CHAPTER 4

3

â

SANITATION CONDITIONS AND WATER POLLUTION CONTROL MEASURES AT PRESENT AND IN THE FUTURE

.

6

. .

.

.

.

CHAPTER 4 SANITATION CONDITIONS AND WATER POLLUTION CONTROL MEASURES AT PRESENT AND IN THE FUTURE

4.1 Sanitation Conditions

4.1.1 General

Sanitation measures are categorised into on-site treatment (septic tanks) and off-site treatment (public sewerage system). In this section, the sanitation conditions in the Study Area mainly refer to on-site treatment. Off-site treatment is separately discussed in a later section.

In the Study Area, a part of the low density residential areas in the urban areas and entire rural areas use septic tanks, and other types of toilet facilities, while many of the residents in the remaining urban areas are served by the public sewerage system. Table 4.1.1 shows the present septic tank served population in the urban areas in the Study Area.

Urban Authority	Population *2
Harare	95,140
Chitungwiza *1	0
Norton	1,290
Ruwa	20
Epworth	68,490

Table 4.1.1 Septic Tank Served Population in the Study Area

*1: Septic tanks are being used only at 8 schools

*2: Refer to Table 9.3.1 in Water Pollution Master Plan

4.1.2 Harare City

Some stands (lots) in the low density areas have on-site treatment facilities. The rest of the city is served by a public sewerage system. Figure 4.1.1 shows a typical standard design of septic tank in Zimbabwe, and Figure 4.1.2 shows the septic tank service area in Harare.

(interest

Ľ

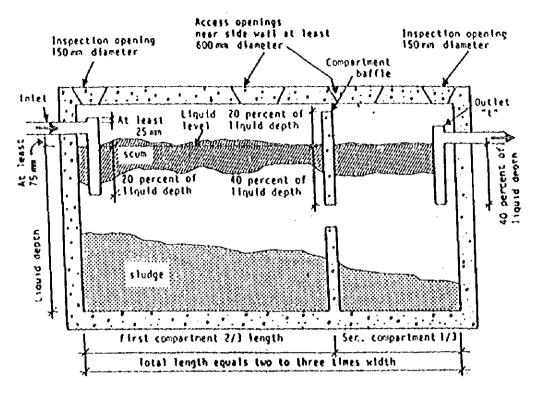
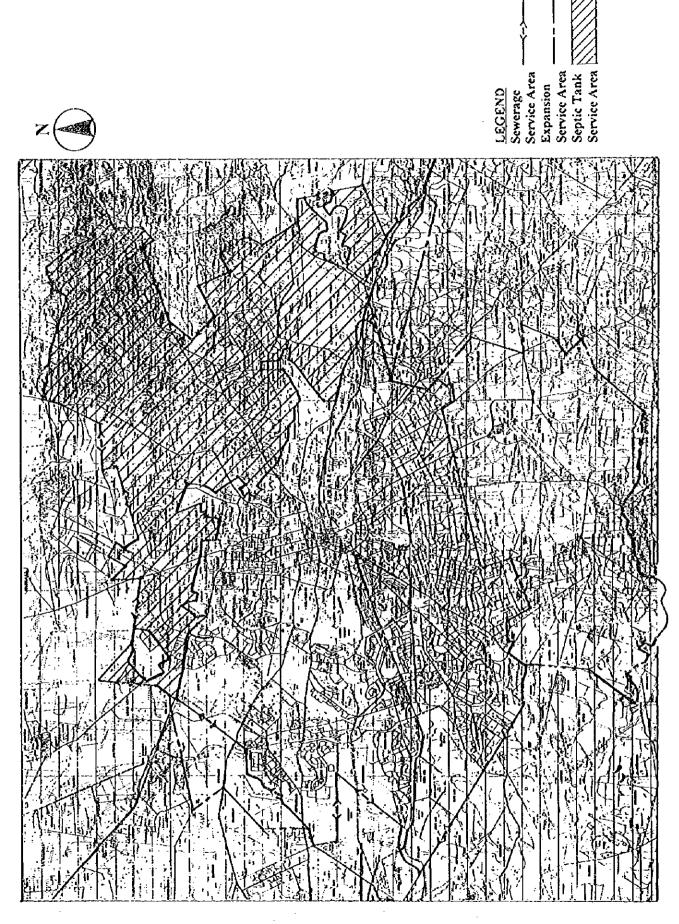
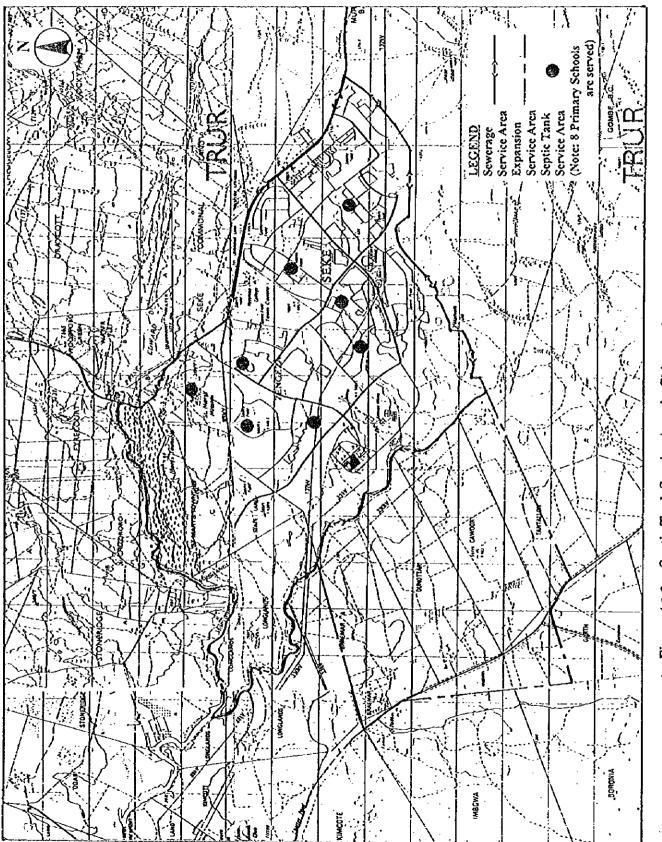


Figure 4.1.1 Typical Standard Design of Septic Tank in Zimbabwe


In the placement of septic tanks, the minimum stand size is principally regulated at more than $4,000 \text{ m}^2$. However, this restriction is loosened to $2,000 \text{ m}^2$ when soil test results are favourable.

4.1.3 Chitungwiza Municipality

At present, only one (1) % of the municipal area is not served by the public sewerage system and depends on septic tanks. Eight (8) schools are also utilising septic tanks. These septic tanks are emptied when they become full. Figure 4.1.3 shows the septic tank service area in Chitungwiza.


The current sanitation problem is the overflow of sewage from manholes into the streets owing to the deposit of sand and sludge in sewers/manholes, as well as increased sewage. The dumping of domestic wastes into sewers/manholes is another cause of this problem. 0

1

)

0

4-4

R

4.1.4 Norton Town Council

Approximately 95% of the total residential stands (lots) are served by gravity sewer connected to the Town Council's sewers. In addition, sewage from 47 stands located in the low density areas is pumped to the trunk sewer. The rest, 271 houses/stands, rely on septic tanks.

These septic tanks have been constructed in conformity with the Council's policy that the minimum size of each stand shall be larger than $2,400 \text{ m}^2$ in the application of septic tanks. All industrial wastewater is also discharged into the Council's sewerage system. Figure 4.1.4 shows the septic tank service area in Norton.

4.1.5 Ruwa Local Board

The sanitation conditions of Ruwa are being improved and are being provided with sewerage services south of the Harare-Murate Road, excluding 22 stands located in low and high density areas. All industrial wastewater is discharged into the Local Board's sewerage system. Figure 4.1.5 shows the septic tank service area in Ruwa.

4.1.6 Epworth Local Board

At present, there is no public sewerage system in Epworth. The majority of houses/stands are therefore using "ventilated improved pit (VIP)" latrines sponsored by the national government. The presence of unacceptable "drop pit latrines" is quite limited. Generally, appropriate stand spacing is maintained to locate septic tanks in order to avoid environmental hazards.

In the northern part of Epworth a series of temporary sewage ponds has been developed to serve as the overflow area for domestic sewage. However, these ponds are located too close to the existing houses. The Epworth Local Government is considering the closure of these ponds upon the construction of a new and larger treatment works south of the Epworth Local Government area on part of the Lyndhurst Farm. The Epworth Local Government also seeks to reduce the use of pit latrines and to introduce a public sewerage system.

X

3

4.5

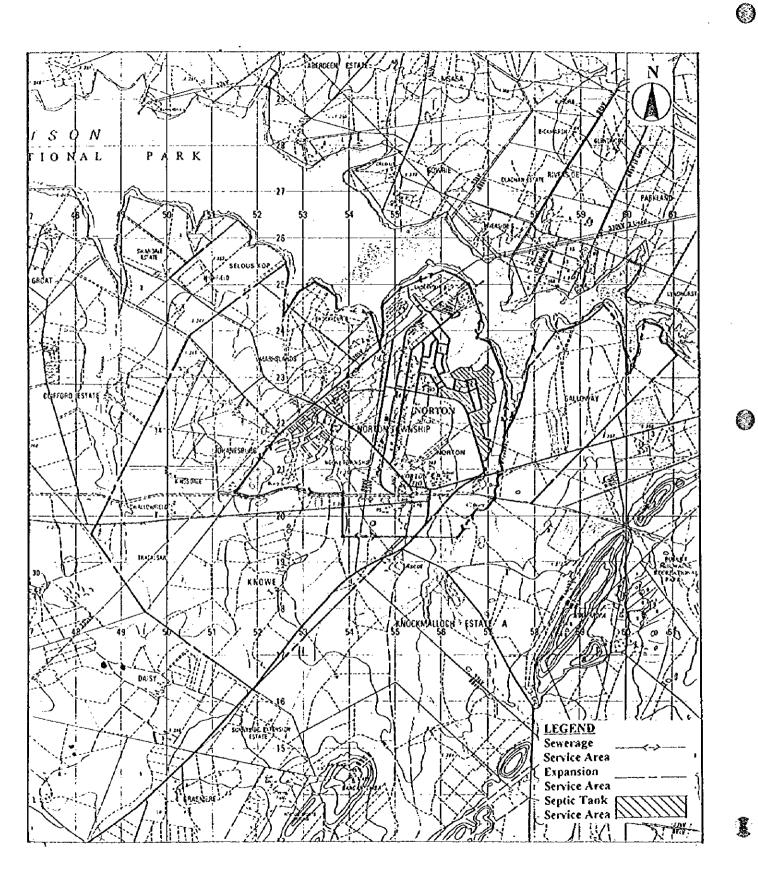
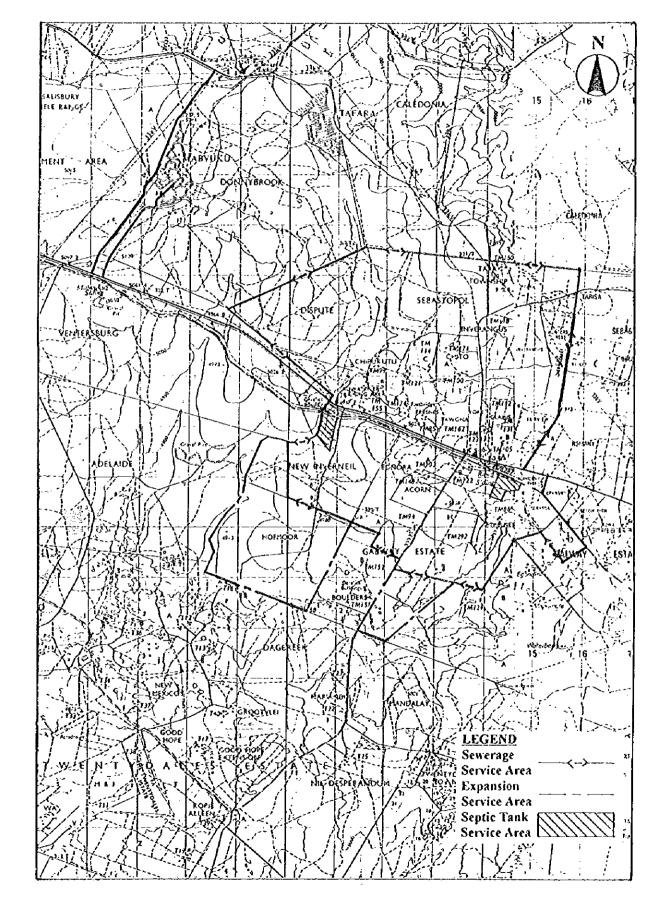



Figure 4.1.4 Septic Tank Service Area in Norton S = 1/75,000

....

智慧

)

ふう

4.2 Existing Public Sewage Works, Industrial Wastewater Treatment Works and Urban Drainage

4.2.1 Existing Public Sewage Works

The urban areas in the Study Area, Harare City, Chitungwiza, Norton and Ruwa, have public sewerage systems. In contrast, the rural areas such as the Rural Districts do not have such facilities and use on-site facilities (septic tank and other toilet types).

The conditions of the existing public sewerage systems of the urban areas are summarised as shown in Table 4.2.1 to Table 4.2.4. The following enumerate the present conditions by urban areas, and the study of the existing facilities are shown in Section 4.2, Chapter 2, Supporting Report.

(1) Harare City

Harare City is currently operating four sewage pump stations to convey the raw sewage collected in the service areas to the respective sewage treatment works (STW). These are:

- The Vainona (North Eastern) pump station serving parts of Mt. Pleasant, Vainona and Borrowdule to send sewage into the Firle catchment area. The approximate population served by this pump station is more than 2,400 people (400 stands).
- The Avonlea pump station serving parts of Avonlea, Arundel and Marlborough. Sewage is lifted into the Crowborough catchment area.
- Chisipite, is a small pump station that mainly serves a shopping center and pumps its sewage into the Firle catchment area.
- The pump station to send sewage from Mufakose's high density suburbs to the Crowborough inlet works of STW.

There are two new pump stations which will be operational soon. The first one is under construction by a private developer for an office park in Arundel, and the other one is financed by the City of Harare in Chisipite. The new Chisipite sewage pump station is to replace the existing one and also to facilitate a conventional sewage reticulation for a larger area where septic tanks are currently used.

2

0

Item	Harare Cit	y	Chitungwiza Municipality	Norton Town	Ruwa Locat Board	Total
Municipal Area (ha)		55,745	4,200	1,950	3,140	65,035
Sewered Area (ha)	Crowborough Firle Marlborough Donnybrook Hatcliff Total	17,400 19,435 378 1,690 38,903	4,200	1,950	3,140	48,193
Municipal Population *1		1,296,000		22,000	2,000	1,740,000
Served Population *2	Crowborough Firle Marlborough Donnybrook Hatcliffe Total	506,200 600,800 9,800 79,000 N.A. 1,195,800	420,000	21,000	1,600	1,638,400
Treatment Area No. Trunk Sewer and Pump Station (PS) by each treatment Area	5 Crowborough 835mm PS 3 Firle 1,200mm in 1972 1,350mm in 1972 PS 3		1 Zengeza 675mm 675mm 300mm PS 4	1 Norton PS 2	1 Ruwa 375mm PS 2	

Table 4.2.1 Sewe	red Area an <mark>d</mark>	Population in	1995
------------------	----------------------------	---------------	------

Note: *1; Projected population (refer to Table 6.2.7 (3) in Water Pollution Master Plan) *2; Refer to Table 9.3.1 in Water Pollution Master Plan

(the state

Urban Authority	Sewage Treatment Works	Treatment method	Design Capacity	Present Influent Flow	Note (Construction Time)
			m3/d	m3/d	
		TF	36,000	39,325	Unit 1 1957
Harare City	Crowborough				Unit 2 1970's
		BNR	18,000	15,986	Unit 3 1980's
		BNR	*1 (25,000)	-	Unit 4 1996 to
			(79,000)		Total in the future
			54,000	55,311	
		TF	36,000	104,636	Unit 1 1960
	Firle				Unit 2 1970's
		BNR	36,000	12,403	Unit 3 1979 to 1981
				15,252	Unit 4 1986 to 1996
		BNR	(72,000)	•	Unit 5(1) 1994 to 1996
					Unit 5(II) 1995 to 1997
			(144,000)		Total in the future
			72,000	132,291	
	Marlborough	WSP	2,000	2,000	
	Donnybrook				
	Block 1	WSP	-	400	
	Block 2	WSP	-	1,350	
	Block 3	WSP	-	1,396	
	Block 4	WSP	-	2,351	
		Total	*2 5,500	5,497	
	Hatcliffe	AL	1,300	2,500	
Chitungwiza	Zengeza	TF	21,750	36,405	
Municipality					Under repair
Norton Town	Norton	TF	3,400	2,700	Unit 1 1953
					Unit 2 1975
			<u> </u>		Under repair
Ruwa Local	Ruwa	WSP	5,300	2,865	1993
Board			(0(0.050)		
Total			(262,250)	220 500	
		I	165,250	239,569	<u> </u>

Table 4.2.2 The List of Existing Sewage treatment Works

Note: Present influent flow is estimated based on the Average Dry Weather Flow (ADWF)

*1; The latest on-going plan for BNR of Crowborough is 60,000 m3/day

*2; Design capacity (5,500 m³/day) of Donnybrook (refer to Section 4.2, Chapter 2, Supporting Report)

TF; Trickling Filter

- BNR; Biological Nutrient Removal
- WSP; Wastewater Stabilitation Pond
- AL; Aerated Lagoon

Sewage Treatment Works	Treatment Process to Discharge Effluent into River	Treatment Process to Use Effluent for Irrigation	Problems Areas Operation of Facilities and Environmental Problems
	Screen & Grit removal - Primary		- routine work is done for operation of STP (effluent quality of
	Sedi. Tank - BNR - Final Sedi.	Sedi. Tank - Trickling Filter -	secondary treatment needs to be improved)
Crowcorough SI w	Tank : Marimba River	Final Sedi. Tank - Storage Pond -	- no special reports on environmental problems
		Pump Station	
	Screen & Grit removal - Primary	Screen & Grit removal - Primary	- routine work is done for operation of STP (effluent quality of
· • •	Sedi. Tank - BNR - Final Sedi.	Sedi. Tank - Trickling Filter -	secondary treatment needs to be improved)
Fule STW	Tank : Mukuvisi River	Final Sedi. Tank - Storage Pond -	- secondary treatment needs to be improved)
		Pump Station	
		Screen & Grit removal -	- no primary and final sedimentation tank is installed
-		Anaerobic Pond - Trickling Filter	- offensive odour at STP site and its influence to residential area as
Zengeza STW	None	- Pump Station	reported by residents
			- possible overflow of treated effluent into Naytsime River during
			rainy season
		Screen & Grit removal - Primary	- no special reports on operation of facilities
		Sedi. Tank - Pump Facility -	- unsanitary condition at storage pond (anacrobic condition
A TO LIOLION	NOBC	Trickling Filter - Final Sedi. Tank	covered by scum on the pond surface)
		- Storage Pond - Pump Station	
		Pump Facility - Anaerobic Pond -	- overflow of effluent into nearby river during rainy season
Ruwa STW	None	Facultative Pond - Matulation	
		Pond	

Table 4.2.3 Sewage Treatment Methods/Processes and Effluent Reuse

0

I

4-11

Table 4.2.4 Present Sewerage Services and Problem Areas

	Served	Service Area	Vea			Sewage Treatment	catment	
	Pomilation			Inflow to STW	Treatment	Discharge to River	Imization Use	Fuvironmental
Sewage Treatment	L.		Environmental	Flow (m ³ /d)	Capacity (m ³ /d)	Flow (m ³ /d)	Flow (m ³ /d)	problems at STW
Works	Coverage (%)	Sewer Conditions	Problems	Influent Quality	Overloaded Flow	Effuent Quality	Effluent Quality	
	,			(mg/l)	(m ³ /d)	(mg/l)	(mg/l)	Environs of SIW
	506,200	 damage of manhole & sewers 	 common offensive odor 	55,300	54,000	16,000	39,300	- no special problem
Crowborouch STW		- build manhole cover		COD 1,108.9		COD 80.6	80.6 COD 371.0	- no special reports on problems
)	100	- rain water intrusion to			1,300		TN 39.0	with sufficient distance from
		manhole		TP 7.2		TP 0.6 TP	TP 5.2	STW to housing
	600,800	 raw sewage spill along f routes of lateral 	 hcalth hazard offensive odor 	132,300	72,000	27,700	104,600	- mickling filter is overloaded with offensive odor
Firle STW		sewers (14 km) *2	along problem	COD 943.0		COD 27.9	27.9 COD 232.5	 no special reports on problems
	100		Sewers	TN 54.0	60,300			with sufficient distance from
				TP 6.9		TP 0.7-12.0 TP		STW to housing
		- identified 30 problem	- health hazard					- offensive odor pollution of
	420,000	points along sewer	 stream pollution 	36,400	21,750	Nonc	36,400	nearby river upon overflow of
1044-3 L		lines	by raw scwage					effluent
A 10 EEEE				۵ ۵			BOD 275.0	- pollution of streams in
	100			TN 38.0	14,700	None	TN 57.0	Beatrice down-stream of
				TP N.A			TP N.A.	lmbgwa farm
	21.000	- no special reports	- no special reports	2,700	3,400	None	2,700	 unsanitary w/odor problem at storage poud before pump
Norton STW				e a			BOD 520.0	
	95			00	(200)	None	65.8	- no special reports on problems
				TP 7.6			TP 7.6	
		- intrusion of	- no special reports					- during rainy season overflow of
į	1,600	groundwater and storm water		2,900	5,300	None	2,900	effluent to nearby river
MIC EMNY		-		BOD 510.0			BOD 47.5	
	80			ю	(2,400)	Nonc	NA NA	 no special reports
				TP 3.6			TP trace	
Note: N.A. Not Available	ilable		-					

*1: The term "Coverage" means the percentage of population served by respective STW *2: Report on Subsidiary Sewers in the Firle Catchment Arca, Harare Sewerage Firle V Project, Department of Works, City of Harare

8

C

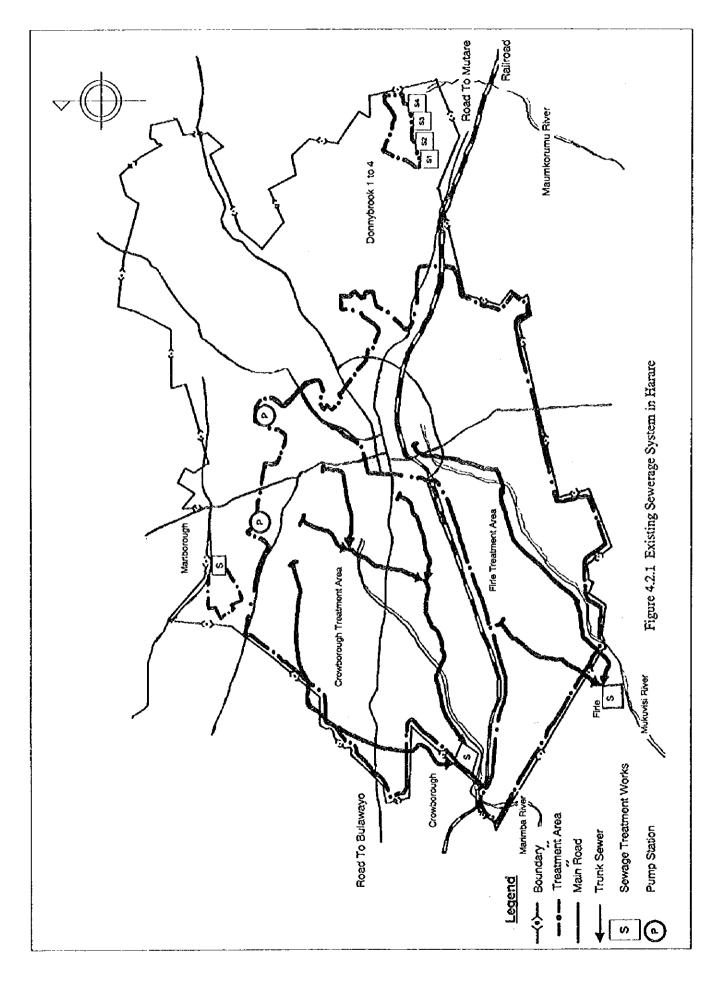
There are five sewage treatment works within Harare, namely the Firle, Crowborough, Hatcliff, Marlborough and Donnybrook STWs (refer to Figure 4.2.1). Firle is the largest STW, serving more than 600,000 people including industrial wastewater (refer to Figure 4.2.1 and 4.2.2, Section 4.2, Chapter 2, Supporting Report). The design capacity of this STW is 72,000 m³/day and is currently overloaded with about 60,000 m³/day. A new phase (Firle V) with a capacity of 72,000 m³/day is being constructed at the same site to augment the capacity of the existing facilities and is expected to be completed by 1997 (refer to Figure 4.2.3, Section 4.2, Chapter 2, Supporting Report).

The Crowborough STW is the second largest sewage treatment works, having a design capacity of 54,000 m³/day and presently serves more than 500,000 people. The current sewage inflow amount (55,300 m³/day) is comprised of domestic sewage and industrial wastewater and is almost equal to the design capacity (refer to Figure 4.2.4 and 4.2.5, Section 4.2, Chapter 2, Supporting Report). A new phase for Crowborough is now in the design stage.

The Hatcliffe STW (aerated lagoon) serves the suburb of Hatcliffe only and its present estimated flow is approximately 2,500 m³/day. A new modern sewage treatment plant with a capacity of 2,810 m³/day is about to be constructed to replace the existing one.

The Marlborough STW (stabilisation ponds) is serving Marlborough, but is operating in full capacity. A proposal for a new sewage treatment plant within the Gwebi catchment has been made, and the feasibility study is currently on-going.

In Mabvuku and Tafara, there are four sets of stabilisation pond systems which serve a total population of 79,000, of which 55,000 are served by Donnybrook 1 and Donnybrook 2 (refer to Figure 4.2.6, Section 4.2, Chapter 2, Supporting Report) and 24,000 by Donnybrook 3 and 4 (refer to Figure 4.2.7, Section 4.2, Chapter 2, Supporting Report). The City of Harare currently undertakes the feasibility study for the BNR on the Donnybrook STW.


Except for Hatcliffe, which is outside the drainage basin, the sewage treatment systems employed in the existing treatment works in Harare City can be classified generally as follows:

-WSP (AP+FP+MP) -TF (PST+TF+SST)

)

ALC: N

ſ

4

ſ

-BNR (PST+BNR+SST)

where, WSP:	Wastewater Stabilisation Pond
TF:	Trickling Filter
BNR:	Biological Nutrient Removal
AP:	Anaerobic Pond
FP:	Facultative Pond
MP:	Maturation Pond
PST:	Primary Sedimentation Tank
TF:	Trickling Filter
SST:	Secondary Sedimentation Tank

Of these, WSP is employed at small treatment facilities -- those treating less than $5,300 \text{ m}^3/\text{day}$. Where WSP is not used, TF is generally employed. The modified activated sludge treatment process, BNR, is an advanced treatment process that is used in conjunction with TF. In other words, treatment processes at existing treatment facilities are of the following two types:

WSP : Marlborough and Donnybrook TF + BNR : Crowborough and Firle

With the WSP type, the quality of the treated water does not meet the effluent standards and therefore cannot be discharged into rivers. The treated water from these treatment facilities is accordingly sent to irrigation land. The treatment facilities of the TF + BNR type are very large-scale, and these facilities are required to bring a portion of their treated water up to effluent standards and to discharge it to rivers.

The Crowborough and Firle STWs are required to conduct advanced treatment for 20% of their influent and discharge it to the river. At the Crowborough STW, the BNR treatment capacity is 18,000 m³/day, and the influent flow is 16,000 m³/day. For the Firle STW, the BNR treatment capacity is 36,000 m³/day and the influent flow is 28,000 m³/day. The amount of treated water discharged to the rivers yearly is about 5,840,000 m³/year for Crowborough and about 10,220,000 m³/year for Firle.

The following sludge treatment methods are employed:

3

313) 3 for WSP facilities : AP for TF, BNR facilities : ADT (anaerobic digestion tank)

In the small-scale facilities that employ WSP facilities, an AP is situated beyond the screen and grit chamber. Settleable organic matter is allowed to settle in the AP for one to several years, and stabilisation is achieved through anaerobic degradation. The stabilized sludge is then dried in an SDB (sludge drying bed) or AP.

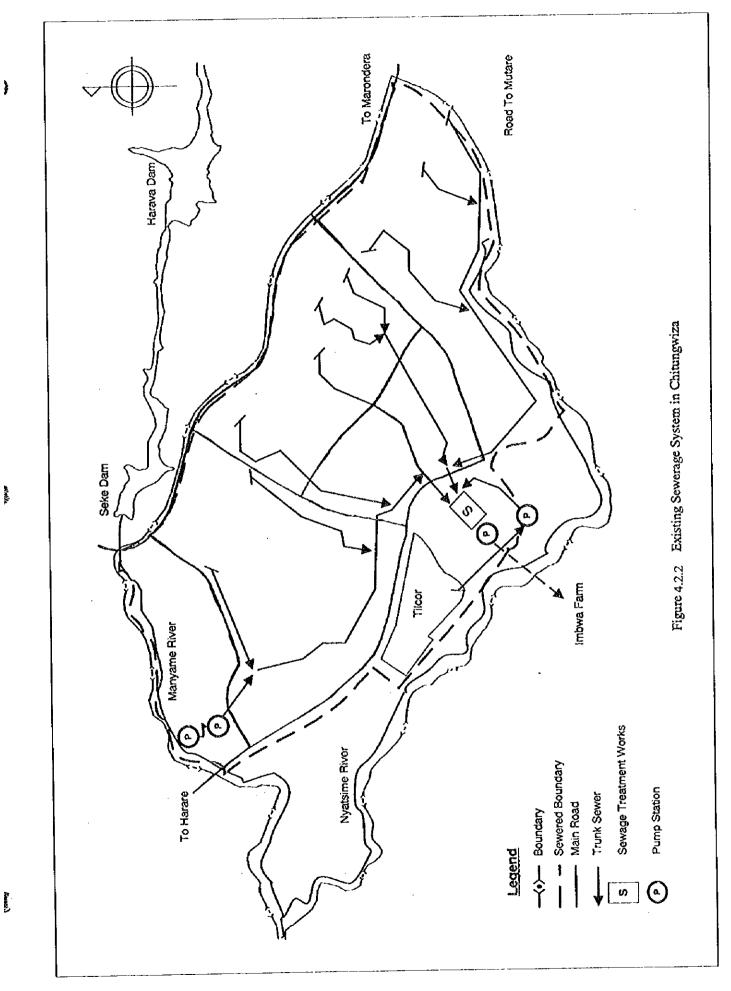
In the facilities employing both TF and BNR, sludge is sent to the anaerobic digestion tanks. With the TF train, sludge from the SST is returned to the PST and is sent to the digestion tanks along with the sludge from the PST. With the BNR train, sludge from the SST and the PST are sent separately to the digestion tank. The sludge digestion time is approximately three weeks. At Crowborough, 708 m³/day of raw sludge (sludge from the PST) and 500 m³/day of sludge from the SST are sent together for digestion. Gas is released at a rate of 210,000 m³/month, of which 71,588 m³/month is burned for heating the digestion tanks (May 1996).

Methods employed for sludge disposal are as follows:

- Agricultural reuse (dried sludge)
- Irrigational reuse (mixing sludge with treated water)

For small-scale WSPs, sludge that has accumulated in the AP is dried and applied to farm land every few years. Larger scale STWs employ the second method: after removing the putrefactivity of the sludge and stabilising in a sludge digestion tank, the sludge is injected into the pipe for conveying treated water for irrigation, and is distributed to the irrigation land along with the treated water.

The funding for most of these STWs is through the World Bank, the European Investment Bank, the Zimbabwe Government and the City of Harare.


(2) Chitungwiza Municipality

The existing sewerage system in Chitungwiza is shown in Figure 4.2.2. In the service area, is the Tilcor Industrial Area has a pre-treatment facility to reduce wastewater BOD from 6,000

0

灝

()

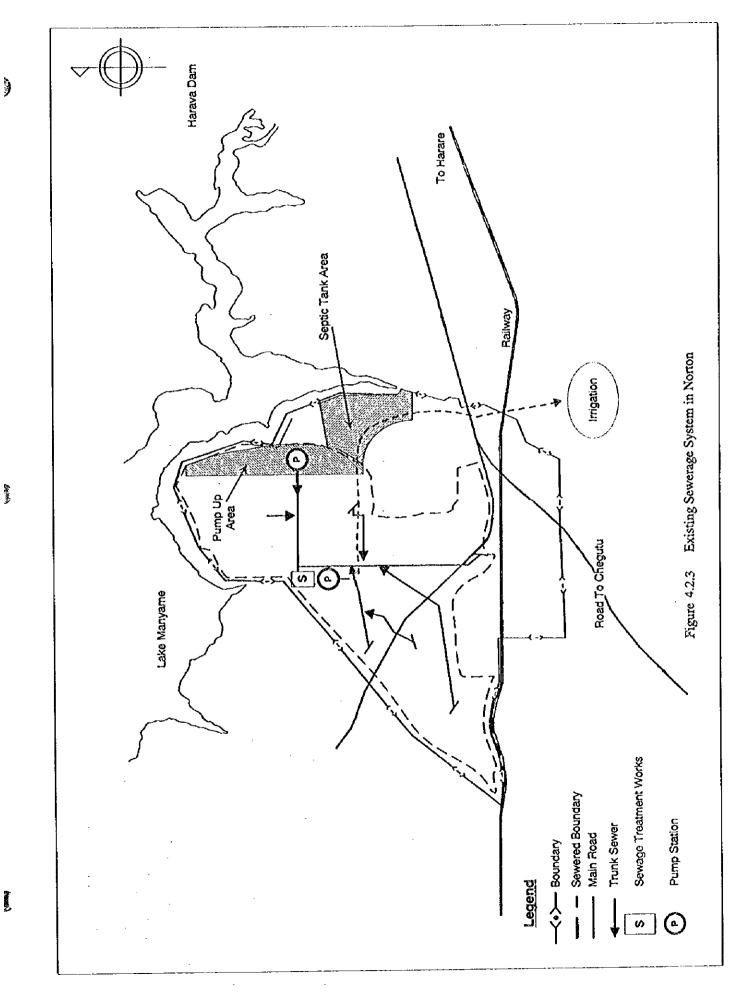
}

mg/l to 1,000 mg//l by anaerobic ponds. The treated effluent is then sent to the inlet works of the Zengeza STW from the pump station via a force main (see Figure 4.2.9, Section 4.2, Chapter 2, Supporting Report). The Zengeza STW, with a design capacity of 21,750, "m3/day, is shown in Figure 4.2.8, Section 4.2, Chapter 2, Supporting Report.

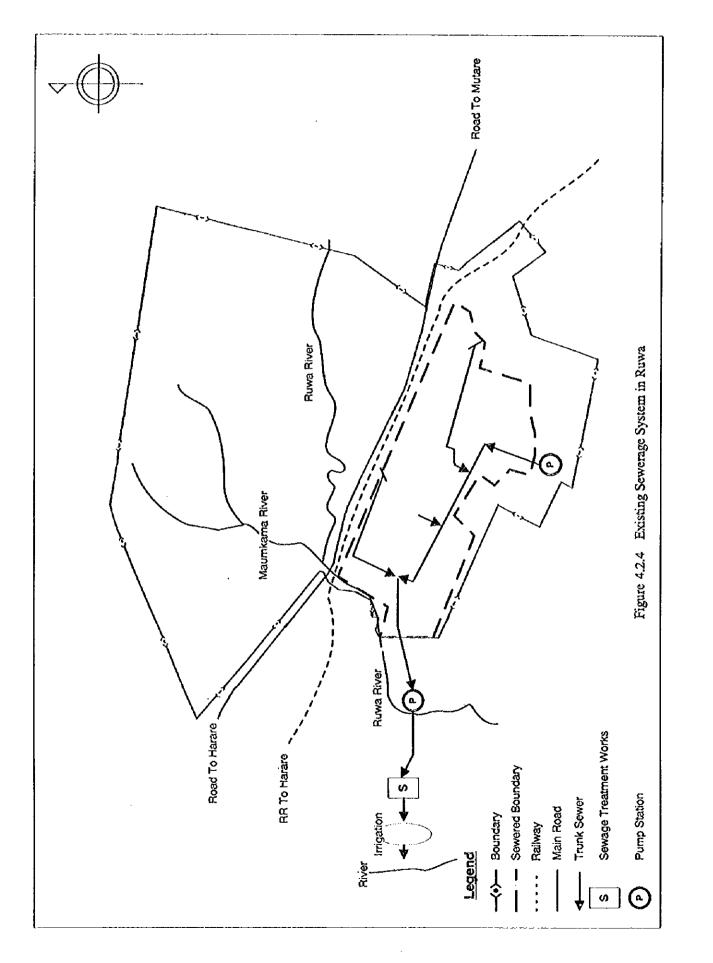
The treatment process at this STW is a combination of AP and TF. The reasons for using AP ahead of TF are that the sewage handled is of high strength, there is available space at the facility, and this method simplifies sludge treatment. Because sewage treated in this manner does not meet the effluent standards, the treated water is conversed to irrigation land. In the autumn of last year, a new pump station was completed, which sends all the treated water to irrigation land.

The sludge that accumulates in the AP is dried in the SDB and is released once every few years for reuse on farm land. The sludge from the TF is not removed within the treatment facility but is sent, along with treated water, to irrigation land.

(3) Norton Town Council


The existing sewerage system in Norton is shown in Figure 4.2.3 and the existing Norton STW is shown in Figure 4.2.10, Section 4.2, Chapter 2, Supporting Report. The treatment process employed at this STW is the TF method. Sewage treated by this method does not meet the effluent standards for discharge into Lake Manyame, so the whole treated sewage is kept in a storage pond until it is pumped to irrigation land along with the treated water from a nearby pulp factory. Because it is comparatively small-scale, the sludge from the PST and SST is sent directly to the SDB for drying. The dried sludge is piled up on the land next to the existing facility, and is applied to nearby farmland as needed.

(4) Ruwa Local Board


The existing Ruwa sewerage system is shown in Figure 4.2.4 and the Ruwa STW is shown in Figure 4.2.11, Section 4.2, Chapter 2, Supporting Report. The treatment process employed at this facility is WSP. Because sewage treated in this manner does not meet the effluent standards for discharge into rivers, the treated water is sent to irrigation land. There is a pump at the end of the trunk sewer, which sends the sewage to the STW constructed next to the irrigation land. Because the STW just began operation in 1993, no sludge has yet been

(Annual)

(

4-19

· ·

8

6

L

removed. At this point, the Ruwa Local Board does not have a clear policy for sludge disposal, but it is probable that the dried sludge will be reused for pasture/agricultural land.

(5) Summary

)

200

Į

The treatment systems currently employed in each municipality are the following four types:

-	AP+WSP+irrigation	:	Marlborough, Donnybrook, Ruwa
-	AP+TF+irrigation	:	Zengeza
-	PST+TF+irrigation	:	Crowborough (No.1 and No.2 units), Firle (No.1 and
			No.2 units), Norton
-	PST+BNR	:	Crowborough (No.3 unit), Firle (No.3 and No.4 units)

The secondary treatment processes are WSP, TF, and BNR. These three methods have long been used by the local authorities, and their operation and maintenance are being properly conducted. Each process is functioning effectively, so it is appropriate that these methods continue to be used. Table 4.2.5 shows the general comparison of sewage treatment processes.

As for sludge treatment and disposal, the following four methods are being used:

-	AP+SDB+reuse	:	Marlborough, Donnybrook,
			Ruwa
-	No-treatment (sludge from PST, SST)+SDB+reuse	:	Norton
-	AP and no-treatment (sludge from SST)+irrigation	:	Zengeza
-	SDT+irrigation	:	Crowborough, Firle

The sludge from small and mid-scale STWs is untreated or treated in APs, while the sludge from large-scale facilities is stabilised in SDT. All the sludge is eventually reused on farm land. Since the environmental capacity of the receiving farm land is relatively large, such irrigational reuse will not cause any serious impact.

Country Proventer Descent	Antlina	Consmi Rantmac
Deware Al calmerte I Aucess		
Wastewater Stabilization Pond	A relatively shallow body of wastewater contained in an	A large area is needed. Easiest in O&M due to
(WSP)	earthen basin of controlled shape, in which biological oxidation Non-equipped process. Ponds should be drained	Non-equipped process. Ponds should be drained
	of organic matter is effected by natural or artificially	periodically, once in 1 to 10 years. Sludge should
	accelerated transfer of oxygen.	be hauled/disposed after drying.
Acrated Lagoon (AL)	A natural or artificial wastewater treatment pond in which	O&M is easy since there's simple equipment like
	mechanical or diffused-air aeration is used to supplement the	aerators.
	oxygen supply.	
Trickling Filter (TF)	A very coarse filter used to provide secondary treatment of	Stable to load fluctuation of sewage.
	wastewater. A film of aerobic microorganisms on the filter	Treatment method is simpler than AS.
	media metabolizes the organic material in the wastewater	Attention shall be paid to flies/odor generation.
	trickling downward to underdrains; biofilm that sloughs off is	
	subsequently removed by sedimentation.	-
Conventional Activated Sludge	A biological wastewater treatment process in which a mixture	A large area is no need.
(AS)	of wastewater and activated sludge is agitated and aerated.	A log of energy and mechanical equipment is
	The activated sludge is subsequently separated from the	necessary.
	treated wastewater (mixed liquor) by sedimentation and	
	wasted or returned to the process as needed.	
Extended Aeration	A modification of the activated sludge process which utilizes	Waste activated sludge will be in stable condition
	long acration periods to promote acrobic digestion of the	due to a long retention time.
	biological mass by endogenous respiration.	
Biological Nutrients Removal	The processes are for organic matter and nutrients removal.	A lot of energy is necessary.
(BNR)	Most of these use a form of the activated sludge process but	
	employ combinations of anaerobic, anoxic and aerobic zones or	
	compartments to accomplish nitrogen and phosphorus removal.	
	One of the most commonly used processes for combined	
	nitrogen and phosphorus removal is the Bardenpho process.	

Table 4.2.5 General Comparison of Sewage Treatment Processes

4-22

0

4.2.2 Industrial Wastewater Treatment Works

3

罐筵

I

In every authority areas concerned, the wastewater from industry is controlled in compliance with the Urban Council Act (1995), the requirements of which are as follows:

рН	:	6.8-9.0
Settleable Solids (cm ³ /l)	:	less than 10.0
Fats (mg/l)	:	less than 400.0
Mineral Oils	:	Nit
Organic Solvents	:	Nil .
Individual Heavy Metals (mg/l)	:	less than 50.0
Calcium Carbide	4 1	Nil
Bitumen	:	Nil
Cyanides (mg/l)	:	Nil
Temperature (°C)	:	less than 60

The purpose of this law is to prevent damage to the sewer itself and to protect the health of people employed at the sewage works, who would enter the sewer. In other words, the law is to protect the sewers and to keep the safety of sewage workers.

There are no BOD or COD regulations, and highly concentrated organic wastewater from factories are accepted into public sewers. Wastewater is analysed both to ensure water quality standards and the industrial wastewater load.

In Harare City, the quality and amount of wastewater is periodically monitored at the Central Laboratory in the Department of Works. These checks are conducted about once a month, and the water inspected is usually from comparatively large industrial facilities. In the laboratory, each factory is given a ranks A, B, C or D based on water quantity. The water quality checked analysis items are three items, pH, heavy metal and settleable solids, out of the above ten items that are controlled by the law. This water quality analysis reveals an infraction, the directive for improvement is issued to the offending company in the form of a letter. If the next inspection also reveals that the law is being violated, the laboratory is required by law to notify the police.

In Harare City, sewage tariff are collected based on the amount and the strength (permanganate value) of the industrial wastewater. Therefore, in addition to the items mentioned above, the wastewater PV (permanganate value) is also measured. The sewage

tariff is calculated from this PV, the industrial wastewater amount and a coefficient. The amount of industrial wastewater is equivalent to be public water consumption plus well water, minus water for office use, such as flush toilet water.

Each factory has a pre-treatment facility within its grounds. Accordingly, a slaughterhouse, the affiliate facility of a food process and stuff industry discharges its wastewater into a pre-treatment facility along with water from other processes and is discharged to the sewer after treated.

The questionnaire regarding the water quality of factories presents the current status of their pre-treatment facilities as shown in Table 4.2.6. Relatively large factories were selected for the survey, and it was conducted at 49 factories; 14 of these factories have pre-treatment facilities. The method of treatment is primarily settling, along with fat and oil traps.

4.2.3 Urban Drainage

The Study Area has a comparatively highly developed infrastructure. This is because an urban drainage system has been constructed simultaneously with the roads and sewer pipes of the area. Urban areas employ a separate sewer system, wherein all sewage from houses and factories goes to the public sewers, while the stormwater is released through the urban drainage system.

In the urban areas, pipes and channels are laid underground (beneath sidewalks), but in the rural areas, stormwater is released into channels without screen protection. In the dry season, there is almost no rainfall, so drainage is not a problem. But in the wet season, October to March, wherein 90 % of the annual rainfall occurs, there are sometimes flooding problems and some channels are obstructed by dumped solid wastes, which compounds the already insufficient flow capacity. These problems occur mainly in high density residential areas. On the whole, however, the drainage channels are laid at an appropriate topographical grade, and there is relatively good drainage in urban areas.

X.

韵

6)

		1		-		A second second	Contract Water	Thestment	Prereatment 'activity		Water Outline	
Type of Industry	Munkdpallty	Company	Employees	Coods	Avg. Water Consumption & Water Source m ² /month	Wastewater Volume m ³ /manth	Bodies	Method	Facility	Inlet	Outlet	Note
Processed	Harare	U -	520	Opaque Snrøhum Beer	Paped Water supply 1×.535	3,250	Sewer	Sects leave nd	36m ^M days	V/N	V/X	
	Marare	o 	1,500	Cooking Oil Bukers (Ms Some	Papped Water Supply 30,000	24,000	Śawa:	FauOil Seperators	25,000m ¹ /month	N/A	V/N	
	Harare	2	275	NN	Piped Weter Supply 11,076	8,440	Sewer	VN	VN	V/V	VIN	
	Hararc	υ 	1,100	Pork Products	Pipped Water Supply 25,000 Well 2,000	20,000	VIN	Setting Tanks and Filtration	1,000m ³ /day	VIN	A/A	
	Harare	د.	1,200	Detergeut Powders Soap Fats & cooking Oil	Piped Water Supply 23,2x7 Borehole 5,73,3	15.343	Sewer	Soaps pH Control & Fai trap NSD Subbonation PH adjustment & Freataion	40m²/day 27m²/day	pH < 7 pH < 7	рН7-8 рН7-4	
	Chitungwiza	v	350	Bœr	Piped Water Supply 14,000	ş	Sewer	Settlement	100m Vday	VIN	NA	
Pulp, Papers & Related Products	Norton	r	650	Pulp, Paper & Boards	Piped Water Supply 110,000	000 ⁻¹⁴²	Sewer	Clarifer and Lagoon	3,000m ⁴ /day	BOD 100** SS 500 COD 100 T-P 2.H T-N 2.A	BOD 10 ^{mul} SS 200 COD 70 T-P 1.0 T-N 0.5	
Chemicals	Harare	۵ 	120	Yeincs	Piped Water Supply 600	500	Sewer	Settlement	30m ⁵ /day	VIN	VN	
Leather & Related Products	Hararc		2	Finished Loather	Piped Water Supply 6,116 Well 1,544 Recycled 1,100	6,600	Sewer	Oxidation & Plocculation	500m ³ /day	VX.	SS2.08mg/L	
Ceramics Store & Clay Products	Have	٤	999 999	Fibre Cement Sheets	Pipod Water Supply 3,500 Well 1,000	5000	Sewer	Settling	Vik	VIN	A/N	
Nonferrous Metals	Harace	U 	457	Abtramum, Copper and Frees pmfiles	Piped Weter Supply 2,742	2144	Sewer	Settlement & Floatation	VX	V /7	VX	
Transportation Equipment	n Chitungwiza	ບ 	410	Service Industry	Piped Water Supply 600 Bonchole K00	VN	Sewer	Oil/Water Separators	VN	VN	NA	approx Num' oil/water waste
Others	Harare Norton	υ υ	604 26	N/A Ostrich meat	Piped Water Supply 2,000 Piped Water Supply	1,750 K00	Sewer Sewer	Process dust separated with water Settleable solids di	N/A N/A	V /N	V/X V/X	
					009			fats skimming				

Table 4.2.6 Current Status of Pre-treatment Facilities

3

_

4.3 Present Solid Waste Collection and Disposal

4.3.1 General

The government of Zimbabwe is prompting decentralisation aiming at upgrading the administrative ability of local governments as a basic policy regarding solid waste management. There are management plans at the national and local levels; the former is the "Zimbabwe Urban Solid Waste Management Study, August, 1995, MLGRUD", while the latter is the "Regional, Town and CountryPlanning Act, 1996".

Under the supervision of the relevant authorities, the MHCW, MET and the MLGRUD, each local government is managing its solid waste administration. The present conditions of solid waste collection and disposal of the local governments are enumerated as follows.

4.3.2 Harare City

The solid waste collection is being handled by the Amenities Section headed by the Amenities Manager belonging to the Department of Works. Trucks and tractors are utilised to collect solid waste in Harare City. Plastic bags are used to dispose solid waste in low and high density suburbs, while communal storage is used for Mbare musika and metal bins are used for commercial and industrial stands.

Up to four bags on average are used per year, while one metal bin is used per stand for every five years. Collection service is provided once a week for high density areas and twice a week for low density areas, commercial and industrial stands. A service charge is collected monthly.

The number of existing collection vehicles together with the additional needs determined by the City Council are shown below.

Type of Vehicles	<u>Total</u>	Functional	Additional Need
Trucks	91	35	45
Tractors	18	10	15

The average number of employees per collection truck including the driver is about five. The volume of solid waste collected is in the range of 600 - 650 tonnes per day, of which 110

蠶

tonnes are from high density areas, 130 tonnes from low density areas and the remaining amount is from commercial, industrial and other public places. According to the "Zimbabwe Urban Solid Waste Management Study, August, 1995, MLGRUD", general composition of solid waste is shown in Table 4.3.1.

Type of Solid Waste	Percentage (%)
Paper & Cardboard	20 - 25
Glass & Ceramics	5
Metals	4
Plastics	4
Leather & Rubber	5
Textiles	1 - 5
Vegetables/putrescibles	10 -15
Miscellaneous	10 - 25

Table 4.3.1 General Composition of Solid Waste in Harare

Two dumping sites located at Warren Park and Pomona, are presently used as landfills. At these dumping sites, some private companies contracted by the City Council are collecting recyclable waste. Figure 4.3.1 shows the location of two dumping sites.

The problem areas affecting the efficiency of solid waste collection are:

- shortage of functional collection vehicles
- allocation of unsuitable vehicles for collection work
- shortage of dumping sites

Among others, the shortage of dumping sites is forcing the City Council to look into the possibility of getting a new site outside the City and it will certainly increase the operation costs of collection and dumping. Funding for solid waste management is through the World Bank and the City Council.

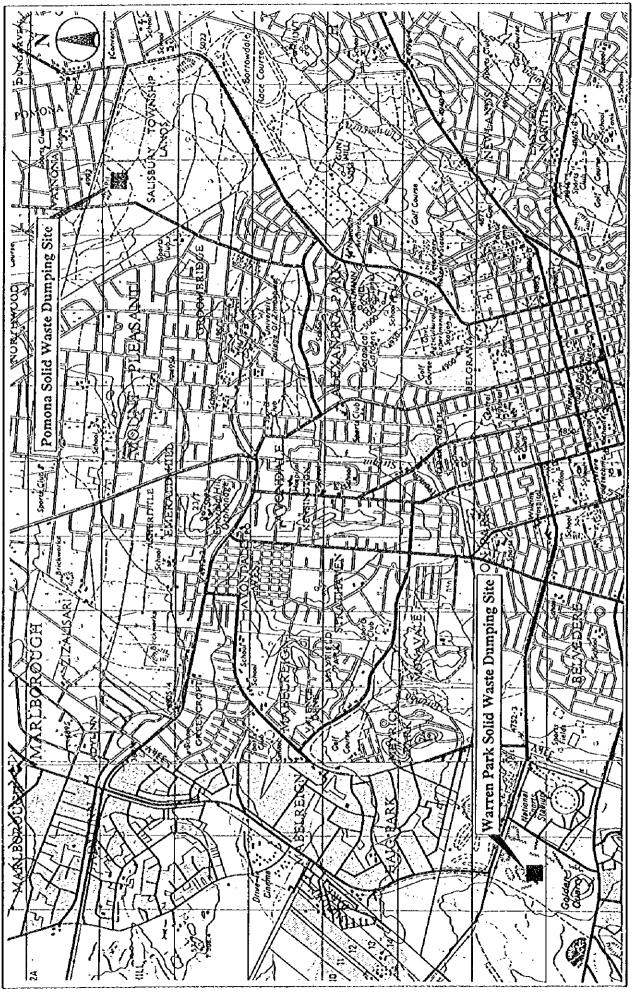


Figure 4.3.1 Location of two Dumping Sites in Harare (S=1/50,000)

Ş

(

4.3.3 Chitungwiza Municipality

3

Ĩ

(1) Solid Waste Collection

Solid waste collection is provided to both residential and industrial areas by means of trucks and tractors. People from residential areas dump their refuse into plastic bags which are supposed to be emptied twice a week by the Municipality. Most industrial projects have skip dishes which are supposed to be collected by the council trucks every week and emptied.

The existing collection vehicles and additional requirements considered by the Municipality to improve collection efficiency are as follows:

Types of Vehicles	<u>Total</u>	Additional Need
Trucks	11	16
Tractors	4	8

The collection vehicles collect about 6.5 tonnes of solid waste and its composition is shown in Table 4.3.2.

Type of Solid Waste	Percentage (%)
Paper & Cardboard	30 -35
Glass & Ceramics	1 - 3
Metals	1 - 3
Plastics	1 - 3
Leather & Rubber	20 - 30
Textiles	1 - 5
Vegetables/putrescibles	30 - 40
Miscellaneous	5 - 10

Table 4.3.2 General Composition of Solid Waste in Chitungwiza

The situation of the existing collection vehicles clearly demonstrate a need to improve the service efficiency in order to serve the population of about 400,000 in the Municipality. Sometimes, solid waste is collected in two week intervals. Under such circumstances, residents having full uncollected garbage in plastic bags or bins tend to dump them in the open areas or in the storm water drainage system. These attitudes lead to the creation of a health hazard and to the disturbance of the storm water drainage flow.

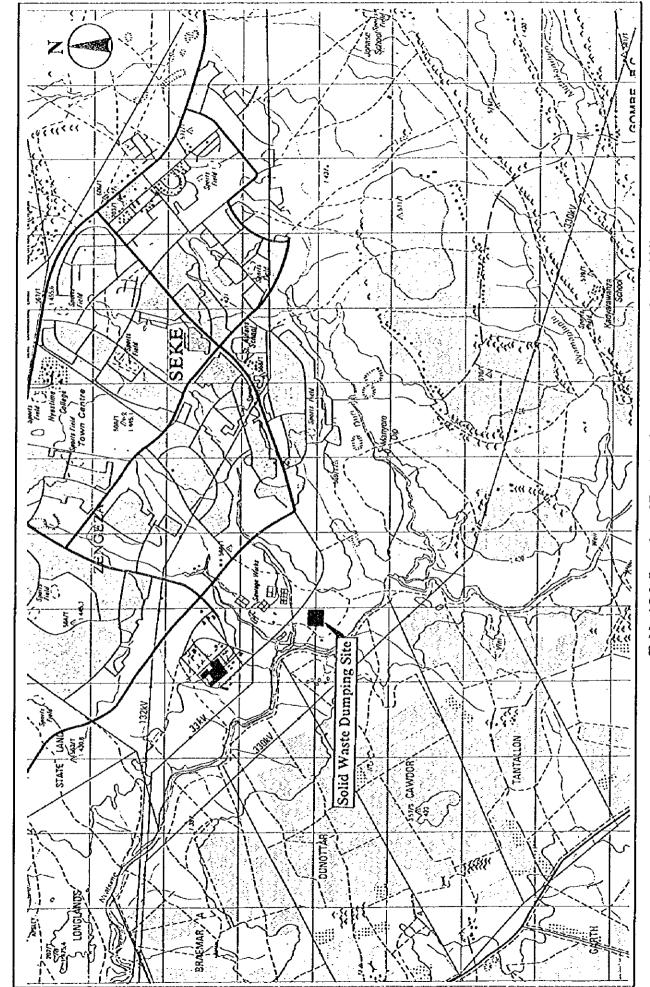
4-29

Another problem is that many residents are reluctant to pay a monthly service charge to the municipality, unless service is otherwise improved.

(2) Solid Waste Disposal

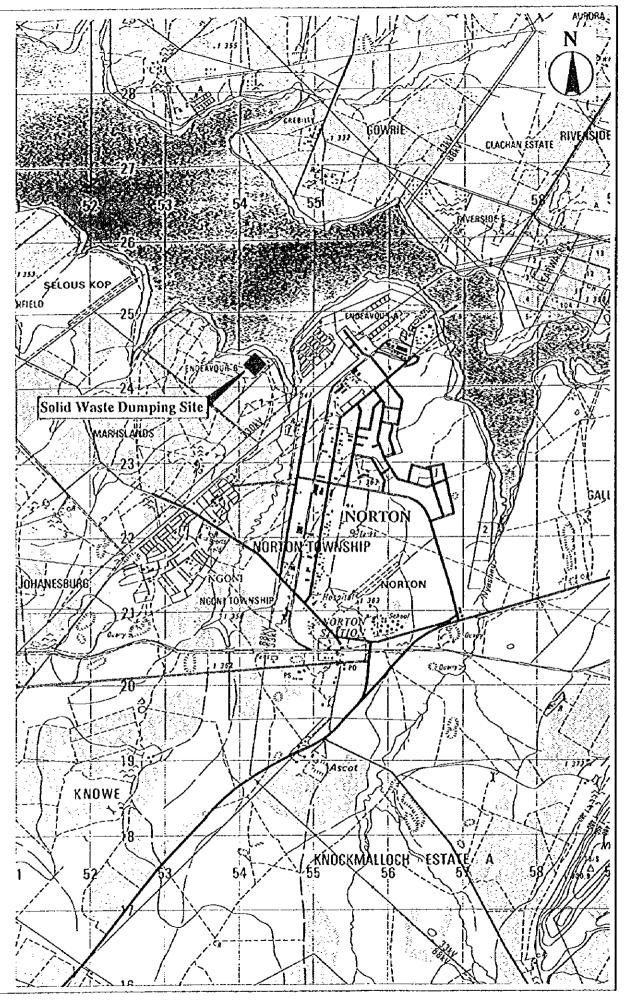
The normal disposal method is dumping, compaction and covering with gravel to prevent flies, odour and nuisance. However, the municipality does not have tippers to ferry gravel to the dumping site. As a result, offensive odours and blowing papers are a problem. Figure 4.3.2 shows the location of the dumping sites.

4.3.4 Norton Town Council


The Norton Town Council has an open area (358 m x 275 m = 9.845 hectares) north of the existing sewage treatment works. This site caters to private companies discharging solid wastes which can not be incinerated within the industrial areas. Large scale companies, i.e. Hunyani Pulp and Paper, Tinto Industries, Lucas, Tanwood Trading and Dos Santos, are dumping their solid waste at this site. An average of 80 tonnes of solid waste are dumped at the site daily. Figure 4.3.3 shows the location of the dumping sites.

The current problem is indiscriminate dumping at this site owing to in proper control, leading to site maintenance difficulties and high costs to the Council. To solve this problem, the Council is erecting a fence around the dumping site which will be guarded 24 hours a day. The Council is also planning to charge a fee for every tonne of solid waste to all companies which utilise the dumping site.

The following are schedule of solid waste collection for residential and industrial areas in Norton Town Council:


Monday	: Ward 7	- Town centre ; shopping centre and industry
Tuesday	: Wards 11 and 12	- All schools
Wednesday	y : Wards 8 and 9	- Town centre ; shopping centre and industry
Thursday	: Wards 5,6 and 10	- All schools
Friday	: Wards 1 to 4	- Town centre ; shopping centre and industry

€

0

Table 4.3.2 Location of Dumping Site in Chitungwiza (S=1/50,000)

C

8

I

 Table 4.3.3 Location of Dumping Site in Norton (S=1/50,000)

4.3.5 Ruwa Local Board

3

(1) Solid Waste Collection

Solid waste is collected three times a week in the industrial areas and once a week in the residential areas by means of tractor and a 5 tonne trailor.

(2) Solid Waste Disposal

Old dumping site

The old dumping site is located at the Chiremba primary school site east of Chiremba Road. The site was planned primarily to construct the said school when needed and utilised as a dump solid waste by the few industries being operated nearby.

However, the site was situated only about 30 metres from a residential area, due to the lack of proper site investigation. The site is an open area accessible to the public (scavengers) and is not properly managed or controlled. No drainage facility is provided for the site and it is a breeding ground for flies and other pests, which can be seen all over the site. Owing to these unsanitary conditions, a new site was considered by the Board. Figure 4.3.4 shows the location of the dumping sites.

New dumping site

The new dumping site is located within the jurisdiction of the Epworth Local Board, across the Ruwa River from Ruwa. This site with a total area of 0.8 hectares was identified based on the recommendations stemmed from geotechnical site investigations.

The site is far from residential and industrial areas. The transportation of refuse to the dumping site will be a problem when the size and speed of the tractor and trailer used for the job are taken into account. The provision of a refuse hauling truck is deemed an urgent countermeasure to cope with the increase of solid waste.

The site is durawalled and gated for proper management. The solid waste is to be treated by earthcovering and compacting. Solid waste needed for recycling is going to be collected by registration. Only registered collectors will be granted entry into the site.

Table 4.3.4 Location of Dumping Site in Ruwa (S=1/50,000)

\$

4.4 Present Status of Wastewater Treatment at Water Treatment Works

The Prince Edward WTW and the Morton Jaffray WTW are situated in the Study Area. Effluent, such as the back washing discharge and settled sludge, at the WTWs are regarded as point pollution sources.

The Prince Edward WTW and the Morton Jaffray WTW have production capacities of $90,000 \text{ m}^3$ /day and $614,000 \text{ m}^3$ /day, respectively. The water treatment process consists of the sludge blanket type clarifier, rapid sand filter and chlorination. Aluminium sulphate is used as the coagulant for the removal of suspended solids. Wastewater treatment has not been provided for the WTWs yet, and presently the generated wastewater is either discharged into the river through a retention tank or pumped up to farm land for irrigation use.

Table 4.4.1 shows the data in the last three years on the intake water and wastewater amount at these NWWS.

Table 4.4.1

3

Relationship between Intake and Wastewater

Unit: m³/day

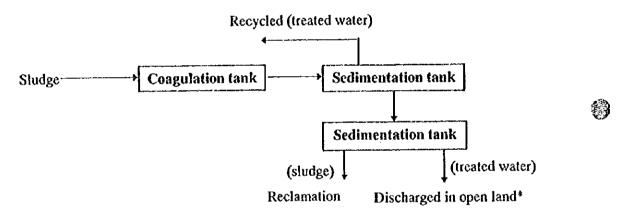
		Frince	Edward WTW			Morton	Jəffray WTW	-
Year	Intake	Produced	Wastewater	Wastewater/ Intake (%)	Intake	Produced	Wastewater	Wastewater/ Intake (%)
1994	×			<u></u>	391,900	303,800	\$8,000	22.5
1995	36,400	31,700	4,700	12.9	483,300	340,100	143,200	29.6
1996	22,300	19,600	2,700	12.1	423,600	309,400	114,200	27.0

The water losses at both the WTWs are considerable compared with the experiences of ordinary WTWS. This is attributed to the frequent back washing and the high dosage of coagulant due to deteriorated water quality affected by the increased algae in the raw water. In this regard, the following problems are pointed out:

1) Additional treatment cost

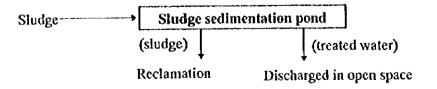
The generation of surplus wastewater requires additional electric charge and chemicals.

2) Influence of the residual coagulant


A high content of residual aluminium in the discharged water affects the farm land making the soil harder, resulting in the obstruction of the agricultural production.

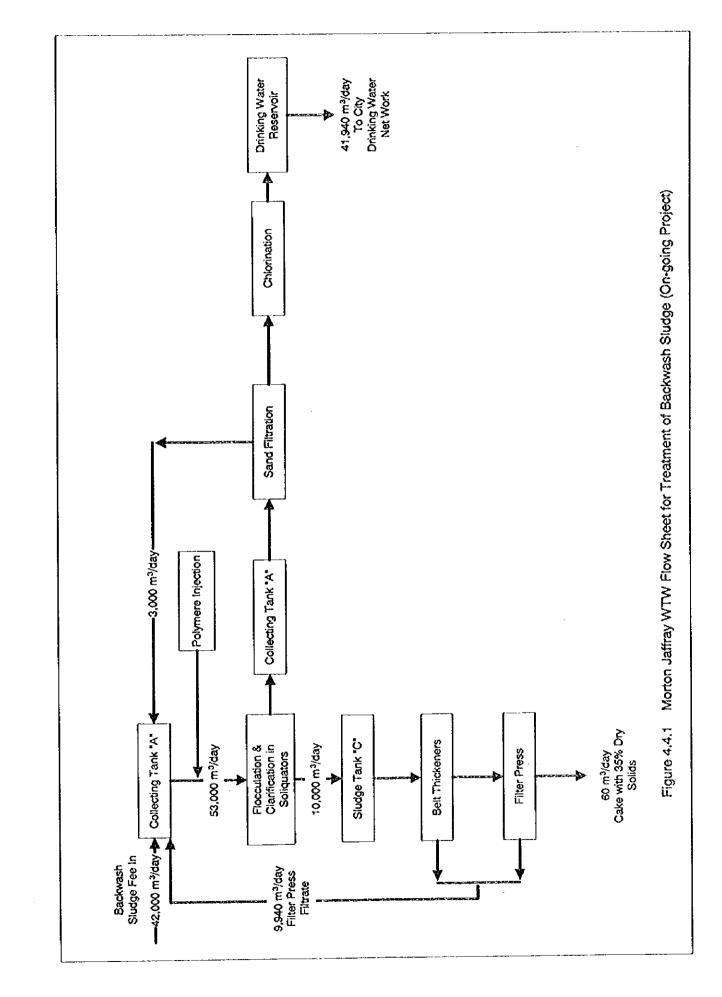
3) Discharge of concentrated nutritious substances into rivers/lakes

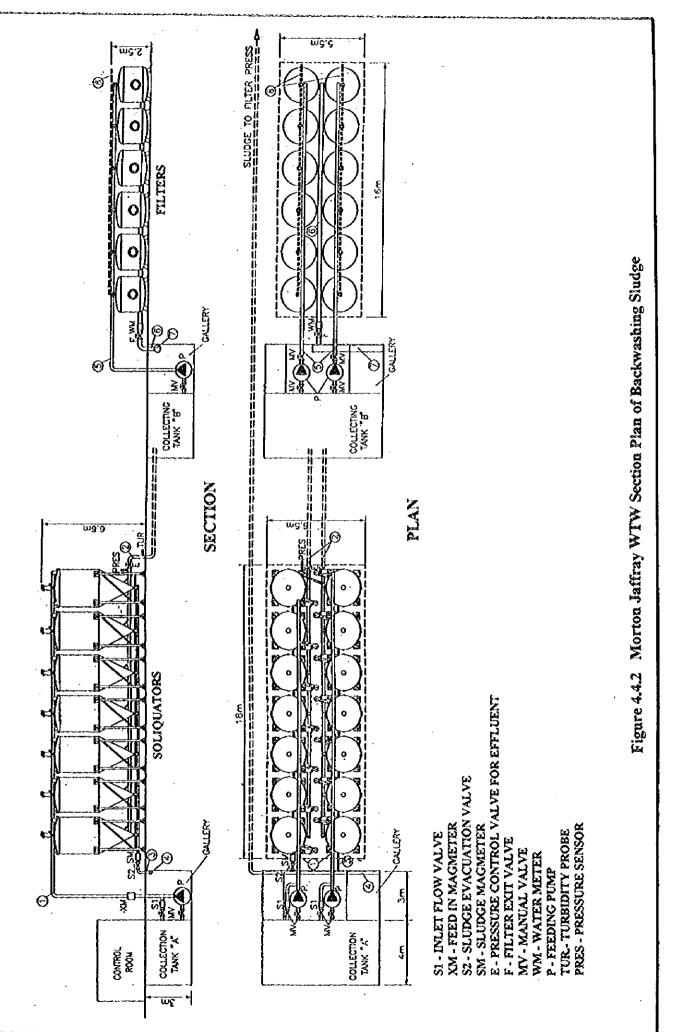
The concentration of nutritious substances such as T-N and T-P is achieved in the water treatment process. Direct discharge of the wastewater with sludge into the river causes eutrophication in the lake.


To improve these problems, the construction of a wastewater treatment facility has been planned under the loan project extended by the Israeli Government; however, it has not yet been commenced. The plan of the treatment system is shown in Figures 4.4.1 and 4.4.2. The planned capacity of wastewater treatment facility is $42,000 \text{ m}^3/\text{day}$, which is less than 50% of the current need (wastewater volume of $88,000 - 143,200 \text{ m}^3/\text{day}$). The planned capacity, 7% of the present water production amount, may be adequate if the reduction of wastewater could be achieved at the same level of common WTWs. Sludge dewatering equipment is a requisite for the final disposal of generated sludge.

The Morton Jaffray WTW's original treatment process of filter backwashing sludge and surplus sludge from its sedimentation tank are as follows;

1) Backwashing Sludge


- * NOTE: The treated water containing chemicals, remaining coagulant, etc. can not be used for irrigation.
- 2) Sludge from sedimentation tank


The treatment process for backwashing sludge is no longer available due to the mechanical failure that occurred about one year ago and the sludge is discharged directly to the river near the sludge sedimentation pond without any treatment. Since the sludge contains SS, chemicals and organic substances, countermeasures should be taken immediately.

8

(

9

C

Ć

Recently, Harare City was offered a loan for the construction plan of a new sludge treatment plant by the Israeli Government.

The Prince Edward WTW 's existing treatment process of backwashing sludge and primary sedimentation tank sludge are as follows:

1) Backwashing sludge

3

羄

1

Backwashing sludge is recycled. It is returned by gravity to the low pump station, which also pumps raw water from Seke Dam to the primary sedimentation tank and treated.

2) Primary Sedimentation Tank Sludge

It is withdrawn from the primary sedimentation tank by gravity and sent to the sedimentation pond. After sedimentation, the treated water is sent back to Seke Dam by gravity and the sludge is withdrawn by sludge pump and disposed into an open field. The pond is comprised of two units of concrete open channel and they are operated alternately to allow the channels to be drained and cleaned.

4.5 Planned/On-going Water Pollution Control Plans

4.5.1 Harare City

There are several planned/on-going projects for sewerage expansion as follows :

(1) Firle STW expansion project

This project is to expand the STW's existing treatment capacity from 72,000 m^3 /day to 144,000 m^3 /day to cope with the rapid increase of influent sewage. The construction work is underway and expected to be completed by 1997. This project is sponsored by the European Investment Bank (EIB).

(2) Hatcliffe STW rehabilitation project (Outside of the Study Area)

The existing oxidation ditch has already deteriorated. Thus, a new ditch, with a capacity of 2,810 m³/day was designed and construction work is about to commence financed by the City Council.

(3) Crowborough STW expansion project

This project includes expansion of the existing STW and construction of trunk sewer. No financial source has been found and it is only in the design stage.

(4) Mabvuku Tafara STW construction project

This project is to divert sewage from the existing Donnybrook STW to the New STW. The existing STW, adopting the stabilization pond method, is located nearby a residential area and there are complaints from the residents about its odour. Also, the STW is overloaded. The proposed site is located in the south, 15 to 20 km away from the existing STW. At present, only a tender for consultancy services has been adjudicated, but it is not yet awarded.

â

é

(5) Chisipite sewage pump station construction project

There is an existing pump station in the Chisipite District, belonging to the Umwinsi Catchment, north east of Harare and this pump station is mainly serving a shopping center. This project aims to serve a part of the catchment, at present covered by septic tank, by conventional sewerage reticulation in the future. As a first step, a new pump station will be implemented under the financing of the City Council. After the completion of new pump station, the existing one will be abandoned. Also this project includes the installation of a rising main (D = 250 mm, L = 1,950 m), a gravity sewer (D = 300 mm, L = 1,600 m), and an upgrading of the existing trunk sewer (D = 450 to 525 mm, L = 4,900 m). The sewage will pumped to the Mukuvisi outfall trunk sewer and finally be treated in the Firle STW. The construction work will start this coming August and is expected to be completed in early 1998.

(6) Mukuvisi outfall trunk sewer construction project

This trunk sewer is now being installed in parallel with the existing trunk sewer to mitigate the overloading in the existing one. The diametaer ranges from 1,050 mm to 1,200 mm and its total length is about 18 km. This sewer will be connected to the Firle STW. The sewer is anticipated to be completed in early 1998 under financing of the World Bank.

(7) Firle catchment subsidiary sewer construction project

This subsidiary sewer will cover the developing area within the Firle Catchment. At present, a tender for consultancy service has been adjudicated but it has not yet been awarded.

4.5.2 Chitungwiza Municipality

The planned/on-going projects to reduce water pollution were grouped into three phases.

ž

Ĩ

Phase-1

The main objective in this phase was to stop the treated water being discharged into the Nyatsime River and eventually into Lake Chivero. The projects which were undertaken are as follows :

0

8

簋

- (1) Construction of an effluent pump station which handles 35,000 m³/day
- (2) Construction of an effluent force main to the Imbgwa Farm with a diameter of 750 mm
- (3) Construction of an effluent sludge pond to hold all the sewage that is being pumped to Imbgwa Farm

Phase-2

This phase is currently under way. It involves the construction of a $6,850 \text{ m}^3/\text{day}$ anaerobic pond unit. By constructing this pond, the municipality hope to lessen the load on the existing ponds and therefore improve the quality of the effluent.

Phase-3

This is intended to be a very comprehensive phase. The works are supposed to be upgraded from their present capacity to a capacity of 55,000 m^3 /day. Part of the works which were constructed around 1979 are going to be refurbished, because they are almost at the end of these design life.

4.5.3 Norton Town Council

There is an on-going rehabilitation project for the sewage treatment works with the following scope:

- Replacement of screen and grit chamber
- Replacement of gates and guides where necessary
- Replacement of flowmeters
- Service and repair of primary clarifier sludge scraper equipment
- Service and repair of primary effluent pumps
- Replacement of all electrical cabling and control panels
- Replacement of broken trickeling filter distributor arm
- Service of sludge scraper systems secondary sedimentation tank
- Replacement of sludge pumps and pipework
- Repair of concrete where necessary with cement/epoxy mixed

4-42

- Provide of improved change room and toilet facilities for workmen
- Replacement of pumps, pipe-work, electrical supply cables and control board in the sewage pump station
- Rehabilitate the satellite sewage pump station
- Construct additional ablutions.

To cope with the projected sewage flow, a future plan was also prepared. The plan describes the construction of new treatment works south of the existing works, and there are two alternatives :

(1) Primary Sedimentation Tanks with Biological Filter

- Screen and grit chamber
- 6 number primary sedimentation tanks
- 4 number biological filters (38 m diameter, 4 m depth)
- 3 number digesters
- 4 secondary sedimentation tanks
- Sludge drying beds (expansion to 6,000 m²)

Treated effluent will be discharged of by land disposal

(2) Biological Nutrient Removal (BNR)

- Screen and grit chamber
- BNR plant (basin volume 7,200 m³)
- 2 number secondary clarifiers
- Waste activated sludge thickener
- 5 digesters (anaerobic)
- Thickener
- Sludge drying bed (6,000 m²)

The treated effluent will be discharged directly to a watercourse or used as industrial water followed by land disposal.

4.5.4 Ruwa Local Board

The existing stabilisation ponds, with an area of five (5) hectares together with two (2) hectares of irrigation land, which were given to the Ruwa Local Board, are located within the jurisdiction of the Epworth Local Board.

To cope with the area's economic growth and population increase, a plan for the expansion of the existing stabilisation ponds and irrigation land has been prepared. Engineering design and cost estimates for the expansion of the grit chamber/channel and sump tank have also been accomplished and implementation is expected to be started soon.

However, there are two options to the above plan:

- land for expansion
- alternative sewage treatment methods, such as biological nutrient removal process

No decision has been made on the issue by the Ruwa Local Board.

I

CHAPTER 5

SOCIO-ECONOMIC PROFILE AND LAND USE AT PRESENT AND IN THE FUTURE

·

E

C

.

CHAPTER 5 SOCIO-ECONOMIC PROFILE AND LAND USE AT PRESENT AND IN THE FUTURE

- 5.1 Socio-Economic Perspective
- 5.1.1 National Perspective

Settlement densities

Zimbabwe covers a land area of 390,757 km² and had an estimated population at the end of 1995 of 11,424,531 people^{1/}. Settlement densities across the country vary from province to province and between urban centres and rural areas. The average population density is 29.24 people/km², ranging from 1,703 people/km² in Harare Province (99% of the province comprises the two (2) cities of Harare and Chitungwiza), to a sparse nine (9) people/km² in the western provinces of the country.

As elsewhere in the southern African region, the rate of urbanisation in Zimbabwe is high, an estimated six percent growth per annum. Whereas in 1982, only 25.7 percent of the national population was urbanised, this had risen to 30.6 percent in 1992 and is expected to reach 38.9 percent by 2007.

Demographic profile

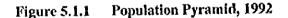
The population of Zimbabwe is relatively youthful. Forty-five percent of the population is aged 15 years or below and only three (3) percent is aged 65 years and above. As a result the population is growing at a rapid 3.14 percent per annum and is expected to double by the year 2015. The average household size in the country is 4.8 people. Thirty-three (33) percent of the household are female headed across the country as a whole (20 percent of households in urban areas).

The gender ratio of the population is approximately 95 males per 100 females. Gender ratios vary among provinces (largely in relation to employment opportunities). For example, there are a low 88 males per 100 females in Masvingo province, compared to a high 108 males per 100 females in Harare.

Table 5.1.1 overleaf shows the distribution of the population by age and sex.

1/ Extrapolated from the 1992 National Population Census

Ì


)

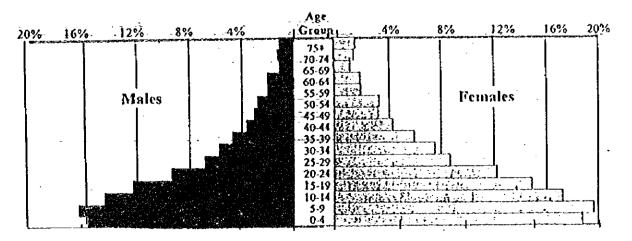

		······	······	
Age Group	Males	Females	Total	Sex Ratio
0 - 4	15.22	14.93	15.22	99.15
5-9	16.16	15.62	15.88	98.66
10 - 14	14.26	13.73	13.99	99.05
15 - 19	12.11	11.87	11.99	97.35
20 - 24	9.18	9.82	9.51	89.25
25 - 29	6.60	7.07	6.84	89.17
30 - 34	5.51	6.12	5.82	85.83
35 - 39	4.51	4.87	4.70	88.37
40 - 44	3.43	3.56	3.49	91.96
45 - 49	2.86	2.69	2.77	101.39
50 - 54	2.26	2.76	2.69	90.45
55 - 59	1.86	1.63	1.74	109.21
60 - 64	1.88	1.48	1.73	113.41
65 - 69	1.01	0.96	0.98	100.59
70 - 74	1.15	1.17	1.16	93.28
75+	1.02	1.28	1.16	76.06
NS	0.31	0.34	0.33	88.46
Total	100.00	100.00	100.00	95.39
Total Number	5,083,537	5,329,011	10,412,548	

Table 5.1.1Percent Distribution of the National Populationby Age and Sex, 1992

Source: Central Statistics Ofice "Census 1992, Zimbabwe National Report", Harare 1995, p.15.

The population distribution is shown in Figure 5.1.1, being a population pyramid based on the 1992 national census data. The pyramid is broad-based but narrow at the top, highlighting the large proportion of the population being in the younger age groups. One of the main reasons for this is the relatively high fertility and high but declining mortality rates. The noticeable dent in the pyramid for the 0 to 4 years cohort may be due to either a decline in fertility and/or an increase in the under 5-year olds' mortality rates in recent years.

0

İ

Socio-Economic Profile

Zimbabwe is ranked as a low-income economy^{2/2} by the World Bank. The summary indicators below provide an overview of the socio-economic status of the Zimbabwean population.

GNP per capita (1993)	US\$520
GNP per capita annual average growth 1980-1993	-0.3
Life expectancy at birth	53 years
Adult illiteracy (total)	33%
Adult illiteracy (female)	40%
Infant mortality rate/1,000 live births	67
Under 5 mortality rate/1,000 live births	83
Percentage of age group enrolled in primary education	119
Percentage of age group enrolled in secondary education	48

5.1.2 Study Area

3

The Study Area encompasses the four urban centres of Harare^{3/} (1992 population: 1,189,103), Chitungwiza (1992 population: 274,912), Ruwa (1992 population: 1,447) and Norton (1992 population: 20,405), as well as the communal tenure areas of Seke and Chihota and privately owned commercial farms. The Study Area has an area of 2,700 km² and a population in excess of 1,508,000^{4/}.

Settlement densities are among the highest in the country, with the Harare-Chitungwiza urban areas accounting for 47 percent of the national urban population. Harare's urban area has a settlement density of 1,703 people/km². Settlement density in the rural parts of the Study Area are a lower average of 27 people/km².

The three urban centres of Chitungwiza, Ruwa and Norton are all designated growth points, enjoying tax concessions for newly locating industries. This, coupled with Harare, makes the Study Area one of the fastest growing areas in the country. The area's population growth rates have been estimated at between 6.5 percent to 8.1 percent per annum.

^{2/} Low income economies are those with a GNP per capita of US\$695 or less in 1993.

^{3/} Excluding the north east suburbs, Borrowdale, Helensvale and Glen Lome.

^{4/} Precise population figures are not available as the Study Area boundary does not coincide with the unumeration areas delineated for the national population census.

Demographic Profile

The distribution of the population by age group and gender is shown in the population pyramid in Figure 5.1.2.

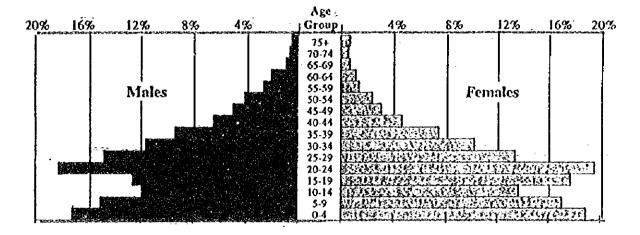


Figure 5.1.2 Population Pyramid, Harare Province, 1992

It can be seen from Figure 5.1.2 that the 0-4 years and 20-24 years age cohorts had the highest proportions of the population each (14 percent). Thirty-five percent of the population is under 15 years. Whilst high, this is 10 percent less than the national percentge of under - 15's, indicating that there is a predominance of working age population in the study area. This is also borne out by the gender ratio. There are more males than females in all the working age cohorts, i.e. between 20 to 70 years old. The sex ratios for Harare Rural, Harare Urban and Chitungwiza are 114, 110 and 101, respectively.

Socio-economic profile

The summary indicators below provide an overview of the socio-economic status of the Study Area population.

Desegregated income data for the population within the Study Area is not available.

Table 5.1.2 sets out the average annual household incomes of rural and urban based households across the country as a whole.

ŧ

	Male	Femal	Male	Femal
Income Source	Heads of	Heads of	Heads of	Heads of
	Households	Househokis	Households	Households
Net Cash Income	5,628	2,011	9,515	5,330
Capital Changes	211	245	794	2,040
Employer	24	2	45	7
Contribution	1,261	1,583	1,108	1,230
Total Net Income	7,124	3,841	11,462	8,607

Table 5.1.2	Average Annual	Household Net Incom	e, 1990 (Z\$)

Source: Central Statistics Office "Consumption, Income Expenditure Survey, 1990/91", Harare, 1992

The table shows that both male and female headed households have substantially higher net incomes than the national average (60.9 percent and 124.1 percent higher than the national average, respectively).

As the bulk of the Study Area population live within urban areas, it may be anticipated that household incomes in the Study Area are higher than the national average.

The following indicators compare the status of the urban population within the Study Area with the national (urban and rural) situation. Overall the population in the Study Area is better than the national average.

Indicator	Harare Province	Zimbabwe
Average Household Size	4.01 perple	4.8 people
Male Headed Households	83%	67%
Education for Population aged 5+		
Never been to school	7%	17%
Currently at school	27%	34%
Left school	65%	49%
Mortality (per 1,000)		
Crude death rate	6.77	9.49
Infant mortality	54	66
Under - 5	19	26
Maternal mortatity		
(per 100,000 live births)	404	395
Activity and Labour Force		
Economically active	66%	33.6%
Unemployed	21%	22%
Housing Conditions		
Electricity	64%	28%
Safe water	98%	77%
Toilet facilities	99.7%	66.0%

 Table 5.1.3
 Socio-Economic Indicators of Harare Province and Zimbabwe

 Sources: Central Statistics Office, GOZ:
 Census 1992 Zimbabwe National Report, Harare, 1994

 Census 1992 Provincial Profile, Harare, Harare, 1994

 Census 1992, Provincial Profile, Mashonaland East, Harare, 1993

 Indicator Monitoring Survey, 1993, Harare, 1994

 Consumption, Income, Expenditure Survey 1990/91, Harare, 1995

S

()

Ħ

Land use in the Upper Manyame River Basin is broken into cultivated land (cropped and fallow), grazing land, forest land, and residential and business-related land. The present land use in the Lake Chivero catchment area is presented in Table 5.2.1 in use of the investigation results on Lake McIlwaine in 1982. About two thirds of the catchment is vegetated and two thirds of the remaining third is cultivated.

Land Use Category	Area (km ²)	Percentage
Grazing Land	1,444	67.6
Cultivated Land	492	23.0
Developed Area	166	7.8
(Residential & Commercial)		
Lakes, Dams, Sewage Works	32	1.5
Others	2	0.1
Total	2,136	100.0

Table 5.2.1 Land Use of the Lake Chivero Catchment Area

The future land use in the urban areas was prepared by urban local authorities for the years 2000, 2005 and 2015. The following outlines the plans of the city/municipality/local boards.

(1) Harare City

About 50 percent (278.64 km²) of the city area (557.45 km²) is currently used for the residential purposes. Future expansion of the city area is expected southward as well as its periphery. The land use plan for the year 2012 in the "Master Plan for Water Distribution", prepared by Department of Works in 1995, is employed as that of the final target year for planning purposes. While, those for the medium target years are projected within the final target area.

Table 5.2.2 show the present and future land use by purpose (residential, business, commercial, etc.). Figure 5.2.1 show the land use plan in the final target year 2015, and Figure 5.2.1 (1) to (3), Section 5.2, Chapter 2, Supporting Report shows the land use in the present and medium target years (2000 and 2005), respectively. Table 5.2.3 presents those by sub-basin in Harare City.

6

0

I

						Unit : km²
	Land Use	بو	Present	2000	2005	2015
		Low Density	210.13	215.06	217.79	233.46
		Medium Density	12.21	24.26	37.02	37.02
	Residential Area	High Density	45.57	58.15	94.45	123.78
		Low/Medium Mixed Density	2.00	2.00	7.83	13.67
		Medium/High Mixed Density	6.01	6.01	6.01	7.47
		High Density High Income	2.72	2.72	2.72	2.72
		Sub-Total	278.64	308.20	365.82	418.12
Harare City	Central Business Area		3.83	3.83	3.83	3.83
	Suburban Business Area	Area	0.00	0.00	0.00	14.38
	Industrial/Commercial Area	ial Area	26.96	31.12	53.00	69.95
	Airport Arca		0.00	15.13	15.13	15.13
	Cemetery Area		0:00	0.00	3.65	3.65
	Open Spaces		248.02	390.32	307.17	223.54
		Total	557.45	748.60	748.60	748.60
	Inside of Study Area	æ	447.10	638.25	638.25	638.25
	Outside of Study Area	ca	110.35	110.35	110.35	110.35
		Low Density	0.00	0.00	0.00	2.14
	Residential Arca	Medium Density	3.35	3.35	3.35	8.26
		High Density	19.47	21.22	21.22	26.67
Chitungwiza		Sub-Total	22.82	24.57	24.57	37.07
Municipality	Industrial Area		1.35	1.35	1.35	9.41
	Town Centre (Commercial) Area	mercial) Area	0.85	0.85	0.85	0.85
	Institutional Area		0.74	0.74	0.74	0.74
	Sewage Treatment Works Area	Works Area	0.93	0.93	0.93	0.93
	Open Spaces		15.31	13.56	13.56	5.50
		Total	42.00	42.00	42.00	54.50

Table 5.2.2 (1) Present and Future Land Use

.

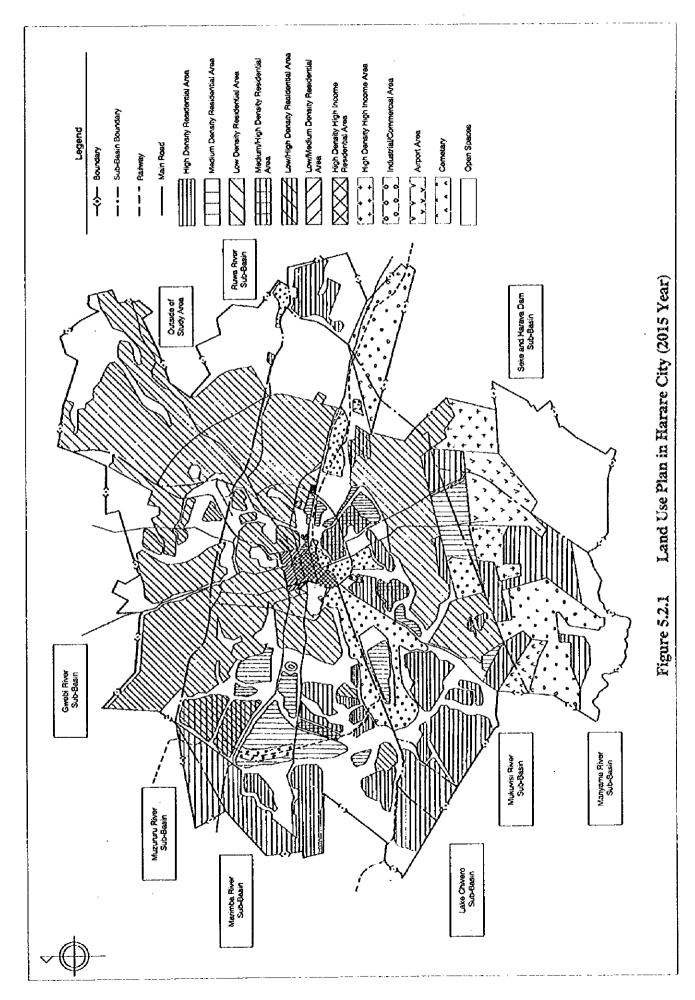
BAGEN

9

ł

Use (cont'd)
ire Land
and Futur
2) Presei
Table 5.2.2 (2)

	Land Use	C	Present	2000	2005	2015
		Low Density	1.83	2.92	5.39	17.95
	Residential Arca	Medium Density	0.20	0.20	2.12	5.50
		High Density	3.25	5.15	5.15	8.00
]		Sub-Total	5.28	8.27	12.66	31.45
Norton Inc	Industrial Area		2.73	2.73	3.86	10.83
Town Council Co	Commercial Area		0.18	0.18	0.18	0.31
In	Institutional Area		0.29	0.29	0.29	1.36
Fa	Farm Land Area		00.00	0.00	1.04	4.90
Se	Sewage Works Area		1.22	1.22	1.22	1.22
Re	Refuse Dumping Area	63	0:00	0.00	0.00	0.56
Ö	Open Spaces		9,80	8.81	7.65	8.97
L		Total	19.50	21.50	26.90	59.60
		Low Density	2.95	3.89	9.44	9.44
	Residential Area	Medium Density	0.18	0.18	0.18	2.66
		High Density	1.76	4.89	6.50	7.50
Ruwa		Sub-Total	4.89	8.96	16.12	19.60
Local Board Inc	Industrial Area		2.11	5.06	5.06	5.06
<u></u>	Commercial Area	-	0.18	0.18	0.59	0.76
Ë	Institutional Area		0.47	0.47	0.47	0.68
ŏ	Open Spaces		23.75	23.73	16.16	12.30
		Total	31.40	38.40	38.40	38.40
	Current Trates	fa]	1 25 722			


(

E

.

5-8

.

9

CENTED

Sub-Basin		Land Use	Present	2000	2005	2015
	Residential Area	Low Density	31.89	32.98	34.80	45.92
Gwebi River		Sub-Total	31.89	32.98	34.80	45.92
Sub-Basin	Open Spaces		34.11	33.02	31.20	20.08
		Total	66.00	66.00	66.00	66.00
			-			
	Residential Area	(High Density	0.00	0.00	7.50	7.50
Muzururu River		Sub-Total	0.00	0.00	7.50	7.50
Sub-Basin	Open Spaces		0.00	7.50	0.00	0.00
		Total	0.00	7.50	7.50	7.50
	Residential Area High Density	High Density	0.00	2.55	8.10	9.74
Lake Chivero		Sub-Total	0.00	2.55	8.10	9.74
Sub-Basin	Open Spaces		11.20	8.65	3.10	1.46
		Total	11.20	11.20	11.20	11.20
		Medium Density	0.00	4.58	4.58	4.58
	Residential Area	[High Density	0.00	1.28	5.66	22.79
Manyame River		Sub-Total	0.00	5.86	10.24	27.37
Sub-Basin	Suburban Business Area	Area	0.00	0.00	0.00	5.65
(Mukuvisi River to	Industrial/Commercial Area	sial Area	0.00	0.88	22.76	22.76
Seke Dam	Seke Dam) Airport Area		0.00	8.93	8.93	8.93
	Cemetery Area		0.00	0.00	2.37	2.37
	Open Spaces		0.00	64.91	36.28	13.50
		Total	0.00	80.58	80.58	80.58

· *

Table 5.2.3 (1) Land Use of Harare City by Sub-Basin

ALLER

5-10

ŧ

(cont'd)
Sub-Basin (c
City by
Land Use of Harare
Table 5.2.3 (2)

Ţ

0

Sub-Basin		Land Use	Present	2000	2005	2015
		Low Density	39.73	39.73	39.73	39.73
		Medium Density	4.74	7.84	19.32	19.32
		High Density	17.50	21.15	35.65	41.13
	Residential Area	Low/Medium Mixed Density	0.00	0.00	5.83	11.67
Marimba River		Medium/High Mixed Density	0.00	0.00	0.00	1.46
Sub-Basin		High Density High Income	0.36	0.36	0.36	0.36
	:	Sub-Total	62.33	69.08	100.89	113.67
	Industrial/Commercial Area		6.56	6.56	6.56	6.56
	Open Spaces		86.71	94,46	62.65	49.87
		Total	155.60	170.10	170.10	170.10
		[Low Density	73.27	73.81	74.72	76.35
-	_1	Medium Density	7.47	11.84	13.12	13.12
-		High Density	22.60	25.51	29.88	32.60
	Residential Arca	Low/Medium Mixed Density	2.00	2.00	2.00	2.00
Mukuvisi River		Medium/High Mixed Density	6.01	6.01	6.01	6.01
Sub-Basin		High Density High Income	2.36	2.36	2.36	2.36
		Sub-Total	113.71	121.53	128.09	132.44
	Central Business Area	rea	3.83	3.83	3.83	3.83
	Industrial/Commercial Area	sial Area	18.76	22.04	22.04	24.23
	Cemetery Area		0.00	0.00	1.28	1.28
	Open Spaces		61.10	66.58	58.74	52.20
		Total	197.40	213.98	213.98	213.98
		-		-		
		Low Density	0.00	3.30	3.30	3.30
	Residential Area	High Density	0.00	2.19	2.19	2.19
Seke & Harava		Sub-Total	0.00	5.49	5.49	5.49
Dam Sub-Basin	Suburban Business Area		0.00	0.00	0.00	8.73
	Airport Arca		0.00	6.20	6.20	6.20
	Open Spaces		0.00	45.54	45.54	36.81
		Total	0.00	57 72	57 73	20 23

5-11

				0000		1.40
Sub-Basin		Land Use	rresent	2000	2002	2045
	Residential Area High Density	High Density	5.29	5.29	5.29	7.65
Ruwa River		Sub-Total	5.29	5.29	5.29	7.65
Sub-Basin	Industrial/Commercial Area	ial Area	0.00	0.00	0.00	14.76
	Open Spaces		11.61	26.37	26.37	9.25
		Total	16.90	31.66	31.66	31.66
	Residential Area Low Density	Low Density	65.24	65.24	65.24	68.16
	Residential Area	Low Density	65.24	65.24	65.24	68.16
		High Density	0.18	0.18	0.18	0.1S
Dutside of Study		Sub-Total	65.42	65.42	65.42	68.34
Area	Industrial/Commercial Area	ial Area	1.64	1.64	1.64	1.64
	Open Spaces		43.29	43.29	43.29	40.37
		Total	110.35	110.35	110.35	110.35
	Grand Total	121	557.45	748.60	748.60	748.60

.

Table 5.2.3 (3) Land Use of Harare City by Sub-Basin (cont'd)

-

•

-

•

-

t

(2) Chitungwiza Municipality

R)

2

鬣

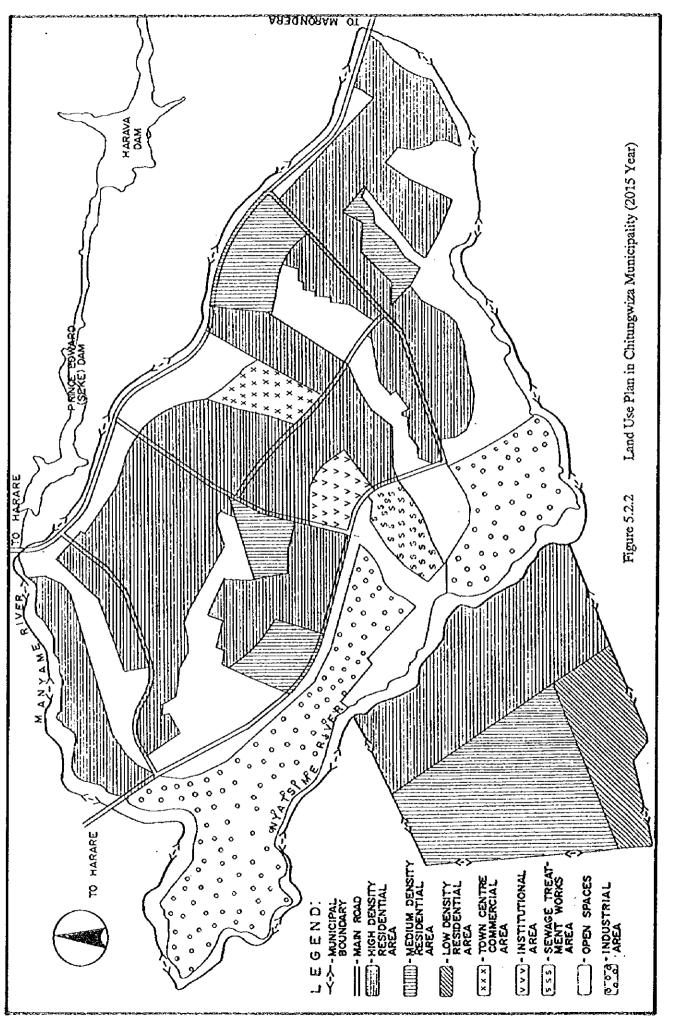

Currently the residential area comprises high and medium density areas without any low density areas. Furthermore, most of the area is covered by high density development (22.82 km²) accounting for more than 50% of the municipal area. Future expansion of the municipal area is projected on the left bank area of the Nyatsime River. A future land use plan was prepared by the Engineering Services Department based on the "Harare Combination Master Plan, 1992".

Table 5.2.2 shows the present and future land use by different land use purposes. Figure 5.2.2 shows the land use plan in the final target year 2015, and Figure 5.2.2 (1) to (3), Section 5.2, Chapter 2, Supporting Report shows the land use in the present and medium target years (2000 and 2005) respectively. Table 5.2.4 presents those by sub-basin in the municipality.

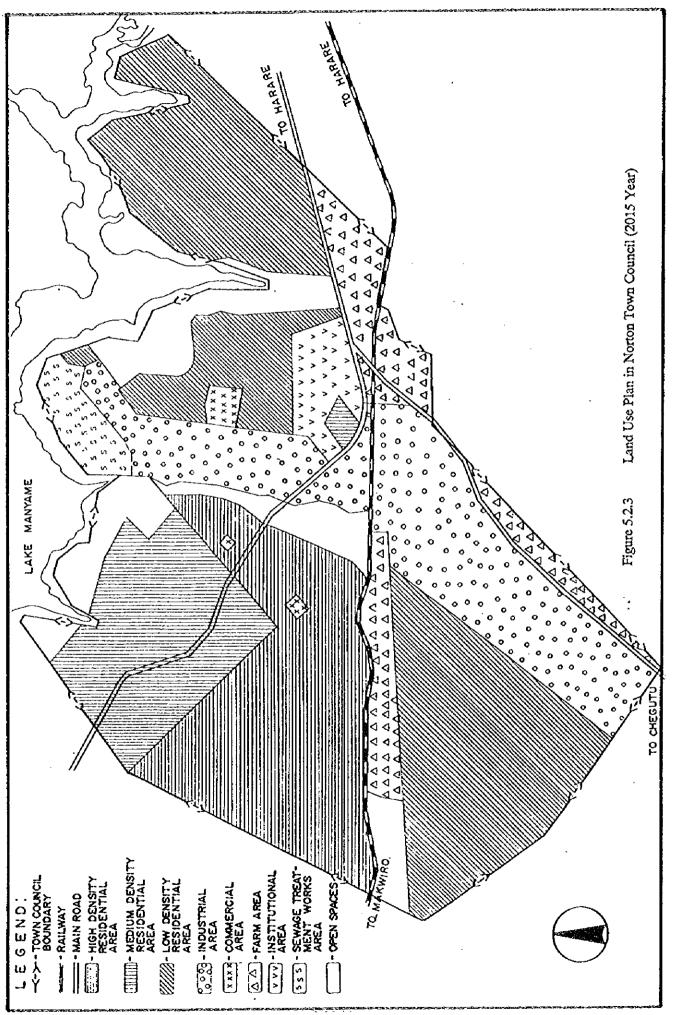
(3) Norton Town Council

About 30 percent of the town area is presently used for residential purposes. Of the residential area, more than 60 percent is occupied by high density development. The ratio of industrial area to the town area is comparatively high (14%). Development of the town area will be directed towards south, east and west of the town center through the future. A future land use plan, the "Norton Master Plan, October, 1995" was prepared by the Norton Town Council.

The land use for the year 2015 in the plan is adopted for this planning and those for medium target years were prepared by Town Engineering Department as shown in Table 5.2.2 and Figure 5.2.3 and Figure 5.2.3 (1) to (3), Section 5.2, Chapter 2, Supporting Report. The town area in 2015 is projected at about three times of present area (19.5 km² to 59.6 km²). Table 5.2.5 presents those by sub-basin in the town.

ß

C


-Basin
oy Sub
funicipality l
hitungwiza N
Jse of C
Land U:
Table 5.2.4

Sub-Basin		Land Use	Present	2000 Year	2005 Year	2015 Year
Manyame River	Residential Area [High Density	High Density	1.69	3.44	3.44	3.44
Sub-Basin		Sub-Total	1.69	3.44	3.44	3.44
(Mukuvisi River to Industrial Area	industrial Area		00.00	0.00	0.00	1.48
Seke Dam)[Seke Dam) Open Spaces		7.21	5.46	5.46	3.98
		Total	8.90	8.90	8.90	8.90
		Low Density	0.00	0.00	0.00	2.14
	Residential Arca		3.35	3.35	3.35	8.26
		High Density	17.78	17.78	17.78	23.23
		Sub-Total	21.13	21.13	21.13	33.63
Nyatsime River	Industrial Area		1.35	1.35	1.35	7.93
	Town Centre (Commercial) Area	mercial) Arca	0.85	0.85	0.85	0.85
م. م	Institutional Area		0.74	0.74	0.74	0.74
••••	Sewage Treatment Works Area	Works Area	0.93	0.93	0.93	0.93
	Open Spaces	-	8.10	8.10	8.10	1.52
d		Total	33.10	33.10	33.10	45.60
	Connel Total	•~ f	VV C+		12 00	

9

Ĩ

5-15

Ć

Sub-Basin		Land Use	Present	2000	2005	2015
		Low Density	1.83	2.92	5.39	17.95
	Residential Area	Medium Density	0.20	0.20	2.12	5.50
		High Density	3.25	5.15	5.15	8.00
		Sub-Total	5.28	8.27	12.66	31.45
	Industrial Area		2.73	2.73	3.86	10.83
Lake Manyame	Commercial Area		0.18	0.18	0.18	0.31
Sub-Basin	Institutional Area		0.29	0.29	0.29	1.36
	Farm Land Area		0.00	0.00	1.04	4,90
	Sewage Works Area	53	1.22	1.22	1.22	1.22
	Refuse Dumping Arca	rea	0.00	0.00	0.00	0.56
	Open Spaces		9.80	8.81	7.65	8.97
		Total	19.50	21.50	26.90	29.65

Table 5.2.5 Land Use of Norton Town Council by Sub-Basin

<u>S</u>

J

9

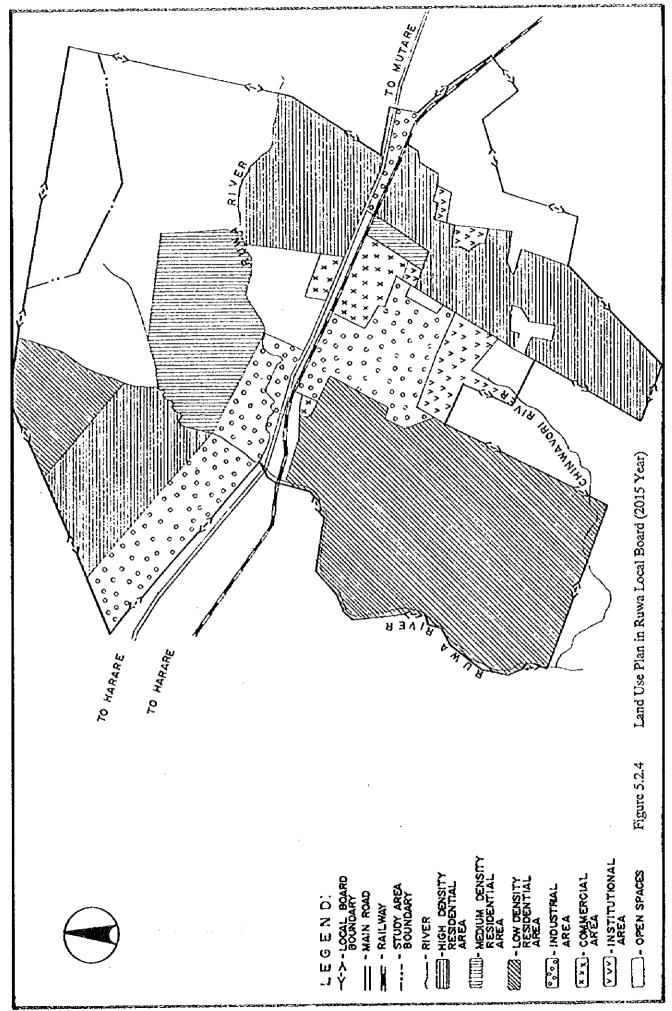
5-17

(4) Ruwa Local Board

Presently the residential area is only 15 percent of its jurisdiction, while more than 70 percent is not yet utilized (open space: 23.75 km^2). Future urbanization is expected in the undeveloped area, especially north area of railway. Further expansion of the urban area is also projected in the southwestern and southeastern areas of the town. The future land use plan prepared by Ruwa Local Board for the "Ruwa Growth Point" is used for the planning.

0

8


I

:

Table 5.2.2 and Figure 5.2.4 and Figure 5.2.4 (1) to (3), Section 5.2, Chapter 2, Supporting Report shows present and future land use in the Study Area. Table 5.2.6 presents those by sub-basin in the Local Board.

(5) Epworth Local Board

No data is available as of July, 1996.

Ð

ľ

7. L 7		Tord Time	Descent		2000	2000
וווכטערטטט		רמות כאר	17725777	~~~~	2007	CT 0.7
		Low Density	2.95	3.89	9.44	9.44
	Residential Area		0.18	0.18	0.18	2.66
		High Density	1.76	4.89	6.50	7.50
Ruwa River		Sub-Total	4.89	8.96	16.12	19.60
Sub-Basin	Industrial Area		2.11	5.06	5.06	5.06
	Commercial Area		0.18	0.18	0.59	0.76
	Institutional Area		0.47	0.47	0.47	0.68
	Open Spaces		23.75	23.73	16.16	12.30
		Total	31.40	38.40	38.40	38.40
	Outside of Study Area	63	0.60	0.60	0.60	0.60
	Grand Total	stal	32.00	39.00	30.00	10.00

Table 5.2.6 Land Use of Ruwa Local Board by Sub-Basin

5-20

873