5.9 Flood Control Dam

(1) Necessity of Flood Control Dam

The diversion water at 175 m³/s from the Kok and Ing rivers will flow into the Nan river through its sub-basins; Yot river and Yao river. In spite that the present monthly mean discharge is estimated less than 20 m³/s at the damsite, the Yot and Yao rivers shall carry the diversion water and local flow about 195 m³/s in wet season. Therefore the diversion water will change the flow condition of Yot and Yao rivers completely.

The flow capacity of the Yot river at the Ing-Yot tunnel outlet is estimated about 150 m³/s and the flow capacity of the Yao river is in the range between 160 and 300 m³/s. In order to avoid the impact by the diversion water during flood and to protect the villages downstream of the dam from flooding, it is necessary to construct a flood control dam.

(2) Proposed Damsite

The flood control damsite is recommended on the Yao river, about 3 km downstream from the confluence with the Yot river or about 2 km upstream from King Amphoe Song Khwae, Changwat Nan based on the map study on scale of 1:10,000 and 1:50,000 and site reconnaissance. The catchment area is 372 km². The damsite foundation consists of shale, sandstone, tuff and lapilly tuff.

The Thai side study recommended the flood control dam as zone type dam. The storage capacity was determined in relation with the improved flow capacity of the Yot and Yao rivers. They recommended the storage capacity of 14.4 MCM at the flood control level 306.3 m MSL in case of the flow capacity of the downstream at 200 m³/s. The regulated flow of 200 m³/s will be discharged through the river outlet under the dam. It was assumed that the diversion water would stop at a flood time and the remaining water in the Ing-Yot tunnel, about 3.8 MCM, would be stored in the reservoir. However it might not be practical operation since it is difficult to judge the timing when the flood begins and the diversion water shall stop.

The JICA Study Team recommend the flood control dam as concrete gravity dam since the reservoir water level will fluctuate frequently about 10 m in maximum. The dam foundation may

be applicable for a concrete gravity dam based on our field reconnaissance, although it is reported that there are faults along the Yao river.

(3) Flood Control Plan

a) Design Flood to be Controlled

Design flood of 20 year return period for 3 day duration is applied for the purpose of flood control. The peak flood is estimated about 250 m³/s tentatively based on the flood records of the gauging station N.51 at the Yao river, though the estimate by the Thai side study is 520 m³/s. Recorded annual maximum floods at the gauging station N.51 on the Yao river are as follows:

Recorded annua	l maximum	floods
21 N 51 (C	A 774 km²	200

No.	Year	Peak Flood (m³/s)
1	1979	218
2	1980	191
3	1981	193
4 .	1982	169
5	1983	325
6	1984	380
7	1985	222
8	1986	181
9	1987	175
10	1988	320
11	1989	93
12	1990	221
13	1991	87

Source: Thai side study

b) Daily Control Plan

The flood control dam will release the diversion water and local flow at 200 m³/s continuously in rainy season through the diversion outlet of 2.8 m in diameter. The normal water level of the reservoir to discharge 200 m³/s is set at 302.1 m MSL and the tail race water level is estimated about 278.5 m MSL. The local flow which exceeds 25 m³/s will be stored in the reservoir.

Flood volume is estimated at 27 MCM as shown below and will be stored in the reservoir of the flood control dam. The reservoir water level will reach at 312 m MSL in case of 20 year probable flood to store the flood volume of 27 MC

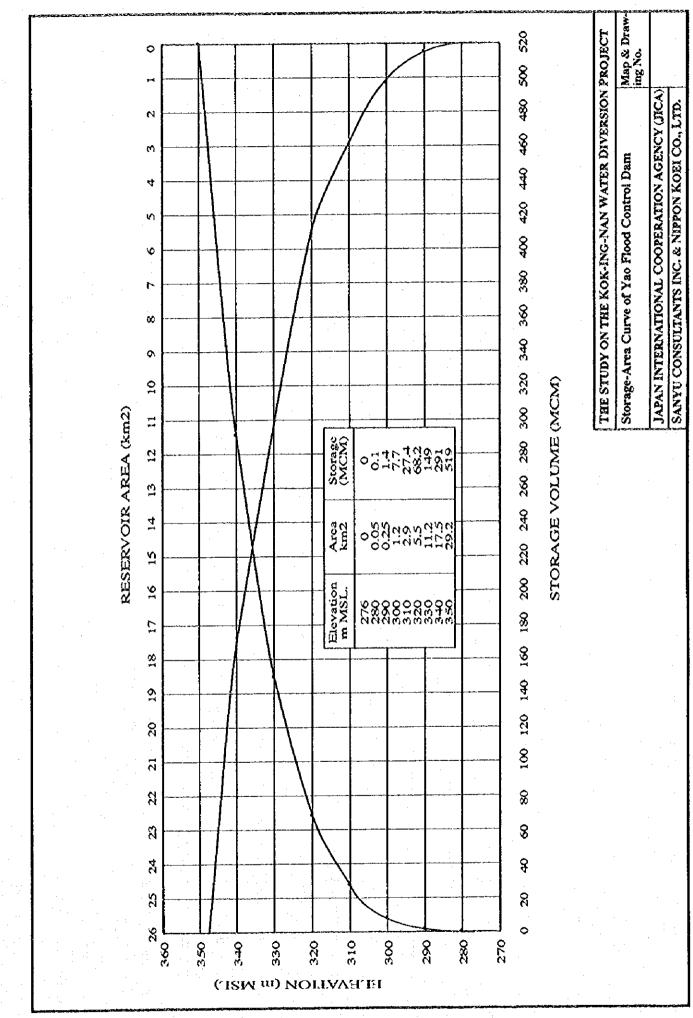
Required Flood Control Volume

Time	Qis	Q' _{in}	Q _{ia} ,	Storage
(hrs)	(m³/s)	(m³/s)	(m³/s)	(MCM)
0	75.62	236	36	:
3	78.16	238	38	0.4
6	83.47	240	40	0.8
9	101.97	249	49	1.3
12	298.32	344	144	2.3
15	518.06	450	250	4.5
18	501.06	442	242	7.1
21	410.05	398	198	9.5
24	316.93	353	153	11.4
27	224.03	308	108	12.8
30	148	271	71	13.8
33	102.39	249	49	14.4
36	147.6	271	. 71	15.1
39	207.45	300	100	16.0
42	201.22	297	97	17.1
45	173.98	284	84	18.0
48	146.59	271	71	18.9
51	119.5	258	- 58	19.6
54	97.61	247	47	20.1
57	85.87	241	41	20.6
60	116.83	256	56	21.1
63	154.2	274	74	21.8
66	150.84	273	73	22.6
69	134.64	265	65	23.4
72	118.2	257	57	24.0
75	101.68	249	49	24.6
78	87.98	242	42	25.1
81	78.98	238	38	25.5
84	76.76	237	37	25.9
87	75.92	237	37	26.3
90	75.7	237	37	26.7
93	75.62	236	36	27.1
	ood flour		uni kacin i	nto the da

Q_{in}: Flood flow from residual basin into the dam estimated by the Thai side study

 $[\]mathbf{Q}_{\text{fo}}$: Flood flow from residual basin into the dam modified by the JICA Study Team

 $Q'_{in} = Q_{in'} + 200$ (Outflow)


In case that there is flood in the Nan lower basin or the reservoir storage of the Sirikit dam is full, the intake gate of the Kok and Ing diversion dams will be closed to stop water diversion. Extraordinary floods from the Yot and Yao river basin will be discharged over the spillway.

(4) Dam Conceptual Layout

Conceptual layout and stage-storage-area curve of the Yao flood control dam is shown in Figures S.5.9.1 and S.5.9.2 respectively. Principal feature of the Yao flood control dam is shown in Table S.5.9.1.

Table 5.9.1 Principal Features of Yao Flood Control Dam

Principal Features	Unit	Recommended by Thai Side Study	Recommended by JICA Study Team
Reservoir			
- Peak discharge in 20 year return period	m³/s	520	250
- Flood water level	m MSL	306.30	312.0
- Reservoir surface area at FWL	km²	2.26	3.2
- Gross storage	МСМ	14.42	35
- Flood control volume	мсм	7.10	27
- Normal (retention) water level	m MSL	302.00	302.1
- Low water level	m MSL	299.00	295.0
Dam facilities			
- Type of dam		Zone fill	Concrete gravity
- Dam crest elevation	m MSL	310.00	313.0
- River bed elevation	m MSL	275.79	276.0
- Dam height from river bed	m	34.2	37
- Crest length	m	140	120
- Crest width	m	10	6

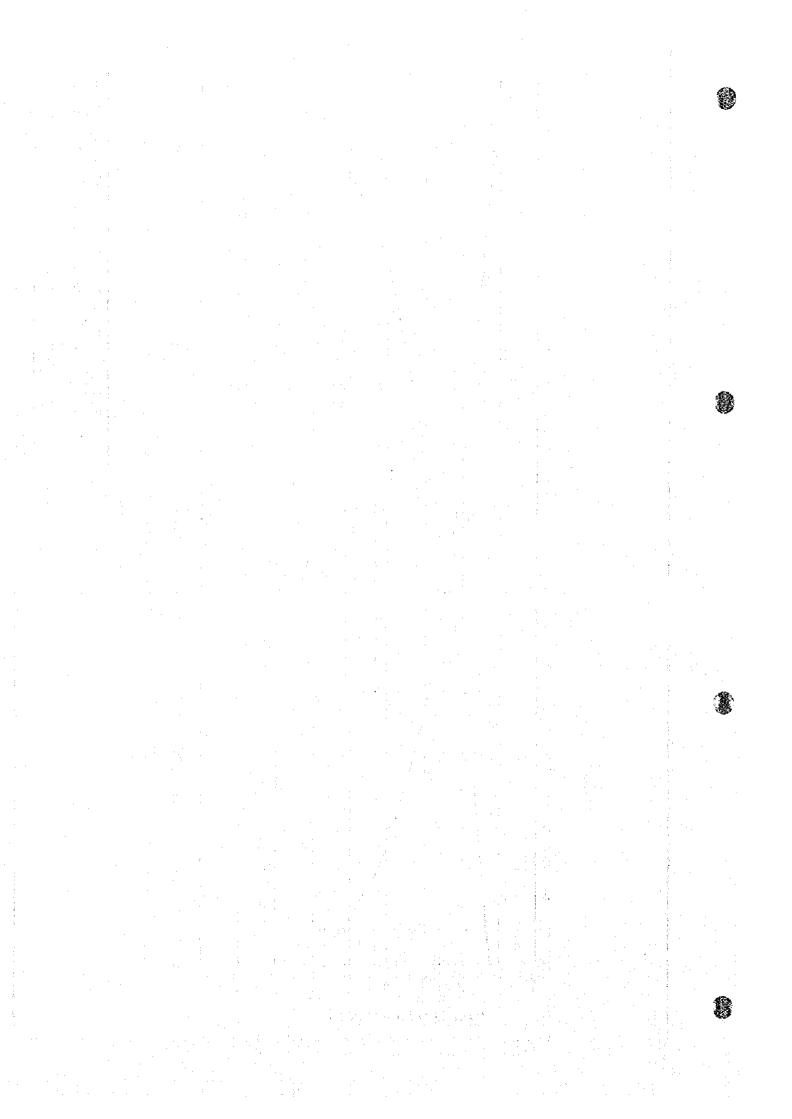


Table 7.2.A-D Construction Cost for Kok Diversion Dam

Item	Unit	Quantity	Rate	Amount	Remark
				(Thousand Baht)	
1 Kok Diversion Weir					
Excavation	cu.m	700,000	50	35,000	Common
	cu.m	160,000	160	25,600	i
Embankment	cu.m	215,000	100	21,500	Compacted soil
Riprap	cu.m	5,000	200	1,000	
Concrete	cu.m	9,000	4,520	40,680	Heavy reinforced
	cu.m	500	3,250	1,625	, ,
Radial Gate	set	10	20,200,000	202,000	
PC Pile	m	3,600	1,500	5,400	
Grout	m	700	5,000	3,500	· ·
	m	400	3,000	1,200	Consolidation
Subtotal				337,505	
2 Preparatory Works					•
Access & Service Road				89,000	20 % of (1+3)
Yards , Buildings		·			
Subtotal				89,000	
Total				426 707	i . •
Total			• .	426,505	•
	1			426,000	
3 Intake	'		·		•
Excavation	cu.m	250,000	50	12,500	
Embankment	cu.m	30,000	100	3,000	• •
Riprap	cu.m	24,000	200	4,800	
Concrete	cu.m	2,500	4,520	11,300	Heavy reinforced
	cu.m	450	3,250	1,463	Wall
PC Pile	m	1,250	1,500	1,875	600 mm dia.
Sluice Gate	set	3	25,048,000	75,144	10 mh x 3.8 mh
en					
Total				110,082	
				110,000	

Grand Total				524 000	
Grand Total	V. 20 C. 3			536,000	

Table 7.2.AL-C Backup Data of Construction Cost for Open Canal and Culvert in Kok-Ing Basin

			A Route		Y	A-R Route			B Route			B-J Route		B	B-P Route		
Item	Chit	Q'ty	<u> </u>	Amount Million B	Q'ty	ate	Amount Million B	ài O	Rate	Amount Million B	ж. О		Amount Million B	A; (2)	Rate	Amount Million B	Remarks
2 Open Canal in Kok Basin																	
2.1 Earth Canal	E	,					· •	215	9.5	2.0	215	9.5	2.0	215	8.6	2.0	. :
2.2 Concrete Canal No.1 Type (Fill)	£	2 586	26.600	88	•								I				133
No.2 Type (Cut)	8	000	20,600	123.6	5,782	20,900	120.8	1163	21,500	25.0	6,372	19,800	126.2	3,885	23,000		0AH44 m
No.5 1ype (Cut) Subtotal	8	5,160	31.900	164.6 357	9,330	35,000	326.6 447.4	12685	39,500	526.1	12,002	35,000	420.1 546.3	19,407 23,292	38,800	753.0	Och o
2.3 Syphon	Е	240	160,000	38.4	570	160,000	38.4	180	160,000	28.8	450	160,000	67.2	180	160,000	28.8	
2.4 Crossing Structure	LS	-4		118.6	H		145.7	F-1		167.1	•-≺		184.7	e-f		262.0	30 %
Total				514.0			631.5			724.0			800.2			1.135.2	
(cost per meter))	37,390	37,390 Baht/m)		41,780	1,780 Baht/m))	51,480	8	Š	43,040.)	Baht/m)	J	48,290	48,290 Baht/m)	
3 Culvert in Kok Basin					,												
No.1 Type	E				,		•	1 (' '		200	136,100	27.2		•		H<10 m
No.2 1ype	E E	9	161,400	111.4	. 5	000	0 0 0 0 0 0	3,200	162,700	520.6	1 661	163 000	0 000	3,200	162,700	520.6	#<15 m
No.4 Type	1 B	38	211,800	76.2	177	700,300	9,00	14,794	219,200	3,242.8	100,1	706,201	0.505	000	000,412	140.0	H CS H
Total		1,050		187.6	3,011		8.895	17,994		3,763.4	1,861		331.0	3,856		661.4	30044
(cost per meter)		3	178,660 Baht/m)	Babt/m))	(188,990)	8,990 Baht/m))	209.140 Baht/m)	Baht/m)	Ú	177,860 Baht/m)	Babt/m)		171,520 Baht/m)	Baht/m)	
8 Open Canal in Ing Basin			-														
8.1 Concrete Canal			4								-						
No.2 Type (Out)	e e	11,750	19,500	229.1	11,750	19,500	229.1	11,750	19,500	229.1	11,750	19,500	229.1	11,750	19,500	229.1	0 <h<4 m<="" th=""></h<4>
Subtotal	3	21,750	3	559.1	21,750	33,55	550.0	21,750	DOO'SS	559.1	21,750)35,000 (100)	559.1	21,750	25,000	559.1	H (SHS)
8.2 Chek/ Chek Drop	LS			100.0	⊷		100.0			100.0	H		100.0	-		100.0	:
8.3 Crossing Structure	L.S	-		263.6	⊷	:	263.6	₩		263.6			263.6	र-1	-	263.6	% 04
Total				922.7			922.7			522.7			922.7			7.226	
(cost per meter)		J	42,420 Baht/m)	Baht/m))	42,420	12,420 Baht/m)) 	42,420	42,420 Baht/m))	42,420	42,420 Baht/m))	42,420	42,420 Baht/m)	
			٠														

Table 7.2.AL-C(1) Backup Data of Rate/m for Open Canal and Culvet in Kok-Ing Basin

			A Ro	nte I	A-R F	toute	B Ro	ule	B-JR	onte	B-P F	oute
Item	Unit	Rate	Q'ty	Amount	Q'15	Agroupt	Q'ty	Amount	Q'ty	Amoust	Q'ty	Aprount
	0.000		<u> </u>	1,000 Babi		1,000 Babt		1,000 Babt		1,000 Babi		1,000 Babi
2 Open Canal in l	Kok Ba	ssin			1		H=3.	0.4 m	H=3.	Qalm I	H=3.	94 m
2.1 Earth Canal						_	106.4	5.3	106.4	5.3	106.4	5.3
Exacavation	cu m	50 40	-	-	_		7.4	0.3	7.4	0.3	7.4	0.3
Fill	cu.m	30	-	-		3, 4	99.0	3.0	99.0	3.0	99.0	3.0
Spoil Bank	cu.m	30	_	-	_	_	,,,,	0.9		0.9		0.9
Others Total	200.00	1000 TO 1000 TO						9.5		9.5		9,5
2.2 Concrete Can	l											
No.1 Type			F=1.45	m (Fill)								
Exacavation	cu.m	50	21.9	1.1	-	-	-	-	-	-	-	-
Fill	cu.m	40	261.6	10.5	-	-	-	-	-		-	-
Spoil Bank	cu.m	30	21.9	0.7	- 1	-	-	i - I	-	-	-	•
Lining Concrete	cu.m	1,950	5.4	10.5	-	-	-	- '	-	, -	-	-
Formwork	sq.m	100	14.4	1.4		-	-	-	-	-	-	-
Others				2.4		•	- 	-	- 11 0.160007			· .
Total				26.6	2/23/5/2	1861 4 6366		<u> </u>		10/10/2004	**************************************	81 m
No.2 Type				77 m	H=2.		H=3.	4		.41 m	31.9	
Exacavation	cu.m	50	81.1	4.1	86.3	4.3	92.7	4.6 1.3	71.0 54.3	3.6	31.9 115.5	4.6
Fill	cu.m	40	43.0	1.7	37.8	1.5 1.3	31.7 55.1	1.7	9.9	0.3	92.3	2.8
Spoil Bank	cu.m	30	31.7	1.0	42.3	10.5	55.1 5.4	10.5	9.9 5.4	10.5	5.4	10.5
Lining Concrete	cu.m	1,950	5.4	10.5 1.4	5.4 14.4	10.5	3.4 14.4	10.3	14.4	1.4	14.4	1.4
Formwork	sq.m	100	14.4	1.4	14.4	1.9	17.7	2.0		1.8		2.1
Others	200	3387500		20.6	9.555,0865	20.9		21.5		19.8		23.0
Total	200,200	(1001) <u>versió</u>	11-5	.30 m	H=6	11 m	H=7	.18 m	H=6	.09 m	H=7	03 m
No.3 Type Exacavation	cu.m	50	169.6	8.5	204.7	10.2	255.1	12.8	203.8		247.8	12.4
Fill	cu.m	40	19.4	0.8	19.4	0.8	19.4	0.8	19.4	0.8	19.4	0.8
Spoil Bank	cu m	30	144.8	1	179.9	5.4	230.3	6.9	179.0	5.4	223.0	6.7
Lining Concrete	cu.m	1,950	7.2	14.0	7.2	14.0	7.2	14.0	7.2	14.0	8	14.0
Formwork	sq.m	100	14.4	1.4	14.4	1.4	14.4	1.4	14.4	1.4	14.4	1.4
Others	"			2.9		3.2	<u> </u>	3.6		3.2	1000 to 10 100 1000	3.5
Total				31.9		35.0	<u> </u>	39.5		35.0		38.8
3 Culvert in Kok	Basin				•			ļ	l	100	, ,,,	4.43
No.1 and 2 Typ	ķ ·			4.09 m		7.99 m		4.43 m	41	7.90 m	385	4,43 m 19,3
Exacavation	cv.m	50	373			31.2	385	19.3	144	1	303	
Backfill	cu.ni	50	291	14.6	541	27.1	303	15.2 2.5	62 82	1	82	
Spoil Bank	cu.m	30	82		82	2.5 55.4	82 32.6	1	32 6			
Rein. Concrete	cu.m	1,700	32.6		32.6 3.3	49.5	32.0		3.3		E	
Reinforcing Bar	ton	15,000	3.3	49.5 6.0		6.0	н	6.0	R .		B.	
Formwork	m	6,000	1	14.7		17.2		14.8		12.4		14.8
Others	140628	1885-888	(5)(3 5)(5)(3)	161.4	3.8.33	188.9		162.7		136.1		162.7
Total No.3 and 4 Typ		<u> </u>	11=2	1.45 m	<u> </u>	1000	11=2	2.48 m		7.00 m	11=2	1.83 m
Exacavation	cu.m	50	832				900		569	28.5	857	
Backfill	cu.m	1				٠.	818	40.9	487	24.4		1
Spoil Bank	cu.ni	1 .	l!				82	2.5				
Rein. Concrete	cu.m	1	i i			1	32.6	1				
Reinforcing Bar		15,000		49.5			3.3					
Formwork	m	6,000	1	6.0			1			1,	11	
Others		<u>L</u>		19.3			1	19.9		16.6		19.5
Total				211.8	<u>Jana da da</u>		1	219.2		182.9	<u> </u>	214.6
8 Open Canal (C	oncret	e Canal)	in Ing B	asin	(commo	n to all al	ternaliv re	outes)				
No.2 Type			H=2	.03 m							1.0	
Exacavation	cu.m					•						
Fill	cu in						V			* . * .		1
Spoil Bank	cu.m		R			•						
Lining Concrete												
Formwork	sq.m	100	14.4	1.4								
Others	7000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19.5				•				
Total		1000000	11_<	.40 m	1							
No.3 Type		50	8									1.5
Exacavation Fill	cu.m		4	1								
Spoil Bank	cu.m		1									
Lining Concrete			4									*
Formwork	sq.m											· · · · · · · · · · · · · · · · · · ·
Others	1 4		L	3.0								
Total		18888	80.0	33,0								
L												

[lem	Unit	Quantity	Rate	Cost (Thousand Baht)
1. Main Tunnel	-			
1.1 Tunnel Exacavation	m	5,800		1,164,239
1.2 Tunnel Lining	m	5,800		456,111
Subtotal				1,620,350
2. Associated Works				
2.1 Access Road to Temporary Potal	places	2	58,440	114 000
2.2 Permanent Drainage Works	lms.	1	38,440	116,880
2.3 Portals Works			2 240	19,029
2.4 Vertical Anchor Method	places	2	3,240	6,480
2.5 Environmental Protection Works	places lms.	2	16,000	32,000
Subtotal	mis.	1		65,102
Subtotal		1		239,491
3. Depreciation for Machinery	places	2	94,380	188,760
Subtotal				188,760
4. Temporary Works for Construction				
4.1 Temporary Portals Facilities	lms.	1		1,316
4.2 Temporary Air Supply Facilities	lms.	1		49,620
4.3 Temporary Water Supply Facilities	lms.	1		8,047
4.4 Temporary Dranage Facilities	Ims.	1		6,313
4.5 Temporary Ventilation Facilities	lms.	1		637,769
4.6 Temporary Power Facilities	lms.	1		42,891
4.7 Water Pollution Countermeasures		2	13,301	26,602
4.8 Assembling and Dismantling Works	faces	2	1,193	2,386
4.9 Plant Facilities	faces	2	1,351	2,702
4.10 Temporary Houses for Compressoor, Ma		1	1,3.51	2,054
4.11 Maintenance for Temporary Works	month	56.3	1,282	72,177
4.12 Basic Power Rates and Land Rent	Ims.	1	1,202	31,799
4.13 Safety Measures and Others	lms.	1		199,517
Subtotal				1,083,192
Total (1+2+3+4) Total Construction Cost for Tunnel A-T1			(Rounded)	3,131,793 3,13 1, 000
	(539,000	Bht/m)	012033000

Table 7.2.A-T1(1) Backup Data of Cost for Kok - Ing Tunnel (A-T1)

			,	(26.7 8.1)
Item	Unit	Quantity	Rate	Cost
1. Direct Tunnel Construction Cost				
1.1 Tunnel Exacavation				
Туре С1	b)	25.0	88,385	2,209,62
Туре С2	m	354.0	106,351	37,648,25
Type D1	m	732.0	165,768	121,342,17
Турс В2	m	1,432.0	179,558	257,127,05
Type E1	m	1,244.0	195,330	242,990,52
Туре Е2	121	2,013.0	222,149	447,185,93
Type Ewr	nı	(805.0)	69,237	55,735,78
Subtotal		5,800.0		1,164,239,35
1.2 Concrete Tunnel Lining				
			·	
Type Ci	nı	25.0	40,365	1,009,12
Туре С2	m	354.0	39,052	13,824,40
Type D1	m	732.0	45,372	33,212,30
Type D2	m	1,432.0	59,929	85,818,32
Type E1	m	1,244.0	71,251	88,636,24
Туре Е2	m	2,013.0	116,051	233,610,66
Subtotal		5,800.0		456,111,07
Total				1 620 350 42
Total			, , , , , , , , , , , , , , , , , , ,	1,620,350

Table 7.2.A-T2 Construction Cost for Kok - Ing Tunnel (A - T2)

Item	Unit	Quantity	Rate	Cost
				(Thousand Baht)
1. Main Tunnel			1000000	
1.1 Tunnel Exacavation	m	7,350		1,224,965
1.2 Tunnel Lining	m	7,350		466,695
Subtotal				1,691,660
2. Associated Works				
2.1 Access Road to Temporary Potal	places	2	58,440	116,880
2.2 Permanent Drainage Works	Ims.	1	33,110	22,449
2.3 Portals Works	places	2	3,240	6,480
2.4 Vertical Anchor Method	places	2	16,000	32,000
2.5 Environmental Protection Works	lms.	1	10,000	67,836
Subtotal		_		245,645
2.5				:
3. Depreciation for Machinery	places	2	112,317	224,634
Subtotal		٠.		224,634
4. Temporary Works for Construction	Ī			
4.1 Temporary Portals Facilities	lms.	. 1		1,316
4.2 Temporary Air Supply Facilities	lms.	1		50,673
4.3 Temporary Water Supply Facilities	lms.	1	·	9,602
4.4 Temporary Dranage Facilities	lms.	1		8,237
4.5 Temporary Ventilation Facilities	lms.	1	·	759,262
4.6 Temporary Power Facilities	lms.	1		43,086
4.7 Water Pollution Countermeasures		2	15,331	30,662
4.8 Assembling and Dismantling Works	faces	2	1,193	2,386
4.9 Plant Facilities	faces	2	1,411	2,822
4.10 Temporary Houses for Compressoor, Ma	igazine	1		2,354
4.11 Maintenance for Temporary Works	month	67.0	1,282	85,894
4.12 Basic Power Rates and Land Rent	lms.	1		36,364
4.13 Safety Measures and Others	lms.	1	·	229,970
Subtotal				1,262,629
Total (1+2+3+4)	<u> </u>			2 42 4
Total (1+2+3+4) Total Construction Cost for Tunnel A-T2				3,424,568
Total Construction Cost for TunnelA-12			(Rounded)	3,424,000
		(465,000	Bht/m)	

Table 7.2.A-T2(1) Backup Data of Cost for Kok-Ing Tunnel (A-T2)

Item	Unit	Quantity	Rate	Cost
1. Direct Tunnel Construction Cost				
1.1 Tunnel Exacavation				
	1			
Type C1	m	716.0	88,385	63,283,660
Type C2	m	1,790.0	106,347	190,361,130
Type D1	111	1,390.0	165,768	230,417,520
Type D2	m	1,184.0	179,558	212,596,672
Type E1	m	660.0	195,330	128,917,800
Type E2	nı	1,610.0	220,668	355,275,480
Type Ewr	m	(644.0)	68,497	44,112,068
Subtotal		7,350.0	4. 1	1,224,964,330
		,		1
1.2 Concrete Tunnel Lining			· :	
Type C1	m	716.0	40,365	28,901,340
Type C2	m	1,790.0	39,052	69,903,080
Type D1	D1	1,390.0	45,372	63,067,080
Type D2	Di	1,184.0	59,929	70,955,936
Type Ei	D1	660.0	71,251	47,025,660
Type E2	D1	1,610.0	116,051	186,842,110
Subtotal		7,350.0		466,695,206
Subiotal		7,050.0		
Total				1,691,659,536

Table 7.2.B-T Construction Cost for Kok - Ing Tunnel (B)

J (¢m)	Unit	Quantity	Rafe	Cost (Thousand Bahi)
1. Main Tunnel				
1.1 Tunnel Exacavation		5,506	• •	1 041 420
1.2 Tunnel Lining	m	l I		1,041,428
Subtotal	m .	5,506	. •	427,356
Oubload				1,468,784
2. Associated Works				
2.1 Access Road to Temporary Potal	places	2	58,440	116,880
2.2 Permanent Drainage Works	lms.	1	30,440	17,710
2.3 Portals Works	places	2	3,240	6,480
2.4 Vertical Anchor Method	places	2	16,000	32,000
2.5 Environmental Protection Works	lms.	1	10,000	58,999
Subtotal		_		232,069
				202,000
3. Depreciation for Machinery	places	2	88,848	177,696
Subtotal				177,696
	Ĥ			
4. Temporary Works for Construction				
4.1 Temporary Portals Facilities	lms.	1		1,316
4.2 Temporary Air Supply Facilities	lms.	1		49,420
4.3 Temporary Water Supply Facilities	lms.	1		7,609
4.4 Temporary Dranage Facilities	lms.	1		5,866
4.5 Temporary Ventilation Facilities	Inis.	1		600,422
4.6 Temporary Power Facilities	lms.	1		42,853
4.7 Water Pollution Countermeasures		2	12,675	25,350
4.8 Assembling and Dismantling Works	faces	2	1,193	2,386
4.9 Plant Facilities	faces	2	1,333	2,665
4.10 Temporary Houses for Compressoor, Mag	azine	1		1,962
4.11 Maintenance for Temporary Works	month	53.0	1,282	67,946
4.12 Basic Power Rates and Land Rent	lms.	1		30,391
4.13 Safety Measures and Others	lms.	1		190,123
Subtotal				1,028,310
Total (1+2+3+4)	 			2,906,859
Total Construction Cost for Tunnel B-T			(Rounded)	2,906,000
				=1/00,000
	 	527,000 r	3ht/m)	

Table 7.2.B-T(1) Backup Data of Cost for Kok-Ing Tunnel (B)

Ilem	Unit	Quantity	Rate	Cost
1. Direct Tunnel Construction Cost				
1.1 Tunnel Exacavation				
Турс С1	ħı	480.0	88,385	42,424,800
Type C2	bi	790.0	106,347	84,014,130
Турс D1	m	620.0	165,768	102,776,160
Туре D2	m	660.0	179,558	118,508,280
Type Ei	Bi	750.0	195,330	146,497,500
Type E2	m	2,206.0	220,668	486,793,608
Type Ewr	m	(882.0)	68,497	60,414,354
Subtotal		5,506.0		1,041,428,832
1.2 Concrete Tunnel Lining				
Type C1	m	480.0	40,365	19,375,200
Type C2	ln:	790.0	39,052	30,851,080
Type D1	m	620.0	45,372	28,130,640
Type D2	m	660.0	59,929	39,553,140
Type E1	nı	750.0	71,251	53,438,250
Type E2	m	2,206.0	116,051	256,008,506
Subtotal		5,506.0		427,356,816
Total		1		1,468,785,648

Table 7.2.B-J-T1 Construction Cost for Kok - Ing Tunnel (B-J-T1)

llem	Unit	Quantity	Rate	Cost
				(Thousand Baht)
1. Main Tunnel				Substitute of the first
1.1 Tunnel Exacavation	m	3,114		606,36
1.2 Tunnel Lining	m	3,114		243,44
Subtotal	"	3,114		849,81
Subtotal		+ N -		042,01
2. Associated Works		:	1 4 4	
2.1 Access Road to Temporary Potal	places	1	29,220	29,22
2.2 Permanent Drainage Works	lms.	1		10,22
2.3 Portals Works	places	1	3,240	3,24
2.4 Vertical Anchor Method	places	1	16,000	16,00
2.5 Environmental Protection Works	lms.	1		34,15
Subtotal				92,8
3. Depreciation for Machinery	places	1	102,259	102,2
Subtotat	_			102,2
4. Temporary Works for Construction			·	
4.1 Temporary Portals Facilities	lms.	1	. 1.1	6:
4.2 Temporary Air Supply Facilities	lms.	1	.	26,92
4.3 Temporary Water Supply Facilities	lms.	1		2,84
4.4 Temporary Dranage Facilities	lms.	1		3,53
4.5 Temporary Ventilation Facilities	ins.	1		345,48
4.6 Temporary Power Facilities	lms.	1		21,4
4.7 Water Pollution Countermeasures		1	14,193	14,19
4.8 Assembling and Dismantling Works	faces	1	1,193	1,19
4.9 Plant Facilities	faces	1	1,377	1,37
4.10 Temporary Houses for Compressoor, Mag	gazine	1		1,14
4.11 Maintenance for Temporary Works	month	61.0	687	41,90
4.12 Basic Power Rates and Land Rent	lms.	1		16,90
4.13 Safety Measures and Others	lms.	1	1	212,89
Subtotal				690,52
Total (1+2+3+4)				1,735,44
Total Construction Cost for Tunnel B-J-7	r 1		(Rounded)	1,735,00
		(557,000	Bht/m)	

Table 7.2.B-J-T1(1) Backup Data of Cost for Kok-Ing Tunnel (B-J-T1)

	Item	Unit	Quantity	Rate	Cost
	Funnel Construction Cost				
	Туре Сі	hi	130.0	88,385	11,490,050
*	Type C2	m	340.0	106,347	36,157,980
	Type D1	m	320.0	165,768	53,045,760
	Type D2	to	418.0	179,558	75,055,244
	Type E1	m	800.0	195,340	156,272,000
	Type E2	m	1,106.0	220,678	244,069,868
	Type Ewr	133	(442.0)	68,502	30,277,884
	Subtotal		3,114.0		606,368,786
1.2 Concr	ete Tunnel Lining		·		+ .
	Туре С1	m	130.0	40,365	5,247,450
	Type C2	m	340.0	39,052	13,277,680
	Type D1	uı	320.0	45,372	14,519,040
1.50	Type D2	m	418.0	59,929	25,050,32
	Туре Е1	m	800.0	71,251	57,000,800
	Туре Е2	Bì	1,106.0	116,051	128,352,400
	Subtotal		3,114.0		243,447,698
	Total				849,816,484

Table 7.2.B-J-T2 Construction Cost for Kok - Ing Tunnel (B - J - T2)

Item	Unit	Quanti	(y	Rate	Cost (Thousand Bahi)
1. Main Tunnel			<u> </u>		
1.1 Tunnel Exacavation	m	7.	775		1 200 01/
1.2 Tunnel Lining) "" m		775		1,308,014 503,939
Subtotal	""	' ','	113		
Subtotal					1,811,953
2. Associated Works					
2.1 Access Road to Temporary Potal	places		2	58,440	116,880
2.2 Permanent Drainage Works	lms.		1		23,826
2.3 Portals Works	places		2	3,240	6,480
2.4 Vertical Anchor Method	places		2	16,000	32,000
2.5 Environmental Protection Works	lms.		1		72,670
Subtotal					251,856
3. Depreciation for Machinery	places	,	2	119,022	238,045
Subtotal					238,045
4. Temporary Works for Construction					
4.1 Temporary Portals Facilities	lms.		1		1,316
4.2 Temporary Air Supply Facilities	lms.		1		50,962
4.3 Temporary Water Supply Facilities	lms.		1		10,149
4.4 Temporary Dranage Facilities	lms.		1		8,869
4.5 Temporary Ventilation Facilities	lms.		1		804,578
4.6 Temporary Power Facilities	lms.		1		43,139
4.7 Water Pollution Countermeasures		·	2	16,090	32,180
4.8 Assembling and Dismantling Works	faces	٠	2	1,193	2,386
4.9 Plant Facilities	faces		2	1,433	2,867
4.10 Temporary Houses for Compressoor, Mag	azine		1	•	2,466
4.11 Maintenance for Temporary Works	month	71	.0	1,382	98,122
4.12 Basic Power Rates and Land Rent	lms.		1		38,071
4.13 Safety Measures and Others	lms.		1		241,357
Subtotal					1,336,461
Total (1+2+3+4)					3,638,315
Total Construction Cost for Tunnel B-J-T2				(Rounded)	3,638,000
		(467,00	ю :	Bht/m)	

Table 7.2.B-J-T2(1) Backup Data of Cost for Kok-Ing Tunnel (B-J-T2)

	liem	Unit	Quantity	Rate	Cost
1. Direct Tunt 1.1 Tunnel Ex	el Construction Cost acavation				
	Туре Сі	m	757.0	88,385	66,907,445
	Type C2	131	1,893.0	106,347	201,314,87
	Type D1	m	1,400.0	165,768	232,075,200
	Type D2	m	1,190.0	179,558	213,674,020
	Type E1	m	660.0	195,330	128,917,800
	Туре Е2	m	1,875.0	220,668	413,752,500
•	Type Ewr	m	(750.0)	68,497	51,372,750
	Subtotal		7,775.0		1,308,014,586
1.2 Concrete	Funnel Lining				
	Type C1	m	757.0	40,365	30,556,305
•	Type C2	m	1,893.0	39,052	73,925,430
	Type D1	m	1,400.0	45,372	63,520,80
	Туре D2	m	1,190.0	59,929	71,315,510
	Type E1	fi3	660.0	71,251	47,025,660
• •	Туре Е2	m	1,875.0	116,051	217,595,62
	Subtotal	-	7,775.0		503,939,330
	Total				1,811,953,922

Table 7.2.B-P-T Construction Cost for Kok - Ing Tunnel (B-P-T)

Item	Unit	Quantity	Rate	Cost (Thousand Baht)
1. Main Tunnel			,	r en
1.1 Tunnel Exacavation	m	4,200		748,18
1.2 Tunnel Lining	m	4,200		279,18
Subtotai				1,027,36
				_,,,,,,,,
2. Associated Works		,		
2.1 Access Road to Temporary Potal	places	1	29,220	29,22
2.2 Permanent Drainage Works	lms.	1		13,08
2.3 Portals Works	places	1	3,240	3,24
2.4 Vertical Anchor Method	places	1	16,000	16,00
2.5 Environmental Protection Works	lms.	1		41,22
Subtotal		·		102,77
3. Depreciation for Machinery Subtotal	places	1	125,728	125,72 125,72
4. Temporary Works for Construction				
4.1 Temporary Portals Facilities	lms.	1		65
4.2 Temporary Air Supply Facilities	lms.	1		27,79
4.3 Temporary Water Supply Facilities	lms.	1		3,53
4.4 Temporary Dranage Facilities	lms.	1		5,08
4.5 Temporary Ventilation Facilities	lms.	1		425,01
4.6 Temporary Power Facilities	lms.	. 1		22,65
4.7 Water Pollution Countermeasures		1	16,849	16,84
4.8 Assembling and Dismantling Works	faces	i	1,504	1,50
4.9 Plant Facilities	faces	/ 1	1,456	1,45
4.10 Temporary Houses for Compressoor, Ma	gazine	· 1		1,34
4.11 Maintenance for Temporary Works	month	75.0	911	68,32
4.12 Basic Power Rates and Land Rent	lms.	. 1		19,88
4.13 Safety Measures and Others	lms.	1		252,74
Subtotal				846,84
Total (1+2+3+4) Total Construction Cost for Tunnel B-P-T			(Roundéd)	2,102,70 2,102,000
		(500,000	Bht/m)	

Table 7.2.B-P-T(1) Backup Data of Cost for Kok - Ing Tunnel (B-P-T)

Item	Unit	Quantity	Rate	Cost
1. Direct Tunnel Construction Cost 1.1 Tunnel Exacavation				
Type C1	m	480.0	89,211	42,821,280
Type C2	m	790.0	107,354	84,809,660
Type D1	m	620.0	168,155	104,256,100
Type D2	m	660.0	185,843	122,656,380
Type E1	m	750.0	197,989	148,491,750
Type E2	m	900.0	241,057	216,951,300
Type Ewr	m	(360.0)	78,323	28,196,280
Subtotal	· · · · · · · · · · · · · · · · · · ·	4,200.0		748,182,750
1.2 Concrete Tunnel Lining				
Type C1	nı	480.0	41,111	19,733,280
Type C2	In	790.0	39,798	31,440,420
Type D1	m	620.0	46,173	28,627,260
Type D2	m	660.0	60,730	40,081,800
Type E1	nı	750.0	72,108	54,081,000
Type E2	l m	900.0	116,908	105,217,200
Subtotal		4,200.0		279,180,960
Total			<u> </u>	1,027,363,710

Table 7.2.B-P-T (2) Detailed Backup Data of Cost for Kok Ing Tunnel

Grade of Ground	TypeB	Type CI	Туре СП	Type D I	Type DII	Type E I	Type E II	Type Ewr
Length(m) 4,200	•	480	790	079	099	750	986	
Excavation Cost / Upper half/ m	8							(unit of cost:Baht)
Labour Cost		13,686	16.702	18,444	19,025	19,512	22,270	986'05
Machine and Equipment	ŧ	44,292	48,633	45.206	45.529	46,328	53,636	
Materials		15.198	15,709	7,867	8,015	8,319	26,065	-
Subtotal	•	73,176	81,044	71,517	72,569	74,159	101,971	50,986
Excavation Cost / Lower half/m	. a .							
Labour Cost	i.	1	•	9,222	9,513	9,756	11,135	17,737
Machine and Equipment		1	•	15,426	15,366	15,515	17,526	
Materials	ı	ı	1	2.629	2,637	2,688	6,813	
Subtotal		1	•	77,277	27,516	27,959	35,474	17,737
Steel Support	•	•	8,041	14,081	21,878	30,960	31,016	
Rockbolts	1	6.160	7.700	15,264	15,525	15,525	19,686	:
Shotcrete		7,484	8,178	10.613	12.894	13,101	16,375	9.600
Welded net		•	•	1,628	1,997	2,028	2,043	
Sheeting	1	1		25,071	30,760	31,231	31,466	
Lindnveut	4	2,391	2.391	2,704	2.704	3,026	3.026	
Total(Excavation Works)		89,211	107,354	168,155	185,843	197,989	241,057	78.323
Lining.Inv.	•	12,310	12,310	15,365	15,365	18,522	18,522	
Lining.Arc.	•	28.801	27,488	30,808	30,808	36,040	36,040	
Reinfor-bar @60kg/m3	•	1		,	14,557	17,546	17,546	
Water Proof	•			•	4	,	44.800	
Total (Lining Works)		41,111	39,798	46,173	60,730	72,108	116,908	
Unit Cost of Type		130,322	147,152	214,328	246,573	270,097	357,965	78,323

Table 7.5.B-T Backup Data of Cost for Ing - Yot Tunnel

(B)

0 :

Item	Unit	Quantity	Rate	Amount
1. Direct Tunnel Construction Cost				
1.1 Tunnel Exacavation			İ	
Турс В	m	2,680.0	90,556	242,690,080
Type C1	m	8,909.0	95,278	848,831,702
Туре С2	m	14,790.0	114,952	1,700,140,080
Type D1	121	12,088.0	179,059	2,164,465,192
Type D2	131	7,810.0	194,399	1,518,256,190
Type E1	Di	2,870.0	211,036	605,673,320
Туре Е2	Bl	1,728.0	237,350	410,140,800
Type Ewr	133	(691.0)	72,237	49,915,767
Subtotal		50,875.0		7,540,113,131
1.2 Concrete Tunnel Lining	. •			
Type B	m	2,680.0	46,456	124,502,080
Type C1	m	8,909.0	44,939	400,361,551
Type C2	bi	14,790.0	43,468	642,891,720
Type D1	m	12,088.0	50,569	611,278,072
Турс D2	m	7,810.0	66,999	523,262,190
Type E1	m	2,870.0	79,651	228,598,370
Type E2	Dì	1,728.0	124,451	215,051,328
Subtotal		50,875.0		2,745,945,311
Total	200			10,286,058,442

Table 7.5.B-T (1) Detailed Backup Data of Cost for Ing - Yot Tunnel

175.00 m3/sec

Ö

(B)

Grade of Ground	Type B	Type CI	Type CII	Type DI	Type DII	Type El	Type EII	Type Ewr
Length(m) 50,875	2,680	8,909	14,790	12,088	7,810	2,870	1,728	(691)
Excavation Cost / Upper half/ m	u.							(unit of cost : Baht)
Labour Cost	12,422	14,713	17,668	19,014	19,611	19,834	22,974	
Machine and Equipment	47.968	44.550	48,915	45,447	45,819	46.520	53,974	
Materials	17,908	17,668	18,309	9,277	9,410	9,744	9.879	
Subtotal	78,298	76,931	84,892	73,738	74,840	76,098	86,827	43,414
Excavation Cost / Lower half/m	/m							
Labour Cost			•	9,507	908.6	9,917	11,487	
Machine and Equipment	,	•		15,537	15,501	15,601	17,685	
Materials	1	•	1	2,967	2,997	3.033	7,165	:
Subtotal	•	•	•	28,011	28,304	28,551	36,337	18,169
Steel Support	•	•	9.198	15,914	20,516	34,587	34,788	
Rockbolts	4,050	6.943	8,678	16,918	17,178	17,178	20.860	
Shotcrete	5.176	8.373	9,152	11,915	14,476	14,683	18,353	10,653
Welded net		•		1.828	2,236	2,268	2,282	upt.
Sheeting	•	•	1	27,351	33,464	33,924	34,153	
Lin.Inv.cut	3.032	3.032	3.032	3,385	3,385	3,748	3.748	
Total(Excavation Works)	90,556	95,279	114,952	179,060	194,399	211,037	237,348	72,236
Lining.Inv.	13,760	13,760	13,760	17,120	17,120	20,567	20,567	
Lining.Arc.	32,696	31.179	29.709	33,450	33,450	39.300	39.300	
Reinfor-bar @60kg/m3	,	•	•		16,429	19.785	19.785	
Water Proof		1	1		b	, , , , , , , , , , , , , , , , , , ,	44.800	
Total (Lining Works)	46,456	44,939	43,469	50,570	66,999	79,652	124,452	
Unit Cost of Type	137,012	140,218	158,421	229,630	261,398	689'06Z	361,800	72,236

Table 7.5.C-T Construction Cost for Ing - Yot Diversion Tunnel

(0

Q =

175.00 m3/see

Item	Unit	Quantity	Rate	Amount (Thousand Baht)
1. Main Tunnel				
1.1 Tunnel Exacavation	m	52,453	i i	10,854,362
1.2 Tunnel Lining	ារា	52,453		4,564,879
Subtotal				15,419,241
2. Inklined Adit			, •	
2.1 Inklined Adit Exacavation	n .	19,390	143,247	2,777,559
2.2 Inklined Adit Lining	m	19,390	40,455	784,422
Subtotal				3,561,981
3. Associated Works				·
3.1 Access Road to Inclined Adit	places	13	55,420	720,460
3.2 Permanent Drainage Works	ins.	1		218,564
3.3 Portals Works	places	13	3,240	42,120
3.4 Vertical Anchor Method	places	13	16,000	208,000
3.5 Environmental Protection Works	lms.	1		616,623
Subtotal				1,805,767
4. Depreciation for Machinery	places	24	159,832	3,835,973
Subtotal			•	3,835,973
5. Temporary Works for Construction				
5.1 Temporary Portals Facilities	lms.	1		8,696
5.2 Temporary Air Supply Facilities	lms.	1		733,918
5.3 Temporary Water Supply Facilities	lms.	1		326,924
5.4 Temporary Dranage Facilities	lms.	1		372,570
5.5 Temporary Ventilation Facilities	lms.	1		523,944
5.6 Temporary Power Facilities	lms.	1		521,284
5.7 Water Pollution Countermeasures		13	16,166	210,158
5.8 Assembling and Dismantling Works	faces	24	1,193	28,633
5.9 Plant Facilities	faces	24	1,436	34,453
5.10 Inklined Adit Facilities	places	11	22,222	244,442
5.11 Temporary Houses for Compressoor, Mag	gazine	1		38,076
5.12 Maintenance for Temporary Works	month	78.0	8,347	651,066
5.13 Basic Power Rates and Land Rent	lms.	1		716,156
5.14 Safety Measures and Others	lms.	1		242,493
Subtotal				4,652,812
	<u> </u>			29,275,774
Total (1+2+3+4+5)			(Rounded)	29,275,000
Total Construction Cost for DiversionTum	µ€ 6	558,000	Bht/m)	~~,~,v,y,y,

Table 7.5.C-T (1) Backup Data of Cost for Ing - Yot Tunnel

(C)

0 =

175.00 m3/scc

<u>Item</u>	Unit	Quantity	Rate	Amount
1. Direct Tunnel Construction Cost	·			
1.1 Tunnel Exacavation				•
Туре В	m	770.0	90,556	69,728,12
Type C1	m	3,850.0	95,278	366,820,30
Type C2	nı	7,090.0	114,952	815,009,68
Туре D1	m	5,540.0	179,059	991,986,86
Type D2	bt	5,735.0	194,399	1,114,878,26
Турс Е1	m	6,335.0	211,036	1,336,913,06
Туре Е2	n)	23,133.0	237,350	5,490,617,55
Type Ewr	m	(9,253.0)	72,237	668,408,96
Subtotal		52,453.0		10,854,362,79
			* * * * * * * * * * * * * * * * * * * *	
1.2 Concrete Tunnel Lining				·
Type B	m	770.0	46,456	35,771,120
Type Ci	m	3,850.0	44,939	173,015,15
Туре С2	m	7,090.0	43,468	308,188,12
Type D1	m	5,540.0	50,569	280,152,26
Type D2	an l	5,735.0	66,999	384,239,26
Туре Е1	m	6,335.0	79,651	504,589,08
Type E2	ומ	23,133.0	124,451	2,878,924,98
Subtotal	ŧ.	52,453.0		4,564,879,98.
Total				15,419,242,77

Table 7.5.C-T (2) Detailed Backup Data of Cost for Ing - Yot Tunnel

175.00 m3/sec

|| | |

Type Ewr	(9,253)	(unit of cost : Bant)				43,414					18,169			10,653				72,236						72,236
Type EII	23,133		22.974	53,974	9.879	86,827		11,487	17,685	7,165	36,337	34.788	20,860	18,353	2,282	34,153	3.748	237,348	20,567	39,300	19,785	44,800	124,452	361,800
Type EI	6,335		19,834	46,520	9,744	76,098		9,917	15.601	3,033	28,551	34,587	17,178	14,683	2,268	33,924	3.748	211,037	20,567	39,300	19,785	•	79,652	290,689
Type DII	5,735		19,611	45.819	9,410	74,840		9.806	15,501	2,997	28,304	20,516	17.178	14.476	2,236	33,464	3,385	194,399	17.120	33,450	16.429	•	66,999	261,398
Type DI	5,540	:	19,014	45.447	9,277	73,738		9,507	15.537	2,967	28,011	15,914	16,918	11,915	1,828	27,351	3,385	179,060	17,120	33,450	,	ť	50,570	229,630
Type CII	2,090		17,668	48,915	18,309	84,892		*	•			9,198	8.678	9,152	•	•	3.032	114,952	13,760	29,709	1	1	43,469	158,421
Type CI	3,850		14,713	44,550	17.668	76,931		1	•	•	•	•	6,943	8.373	1	•	3.032	95,279	13,760	31,179	•	•	44,939	140,218
Type B	770	a.	12,422	47,968	17,908	78,298	m/	1	,	· .	•	•	4.050	5,176	•	1	3,032	955'06	13,760	32,696	•	•	46,456	137,012
Grade of Ground	Length(m) 52,453	Excavation Cost / Upper half/ m	Labour Cost	Machine and Equipment	Materials	Subtotal	Excavation Cost / Lower half/m	Labour Cost	Machine and Equipment	Materials	Subtotal	Steel Support	Rockbolts	Shotcrete	Welded net	Sheeting	Lin.Inveut	Total(Excavation Works)	Lining Inv.	Lining-Arc.	Reinfor-bar @60kg/m3	Water Proof	Total (Lining Works)	Unit Cost of Type

Table 7.5.B-T(150) Construction Cost for Ing - Yot Tunnel

(B)

Q =

Item	Unit	Quantity	Rate	Cost (Thousand Baht)
1. Main Tunnel				
1.1 Tunnel Exacavation	m	50,875		7,163,510
1.2 Tunnel Lining	m	50,875		2,613,710
Subtotal				9,777,220
2. Inklined Adit				
2.1 Inklined Adit Exacavation	m	17,381	136,732	2,376,53
2.2 Inklined Adit Lining	"	17,381	38,444	668,19
Subtotal	"	17,501	30,111	3,044,73
				3,011,12
3. Associated Works				100 =0
3.1 Access Road to Inclined Adit	places	9	55,420	498,78
3.2 Permanent Drainage Works	lms.	1	2010	190,35
3.3 Portals Works	places	9	3,240	29,16
3.4 Vertical Anchor Method	places	9	16,000	144,00
3.5 Environmental Protection Works	lms.	1		390,93
Subtotal				1,253,23
4. Depreciation for Machinery	places	16	159,832	2,557,31
Subtotal		·		2,557,31
5. Temporary Works for Construction				
5.1 Temporary Portals Facilities	lms.	1		5,98
5.2 Temporary Air Supply Facilities	lms.	1		507,45
5.3 Temporary Water Supply Facilities	lms.	1		168,44
5.4 Temporary Dranage Facilities	lms.	1		349,77
5.5 Temporary Ventilation Facilities	lms.	1		375,04
5.6 Temporary Power Facilities	lms.	1		347,52
5.7 Water Pollution Countermeasures		9	16,166	145,49
5.8 Assembling and Dismantling Works	faces	16	1,193	19,089
5.9 Plant Facilities	faces	16	1,436	22,969
5.10 Inklined Adit Facilities	places	7	22,222	155,554
5.11 Temporary Houses for Compressoor, Ma	i - I	. 1		25,418
5.12 Maintenance for Temporary Works	menth	78.0	5,864	457,392
5.13 Basic Power Rates and Land Rent	ไกเร.	1		478,733
5.14 Safety Measures and Others	lnıs.	1		242,493
Subtotal				3,301,360
5, Total (1+2+3+4+5)	J		<u> </u>	19,933,862
Total Construction Cost for Tunnel		(391,000	(Rounded) Bht/m)	19,933,000

Table 7.5.B-T(150)(1) Backup Data of Cost for Ing - Yot Tunnel (B) 150.00 m3/sec

	Item	Unit	Quantity	Rate	Cost
1. Direct Tunn	iel Construction Cost		:		
1.1 Tunnel Ex					
	Туре В	m	2,680.0	83,925	224,919,000
	Type C1	m	8,909.0	89,517	797,506,953
*.	Type C2	· m	14,790.0	108,303	1,601,801,370
	Type D1	D)	12,088.0	170,915	2,066,020,520
•	Турс D2	m	7,810.0	185,774	1,450,894,940
	Туре Е1	m	2,870.0	202,028	579,820,360
	Type E2	m	1,728.0	228,055	394,079,040
	Type Ewr	m	(691.0)	70,143	48,468,81
	Subtotal		50,875.0		7,163,510,99
1.2 Concrete	Funnel Lining				
	Туре В	m	2,680.0	44,191	118,431,880
	Туре Сі	m :	8,909.0	42,742	380,788,478
	Type C2	m	14,790.0	41,340	611,418,60
	Type D1	m	12,088.0	48,055	580,888,840
	Type D2	m	7,810.0	63,625	496,911,250
	Type E1	m	2,870.0	75,654	217,126,980
	Type E2	m	1,728.0	120,454	208,144,517
	Subtotal		50,875.0		2,613,710,540
	Total				9,777,221,53

Table 7.5.B-T(150)(2) Detailed Backup Data of Cost for Ing - Yot Tunnel

150.00 m3/sec

0

(B)

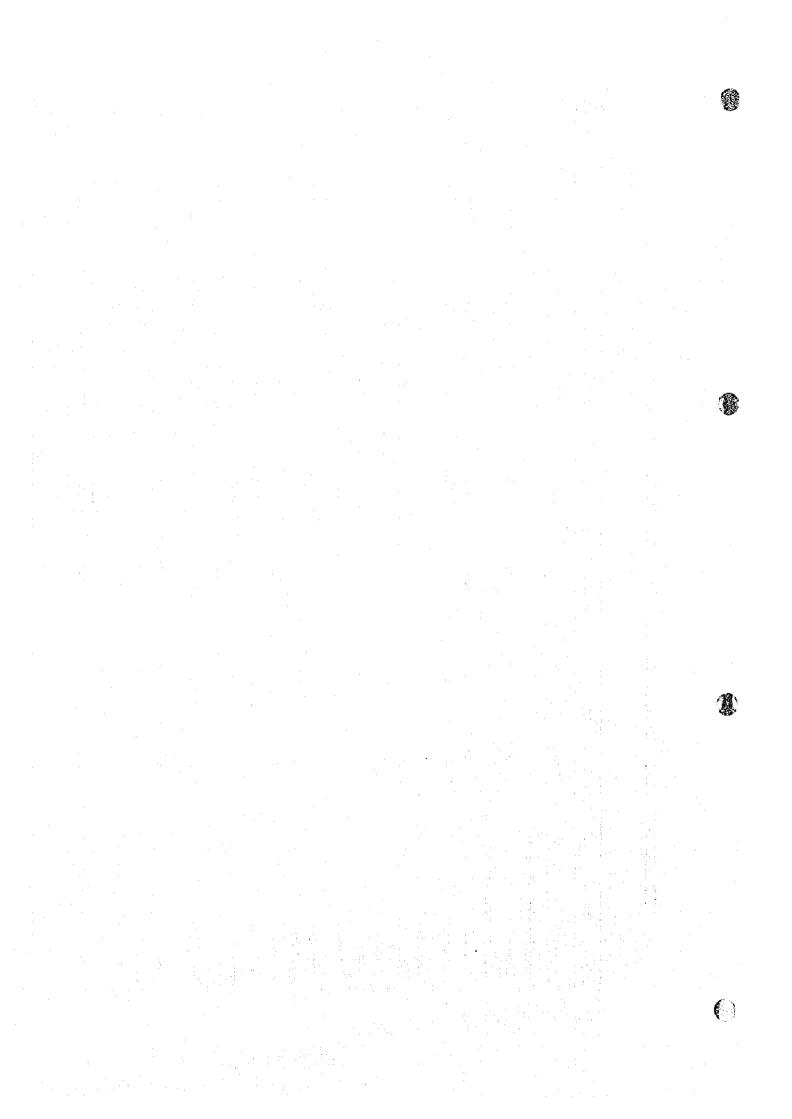
691 70,142 unit of cost: Baht) 41,807 17,682 10,653 70,142 Type Ewr 120,453 348,507 228,054 1,728 51,916 2,180 9,174 11,262 (7,063 7,038 33,225 20,273 17,504 32,628 19,337 37,561 18,755 22,524 33,614 35,363 3,267 44,800 田田 Type 277,683 2,870 19,428 44,580 2.898 33,016 2,166 202,030 9,084 9,714 15,122 27,734 16,352 14,005 32,398 19,337 37,561 75,653 73,092 3,267 18,755 Type E I 19,198 7,810 19,379 16,352 249,401 43,842 8,750 9.599 14,995 2,862 27,456 13,797 2.134 31,941 185,775 16,059 15,570 63,626 71,790 2,926 31,997 Type DII 8,608 170,915 12,088 8,617 2,847 27,176 1,736 48,056 218,971 15,025 14,986 11,355 25,973 2.926 16,059 31,997 43,447 70,672 9,304 16,091 Pre DI 149,642 14,790 108,302 41,340 17,023 46,036 17,159 80,218 8,564 8,189 8,736 2,595 12,880 28,460 Ho Type 132,258 8,909 41,699 16,578 6,551 7,993 89,516 12,880 42,742 14,100 2,595 72,377 29,862 က ပ Type 128,116 2,680 11.740 44,266 16,626 72,632 3,757 4,941 2,595 83,925 12,880 44,191 31,311 μ Type Excavation Cost / Upper half m Excavation Cost / Lower half/m 50,875 @60kg/m3 Machine and Equipment Total(Excavation Works) Machine and Equipment Total (Lining Works) Grade of Ground Unit Cost of Type Labour Cost Labour Cost Steel Support Length(m) Subtotal Subtotal Reinfor-bar Water Proof Lining.Arc. Welded net Materials Materials Lining.Inv. Lin Inv.cut Rockbolts Shoterete Shecting

Table 7.5.B-T(200) Construction Cost for Ing - Yot Tunnel

ን =

Item	Unit	Quantity	Rate	Cost
	ĺ			(Ihousand Baht)
1. Main Tunnel				
1.1 Tunnel Exacavation	m	50,875		7,955,177
1.2 Tunnel Lining	m	50,875		2,859,832
Subtotal				10,815,009
2. Inklined Adit				
2.1 Inklined Adit Exacavation	m	17,381	149,920	2,605,759
2.2 Inklined Adit Lining	m	17,381	42,137	732,38
Subtotal				3,338,14
3. Associated Works				
3.1 Access Road to Inclined Adit	places	9	55,420	498,78
3.2 Permanent Drainage Works	lms.	1		190,35
3.3 Portals Works	places	9	3,240	29,16
3.4 Vertical Anchor Method	places	9	16,000	144,00
3.5 Environmental Protection Works	lms.	1		432,07
Subtotal	"""			1,294,36
		,	150 922	2,557,31
4. Depreciation for Machinery	places	16	159,832	2,557,31
Subtotal		:		2,337,31
5. Temporary Works for Construction				
5.1 Temporary Portals Facilities	lms.	1		6,06
5.2 Temporary Air Supply Facilities	lms.	1		507,45
5.3 Temporary Water Supply Facilities	lms.	1		168,44
5.4 Temporary Dranage Facilities	lms.	. 1		349,77
5.5 Temporary Ventilation Facilities	lms.	1		375,04
5.6 Temporary Power Facilities	lms.	1		347,52
5.7 Water Pollution Countermeasures		9	16,166	145,49
5.8 Assembling and Dismantling Works	faces	16	1,193	19,08
5.9 Plant Facilities	faces	16	1,436	22,96
5.10 Inklined Adit Facilities	places	7	22,222	155,55
5.11 Temporary Houses for Compressoor, Ma	gazine	1		25,41
5.12 Maintenance for Temporary Works	month	78.0	5,864	457,39
5.13 Basic Power Rates and Land Rent	lms.	1		478,73
5.14 Safety Measures and Others	Ims.	1		242,49
Subtotal				3,301,44
6. Total (1+2+3+4+5)	l	1	<u> </u>	21,306,27
Total Construction Cost for Tunnel			(Rounded)	21,306,00
Total Coura action Core for Tunker		(418,000	Bht/m)	~~,

Table 7.5.B-T(200)(1) Backup Data of Cost for Ing - Yot Tunnel (B)


Q =

	I tem	Unit	Quantity	Rate	Cost
1. Direct T	unnel Construction Cost				
1.1 Tunnel	Exacavation	ĺ			
	Туре В	D3	2,680.0	98,275	263,377,000
	Type C1	m	8,909.0	102,208	910,571,072
	Type C2	m	14,790.0	122,254	1,808,136,660
1.1	Type D1	m	12,088.0	187,400	2,265,291,200
	Type D2	m	7,810.0	203,606	1,590,162,860
	Type E1	En	2,870.0	221,465	635,604,550
	Type E2	01	1,728.0	249,051	430,360,128
	Type Ewr	m ((691.0)	74,781	51,673,671
	Subtotal		50,875.0		7,955,177,141
1.2 Concre	te Tunnel Lining			·	
	Туре В	D)	2,680.0	48,432	129,797,760
	Type CI	Bi	8,909.0	46,830	417,208,470
. *	Type C2	191	14,790.0	45,273	669,587,670
	Type D1	m	12,088.0	52,671	636,687,048
	Type D2	n	7,810.0	69,975	546,504,750
	Type E1	B)	2,870.0	83,217	238,832,790
	Туре Е2	nı	1,728.0	128,017	221,213,376
	Subtotai	,	50,875.0	3.44	2,859,831,864
	Total				10,815,009,005

Table 7.5.B-T(200)(2) Detailed Backup Data of Cost for Ing - Yot Tunnel

(<u>8</u>

				7	0			200.00	202/2 m 00 00C
						-		A->A->A->A->A->A->A->A->A->A->A->A->A->A	
									(unit of cost : Baht)
Grade of Ground	Type B	<u>В</u>	Type CI	Type CII	Type D I	Type D II	Type E I	Type EII	Type Ewr
Length(m) 50,875	7	2,680	8,909	14,790	12,088	7,810	2,870	1,728	(169)
Excavation Cost / Upper half/ m	lf/ m								
Labour Cost	E	13,259	15,562	18,465	19,471	20,062	20,342	23,481	
Machine and Equipment	82	52,656	48,353	52,656	47,469	47,754	48,592	56,100	
Materials	15	19,558	19,118	19,847	6,982	10,115	10,464	10,599	
Subtotal	38	85,473	83,033	896'06	76,922	77,931	79,398	90,180	45,090
Excavation Cost / Lower half/m	ul/m	:							
Labour Cost		1	. 1	,	9.736	10.031	10,171	11,740	
Machine and Equipment			•	ŧ	16,601	16,502	16,645	18,906	
Materials		•			3,244	3,259	3,303	7,428	
Subtotal		•	1	1	29,581	29,792	30,119	38,074	19,037
Steel Support			1	9,451	16,539	21,399	36.392	36,604	
Rockbolts	7	4,344	7,334	9,167	17,744	18,005	18,005	22,513	
Shotcrete	4,	5.479	8,863	689.6	12,619	15,335	15,543	19,427	10,653
Welded net		1		•	1,920	2,368	2,399	2,414	
Sheeting				1	28,731	35,434	35,893	36,123	
Lin.Inv.cut		2,978	2,978	2,978	3,343	3,343	3,717	3.717	
Total(Excavation Works)	8	98,274	102,208	122,253	187,399	203,607	221,466	249,052	74,780
Lining.Inv.	Ä	14,255	14,255	14,255	17,743	17,743	21,333	21,333	
Lining-Arc.	w.	34,177	32,574	31,018	34,929	34,929	41,058	41,058	
Reinfor-bar @60kg/m3			1	.1	ı	17,304	20,825	20,825	
Water Proof		•		•			•	44,800	
Total (Lining Works)	*	48,432	46,829	45,273	\$2,672	9/6'69	83,216	128,016	
Unit Cost of Type	14	146,706	149,037	167,526	240,071	273,583	304,682	377,068	74,780
	=.								

9.3 Economic Evaluation

(1) 4 Types of Project Benefits

There are 4 types of benefits to be realized as a result of project implementation of which the foremost is agricultural benefit.

The water to be newly available after the project is completed will be used for an expansion of irrigated area in the study area, which will increase agricultural production. The increased agricultural production is eventually converted to economic benefit. Secondly, a part of the newly available water will be destined for urban water use. This urban water, which is used in households, industry and tourism is converted to economic benefit. Thirdly, the newly available water will be used for electricity generation. This newly generated electricity is used for domestic, industrial and agricultural purposes. It is converted to economic benefit. Lastly, the project is going to substantially increase the stored water level of the Sirikit Dam reservoirs. It means that regulating capacity of the Dam in time of flood will go up. That is to say, the project will contribute to the mitigation and control of floods. In economic terms the project will reduce flood damage to crops, houses and infrastructure. This reduction of flood damage is economic benefit.

Out of these 4 types of benefits, the first three were quantitatively evaluated. The last one was excluded from quantitative evaluation due to a lack of immediately available data and information.

(2) Proposed Allocation of Water

(a) Water Allocation for Irrigation

The total volume of water to be newly available by the project is estimated at 2,400 MCM per annum. Out of it, 600 MCM will be allocated for urban water use. And the remaining 1,800 MCM will be destined for irrigating the farm land of the Chao Phraya Basin. Regarding the allocation of this 1,800 MCM for various crops and fish culture, three alternatives are proposed.

In Plan A, taking account of the profitability, the existing cropped/cultured

area, water requirements per ha and market trend, this volume of water was allocated for upland crops comprised of maize, soybean, peanut and sugar cane, orchards including mango and pomelo, vegetables such as shallot, onion and garlic and inland fisheries, i.e. the culture of fish and prawn in the manner as shown in Table 9.3.1(1). Rice was excluded from consideration in compliance to the recent governmental policy of the restructuring of agricultural land use towards increased diversification of production, using rice growing land for other crops. The total area to be newly irrigated/used will come to 270,000 ha. Area-wise, 1,647 MCM will be allotted for Chao Phraya Delta area to irrigate 247,000 ha, and the balance of 153 MCM for the Phitsanulok area to irrigate 23,000 ha.

In Plan B, a part of the newly available water will be used for the second rice, taking into consideration a comparatively high productivity of the crop and a traditional preference for the growing of the crop. In total 910 MCM will be allocated to irrigate 91,000 ha of dry paddy fields. Area-wise, the Chao Phraya Delta and Phitsanulok areas will get 850 MCM and 60 MCM for the irrigation of 85,000 ha and 6,000 ha respectively. By so doing, the cropping intensity of 40% will be attained for the crop in both areas. The balance of 890 MCM will be used for upland crops, vegetables, orchards and fisheries, covering 133,000 ha in the manner as proposed in Plan A. (Refer to Table 9.3.2(1).) The total area to be newly irrigated Jused will come to 224,000 ha.

In Plan C, a part of the newly available water will be used for the irrigation of the left bank area of the Nan River which was to be irrigated under the Phitsanulok Project Stage II, but left unirrigated. 240 MCM will be allotted for supplementary irrigation of 120,000 ha of rainfed wet paddy fields. In addition, 120 MCM will be used for the irrigation of 12,000 ha of dry paddy fields in the same area. Besides, 250 MCM will be earmarked for the irrigation of 25,000 ha of the dry paddy fields in the Chao Phraya Delta area. In total 610 MCM will be used for the irrigation of 157,000 ha of wet and dry paddy fields. The balance of 1,190 MCM will be used for the upland crops, vegetables, fruit trees and fish, covering 178,000 ha in the manner as proposed in Plan A. (Refer to Table 9.3.3(1).) The total area to be newly irrigated/used will come to 335,000 ha.

irrigation and fish culture. The recommended types of crops are upland crops comprised of maize, soybean and peanut, orchards and vegetables. The allocations of area for these crops and fisheries are shown in Table 9.3.1(2). The total annual water requirements work out to around 200 MCM.

(b) Water Allocation for Urban Water and Water for Power Generation

It is estimated that the water amounting to 1,200 MCM will be additionally required per annum to cater for the urban water needs of the Chao Phraya Basin in 2016. It is assumed that this volume of water will be met by the project. In the dry season, 600 MCM will be earmarked for this purpose out of 2,400 MCM. For the electric power generation, 2,000 MCM will be newly available per annum.

(3) Methodology for Estimation of Economic Benefits and Cost

(a) Estimation of Economic Benefits

In arriving at agricultural benefit, the volume of water to be newly available for irrigation will be converted to cropped area for each of the crops concerned through crop-wise requirements of water per ha. Yields per ha and economic price per kg are estimated by crop. The economic price is derived from the financial price. When the former is multiplied by the latter, one will get economic gross benefit per ha. Economic input cost per ha is estimated by crop. When one subtracts economic input cost per ha from economic gross benefit per ha, one will get economic net benefit per ha. Finally, cropped area is multiplied by economic net benefit per ha by crop. Thus, one will get economic net benefit for each crop. It is added together to arrive at agricultural benefit. It is to be noted that water requirements per ha, yields per ha, economic price and economic input cost per ha for various crops/fish are all essentially based on the existing conditions especially in the Chao Phraya Basin.

Also, it might be necessary for the Project Area to estimate the agricultural benefit in the without and with cases separately because yields per ha, economic input cost per ha, etc. could be different in the two cases. The study is now at the conceptual planning stage. Therefore, one could be unaffordable to delve into an indepth theoretical estimations and assumptions. It would be more important to

It is expected to take some time for the farmers to be accustomed to the irrigated farming. It is therefore assumed that the realization of the benefits after the project is implemented will be 60% in the first year, 80% in the second year and 100% from the third year onward for the area other than the Phitsanulok Stage II area. Regarding the latter area, since it will be newly developed, the realization of the benefits after the project implementation is assumed to be 20% in the 1st year, 40% in the 2nd year, 60% in the 3rd year, 80% in the 4th year and 100% from the 5th year onward.

The incremental volume of water allocated for urban water use will be converted to economic benefit through the opportunity cost of the unit volume of urban water. The opportunity cost of the unit volume of urban water was estimated based on the cost of ground water in the Western Water Supply Project.

In arriving at the economic benefit of electricity generation, the incremental volume of water will be converted to the volume of electricity to be generated through water requirement to generate unit volume of electricity. This volume of electricity will be converted to economic benefit through the opportunity cost of the unit volume of electricity. The opportunity cost of the unit volume of water is the price of power paid by the Electric Generating Authority of Thailand to the private sector.

(b) Estimation of Economic Cost

To convert capital cost to economic one, the conversion factor was estimated and applied for each of the capital cost items. Then, the capital cost for each item worked out in this way was added together. The annual operation and maintenance cost (O & M cost) was assumed to be 0.5% of the capital cost. To convert O & M cost to economic one, the standard conversion factor of 0.92 was used.

On-farm cost is considered in calculating benefits, since it is included in the economic input cost. Replacement cost is not taken into account because the facilities to be constructed are mostly civil engineering structures except some gate-

related structures.

(4) Results of Estimation of Benefits and Cost and Economic Analysis

(a) Results of Estimation of Benefits and Cost

Plan A

Unit: baht million

Item	Annual Economic Benefit	Economic Capital Cost	Economic O/M Cost	
Agriculture	6,261		<u> </u>	
Urban Water	4,024	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	
Power Generation	328	-	-	
Total	10,613	40,558	219	

As shown in the above table, the economic cost totaling Baht 40,558 million will be invested to implement the project and the economic cost of Baht 219 million will be annually incurred to operate and maintain the facilities. As a result, the project is estimated to generate the economic benefit amounting to Baht 10,613 million every year.

Plan B

Unit: baht million

Item	Annual Economic Benefit	Economic Capital Cost	Economic O/M Cost	
Agriculture	4,312	•		
Urban Water	4,024	-		
Power Generation	328	-	-	
Total	8,664	40,558	219	

Agricultural benefit is lower than in Plan A. It is because the cultivation of the second rice is proposed in this alternative and it requires more water per ha than most of other crops and it is not efficient in terms of productivity per unit volume of water used.

Plan C Unit: baht million

Item	Annual Economic Benefit	Economic Capital Cost	Economic O/M Cost	
Agriculture	5,435	-		
Urban Water	4,024		-	
Power Generation	328	•	-	
Total	9,787	47,420	256	

The level of agricultural benefit is between Plan A and Plan B. It is because no water is allocated for the dry paddy in Plan A and less water is allocated for the dry paddy in Plan C than in Plan B.

(b) Results of Economic Analysis

In making economic analysis, it was assumed that the project implementation period will be 8 years and that the progress rates of works will be 5% in the 1st year, 10% in 2nd year, 15% in the 3rd to 7th year and 10% in the 8th year. Opportunity cost of capital was assumed to be 12%. The results of economic analysis are shown below by alternative:

Alternative	NPV (million Baht)	B/C	EIRR (%)
A	9,391	1,38	15.1
В	3,260	1.13	13.2
С	2,246	1.08	12.7

Table 9.3.1(1) Estimation of Benefits for Plan A

- A. Plan A
- 1. Agricultural Benefit (Annual)
- (1) Chao Phraya Basin

a) Relationship between Area to be Newly Irrigated and Water Requirements

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)
	Α	В	C=AxB/1E6
1. Upland Crops			
Maize	70,000	4,000	280
Soybean	60,000	5,000	300
Peanut	20,000	4,000	80
Sugar Cane	40,000	7,000	280
Sub-Total	190,000		940
2. Orchards	40,000	11,000	440
3. Vegetables	10,000	6,000	60
4 Fish	30,000	12,000	360
Total	270,000		1,800

Source: JICA

b) Economic Net Benefit per ha

Crops/Fish	Yields per ha (kg/ha)	Financial Price (baht/kg)	Economic Price (baht/kg)	Economic Gross Benefit per ha (baht/ha)
	A		В	C=AxB
1. Upland Crops				
Maize	3,500	2.9	3.0	10,500
Soybean	2,000	8.0	8.3	16,600
Peanut	1,800	9.1	11.4	20,520
Sugar Cane	43,300	0.44	0.46	19,918
Sub-Total				
2. Orchards	5,000	15.0	16,5	82,500
3. Vegetables	10,000	8.0	9.1	91,000
4. Fish	4,000	25.0	27.0	108,000
Total				

Crops/Fish	Economic Input Cost per ha (baht/ha)	Economic Net Benefit per ha (baht/ha)
entre de la companya	D	E=C-D
1. Upland Crops		4 14 15 1
Maize	6,195	4,305
Soybean	7,624	8,976
Peanut	9,410	11,110
Sugar Cane	12,078	7,840
Sub-Total		
2. Orchards	37,120	45,380
3. Vegetables	33,600	57,400
4. Fish	47,250	60,750
Total		

Table 9.3.1(2) Estimation of Benefits for Plan A

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)	
	A	В	C=AxB/1E6	
1. Upland Crops			Home to the state of	
Maize	70,000	4,305	301	
Soybean	60,000	8,976	539	
Peanut	20,000	11,110	222	
Sugar Cane	40,000	7,840	314	
Sub-Total	190,000		1,376	
2. Orchards	40,000	45,380	1,815	
3. Vegetables	10,000	57,400	574	
4. Fish	30,000	60,750	1,823	
Total	270,000		5,588	

Source: JICA

(2) Project Area

a) Relationship between Area to be Newly Irrigated and Water Requirements

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)
	A	В	C=AxB/1E6
1. Upland Crops			
Maize	10,000	4,000	40
Soybean	6,000	5,000	30
Peanut	6,000	4,000	24
Sub-Total	22,000		94
2. Orchards	6,000	11,000	66
3. Vegetables	2,000	6,000	12
4. Fish	2,000	12,000	24
Total	32,000		196

Source: JICA

b) Economic Net Benefit per ha

Crops/Fish	Yields per ha (kg/ha)	Economic Price (baht/kg)	Economic Gross Benefit per ha (baht/ha)	Economic Input Cost per ha (baht/ha)	Economic Net Benefit per ha (baht/ha)
	A	В	C=AxB	D	E=C-D
1. Upland Crops		1, 24		1. 1. 1	A 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Maize	3,500	3.0	10,500	6,195	4,305
Soybean	2,000	8.3	16,600	7,624	8,976
Peanut	1,800	11.4	20,520	9,410	11,110
Sub-Total		1			
2. Orchards	5,000	16.5	82,500	37,120	45,380
3. Vegetables	10,000	9.1	91,000	33,600	57,400
4. Fish	4,000	27.0	108,000	47,250	60,750
Total		1 3.1			1. 1. 1. 1. 1. 1.

Table 9.3.1(3) Estimation of Benefits for Plan A

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)
1. Upland Crops			
Maize	10,000	4,305	43
Soybean	6,000	8,976	54
Peanut	6,000	11,110	67
Sub-Total	22,000		164
2. Orchards	6,000	45,380	272
3. Vegetables	2,000	57,400	115
4. Fish	2,000	60,750	122
Total	32,000		673

Source: JICA

$$(1) + (2) = 5,588 + 673 = 6,261$$
 (baht million)

Note: It will take some time for farmers to be accustomed to the irrigated farming. So, it is assumed that the realization rate of the benefits after the project is implemented will be 60% in the first year, 80% in the second year and 100% from the third year onward.

2. Benefit of More Urban Water (Annual)

Water to be Newly Available (MCM)			Economic Benefit (baht million)
٨	В	C	D=AxBxC
1,200	4.79	0.7	4,024

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

3. Benefit of More Electricity (Annual)

Water to be Newly Available (MCM)	Water Required to Generate 1 kwh of Electricity (m3/kwh)	Opportunity Cost of Electricity Generation (baht/kwh)	Transmission Loss Coefficient	Economic Benefit (baht million)
2130 A 0.043	В	C	D	E=A/BxCxD
2,000	5.8	1.12	0.85	328

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

1. + 2. + 3. = 6,261 + 4,024 + 328 = 10,613 (baht million)

Table 9.3.2(1) Estimation of Benefits for Plan B

- B. Plan B
- 1. Agricultural Benefit (Annual)
- (1) Chao Phraya Basin

a) Relationship between Area to be Newly Irrigated and Water Requirements

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)
	A	В	C=AxB/1E6
1. Dry Paddy	91,000	10,000	910
2. Upland Crops			
Maize	35,000	4,000	140
Soybean	30,000	5,000	150
Peanut	9,000	4,000	36
Sugar Cane	20,000	7,000	140
Sub-Total	94,000		466
3. Orchards	20,000	11,000	220
4. Vegetables	4,000	6,000	24
5 Fish	15,000	12,000	180
Total	224,000		1,800

Source: JICA

b) Economic Net Benefit per ha

Crops/Fish	Yields per ha (kg/ha)	Financial Price (baht/kg)	Economic Price (baht/kg)	Economic Gross Benefit per ha (baht/ha)	Economic Input Cost per ha (baht/ha)	Economic Net Benefit per ha (baht/ha)
	A		В	C=AxB	D	E=C-D
1. Dry Paddy	4,500	4.0	4.3	19,350	9,320	10,030
2. Upland Crops						.*
Maize	3,500	2.9	3.0	10,500	6,195	4,305
Soybean	2,000	8.0	8.3	16,600	7,624	8,976
Peanut	1,800	9.1	11.4	20,520	9,410	11,110
Sugar Cane	43,300	0.44	0.46	19,918	12,078	7,840
Sub-Total			1.2 : 1	1, 1, 1, 1, 1		10000
3. Orchards	5,000	15.0	16.5	82,500	37,120	45,380
4. Vegetables	10,000	8.0	9.1	91,000	33,600	57,400
5. Fish	4,000	25.0	27.0	108,000	47,250	60,750
Total						

Table 9.3.2(2) Estimation of Benefits for Plan B

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)	
	A	В	C=AxB/1E6	
1. Dry Paddy	91,000	10,030	913	
2. Upland Crops	0.00	* .		
Maize	35,000	4,305	151	
Soybean	30,000	8,976	269	
Peanut	9,000	11,110	100	
Sugar Cane	20,000	7,840	157	
Sub-Total	94,000		677	
3. Orchards	20,000	45,380	908	
4. Vegetables	4,000	57,400	230	
5. Fish	15,000	60,750	911	
Total	224,000		3,639	

Source: JICA

(2) Project Area

Relationship between Area to be Newly Irrigated and Water Requirements

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)	
and so the second	A	В	C=AxB/1E6	
1. Upland Crops	Sqt 2 8 Table			
Maize	10,000	4,000	40	
Soybean	6,000	5,000	30	
Peanut	6,000	4,000	24	
Sub-Total	22,000		94	
2. Orchards	6,000	11,000	66	
3. Vegetables	2,000	6,000	12	
4. Fish	2,000	12,000	24	
Total	32,000		196	

Source: JICA

b) Economic Net Benefit per ha

o) Economic Net	Denem per na				
Crops/Fish	Yields per ha (kg/ha)	Economic Price (baht/kg)	Economic Gross Benefit per ha (baht/ha)	Economic Input Cost per ha (baht/ha)	Economic Net Benefit per ha (baht/ha)
	A	15 B	C=AxB	D	E=C-D
1. Upland Crops					
Maize	3,500	3.0	10,500	6,195	4,305
Soybean	2,000	8.3	16,600	7,624	8,976
Peanut	1,800	11.4	20,520	9,410	11,110
Sub-Total					
2. Orchards	5,000	16.5	82,500	37,120	45,380
3. Vegetables	10,000	9.1	91,000	33,600	57,400
4. Fish	4,000	27.0	108,000	47,250	60,750
Total				ini ' D	C1/ 1

Table 9.3.2(3) Estimation of Benefits for Plan B

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)	
1. Upland Crops				
Maize	10,000	4,305	43	
Soybean	6,000	8,976	54	
Peanut	6,000	11,110	67	
Sub-Total	22,000		164	
2. Orchards	6,000	45,380	272	
3. Vegetables	2,000	57,400	115	
4. Fish	2,000	60,750	122	
Total	32,000		673	

Source: JICA

$$(1) + (2) = 3,639 + 673 = 4,312$$
 (baht million)

Note: It will take some time for farmers to be accustomed to the irrigated farming. So, it is assumed that the realization rate of the benefits after the project is implemented will be 60% in the first year, 80% in the second year and 100% from the third year onward.

2. Benefit of More Urban Water (Annual)

Water to be Newly Available (MCM)			Economic Benefit (baht million)	
A	В	C	D=AxBxC	
1,200	4.79	0.7	4.024	

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

3. Benefit of More Electricity (Annual)

Water to be Newly Available (MCM)	Water Required to Generate 1 kwh of Electricity (m3/kwh)	Opportunity Cost of Electricity Generation (baht/kwh)	Transmission Loss Coefficient	Economic Benefit (baht million)
A	В	C	D	E=A/BxCxD
2,000	5.8	1.12	0.85	328

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

1. + 2. + 3. = 4,312 + 4,024 + 328 = 8,664 (baht million)

Estimation of Benefits for Plan C Table 9.3.3.(1)

- C. Plan C
- Agricultural Benefit (Annual) 1.
- Chao Phraya Basin (1)

Relationship between Area to be Newly Irrigated and Water Requirements a)

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)
	A	В	C=AxB/1E6
1. Wet Paddy	120,000	2,000	240
2. Dry Paddy	37,000	10,000	370
3. Upland Crops			
Maize	46,000	4,000	184
Soybean	39,000	5,000	195
Peanut	13,000	4,000	52
Sugar Cane	26,000	7,000	182
Sub-Total	124,000		613
4. Orchards	26,000	11,000	286
5. Vegetables	8,000	6,000	48
6 Fish	20,000	12,000	240
Total	335,000		1,797

Source: JICA

b) Economic Net Benefit per ha

Crops/Fish	Yields per	Financial	Economic	Economic Gross	Economic	Economic
	ha (kg/ha)	Price	Price	Benefit per ha	Input Cost	Net Benefit
		(baht/kg)	(baht/kg)	(baht/ha)	per ha	per ha
					(baht/ha)	(baht/ha)
	Α	:	В	C=AxB	D	E=C-D
1. Wet Paddy	1,800*	3.7	4.0	7,200	1,860*	5,340
2. Dry Paddy	4,500	4.0	4.3	19,350	9,320	10,030
3. Upland Crops			_	11.00		
Maize	3,500	2.9	3.0	10,500	6,195	4,305
Soybean	2,000	8.0	8.3	16,600	7,624	8,976
Peanut	1,800	9.1	11.4	20,520	9,410	11,110
Sugar Cane	43,300	0.44	0.46	19,918	12,078	7,840
Sub-Total		gar da sila	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4. Orchards	5,000	15.0	16.5	82,500	37,120	45,380
5. Vegetables	10,000	8.0	9.1	91,000	33,600	57,400
6. Fish	4,000	25.0	27.0	108,000	47,250	60,750
Total						

Note: *=(Irrigated) - (Rainfed)
Source: Agricultural Statistics of Thailand Crop Year 1994/95, Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

Table 9.3.3(2) Estimation of Benefits for Plan C

c) Economic Net Benefit

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)
:	A	В	C=AxB/1E6
1. Wet Paddy	120,000	5,340	641
2. Dry Paddy	37,000	10,030	371
3. Upland Crops			
Maize	46,000	4,305	198
Soybean	39,000	8,976	350
Peanut	13,000	11,110	144
Sugar Cane	26,000	7,840	204
Sub-Total	124,000	41.084	896
4. Orchards	26,000	45,380	1,180
5. Vegetables	8,000	57,400	459
6. Fish	20,000	60,750	1,215
Total	335,000		4,762

Source: JICA

(2) Project Area

a) Relationship between Area to be Newly Irrigated and Water Requirements

Crops/Fish	Area to be Newly Irrigated (ha)	Water Requirements per ha (m3/ha)	Water Requirements (MCM)
	A	В	C=AxB/1E6
1. Upland Crops			
Maize	10,000	4,000	40
Soybean	6,000	5,000	30
Peanut	6,000	4,000	24
Sub-Total	22,000		94
2. Orchards	6,000	11,000	66
3. Vegetables	2,000	6,000	12
4. Fish	2,000	12,000	24
Total	32,000		196

Source: JICA

b) Economic Net Benefit per ba

Crops/Fish	Yields per ha	Economic	Economic Gross	Economic	Economic Net
Cropsitisti	(kg/ha)	Price	Benefit per ha	Input Cost per	Benefit per ha
	("8"")	(baht/kg)	(baht/ha)	ha (baht/ha)	(baht/ha)
	A	В	C=AxB	D	E=C-D
1. Upland Crops	e di e				14.7
Maize	3,500	3.0	10,500	6,195	4,305
Soybean	2,000	8.3	16,600	7,624	8,976
Peanut	1,800	11.4	20,520	9,410	11,110
Sub-Total				44 193	
2. Orchards	5,000	16.5	82,500	37,120	45,380
 Vegetables 	10,000	9.1	91,000	33,600	57,400
4. Fish	4,000	27.0	108,000	47,250	60,750
Total	•				44.74

Table 9.3.3(3) Estimation of Benefits for Plan C

Crops/Fish	Area to be Newly Irrigated (ha)	Economic Net Benefit per ha (baht/ha)	Economic Net Benefit (baht million)
1. Upland Crops			
Maize	10,000	4,305	43
Soybean	6,000	8,976	54
Peanut	6,000	11,110	67
Sub-Total	22,000	·	164
2. Orchards	6,000	45,380	272
3. Vegetables	2,000	57,400	115
4. Fish	2,000	60,750	122
Total	32,000		673

Source: JICA

$$(1) + (2) = 4,762 + 673 = 5,435$$
 (baht million)

Note: It will take some time for farmers to be accustomed to the irrigated farming. So, it is assumed that the realization rate of the benefits after the project is implemented will be 60% in the first year, 80% in the second year and 100% from the third year onward for the area other than the Phitsanulok Stage II area. Regarding the Phitsanulok Stage II area, since it will be newly developed the realization rate of the benefits after project implementation is assumed to be 20% in the first year, 40% in the second year, 60% in the third year, 80% in the fourth year and 100% from the fifth year onward.

2. Benefit of More Urban Water (Annual)

1	Water to be Newly	Opportunity Cost of Urban	Transmission Loss	Economic Benefit (baht	
	Available (MCM) Water Production (baht/m3)		Coefficient	million)	
	A	В	С	D=AxBxC	
	1.200	4.79	0.7	4,024	

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

3. Benefit of More Electricity (Annual)

Water to be Newly Available (MCM)	Water Required to Generate 1 kwh of Electricity (m3/kwh)	Opportunity Cost of Electricity Generation (baht/kwh)	Transmission Loss Coefficient	Economic Benefit (baht million)
A	В	C	D	E=A/BxCxD
2,000	5.8	1.12	0.85	328

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

1. + 2. + 3. = 5,435 + 4,024 + 328 = 9,787 (baht million)

Table 9.3.4(1) Estimation of Cost

A. Plan A

1. Estimation of Economic Capital Cost

Unit: baht million

			Ont. Oan unaton
Item	Financial Capital	Conversion Factor	Economic Capital
	Cost		Cost
1) Construction Cost	40,708	0.85	34,602
2) Engineering Fee	3,257	0.85	2,768
3) Administration Fee	2,035	0.94	1,913
4) Land Acquisition	1,000	0.94	940
5) O/M Equipment	106	0.85	90
6) Environmental Mitigation	500	0.49	245
Total	47,606		40,558

Source: JICA

2. Estimation of Economic O & M Cost

Unit: baht million

Financial Capital Cost	Financial O & M Cost	Economic O & M Cost
<u> </u>	B=Ax0.005	C=Bx0.92
47,606	238	219

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

- 3. Implementation Period and Progress Rates of Works
- (1) Implementation Period: 8 years
- (2) Progress Rates of Works

1st year	5%
2nd year	10%
3rd year	15%
4th year	15%
5th year	15%
6th year	15%
7th year	15%
8th year	10%

B. Plan B

Same as Plan A

Table 9.3.4(2) Estimation of Cost

C. Plan C

1. Estimation of Economic Capital Cost

Unit: baht million

Item	Financial Capital	Conversion Factor	Economic Capital
	Cost	ļ 	Cost
1) Construction Cost	47,608	0.85	40,467
2) Engineering Fee	3,809	0.85	3,238
3) Administration Fee	2,380	0.94	2,237
4) Land Acquisition	1,200	0.94	1,128
5) O/M Equipment	124	0.85	105
6) Environmental Mitigation	500	0.49	245
Total	55,621		47,420

Source: JICA

2. Estimation of Economic O & M Cost

Unit: baht million

Financial Capital Cost	Financial O & M Cost	Economic O & M Cost
Λ	B=Ax0.005	C=Bx0.92
55,621	278	256

Source: Conceptual Planning Report of Kok Ing Nan Water Diversion Project and JICA

- 3. Implementation Period and Progress Rates of Works
- (1) Implementation Period: 8 years
- (2) Progress Rates of Works

1st year	5%
2nd year	10%
3rd year	15%
4th year	15%
5th year	15%
6th year	15%
7th year	15%
8th year	10%

Table 9.3.5(1) Cost Benefit Streams

A. Plan A

Legend: CC=Capital Cost, OM=O & M Cost, CS=Cost; BF=Benefits; CF= Cash Flow (=BF-CS)

Nth Year	cc	ОМ	CS	BF	: baht million CF
Ivui i cal	2,028	0 0	2,028	0	-2,028
2	4,056	0	4,056	ŏ	-4,056
3	6,084	0	6,084	0	-6,084
4	6,084	0	6,084	0	-6,084
5	6,084	0	6,084	0	-6,084
6	6,084	0	6,084	1 0	-6,084
7	6,084	0	6,084	†	-6,084
8	4,056	0	4,056	1 - 6 1	-4,056
9	7,000	219	219	8,109	7,890
10		219	219	9,361	9,142
11		219	219	10,613	10,394
12		219	219	10,613	10,394
13		219	219	10,613	10,394
14		219	219	10,613	10,394
15		219	219	10,613	10,394
16	·	219	219	10,613	10,394
17	· · · · · · · · · · · · · · · · · · ·	219	219	10,613	10,394
18		219	219	10,613	10,394
19		219	219	10,613	10,394
20		219	219	10,613	10,394
21		219	219	10,613	10,394
22		219	219	10,613	10,394
23		219	219	10,613	10,394
24		219	219	10,613	10,394
25		219	219	10,613	10,394
26		219	219	10,613	10,394
27		219	219	10,613	10,394
28		219	219	10,613	10,394
29		219	219	10,613	10,394
30		219	219	10,613	10,394
31		219	219	10,613	10,394
32		219	219	10,613	10,394
33		219	219	10,613	10,394
34		219	219	10,613	10,394
35		219	219	10,613	10,394
36		219	219	10,613	10,394
37		219	219	10,613	10,394
38		219	219	10,613	10,394
39		219	219	10,613	10,394
40		219	219	10,613	10,394
41		219	219	10,613	10,394
42		219	219	10,613	10,394
43		219	219	10,613	10,394
44		219	219	10,613	10,394
45		219	219	10,613	10,394
46		219	219	10,613	10,394
47		219	219	10,613	10,394
48	· · · · · · · · · · · · · · · · · · ·	219	219	10,613	10,394
49		219	219	10,613	10,394
50		219	219	10,613	10,394
51		219	219	10,613	
52		219	219	10,613	10,394
53					10,394
54		219	219	10,613	10,394
55			219	10,613	10,394
		219	219	10,613	10,394
56		219	219	10,613	10,394
57 58	-	219	219	10,613	10,394
38 .	1	710	710	10614	10.201

58 Source: JICA

Table 9.3.5(2) Cost Benefit Streams

B. Plan B

Legend: CC=Capital Cost; OM=O & M Cost; CS=Cost; BF=Benefits; CF= Cash Flow (=BF-CS)

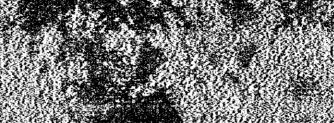
Unit: baht million

Nth Year	CC	OM	CS	BF	CF
1	2,028	0	2,028	0	-2,028
2	4,056	0	4,056	0	-4,056
3	6.084	0	6,084	0	-6,084
4	6,084	0	6,084	0	-6,084
5	6,084	0	6,084	0	-6,084
6	6,084	0	6,084	0	-6,084
$\frac{3}{7}$	6,084		6,084	0	-6,084
8	4,056	0	4,056	0	-4,056
9	- 1,050	219	219	8,664	6,720
10	200	219	219	8,664	7,583
11		219	219	8,664	8,445
12		219	219	8,664	8,445
13		219	219	8,664	8,445
14		219	219	8,664	8,445
15		219	219	8,664	8,445
16		219	219	8,664	8,445
17		219	219	8,664	8,445
18		219	219	8,664	8,445
19		219	219	8,664	8,445
20		219	219	8,664	8,445
21		219	219	8,664	8,445
22		219	219	8,664	8,445
23		219	219	8,664	8,445
24		219	219	8,664	8,445
25		219	219	8,664	8,445
26		219	219	8,664	8,445
27		219	219	8,664	8,445
28	J.,	219	219	8,664	8,445
29		219	219	8,664	8,445
30		219	219	8,664	8,445
31		219	219	8,664	8,445
32		219	219	8,664	8,445
33		219	219	8,664	8,445
34		219	219	8,664	8,445
35		219	219	8,664	8,445
36		219	219	8,664	8,445
37		219	219	8,664	8,445
		219	219	8,664	8,445
38		219	219	8,664	8,445
40		219	219	8,664	8,445
41		219	219	8,664	8,445
42		219	219	8,664	8,445
43		219	219	8,664	8,445
44		219	219	8,664	8,445
45		219	219	8,664	8,445
46		219	219	8,664	8,445
47		219	219	8,664	8,445
48	 	219	219	8,664	8,445
49		219	219	8,664	8,445
		219	219	8,664	8,445
		219	219	8,664	8,445
51		219	219	8,664	8,445
52	-e.	219	219	8,664	8,445
		219	219	8,664	8,445
54		219	219	8,664	8,445
55		219	219	8,664	8,445
56			219	8,664	8,445
57		219	417	0,007	8,445

Source: JICA

Table 9.3.5(3) Cost Benefit Streams

C. Plan C


Legend: CC=Capital Cost; OM=O & M Cost; CS=Cost; BF=Benefits; CF= Cash Flow (=BF-CS)

Nth Year	CC	OM	CS	BF	: baht million CF
1	2,371	0 0	2,371		
	4,742			0	-2,371
$\frac{2}{3}$	7,113	0	4,742	0	-4,742
			7,113	0	-7,113
4	7,113	0	7,113	0	-7,113
> 5	7,113	0	7,113	0	-7,113
6	7,113	0	7,113	0	-7,113
7 :	7,113	0	7,113	0	-7,113
8	4,742	0	4,742	0	-4,742
9	<u> </u>	256	256	7,309	7,053
10		256	256	8,396	8,140
- 11	···	256	256	9,483	9,227
12		256	256	9,635	9,379
13		256	256	9,787	9,531
14	2.50	256	256	9,787	9,531
15		256	256	9,787	9,531
16		256	256	9,787	9,531
17		256	256	9,787	9,531
. 18		256	256	9,787	9,531
19	······································	256	256	9,787	9,531
20		256	256	9,787	9,531
21		256	256	9,787	9,531
22		256	256	9,787	9,531
23		256	256	9,787	9,531
24		256	256	9,787	9,531
25	· · · · · · · · · · · · · · · · · · ·	256	256		
26		256		9,787	9,531
27	· ····	256	256	9,787	9,531
28			256	9,787	9,531
29		256	256	9,787	9,531
30		256	256	9,787	9,531
		256	256	9,787	9,531
31		256	256	9,787	9,531
32		256	256	9,787	9,531
33		256	256	9,787	9,531
34		256	256	9,787	9,531
35		256	256	9,787	9,531
36		256	256	9,787	9,531
37		256	256	9,787	9,531
38		256	256	9,787	9,531
39		256	256	9,787	9,531
40		256	256	9,787	9,531
41		256	256	9,787	9,531
42		256	256	9,787	9,531
43		256	256	9,787	9,531
44		256	256	9,787	9,531
45		256	256	9,787	9,531
46	11.	256	256	9,787	9,531
47		256	256	9,787	9,531
48		256	256	9,787	
49		256	256		9,531
50		256	256	9,787	9,531
51				9,787	9,531
		2.70	256	9,787	9,531
52		256	256	9,787	9,531
53		256	256	9,787	9,531
54		256	256	9,787	9,531
55		256	256	9,787	9,531
56		256	256	9,787	9,531
57		256	256	9,787	9,531
58		256	256	9,787	9,531

Source: JICA

	유민 프로그램은 아마 아마 아마 아마 하는 그는 그를 모르는 사람이 되었다.
医骨膜炎 医二十二氏	
	그는 얼마는 말은 마음을 하루다고 말을 했다. 나는 사람은 생활에 있을다는 그는데
	。""我是我们的人,我们就是一个人,我们就是一个人,我们就是这个人,我们就是我们的一个人,我们是一个人。""我们是一个人,我们就是一个人,我们就是一个人,我们就
	그리 프랑 하시고 하고 아마를 하셨습니다. 그리고 말을 모는 말이 하는데 먹을 때
the body and the state of the state of	그는 것 하는 동네 하는 모두나는 모를 가득하게 되었다. 그 하는 사람들이 되는 사람들은 사람들이 되는 것 같습니다.

