Chapter 8 Tech-Economic Assessment of Important Issue in Energy Sectro

# Chapter 8 Tech-Economic Assessment of Important Issues in Energy Sector

### 8.1 Comparison of Electricity Generation System

Figure 8.1.1 shows the comparison of generation costs among 4 types of power generation (Diesel, GT, CCGT and Coal) as compiled by ESMAP, by Kennedy & Donkin, and by JICA study team. It is noted, that the data by the JICA team was compiled with the data of Southeast Asian and other developing countries taken into account.

The ESMAP data are hard to use for comparison as they only have one point per item. The Kennedy & Donkin data are, however, seen to show almost the same trend as that of the JICA study team data.

On the basis of these generation cost figures, the power generation costs for various types of power generation are shown in Tables 8.1.1 through 8.1.4, with the utilization rate taken as the variables. It is noted, that these data are compiled for 1995(just fuel price are based on Dec.21,1996. refer to Table 8.1.5), and the fuels for the GTs and the CCGTs are compared for both kerosene and gasoil.

Figure 8.1.2-3 show screening curves for these types of power generation.

From these diagrams, it is seen that GTs are appropriate for the peak demand response, and CCGTs are appropriate for the intermediate load, with diesels being appropriate for the base load.

The reasons are as follows,

- (1) When CCGTs are employed, GTs will be installed on the power system in advance for peak demand. These GTs will be usable later with only the additional installation of Sts. This provides a greater certainty of securing power supply sources.
- (2) For the above reason also, facility delivery time and construction time would be shortened when CCGTs are employed.
- (3) When the maintenance work is compared, CCGTs are more convenient than diesels.

From now on, in planning the power development schemes for the next 30 years, the JICA study team will employ CCGTs for supply to the intermediate load and for the base load up to 2020 and Coal-Fired thermal for the base load after 2021.





を

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trit                                   | -        |                | Financial | icial  |        |        |          |              | Ecconomic | omic   |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|----------------|-----------|--------|--------|--------|----------|--------------|-----------|--------|----------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                   | حد       | ΕĊ             | T.        | CT     | GT     | GT     | GT       | GT           | GT        | GT     | GT       | GT          |
| Flant Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | kerosene | kerosene       | kerosene  | Gasoil | Gasoil | Gasoil | kerosene | kerosene     | kerosene  | Gasoil | Gasoil   | Gasoil      |
| ruei<br>Trait Consolitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WW                                     | 30       | 50             | 75        | 30     | 50     | 75     | 30       | 20           | 75        | 30     | 20       | 75          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br> -<br> -<br> -<br> -<br> -<br> - | ) -      | ,              | -         | (ana)  | -      | ₩      | <b>—</b> | ₹~~ <b>!</b> | -         | -      | <b>=</b> | <b>,</b> -4 |
| A THE PROPERTY OF THE PROPERTY | ğ                                      | · &      | ` <del>S</del> | - 06      | . 06   | 96     | 96     | 90       | 90           | 8         | 96     | 6        | 8           |
| Amual Flam Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S.W.                                   | 737      | 394            | 591       | 237    | 394    | 591    | 237      | 394          | 591       | 237    | 394      | 591         |
| Service Life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Years                                  | 20       | 20             | 20        | 20     | 20     | 20     | 20       | 20           | 20        | 20     | 20       | 20          |
| Scheduled Outsoe Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 12       | 12             | 12        | 12     | 12     | 12     | 12       | 12           | 12        | 12     | 12       | 12          |
| Forced Outson Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                      | 4        | 4              | 4         | 4      | 4      | 4      | 4        | 4            | 4         | 4      | 4        | 4           |
| Construction Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US\$/kW                                | 520      | 480            | 450       | 520    | 480    | 450    | 520      | 480          | 450       | 520    | 480      | 450         |
| Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                      | 12       | 12             | 12        | 12     | 12     | 12     | 12       | 12           | 12        | 12     | 12       | 12          |
| Canital Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 0.142    | 0.142          | 0.142     | 0.142  | 0.142  | 0.142  | 0.142    | 0.142        | 0.142     | 0.142  | 0.142    | 0.142       |
| Conital Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | USS/kW                                 | 73.84    | 68.16          | 63.90     | 73.84  | 68.16  | 63.90  | 73.84    | 68.16        | 63.90     | 73.84  | 68.16    | 63.90       |
| OM Annual Fixed Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USS/kW                                 | 5.30     | 3.84           | 3.15      | 5.30   | 3.84   | 3.15   | 5.30     | 3.84         | 3.15      | 5.30   | 3.84     | 3.15        |
| Fixed Cost Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USS/kW                                 | 79.14    | 72.00          | 67.05     | 79.14  | 72.00  | 67.05  | 79.14    | 72.00        | 67.05     | 79.14  | 72.00    | 67.05       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US\$/kWh                               | 0.010    | 0.000          | 0.00      | 0.010  | 0.006  | 0.00   | 0.010    | 0.009        | 0.00      | 0.010  | 0.00     | 0.000       |
| Firel Caloric Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kcal/kg                                | 10,366   | 10,366         | 10,366    | 10,366 | 10,366 | 10,366 | 10,366   | 10,366       | 10,366    | 10,366 | 10,366   | 10,366      |
| Fire Heat Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kcal/kWh                               | 2.914    | 2,818          | 2,532     | 2,914  | 2,818  | 2,532  | 2,914    | 2,818        | 2,532     | 2,914  | 2,818    | 2,532       |
| Fuel Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | US\$/kg                                | 0.3211   | 0.3211         | 0.3211    | 0.4357 | 0.4357 | 0.4357 | 0.254    | 0.254        | 0.254     | 0.2659 | 0.2659   | 0.2659      |
| Unit Fuel Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | US\$/kWh                               | 060.0    | 0.087          | 0.078     | 0.122  | 0.118  | 0.106  | 0.071    | 0.069        | 0.062     | 0.075  | 0.072    | 0.065       |
| Variable O/M Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US\$/kWh                               | 0.002    | 0.002          | 0.003     | 0.005  | 0.007  | 0.005  | 0.005    | 0.002        | 0.002     | 0.002  | 0.002    | 0.002       |
| Variable Cost Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US\$/kWh                               | 0.092    | 0.089          | 0.080     | 0.124  | 0.120  | 0.108  | 0.073    | 0.071        | 0.064     | 0.076  | 0.074    | 990.0       |
| Total Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | US\$/kWh                               | 0.102    | 0.098          | 0.088     | 0.134  | 0.129  | 0.116  | 0.083    | 0.080        | 0.072     | 0.086  | 0.083    | 0.075       |
| Operating Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |          |                |           |        |        | 1      | 1        | į            | 7         | 0.1666 | 0.1750   | 0 1225      |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US\$/kWh                               | 0.1711   | 0.1609         | 0.1470    | 0.2033 | 0.1921 | 0.1750 | 0.1522   | 0.142/       | 0.1300    | U.1333 | 0.1439   | 0.1333      |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US\$/kWh                               | 0.1183   |                | 0.1023    | 0.1505 | 0.1441 | 0.1303 | 0.0994   | 0.0947       | 0.0859    | 0.1028 | 0.0979   | 0.0888      |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 0.1077   | 0.1033         | 0.0933    | 0.1400 | 0.1345 | 0.1213 | 0.0889   | 0.0851       | 0.0769    | 0.0922 | 0.0883   | 0.0799      |
| 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US\$/kWh                               | 0.1032   | 0.0992         | 0.0895    | 0.1354 | 0.1303 | 0.1175 | 0.0844   | 0.0809       | 0.0731    | 0.0877 | 0.0842   | 0.0760      |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US\$/kWh                               | 0.1018   | 0.0979         | 0.0883    | 0.1340 | 0.1291 | 0.1163 | 0.0829   | 0.0797       | 0.0719    | 0.0863 | 0.0829   | 0.0748      |
| 0928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US\$/kWh                               | 0.1009   | 0.0971         | 0.0876    | 0.1332 | 0.1283 | 0.1156 | 0.0821   | 0.0789       | 0.0712    | 0.0854 | 0.0821   | 0.0741      |

# Table 8.1.2 COMPARISON OF GENERATION COST OF CCGT

| Tred!                                 | Tinit          |                  | W. C. | Financia | ıcial  |        |        |          |          | Ecconomic | omic   |          |          |
|---------------------------------------|----------------|------------------|-------------------------------------------|----------|--------|--------|--------|----------|----------|-----------|--------|----------|----------|
| Dlast Tracs                           |                |                  | CCGT                                      | LEUU     | CCGT   | CCGT   | CCGT   | CCGT     | LOCO     | LECCI     | CCGT   | CCGT     | CCGT     |
| riall Type                            |                | 100001           | l'orosene                                 | Lerosene | Gasoil | Gasoil | Gasoil | kerosene | kerosene | kerosene  | Gasoil | Gasoil   | Gasoil   |
| i i i i i i i i i i i i i i i i i i i | ,              | NCIOSCIIC<br>100 | 150                                       | 2020124  | 100    | 150    | 225    | 100      | 150      | 225       | 100    | 150      | 225      |
| Unit Capacity                         | ×              |                  | OCT .                                     | (277     | 25 6   | 5 .    | ,      | 5 -      | 5 -      |           |        | 5 6      | 2±1      |
| Number of Unit                        | 5 <b>0</b> 504 | 2+1              | 2+1                                       | 7+1      | 7+7    | 7+7    | 1+7    | T+7      | T : 7    | 7+7       | 7 + 7  | 147      | 7 (P)    |
| Annual Plant Factor                   | 8              | 80               | 8                                         | 8        | 80     | 80     | 08     | 80       | 8        | 80        | &<br>& | <u>@</u> | 08<br>80 |
| Annual Energy                         | GWh            | 701              | 1,051                                     | 1,577    | 701    | 1,051  | 1,577  | 701      | 1,051    | 1,577     | 701    | 1,051    | 1,577    |
| Service Life                          | Years          | 20               | 20                                        | 20       | 20     | 20     | 20     | 20       | 20       | 20        | 20     | 20       | 20       |
| Scheduled Outage Ratio                | %              | 1.5              | 15                                        | 15       | 15     | 15     | 15     | 15       | 15       | 15        | 15     | 15       | 15       |
| Forced Outage Ratio                   | %              | 4.5              | 4.5                                       | 4.5      | 4.5    | 4.5    | 4.5    | 4.5      | 4.5      | 4.5       | 4.5    | 4.5      | 4.5      |
| Construction Cost                     | US\$/kW        | 770              | 929                                       | 570      | 770    | 670    | 570    | 770      | 929      | 570       | 770    | 670      | 570      |
| Discount Rate                         | 8              | 12               | 12                                        | 12       | 12     | 12     | 12     | 12       | 12       | 12        | 12     | 12       | 12       |
| Capital Recovery                      |                | 0.15             | 0.15                                      | 0.15     | 0.15   | 0.15   | 0.15   | 0.15     | 0.15     | 0.15      | 0.15   | 0.15     | 0.15     |
| Capital Cost                          | US\$/kW        | 115.50           | 100.50                                    | 85.50    | 115.50 | 100.50 | 85.50  | 115.50   | 100.50   | 85.50     | 115.50 | 100.50   | 85.50    |
| O/M Annual Fixed Cost                 | US\$/kW        | 7.64             | 6.64                                      | 5.59     | 7.64   | 6.64   | 5.59   | 7.64     | 6.64     | 5.59      | 7.64   | 6.64     | 5.59     |
| Fixed Cost Total                      | US\$/kW        | 123.14           | 107.14                                    | 91.09    | 123.14 | 107.14 | 91.09  | 123.14   | 107.14   | 91.09     | 123.14 | 107.14   | 91.09    |
|                                       | US\$/kWh       | 0.018            | 0.015                                     | 0.013    | 0.018  | 0.015  | 0.013  | 0.018    | 0.015    | 0.013     | 0.018  | 0.015    | 0.013    |
| Fuel Caloric Rate                     | kcal/kg        | 10,366           | 10,366                                    | 10,366   | 10,366 | 10,366 | 10,366 | 10,366   | 10,366   | 10,366    | 10,366 | 10,366   | 10,366   |
| Fuel Heat Rate                        | kcal/kWh       | 1,861            | 1,763                                     | 1,706    | 1,861  | 1,763  | 1,706  | 1,861    | 1,763    | 1,706     | 1,861  | 1,763    | 1,706    |
| Fuel Price                            | US\$/kg        | 0.3211           | 0.3211                                    | 0.3211   | 0.4357 | 0.4357 | 0.4357 | 0.254    | 0.254    | 0.254     | 0.2659 | 0.2659   | 0.2659   |
| Unit Fuel Cost                        | US\$/kWn       | 0.058            | 0.055                                     | 0.053    | 0.078  | 0.074  | 0.072  | 0.046    | 0.043    | 0.042     | 0.048  | 0.045    | 0.044    |
| Variable O/M Cost                     | US\$/kWh       | 0.004            | 0.003                                     | 0.003    | 0.004  | 0.003  | 0.003  | 0.004    | 0.003    | 0.003     | 0.004  | 0.003    | 0.003    |
| Variable Cost Total                   | US\$/kWh       | 0.061            | 0.058                                     | 0.056    | 0.082  | 0.078  | 0.075  | 0.049    | 0.047    | 0.045     | 0.051  | 0.049    | 0.047    |
| Total Cost                            | US\$/kWh       | 0.079            | 0.073                                     | 0.069    | 0.099  | 0.093  | 0.088  | 0.067    | 0.062    | 0.058     | 0.069  | 0.064    | 0.060    |
| Operating Hours                       |                |                  |                                           |          |        |        |        |          |          |           |        |          |          |
| 1000                                  | US\$/kWh       | 0.1844           | 0.1652                                    | 0.1472   | 0.2050 | 0.1847 | 0.1661 | 0.1724   | 0.1538   | 0.1362    | 0.1745 | 0.1558   | 0.1381   |
| 3000                                  | US\$/kWh       | 0.1024           | 0.0938                                    | 0.0865   | 0.1229 | 0.1133 | 0.1053 | 0.0903   | 0.0824   | 0.0754    | 0.0924 | 0.0844   | 0.0774   |
| 2000                                  | US\$/kWh       | 0.0859           | 0.0795                                    | 0.0743   | 0.1065 | 0.0990 | 0.0932 | 0.0739   | 0.0681   | 0.0633    | 0.0760 | 0.0701   | 0.0652   |
| 7000                                  | US\$/kWh       | 0.0789           | 0.0734                                    | 0.0691   | 0.0995 | 0.0929 | 0.0880 | 0.0669   | 0.0620   | 0.0581    | 0.0690 | 0.0640   | 0.0600   |
| 8000                                  |                | 0.0767           | 0.0715                                    | 0.0675   | 0.0973 | 0.0910 | 0.0864 | 0.0647   | 0.0601   | 0.0564    | 0.0668 | 0.0621   | 0.0584   |
| 0928                                  | US\$/kWh       | 0.0754           | 0.0703                                    | 0.0665   | 0.0959 | 0.0898 | 0.0854 | 0.0633   | 0.0589   | 0.0555    | 0.0655 | 0.0609   | 0.0574   |
|                                       |                |                  |                                           |          |        |        |        |          |          |           |        |          |          |



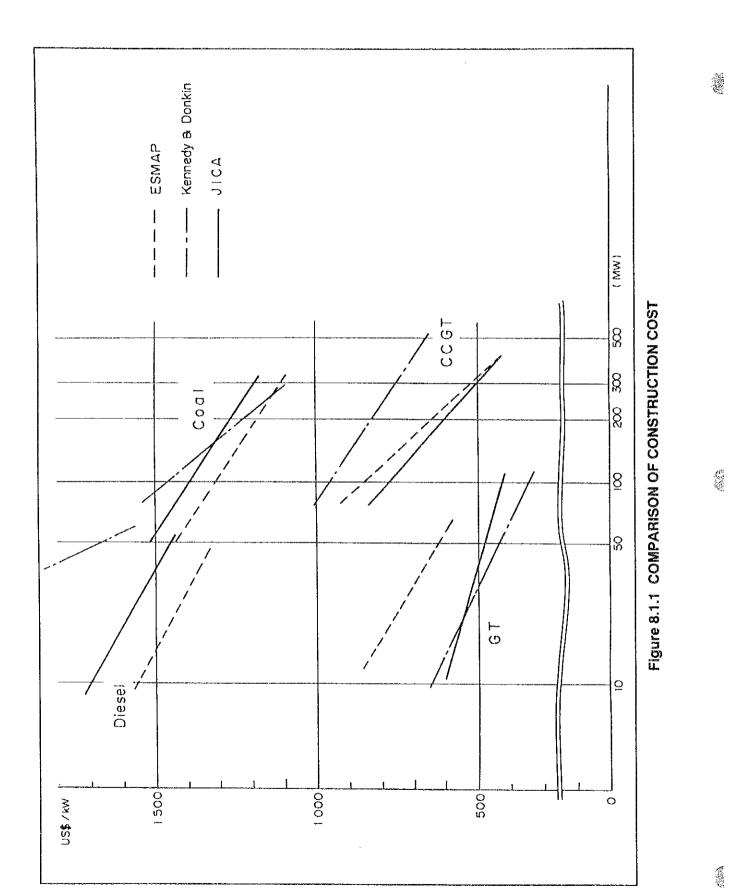
Table 8.1.3 COMPARISON OF GENERATION COST OF DIESEL

製器質

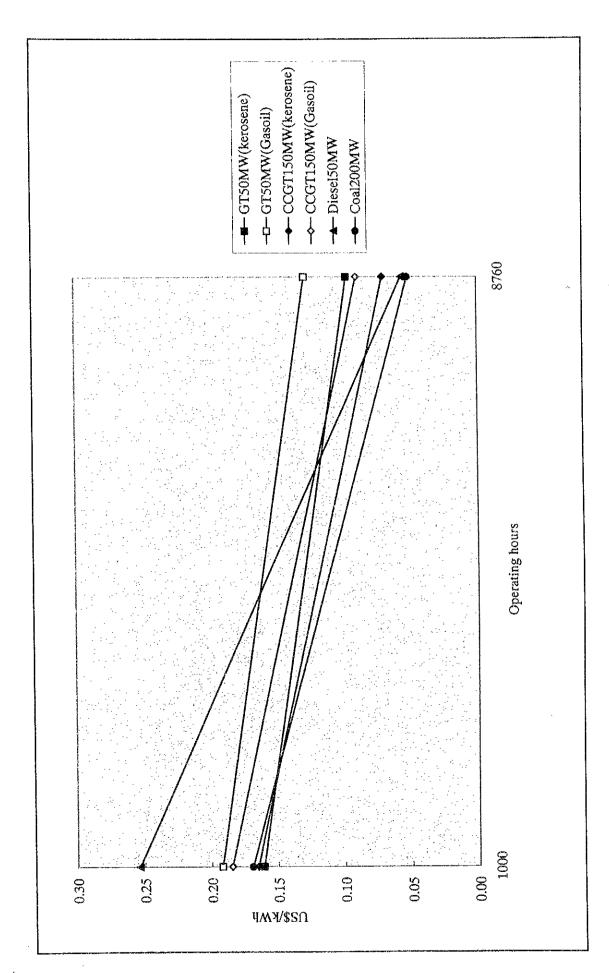
| me 1                   | Linii    |        | Financial     |            | 1      | Ессопотіс |            |
|------------------------|----------|--------|---------------|------------|--------|-----------|------------|
| Dlant Tune             |          | Diesel | Diesel        | Diesel     | Diesel | Diesel    | Diesel     |
| First 17pv             |          | HFO    | HFO           | HFO        | HFO    | HFO       | HFO        |
| Init Capacity          | MW       | 30     | 40            | 50         | 30     | 40        | 20         |
| Number of Unit         |          |        | <del></del> 1 | <b>~</b> ~ | ⊷      | H         | <b>⊷</b> 4 |
| Annual Plant Factor    | %        | 77     | 77            | 77         | 77     | 77        | 77         |
| Annual Energy          | GWh      | 202    | 270           | 337        | 202    | 270       | 337        |
| Service Life           | Years    | 25     | 25            | 25         | 25     | 25        | 25         |
| Scheduled Outage Ratio | %        | 12     | 12            | 12         | 12     | 12        | 12         |
| Forced Outage Ratio    | %        | S      | S             | S          | 3      | 'n        | 5          |
| Construction Cost      | US\$/kW  | 1,530  | 1,480         | 1,450      | 1,530  | 1,480     | 1,450      |
| Discount Rafe          | 89       | 12     | 12            | 12         | 12     | 12        | 12         |
| Canital Recovery       |          | 0.143  | 0.143         | 0.143      | 0.143  | 0.143     | 0.143      |
| Capital Cost           | US\$/kW  | 218.79 | 211.64        | 207.35     | 218.79 | 211.64    | 207.35     |
| O/M Annual Fixed Cost  | US\$/kW  | 20.54  | 17.55         | 15.34      | 20.54  | 17.55     | 15.34      |
| Fixed Cost Total       | US\$/kW  | 239.33 | 229.19        | 222.69     | 239.33 | 229.19    | 222.69     |
|                        | US\$/kWh | 0.035  | 0.034         | 0.033      | 0.035  | 0.034     | 0.033      |
| Fuel Caloric Rate      | kcal/kg  | 9,673  | 9,673         | 9,673      | 9,673  | 9,673     | 9,673      |
| Fuel Heat Rate         | kcal/kWh | 1,841  | 1,841         | 1,841      | 1,841  | 1,841     | 1,841      |
| Fuel Price             | US\$/kg  | 0.1529 | 0.1529        | 0.1529     | 0.121  | 0.121     | 0.121      |
| Unit Fuel Cost         | US\$/kWh | 0.029  | 0.029         | 0.029      | 0.023  | 0.023     | 0.023      |
| Variable O/M Cost      | US\$/kWh | 0.003  | 0.003         | 0.002      | 0.003  | 0.003     | 0.002      |
| Variable Cost Total    | US\$/kWh | 0.032  | 0.032         | 0.031      | 0.026  | 0.026     | 0.025      |
| Total Cost             | US\$/kWh | 0.067  | 0.066         | 0.064      | 0.061  | 090:0     | 0.058      |
| Operating Hours        |          |        |               |            |        | i         | !          |
| 1000                   | US\$/kWh | 0.2713 | 0.2608        | 0.2538     |        | 0.2547    | 0.2477     |
| 3000                   | US\$/kWh | 0.1118 | 0.1080        | 0.1053     | 0.1057 | 0.1019    | 0.0993     |
| 2000                   | US\$/kWh | 0.0799 | 0.0774        | 0.0756     | 0.0738 | 0.0714    | 0.0696     |
| 7000                   | US\$/kWh | 0.0662 | 0.0643        | 0.0629     | 0.0601 | 0.0583    | 0.0568     |
| 8000                   | US\$/kWh | 0.0619 | 0.0602        | 0.0589     | 0.0558 | 0.0542    | 0.0529     |
| 8760                   | US\$/kWh | 0.0593 | 0.0578        | 0.0565     | 0.0532 | 0.0517    | 0.0505     |

Table 8.1.4 COMPARISON OF GENERATION COST OF COAL

| ctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Item                   | Unit     |        | Financial |        | E      | Ecconomic |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------|-----------|--------|--------|-----------|--------|
| ctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |          | Coal   | Coai      | Coal   | Coal   | Coal      | Coal   |
| ctor % 71 71 71 71 71 71 6Wh 622 1,244  Years 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel                   | ****     | Coal   | Coai      | Coal   | Coal   | Coal      | Coal   |
| tor %% 71 71 71  GWh 622 1,244  Years 25 25  ge Ratio % 6 6  st US\$/kW 1,390 1,270  US\$/kW 125.10 114.30  US\$/kW 125.10 114.30  US\$/kW 125.10 114.30  US\$/kW 26.9 18.27  US\$/kWh 0.024 0.021  US\$/kWh 0.024 0.021  US\$/kWh 0.035 0.035  US\$/kWh 0.035 0.035  US\$/kWh 0.037 0.035  US\$/kWh 0.061 0.061  US\$/kWh 0.067 0.063  S000 US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.067 0.0631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit Capacity          | ΜW       | 100    | 200       | 300    | 100    | 200       | 300    |
| ed Cost US\$/kW 1,390 1,270  ed Cost US\$/kW 1,390 1,270  US\$/kW 1,390 1,270  US\$/kW 1,390 1,270  US\$/kW 125.10 114.30  US\$/kW 26.9 18.27  US\$/kW 0.024 0.021  US\$/kW 0.024 0.021  US\$/kW 0.035 0.035  US\$/kWh 0.035 0.035  US\$/kWh 0.037 0.035  US\$/kWh 0.037 0.058  US\$/kWh 0.061 0.061  US\$/kWh 0.067 0.063  US\$/kWh 0.067 0.063  US\$/kWh 0.067 0.063  US\$/kWh 0.067 0.0631  US\$/kWh 0.067 0.0631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of Unit         |          |        | 2         | 3      | П      | 2         | 33     |
| ge Ratio         %         1,244           ye ario         %         6         6           st         US\$/kW         1,390         1,270           st         US\$/kW         1,230         1,270           cd Cost         US\$/kW         125.10         114.30           ed Cost         US\$/kW         125.10         114.30           ed Cost         US\$/kW         152         132.57           US\$/kW         0.024         0.021           e         kcal/kWh         2,799         2,799           US\$/kWh         0.0775         0.035           uS\$/kWh         0.001         0.001           tal         US\$/kWh         0.061         0.058           1000         US\$/kWh         0.061         0.063           2000         US\$/kWh         0.061         0.063           2000         US\$/kWh         0.061         0.063           2000         US\$/kWh         0.061         0.063           2000         US\$/kWh         0.067         0.063           2000         US\$/kWh         0.067         0.063           2000         US\$/kWh         0.0651         0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Annual Plant Factor    | %        | 71     | 77        | 7.1    | 71     | 71        | 71     |
| Fears 25 25  se Ratio % 6 6  st 12 12  Catio % 6 6  st 12 12  CuS\$/kW 1,390 1,270  CuS\$/kW 125.10 114.30  CuS\$/kW 26.9 18.27  CuS\$/kW 152 132.57  CuS\$/kW 0.024 0.021  CuS\$/kW 0.024 0.021  CuS\$/kW 0.005 0.035  CuS\$/kW 0.005 0.035  CuS\$/kW 0.005 0.035  CuS\$/kW 0.005 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual Energy          | GWh      | 622    | 1,244     | 1,866  | 622    | 1,244     | 1,866  |
| ed Cost US\$/kW 1,390 1,270  v US\$/kW 1,390 1,270  v US\$/kW 125.10 114.30  ed Cost US\$/kW 152.10 114.30  US\$/kW 152.10 114.30  US\$/kW 0.024 0.021  US\$/kWh 0.024 0.021  US\$/kWh 0.035 0.035  US\$/kWh 0.035 0.035  US\$/kWh 0.035 0.035  US\$/kWh 0.061 0.001  US\$/kWh 0.067 0.061  US\$/kWh 0.067 0.068  SOOO US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.067 0.0631  TOOO US\$/kWh 0.0657 0.0636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service Life           | Years    | 25     | 25        | 25     | 25     | 25        | 25     |
| ed Cost US\$/kW 1,390 1,270  v 0.09 1,270  v 0.09 0.09  v 0.05/kW 125.10 114.30  uS\$/kW 125.10 114.30  uS\$/kW 152 132.57  uS\$/kW 0.024 0.021  vst US\$/kW 0.0024 0.021  uS\$/kWh 0.0024 0.003  uS\$/kWh 0.0035 0.035  uS\$/kWh 0.001 0.001  uS\$/kWh 0.0057 0.058  1000 US\$/kWh 0.061 0.063  vst US\$/kWh 0.067 0.063  vst US\$/kWh 0.061 0.063  vst US\$/kWh 0.067 0.063  vst US\$/kWh 0.067 0.063  vst US\$/kWh 0.067 0.063  vst US\$/kWh 0.067 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scheduled Outage Ratio | %        | 12     | 12        | 12     | 12     | 12        | 12     |
| st US\$/kW 1,390 1,270  """ 12 12  """ 0.09 0.09  US\$/kW 125.10 114.30  US\$/kW 152 132.57  US\$/kW 0.024 0.021  US\$/kW 0.024 0.021  US\$/kW 0.0075 0.075  US\$/kW 0.001 0.001  US\$/kW 0.005 0.003  US\$/kW 0.005 0.003  US\$/kW 0.005 0.003  US\$/kW 0.005 0.005  US\$/kW 0.005 0.005  US\$/kW 0.005 0.005  US\$/kW 0.005 0.005  US\$/kW 0.0057 0.0058  US\$/kW 0.0057 0.0058  US\$/kW 0.0057 0.0058  US\$/kW 0.0057 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Forced Outage Ratio    | %        | 9      | 9         | 9      | 9      | 9         | 9      |
| ed Cost US\$/kW 125.10 114.30   US\$/kW 26.9 0.09 0.09   US\$/kW 125.10 114.30   US\$/kW 152 132.57   US\$/kWh 0.024 0.021   US\$/kWh 2,799 2,799   US\$/kWh 0.035 0.035   US\$/kWh 0.035 0.035   US\$/kWh 0.035 0.035   US\$/kWh 0.061 0.001   US\$/kWh 0.061 0.061   US\$/kWh 0.065 0.065   US\$/kWh 0.067 0.065   US\$/kWh 0.067 0.063    US\$/kWh 0.067 0.063    US\$/kWh 0.067 0.063    US\$/kWh 0.067 0.063    US\$/kWh 0.067 0.0656    US\$/kWh 0.0657 0.0656    US\$/kWh 0.0657 0.0657    US\$/kWh 0.0657 0.0658    US\$/kWh 0.0657 0.0653    US\$/kWh 0.0657 0.0658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Construction Cost      | US\$/kW  | 1,390  | 1,270     | 1,190  | 1,390  | 1,270     | 1,190  |
| ed Cost US\$/kW 125.10 114.30 US\$/kW 125.10 114.30 US\$/kW 152 132.57 US\$/kWh 0.024 0.021 E kcal/kg 6,160 6,160 US\$/kg 0.0775 0.0775 US\$/kWh 0.035 0.035 US\$/kWh 0.061 0.001 US\$/kWh 0.057 0.058 US\$/kWh 0.067 0.061 US\$/kWh 0.067 0.061 US\$/kWh 0.067 0.0658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discount Rate          | 162      | 12     | 12        | 12     | 12     | 12        | 12     |
| ed Cost US\$/kW 125.10 114.30 US\$/kW 26.9 18.27 US\$/kWh 0.024 0.021 US\$/kWh 0.024 0.021 US\$/kWh 2,799 2,799 US\$/kWh 0.035 0.035 US\$/kWh 0.037 0.035 US\$/kWh 0.061 0.001 US\$/kWh 0.067 0.058 US\$/kWh 0.067 0.068 S000 US\$/kWh 0.067 0.068 S000 US\$/kWh 0.067 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Capital Recovery       |          | 0.09   | 0.09      | 0.00   | 0.09   | 0.09      | 0.09   |
| ed Cost US\$/kW 26.9 18.27  US\$/kWh 0.024 0.021  US\$/kWh 0.024 0.021  E kcal/kWh 2,799 2,799  US\$/kg 0.0775 0.0775  US\$/kWh 0.035 0.035  sst US\$/kWh 0.035 0.035  uS\$/kWh 0.037 0.037  US\$/kWh 0.061 0.068  1000 US\$/kWh 0.1887 0.1692  5000 US\$/kWh 0.0671 0.0631  7000 US\$/kWh 0.0671 0.0631  7000 US\$/kWh 0.0654 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capital Cost           | US\$/kW  | 125.10 | 114.30    | 107.10 | 125.10 | 114.30    | 107.10 |
| be keal/kWh 0.024 0.021 US\$/kWh 0.024 0.021 Real/kWh 2,799 2,799 US\$/kg 0.0775 0.0775 US\$/kWh 0.035 0.035 uS\$/kWh 0.037 0.037 uS\$/kWh 0.061 0.061 US\$/kWh 0.061 0.068 3000 US\$/kWh 0.1887 0.1692 3000 US\$/kWh 0.0671 0.0631 7000 US\$/kWh 0.0671 0.0631 7000 US\$/kWh 0.0674 0.0656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O/M Annual Fixed Cost  | US\$/kW  | 26.9   | 18.27     | 12.41  | 26.9   | 18.27     | 12.41  |
| e kcal/kwh 0.024 0.021 kcal/kwh 2,799 2,799 US\$/kg 0.0775 0.0775 US\$/kwh 0.035 0.035 uS\$/kwh 0.037 0.037 tal US\$/kwh 0.057 0.058 1000 US\$/kwh 0.061 0.058 3000 US\$/kwh 0.0873 0.0808 5000 US\$/kwh 0.0671 0.0631 7000 US\$/kwh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fixed Cost Total       | US\$/kW  | 152    | 132.57    | 119.51 | 152    | 132.57    | 119.51 |
| bst kcal/kg 6,160 6,160 c,160 kcal/kWh 2,799 2,799 2,799 c,799 c,1692 c,799 c,700 c,798 c,799 c,  |                        | US\$/kWh | 0.024  | 0.021     | 0.019  | 0.024  | 0.021     | 0.019  |
| st US\$/kg 0.0775 0.0775 US\$/kg 0.0775 0.0775 US\$/kg 0.0775 0.0775 US\$/kWh 0.035 0.035 0.035 US\$/kWh 0.057 0.037 0.037 US\$/kWh 0.061 0.061 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fuel Caloric Rate      | kcal/kg  | 6,160  | 6,160     | 6,160  | 6,160  | 6,160     | 6,160  |
| bst US\$/kg 0.0775 0.0775 0.075 ost US\$/kWh 0.035 0.035 0.035 ost US\$/kWh 0.001 0.001 0.001 ost US\$/kWh 0.057 0.057 0.058 ost US\$/kWh 0.1887 0.1692 ost US\$/kWh 0.0873 0.0808 ost US\$/kWh 0.0671 0.0631 ost US\$/kWh 0.0671 0.0631 ost US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fuel Heat Rate         | kcal/kWh | 2,799  | 2,799     | 2,799  | 2,799  | 2,799     | 2,799  |
| sst US\$/kWh 0.035 0.035  tal US\$/kWh 0.001 0.001  US\$/kWh 0.057 0.037  US\$/kWh 0.061 0.058  1000 US\$/kWh 0.1887 0.1692  3000 US\$/kWh 0.0873 0.0808  5000 US\$/kWh 0.0671 0.0631  7000 US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fuel Price             | US\$/kg  | 0.0775 | 0.0775    | 0.0775 | 0.0574 | 0.0574    | 0.0574 |
| 1000 US\$/kWh 0.001 0.001 0.001 0.001 0.001 0.057 0.057 0.057 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 | Unit Fuel Cost         | US\$/kWh | 0.035  | 0.035     | 0.035  | 0.026  | 0.026     | 0.026  |
| 1000 US\$/kWh 0.057 0.037 US\$/kWh 0.061 0.058 1000 US\$/kWh 0.1887 0.1692 3000 US\$/kWh 0.0873 0.0808 5000 US\$/kWh 0.0671 0.0631 7000 US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Variable O/M Cost      | US\$/kWh | 0.001  | 0.001     | 0.001  | 0.001  | 0.001     | 0.001  |
| 1000 US\$/kWh 0.1887 0.1692<br>3000 US\$/kWh 0.0873 0.0808<br>5000 US\$/kWh 0.0671 0.0631<br>7000 US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Variable Cost Total    | US\$/kWh | 0.037  | 0.037     | 0.037  | 0.028  | 0.027     | 0.027  |
| 1000 US\$/kWh 0.1887 0.1692<br>3000 US\$/kWh 0.0873 0.0808<br>5000 US\$/kWh 0.0671 0.0631<br>7000 US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Cost             | US\$/kWh | 0.061  | 0.058     | 0.056  | 0.052  | 0.049     | 0.047  |
| US\$/kWh 0.1887 0.1692 US\$/kWh 0.0873 0.0808 US\$/kWh 0.0671 0.0631 US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operating Hours        |          |        |           |        |        |           |        |
| US\$/kWh 0.0873 0.0808<br>US\$/kWh 0.0671 0.0631<br>US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000                   | US\$/kWh | 0.1887 | 0.1692    | 0.1561 | 0.1795 | 0.1601    | 0.1469 |
| US\$/kWh 0.0671 0.0631<br>US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000                   | US\$/kWh | 0.0873 | 0.0808    | 0.0764 | 0.0782 | 0.0717    | 0.0673 |
| US\$/kWh 0.0584 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5000                   | US\$/kWh | 0.0671 | 0.0631    | 0.0605 | 0.0579 | 0.0540    | 0.0513 |
| TISEALVAN   0.0557 0.0532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7000                   | US\$/kWh | 0.0584 | 0.0556    | 0.0536 | 0.0492 | 0.0464    | 0.0445 |
| 40000 100000 TIMA 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8000                   | US\$/kWh | 0.0557 | 0.0532    | 0.0515 | 0.0465 | 0.0441    | 0.0424 |
| 8760 US\$/kWh 0.0540 0.0518 0.0502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8760                   | US\$/kWh | 0.0540 | 0.0518    | 0.0502 | 0.0449 | 0.0426    | 0.0411 |







學學

1000

|          | -         |              |              |              |
|----------|-----------|--------------|--------------|--------------|
|          | Economic  | 2.3470 Rs/I  | 2.4317 Rs/kg | 0.1210 \$/kg |
| HFO      | Financial | 2.9700 Rs/l  | 3.0722 Rs/kg | 0.1529 \$/kg |
|          | Economic  | 4.003 Rs/l   | 5.1050 Rs/kg | 0.2540 \$/kg |
| Кегоѕепе | Financial | 5.077 Rs/l   | 6.4539 Rs/kg | 0.3211 \$/kg |
|          | Economic  | 1.1530 Rs/kg |              | 0.0574 \$/kg |
| Coal     | Financial | 1.5566 Rs/kg |              | 0.0775 \$/kg |
| :        | Economic  | 4.2067 Rs/1  | 5.3442 Rs/kg | 0.2659 \$/kg |
| Gasoil   | Financial | 6.8742 Rs/l  | 8.7570 Rs/kg | 0.4357 \$/kg |



8 - 8



3

型學

Figure 8.1.2 COMPARISON OF GENERATION COST (FINANCIAL)

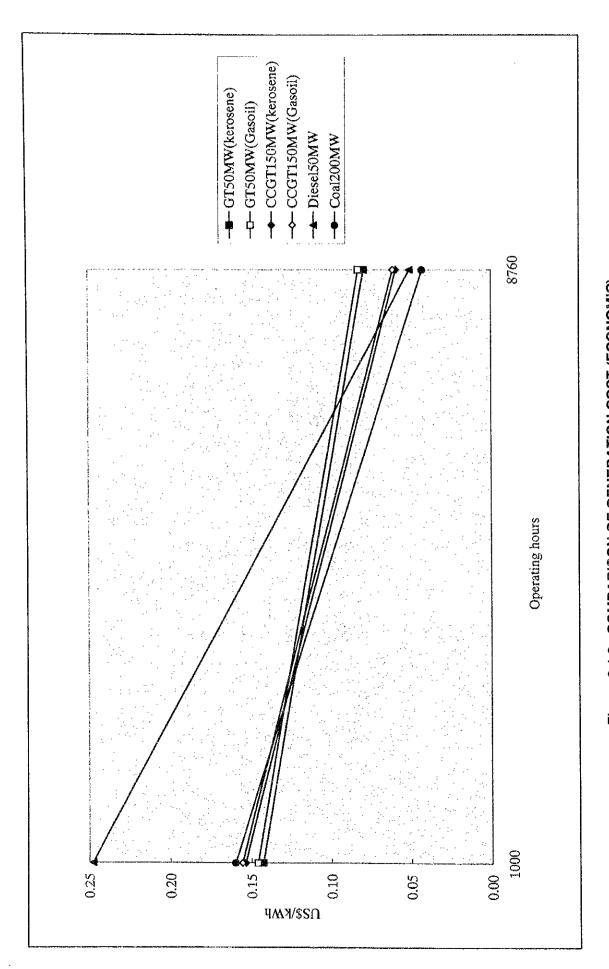





Figure 8.1.3 COMPARISON OF GENERATION COST (ECONOMIC)



# 8.2 Inland Transportation System for Improving Energy Efficiency

### 8.2.1 General

Development of national economy and improvement of living standard caused rapid increase of personnel car and commercial vehicles. Motor way from Port Louis to Curepipe, which pass through most populated area, is congested heavily these days. This heavy traffic congestion causes trouble on efficient business activity and realize fuel efficiency drop and environmental pollution problem by exhaust gas. Traffic congestion will become worth due to motorization and increasing such imported cargo as primary energy, materials for construction and industries, and food. To improve such traffic condition and maintain smooth and efficient inland transportation of cargo from the port, the government plans to build Port Louis by-pass road and passenger mass transfer system along the main motor way. Sift of considerable number of passengers from personnel car and public bus to new transport system is expected to improve overall energy efficiency including that for power generation. In addition, benefit of primary energy sift from gasoline and diesel oil to coal for electric power generation. This energy diversion to coal contributes in lowering petroleum products dependency and higher energy conversion efficiency may compensate CO2 emission. Furthermore, application of latest clean coal technology is expected to reduce emission of SOx, NOx and CO2.

All of CEB power plants have been located in Port Louis area and most of their fuel is supplied by pipeline from port. According to demand growth, power generator is required to locate in east side of the island for improving power transmission reliability and efficiency. One of major concern on this power plant is supply system of coal which is main primary energy used for the plant. Considering required quantity, inland transportation is not a realistic solution. Fortunately, there is good point to build coal power plant alongside sea where is inside lagoon required special care on environment. As prospected from the fact that port with dolphin had been located in this area, power plant with coal receiving jetty can be built at less cost because canal from outside and an anchorage with sufficient drought for ocean ship is expected available.

On the other hand, establishment of safe and efficient transportation system becomes one

of major concern against increasing demand of petroleum products. According to the demand forecast in 2025, jet fuel consumption will grow up to 273000 Kl which requires 9000 trips of 30 Kl lorry-truck annually or 30 trucks daily to the air port. For other petroleum products than jet fuel and use of power generation, about 10000 lorry trucks are required to transport to the east area in which consumption is assumed 20% of total. Lorry truck loading terminal is generally operated during daytime from view point of safety, and will be croweded at their begining of operation for 1st loading. Lorry trucks repeat their transportation trip and wake peak load at loading terminal a few times a day. As for jet fuel in Mauritius, around 30 trips of 30 kl capacity Lorry are required to transport jet fuel to the airport every day in 2025. Time for a round trip is calculated 3 hrs as a summation of 1 hr for loading including waiting time etc., 1 hr for driving to the airport, an half hour for unloading and 1 hr for return. In case they trip 3 times a day and the loading terminal has capacity to manage all of them in one hour, 3 times of intensive load of 10 trucks an hour are realized every day. Other petroleum products are expected similar behavior and lorry trucks for delivery forms a peak a few times a day. According to demand forcast, 170 trips a day of lorry truck are required to distribute petroleum products except jet fuel in 2027. In case peak load is assumed as low as 25% of total trucks an hour, 40 lorry trucks an hour will go through from the port area to publicroad. As for the main road through major cities in the direction of the airport, as many as around 30 lorry trucks an hour are expected. These inflammable transport lorry trucks, same to heavy cargo trucks and bus, drive at low speed, accordingly they may restrict smooth traffic and promote congestion in key motor road from Port Louis through air port. To prevent accident caused by traffic congestion and to reduce transport problems, it is recommended to establish petroleum distribution terminal adjacent to the above mentioned coal power plant in Mahebourg.

To minimize transport problem caused by rapid increase of vehicles and movement of person, the government plans to develop a policy of close localization of living to work place and is planning to build passenger mass transport system between Port Louis and Curepipe along with most busy motor way in this country. Realization of this new mass transport system with expected diversion of peoples from passenger car and public bus attains considerable improvement of transport efficiency. Besides direct effect, indirect energy saving due to improvement of traffic condition to smooth driving may achieve

better engine efficiency or reduced fuel consumption. These improvement in transport efficiency contribute on reduction of import petroleum dependency. According to experience in Japan, a few years after opening new load to reduce congestion, transport fuel consumption reduction due to improved traffic condition was compensated by increasing driving cars and their distance. To achieve the target, the government is required to promote peoples diversion to new transport system by applying economical fare and providing convenient system in use.

As a conclusion of the result of the study given int he Para. 8.2, both ideas for building new mass transportation system and new energy center in the east side of the Island are recommended from various factors for efficient and secure energy supply point of view.

### 8.2.2 Transport System for Petroleum Products and Coal

Improvement of road network in the area of the port is under construction according to requirement for expansion and modernization to cope with future growth of handling volume and development of free port related functions. However, MMA is concerned about construction of junction to general road for smooth traffic without restriction. Because we can imagine easily how big numbers of transportation vehicles is necessary to distribute the goods imported according to the forecast applied for the port expansion. Among total cargo to be transported outside the port, petroleum products except CEB use amounts about 20% in 2015, its reduction is expected to cause considerable benefit on improvement of road traffics.

The motor way to the air port is busiest road in this country, however many heavy trucks especially lorry trucks loaded hazardous material are obliged to drive in lower speed compared to cars. This may cause reduction of road capacity, increase possibility of road congestion, worsening engine efficiency and increase fuel consumption. In this connection, engine efficiency of car is generally designed to get highest value around 80 km/hr, and efficiency goes down with slowing down speed due to congestion and results worsening environmental pollution.

With improving living standard, diversification of energy to electric power is progressing.

To cope with electric power demand, power plant is required in east side of the island to supply electric power efficiently and in higher reliability. This power plant is planned to use coal taking account of contribution in energy security in addition to economic point. Coal utilizing plant is to be located in an area where coal can be unloaded directly from ocean ship, due to enjoy its economical benefit without costly inland transportation. According to survey result, the site of old port located in Mahebourg is recommended. Chart shows that canal with sufficient draft continues to an anchorage inside of lagoon and a port with jetty exclusive use for energy unloading is expected to be built in cheaper investment. Area for power plant will be provided by reclaim and coal is received through jetty from ocean ship directly. Considering the area located inside lagoon, pollution prevention measures shall be taken in coal unloading and storage facilities being closed. Opening of new port for international trade needs big investment and is very difficult to proceed plan for the moment according to MMA. However, there is a possibility in case of limited object to unloading of energy sources and realization of this plan is expected inevitable for economic and safe energy supply. Opening 2nd international port has been discussed in the authority, however this project shall be proceeded considering time schedule for construction of the power plant.

According to oil company, a study was made about transportation of jet fuel to air port by sea through new port in same location of the above, however that plan was not economically feasible due to high investment cost at that time. Now investment can be reduced by utilizing jetty for power plant mentioned above for putting a few lines for unloading petroleum products including jet fuel and oil terminal adjacent area to the plant. In this plan, petroleum products will be unloaded from ocean tanker and energy saving against present system is equivalent to energy consumption corresponding to difference of distance of inland transportation. Difference is 40 km for jet fuel and 30 km for others and corresponding energy saving is estimated based on the following conditions.

- 100% of jet fuel, 20% of other petroleum products, except bunker and power generation use, of demand in 2025 are distributed from new terminal
- length of journey to air port is 10 km and average 20 km to other consumers
- size of lorry truck is 30 kl (10 ton for LPG)
- lorry truck energy consumption: 700 kcal/ton-km,(2000 kcal/truck-km for

1

### return way)

| product  | transport<br>quantity<br>(ton/y) | No. of trucks<br>required to<br>transport | energy saved<br>(TOE) |
|----------|----------------------------------|-------------------------------------------|-----------------------|
| jet fuel | 217,784                          | 9,105                                     | 683                   |
| gasoline | 65,000                           | 2,912                                     | 154                   |
| diesel   | 50,000                           | 1,970                                     | 117                   |
| fuel oil | 90,000                           | 3,150                                     | 208                   |
| LPG      | 25,000                           | 2,500                                     | 68                    |

TOTAL: No. of trips by truck per annual: 19,637 Energy Conserved: 1,230 TOE/year

The following is estimation of energy requirement for transportation of equivalent diesel oil to be used for gas turbine which substitutes three of 100MW coal power plant as mentioned above.

Energy conversion efficiency:

0.31 ton / Mwh

Electric power generated:

300 Mwh x 8000 hrs

Fuel consumption:

744,000 ton / year

Lorry trucks to transport:

31,105 trips /year

Required transport energy: 2,915 TOE / year

Total transport energy conserved by building energy center composed of power plant and petroleum products terminal in Mahebourg area is accordingly 4,145 TOE / year.

Besides, such subsidiary benefit as below are realized;

- reduction of transport fuel by improvement of traffic condition of most busy motor way
- reduction of road maintenance cost due to decrease heavy cargo truck
- lowering accidental risk by reduction of inflammable material transport



### 8.2.3 New Mass Transport System Between Port Louis and Curepipe

Motor way between Port Louis and Curepipe is critical condition and serious congestion is observed at the rush hour. Congestion and environmental pollution are concerned growing worse due to increasing vehicles. To prevent more critical condition, the government is planning to improve existing road and to construct new road. In addition to improvement of road net work, new mass-transport system is being studied to construct along the key motor way as substitution of transportation from personal car and public bus. Detail of new transport system is not available, however electricity is expected for driving power sources because of higher overall energy efficiency including power generation.

According to "Transport Energy in Africa", bus passengers in week day was 740,000 /day in 1991 and one third of them traveled the line between Port Louis and Curepipe. And also, he estimated that 67% of peoples who move this section will utilize bus.

Furthermore, he assumed number of passengers of new transport system in 2010 as 133000 persons in a day (one way), and total distance of journey will be 1,452,000 person-km. This means average journey distance is 5.5km on each way.

Referring the above information, following bases are established for our study.

In 1993, population of 5 cities along this system amounted 44% of total population and around 50% after excluding population for agriculture and so on. According to the forecast, population engaged in 2nd and 3rd industries in 2010 and 2025 are 614,000 and 761,000 persons respectively. 50% of them live in this area and further 50% (corresponding to 25% of total) is assumed to utilize this new transport system then number of passengers are counted as 150,000 persons in 2010 and 180,000 in 2025. In assumption of percentage becoming passengers, government policy of close location of work place by living and possible travel direction outside of line are taken in to account. Daily average journey distance of 5.5 km looks short compared to total length of this system, about 30 km and 15km is assumed for study base.

Under this condition, total daily distance of journey is calculated 4,500,000 km in 2010 and 5,400,000 km in 2025.

Next assumption is number of person converting to the system from personnel car. According to the forecast, number of car and dual purpose car are 160,000 in 2010 and

450,000 in 2025. 50% of those cars are owned by people living in an area of subject 5 cities, 80% of those cars are assumed to go to the office then corresponding number of car are counted as 6,400 in 2010 year and 180,000 in 2025. Ratio converting to new transport system from car is assumed 50% in 2010 and 30% in 2025 considering that rate of car owner will become considerably high in 2025. Average number of person in a car is also assumed 1.5 and 1.0 in respectively. Daily average length of journey is 40 km, then;

|                                        | <u> 2010</u> | <u> 2025</u> |
|----------------------------------------|--------------|--------------|
| distance of journey by car(km-man/day) | 1,920,000    | 2,160,000    |
| transport by new system(km-man/day)    | 4,500,000    | 5,400,000    |
| conversion from bus (km-man/day)       | 2,600,000    | 3,240,000    |

This new mass-transport system is aimed at absorbing as much peoples as possible from car and bus and reducing road congestion by decreasing driving car. To attain this target, essential requirement are economical fare, convenience, and political support by government to enforce conversion from car.

Energy to be conserved by introduction of the new transport system is calculated as following.

Energy efficiency of car, public bus and train is 600, 180 and 100 kcal/man-km respectively. No detail information is available, however transport driven by electric power such as monorail and special type trolley bus in exclusive road is expected to be applied efficiency figure of train accordingly. Transport system driven by electric motor has better energy efficiency compared to gasoline or diesel engine, because energy conversion efficiency in power generation and electric motor is high.

|                                    | <u>2010</u>   | <u> 2025</u> |
|------------------------------------|---------------|--------------|
| Conserved energy by car (TOE/year) | 28,800        | 32,400       |
| Conserved energy by bus (TOE/year) | 6,240         | 7,780        |
| Total Energy Conserved (TOE/year)  | <u>35,040</u> | 40,180       |

Although above figures are calculated with many assumptions, new transport system is clearly expected to contribute in reduction of petroleum products consumption considerably in addition to reduction caused by improved driving condition. This reduction of petroleum products consumption contribute in lowering import dependency and in improvement of national energy security.

# 8.3 Energy Conservation and the Development of Related Technology

### 8.3.1 Introduction

### (The Understanding of Energy Conservation in Current World)

The experience of the oil crises took place two times during 1970's, up set the believing of the countries, who were dependent upon very much on the imported petroleum product for long time. Almost 30 years after second world war, the people relating to energy supply thought the stable supply of very low cost petroleum product is the matter of fact lasting forever.

However, after 10 years high oil price period had over by the surplus of crude supply in the international market caused by long lasted recession of world economy, the remarkable reduction of oil use in many OECD and the increase of supply of crude oil production by non-OPEC countries.

The energy conservation activities seen in many oil scarce developing countries during the high oil price period gradually slowed down.

On the countraly, many industrially developed countries as OECD member countries continued serious effort for energy conservation in their countries. The reduction of oil consumption for long period has been considered as the very important effort to ease the problem of shortage of supply of fossil fuel infuture, which is considered as the resources having limitation in its resources in long term, and also the necessary effort to maintain stable demand supply balance in the international oil market.

In these years, the recovery of economic development world wide, in particular many Asian countries is indicating rapid growth of the demand of oil product internationally, and the short of supply in near future is envisaged.

In addition, the global concern on the climate change by increasing of green house gas in the atmospheric environment is now limelighting the energy conservation activities, which can achieve the reduction of energy consumption, petroleum and coal use, by improving



the energy use efficiency and the development of use of renewable energy.

This current interpretation of energy conservation is clearly described in the following statement in the IEA report "WORLD ENERGY OUTLOOK 1995".

The Global concern on environmental conservation, in particular the concern on the increase of Green House Effect Gas in the global atmospheric environment, is directing the world economy to the line of high energy efficiency even though it may require additional cost.

The major targets of current energy conservation are described as follows: (World Bank: Energy Conservation Policy Paper)

- \* Continuous development of indigenous energy to increase the extent of self-sufficiency of energy supply.
- \* Promote diversification of importing and indigenous energy sources without jeopardize the cost and stability of energy supply.
- \* Pursue the development of new energy resources and renewable energy resources.
- \* Promote thoughtful energy conservation and energy use efficiency improvement.
- \* Promote the participation of the private sector to the development and investing of the energy sector.
- \* Promote the application of environment friendly energy system.
- \* Develop energy related energy information system required for energy related planning and decision making.

When we consider the present international concerns on energy conservation, the present energy conservation activities of Mauritius is required a fundamental reviewing.

### 8.3.2 Energy Conservation Activities in Mauritius

### (1) General

The energy conservation has a few important impact to Mauritius. At first, the dependence on the imported petroleum product and coal as the main source of energy will

be reduced by the development of energy conservation, which include the development of indigenous energy sources such as bagasse. In this way the security of energy supply of the country under the up set condition of oil supply from abroad will be improved and the damage to economy of the country by the excessive increase of oil price will be reduced.

In addition, the nation wide participation to energy conservation activities will improve technology level of the country through the introduction of modern high efficiency technology, and it will contribute the strengthening of international competitively of the industrie of the country.

Further, the international co-operation to mitigate the potential climate change problem by the increase of green house effect gas in the global atmospheric environment will be accomplished by mean of the reduction of the fossil fuel use by the energy conservation.

The mitigation of the climate change, which is considered to result the rise of sea level, is very important for Mauritius to protect the resource of coast area tourism.

At present, the smallness of total amount of energy use and the lack of the energy intensive industries, which normally act the positive promoter of energy conservation, results inactive energy conservation in Mauritius.

As it is described in the preceding paragraph, the energy conservation is the important task of international society for global environment protection and the counter-measure for prevention of shortage of crude oil supply the energy conservation activities in Mauritius should be improved urgently.

- (2) Existing energy conservation activities in Mauritius.
- 1) Bagasse Energy Development Project (BEDP)

The importance of efficient use of bagasse, which is a by-product of sugar production in the country, as the major indigenous energy source of the country is considered as the way to reduce the production cost of sugar for improving cost competitively of sugar in the international market is well recognized in the country, and the government of Mauritius obtaining the co-operation of sugar industry positively



promoting use of bagasse energy for power generation in these years. (Ref: Chapter 5)

The capacity of bagasse power will exceed 20% of total generation capacity by AD 2000.

### 2) Energy Conservation in Electrical Sector.

At present, CEB is intending to replace old diesel engine power generators, which were built in 1970's and its energy efficiency is inferior to modern machine, by the latest design machines with power generation efficiency  $45 \sim 46\%$ . The introduction of high efficiency machine will reduce fuel consumption by  $30 \sim 40\%$ , but the financial justification of this improvement is difficult under present low oil price unless low cost fund is available.

As the renewable energy development, the development of wind power generation are continuing, but further technology improvement seems required to realize the commercial operation in large scale. (Ref: Para 4.5)

The reduction of energy loss by the transmission system has improved significantly in these years by replacement of old 33KV transmission system by 66KV system.

## 3) Energy Conservation in Industrial Sector

The current development of energy conservation in industrial sectors of Mauritius is not clear because of lack of reliable information. The JICA study team with assistance of the MEW counter team conducted "enquête" to collect information from major factory, but only 10% of the inquiry sent was responded. According to that limited amount of information, following estimation were made but accuracy is not high.

- \* The improvement of power efficiency, to above 90%, of almost all the factory were completed. The tax exemption of import of necessary equipment and the merit of tariff reduction by power efficiency improvement encouraged the improvement.
- \* The application of modern high efficiency lighting fixture is used by many industrial facility. The use of high frequency fluorescent seems more than 60% of the lighting.
- \* However, the application of high energy efficiency technology such as flow

control by mean of the control of pump/blower speed by thyrister seems very limited. A report of University of Mauritius in relation to the energy efficiency improvement on steam boiler also indicating the majority of plants are still working on improvement of insulation and prevention of steam leak, and the energy saving, which require significant investment such as combustion air preheater, are not implemented by the most of plant. The response to JICA team inquiries also indicated the similar status as described in the report of U. M. on present energy conservation in most of industries.

### 4) Domestic Energy Use

The use of solar energy water heater is pretty well developed in the country. The present estimate of total number in use is 18,000. (The total household in Mauritius is 240,000) The increase of use is slowed down because of maintenance problem and the high initial cost for the low income house hold.

### 8.3.3 Impact of Technology Improvement to the Energy Use

### (1) Automobile Fuel

The 1994 report of the I.E.A., Energy in Developing Countries, describes the results of a study on the changes in energy demand in the last 20 years in various countries in Asia, Africa and Latin America. It contains observations that are useful in considering the future of energy demands in Mauritius.

This study shows several very common changes which took place in many countries, many of which are precisely applicable to Mauritius. For example it says in its summary, in the past 20 years many countries covered by this study have experienced increases in energy demand underpinned by increases in population, development of the economy and increases in per capita income.

The strengthening of the economy, supported by an increase in industrial activities, together with the acceleration in urbanization and the rapid adoption of the automobile in society has resulted in rapid increases in energy demand in the country.

It has been observed in many countries that the rate of increase in energy consumption exceeds the rate of increase in GDP with a resultant massive increase in energy consumption. However, a few east Asian countries, which have advanced economies, nevertheless showed very low energy consumption increases; this was accomplished by means of increasing the importance of the service sector in their economies.

The rate of energy demand increase in Mauritius (as TOE), during the past 10 years shows an 8.6%/year average increase versus a 6.1% annual growth in GDP (constant price). The increase in the use of fuels for transportation (gasoline/diesel) increased as much as 9.0% at the same time. The total energy consumed by the transportation sector accounts for some 30% of total energy consumption. In the following, future demand for transportation fuels are assessed from the point of view of technological improvements.

Automobile fuel consumption is determined by many complex factors, and therefore it is difficult for any assessment to show an entirely clear picture, but generally speaking the following factors, a) design of the car (energy efficiency of the new car just after manufacture), b) allowances for the age of the car, c) level of maintenance,

1) Energy (fuel) efficiency of automobile

- and finally, d) traffic conditions, are considered as the major factors affecting the energy efficiency of an automobile.
- a) Some 80% of automobiles used in Mauritius are believed to be made in Japan and rest are from Europe, Malyasia, S.Korea. Most automobile manufacturers in the world (including the Japanese) desire to sell their cars to the U.S. market. Accordingly, newly manufactured cars must meet the American CAFE (Corporate Average Fuel Economy) regulations. Therefore, cars manufactured after the 1980s will achieve 13 km/liter of gasoline consumption rate (Japanese made) and 11 km/liter (USA made) when they are maintained well.

Improvement in fuel economy after the latter part of the 1980s lagged, due to the fact that the priority in new car design shifted from fuel consumption to exhaust emissions control and a greater emphasis on passenger safety.

Consider, for example, that the Japanese national target for energy efficiency is set so as to reduce fuel consumption (and exhaust emissions) by 10% (based on 1988 performance) by the year 2000 and 15% (based on the same criteria) by 2010 (Passenger Car). Similarly the target for trucks is set at 5% (based on 1988 performance) by 2010 for trucks and buses. These current worldwide tendencies indicate that significant improvements in energy efficiency for new cars in the near future are not likely.

Accordingly, cars currently in use in Mauritius, most of which were manufactured after the mid 1980s, are considered to have similar energy efficiencies to cars manufactured in the 1990s. Therefore, significant improvement in the energy efficiency of cars in Mauritius cannot be expected in the near future by the replacement of old cars with newer models.

### b) Obsoletion by aging

The average age of automobiles in Mauritius is estimated at 6 years, which means that 50% of cars are six years old or less, and 50% were manufactured more than six years ago.

Until now, reliable information indicating changes in automobile energy efficiency in Mauritius as a result of aging has not been available, but data collected by IEA in Indonesia, Thailand and Korea indicates that current cars on the road achieve an average 10 km/liter. This is some 10-30% lower than newly manufactured cars. Therefore, we can conclude that differences in energy efficiency between newly manufactured cars and current used cars are not very significant.

As a drastic shortening of the average age of automobiles in Mauritius is not likely, any improvement of energy efficiency due to this will not be significant.

### c) Maintenance levels

This factor is closely related to the deterioration in efficiency due to aging. Generally speaking, arrangements for adequate supplies of spare parts and qualified maintenance technicians are available for automobile maintenance, and therefore







should be performed well and energy efficiency maintained at a satisfactory level even despite the age of the automobile.

Reliable data for assessment of maintenance levels in Mauritius has not been available up until now, but interviews with a bus company and a car rental company did not reveal any maintenance problems.

Further, when we travel by road in countries noted for having maintenance problems, such as India, Pakistan and Bangladesh, we can very often sec broken-down trucks and buses deserted by the roadside due to mechanical failures. In Mauritius, such occurrences are almost nil. Therefore, it can be considered that automobile maintenance is conducted fairly well in the country, and so significant improvement in energy usage through improvements in maintenance cannot be expected in the near future.

### d) Traffic conditions

One of the serious social problems in the country is traffic congestion between Port Louis and the residential areas located south east of Port Louis such as Curepipe/Rose Hill. This problem has occurred due to rapid increases in the movement of both personnel and goods between the area, where people have traditionally resided due to better weather (200-400 meter above sea level) and fewer problems with tropical diseases. The Port Louis area is where newly-developed, export-oriented industries, with their increased flow of goods to and from the port, as well as financial institutions and Government offices are located.

In addition, increases in per-capita income accelerated the shift from public transit (buses) to private automobiles making the problem worse. The Government of Mauritius is trying to solve the problem by improving the road system, introducing an efficient public transportation system, and decentralizing facilities presently there. However, any fundamental solution to traffic congestion normally requires both a long time and a huge investment. Improvements in automobile energy efficiency by eliminating this problem will not take place in the near future.

To summarize the above assessment, any possible improvements in energy efficiency with respect to transportation fuels will only be accomplished by replacing older auto designs with newly manufactured ones year by year. It is expected that the fuel efficiency of passenger cars will be improved by 10% between 1995 and 2010; trucks and buses from Japan and the EC by 3%, from India by 6% (altogether about 4.5%) during the same time period.

Since gasoline and diesel consumption will be almost equal in the coming years, annual savings in transportation fuel due to technology improvements will amount to 0.73%/year from 1995-2005 and 0.48% from 2005 to 2010.

### (2) Energy for Industrial Use

### Introduction

Member countries of the OECD achieved remarkable energy conservation under the close cooperation that arose between the Government and the private sector after the oil crises in the 1970s, which proved to be a bitter experience, particularly in economic disruption caused by skyrocketing prices, and supply disruptions by the OPEC countries.

This energy conservation effort brought down the energy intensity (or energy consumption to generate one unit of GDP) for the OECD as shown in the Figure 8.3.2. Most of the countries had reduced their energy intensities about 20% from 1980 by the mid 1990s.

Energy conservation was achieved by two major methods: one was the shifting of energy intensive industries such as steel, aluminum smelting etc. from OECD countries to other countries where economical energy resources are abundant. The other way was the positive introduction of new technology which helped to reduce the energy consumption required to produce one unit of product.

The latter method, which could decrease the total global consumption of energy, is now considered as not only a task for the OCED, but indeed, a global task necessary if increases in the amount of greenhouse gases such as CO2 and N2O, which can cause global future warming, are to be reduced in the atmospheric environment.

OECD and IEA countries are expecting a reduction in energy intensity of OECD countries of 1.0%, of ex-USSR countries of 1.2% and other countries of 1.1% during the period from 1990-2010.

The change of energy intensity of Mauritius in these years is indicated in the following table:

Table 8.3.1 TRANSITION OF ENERGY INTENSITY

|                                           | 1985    | 1988    | 1991    | 1994    | 1995   |
|-------------------------------------------|---------|---------|---------|---------|--------|
| Energy Consumption (TOE/Y)                | 292,853 | 457,555 | 574,473 | 643,010 | 670    |
| GDP Mrs Constant                          | 27,183  | 35,176  | 40,678  | 47,113  | 47,600 |
| GDP 1985 US\$                             | 1,760   | 2,278   | 2,634   | 3,051   | 3,082  |
| Energy Intensity TOE/10 <sup>3</sup> US\$ | 0.166   | 0.200   | 0,218   | 0.210   | 0.217  |

The tendency for Mauritius is similar to the non-OECD countries, where the development of industry is intense. In Mauritius, energy intensive industries have never existed and the increase in energy intensity only took place as a consequence of the development of the textile industry--in particular dyeing and refining.

Almost alone among those industries in the country which consume a great deal of energy, can be found the textile industry, representing almost 50% of national GDP. Therefore, the possibilities for energy conservation in the country can be estimated from the potential for energy conservation in the textile industry.

Data on the energy use of the Mauritius textile industry does not exist; data on the Japanese textile (dyeing, refining) industry, which is considered to have the most advanced technology in the world is used instead, as follows:

Table 8.3.2 ENERGY CONSUMPTION PER 1000m<sup>2</sup> TEXTILES

|                   |       |       |       |       | (KI)               |
|-------------------|-------|-------|-------|-------|--------------------|
|                   | 1973  | 1978  | 1983  | 1988  | 1993<br>(Estimate) |
| Fuel Oil          | 0.216 | 0.194 | 0.131 | 0.132 | 0.133              |
| KWH (F.O. equiv.) | 0.038 | 0.045 | 0.046 | 0.050 | 0.055              |
| KI                |       |       |       |       |                    |
| Total             | 0.254 | 0.239 | 0.177 | 0.183 | 0.189              |

Source: MITI

The above data indicate that as of the mid 1980s, very intensive energy conservation achieved savings of as much as 3% annually. However, the rate of reduction of energy consumption in the Japanese textile industry has very much slowed recently because of the market demand for high quality and a wide variety of products.

It is also been observed that significant price reductions for petroleum in the 1980s resulted in relatively low incentives to invest in energy conservation. In order to estimate how such modern energy conservation technology can be introduced to the textile industry of Mauritius, the present technology used in the industry must be identified. Unfortunately, there is currently no information in the country on this.

The JICA team and its MEW counterpart tried to survey major industries to collect information on the energy consumption of miscellaneous industries in the country, but the response was very poor.

Therefore, here we must depend on information collected by the Mauritius Research Council in relation to the general technology level of the country's industries in order to estimate the present technology level of Mauritius industries. This information indicates that people are aware of the existence of better technology in the world than they are currently using, and the objectives of their investments made in the past five years were assessed. (Sec Table 8.3.3.)

The results show that 65% of textile industry personnel are aware of the existence of better

technology in the world, and that currently almost no investment is devoted to cost reductions, including energy savings. It is clear that the current efforts of the industrialists of Mauritius are aimed at capacity expansion, product quality improvement, replacement of obsolete equipment and labor cost reductions. Therefore, the introduction of advanced technology, which is directly tied with energy conservation, has not been prevalent. Technology of the early 1980s, when many plants were built in Mauritius, is still being used in most industries today.

Table 8.3.3 TECHNOLOGY LEVEL ASSESSMENT

| Industrial Sector           | Awareness of Better<br>Technology | Investment for Cost<br>Reduction |
|-----------------------------|-----------------------------------|----------------------------------|
|                             |                                   | (Excluding Labor Cost Reduction) |
| Agriculture, Agro Industry  | 90                                | 0                                |
| (Include brewery distiller) |                                   |                                  |
| Bread                       | 50                                | 0                                |
| Metal Forming               | 61                                | 0                                |
| Plastic Forming             | 55                                | 0                                |
| Printing                    | 55                                | 0                                |
| Stationaries                | 73                                | some                             |
| Sugar                       | 100                               | 0                                |
| Textile                     | 65                                | 0                                |
| Transportation              | 70                                | 33                               |

When we consider that the Mauritius textile industry is now focusing on high quality, sophisticated products and that positive investment in energy conservation is unlikely, the possibility of active energy conservation such as that which took place in OECD countries (Annual reduction was 1.0%-1.5%) cannot expected in Mauritius. However, some industrialists are positive toward energy conservation, and most plant and equipment are being gradually replaced by new ones as old equipment becomes obsolete. Therefore, a reduction in energy consumption in the range of 0.5% annually can be expected from now until the year 2010.

### (3) Energy Consumption in Domestic/Commercial Sectors

Generally speaking the energy consumption in these sector is estimated by the number of

equipment to be used in every houses and shops, the duration of use of these equipment and the energy consumption rate during the time of use. The influence of technology improvement to the energy consumption of non-electrical energy in these sectors of Mauritius can not be assessed because of the lack of data and information for the assessment, and the impact is very limited because of the total amount is small. Therefore, the electrical energy consumption in these sector will be assessed.

A study of IEA on the world wide electricity consumption trend in the domestic/commercial sectors are indicating the possible energy saving in these sectors by technology improvement as shown in the table below.

| Items                         | Achievable Saving(%) | Constrain<br>(Market/Regulation) | 2010 Non-realization |
|-------------------------------|----------------------|----------------------------------|----------------------|
| Domestic Air Conditioner      | 10 - 50              | Small/Large                      | Variety              |
| Domestic Water Heater         | Undeterminable       | Small/Large                      | variety              |
| Domestic Refrigerator         | 30 - 50              | Very large                       | 10 - 30              |
| Lighting (House)              | 50% over             | Very large                       | 30 - 50              |
| Commercial Air Conditioner    | Undeterminable       | Small/Large                      | Variety              |
| Lighting (Commercial)         | 10 - 30              | Small/Large                      | Variety              |
| Electrical Motor (Commercial) | 10 - 30              | Minimum/Small                    | 0 ~ 10               |

The total electricity consumption by the household in 1995 in Mauritius was 292 Gwh (33.7MW Average). This amount is almost equal to commercial use, and reaches to 33% of total consumption. The consumption of commercial use is the third largest demand following to the domestic and industries. The total consumption of domestic and commercial use consistute 56% of total electricity consumption.

This means, the consumption of energy for electricity of domestic and commercial use reaches 20% of total energy consumption of the country as the electricity generation consumes 33% of total energy consumption.

The impact of energy saving in these sector has large contribution to the national energy balance.

The data collected by University of Mauritius in 1995 in relation to the use of electrical equipment in the house-hold are shown on the Table 8.3.4. The data did not included the number of electrical lamps in a houses. The other statistic of the housing (MEPD) shows

the average number of rooms in a house as four, but this does not mean these lamps are lit all the time. The data of Japanese house-hold during 1970's, the life style of that time is similar to present Mauritius, is indicating about 15-20% of total electricity consumption, about 2,000 x 103 cal/yearhousehold, of a house-hold was used for lighting. This means about 130W of power is consumed for 10 hours in every houses in average. When we consider the current lighting mode in Mauritius should be similar to this, the distribution of power consumption to each items in average house-hold is estimated as 27% for lighting, 24% for refrigerator, 11% for water heater and 10% for iron and rice cooker etc. are rest.

Out of above domestic electrical equipment, it is considered that the possibility of improvement of energy efficiency is existing for lighting, television and refrigerator. The energy efficiency of these three items have improved significantly in the last twenty years, but the tendency of improvement of energy efficiency has slow down since the middle of 1980's because of the change of attitude of customer and low cost of electricity. The statistics of Mauritius on the distribution of the refrigerator to each house-holds indicate the majority of refrigerators in use in the country were imported after the middle of 1980's. Therefore, most of the refrigerators in the country already incorporated the energy efficient design, and the improvement of efficiency by spreading modern type refrigerators are not possible in the near future. This observation is applicable to the energy efficiency of TV and Air Conditioners (Ref. Figure 8.3.1). Therefore, the largest potential of energy saving in domestic consumption will be the lighting. It is expected that the replacement of the old type fluorescent bulb and candescent bulb by new type fluorescent bulb (inverter, highfrequency) is still progressing in many house-holds. When all the lights in house-hold are replaced by new design one, about 20-30% of reduction of energy consumption is possible. This can contribute about 5% of saving of domestic electricity consumption. Assuming this replacement will takes 15 years, the annual reduction will be about 0.33% from now to AD2010.

The commercial sector improvement is not hopeful because most of the commercial facility such as supermarkets, restaurants, hotels already applied modern high efficient type lighting. There is the possibility of energy saving in commercial sector by the application of cogeneration of electricity and heat, but the implementation of this type of energy saving require a positive leadership of the government in the similar way of the propagation of

solar heat utilization in the country. The current electricity tariff and petroleum fuel way not high enough to encourage the private parties to promote investment for high level energy saving project. As the one of "DEMAND SIDE MANAGEMENT" activities, the cogeneration of electricity and heat for a large office buildings, a commercial center and a large housing complex will have good potential of energy saving, but the estimation of impact of such technology improvement to energy consumption is not possible at this time.





Table 8.3.4 1995 DATA

| Device                   | Energy<br>Consump.<br>A±C*F<br>kWh day/UHH | Energy<br>Consump.<br>B=A*D/1000<br>MWh/day | Rating<br>C<br>kW | Number<br>of User<br>Household<br>D | [%]  | Potential<br>Load<br>E=C*D/1000<br>MW | Usage<br>Factor<br>F<br>hr/day/UHH |
|--------------------------|--------------------------------------------|---------------------------------------------|-------------------|-------------------------------------|------|---------------------------------------|------------------------------------|
| Hot plate / cooker rings | 3.00                                       | 49.7                                        | 2                 | 16582                               | 7    | 33.2                                  | 1.5                                |
| Instant, water heater    | 2.40                                       | 91.0                                        | 3                 | 37902                               | 16   | 113.7                                 | 0.8                                |
| Storage water heater     | 9.00                                       | 19.2                                        | 3                 | 2132                                | 1    | 6.4                                   | 3.0                                |
| Television set           | 0.25                                       | 54.5                                        | 0.05              | 217934                              | 92   | 10.9                                  | 5.0                                |
| Electric kettle          | 0.33                                       | 18.2                                        | 2                 | 54484                               | 23   | 109.0                                 | 0.2                                |
| Washing machine          | 0.34                                       | 13.5                                        | 0.3               | 40270                               | 17   | 12.1                                  | 1.1                                |
| Refrigerator             | 1.20                                       | 193.3                                       | 0.05              | 161082                              | 68   | 8.1                                   | 24.0                               |
| Freezer                  | 2.40                                       | 11.4                                        | 0.1               | 4738                                | 2    | 0.5                                   | 24.0                               |
| Electric iron            | 0.60                                       | 135.0                                       | 0.75              | 225041                              | 95   | 168.8                                 | 0.8                                |
| Air- conditioner #       | 2.43                                       | 2.3                                         | 0.8               | 948                                 | 0.40 | 0.8                                   | N.A.                               |
| Rice cooker              | 0.62                                       | 64.6                                        | 1                 | 104229                              | 44   | 104.2                                 | 0.6                                |
| Lighting"                | 0.76                                       | 178.2                                       | N.A.              | 234516                              | 99   | N.A.                                  | N.A.                               |

UHH = User Household

| Data source: | A            | Survey result |
|--------------|--------------|---------------|
|              | В            | Comptuted     |
|              | $\mathbf{C}$ | Survey result |
|              | D            | Survey result |
|              | E            | Computed      |
|              | F            | Survey result |
|              | #            | Survey result |

Total Number of households = 236,885

From: Beeharry, R.P., Mohee R., and Baguant, J.1995. Domestic Energy Consumption and Related Environmental Impacts.

Interim and Draft Final Reports for the ADB.

University of Mauritius

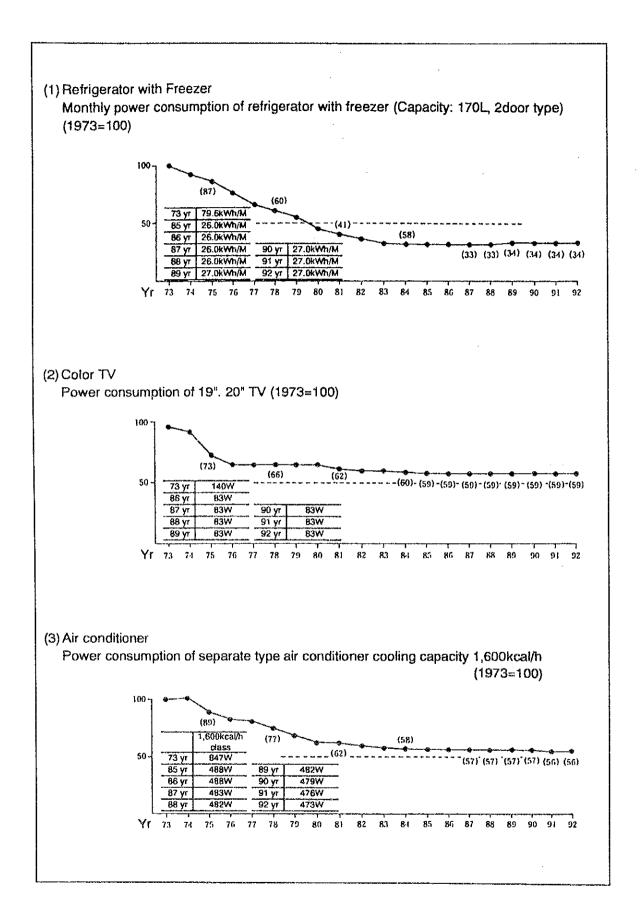



Figure 8.3.1 PROGRESS OF ENERGY SAVING IN HOUSEHOLD ELECTRICAL APPLIANCES

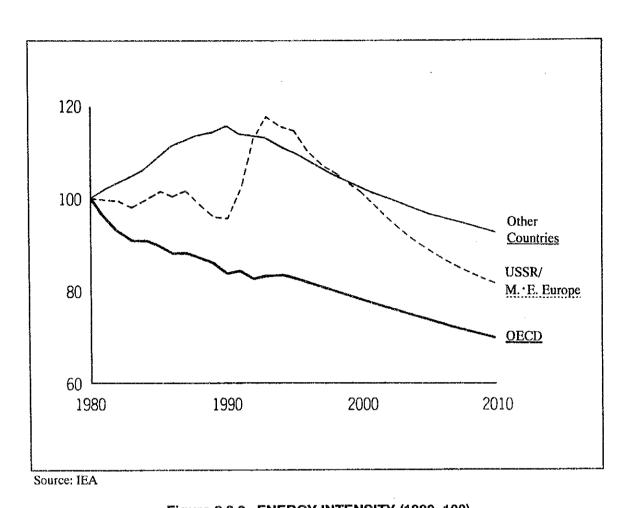



Figure 8.3.2 ENERGY INTENSITY (1880=100)

### 8.3.4 The Bottle-neck of Energy Conservation Activities in Mauritius and Its Solution.

(1) The lack of national consensus on the importance of energy conservation as the element of national energy policy

Just after the oil crisis, durning the time high oil price were prevail, the energy conservation was considered as crucial problem to the economy of the country, which deeply depend on the imported oil product as its energy source, and the sustaining of the development of the country. Unfortunately, after the low oil price prevailed in the international market, the energy conservation is not considered as the high priority task in the country

However, as it described in preceding paragraph, the importance of energy conservation for the Mauritius must be recognized by the people of every government agencies and private sectors. In particularly, the positive impact of energy conservation to the global and national environmental issues must be reconsidered. It is very desirable that the national energy policy, which will be promoted by MLGPU, will include the strategy for activating the energy conservation.

The strategy must include two measures mentioned in the followings.

### (2) Set-up of a core organization for the energy conservation

The current activities in relation to energy conservation are proceeded independently by MLGPU, University of Mauritius and some private sector enterprises. There is no consistent co-ordination as the national program. It is recommended that the MLGPU should set up a core organization for long term national energy conservation program, we may name the organization as "the energy conservation center" with the participation of private sectors. This center will function as the spear-head of the national program of energy conservation/environment management to activate energy conservation in the broad scenes.

This center should be the center point of collecting data & information of the country and





of abroad relating to the energy conservation continuously, and the collected useful information should be distributed to the concerned party as required from this center. It is also desirable to have a few experts in the organization, who will be able to assist the parties required the technical assistance for development of energy conservation in their entity.

It is informed that recently MLGPU has set up an Advisory Committee on Renewable Energy comprising representatives of the public and private sectors. It is expected that the committee will be developed to the national "Energy Conservation Center" in future.

(3) The comprehensive and continuous collection of energy related information from all the public and private sectors.

At present, there is no systematic information collecting system in relation to energy conservation is existing in the country.

Even the above mentioned energy center is set up the activity will not be fruitful unless the Government guidance, which make possible the constant data collection from the public and private sectors entity by the center, is made. In many countries in the world, the ministry in charge of energy administration set up regulation which make possible the continuous collection of national energy related information, and in many country the Government provides the incentive for sumission of reliable data from related parties. Take for an example when the submitted information indicates excellent performance in respect of energy conservation, Government send prize to such party or the low cost fund will be provided for the project implementation of the party which is positively cooperating to provide the data & information useful to promote the energy conservation of the country.

### 8.3.5 Suggestion on Practical Plan for Energy Conservation

(1) Promotion of Cogeneration of Electricity and Heat

The one of important current international movement in the improvement of energy use efficiency is the cogeneration of electricity and heat, but presently the people of Mauritius

is not interested in this subject. However, most of people do not aware the fact, that is one of very active projects in the country in relation to energy conservation is BEDP project and one of important element of this project is the cogeneration of electricity and steam for sugar processing.

At present, many countries in the world interested in the implementation of cogeneration as the practical energy conservation scheme. The application of co-generation for electricity and heat supply to a large building, a large housing complex and a large industrial estate, which are require continuous supply of the electricity and heat such as steam, hot water, hot air, are being implemented as the viable project. Most of case, the power generation by diesel/engine/ gasturbine and waste heat recovery of the engine exhaust for generation of steam/hot water even refrigiration are combined.

The experience of the implementation of the power-heat co-generation projects in Japan are indicated in the Appendix 4-B.

It is expected that the power generation by diesel engine/gas turbine together with steam generation is adopted by the large hotels, the large residential complexes and the shopping centers the evening peak load of electricity demand to CEB grid can be controlled significantly.

The promotion of such co-generation schemes should be considered as a important role of CEB as one way of "the Demand Side Management" in the country. The difficulties involved in such co-generation project are high initial investment and the required technology sources. CEB is the party in Mauritius possessing such capabilities.

It is awared that the waste heat of diesel engines of CEB are partly recovered to generate steam required in the power plants. It is observed that the CEB power plants located close to industrial facilities has good potential to apply co-generation, but there is no such plan for near future.

When we consider the increase of energy cost in future, the application of co-generation in to the power generation system of Mauritius should be considered seriously.



(The IEA reported that by AD2010 the thermal power plant of industrially developed countries will realize co-generation which meets  $6\sim10\%$  of energy being use for power generation)

### (2) Diversification of Energy Resources

The diversification of energy resources of Mauritius is the one of important task of energy conservation of the country. Detail of this subject is described in para 4.3.

### (3) Development of Non-traditional Energy

The development of renewable energy is also another important subjects of energy conservation. The detail of proposal on this aspect is described in para 4.5.

(4) Further development of "Solar Water Heater" use, and reduction of electricity use for Water Heater"

It is observed that the development of use of Solar Water Heater in Mauritius is not so fast as it is expected as the attractive way of renewable energy use.

The problems of causing the staggering the acceleration of the use of "Solar Water Heater" in Mauritius are reported as follows:-

- 1) High initial cost of the equipment
- 2) Problem of maintenance (High cost and lack of adequate service)
- 3) Low cost of electrical water heater

The importance of reduction of electricity consumption of water heater is very important to the country not only for converting imported energy to indigenous renewable energy but also the possibility of reduction of peak electricity demand during evening peak.

However, it should be noted that even "the Solar Heater" equipped of the hot water reservoir is developed, the electricity demand during evening peak may not be reduced unless the electricity heater is not used during the time of no-sunshine days.



It is considered that the Solar Water Heater system, which equipped of LPG Water Heater as back-up, is made available to consumers on "Lease Basis" the problem of propagation may be minimized.

When we consider the technical-financial capability of the CEB after de-regulation, such project will be very viable as the new business opportunity of CEB.

The high cost of LPG comparing with Petroleum Fuel/Coal will be off set by high energy efficiency of hot water system than electricity generation, and the reduction of CEB facility cost for very short peak demand supply.





♦ Chapter 9 Optimum Investment Plan ♦

.

·

### Chapter 9 Optimum Investment Plan

### 9.1 Selecting Optimum Investment Plan

### (1) Purpose

The purpose of this chapter is to select through econometric comparative evaluation the investment plan that is the most advantageous in terms of finance and economy from among the power supply investment plans which have been proposed from the technical perspective to meet the projected total power demand.

### (2) Evaluation and selection methods

Comparative evaluation models shall be used to select the plan that is the most advantageous in terms of finance and economy from among the proposed power supply plans to meet power demand in the future. Since the power demand to be met (direct benefit) in the future is the same in any of the cases under consideration, the minimum cost method shall be used in comparative evaluation of the proposed plans.

### (3) Outline of evaluation models

For the purpose of financial and economic evaluation of the proposed investment plans, evaluation models built for the present project shall be used. The outline of the models prepared using MS/EXCEL is given below.

### (1) Financial cost evaluation model

- \* Input the disbursement amount for each year, including the escalation, to the investment schedule sheet that covers the entire investment period starting from the base year.
- \* Input all the operating costs (variable and fixed) over the entire period of evaluation, starting from the base year, to prepare a summary table of operating costs, including the escalation.
- \* Obtain the present values of those costs using a program for calculating present

- values by a certain discount rate.
- \* Prepare a comparison table of the alternative cases (for selecting the optimum case).
- \* Work out a method of sensitivity analysis for confirming the variation of evaluation results due to changes of major cost items or evaluation conditions.

### (2) Economic cost evaluation model

- \* Build an automatic calculation model which excludes the transfer costs included in all cost items and makes necessary adjustments of the individual cost items to convert the financial costs into economic costs.
- \* The calculation models for the investment schedule and cost summary table shall be the same as the ones for the financial evaluation model.

### 9.2 Power Supply Plan

### (1) Power development plan

We prepared the power development plan up to 2025. This plan is intended for use in the formulation of a long-term investment plan, and is not intended to be as an electric power master plan. For this reason, the plans by ESMAP and Kennedy & Donkin are formulated on the basis of Loss of Load Probability (LOLP), but, in this case, this method need not be adopted due to an only small number of populations (total number of power sources).

The JICA study team, therefore, paid attention to the supply reserve capacity and formulated a plan aiming at keeping the reserve capacity between minimum 10% and 20% (including 5% of spinning reserve) as a more realistic approach taking examples of other similar developing countries with a relatively small insular power system into consideration.

Based on the forecast of **Chapter 7**, the power demand forecast is estimated as Table 9.2.1. The capacity of the existing facilities is shown in Table 9.2.2. No maintenance work is scheduled for the maximum consumption month of December. The forced-outage rates are shown in Table 9.2.2. The retirement plan of power plants was formulated on the basis of the site survey and through discussion with the CEB. Due to their extensive deterioration, and especially with Fort victoria (Mirrlees), of the constant outage of one or two units because of failure, it was decided to decommission Fort Victoria and St. Louis according to the schedule shown in Table 9.2.3.

From the above condition and an assumption of the utilization of the coal which is abundant and is able to be provided stably in the future, for Base Case and High Case of demand forecast, following three scenarios are assumed.

### Scenario 1

From 2021 to 2025, Coal-fired plant with 100 MW will be started to operate each year.

### Scenario 2

In 2013 and 2014, Coal-fired plant with 100 MW will be started to operate and from 2023 to 2025, Coal-fired plant with 100 MW will be started to operate each year.

### Scenario 3

From 2002 to 2006, Diesel with 50 MW will be stated to operate and from 2021 to 2025, Coal-fired plant with 100 MW will be started to operate each year

As a result, 6 cases of power development plans are shown as Table 9.2.4 through Table 9.2.9.

### (a) Short-term Plan (from 1996 to 2000)

Tables 9.2.10 through Table 9.2.14, the power development plans for the 5 years between 1996 and 2000. The power demands for the respective months were estimated on the basis of load curves obtained on the basis of the assumed demand for the respective years. Due to the current work progress, operation of Fort George Unit #3 is scheduled to start December 1996. Operation start of Unit #4 is scheduled for January 1999 due to trouble free progress in the civil works.

With the bagasse project, the operation schedule of starting Beau Champ in 1997 and starting Belle Vue in 2000 was adopted. With the existing power generation stations, the operation schedule of operating the bagasse station between July and November, except for the F.U.E.L. operation was adopted. No maintenance work will be conducted in December, the month of peak power generation. The maintenance intervals adopted are; 6 weeks/year for Fort George, 4 months/year for St. Louis, 2 months/year for Fort Victoria (old), 1 month in the first year, 2 months in the second year and so on for Fort Victoria (new), and 1 month/year for Nicolay.

As there are several months with shortage of electricity in 1998 according to Table 9.2.12., an additional 34MW GT should be considered urgently.

### (b) Medium and Long term Plan (from 2001 to 2025)

After 2001, Fort George Unit #5 will start operation in 2001, followed by the development of 50 - 75 MW GT and 150 - 225 MW CCGT in combination in the course of time.



As the power system is expected to increase to 1,100 - 1,600 MW by 2020 to 2025, the installation of 100 MW power supply units becomes feasible, and the JICA study team recommends the introduction of coal-fired thermal plants to reduce generation cost.

As construction sites, Fort-William near to the capital and Grand-Port located on the south-east of the inland are recommended. But, F/S is necessary as soon as possible for realization of these CCGT and Coal-fired thermal Plant.

As for generation costs, Chap.8.1 is referred.

### (2) Transmission Line and Substation Plan

JICA's study team has reviewed the past reports, ESMAP and Rust Kennedy & Dunkin's, regarding the transmission lines, distribution lines and substations.

Kennedy & Donkin's report has accurately covered the present situation and the technical issues including necessary analyses in detail up to 2015.

After 2015, 132kV transmission lines, substations should be added to the CEB's network according to the commissioning of 225MW CCGT and 200 or 300MW Coal-fired thermal plants.

Distribution system also has to be reinforced year by year accordingly.

Recommendations or expansion planning are summarized as follows,

### 1) Short-term(1996-2000)

The result of the analysis carried out for the short-term indicate that the 66kV voltage can be maintained in the period to the year 2000.

In evaluating the costs, it has been assumed that all of the future transmission lines will be constructed in accordance with 132kV design standards, to facilitate upgrading to the higher voltage in the longer term.

From a technical point of view, given that the short-term generation plan indicates that Fort-George should continue to be extended, and that energy needs to be

transmitted to the Curepipe area.

Scenario 1 will be recommended for the transmission development in the short-term after economic evaluation of three alternative scenarios.

Breakdown of scenario 1 is shown in Table 9.2.15 and the drawing in figure 9.2.2.

The distributed forecast of evening peak loads, 1995-1999 is shown in Table 9.2.16.

### 2) Medium & long-term(2001-2015)

The result of the long-term transmission planning analysis suggest that the 132kV voltage should be introduced for the part of the system during the medium-term between years 2005 and 2008, with the precise timing depending on the load forecast scenario assumed. Under the base load forecast, the first upgrade to 132kV operation on the system would be required in 2007.

This scenario turns out to be the optimum from the transmission viewpoint, with generation at Fort-William initially connected to the 66kV network. In the period between 2005 and 2008 part of the network is uplifted to 132kV voltage level.

Further consideration was given in this scenario to earlier introduction of high voltage to the system.

Table 9.2.17 and Figure 9.2.3-5 represent the overhead line and substation developments recommended by the years 2005, 2010 and 2015 as they are proposed to be erected.

All the major overhead lines recommended should be installed to a 132kV design voltage level, although they should be initially operated at 66kV. It is shown that the first step of the upgrade should include the Fort-William, Rose Hill and Wooton substations, with associated overhead lines. Next step should be taken within the following two years, to upgrade the Nicolay II substation, L'Avenir and Amoury including the step-up and step-down transformers.



The Fort-George and Nicolay sites already have an established concept based on the 66kV voltage level. It is suggested that this concept should be retained for supplying the northern parts of Port-Louis city, the industrial zone around Fort-George, Arsenal and larger area of Belle Vue.

Besides Nicolay II, St. Louis substation should be another key substation in 66kV system with enough generation to ultimately supply the rest of Port-Louis city and area between, and including St. Louis and Chaumiere.

Table 9.2.18 shows bulk supply point transformers, and Table 9.2.19-20 shows distributed forecast of evening peak loads.

Table 9.2.1 ELECTRICITY PEAK DEMAND FORECAST

Unit : MW

| Years | Base case | High case | Low case |
|-------|-----------|-----------|----------|
| 1995  | 200       | 200       | 200      |
| 1996  | 222       | 222       | 222      |
| 1997  | 241       | 242       | 241      |
| 1998  | 257       | 257       | 256      |
| 1999  | 271       | 272       | 271      |
| 2000  | 288       | 289       | 287      |
| 2001  | 315       | 323       | 313      |
| 2002  | 344       | 358       | 339      |
| 2003  | 372       | 395       | 364      |
| 2004  | 402       | 435       | 390      |
| 2005  | 428       | 474       | 413      |
| 2006  | 455       | 515       | 435      |
| 2007  | 485       | 563       | 460      |
| 2008  | 516       | 615       | 485      |
| 2009  | 549       | 672       | 512      |
| 2010  | 584       | 735       | 539      |
| 2011  | 601       | 755       | 565      |
| 2012  | 655       | 772       | 612      |
| 2013  | 711       | 842       | 660      |
| 2014  | 770       | 916       | 709      |
| 2015  | 831       | 993       | . 760    |
| 2016  | 895       | 1,076     | 813      |
| 2017  | 963       | 1,163     | 868      |
| 2018  | 1,035     | 1,256     | 925      |
| 2019  | 1,110     | 1,356     | 985      |
| 2020  | 1,191     | 1,462     | 1,048    |
| 2021  | 1,276     | 1,576     | 1,114    |
| 2022  | 1,367     | 1,698     | 1,184    |
| 2023  | 1,465     | 1,829     | 1,257    |
| 2024  | 1,569     | 1,970     | 1,334    |
| 2025  | 1,680     | 2,122     | 1,415    |

Note: refer to Chapter 7



| Plant Name & Type   | Unit Capacity | Available Units | Effective Capacity | Forced Outage |
|---------------------|---------------|-----------------|--------------------|---------------|
| <u> </u>            | MW            |                 | MW                 | p.u.          |
| St. Louis           | 10            | 6               | 60                 | 0.25          |
| Fort Victoria (New) | 9             | 2               | 18                 | 0.15          |
| Fort Victoria (Old) | 4             | 7               | 28                 | 0.25          |
| Nicolay             | 23            | 1               | 23                 | 0.04          |
| •                   | 23            | 1               | 23                 | 0.04          |
|                     | 34            | 1               | 34                 | 0.04          |
| Fort George 1&2     | 24            | 2               | 48                 | 0.05          |
| Fort George 3,4&5   | 29            | 3               | 87                 | 0.05          |
| Hydro               | 10            |                 | 10                 | 0.01          |
| Bagasse cum coal    | _             |                 |                    | 0.15          |
| GT (new)            |               |                 |                    | 0.03          |
| CCGT (new)          |               |                 |                    | 0.03          |
| Coal (new)          |               |                 |                    | 0.03          |

1. Service Life

Diesel: 25 years

GT: 20 years CCGT: 20 years

Coal: 25 years

2. Forced Outage

St. Louis: fixed

Fort Victoria : fixed

others: 1% increses by 5 years

**Table 9.2.3 RETIREMENT PROGRAM** 

| Year | Plant Name          | Retired Capac | ity (MW) |
|------|---------------------|---------------|----------|
|      |                     | Unit          | Total    |
| 1995 |                     |               |          |
| 1996 |                     |               |          |
| 1997 |                     |               |          |
| 1998 |                     |               |          |
| 1999 | St. Louis 3         | 10            | 10       |
| 2000 | Fort Victoria 6     | 4             | 28       |
|      | Fort Victoria 5     | 4             |          |
|      | St. Louis 1& 2      | 20            |          |
| 2001 | Fort Victoria 4     | 4             | 18       |
|      | Fort Victoria 7     | 4             |          |
|      |                     | 10            |          |
| 2002 | Fort Victoria 8     | 4             | 8        |
|      | Fort Victoria 9     | 4             |          |
| 2003 | Fort Victoria 10    | 4             | 14       |
|      | St. Louis 4         | 10            |          |
| 2004 | St. Louis 5         | 10            | 10       |
| 2005 | St. Louis 6         | 10            | 10       |
| 2006 | Fort Victoria MAN 1 | 9             | 9        |
| 2007 | Fort Victoria MAN 2 | 9             | 9        |







Table 9.2.4 POWER DEVELOPMENT PLAN (BASE CASE-1)

|       |            |                  | Table 9.2.4 POWER DEV                                 | POWER DEVELOPMENT FLAN (BASE CASE-1) | ひぎ しりざ   | <u>-</u> |         |                     | as of end Dec. | Dec. |
|-------|------------|------------------|-------------------------------------------------------|--------------------------------------|----------|----------|---------|---------------------|----------------|------|
|       |            |                  | A A A A A                                             | Retired or Transferred               | - PG     | Total    | Biggest | Available           | Margin         | ri.  |
|       | Forecast   |                  | חסחת                                                  |                                      |          | Capacity | Unit    | Capacity            | (e)=(d)-(a)    | -(a) |
| Year  | (MM)       | Capacity<br>(MW) | Units                                                 | (MW) Units                           |          | (MW)     | (M W)   | (MW)<br>(d)=(b)-(c) | (MM)           | (%)  |
| 300,  | (a)        | 200              | 00/EC3/200/                                           |                                      |          | 285      | 34.0    | 251.0               | 29.0           | 13.1 |
| 1996  | 227        | 2 5              | 23 (rac(23)<br>15 Dans Chama(15) Barresce Realace(35) |                                      |          | 300      | 34.0    | 266.0               | 25.0           | 10.4 |
| 1991  | 1 17 0     | 1 8              | 10 Deau Champ(10), Dagasse increase(1.5)              |                                      |          | 334      | 34.0    | 300.0               | 43.0           | 16.7 |
| 2000  | 757        | ት 8              | 54 Dagasse replace(2) = 0.1(54)                       | 10 St.L.(10)                         | -        | 353      | 34.0    | 319.0               | 48.0           | 17.7 |
| 1999  | 1/7        | χ, ξ             | 29 FO4<br>00 Dallo Vine                               | 28 2F.V.(4, 4), 2St.L.(10,10)        | 10,10)   | 365      | 34.0    | 331.0               | 43.0           | 14.9 |
| 2000  | 207        | 3 6              | Delle vue                                             | 8 2F.V.(4, 4)                        |          | 386      | 34.0    | 352.0               | 37.0           | 11.7 |
| 2007  | 010        | 67 67            | 20 C2                                                 | 8 2F.V.(4, 4)                        |          | 428      | 50.0    | 378.0               | 34.0           | 6.6  |
| 7007  | CF 6       | 8 5              | 30 C I                                                | 14 F.V.(4), St.L.(10)                |          | 464      | 50.0    | 414.0               | 42.0           | 11.3 |
| 2002  | 37.5       | 2 6              |                                                       | 110 St.L.(10),2GT(50, 50)*           | *(0;     | 504      | 50.0    | 454.0               | 52.0           | 12.9 |
| 4002  | 704        | 200              | 50 CT                                                 | 10 St.L (10)                         |          | 544      | 50.0    | 494.0               | 66.0           | 15.4 |
| 5005  | 440        | 2 %              | 20 C 1                                                | 9 F.V.(9)                            |          | 585      | 50.0    | 535.0               | 80.0           | 17.6 |
| 2000  | 450        | 2 2              | 180003                                                | 109 F.V.(9),2GT(50, 50)*             | *        | 626      | 50.0    | 576.0               | 91.0           | 18.8 |
| 7007  | 407<br>717 |                  | 20 Oct.                                               | 23 Nicolay(23)                       |          | 653      | 50.0    | 603.0               | 87.0           | 16.9 |
| 2000  | 010        |                  | 20 C1                                                 |                                      |          | 703      | 50.0    |                     | 104.0          | 18.9 |
| 2010  | 784        |                  | 150 CGT                                               | 100 2GT(50, 50)                      |          | 753      | 50.0    |                     | 119.0          | 20.4 |
| 0.00  | 100        | 6 6              | , (((), (), (), (), (), (), (), (), (),               | 23 Nicolay(23)                       |          | 780      | 50.0    |                     | 129.0          | 21.5 |
| 2011  | 700        | SV               | (C) (C)                                               | · ·                                  |          | 830      | 50.0    |                     | 125.0          | 19.1 |
| 2012  | 117        | 3 5              | 150 051                                               | 100 2GT(50, 50)                      |          | 880      | 50.0    |                     | 119.0          | 16.7 |
| 2012  | 022        |                  | 75.04°                                                |                                      |          | 955      | 75.0    | 880.0               | 110.0          | 14.3 |
| 2014  | 0.7.7      |                  | * FG                                                  | 34 Nicolay(34)                       |          | 966      | 75.0    | 921.0               | 0.06           | 10.8 |
| 2010  | 50%        |                  | 225/CGT                                               | 150 2GT(75, 75)                      |          | 1,071    | 75.0    |                     | 101.0          | 11.3 |
| 2010  | 698        |                  | 200 20075 75° GT/50)                                  | 24 FG1(24)                           | olere mc | 1,247    | 75.0    |                     | 209.0          | 21.7 |
| 2010  | 1 035      |                  | 225 CGT                                               | 174 FG2(24), 2GT(75, 75)             | 75)      | 1,298    | 75.0    |                     | 188.0          | 18.2 |
| 20.00 | 7.110      |                  | [50]20CT/75 75)*                                      | 34 GT(34)                            |          | 1,414    | 75.0    |                     | 229.0          | 20.6 |
| 2020  | 77.7       | courado.         | 225,CCST                                              | 150 2GT(75, 75)                      |          | 1,489    | 75.0    |                     | 223.0          | 18.7 |
| 2020  | 1276       |                  | 100 Coal(2*100)                                       |                                      |          | 1,589    | 100.0   |                     | 213.0          | 16.7 |
| 2022  | 1.367      |                  | 150 GT/50). Coal(100)                                 | 29 FG3(29)                           |          | 1,710    | 100.0   |                     | 243.0          | 17.8 |
| 2023  | 1,465      |                  | 100 Coal(3*100)                                       | · · · · · ·                          |          | 1,810    | 100.0   |                     | 245.0          | 16.7 |
| 2024  | 1,569      |                  | 150 GT(50),Coal(100)                                  |                                      |          | 1,960    | 100.0   |                     | 291.0          | 18.5 |
| 2025  | 1,680      |                  | 100 Coal                                              |                                      |          | 2,060    | 100.0   | 1,900.0             |                | 10.7 |

# Table 9.2.5 POWER DEVELOPMENT PLAN (BASE CASE-2)

|      |             |                                                                                                               |                                      |                               |          |         |             | as of end Dec. | i Dec. |
|------|-------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|----------|---------|-------------|----------------|--------|
|      | Peak Demand | THE STREET OF STREET, | Added                                | Retired or Transferred        | Total    | Biggest | Available   | Margin         | ġ      |
| Year | Forecast    | Capacity                                                                                                      |                                      | Capacity                      | Capacity | Unit    | Capacity    | (e)=(q)-(a)    | -(a)   |
| ·    | (MM)        | (MM)                                                                                                          | Units                                | (MW) Cnits                    | (A) (2)  | (M) (3) | (a)=(b)-(c) | (MW)           | (%)    |
| 1996 | 222         | 29 FG3(29)                                                                                                    | 3(29)                                |                               | 285      |         | <u></u>     | 29.0           | 13.1   |
| 1997 | 241         | 15 Be                                                                                                         | Beau Champ(15), Bagasse Replace(3.5) |                               | 300      | 34.0    |             | 25.0           | 10.4   |
| 1998 | 257         | 34 Bac                                                                                                        | 34 Bagasse Replace(9) #GT(34)        |                               | 334      | 34.0    |             | 43.0           | 16.7   |
| 1999 | 271         | 29 FG4                                                                                                        | 4                                    | 10 St.L.(10)                  | 353      | 34.0    | 319.0       | 48.0           | 17.7   |
| 2000 | 288         | 40 Bel                                                                                                        | 40 Belle Vue                         | 28 ZF.V.(4, 4), 2St.L.(10,10) |          | 34.0    |             | 43.0           | 14.9   |
| 2001 | 315         | 29 FG5                                                                                                        | υγ                                   | 8 2F.V.(4, 4)                 | 386      | 34.0    | 352.0       | 37.0           | 11.7   |
| 2002 | 344         | 50 GT                                                                                                         |                                      | 8 2F.V.(4, 4)                 | 428      |         |             | 34.0           | 6.6    |
| 2003 | 372         | 50 GT                                                                                                         | •                                    | 14 F.V.(4), St.L.(10)         | 464      |         | 414.0       | 42.0           | 11.3   |
| 2007 | 402         | 150 CCG                                                                                                       | GT                                   | 110 St.L.(10),2GT(50, 50)*    | 504      |         | 454.0       | 52.0           | 12.9   |
| 2005 | 428         | 50 GT                                                                                                         | •                                    | 10 St.L.(10)                  | 544      |         | 494.0       | 0.99           | 15.4   |
| 2006 | 455         | 50 GT                                                                                                         |                                      | 9 F.V.(9)                     | 585      | 50.0    | 535.0       | 80.0           | 17.6   |
| 2007 | 485         | 150 CCG                                                                                                       | GT                                   | 109 F.V.(9),2GT(50, 50)*      | 626      |         | 576.0       | 91.0           | 18.8   |
| 2008 | 516         | 50 CT                                                                                                         | •                                    | 23 Nicolay(23)                | 653      |         | 603.0       | 87.0           | 16.9   |
| 2009 | 549         | 50 CT                                                                                                         |                                      |                               | 703      |         |             | 104.0          | 18.9   |
| 2010 | 584         | 150 CCG                                                                                                       | GT                                   | 100 2GT(50, 50)               | 753      |         |             | 119.0          | 20.4   |
| 2011 | 601         | 50 GT                                                                                                         | 3                                    | 23 Nicolay(23)                | 780      |         |             | 129.0          | 21.5   |
| 2012 | 655         | 50 GT                                                                                                         | •                                    |                               | 830      |         |             | 125.0          | 19.1   |
| 2013 | 711         | 150 CCGT                                                                                                      | GT                                   | 100 2GT(50, 50)*              | 880      |         |             | 119.0          | 16.7   |
| 2014 | 770         | 100 Coa                                                                                                       | 100 Coal(2*100)                      |                               | 086      |         |             | 110.0          | 14.3   |
| 2015 | 831         | 100 Coal                                                                                                      | *                                    | 34 Nicolay(34)                | 1,046    |         |             | 115.0          | 13.8   |
| 2016 | 268         | 75 GT                                                                                                         |                                      |                               | 1,121    |         |             | 126.0          | 14.1   |
| 2017 | 696         | 125 GT                                                                                                        | 125 GT(75), GT(50)                   | 24 FG1(24)                    | 1,222    |         |             | 159.0          | 16.5   |
| 2018 | 1,035       | 225 CCGT                                                                                                      | GT                                   | 174 FG2(24), 2GT(75, 75)      | 1,273    |         |             | 138.0          | 13.3   |
| 2019 | 1,110       | 150 2G1                                                                                                       | 150 2GT(75, 75)                      | 34 GT(34)                     | 1,389    |         |             | 179.0          | 16.1   |
| 2020 | 1,191       | 225 CCGT                                                                                                      | GT                                   | 150 2GT(75, 75)               | 1,464    |         |             | 173.0          | 14.5   |
| 2021 | 1,276       | 150 2G1                                                                                                       | 150 2GT(75, 75)                      |                               | 1,614    |         |             | 238.0          | 18.7   |
| 2022 | 1,367       | 275 GT(                                                                                                       | 275 GT(50),CCGT(225)                 | 179 FG3(29), 2GT(75, 75)      | 1,710    |         |             | 243.0          | 17.8   |
| 2023 | 1,465       | 100 Coa                                                                                                       | 100 Coal(3*100)                      |                               | 1,810    |         | 1,710.0     | 245.0          | 16.7   |
| 2024 | 1,569       | 150 GT(                                                                                                       | 150 GT(50), Coal(100)                |                               | 1,960    |         |             | 291.0          | 18.5   |
| 2025 | 1,680       | 100 Coa                                                                                                       | ]]                                   |                               | 2,060    | 100.0   | 1,960.0     | 280.0          | 16.7   |

## Table 9.2.6 POWER DEVELOPMENT PLAN (BASE CASE-3)

The state of the s

|         | -           |          | lable 9.2.6 FOWER DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | ()            |         |                  | as of end Dec. | Dec. |
|---------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|---------|------------------|----------------|------|
| -       | Deed Demond |          | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Retired or Transferred        | Total         | Biggest | Available        | Margin         | 'n   |
| V. 8.37 | Forecast    | Canacity |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capacity                      | Capacity      | Chait   | Capacity<br>(MW) | (e)=(d)-(a)    | -(a) |
| <u></u> | (MW)        | (MM)     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (MW)                          | (m, m,<br>(b) | (c)     | (a)=(b)-(c)      | (MM)           | (%)  |
| 1004    | (4)         | 29 F     | 29 FG3(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 285           | 34      | 251.0            | 29.0           | 13.1 |
| 1007    | 241         | 15.      | Bean Champ(15) Bagasse Replace(3.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 300           | 34      | 266.0            | 25.0           | 10.4 |
| 1000    | 750         | 34       | 34 Bassee Renjare(9) #GT(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 334           | 34      | 300.0            | 43.0           | 16.7 |
| 1000    | 176         | 29 FG4   | Agasso represent to the second | 10 St.L.(10)                  | 353           | 34      | 319.0            | 48.0           | 17.7 |
| 0000    | 880         |          | 40 Relie Vie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 2F.V.(4, 4), 2St.L.(10,10) | 365           | 34      | 331.0            | 43.0           | 14.9 |
| 2007    | 21.5        |          | 52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 2F.V.(4, 4)                 | 386           | 8       | 352.0            | 37.0           | 11.7 |
| 2002    | 446         |          | SO Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 2F.V.(4, 4)                 | 428           | 50      | 378.0            | 34.0           | 6.6  |
| 2003    | 275         |          | 50 Diese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14 F.V.(4), St.L.(10)         | 464           | 20      | 414.0            | 42.0           | 11.3 |
| 2007    | 202         |          | 50 Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 St.L(10)                   | 504           | 50      | 454.0            | 52.0           | 12.9 |
| 2004    | 428         |          | 50 Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 St.L.(10)                  | 544           | 50      | 494.0            | 0.99           | 15.4 |
| 2002    | 455         |          | 50 Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 F.V.(9)                     | 585           | 50      | 535.0            | 80.0           | 17.6 |
| 2002    | 485         | -        | 50 Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 F.V.(9)                     | 626           | 90      | 576.0            | 91.0           | 18.8 |
| 2008    | 516         |          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 Nicolay(23)                | 623           | 50      | 603.0            | 87.0           | 16.9 |
| 2000    | 540         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 703           | 50      | 653.0            | 104.0          | 18.9 |
| 2010    | 584         |          | 150 CCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 2GT(50, 50)               | 753           | 20      | 703.0            | 119.0          | 20.4 |
| 2013    | 109         |          | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 Nicolay(23)                | 780           | 50      | 730.0            | 129.0          | 21.5 |
| 2012    | 655         | 4447-4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 830           | 20      | 780.0            | 125.0          | 19.1 |
| 2013    | 711         |          | 150 CCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 2GT(50, 50)*              | 880           | 20      | 830.0            | 119.0          | 16.7 |
| 2012    | 770         |          | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 955           | 75      | 880.0            | 110.0          | 14.3 |
| 2015    | 831         |          | : {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 Nicolay(34)                | 966           | 75      | 921.0            | 90.0           | 10.8 |
| 2016    | 895         |          | 225 CCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 2GT(75, 75)               | 1,071         | 75      | 0.966            | 101.0          | 11.3 |
| 2017    | 963         | v0/83746 | 200 2GT(75, 75), GT(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 FG1(24)                    | 1,247         |         | 1,172.0          | 209.0          | 21.7 |
| 2018    | 1.035       |          | 225 cccr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174 FG2(24), 2GT(75, 75)      | 1,298         | 75      | 1,223.0          | 188.0          | 18.2 |
| 2019    | 1,110       |          | 150 2GT(75, 75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 GT(34)                     | 1,414         | 75      | 1,339.0          | 229.0          | 20.6 |
| 2020    | 1,391       |          | 225 CCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 2GT(75, 75)*              | 1,489         |         | 1,414.0          | 223.0          | 18.7 |
| 2021    | 1,276       |          | 100)Coal(2*100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1,589         |         | 1,489.0          | 213.0          | 16.7 |
| 2022    | 1,367       |          | 150 GT(50), Coai(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 FG3(29)                    | 1,710         |         | 1,610.0          | 243.0          | 17.8 |
| 2023    | 1,465       |          | 100 Coal(3*100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1,810         |         | 1,710.0          |                | 16.7 |
| 2024    | 1,569       |          | 150 GT(50), Coal(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 1,960         | 100     | 1,860.0          |                | 18.5 |
| 2025    | 1,680       |          | 100 Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 2,360         | 1001    | 1,960.0          | 780.0          | 10./ |

Table 9.2.7 POWER DEVELOPMENT PLAN (HIGH CASE-1)

|                                              | Peak Demand<br>Forecast |       | 1. 1. 1. A                           |                                     | Total    | Biggest | Available           | Margin      | zin          |
|----------------------------------------------|-------------------------|-------|--------------------------------------|-------------------------------------|----------|---------|---------------------|-------------|--------------|
|                                              | Forecast                |       | Added                                | Ketired of Transferred              | 1500     | 0       |                     |             |              |
| 1996<br>1997<br>1999<br>2000<br>2001         | •                       |       |                                      | Otion re O                          | Capacity | Unit    | Capacity            | (e)=(q)-(a) | <u>-</u> (a) |
| 1996<br>1997<br>1998<br>1999<br>2000<br>2001 | (MM)                    | (MW)  | Units                                | (MW)                                | (M.M)    | (M(M)   | (MM)<br>(d)=(b)-(c) | (MW)        | (%)          |
| 1997<br>1998<br>1999<br>2000                 | 722                     | 29    | 29 FG3(29)                           |                                     | 285      | 34.0    |                     |             | 13.1         |
| 1998<br>1999<br>2000<br>2001                 | 242                     | 15    | Beau Champ(15). Bagasse Replace(3.5) |                                     | 300      | 34.0    |                     |             | 6.6          |
| 1999<br>2000<br>2001                         | 257                     | 34    | 34 Baeasse Replace(9) #GT(34)        |                                     | 334      | 34.0    |                     |             | 16.7         |
| 2000                                         | 272                     | 39    | 29 FG4                               | 10 St.L.(10)                        | 353      | 34.0    |                     |             | 17.3         |
| 2001                                         | 289                     | 4     | 40 Belle Vue                         | 28 2F.V.(4, 4), 2St.L.(10,10)       | 365      | 34.0    |                     |             | 14.5         |
|                                              | 323                     | 162   | 79 FG5(29), GT*(50)                  | 8 2F.V.(4, 4)                       | 436      | 34.0    |                     | 79.0        | 24.5         |
| 2002                                         | 358                     | 92    | 50.61                                | 8 2F.V.(4, 4)                       | 478      | 50.0    | 428.0               | 70.0        | 19.6         |
| 2003                                         | 395                     | 150   | 150 CCGT                             | 114 F.V.(4), St.L.(10),2GT(50, 50)* | 514      | 20.0    | 464.0               |             | 17.5         |
| 2005                                         | 435                     | 20    | 50 GT                                | 10 St.L(10)                         | 554      | 20.0    | 504.0               |             | 15.9         |
| 2005                                         | 474                     | 305   | 50.67                                | 10 St.L(10)                         | 594      | 50.0    | 544.0               |             | 14.8         |
| 2006                                         | 51.5                    | 150   | 150 CCGT                             | 109 F.V.(9),2GT(50, 50)*            | 635      | 20.0    | 585.0               | 70.0        | 13.6         |
|                                              | 563                     | 50    | 50/GT                                | 9 F.V.(9)                           | 676      | 50.0    | 626.0               |             | 11.2         |
| 3008                                         | 615                     | 98    | 50 GT                                | 23 Nicolay(23)                      | 703      | 50.0    | 653.0               |             | 6.2          |
| 5000                                         | 672                     | 150   | 150 CCGT                             | 100 2GT(50, 50)                     | 753      | 20.0    |                     |             | 4.6          |
| 2010                                         | 735                     | 75 GT | , LO                                 |                                     | 828      | 75.0    | 753.0               |             | 2.4          |
| 2011                                         | 755                     | 75    | 75 GT                                | 23 Nicolay(23)                      | 880      | 75.0    |                     |             | 9.9          |
| 2012                                         | 772                     | 225   | 225 CCGT                             | 150 2GT(75, 75)                     | 955      | 75.0    |                     |             | 14.0         |
| 2013                                         | 842                     | 75    | 75 GT                                |                                     | 1,030    | 75.0    | 955.0               |             | 13.4         |
| 2014                                         | 916                     | 75 GT | ਹੈ                                   |                                     | 1,105    | 75.0    |                     | t           | 12.4         |
| 2015                                         | 266                     | 225   | 225 CCGT                             | 184 Nicolay(34),2GT(75, 75)*        | 1,146    | 75.0    |                     |             | 7.9          |
| 2016                                         | 1,076                   | 357   | 75 GT*                               |                                     | 1,221    | 75.0    |                     |             | 6.5          |
| 2017                                         | 1,163                   | 125   | 125 GT(75), GT(50)                   | 24 FG1(24)                          | 1,322    | 75.0    |                     |             | 7.2          |
| 2018                                         | 1,256                   | 225   | 225 CCGT                             | 174 FG2(24), 2GT(75, 75)            | 1,373    | 75.0    |                     |             | 3.3          |
| 2019                                         | 1,356                   | 150   | 150 2GT(75, 75)                      | 34 GT(34)                           | 1,489    | 75.0    |                     |             | 4.3<br>E     |
| 2020                                         | 1,462                   | 225   | 225 CCGT                             | 150 2GT(75, 75)                     | 1,564    | 75.0    |                     |             | 1.8          |
| 2021                                         | 1,576                   | 250   | 250 Coal(2*100),2GT(75,75)*          |                                     | 1,814    | 100.0   |                     |             | 8            |
| 2022                                         | 1,698                   | 375   | 375 Coal(100), CCGT(225),GT(50)      | 179 FG3(29),2GT(75, 75)*            | 2,010    | 100.0   |                     |             | 12.5         |
| 2023                                         | 1,829                   | 250   | 250 Coal(3*100),2GT(75,75)*          |                                     | 2,260    | 100.0   |                     |             | 18.1         |
| 2024                                         | 1,970                   | 325 ( | 325 Coal(100), CCGT(225)             | 150 2GT(75, 75)*                    | 2,435    | 100.0   |                     |             | 18.5         |
| 2025                                         | 2,122                   | 150   | [50] Coal(100), GT(50)               |                                     | 2,585    | 100.0   | 2,485.0             | 363.0       | 17.1         |

## Table 9.2.8 POWER DEVELOPMENT PLAN (HIGH CASE-2)

Carbon Co.

|      |                  |          | Table 9.2.8 POWER DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POWER DEVELOPMENT PLAN (AIGH CASE-2) | ひそう にち                                | [-'4]    |         |           | as of end Dec. | Dec. |
|------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|----------|---------|-----------|----------------|------|
|      |                  |          | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Retired or Transferred               | -                                     | Total    | Biggest | Available | Margin         | μį   |
|      | Peak Demand      | -        | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                       | Capacity | Unit    | Capacity  | (e)-(y)-(e)    | (6)  |
| Year | Forecast<br>(MW) | Capacity | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Capacity Units (MW)                  |                                       | (MW)     | (MM)    | (MW)      | (MW)           | (%)  |
|      | (a)              | ( M M)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |          | (2)     | 0510      | 0 00           | 13.1 |
| 1996 | 222              | 29 1     | 29 FG3(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                       | C87      | 0.40    | 0.162     | 2 6            | . 0  |
| 1997 | 242              | 15       | Beau Champ(15), Bagasse Replace(3.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -144.73                              |                                       | 900      | 34.0    |           | 0.4.7          | 6.7  |
| 0001 | 1.50             | 34.1     | 34 Bacasse Replace(9) #GT(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                       | 334      | 34.0    |           | 45.0           | 10.7 |
| 1998 | , 77             | 5 8      | DO DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 St.L.(10)                         | ·                                     | 353      | 34.0    |           | 47.0           | 17.3 |
| 1999 | 7/7              | . 62     | 29 FO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 2F.V.(4, 4), 2St.L.(10,10)        | 0,10)                                 | 365      | 34.0    |           | 42.0           | 14.5 |
| 2000 | 687              | 9 6      | Delle vice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 2F.V.(4, 4)                        |                                       | 436      | 50.0    | 386.0     | 63.0           | 19.5 |
| 2001 | 37.5             |          | /y ru3(29), u1 - (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 2F V (4, 4)                        |                                       | 478      | 50.0    | 428.0     | 70.0           | 19.6 |
| 2002 | 328              | مسد      | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114 F.V.(4), St.L.(10),2GT(50, 50)*  | 3T(50, 50)*                           | 514      | 50.0    | 464.0     | 69.0           | 17.5 |
| 2003 | CKS              |          | 150 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 St 1710)                          |                                       | 554      | 50.0    | 504.0     | 0.69           | 15.9 |
| 2004 | 435              | ماسان    | * F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.81.(10)                           |                                       | 594      | 50.0    | 544.0     | 70.0           | 14.8 |
| 2005 | 4/4              |          | £ { ( (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109 F.V.(9) 2GT(50, 50)*             | *                                     | 635      | 50.0    | 585.0     | 70.0           | 13.6 |
| 2006 | 515              |          | 150 CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 FV(9)                              |                                       | 676      | 50.0    | 626.0     | 63.0           | 11.2 |
| 2007 | 503              |          | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 Nicolay(23)                       |                                       | 703      | 50.0    | 653.0     | 38.0           | 6.2  |
| 2008 | 615              |          | 15 OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 2GT(50, 50)                      |                                       | 753      | 50.0    | 703.0     | 31.0           | 4.6  |
| 2003 | 6/2              |          | LOU CCC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                       | 828      | 75.0    | 753.0     | 18.0           | 2.4  |
| 2010 | 55/              |          | - FO (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.Nicolav(23)                       |                                       | 880      | 75.0    | 805.0     | 20.0           | 9.9  |
| 2011 | 755              |          | (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150 2GT(75, 75)                      | <del></del>                           | 955      | 75.0    | 880.0     | 108.0          | 14.0 |
| 2012 | 777              |          | 225 (CC 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                       | 1,055    | 100.0   | 955.0     | 113.0          | 13.4 |
| 2013 | 842              |          | 100 (cai(2*100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       | 1.155    | 100.0   | 1,055.0   | 139.0          | 15.2 |
| 2014 | 916              |          | 100 Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34 Nicolay(34)                       |                                       | 1,196    | 100.0   | 1,096.0   | 103.0          | 10.4 |
| 2015 | 242              |          | 75 OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                       | 1,271    | 100.0   |           |                | 8.8  |
| 2016 | 1,0/0            |          | 7.5 (3.7.7.7.2.5.)* (GT/50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174 FG1(24), 2GT(75, 75)*            | (2)*                                  | 1,372    |         |           |                | 9,4  |
| 7107 | 230.1            |          | 150 200775 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58 FG2(24), GT(34)                   |                                       | 1,464    | 100.0   |           |                | 8.6  |
| 2018 | 007,1            |          | 130 ZG1(75, 73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 2GT(75, 75)                      |                                       | 1,539    | 100.0   | 1,439.0   |                | 6.1  |
| 2019 | 1,530            |          | 223 CCC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                       | 1,689    | 100.0   | 1,589.0   | 127.0          | 8.7  |
| 2020 | 1,402            |          | 130 ZG 1(73, 73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150 2GT(75, 75)                      |                                       | 1,764    | 100.0   | 1,664.0   | 88.0           | 5.6  |
| 2021 | 0/0,             |          | 223 CCG 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 FG3(29)                           | · · · · · · · · · · · · · · · · · · · | 1,935    | 100.0   | 1,835.0   | 137.0          | 8.1  |
| 7707 | 0,000            |          | 275 Cost(3, 72, 72, 72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150 2GT(75, 75)*                     |                                       | 2,160    |         |           |                | 12.6 |
| 202  | 1,020            |          | 0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 ( |                                      |                                       | 2,410    |         |           |                | 17.3 |
| 2024 | 1,970            |          | 325 Coai(100), CCGT(225)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 2GT(75, 75)                      |                                       | 2,585    | 100.0   | 2,485.0   | 363.0          | 17.1 |
| 202  |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |          |         |           |                |      |

Table 9.2.9 POWER DEVELOPMENT PLAN (HIGH CASE-3)

| Peak Deman Forecast (MW) (a) (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capacity (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Added  Units  Units  29 FG3(29)  15 Beau Champ(15), Bagasse Replace(3.5)  29 FG4  40 Belle Vue  79 FG5(29), Diesel(50)  50 Diesel  50 Diesel  50 Diesel  50 Diesel  50 Diesel  50 Diesel | Capacity (MW)  Units  Units   | Total Capacity (MW) | Biggest<br>Unit | Available<br>Capacity | Margin<br>(c)=(d)-(a) | іл<br>(а) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|-----------------|-----------------------|-----------------------|-----------|
| Forecast (MW) (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Capacity (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units PG3(29) Beau Champ(15), Bagasse Replace(3.5) Bagasse Replace(9) #GT(34) FG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel                                              |                               | Capacity (MW)       | Unit            | Capacity              | (c)=(d)               | -(a)      |
| (A.W.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (MW) (MW) 15 29 40 40 70 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units FG3(29) Beau Champ(15), Bagasse Replace(3.5) Bagasse Replace(9) #GT(34) FG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel                                              | St.L.(10)                     | (M W)               |                 |                       |                       |           |
| (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 2 4 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FG3(29) Beau Champ(15), Bagasse Replace(3.5) Bagasse Replace(9) #GT(34) FG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel                                                           | 10 St.L.(10)                  |                     | (MM)            | (a)=(b)               | (MM)                  | (%)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 7 4 8 9 5 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beau Champ(15), Bagasse Replace(3.5)* Bagasse Replace(9) #GT(34) FG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel                                                           | 10 St.L.(10)                  | 285                 | 34.0            | 251.0                 | 29.0                  | 13.1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bagasse Replace(9) #GT(34) PG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel                                                                                                 | 10 St.L.(10)                  | 300                 | 34.0            | 266.0                 | 24.0                  | 6.6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon | FG4 Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel                                                                                                                            | 10 St.L.(10)                  | 334                 | 34.0            | 300.0                 | 43.0                  | 16.7      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Belle Vue FG5(29), Diesel(50) Diesel Diesel Diesel Diesel Diesel                                                                                                                         |                               | 353                 | 34.0            | 319.0                 | 47.0                  | 17.3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FG5(29), Diesel(50) Diesel Diesel Diesel Diesel Diesel                                                                                                                                   | 28 2F.V.(4, 4), 2St.L.(10,10) | 365                 | 34.0            | 331.0                 | 42.0                  | 14.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diesel Diesel Diesel Diesel Diesel                                                                                                                                                       | 8 2F.V.(4, 4)                 | 436                 | 50.0            | 386.0                 | 63.0                  | 19.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel Diesel Diesel Diesel Diesel                                                                                                                                                       | S 2F.V.(4, 4)                 | 478                 | 50.0            | 428.0                 | 70.0                  | 19.6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel<br>Diesel<br>Diesel                                                                                                                                                               | 14 F.V.(4), St.L.(10)         | 514                 | 50.0            | 464.0                 | 0.69                  | 17.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel<br>Diesel<br>Gr                                                                                                                                                                   | 10 St.L(10)                   | 554                 | 50.0            | 504.0                 | 0.69                  | 15.9      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel                                                                                                                                                                                   | 10 St.L.(10)                  | 594                 | 50.0            | 544.0                 | 70.0                  | 14.8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | رتب."                                                                                                                                                                                    | 9 F.V.(9)                     | 635                 | 50.0            | 585.0                 | 70.0                  | 13.6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                          | 9 F.V.(9)                     | 929                 | 50.0            | 626.0                 | 63.0                  | 11.2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 GT                                                                                                                                                                                    | 23 Nicolay(23)                | 703                 | 50.0            | 653.0                 | 38.0                  | 6.2       |
| Walter Landson and Control of the Co | 12/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 CCGT                                                                                                                                                                                 | 100 2GT(50, 50)               | 753                 | 50.0            | 703.0                 | 31.0                  | 4.6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75 GT                                                                                                                                                                                    |                               | 828                 | 75.0            | 753.0                 | 18.0                  | 2.4       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 GT                                                                                                                                                                                    | 23 Nicolay(23)                | 880                 | 75.0            | 805.0                 | 20.0                  | 9.9       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225 CCGT                                                                                                                                                                                 | 150 2GT(75, 75)               | 955                 | 75.0            | 880.0                 | 108.0                 | 14.0      |
| 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 GT                                                                                                                                                                                    |                               | 1,030               | 75.0            | 955.0                 | 113.0                 | 13.4      |
| <b>P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 GT                                                                                                                                                                                    |                               | 1,105               | 75.0            | 1,030.0               | 114.0                 | 12.4      |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172 <b>9</b> 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225 CCGT                                                                                                                                                                                 | 184 Nicolay(34),2GT(75, 75)*  | 1,146               | 75.0            | 1,071.0               | 78.0                  | 7.9       |
| ω <sub>ες</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75 GT*                                                                                                                                                                                   |                               | 1,221               | 75.0            | 1,146.0               | 70.0                  | 6.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 GT(75),GT(50)                                                                                                                                                                        | 24 FG1(24)                    | 1,322               | 75.0            | 1,247.0               | 2.0                   | 7.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,256 225 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225 CCGT                                                                                                                                                                                 | 174 FG2(24), 2GT(75, 75)      | 1,373,              | 75.0            | 1,298.0               | 42.0                  | 3.3       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 2GT(75, 75)                                                                                                                                                                          | 34 GT(34)                     | 1,489               | 75.0            | 1,414.0               | 58.0                  | 4.3       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225 ccer                                                                                                                                                                                 | 150 2GT(75, 75)               | 1,564               | 75.0            | 1,489.0               | 27.0                  | 1.8       |
| 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 175 Coal(2*100),GT(75)*                                                                                                                                                                  |                               | 1,739               | 100.0           | 1,639.0               | 63.0                  | 4.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225 Coal(100), GT(75)*, GT(50)                                                                                                                                                           | 29 FG3(29)                    | 1,935               | 100.0           | 1,835.0               | 137.0                 | 8.1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 325 Coal(3*100), CCGT(225)                                                                                                                                                               | 150 2GT(75, 75)*              | 2,110               | 100.0           | 2,010.0               | 181.0                 | 6.6       |
| 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175 Coal(100)*,GT(75)*                                                                                                                                                                   |                               | 2,285               | 100.0           | 2,185.0               | 215.0                 | 10.9      |
| 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,122 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225 Coal(100)*,GT(75)*,GT(50)                                                                                                                                                            |                               | 2,510               | 100.0           | 2,410.0               | 288.0]                | 13.6      |



Table 9.2.10 POWER DEMAND AND SUPPLY IN 1996 (BASE CASE, REFERENCE)

| Table 9.2.10 POWER DEMAND AND SOLITE IN 1930 (DASE OCCUMENT OF THE PROPERTY OF | 2              | ž<br>L<br>L |          | ב<br>ב<br>ב |       |       | <u>(</u>       |           |       |                | Unit: MW        | /     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|----------|-------------|-------|-------|----------------|-----------|-------|----------------|-----------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tan            | Feb         | Mar      | Apr         | May   | Jun   | Juľ            | Aug       | Sep   | Oct            | Nov             | Dec   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24             | 24          | 24       | 24          | 24    | 24    | 24             |           |       | 24             | 24              | 24    |
| Fort George 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 6            | )           | <u>-</u> | 24          | 24    | 24    | 24             | 24        | 24    | 24             | 24              | 24    |
| Fort George 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>*</del> 7 |             |          | 7           | 1     | 1     | ·              |           |       |                | -               |       |
| Fort George 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |             | 1        | 1           |       | Ç     | Ç              | 14        | 7     | Ç,             | V               | C     |
| St. Louis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50             | 50          | 9        | 50          | 2     | 20    | 2              | 2         | 8     | 3              | 3               |       |
| Fort Victoria 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24             | 24          | 28       | 24          | 24    | 28    | 28             | 24        | 24    | 24             | 24              | 24    |
| The Victoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o o            | Ó           | 6        | 18          | 18    | 18    | 5              | 6         | 6     | 18             | 18              | 18    |
| roil victoria z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 6,           | 23          | 23       | 23          | 23    | 23    | 23             | 23        | 23    | 23             | 23              | 23    |
| Nicolay 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 6            | 3 8         | 23       | 23          | 23    | 23    |                | 23        | 23    | 23             | 23              | 23    |
| Nicolay 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 %            | 34          | }        | 45          | 34    | 34    | 34             | 34        | 34    | 34             | 34              | 34    |
| Inicolay 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r C            | , 6         | 40       | 40          | 20    | 70    | 15             | 15        | 15    | 10             | 10              | 10    |
| Aydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 4            | 7 7         | 2 4      | <u>)</u>    | i     | )     | 12             | 12        | 12    | 12             | 12              | 12    |
| FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr             | 7           | 3        |             |       |       | <u> </u>       |           | ~     | 9              | 9               |       |
| Medine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |             |          |             |       |       | <del>1</del> V | t v       | 5 V   | V              | v               |       |
| Riche en Eau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |          |             |       |       | 7              | ، ر       | , +   | ) +            | ) -             |       |
| Union St. Aubin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ·····       |          |             |       |       |                | <b></b> i | 1     | <del>√</del> ( | <del>-1 (</del> |       |
| Mon Tresor Mon Desert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | -           |          |             |       |       | 2              | 7         | 7     | 7              | 7               | ı     |
| Down Chomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |             |          |             |       |       | 12             | 12        | 12    | 12             | 12              | 15    |
| Other Descrip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |             |          | -           |       |       | 1.1            | 1.1       | 1.1   | 1.1            | 1.1             |       |
| Total Sunniv Conscitu (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 236.0          | 222.0       | 222.0    | 260.0       | 240.0 | 244.0 | 244.1          | 239.1     | 251.1 | 269.1          | 269.1           | 257.0 |
| Diagon IInit Conomity (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34             | 34          | 29       | 34          | 34    | 34    | 34             | 34        | 34    | 34             | 34              | 34    |
| Diggest Cinc (apacity (c) (a) (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.20          | 1880        | 193.0    | 226.0       | 206.0 | 210.0 | 210.1          | 205.1     | 217.1 | 235.1          | 235.1           | 223.0 |
| Available Supply Capacity (C) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 213.8          | 2171        | 220.3    | 224.6       | 221.4 | 219.3 | 219.1          | 220.5     | 221.1 | 224.1          | 231.0           | 228.4 |
| Calanta December (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.7           | 10.0        | 11.0     | 11.2        | 11.1  | 11.0  | 11.0           | 11.0      | 11.1  | 29.0           | 11.6            | 11.4  |
| Spanning reserve $(2/6)$ $(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 224.5          | 228.0       | 231.3    | 235.8       | 232.5 | 230.3 | 230.1          | 231.5     | 232.2 | 253.1          | 242.6           | 239.8 |
| Margin (0)=(c)-(f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -22.5          | -40.0       | -38.3    | 8.6-        | -26.5 | -20.3 | -20.0          | -26.4     | -15.1 | -18.0          | -7.4            | -16.8 |
| $M_{arcin}(S, C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.5          | -18.4       | -17.4    | 4.4         | -12.0 | -9.2  | -9.1           | -12.0     | -6.8  | -8.0           | -3.2            | -7.4  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |          |             |       |       |                |           |       |                |                 |       |

Table 9.2.11 POWER DEMAND AND SUPPLY IN 1997 (BASE CASE)

|                                         | 3.00  | -                    |       |           |       |             |       |                 |             |       | Unit: MW | >     |
|-----------------------------------------|-------|----------------------|-------|-----------|-------|-------------|-------|-----------------|-------------|-------|----------|-------|
|                                         | Jan   | Feb                  | Mar   | Apr       | May   | Jun         | Jul   | Aug             | Sep         | Oct   | Nov      | Dec   |
| Fort George 1                           | 24    | 24                   | 24    | 24        | 24    | 24          | 24    |                 |             | 24    | 24       | 24    |
| Fort George 2                           | 24    |                      |       | 24        | 24    | 24          | 24    | 24              | 24          | 24    | 24       | 24    |
| Fort George 3                           | 29    | 29                   | 58    | 29        | 29    | 29          | 29    | 29              | 29          | 29    | 29       | 53    |
| St. Louis                               | 50    | 50                   | 09    | 50        | 50    | 50          | 50    | 50              | 9           | 50    | 20       | 20    |
| Fort Victoria 1                         | 24    | 24                   | 28    | 24        | 24    | 28          | 28    | 24              | 24          | 24    | 24       | 24    |
| Fort Victoria 2                         | 6     | 6                    | 6     | 18        | 18    | 18          | 6     | 9               | 6           | 18    | 18       | 18    |
| Nicolay 1                               | 23    | 23                   | 23    | 23        | 23    | 23          | 23    | 23              | 23          | 23    | 23       | 23    |
| Nicolay 2                               | 23    | 23                   | 23    | 23        | 23    | 23          |       | 23              | 23          | 23    | 23       | 23    |
| Nicolay 3                               | 34    | 34                   |       | 34        | 34    | 34          | 34    | 34              | 34          | 34    | 34       | 34    |
| Hydro                                   | 10    | 20                   | 40    | 40        | 20    | 20          | 15    | 15              | 15          | 10    | 10       | 10    |
| FUEL                                    | 15    | 15                   | 15    | -         |       |             | 12    | 12              | 12          | 12    | 12       | 12    |
| Medine                                  |       |                      |       |           |       | <del></del> | 4     | 4               | 9           | 9     | 9        |       |
| Riche en Eau                            |       |                      |       |           |       |             | 5     | S               | Š           | Ŋ     | S        |       |
| Union St. Aubin                         |       |                      |       |           |       |             |       | <del>-</del> -1 | <del></del> | -     |          |       |
| Mon Tresor Mon Desert                   |       |                      |       |           |       |             | 2     | 2               | 7           | 2     | 2        |       |
| Beau Champ                              |       | <del></del> <u>-</u> | •     | w <u></u> |       |             | 12    | 12              | 12          | 12    | 12       | 15    |
| Other Bagasse                           |       | -                    |       |           |       |             | 1.1   | 1.1             | 1.1         | 1.1   | 1.1      |       |
| Total Supply Capacity (a)               | 265.0 | 251.0                | 251.0 | 289.0     | 269.0 | 273.0       | 273.1 | 268.1           | 280.1       | 298.1 | 298.1    | 286.0 |
| Biggest Unit Capacity (b)               | 34    | 34                   | 29    | 34        | 34    | 34          | 34    | 34              | 34          | 34    | 34       | 34    |
| Available Supply Capacity $(c)=(a)-(b)$ | 231.0 | 217.0                | 222.0 | 255.0     | 235.0 | 239.0       | 239.1 | 234.1           | 246.1       | 264.1 | 264.1    | 252.0 |
| Peak Demand (d)                         | 213.8 | 217.1                | 220.3 | 224.6     | 221.4 | 219.3       | 219.1 | 220.5           | 221.1       | 224.1 | 231.0    | 228.4 |
| Spinning Reserve (5%) (e)               | 10.7  | 10.9                 | 11.0  | 11.2      | 11.1  | 11.0        | 11.0  | 11.0            | 11.1        | 29.0  | 11.6     | 11.4  |
| Total Demand (f)=(d)+(e)                | 224.5 | 228.0                | 231.3 | 235.8     | 232.5 | 230.3       | 230.1 | 231.5           | 232.2       | 253.1 | 242.6    | 239.8 |
| Margin $(g)=(c)-(f)$                    | 6.5   | -11.0                | -9.3  | 19.2      | 2.5   | 8.7         | 9.0   | 2.6             | 13.9        | 11.0  | 21.6     | 12.2  |
| Margin (%) (g)/(d)                      | 3.0   | -5.0                 | -4.2  | 8.5       |       | 4.0         | 4.1   | 1.2             | 6.3         | 4.9   | 9.3      | 5.3   |
|                                         | ,     |                      | -     |           |       | 7           |       |                 |             |       |          |       |









ない

意思

|                                       | Table 9.2.12 | ÎI<br>X<br>C<br>X |                                       | ND AND | SUPPL | POWER DEMAND AND SOPPLY IN 1990 (DASE CASE) | aceda) c | CASE) |       |       | Unit : MW | >     |
|---------------------------------------|--------------|-------------------|---------------------------------------|--------|-------|---------------------------------------------|----------|-------|-------|-------|-----------|-------|
|                                       | Jan          | Feb               | Mar                                   | Apr    | May   | Jun                                         | Jul      | Aug   | Sep   | Oct   | Nov       | Dec   |
| Fort George 1                         | 24           | 24                | 24                                    | 24     | 24    | 24                                          | 24       |       |       | 24    | 24        | 24    |
| Fort George 2                         | 24           | 24                | 24                                    | 24     |       |                                             | 24       | 24    | 24    | 24    | 24        | 24    |
| Fort George 3                         | 29           | 29                | · · · · · · · · · · · · · · · · · · · |        | 29    | 29                                          | 29       | 29    | 29    | 29    | 29        | 29    |
| St Louis                              | 50           | 50                | 50                                    | 50     | 99    | 50                                          | 50       | 20    | 50    | 50    | 50        | 20    |
| Fort Victoria 1                       | 28           | 28                | 28                                    | 28     | 28    | 28                                          | 24       | 24    | 24    | 24    | 24        | 24    |
| Fort Victoria 2                       | 6            | 6                 | 18                                    | 1,8    | 18    | 18                                          | 6        | 18    | 18    | 18    | 18        | 18    |
| Nicolay 1                             | 23           | 23                | 23                                    | 23     | 23    | 23                                          | 23       | 23    | 23    | 23    | 23        | 23    |
| Nicolay 2                             | 23           | 23                |                                       | 23     | 23    | 23                                          | 23       | 23    | 23    | 23    | 23        | 23    |
| Nicolay 3                             | 34           | 34                | 34                                    | 34     | 34    | 34                                          | 34       | 34    | 34    |       | 34        | 34    |
| Hydro                                 | 10           | 25                | 45                                    | 45     | 30    | 30                                          | 15       | 15    | 15    | 10    | 10        | 10    |
| FUEL.                                 | 15           | 15                | 15                                    |        |       | 15                                          | 18       | 18    | 18    | 18    | 18        | 18    |
| Medine                                |              |                   |                                       |        |       |                                             | 4        | 4     | 9     | 9     | 9         |       |
| Riche en Hall                         |              |                   |                                       |        |       |                                             | S        | Ŋ     | 5     | 5     | S         |       |
| Imion St. Aubin                       |              |                   |                                       |        |       |                                             | Ś        | Ŋ     | 5     | 5     | 3         |       |
| Mon Desert Alma                       |              |                   |                                       |        |       |                                             | 4.5      | 4.5   | 4.5   | 4.5   | 4.5       |       |
| Mon Tresor Mon Desert                 |              |                   |                                       |        |       |                                             | 2        | 7     | 2     | 2     | 7         |       |
| Mon Loiser                            |              |                   |                                       |        |       |                                             | 4.5      | 4.5   | 4.5   | 4.5   | 4,5       |       |
| Beau Champ                            |              |                   | 15                                    | 15     | 15    | 15                                          | 12       | 12    | 12    | 12    | 12        | 15    |
| Savannah                              |              |                   |                                       |        |       |                                             | 5        | 5     | 5     | S     |           |       |
| Other Bagasse                         |              |                   |                                       |        |       |                                             | 1.1      | 1.1   | 1.1   | 1.1   | 1.1       |       |
| Total Supply Capacity (a)             | 269.0        | 284.0             | 276.0                                 | 284.0  | 284.0 | 289.0                                       | 316.1    | 301.1 | 303.1 | 288.1 | 317.1     | 292.0 |
| Biggest Unit Capacity (b)             | 34           | 34                | 34                                    | 34     | 34    | 34                                          | 34       | 34    | 34    | 29    | 34        | 34    |
| Available Supply Capacity (c)=(a)-(b) | 235.0        | 250.0             | 242.0                                 | 250.0  | 250.0 | 255.0                                       | 282.1    | 267.1 | 269.1 | 259.1 | 283.1     | 258.0 |
| Peak Demand (d)                       | 230.9        | 234.4             | 237.9                                 | 242.6  | 239.1 | 236.9                                       | 236.7    | 238.2 | 238.8 | 242.0 | 249.5     | 246.6 |
| Spinning Reserve (5%) (e)             | 11.5         | 11.7              | 11.9                                  | 12.1   | 12.0  | 11.8                                        | 11.8     | 11.9  | 11.9  | 12.1  | 12.5      | 12.3  |
| Total Demand (f)=(d)+(e)              | 242.4        | 246.1             | 249.8                                 | 254.7  | 251.1 | 248.7                                       | 248.5    | 250.1 | 250.7 | 254.1 | 262.0     | 258.9 |
| Margin (g)=(c)-(f)                    | -7.4         | 3.9               | 7.8                                   | 4.7    | -1.1  | 6.3                                         | 33.6     | 17.0  | 18.4  | 5.0   | 21.1      | -0.9  |
| Margin (%) (g)/(d)                    | -3.2         | 1.7               | -3.3                                  | -1.9   | -0.4  | 2.6                                         | 14.2     | 7.1   | 7.7   | 2.1   | 8.5       | -0.4  |
|                                       |              |                   |                                       |        |       |                                             |          |       |       |       |           |       |

Table 9.2.13 POWER DEMAND AND SUPPLY IN 1999 (BASE CASE)

|                                         | apre 9.2.13 |             | ב<br>ב<br>ב |            |       | אלאט האלת) 1955 היים האלט לאה לאלאט (באט האלאט).<br>האלט האלט האלט (באלט האלט האלט האלט (באט האלט). | מרשים) ה |       |       |        | Unit: MW | >     |
|-----------------------------------------|-------------|-------------|-------------|------------|-------|-----------------------------------------------------------------------------------------------------|----------|-------|-------|--------|----------|-------|
|                                         | Jan         | Feb         | Mar         | Apr        | May   | Jun                                                                                                 | Jul      | Aug   | Sep   | Oct    | Nov      | Dec   |
| Fort George 1                           | 24          | 24          | 24          | 24         | 22    | 24                                                                                                  | 24       |       |       | 24     | 24       | 24    |
| Fort George 2                           | 24          | 24          | 24          |            |       | 24                                                                                                  | 24       | 24    | 24    | 24     | 24       | 24    |
| Fort George 3                           | 29          |             |             | 29         | 29    | 29                                                                                                  | 29       | 29    | 29    | 29     | 52       | 23    |
| Fort George 4                           | 29          | 29          | 29          | 29         | 29    | 29                                                                                                  | 29       | 29    |       |        | 29       | 29    |
| St. Louis                               | 50          | 50          | 50          | 50         | 50    | 50                                                                                                  | 20       | 20    | 50    | 50     | 20       | 20    |
| Fort Victoria 1                         | 24          | 24          | 24          | 24         | 24    | 24                                                                                                  | 24       | 24    | 24    | 24     | 24       | 24    |
| Fort Victoria 2                         | 9           | 18          | 18          | 18         | 18    | 9                                                                                                   | 6        | 18    | 18    | 6      | 18       | 18    |
| Nicolay 1                               | 23          | 23          |             | 23         | 23    | 23                                                                                                  | 23       | 23    | 23    | 23     | 23       | 23    |
| Nicolay 2                               | 23          | 23          | 23          | 23         | 23    | 23                                                                                                  |          | 23    | 23    | 23     | 23       | 23    |
| Nicolay 3                               | 34          | 34          | 34          | 34         | 34    | 34                                                                                                  | 34       | 34    | 34    | 34     |          | 34    |
| Hydro                                   | 2           | 25          | 45          | 45         | 30    | 20                                                                                                  | 15       | 15    | 15    | 10     | 10       | 10    |
| FUEL                                    | 23          | 23          | 23          |            | · ·   | 18                                                                                                  | 18       | 18    | 18    | 18     | 18       | 18    |
| Medine                                  |             |             | · · · · · · |            |       |                                                                                                     | 4        | 4     | 9     | 9      | 9        |       |
| Riche en Eau                            |             |             | ***         | ,,,,,,,,,, |       |                                                                                                     | Ŋ        | 3     | N     | 5      | Ŋ        |       |
| Union St. Aubin                         |             |             |             |            |       |                                                                                                     | S        | S     | 3     | 5      | S        |       |
| Mon Desert Alma                         |             | <del></del> |             |            |       |                                                                                                     | 4.5      | 4.5   | 4.5   | 4.5    | 4.5      | -     |
| Mon Tresor Mon Desert                   |             |             |             |            |       |                                                                                                     | 7        | 2     | 2     | 2      | 7        |       |
| Mon Loiser                              |             |             |             |            |       |                                                                                                     | 4.5      | 4.5   | 4.5   | 4.5    | 4.5      |       |
| Beau Champ                              |             | •           | 15          | 15         | 15    | 15                                                                                                  | 12       | 12    | 12    | 12     | 12       | 15    |
| Savannah                                |             |             |             | , ,        |       | •                                                                                                   | S        | S     | ν)    | S      |          |       |
| Other Bagasse                           |             |             |             |            |       |                                                                                                     | 1.1      | 1.1   | 1.1   | 1.1    | 1.1      |       |
| Total Supply Capacity (a)               | 302.0       | 297.0       | 309.0       | 314.0      | 299.0 | 322.0                                                                                               | 322.1    | 330.1 | 303.1 | 29.0   | 312.1    | 321.0 |
| Biggest Unit Capacity (b)               | 34          | 34          | 34          | 34         | 34    | 34                                                                                                  | 34       | 34    | 34    | 34     | 29       | 34    |
| Available Supply Capacity $(c)=(a)-(b)$ | 268.0       | 263.0       | 275.0       | 280.0      | 265.0 | 288.0                                                                                               | 288.1    | 296.1 | 269.1 | -5.0   | 283.1    | 287.0 |
| Peak Demand (d)                         | 249.4       | 253.2       | 257.0       | 262.0      | 258.2 | 255.8                                                                                               | 255.6    | 257.2 | 257.9 | 261.4  | 269.5    | 266.4 |
| Spinning Reserve (5%) (e)               | 12.5        | 12.7        | 12.9        | 13.1       | 12.9  | 12.8                                                                                                | 12.8     | 12.9  | 12.9  | 13.1   | 13.5     | 13.3  |
| Total Demand $(f)=(d)+(e)$              | 261.9       | 265.9       | 269.9       | 275.1      | 271.1 | 268.6                                                                                               | 268.4    | 270.1 | 270.8 | 274.5  | 283.0    | 279.7 |
| Margin (g)=(c)-(f)                      | 6.1         | -2.9        | 5.1         | 4.9        | -6.1  | 19.4                                                                                                | 19.7     | 26.0  | -1.7  | -279.5 | 0.1      | 7.3   |
| Margin (%) (g)/(d)                      | 2.5         | -1.1        | 2.0         | 1.9        | -2.4  | 7.6                                                                                                 | 7.7      | 10.1  | -0.7  | -106.9 | 0.0      | 2.7   |
|                                         |             |             |             |            |       |                                                                                                     |          |       |       |        |          |       |



| Tab                                                   | Table 9.2.14 | DOWE<br>BOWE | R DEMA | NC DAC                                 | รอนานา | POWER DEMAND AND SUPPLY IN 2000 (BASE CASE) | Jeka) | CASE  |          |          | Unit: MW | 1     |
|-------------------------------------------------------|--------------|--------------|--------|----------------------------------------|--------|---------------------------------------------|-------|-------|----------|----------|----------|-------|
|                                                       | Ĭan          | Feb          | Mar    | Apr                                    | May    | Jun                                         | Jul   | Aug   | Sep      | Oct      | Nov      | Dec   |
|                                                       | 74           | 27           | 24     | 24                                     | 24     | 24                                          | 24    |       |          | 24       | 24       | 24    |
| Fort George 1                                         | ı ç          | , ç          | 200    | i<br>I                                 |        | 24                                          | 24    | 24    | 24       | 24       | 24       | 24    |
| Fort George 2                                         | 1 6          | F C          | 7 6    | 20.                                    | 20     | 20.                                         |       | •     | 29       | 29       | 29       | 53    |
| Fort George 3                                         | 3 6          | 87 6         | 2 6    | V C                                    | 7 00   | 9 6                                         | 70    | 20    | ì        | <u>-</u> | 29       | 29    |
| Fort George 4                                         | 67           | 67           | 3 (    | y (                                    | 7 5    | 7 0                                         | 3 5   | 3 6   | 2        | 40       | 40       | 04    |
| St. Louis                                             | 9            | 9            | 9      | 9                                      | ਡ      | 200                                         | 2     | 2 (   | 000      | 2 .      | 2 4      | 2. 7. |
| Fort Victoria 1                                       | 24           | 24           | 24     | 24                                     | 20     | 20                                          | 20    | 20    | 20       | 9        | 0 9      | 07    |
|                                                       | 8            | 00           | 6      | 18                                     | 18     | 18                                          | 18    | Q,    | <u>8</u> | 138      | <u>x</u> | 138   |
| For Victoria 2                                        | 3 2          | 2 6          | 23     | 23                                     | 23     | 23                                          |       | 23    | 23       | 23       | 23       | 23    |
| Micolay 1                                             | 3 8          | 23           | 23     | 23                                     | 23     | 23                                          |       | 23    | 23       | 23       | 23       | 23    |
| Nicolay 2                                             | 3 °€         | 4,           | 34     | 34                                     | 34     | 34                                          | 34    | 34    | 34       | 34       |          | 34    |
| Micolay 3                                             | 5 0          | , C          | 45     | 45                                     | 30     | 20                                          | 20    | 15    | 15       | 10       | 10       | 10    |
| Hydro                                                 | 2,52         | 3 8          | 2      | }                                      | 23     | 23                                          | 18    | 18    | 18       | 18       | 18       | 18    |
|                                                       | }            | }            |        |                                        |        |                                             | 4     | 4     | 9        | 9        | 9        |       |
| Medine                                                |              |              |        |                                        |        |                                             | 3     | S     | 5        | 3        | 5        |       |
| Kiche en Bau                                          |              |              |        | ************************************** |        |                                             | 3     | 5     | 2        | Ŋ        | 3        |       |
| Union St. Audin                                       |              |              |        |                                        |        |                                             | 4.5   | 4.5   | 4.5      | 4.5      | 4.5      |       |
| Mon Desert Alina                                      |              |              |        |                                        |        |                                             | 77    | 2     | 7        | 2        | 23       |       |
| Mon Heson Mon Desert                                  |              | ,            |        |                                        |        |                                             | 4.5   | 4.5   | 4.5      | 4.5      | 4.5      |       |
| Mon Chemo                                             |              |              | 1.     | 15                                     | 15     | 15                                          | 12    | 12    | 12       | 12       | 12       | 15    |
| beau Champ                                            |              |              | }      |                                        |        |                                             | 5     | 'n    | 5        | S        | V)       |       |
| Dalla Viva                                            |              |              |        |                                        |        |                                             | 40    | 40    | 40       | 4        | 40       | 40    |
| Delle Vue                                             |              |              |        |                                        |        |                                             | F.    | 1.1   | 1.1      | 29       | 1.1      |       |
| Total Supply Capacity (a)                             | 321.0        | 336.0        | 339.0  | 324.0                                  | 328.0  | 332.0                                       | 320.1 | 328.1 | 330.1    | 372.0    | 339.1    | 343.0 |
| Discout Mais Consolity (b)                            | 34           | 45           | 34     | 34                                     | 34     | 34                                          | 34    | 34    | 34       | 34       | 29       | 34    |
| Diggest Ontt Capacity (2)                             | 287.0        | 302.0        | 305.0  | 290.0                                  | 294.0  | 298.0                                       | 286.1 | 294.1 | 296.1    | 338.0    | 310.1    | 309.0 |
| Available Supply Capacity (C)=(E) (C) Dook Damond (d) | 269.4        | 273.5        | 277.5  | 283.0                                  | 278.9  | İ                                           | 276.0 | 277.8 | 278.5    | 282.5    | 291.0    | 287.7 |
| Chiming Departs (5%) (p)                              | 13.5         | 13.7         | 13.9   | 14.2                                   | 13.9   | 13.8                                        | 13.8  | 13.9  | 13.9     | 14.1     | 14.6     | 14.4  |
| Total Demand (f)=(d)+(e)                              | 282.9        | 287.2        | 291.4  | 297.2                                  | 29     | 290                                         | 289.8 | 291.7 | 292.4    | 296.6    | 305.6    | 302.1 |
| Margin (a)=(c)-(f)                                    | 4.1          | 14.8         | 13.6   | -7.1                                   | 1.2    | 7.9                                         | -3.7  | 2.4   | 3.7      | 41.4     | 4.6      | 6.9   |
| Margin (%) (9)/(d)                                    | 1.5          | 5.4          | 4.9    | -2.5                                   | 0.4    | 2.9                                         | -1.3  | 0.0   | 1.3      | 14.6     | 1.6      | 2.4   |
|                                                       |              |              |        |                                        |        |                                             |       |       |          |          |          |       |

### Table 9.2.15 SHORT TERM TRANSMISSION PLANNING

|                                       |            |          |       |       |             |        | TOTAL COST           | į.    |       |          | ₽HA    | PHASING |        |           |
|---------------------------------------|------------|----------|-------|-------|-------------|--------|----------------------|-------|-------|----------|--------|---------|--------|-----------|
| PROJECT                               |            | FOREIGN  | LOCAL | 1994  | ENGINEERING |        | COSTS IN 1994 PRICES | RICES | 96    | 26       | 86     | 66      | 8      | TOTAL     |
|                                       |            | COSTS IN | =>    |       | 5%          | TOT    | FOREIGN              | LOCAL | TOTAL | TOTAL    | TOTAL  | TOTAL   | TOTAL  | 1995-2000 |
| 132ky oh Line Nocolay/L'Avenir/wooton | N MATERIAL | 1180     | 1     | 1738  | 87          | 7 1825 | 1239                 |       |       |          | 1825   |         |        | 1825      |
| 19.5KM                                | -          | 311      | 247   |       |             | -      | 327                  | 259   |       |          |        |         |        |           |
| 132kV OH LINE L'AVENIR/AMOURY         | MATERIAL   | 206      |       | 1337  | 29          | 7 1404 | 952                  |       |       |          | 1404   |         |        | 1404      |
| 15KM                                  | ERECTION   | 240      | 190   |       |             |        | 252                  |       |       |          |        |         |        |           |
| 132kV TRANSFORMERS ROSE HILL          | MATERIAL   | 815      | 215   | 1200  | 99          | 1260   | 856                  | 226   |       |          |        |         |        |           |
|                                       | ERECTION   |          | 170   |       |             |        | 0                    |       |       |          |        |         |        |           |
| 66kV OH LINE NICOLAY-MONT CHOIS       | MATERIAL   | 1089     |       | 1605  | 80          | 1685   | 1143                 | ŀ     |       |          |        |         |        |           |
| 18KM                                  | ERECTION   | 288      | 228   |       |             |        | 302                  | 239   |       |          | _      |         |        |           |
| 66/132kV SUBSTATION NICOLAY           | MATERIAL   | 5225     | 1742  | 10450 | 550         | 11000  | 5486                 |       |       | 2200     | 2500   |         |        | 11000     |
|                                       | ERECTION   | 1742     | 1742  |       |             |        | 1829                 |       |       |          |        |         |        |           |
| 132kV SUBSTATION L'AVENIR             | MATERIAL   | 2195     | 732   | 4389  | 231         | 4620   | 2304                 |       |       | 2310     | 2310   |         |        | 4620      |
|                                       | ERECTION   | 732      | 732   |       |             |        | 768                  |       |       |          |        |         |        |           |
| 66/132kV SUBSTATION WOOTON            | MATERIAL   | 349      | 116   | 269   | 37          | 734    | 366                  |       |       | 367      | 367    |         |        | 734       |
|                                       | ERECTION   | 116      | 116   |       |             |        | 122                  |       |       |          |        |         |        |           |
| 132/66kV SUBSTATION AMOURY            | MATERIAL   | 1164     | 388   | 2328  | 123         | 2450   | 1222                 |       |       | 1225     | 1225   |         |        | 2450      |
|                                       | ERECTION   | 388      | 388   |       |             |        | 407                  | 407   |       |          |        |         |        |           |
| 132kV SUBSTATION ST. LOUIS            | MATERIAL   | 118      | 39    | 236   | 12          | 248    | 124                  | 41    |       | 124      | 124    |         |        | 248       |
|                                       | ERECTION   | 39       | 39    |       |             |        | 41                   | 41    |       |          |        |         |        | 0         |
| 132kv SUBSTATION ROSE HILL            | MATERIAL   | 118      | 39    | 236   | 12          | 248    | 124                  | 41    |       | 124      | 124    |         |        | 3         |
|                                       | ERECTION   | 39       | 39    |       |             |        | 41                   | 41    |       |          |        |         |        |           |
| 132kV OH LINE ST. LOUIS/ROSE HILL     | MATERIAL   | 454      |       | 699   | 33          | 702    | 477                  |       |       |          |        | 702     |        | 7         |
| 7.5KM                                 | ERECTION   | 120      | 95    |       |             |        | 126                  | 100   |       |          |        |         |        |           |
| 132kV OH LINE ROSE HILL/WOOTON        | MATERIAL   | 905      |       | 891   | 45          | 936    | 635                  | 0     |       |          |        | 936     |        | 9         |
| 10KM                                  | ERECTION   | 160      | 126   |       |             |        | 168                  | 132   |       |          |        |         |        |           |
| 66kV OH LINE /CABLE WOOTON/HENRIETTA  | MATERIAL   |          |       | 히     | C           | 0      | 0                    | o i   |       |          |        |         |        |           |
|                                       | ERECTION   |          |       |       |             |        |                      |       |       |          |        |         |        |           |
| 66kV OH LINE BELLE VUE/MONT CHOIS     | MATERIAL   | 140      |       | 215   | 3.3         | 226    | 147                  |       |       |          |        |         |        |           |
| SKM                                   | ERECTION   | 40       | 35    |       |             |        | 42                   | 2     |       |          |        |         |        |           |
| 66kV OH LINE HENRIETTA/CHAMAREL       | MATERIAL   | 420      |       | 645   | 32          | 677    | 441                  | Ö     |       |          | 1      | 1       |        |           |
| 15KM                                  | ERECTION   | 120      | 105   |       |             |        | 126                  | 110   |       |          | 1      |         |        |           |
|                                       |            |          |       |       |             |        |                      |       |       |          |        |         |        | 24167     |
|                                       |            |          |       |       |             |        |                      |       |       |          |        | 1       |        |           |
|                                       |            |          |       |       |             |        |                      |       |       | <b>T</b> |        | 1       |        |           |
| CAPITAL COST                          |            |          |       |       |             |        |                      |       | 0     | 9650     | 12879  | 1638    | 0      | 24167     |
| MAJNTENANCE                           |            |          |       |       |             |        |                      |       | 0     | 193      | 450.58 | 483.34  | 483.34 |           |
| SYSTEM LOSSES                         |            |          |       |       |             |        |                      |       | 492   | 578      | 670    | 782     | 918    |           |
| TOTAL                                 |            |          |       |       |             |        |                      |       | 492   | 10421    | 14000  | 2903    | 1461   |           |
|                                       |            |          |       |       |             |        |                      |       |       |          | 1      |         |        |           |
| MIN IN MILL TON THE                   | 21.25      | _        | _     |       |             | _      |                      | -     | •     | -        |        |         |        |           |









家を

\*\*\*\*

Table 9.2.16 DISTRIBUTED FORECAST OF EVENING PEAK LOADS, 1995-1999

| VEAR          | Feb-95 | MVA           | PEAK 95 | MVA | PEAK 96 | MVA | PEAK 97 | MVA | PEAK 98 | MVA | PEAK 99 | MVA |
|---------------|--------|---------------|---------|-----|---------|-----|---------|-----|---------|-----|---------|-----|
| BELLE VUE     | 853    | 33            | 925     | 36  | 1000    | 39  | 1070    | 41  | 1140    | 44  | 1220    | 47  |
| BELLE VUE-2   |        |               |         |     |         |     |         |     |         |     |         |     |
| AMOURY        |        |               |         |     |         |     |         |     |         |     |         |     |
| GOODLANDS     |        |               |         |     |         |     |         |     |         |     |         |     |
| FUEL          | 464    | 19            | 555     | 21  | 555     | 21  | 610     | 24  | 999     | 26  | 720     | 28  |
| FUEL-2        |        |               |         |     |         |     |         |     |         |     |         |     |
| FERNEY        | 488    | 19            | 557     | 22  | 626     | 24  | 695     | 27  | 764     | 30  | 833     | 32  |
| WOOTON        | 792    | 30            | 828     | 32  | 891     | 34  | 953     | 37  | 1015    | 39  | 1077    | 42  |
| FLOREAL       |        |               |         |     |         |     |         |     |         |     |         |     |
| ROSE HILL     | 432    | 17            | 492     | 19  | 534     | 21  | 576     | 22  | 618     | 24  | 099     | 25  |
| CANDOS        |        |               |         |     |         |     |         |     |         |     |         |     |
| HENRIETTA     | 544    | 21            | 009     | 23  | 059     | 25  | 700     | 27  | 755     | 29  | 810     | 31  |
| COMBO         |        |               |         |     |         |     |         |     |         |     |         |     |
| CHAUMIERE     | 583    | 23            | 647     | 25  | 709     | 27  | 771     | 30  | 833     | 32  | 895     | 35  |
| PALMA         |        | Par vi Descen |         |     |         |     |         |     |         |     |         |     |
| ST. LOUIS     | 909    | 20            | 528     | 20  | 546     | 21  | 565     | 22  | 585     | 23  | 909     | 23  |
| PORT LOUIS    |        |               |         |     |         |     |         |     |         |     |         |     |
| FT, GEORGE    |        |               |         |     |         |     |         |     |         |     |         |     |
| NICOLAY       | 727    | 28            | 810     | 31  | 890     | 34  | 096     | 37  | 1030    | 40  | 1110    | 43  |
| ARSENAL       |        |               |         |     |         |     |         |     |         |     |         |     |
| TOTAL FEEDERS | 5394   |               | 5943    |     | 6401    |     | 0069    |     | 7405    |     | 7931    |     |
| MVA           | 208    | 208           | 230     | 230 | 24.7    | 247 | 267     | 267 | 286     | 286 | 306     | 306 |
| MW LOAD       | 177    |               | 195     |     | 210     |     | 227     |     | 243     |     | 260     |     |

Table 9.2.17 EXPANSION PLAN OF TRANSMISSIONS AND SUBSTATIONS

| A A A | NEW TNE                               | 3511000   | NEW STIRSTASTION/BAY    | \$811,000 | NEW TRANSFORMERS                | 000 USS | CAPIT.COST | 2% MAINTEN. | SYSTEM LOSSES | TOTAL |
|-------|---------------------------------------|-----------|-------------------------|-----------|---------------------------------|---------|------------|-------------|---------------|-------|
| 1006  |                                       |           |                         | C         |                                 | 0       | 0          | 0           | 1089          | 1089  |
| 1997  |                                       | 0         | O Nicolay, Wooton       | 6353      | 6353 Wooton(50)                 | 009     | 6953       | 139         | 1281          | 8373  |
|       |                                       | 0         | OL Avenir, Amoury       | 0         |                                 | 0       | 0          | 0           | 0             | 0     |
| 1998  | Nicolay-Wooton, L'Avenir-Amoury       | 3229      | 3229 St. Louis, R.Hill  | 14825 (   | 14825 Chaumiiere(30)            | 360     | 18414      | 507         | 1485          | 20406 |
| 1999  | St. Louis-R.Hill, R.Hill-Wooton       | 1638      |                         | O         |                                 | 0       | 1638       | 540         | 1732          | 3910  |
| 2000  |                                       | Ö         |                         | 1 0       | 0 Femey(20)                     | 240     | 240        | 545         | 2033          | 2818  |
| 2001  |                                       | 0         | O.R.Hill                | 1099      | 660 R.Hill(30)                  | 360     | 1020       | 565         | 1335          | 2920  |
| 2002  |                                       | 0         | 0 Wcoton, Henrietta     | 700       | 700 St. Louis(20)               | 240     | 940        | 584         | 1554          | 3078  |
| 2003  |                                       | 0         | 0 Атоигу                | 1320 4    | 1320 Amoury(90)                 | 1080    | 2400       | 632         | . 1565        | 4597  |
| 2004  |                                       | 0         | 0 Nicolay               | 999       | 660 Nicolay(30)                 | 360     | 1020       | 653         | 1580          | 3253  |
| 2005  | Wooton-Henrietta                      | 5468      |                         | 10        | 0 Henrietta(30)                 | 360     | 8285       |             | 1810          | 8407  |
| 2006  | Nicolay-B.Vue, St. Louis-Nicolay      | 1984      | 1984 Nicolay, B.Vue     | 700 ř     | 700 Femey(40)                   | 480     | 3164       | 832         | 1675          | 5671  |
| 2007  | Wooton-Champagne                      | 1684 Fuel | Fuel                    | 660 F     | 660 FUEL(30)+Nicolay(180)       | 2360    | 4704       | 926         | 1971          | 7601  |
| 2008  | Henrietta-Combo                       | 684       | 684 St. Louis           | S 099     | 660 St. Louis(30)               | 360     | 1704       | 1961        | 2392          | 5057  |
| 2009  | R.Hill-Candos-Henrietta, B.Vue-B.Vue2 | 950       | 950 Candos              | 1320 (    | 1320 Candos(90)+Amoury(180)     | 3080    | 5350       | 1068        | 2828          | 9246  |
| 2010  | Nicolay-Arsenal, FUEL-FUEL2           | 1000      | 1000 Arsenal            | 4620      | 4620 Arsenal(45)+Nicolay(90)    | 3540    | 9160       | 1251        | 3024          | 13435 |
|       |                                       | 0         |                         | 0         | 0 Wooton(180)                   | ō       | 0          | 0           | 0             | 0     |
| 2011  | Candos-Floreal                        | 500       | 500 Florel+Ft.George    | 5100 F    | 5100 Florel(90)+Ft. George(30)  | 1440    | 7040       | 1392        | 4186          | 12618 |
| 2012  |                                       | 0         | 0 Fuel+Femey            | 2640 F    | 2640 Fuel+Femey(50)             | 009     | 3240       | 1456        | 4631          | 9327  |
| 2013  | Ft.William-Avenir                     | 1350      | 1350 Palma              | 4620 F    | 4620 Palma(90)                  | 1080    | 7050       | 1597        | 4936          | 13583 |
| 2014  |                                       | O         | 0 Port-Louis2           | . 4620 F  | 4620 P. Louis2(90)              | 1080    | 2700       | 1711        | 5085          | 12496 |
| 2015  | B.VAvenir-Goodlands                   | 1000      | 1000 Goodlands+Nicolay2 | 5940 (    | 5940 Goodland(90), Nicolay2(45) | 1620    | 8560       | 1883        | 5678          | 16121 |

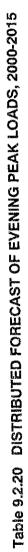
Table 9.2.18 BULK SUPPLY POINT TRANSFORMERS(MVA)

| YEAR                                                                                                           | PEAK 95 | PEAK 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEAK 05        | PEAK 10 | PEAK 15 |
|----------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------|
| BELLE VUE                                                                                                      | 90      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| BELLE VUE-2                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 60      | 60      |
| AMOURY                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90             | 90      | 90      |
| GOODLANDS                                                                                                      |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ļ       | 90      |
| FUEL                                                                                                           | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             | 60      | 90      |
| FUEL-2                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 40      | 60      |
| FERNEY                                                                                                         | 40      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             | 90      | 90      |
| WOOTON                                                                                                         | 40      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| FLOREAL                                                                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 90      |
| ROSE HILL                                                                                                      | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| CANDOS                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 90      | 90      |
| HENRIEETTA                                                                                                     | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| COMBO                                                                                                          | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             | 60      | 60      |
| CHAUMIERE                                                                                                      | 60      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| PALMA                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 90      |
| ST. LOUIS                                                                                                      | 40      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             | 90      | 90      |
| PORT LOUIS                                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,              |         | 90      |
| FT. GEORGE                                                                                                     | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             | 60      | 90      |
| NICOLAY                                                                                                        | 60      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90             | 90      | 90      |
| ARSENAL                                                                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 45      | 90      |
| YEAR                                                                                                           | PEAK 95 | PEAK 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEAK 05        | PEAK 10 | PEAK 15 |
| TOTAL INSTALLED                                                                                                | 630     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | 1710    |
| (Marian Carantel Car |         | A STATE OF THE STA |                |         |         |
| LOAD(BASE SCENARIO)                                                                                            | 208     | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 480            | 675     | 950     |
| MVA INSTALLED PER BSP                                                                                          | 57      | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78             | 77      | 86      |
|                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |         |         |
| YEAR                                                                                                           | PEAK 95 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marian Company |         | PEAK 15 |
| INSTALLED/LOAD RATIO                                                                                           | 3.03    | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.94           | 1.81    | 1.8     |

Table 9.2.19 DISTRIBUTED FORECAST OF EVENING PEAK LOADS

| REGION           | STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PEAK FEB 1995 | PEAK 2000 | PEAK 2005 | PEAK 2010 | PEAK 2015 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------|-----------|-----------|
|                  | <del>-</del> ~ ~ <del>-</del> ~ <del>-</del> ~ ~ <del>-</del> ~ ~ <del>-</del> ~ ~ ~ <del>-</del> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | MVA           | MVA       | MVA       | MVA       | MVA       |
| GREATER P. LOUIS | ST. LOUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20            | 24        |           |           |           |
|                  | FT. GEORGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •             | 16        |           |           |           |
|                  | NICOLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28            | 30        |           |           |           |
| SUBTOTAL         | o gone,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48            | 70        | 105       | 150       | 220       |
| PLAINE WILHEMS/  | ROSE HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17            | 27        |           |           |           |
| RURAL WEST       | CHAUMIERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23            | 37        |           |           |           |
| SUBTOTAL         | WOOTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30            | 44        |           |           |           |
|                  | HENRIETTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21            | 33        |           |           | -         |
| SUBTOTAL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91            | 141       | 190       | 260       | 350       |
| RURAL NORTH      | BELLE VUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33            | 50        | 06        | 125       | 180       |
|                  | FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19            | 30        | 45        | 65        | 06        |
| Ħ                | FERNEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19            | 20        |           | ••        |           |
|                  | COMBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0             | 15        |           |           | -         |
| SUBTOTAL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19            | 35        | 50        | 75        | 110       |
|                  | <b>****</b> ********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | ,         |           | i i       |           |
| TOTAL MVA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210           | 326       | 480       | C/Q       | nck       |
| WW INTOL         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 170         | 277       | 408       | 574       | · 808     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C . Y         |           |           |           |           |

The above forecast is based on the following assumptions:


1.Population will be concentrated in already built-up areas and their suburbs

2.Minimum encroachment on the agriculture lands as well as environmentally sensitive areas 3.All major developments located close to main centres of population 4. The new port near Mahebourg will be developed after 2015





经海



| A VEV         | PEAKOO | MVA | MVAR | PEAK 05 | MVA | MVAR | PEAK 10 | MVA | MVAR | PEAK 15 | MVA | MVAR |
|---------------|--------|-----|------|---------|-----|------|---------|-----|------|---------|-----|------|
| DETTEVILE     | 1285   | 50  | 16   | 1165    | 45  | 20   | 1165    | 45  | 20   | 1165    | 45  | 20   |
| DELTE VIIB-2  |        |     |      |         |     |      | 906     | 35  |      | 1165    | 45  |      |
| AMOTTRY       |        |     |      | 1165    | 45  | 20   | 1165    | 45  | 30   | 1424    | 55  | 30   |
| GOOD! ANDS    |        |     |      |         |     |      |         |     | 20   | 1424    | 55  | 20   |
| FIRE          | 775    | 30  |      | 1165    | 45  |      | 1165    | 45  |      | 1424    | 55  |      |
| FITH -2       |        |     |      |         |     |      | 518     | 707 | 16   | 1165    | 45  | 16   |
| FERNEY        | 490    | 19  | 10   | 751     | 29  | 10   | 1139    | 44  | 20   | 1424    | 55  | 20   |
| WOOTON        | 1140   | 4   | 16   | 1424    | 55  | 20   | 1553    | 09  | 20   | 1285    | 50  | 20   |
| FLOREAL       |        |     |      |         |     |      |         |     |      | 1165    | 45  |      |
| ROSE HILL     | 701    | 27  | 10   | 906     | 35  | 20   | 1036    | 40  | 10   | 1036    | 40  | 10   |
| CANDOS        |        |     |      |         |     |      | 1165    | 45  | 16   | 1165    | 45  | 16   |
| HENRIETTA     | 865    | 33  |      | 1243    | 48  | 16   | 1553    | 09  |      | 1285    | 50  |      |
| COMBO         | 412    |     | 10   | 544     | 21  | 16   | 803     | 31  | 16   | 1165    | 45  | 16   |
| CHAUMIERE     | 957    |     |      | 1346    | 52  |      | 1424    | 55  |      | 1424    | 55  | 20   |
| PAYMA         |        |     |      |         |     |      |         |     |      | 1165    | 45  |      |
| ST. LOUIS     | 630    | 24  | 10   | 932     | 36  | 16   | 1372    | 53  |      | 1036    | 40  |      |
| PORTIONS      |        |     |      |         |     |      |         |     |      | 1125    | 43  | 20   |
| FT. GEORGE    | 513    | 20  |      | 621     | 24  |      | 906     | 35  |      | 1165    | 45  |      |
| NICOLAY       | 799    | 26  |      | 1165    | 45  |      | 1036    | 40  |      | 1165    | 45  |      |
| ARSENAL       |        |     |      |         |     |      | 570     | 22  |      |         | 47  | 20   |
| TOTAL FEEDERS | 8435   |     | 72   | 12427   |     | 138  | 17476   |     | 168  | 24587   |     | 228  |
| MVA           | 326    | 326 |      | 480     | 480 |      | 675     | 675 |      | 950     | 950 |      |
| MW LOAD       | 277    |     |      | 408     |     |      | 574     |     |      | 807     |     |      |

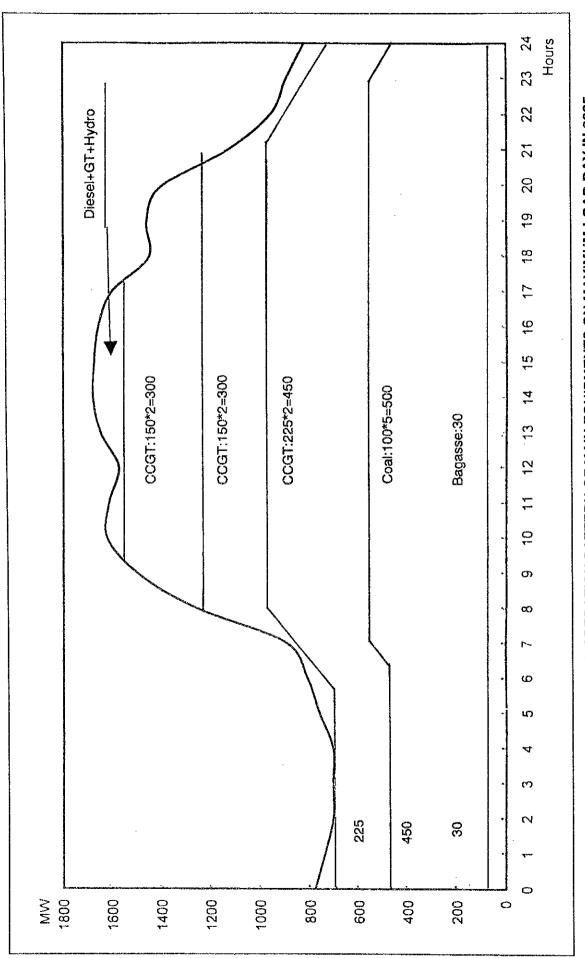



Figure 9.2.1 FORECASTED TYPICAL OPERATION PATTERN OF MAIN EQUIPMENTS ON MAXIMUM LOAD DAY IN 2025





機

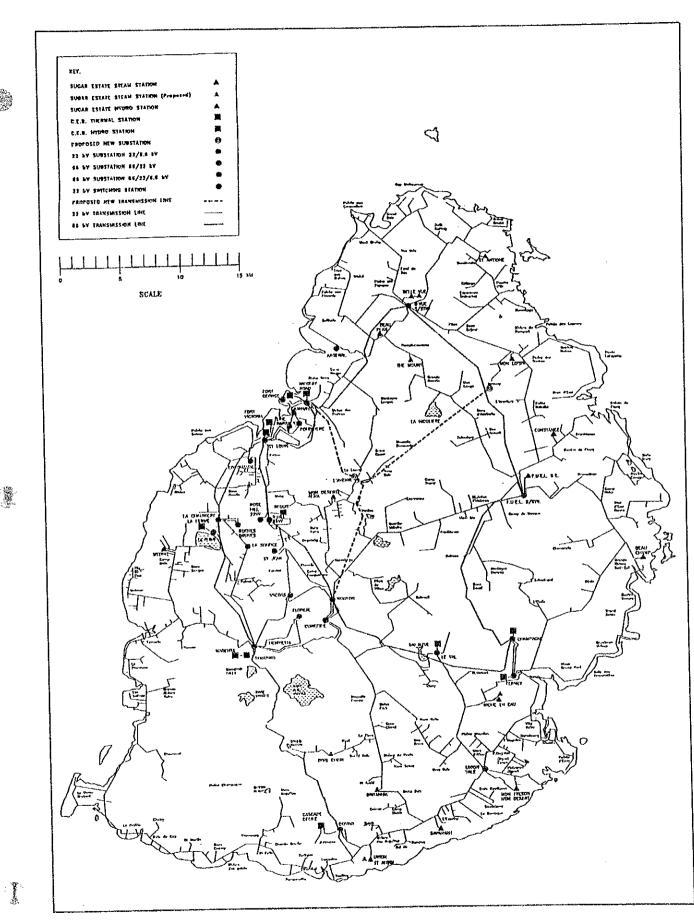



Figure 9.2.2 EXISTING TRANSMISSION LINE & PROPOSED NEW TRANSMISSION LINE (2000)

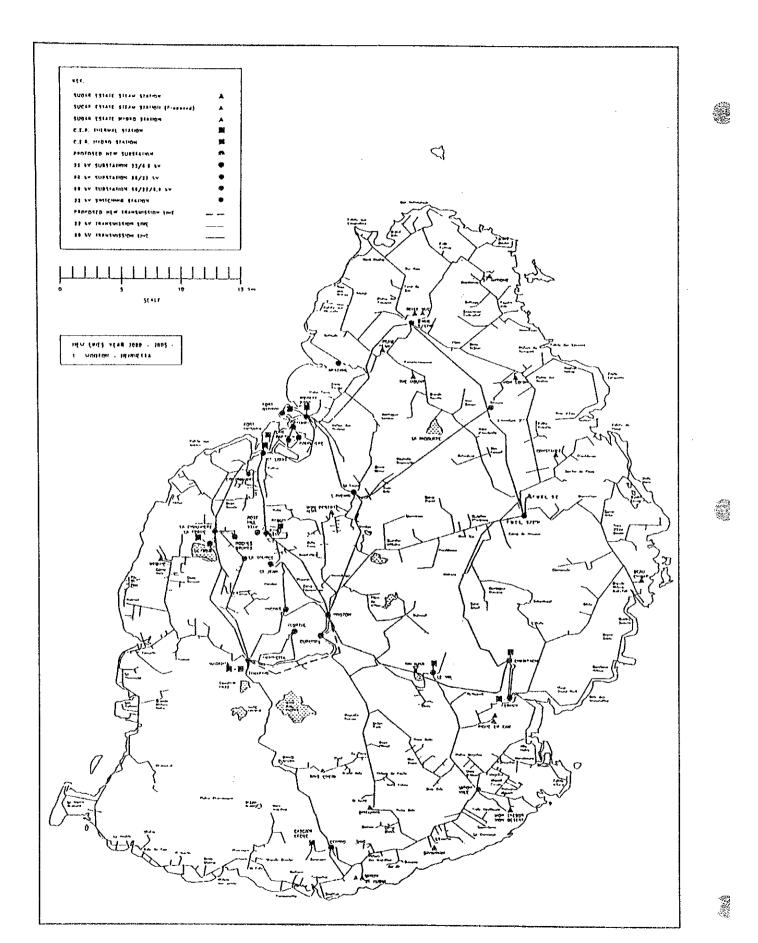



Figure 9.2.3 EXISTING TRANSMISSION LINE & PROPOSED NEW TRANSMISSION LINE (2005)

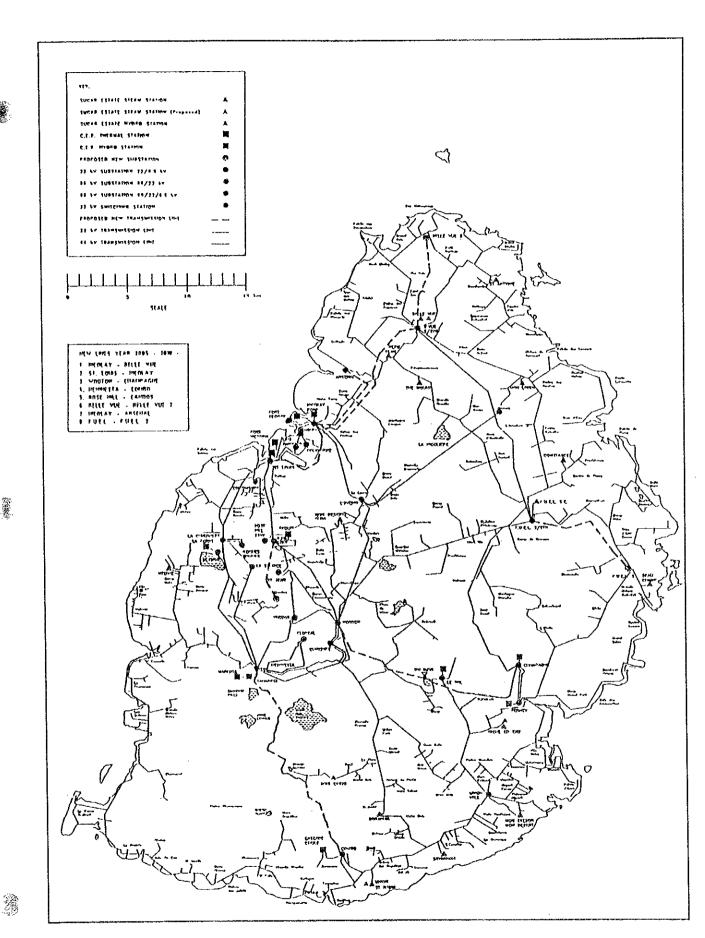



Figure 9.2.4 EXISTING TRANSMISSION LINE & PROPOSED NEW TRANSMISSION LINE (2010)

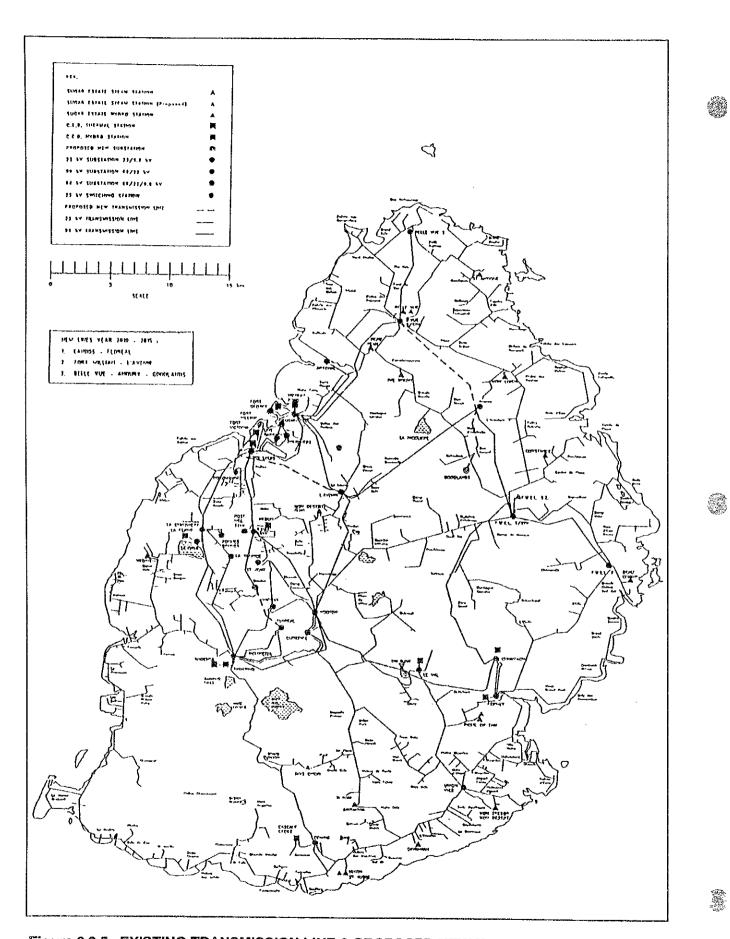



Figure 9.2.5 EXISTING TRANSMISSION LINE & PROPOSED NEW TRANSMISSION LINE (2015)