind./Unextock 54.9% 87.6% 571.2 434.8 65.5% 85.4% 1.0 0.0 0.0 6.5% Natural*3 37.3% - 1,646.6 1,646.6 22.3% - 136.9 136.9 48.1% WTW 5.7% 9.2% 59.7% 45.4 9.2% 12.0% 31.9 -0.2 22.7% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 105.0 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 105.0 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 125.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 100.0% 100.0% 100.0% Total 100.0% 100.0% 2.317.0 1.159.0 100.0%		Chivero	lod.(Unsewered)	0.1%	0.1%	2.1	9.0	0.2%	0.2%	0.3	-0.2	0.6%	1.0%	68.4	-110.6
Natural*3 25.3% - 1,425.8 1,425.8 1,425.8 18.1% - 118.6 118.6 118.6 44.6% Solid Waste 0.3% 0.4% 12.9 3.6 0.0% 0.0% 0.0 0.0 0.0% U/S WOCP*4 - 68.0 34.0 - 8.5 1.7 - 8.5 1.7 - 8.5 U/S WOCP*4 - 68.0 34.0 - 8.5 1.7 - 8.5 1.7 - 8.5 U/S WOCP*4 - 68.0 34.0 - 8.5 1.7 1.7 1.3 Lake Domestic 1.7% 2.7% 17.9 13.6 1.7% 2.2% 5.9 0.0 1.8% Lake Domestic 1.7% 2.7% 17.9 13.6 1.7% 2.2% 5.9 0.0 1.8% Manyame Infuseword 0.2% 87.6% 571.2 434.8 65.5% 85.4% 226.7 1.5 20.9% Natural*3 37.3% - 1,646.6 1,646.6 22.3% - 136.9 136.9 48.1% Solid Waste 0.1% 0.2% 59.7 -45.4 9.2% 12.0% 31.9 -0.2 22.7% U/S WOCP*4 - 18.0 9.0 - 45.5 12.0% 406.9 135.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0% Domestic 1.1% 1.1% 1.159.0 100.0% 406.9 135.6 0.0% Domestic 1.1% 1.159.0 1.00.0% 100.0% 406.9 135.6 0.0% Domestic 1.1% 1.159.0 1.00.0% 1.155.0 0.0% 1.00.0% 1.155.0 Domestic 1.1% 1.159.0 1.159.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.159.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.159.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.155.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.155.0 1.155.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.155.0 1.00.0% 1.155.0 0.0% 1.155.0 Domestic 1.1% 1.155.0 1.00.0% 1.155.0 1.00.0% 1.155.0 Domestic 1.1% 1.1% 1.155.0 1.00.0% 1.155.0 Domestic 1.1% 1.1% 1.1% 1.1% 1.1% 1.00.0% 1.155.0 Domestic 1.1%			Livestock	19.0%	25.5%	790.8	220.4	24.9%	30.4%	45.0	8.72-	%9.6	17.3%	1,152.9	-1,863.7
Solid Waste 0.3% 0.4% 12.9 3.6 0.0%			Natural*3	25.3%	4	1,425.8	1,425.8	18.1%	-	118.6	118.6	44.6%	•	17,035.3	17,035.3
WTW 0.0%			Solid Waste	0.3%	0.4%	12.9	3.6	0.0%	0.0%	0.0	0.0	0.2%	0.3%	19.7	-31.9
U/S WOCP*4 - 68.0 34.0 - 8.5 1.7 - Lake Domestic 1.7% 2.7% 4.600.8 2.325.7 0.0% 100.0% 275.2 28.8 0.0% Manyame Locatic Manyame 1.7% 2.7% 17.9 -13.6 1.7% 2.2% 5.9 0.0 1.8% Manyame Livestock 54.9% 87.6% 571.2 -434.8 65.5% 85.4% 1.0 0.0 6.5% Natural*3 37.3% - 1.646.6 1.646.6 23.3% - 1.15 20.9% Solid Waste 0.1% 0.2% 1.1 -0.8 0.0% 0.0% 0.0 0.0 0.0 0.0 WTW 5.7% 9.2% 12.0% 12.0% 12.0 0.5 - 22.7% Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0 0.0 0.0 0.0			wiw	0.0%	0.0%	0.8	0.2	%0.0	0.0%	0.0	0.0	0.1%	0.2%	10.6	-17.2
Total 100.0% 4.600.8 2.325.7 0.0% 100.0% 275.2 28.8 0.0% Lake Domestic 1.7% 2.7% 17.9 -13.6 1.7% 2.2% 5.9 0.0 1.8% Manyame Ind.(Unsewored) 0.2% 0.4% 1.0 0.0 0.0 6.5% Livestock 54.9% 87.6% 571.2 -434.8 65.5% 85.4% 226.7 -1.5 20.9% Natural*3 37.3% - 1,646.6 1,646.6 23.3% - 136.9 136.9 0.0 0.0 0.0 Solid Waste 0.1% 0.2% 1.1 -0.8 0.0% 0.0 0.0 0.0 0.0 0.0 WTW 5.7% 9.2% 12.0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0 0.0 0.0 0.0			U/S WOCP*4	•	•	68.0	34.0	•		8.5	1.7		•	1,700.0	1,020.0
Lake Domestic 1.7% 2.7% 17.9 -13.6 1.7% 2.2% 5.9 0.0 1.8% Manyame Ind.(Unsewered) 0.2% 0.4% 2.5 -1.9 0.3% 0.4% 1.0 0.0 6.5% Livestock 54.9% 87.6% 571.2 -434.8 65.5% 85.4% 226.7 -1.5 20.9% Natural*3 37.3% - 1,646.6 1,646.6 23.3% - 136.9 136.9 481.% Solid Waste 0.1% 0.2% 1.1 -0.8 0.0% 0.0 0.0 0.0 0.0% WTW 5.7% 9.2% 59.7 -45.4 9.2% 12.0% 0.0 0.0 0.0 0.0 0.0 U/S WQCP** - 18.0 9.0 - 4.5 0.5 - - - - - - - - - - - - - - - - -			Total	100.0%	100.0%	4,600.8	2,325.7	0.0%	100.0%	275.2	28.8	%0:0	100.0%	25,393.0	7,292.8
Ind.(Unsewered) 0.2% 0.4% 2.5 -1.9 0.3% 0.4% 1.0 0.0 6.5% Livestock 54.9% 87.6% 571.2 434.8 65.5% 85.4% 226.7 -1.5 20.9% Natural*3 37.3% - 1,646.6 1,646.6 23.3% - 136.9 136.9 48.1% Solid Waste 0.1% 0.2% 1.1 -0.8 0.0% 0.0% 0.0 0.0 0.0% WTW 5.7% 9.2% 2.9 4.5 0.2 2.7% - Total 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%	ญ	Lake	Domestic	1.7%	2.7%	17.9	-13.6	1.7%	2.2%	5.9	0:0	7.8%	3.5%	360.3	-321.0
54.9% 87.6% 571.2 434.8 65.5% 85.4% 226.7 -1.5 20.9% 37.3% - 1,646.6 1,646.6 23.3% - 136.9 136.9 48.1% 0.1% 0.2% 1.1 -0.8 0.0% 0.0% 0.0 0.0 0.0% 5.7% 9.2% 5.7 -45.4 9.2% 12.0% 31.9 -0.2 22.7% - 18.0 9.0 - - 4.5 0.5 - 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0 406.9 135.6 0.0%		Manyame		0.2%	0.4%	2.5	-1.9	0.3%	0.4%	1.0	0.0	6.5%	12.6%	1,308.4	-1,165.6
37.3% - 1,646.6 1,646.6 23.3% - 136.9 136.9 48.1% 0.1% 0.2% 1.1 -0.8 0.0% 0.0% 0.0 0.0 0.0% 5.7% 9.2% 59.7 -45.4 9.2% 12.0% 31.9 -0.2 22.7% 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%			Livestock	54.9%	87.6%	571.2	-434.8	65.5%	85.4%	226.7	-1.5	20.9%	40.2%	4,189.9	-3,732.6
0.1% 0.2% 1.1 -0.8 0.0% 0.0% 0.0% 0.0 0.0 0.0% 5.7% 9.2% 12.0% 12.0% 31.9 -0.2 22.7% 18.0 9.0 - 4.5 0.5 - 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%			Natural*3	37.3%	•	1,646.6	1,646.6	23.3%	1	136.9	136.9	48.1%	•	19,674.3	19,674.3
5.7% 9.2% 59.7 45.4 9.2% 12.0% 31.9 -0.2 22.7% 100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%			Solid Waste	0.1%	0.2%	1.1	-0.8	%0.0	0.0%	0.0	0.0	0.0%	0.1%	8.3	-7.4
100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%			wīw	5.7%	9.2%	59.7	-45.4	9.2%	12.0%	31.9	-0.2	22.7%	43.7%	4.551.9	-4,055.1
100.0% 100.0% 2.317.0 1.159.0 0.0% 100.0% 406.9 135.6 0.0%			U/S WOCP•4	·		18.0	0.6		-	4.5	0.5		٠	720.0	270.0
			Total	100.0%	100.0%	2,317.0	1,159.0	0.0%	100.0%	406.9	135.6	20.0	100.0%	30.813.1	10,662.6

Note: "1; Composition of Present Inflow Pollution Load

Total; Share in Total Inflow Pollution Load (excluding upstream WQCP)

excl. Natural; Share in Inflow Pollution Load (excluding upstream WQCP and natural load)

"2; Allowable Pollution Load by Pollution Source for Environmental Water Quality Standard

"3; Fixed Pollution Load at Water Quality Standard.

Table 11.4.2 Allowable Pollution Load by Pollution Source at WQCPs (Scenario 2)

					N-F				T-P	:		:	COD	
WOCP	Sub-basir	PL Source	Present Cor	Present Composition*1	Allowable PL by PS*2 (kg/day)	v PS*2 (kg/day)	Present Cor	Present Composition 1	Allowable PL b	Allowable PL by PS*2 (kg/day) Present Composition*1	Present Con	uposition 1		Allowable PL by PS*2 (kg/day)
		Category	Total	excl. Natural	2002	2015	Total	excl. Natural	2005	2015	Total	excl. Natural	2005	2015
J	Seke &	Domestic	7.7%	14.6%	34.6	-39.2	7.8%	11.8%	8.6	4.3	6.9%	25.8%	-1,172.3	-1,482.7
	Harava	lad.(Unsewered)	0.0%	20.0	0.0	0.0	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0
	Dams	Livestock	44.8%	85.3%	201.5	-228.3	88.6%	88.2%	64.3	-32.5	19.9%	74.1%	-3,375.3	4,268.8
		Natural*3	47.5%	,	773.0	773.0	33.6%	•	64.3	64.3	73.2%	•	9,236.3	9,236.3
		Solid Waste	0.1%	0.1%	6.3	-0.3	0.0%	0.0%	0.0	0.0	0.0%	0.1%	4.4	-5.5
		wIw	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0	0.0%	0.0%	0.0	0.0
		U/S WOCP*4		•	0.0	0.0	3	•	0.0	0.0	•	•	0.0	0.0
		Total	100.0%	100.0%	1,009.4	505.3	100.0%	100.0%	137.2	27.5	100.0%	100.0%	4,684.3	3,479.3
් ප්	, skel	Domestic	55.3%	74.0%	2,276.8	633.3	86.8%	69.4%	27.2	-63.8	45.0%	81.2%	4,827.7	-8,843.5
	Chivero	Ind.(Unsewered)	0.1%	0.1%	2.1	9.0	0.2%	0.2%	0.3	-0.2	0.6%	1.0%	1.19	-112.0
		Livestock		25.5%	782.6	217.7	24.9%	30.4%	42.5	-27.9	%9.6	17.3%	1,029.6	-1,886.0
		Natural •3	25.3%	•	1,425.8	1,425.8	18.1%	•	118.6	118.6	44.6%	•	17,035.3	17,035.3
· · ·		Solid Waste	0.3%	0.4%	12.7	3.5	%0.0	0.0%	0.0	0.0	0.2%	0.3%	17.6	-32.3
		WIW	0.0%	0.0%	0.8	0.2	0.0%	0.0%	0.0	0.0	0.1%	0.2%	9.5	-17.4
		U/S WOCP*4	٠	•	0.89	34.0	•	•	8.5	1.7)	•	1,700.0	1,020.0
		Total	100.0%	100.0%	4,568.8	2,315.1	0.0%	100.0%	267.2	28.3	0.0%	100.0%	24,680.8	7,164.2
ij	Lake	Domestic	1.7%	2.7%	17.9	-13.6	1.7%	2.2%	5.9	0.0	1.8%	3.5%	360.2	-321.2
	Manyame	Manyame Ind.(Unsewered)	0.2%	0.4%	2.5	-1.9	0.3%	0.4%	1.0	0.0	6.5%	12.6%	1,307.7	-1,166.3
		Livestock	54.9%	87.6%	571.1	435.1	65.5%	85.4%	226.7	-1.5	20.9%	40.2%	4.187.8	-3,735.1
		Natural*3	37.3%	•	1,646.6	1,646.6	23.3%	•	136.9	136.9	48.1%	•	19,674.3	19,674.3
		Solid Waste	0.1%	0.2%	1.1	-0.8	0.0%	0.0%	0.0	0.0	0.0%	0.1%	8.3	-7.4
		WIW	5.7%	9.2%	59.7	-45.5	9.2%	12.0%	31.9	-0.2	22.7%	43.7%	4.549.6	4,057.8
		U/S WOCP*4	,	_	18.0	9.0		-	4.5	0.5			720.0	270.0
		Total	100.0%	100.0%	2,316.9	1,158.7	0.0%	100.0%	406.9	135.6	0.0%	100.0%	30,807.9	10,656.4

Note: "1; Composition of Present Inflow Pollution Load

Total; Share in Total Inflow Pollution Load (excluding upstream WQCP)

excl. Natural; Share in Inflow Pollution Load (excluding upstream WQCP and natural load)

*2; Allowable Pollution Load by Pollution Source for Environmental Water Quality Standard

*3; Fixed Pollution Load

*4; Fixed Pollution Load at Water Quality Standard.

0

()

Table 11.43 Required Pollution Load Reduction by Pollution Source at WQCPs (T-N)

)

9

				2005	35	Scenario	rio 1	2015	15			2005	5(Scenario 2	no 2	2015	5.	
Projected Required Projected Inflow Allowable Pollution % against Inflow Pollution PL by PS Load Projected Pollution	Projected Required Projected Inflow Allowable Pollution % against Inflow PL Source Pollution PL by PS Load Projected Pollution	Allowable Pollution % against Inflow PL by PS Load Projected Pollution	Required Projected Pollution Regainst Inflow Load Projected Pollution	% against Inflow Arojected Projected Pollution	Projected Inflow Pollution			Allowable PL by PS	Required Pollution Load	% against Projected	Projected Inflow Pollution	Allowable Pollution PL by PS Load	Required Pollution Load	% against Projected	Pollution	Allowable Pollution PL by PS Load		% against Projected
Load (kg/day) Reduction (kg/day)	(kg/day) Reduction Inflow PL (kg/day)	(kg/day) Reduction Inflow PL (kg/day)	Reduction Inflow PL (kg/day)			Load (kg/day)		(kg/day)	Reduction (kg/day)	Inflow PL	Load (kg/day)	(kg/day)	Reduction (kg/day)	Inflow PL	Load (kg/dav)	(kg/day)	Reduction ((kg/day)	Inflow PL
34.6 298.9 90%	333.6 34.6 298.9 90%	34.6 298.9 90%	298.9 90%	%06	┞	594	65	-39.2	633.4	107%	286.9	34.6	252.3	88%	528.4	-39.2	567.6	107%
Harava Lod. (Unsewered) 0.0 0.0 0.0 - (Lod.(Unsewered) 0.0 0.0 0.0 -	0.0 0.0	0.0	•))	0.0	0.0	0.0	,	0.0	0.0	0.0	•	0.0	0.0	0.0	,
7 526.6 72%	728.3 201.7 526.6 72%	201.7 526.6 72%	526.6 72%	72%		, -	728.3	-228.1	956.4	131%	728.3	201.5	526.8	72%	728.3	-228.3	926.6	131%
Natural 773.0 773.0 0.0 0%	773.0 773.0 0.0 0%	773.0 0.0 0%	0.0	80		1	773.0	773.0	0.0	%0	773.0	773.0	0.0	%0	773.0	773.0	0.0	260
Solid Waste 1.9 0.3 1.6 87%	1.9 0.3 1.6 87%	0.3 1.6 87%	1.6 87%	87%			2.3	-0.3	2.6	112%	1.2	0.3	1.0	80%	1.5	-0.3	1.8	119%
- 0.0 0.0 0.0	- 0.0 0.0 0.0	0.0 0.0	0.0		ı		0.0	0.0	0.0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	,
Total 1,836.8 1,009.6 827.1 45% 2.	1,836.8 1,009.6 827.1 45%	1,009.6 827.1 45%	827.1 45%	45%	<u> ``</u>	4	6.760,5	505.5	1,592.5	292	1,789.5	1,009.4	780.1	44%	2,031.2	505.3	1,526.0	75%
Lake Domestic 6,221.5 2,300.5 3,921.0 63% 8	6,221.5 2,300.5 3,921.0 63%	2,300.5 3,921.0 63% 8	3,921.0 63%	£3% §	~	30	308.2	641.1	7,667.1	92%	4,951.1	2,276.8	2,674.2	54%	7,317.6	633.3	6,684.3	91%
15	Ind.(Unsewered) 0.9 2.1 -1.2	0.9 2.1 -1.2	-1.2		-142%		6.0	9.0	0.3	33%	6.0	2.1	-1.2	-139%	6.0	9.0	0.3	34%
Livestock 1,071.4 790.8 280.7 26% 1	Livestock 1,071.4 790.8 280.7 26% 1	790.8 280.7 26% 1	280.7 26% 1	26% 1		~	.071.4	220.4	851.1	79%	1,071.4	782.6	288.8	27%	1,071.4	217.7	853.7	80%
Natural 1,425.8 1,425.8 0.0 0%	1,425.8 1,425.8 0.0	1,425.8 0.0	0.0	_	% 0	1	,425.8	1,425.8	0.0	%0	1,425.8	1,425.8	0.0	260	1,425.8	1,425.8	0.0	0%0
10	4.4 12.9 -8.5	4.4 12.9 -8.5	-8.5		-195%	ŀ	6.0	3.6	2.4	20%	6.4	12.7	-6.4	-100%	9.2	3.5	5.6	61%
WTW 1.3 0.8 0.5 39%	1.3 0.8 0.5	0.8 0.5	5.0		36%	L	1.7	0.2	1.5	87%	1.2	0.8	0.4	36%	1.4	0.2	1.2	84%
8,725.2 4,532.8 4,192.4	8,725.2 4,532.8 4,192.4	4,532.8 4,192.4	4,192.4	_	48%	, '	10,813.9	2,291.7	8,522.3	266	7,456.7	4,500.8	2,955.9	40%	9.826.2	2,281.1	7,545.1	777%
Lake Domestic 128.1 17.9 110.2 86%	128.1 17.9 110.2	17.9 110.2	110.2		%98	L '	223.9	-13.6	237.6	106%	78.1	17.9	60.2	77%	131.0	-13.6	144.6	110%
Manyame Ind. (Ussewered) 10.5 2.5 8.0 76%	10.5 2.5 8.0	10.5 2.5 8.0	8.0		76%	L.	10.5	-1.9	12.4	118%	10.5	2.5	8.0	76%	10.5	-1.9	12.4	118%
2,425.7 571.2 1,854.5 76%	2,425.7 571.2 1,854.5 76%	2,425.7 571.2 1,854.5 76%	1,854.5 76%	76%		(4)	2,425.7	-434.8	2,860.5	118%	2,425.7	571.1	1.854.6	292	2,425.7	-435.1	2,860.8	118%
Natural 1,646.6 1,646.6 0.0 0% 1	1,646.6 1,646.6 0.0 0%	1,646.6 0.0 0% 1	0.0 0%	0%0		-	,646.6	1,646.6	0.0	%0	1.646.6	1,646.6	0.0	%0	1,646.6	1,646.6	0.0	%0
Solid Waste 36.7 1.1 35.6 97%	36.7 1.1 35.6	36.7 1.1 35.6	35.6		%26	L i	49.0	-0.8	49.8	102%	25.2	1.1	24.1	%96	32.4	-0.8	33.3	103%
WTW 27.3 59.7 -32.4 -119%	27.3 59.7 -32.4	59.7 -32.4	-32.4		.119%		34.6	-45.4	80.1	231%	21.1	59.7	-38.6	-183%	26.0	45.5	71.5	275%
4,274.9	2,299.0 1,975.9		1.975.9		46%		4,390.4	1,150.0	3,240.4	74%	4,207.2	2,298.9	1,908.4	45%	4,272.2	1,149.7	3,122.5	73%

Table 11.4.4 Required Pollution Load Reduction by Pollution Source at WQCPs (T-P)

	سلجد				Scenario 1	rio 1							Scenario 2	rio 2			
			2005	35			2015	[5			2005	_α			2015	5	
	· · · · · · · · · · · · · · · · · · ·	Projected Inflow	Allowable	Required Allowable Pollution : % against	% against	Projected Inflow	Allowable	Required Pollution	% against	Projected Inflow	Required Allowable Pollution	Required Pollution	% against	Projected Inflow	Allowable	Required Pollution	% against
WQCP Sub-basin	PL Source	Pollution	PL by PS	Load	Projected	Pollution	PL by PS	Load	Projected	Pollution	PL by PS	Pag.	Projected	Pollution	PL by PS		Projected
	, in section of	Load	(kg/day)	(kg/day) Reduction Inflow PL	Inflow PL	Load	(kg/day)		Inflow PL	Load	(kg/day)	Reduction Inflow PL	Inflow PL	Load	(kg/day)	Reduction	Inflow PL
╁,	1	(xg/gay)	70	(KE)Cay)	010	(Kg/gay)	7.5	(KK/04y)	10202	(AEVGAY)	78	31 3 '	7867	(KE/QGAV)	7.3	(Kg/day)	1040
	TOMES TO	70	2:0	3	9/ 10	7		1404	201		2	2,413	20	211		7.77	2
Harava	Ind (Unsewered)	0.0	0.0	0.0		0.0	0.0	0:0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	•
Dams	Livestock	112.3	64.3	48.0	43%	112.3	-32.5	144.8	129%	112.3	\$	48.0	43%	112.3	-32.5	144.8	129%
·	Natural	643	64.3	0.0	260	64.3	64.3	0.0	%0	64.3	64.3	0.0	0%	64.3	64.3	0.0	%0
	Solid Waste	0.0	0.0	0.0	-	0.0	0.0	0.0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	,
L	WIW	0.0	0.0	0.0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	'
L	Total	222.8	137.2	85.6	38%	301.1	27.5	273.7	91%	216.4	137.2	79.3	37%	294.2	27.5	266.8	216
Lake	Domestic	674.7	102.8	871.9	%68	1,277.3	-63.5	1,340.8	105%	801.8	97.2	704.6	%88	1,154,5	63.8	1,218.3	106%
Chivero	Ind.(Unsewered)	0.2	0.3	-0.2	-128%	0.2	-0.2	0.5	188%	0.2	0.3	-0.2	-116%	0.2	-0.2	0.5	189%
ـــــ	Livestock	162.8	45.0	117.8	72%	162.8	-27.8	190.5	117%	162.8	42.5	120.2	74%	162.8	-27.9	190.7	117%
نـــا	Natural	118.6	118.6	0.0	%0	118.6	118.6	0.0	%0	118.6	118.6	0.0	%0	118.6	118.6	0.0	%0
	Solid Waste	0.0	0.0	0.0	,	0.0	0.0	0.0	,	0.0	0.0	0.0	•	0.0	0.0	0.0	۱.
لــا	WTW	0.1	0.0	0.1	78%	0.2	0.0	0.2	109%	0.1	0.0	0.1	78%	0.2	0.0	0.2	109%
ــــ	Total	1,256.3	266.7	9.686	%61	1,559.1	27.1	1,532.0	%86	1,083.4	258.7	824.7	76%	1,436.2	26.6	1,409.7	%86
Lake	Domestic	14.8	6.5	8.9	%09	24.1	0.0	24.2	100%	9.4	5.9	3.5	37%	17.3	0.0	17.4	100%
ı DC	Manyame Ind.(Unewered)	1.1	1.0	0.1	%9	1.7	0.0	1.7	100%	1.1	1.0	0.1	%9	1.7	0.0	1.7	100%
اا	Livestock	385.9	226.7	159.2	41%	385.9	-1.5	387.4	100%	385.9	226.7	159.2	41%	385.9	-1.5	387.4	100%
!	Natural	136.9	136.9	0.0	%0	136.9	136.9	0.0	% 0	136.9	136.9	0.0	% 0	136.9	136.9	0.0	%0
	Solid Waste	0.0	0.0	0.0	•	0.0	0.0	0.0	•	0.0	0.0	0.0	-	0.0	0.0	0.0	
اا	WTW	13.5	31.9	-18.4	-136%	20.1	-0.2	20.3	101%	10.1	31.9	-21.8	-217%	18.3	-0.2	18.5	101%
<u> </u>	Total	552.2	7 607	1.40.0	2020	2407	1969	2 607	1000	6 613	7 447		25.	١			

Table 11.4.5 Required Pollution Load Reduction by Pollution Source at WQCPs (COD)

			aithst	7		2%		%	200	225%		84%	116%	70%	151%	0%	208%	129%	92%	114%	143%	144%	260	106%	374%	7007
			% against			116%	_	270%	% 0	22	_		110	237%	151	ŏ	208	129		117	140		ð	10	37	
	15		Pollution Load	(kg/day) Reduction	(kg/day)	11,014.1	0.0	6,782.2	0.0	10.0	0.0	17,806.2	63,022.1	193.6	5,551.7	0.0	62.1	76.8	68,906.3	2,561.0	3,849.5	12,281.4	0.0	121.8	5.540.6	1 24 354 2
	2015		Allowabic PI hy PC	(ke/day)		-1,482.7	0.0	-4,268.8	9,236.3	-5.5	0.0	3,479.3	-8,843.5	-112.0	-1,886.0	17,035.3	-32.3	-17.4	6,144.2	-321.2	-1,166.3	-3,735.1	19,674.3	-7.4	-4,057.8	10.386.4 24.354.2
0.2		Projected	Inflow .	Load	(kg/day)	9,531.4	0.0	2,513,4	9,236.3	4.4	0.0	21,285.5	54,178.6	81.6	3,665.7	17,035.3	29.8	59.4	75,050.5	2,239.8	2,683.1	8,546.3	19,674.3	114.4	1,482.8	34.740.6
Scenario 2			% against	Inflow PL		196%	'	234%	260	•		64%	88%	25%	72%	%0	•	75%	63%	47%	%15	\$1%	260	•	-374%	%8
		-	Pollution 5	ġ	(kg/day)	2,389.0	0.0	5,888.7	0.0	8.0	0.0	8,285.8	36,467.1	20.5	2,636.2	0.0	3.1	27.9	39,154.8	319.4	1,375.4	4,358.5	0.0	80.6	-3,589.3	2.544.6
	2005		Allowable of by pc			-1,172.3	0.0	-3,375.3	9,236.3	4.4	0.0	4,684.3	4,827.7	61.1	1,029.6	17,035.3	17.6	5.6	22,980.8	360.2	1,307.7	4,187.8	19,674.3	8.3	4.549.6	30,087.9
		U	Inflow ,	-		1,216.7	0.0	2,513.4	9,236.3	3.7	0.0	12,970.1	41,294.9	81.6	3,665.7	17,035.3	20.7	37.4	62,135.7	9.679	2,683.1	8,546.3	19,674.3	88.9	960.3	32,632.5
			% against	Inflow PT		115%	,	270%	020	179%	4	84%	115%	236%	151%	%0	265%	127%	%76	112%	143%	144%	%0	104%	348%	71%
	2		·	Deduction:	(kg/day)	11,284.4	0.0	6,779.7	0.0	12.5	0.0	18.076.7	66,162.2	192.2	5,529.5	0.0	51.3	9.08	72,015.7	2,917.0	3,848.7	12,278.9	0.0	180.1	5,686.9	24,911.5
	2015		Allowable or he pe			-1,481.8	0.0	4,266.3	9,236.3	-5.5	0.0	3,482.7	-8,739.1	-110.6	-1,863.7	17,035.3	-31.9	-17.2	6,272.8	-321.0	-1.165.6	-3,732.6	19,674.3	4.7-	-4,055.1	10,392.6 24,911.5
io 1		Projected	Inflow	Touduon	(kg/day)	9,802.6	0.0	2,513,4	9,236.3	7.0	0.0	21,559.4	57,423.1	81.6	3,665.7	17,035.3	19.4	63.4	78,288.5	2,596.0	2,683.1	8,546.3	19,674.3	172.7	1,631.8	35.304.2
Scenario			% against	Inflow PT		182%		234%	%0	-	•	64%	88%	16%	%69	% 0		73%	65%	61%	51%	51%	%0		-273%	<i>%</i> 6
		Required	Pollution	Load Daduction	(kg/day)	2,594.3	0.0	5,886.6	0.0	10.0	0.0	8,490.9	41,299.5	13.2	2,512.9	0:0	-5.5	28.8	43,848.8	567.8	1,374.8	4,356.4	0:0	121.0	-3,330.1	3,089.9
	2005		Allowable	Crefford	((m) (av)	-1,171.6	0.0	-3,373.1	9,236.3	4.4	0.0	4,687.2	5,406.0	68.4	1,152.9	17,035.3 17,035.3	19.7	10.6	67,541.8 23,693.0 43,848.8	360.3	1,308.4	4,189.9	19,674.3	8,3	4,551.9	30,093,1 3,089,9
		Projected	wolful	ronnan	(kg/day)	1,422.7	0.0	2,513.4	9,236,3	5.6	0.0	13,178.1	46,705.5	81.6	3,665.7	17,035.3	14.2	39.5	67,541.8	928.1	2,683.1	8,546.3	19,674.3	129.3	1,221.8	33.182.9
	.	leg-me	PL Source	Category		Domestic	Ind.(Unsewered)	Livestock	Natural	Solid Waste	WTW.	Total	Domestic	Ind.(Unsewered)	Livestock	Natural	Solid Waste	WTW	Total	Domestic	Manyame Ind (Unsewered)	Livestock	Natural	Solid Waste	WTW	Total
				WCC Suo-pasin	-	Seke &	Harava	Dams	L.	1.**	1		Lake	Chivero	ــــا.	!	1	<u></u>	_ _	.ake	Manyame 1	i	L	<u> </u>	J	<i>5</i>
			6	} } *		ď							ß							ű						

the calculation of discharged pollution loads for the domestic (sewerage system) and WTW (wastewater treatment facility). The reduction of PL shall be accomplished by the introduction of advanced sewage treatment processes and by adequate countermeasures to other pollution sources. However, it may be difficult to fulfil the requirement for the livestock PL.

400

Ć.

The calculation results of Scenario-1 and Scenario-2 show the same tendency in general, though the individual figures are different. The achievement of assumed environmental water quality standards in the year 2015 seems to be difficult at all WQCPs in application of present practices and investment level.

The following are findings by water quality checking point.

- At the point C_{L1}, subject pollution sources to be reduced are population and livestock. Since the possible countermeasures have been assumed for the projection of domestic discharged PL the effort for PL reduction shall be concentrated on the livestock (about 80% of the requirement is allotted).
- At the point C₁₂, domestic PL (about 90% of the PL to be reduced) shall be controlled. Since practical countermeasures were already counted on this source, drastic countermeasures may be introduced even for the year 2005.
- At the point C₁₃, more than 90% of the PL to be reduced is accounted for the livestock PL. Therefore, the PL reduction shall be attained mainly by the livestock PL. The PL allocation to the solid waste is negligible comparing with the total PL to be reduced.
- The reduction of PL at the WTW is expected to be achieved before the year 2005 introducing wastewater treatment facilities at the Morton Jaffray WTW.

11.5 Countermeasures for Reduction of Pollution Load

As discussed in Chapter 10, it may be possible to maintain roughly the future water quality at the present level in provision of the countermeasures assumed in the projection. In other words, the water quality will seriously worsen if sewerage countermeasures, i.e. the augmentation of the sewerage systems and the provision of WTW wastewater treatment facilities, are not implemented. These countermeasures were adopted for the water quality projection as practical and possible bases to be implemented. The effluent quality of the STWs meets current regulations and discharge of treated effluent into rivers is in line with the policy of the Ministry of Lands and Water Resources.

Though further improvement of the water quality of the lakes/dams is desirable for the low cost operation of water treatment works, it seems to be difficult to introduce more sophisticated countermeasures and to provide measures to livestock PL because of economic and technical reasons. The operation cost between the WTWs and the STWs is a trade-off relationship, and it is economical to treat the necessary water only for the water supply purpose if the raw water quality is acceptable.

The following are alternative countermeasures without concerning cost requirements and technological level to achieve assumed water quality standard.

- Domestic PL: Advanced treatment (by physical and chemical processes)
 Control of phosphate-containing detergent
 Discharge of treated effluent outside the basin
 Relocation of population and industries to affordable different basins and compression of future frame values
- Livestock PL: On-site wastewater treatment (for pen feeding)
 Treatment pond system at the downstream of livestock feeding field
 Relocation of livestock to the outside of the basin and compression of frame values
- Natural PL: Stormwater treatment before discharging to rivers (on-site or by STW)
 Cleaning of roads and public spaces to remove nutrients
 Control in provision of fertiliser
- -- Solid Waste PL: On-site leachate treatment

 Relocation of dumping sites to the outside of the basin
- WTW PL: Wastewater treatment
- Direct countermeasures to lakes/dams:

Removal of sedimentation on the bottom of lakes/dams

Purification of lake water by cultivation and removal of water hyacinth

Purification of river water with reed field

Forced circulation of lake water (by air lift tube)

Introduction of clean water (groundwater, surface water from the outside of the basin)

The required countermeasures by pollution source were discussed to meet water quality standard established. However, the water pollution analyses were conducted adopting macrocosmic approach with limited data available and various assumption. In this regard, it is strongly recommended that continuous water quality and flow monitoring at selective sampling points shall be conducted to obtain reliable data and to establish a reliable pollution analysis model. The periodical review and updating of the water pollution analysis shall be implemented to come up with appropriate countermeasures to suit for the actual needs through the future.