4.5 Possibility of Pumping Water Diversion from Lower Ing River

The operation studies of the Sirikit reservoir were made on annual basis employing the criteria to control outflow during dry season in connection with the storage volume available in the reservoir at the end of wet season as indicated below, and with and without pumping water diversion from the lower Ing river. Such results of the study are shown in the following tables.

End of November Storage	Dry Season O	utflow Control
(MCM)	Rate (%)	Volume (MCM)
Storage > 6,000	105	6,300
5,000 < Storage > 6,000	85	5,100
4,000 < Storage > 5,000	70	4,200
3,000 < Storage > 4,000	60	3,600
3,000 > Storage	50	3,000

- For without pumping case
- For with 50 cu.m/sec of pumping case
- For with 100 cu.m/sec of pumping case

Diversion Capacity:Kok-Ing Diversion Channel=125cu.m/sec.Ing-Nan Diversion Channel=125cu.m/sec Table 4.5.1 Annual Operation of Sirikit Reservoir

ŝ

Q

t Reservoir
of Sirikit
Operation
Annual (
Table 4.5.2

B

¢

1

J

Diversion Capacity:Kok-Ing Diversion Channel=125cu.m/sec,Ing-Nan Diversion Channel=125cu.m/sec Pumping Capacity = 50 cu.m/sec

	ł
u.m.	
Q	I
0	l
Ň.	ŀ
1	
- -	Į
ويهو	ļ
' Ö i	
- ăi	
ā	ŀ
2	ł
< 1	
ပ မ	
- 60	
G	
· 2	
-	
81	
- 11	
~	

Wet Dry Total Oution Channel Pump Total Bablics 8=1+7.4 Bablics 9=1 3505 724 4229 1657 2039 351 2390 4258 7649 925 8574 2456 2306 198 2504 7697 5347 976 6523 2394 1921 375 2296 5249 5347 976 6523 2394 1921 375 2296 5249 5347 976 6521 2408 2305 198 5763 586 5343 706 4140 1920 2135 534 2368 5783 5783 508 573 2394 1921 375 5367 567 5735 582 6617 2294 2333 234 2367 6551 565 5733 534 2334 2334 234 5667 5641 771 554 2371 <th></th> <th>·</th> <th>Ĭ</th> <th></th> <th>c</th> <th>Wet</th> <th>, C</th> <th>Version MCM</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		·	Ĭ		c	Wet	, C	Version MCM	2							
3505 724 4229 1637 2039 351 2390 4258 7649 925 8574 2456 2306 198 2504 7697 5347 976 6323 2394 1921 375 2396 5369 5369 5793 728 6521 2408 2303 95 2370 3808 5793 728 6521 2408 2303 95 2394 5783 5793 706 4140 1996 2148 222 2370 3808 5793 508 3576 1722 1735 534 2359 5617 5735 882 6617 2294 2025 334 2359 560 4615 695 5310 1529 2050 461 567 4615 695 5310 1529 2051 234 2365 4517 771 6412 2371 2367 4015	¥	R.	1.1	Dry D		Outflow 4	Channel 5	Pump		Balance 8=1+7-4	Storage 9=12+8	Water 10	Rate	Rate Release	Storage 12	Outfow 13=4+11
7649 925 8574 2456 2306 1921 375 2594 7697 5347 976 6323 2394 1921 375 2296 5249 5793 706 4140 1996 2148 222 2370 3808 5793 706 4140 1996 2148 222 2370 3808 5793 5376 1722 1735 534 2269 5783 5735 882 6617 2294 2203 334 2356 5617 5735 882 6617 2294 2025 334 2359 5667 5735 882 6617 2294 2022 234 2357 6551 6858 717 7572 2844 2332 205 2567 5667 6858 717 7579 2332 2052 2537 6551 5667 4615 695 5310 1529 2020 461 2448 5567 4592 858 5450 1867 2037 239 2270 5541 5641 771 6412 2370 2337 2534 2267 4015 5642 1170 5687 1879 2370 2357 4015 5533 485 1645 2370 2354 4217 5543 663 2321 1271 2254 4287 5343 643 1467 2326 278 <	12	2	3505	724	4229	1637	2039	351	2390	4258	5258	0	85	5100	882	6737
5347 976 6323 2394 1921 375 2296 5249 3434 706 4140 1996 2148 222 2370 3808 5793 728 6521 2408 2303 95 5783 5783 5793 728 6521 2408 2303 95 5370 3808 5735 882 6617 2294 2332 534 2359 5615 6858 717 7575 2844 2332 205 3567 6858 717 7575 2844 2332 205 5567 4615 695 5310 1529 2020 461 2481 5567 4517 1170 5687 1867 2037 2531 5063 5641 711 6412 2370 2364 2466 5567 5641 717 254 2431 5666 5561 5543 4573	19	75	7649	925	8574	2456	2306	198	2504	7697	6660	1919	105	6300	1285	8756
3434 706 4140 1996 2148 222 2370 3808 5793 728 6521 2408 2303 95 2398 5783 3068 508 3576 1722 1735 534 2369 5783 5735 882 6617 2294 2025 334 2359 5800 5735 882 6617 2294 2025 334 2357 6551 6858 717 7575 2844 2025 334 2357 6551 4615 695 5310 1529 2000 461 2481 5066 4517 1170 5687 1867 2087 231 5341 5065 4541 1170 5687 1867 2031 239 2357 6531 4517 1170 5687 1879 2171 254 2441 5541 171 254 2437 2354 2437<	ล	76	5347	976	6323	2394	1921	375	2296	5249	6534	0	105	6300	1210	8694
5793 728 6521 2408 2305 95 534 5368 5783 5783 5783 5783 5783 5783 5783 5783 5615 3616 3615 361	2	F	3434	706	4140	1996	2148	222	2370	3808	5018	0	85	5100	624	7096
3068 508 3576 1722 1735 534 2269 3615 3615 5735 882 6617 2294 2025 334 2359 5800 3615 6858 717 7575 2844 2332 2050 461 2481 5567 6551 6511 5065 5063	61	28	5793	728	6521	2408	2303	. 95	2398	5783	6407	0	105	6300	835	8708
5735 882 6617 2294 2025 334 2359 5800 6858 717 7575 2844 2332 205 2537 6551 6551 4615 695 5310 1529 2020 461 2481 5567 6551 4615 695 5310 1529 2037 2541 2481 5066 5641 771 6412 2370 2031 239 2341 5065 5643 771 6412 2370 2031 239 2341 5065 5641 771 6412 2370 2031 239 2343 5065 5553 485 4078 1945 1982 3357 4015 5367 5584 643 1643 2325 2921 2231 3243 53843 645 1645 1530 1800 421 2324 4483 53843 645 1407 2	키	2	3068	508	3576	1722	1735	534	2269	3615	4450	0	70 -	4200	758	5922
6858 717 7575 2844 2332 205 2537 6551 4615 695 5310 1529 2020 461 2481 5567 4515 695 5310 1529 2087 254 2341 5667 4517 771 6412 2370 2031 239 2270 5541 4517 1170 5687 1879 2171 239 2270 5541 4517 1170 5687 1879 2171 239 2270 5541 5065 3593 485 4078 1945 1982 385 2367 4015 2552 685 3237 1530 1800 421 2231 3243 3843 643 4486 1643 2325 251 3243 3346 605 3921 1407 2296 274 4483 3346 555 5063 211 323 2534 </td <td>2</td> <td>8</td> <td>5735</td> <td>882</td> <td>6617</td> <td>2294</td> <td>2025</td> <td>334</td> <td>2359</td> <td>5800</td> <td>6558</td> <td>0</td> <td>105</td> <td>6300</td> <td>1140</td> <td>8594</td>	2	8	5735	882	6617	2294	2025	334	2359	5800	6558	0	105	6300	1140	8594
4615 695 5310 1529 2020 461 2481 5567 4592 858 5450 1867 2087 254 2341 5066 5641 771 6412 2370 2031 239 2370 5541 5066 5641 771 6412 2370 2031 239 2370 5541 5065 4517 1170 5687 1879 2171 254 2425 5063 3593 485 4078 1945 1982 385 2367 4015 2552 685 3237 1530 1800 421 2243 5063 3543 643 1447 2325 2357 4015 3243 3843 643 1447 2325 2217 3243 4372 3316 605 3921 1407 2296 274 4817 3316 552 4028 1638 2211 323	5	81	6858	717	7575	2844	2332	205	2537	6551	6660	1031	105	6300	1077	9144
4592 858 5450 1867 2087 254 2341 5066 5641 771 6412 2370 2031 239 2370 5541 4517 1170 5687 1879 2171 239 2270 5541 4517 1170 5687 1879 2171 239 2425 5663 3593 485 4078 1945 1982 385 2425 5063 3593 485 4078 1945 1982 385 2367 4015 2552 685 3237 1530 1800 421 2221 3243 3843 643 4486 1643 2325 2921 3243 3316 605 3921 1407 2296 278 2574 4483 3316 552 4028 1638 2211 323 2534 4372 2862 563 318 1538 1700 564<	ន	8	4615	695	5310	1529	2020	461	2481	5567	6644	0	105	6300	1039	7829
5641 771 6412 2370 2031 239 2270 5541 4517 1170 5687 1879 2171 254 2425 5063 4517 1170 5687 1879 2171 254 2425 5063 3593 485 4078 1945 1982 385 2405 5063 2552 685 3237 1530 1800 421 2221 3243 2552 685 3921 1407 2296 278 2517 4817 3316 605 3921 1407 2296 278 2574 4483 3476 552 4028 1638 2211 323 2534 4372 3476 552 564 1413 2094 3940 3940 2555 563 318 1382 1700 564 2491 3940 2743 583 3326 1557 2096 2066<	2	8	4592	858	5450	1867	2087	254	2341	5066	6105	0	105	6300	663	8167
4517 1170 5687 1879 2171 254 5063 3593 485 4078 1945 1982 385 2367 4015 2552 685 3237 1530 1800 421 2221 3243 2552 685 3237 1530 1800 421 2221 3243 3843 643 4486 1645 2325 292 3617 4817 3843 643 4486 1643 2325 292 3617 4817 3845 643 4486 1647 2296 278 2574 4483 3716 552 4028 1638 2211 323 2534 4372 2862 402 3264 1413 2094 397 2491 3940 2862 563 3118 1382 1700 564 3437 2745 583 3326 1587 2096 400 2406 3437 2745 583 33226 15827 2406 3437 </td <td>ង</td> <td>3</td> <td>5641</td> <td>771</td> <td>6412</td> <td>2370</td> <td>2031</td> <td>239</td> <td>2270</td> <td>5541</td> <td>6204</td> <td>0</td> <td>105</td> <td>6300</td> <td>675</td> <td>8670</td>	ង	3	5641	771	6412	2370	2031	239	2270	5541	6204	0	105	6300	675	8670
3593 485 4078 1945 1982 385 2367 4015 2552 685 3237 1530 1800 421 2231 343 3843 643 4486 1643 2325 292 2617 4817 3843 643 4486 1643 2325 292 2617 4817 3316 605 3921 1407 2296 278 2574 4483 3316 605 3921 1407 2296 278 2574 4483 3476 552 4028 1638 2211 323 2534 4372 2862 402 3326 1413 2094 397 2491 3940 2555 563 3118 1382 1700 564 3437 3437 2745 583 3326 1557 2006 400 2406 3437	5	8	4517	1170	5687	1879	2171	254	2425	5063	5738	0	85	5100	1808	6269
2552 685 3237 1530 1800 421 2221 3243 3843 643 4486 1645 2325 292 2617 4817 3846 605 3921 1407 2296 278 2574 4483 3316 605 3921 1407 2296 278 2574 4483 3476 552 4028 1638 2211 323 2534 4372 2862 402 3264 1413 2094 397 2491 3940 2555 563 3118 1382 1700 564 3437 2745 583 3326 1557 2006 400 2364 3437 2745 583 3326 1587 2006 400 2406 3592 2745 583 3326 1557 2406 3592 3437	19	8	3593	485	4078	1945	1982	385	2367	4015	5823	0	85	5100	1208	7045
3843 643 4486 1643 2325 292 2617 4817 3316 605 3921 1407 2296 278 2574 4813 3476 552 4028 1638 2211 323 2534 4483 2862 402 3264 1413 2094 397 2491 3940 2862 563 3118 1382 1700 564 2461 3437 2745 583 3326 1587 2006 400 2406 3437	2	8	2552	685	3237	1530	1800	421	2221	3243	4451	0	70	4200	936	5730
3316 605 3921 1407 2296 278 2574 4483 3476 552 4028 1638 2211 323 2534 4372 2862 402 3264 1413 2094 397 2491 3940 2862 402 3264 1413 2094 397 2491 3940 2555 563 3118 1382 1700 564 2264 3437 2745 583 3326 1587 2006 400 2466 3437	2	<u></u>	3843	643	4486	1643	2325	292	2617	4817	5753	0	85	5100	1296	6743
3476 552 4028 1638 2211 323 2534 4372 2862 402 3264 1413 2094 397 2491 3940 2862 402 3264 1413 2094 397 2491 3940 2555 563 3118 1382 1700 564 2456 3437 2745 583 3326 1557 2006 400 2406 3592	2	8	3316	605	3921	1407	2296	278	2574	4483	5779	0	85	5100	1284	6507
2862 402 3264 1413 2094 397 2491 3940 2555 563 3118 1382 1700 564 2457 3437 2745 583 3326 1557 2006 400 2406 3592	61	8	3476	552	4028	1638	2211	323	2534	4372	5656	0	85	5100	1108	6738
2555 563 3118 1382 1700 564 2264 3437 2745 583 3326 1557 2006 400 2406 3592	2	5	2862	402	3264	1413	2094	397	2491	3940	5048	0	85	5100	350	6513
2745 583 3326 1557 2006 400 2406 3592 100 100 100 2406 3592 100 1	2	8	2555	563	3118	1382	1700	564	2264	3437	3787	0	60	3600	750	4982
	10	22	2743	583	3326	1557	2006	400	2406	3592	4342	0	70	4200	725	5757
708 4993 1895 2076 329 2405 4794	뜆	AN	4284	708	4993	1895	2076	329	2405	4794	5643	147		5370	982	7265

Table 4.5.3 Annual Operation of Sirikit Reservoir

Diversion Capacity:Kok-Ing Diversion Channel=125cu.m/sec.Ing-Nan Diversion Channel=125cu.m/sec Pumping Capacity = 100 cu.m/sec

		Inflow (MCM)		Wet	Div	iversion (MCM)	D D	Wet	Nov	Snill	Dry Outlow (MCM)	w (MCM)	- Line	Totai
Year	Wet	Diy D	Total 3=1+2	Outflow 4	Channel 5	Pump 6	Total	Balañce 8=1+7-4	Storage 9=12+8	Water 10	Rate (%)	Release	Störage 12	Outflow 13=4+11
1974	3505	724	4229	1637	2039	601	2640	4508	5508	0	85	5100	1132	6737
1975	7649	925	8574	2456	2306	120	2426	7619	6660	2091	105	6300	1285	8756
1976	5347	976	6323	2394	1921	618	2539	5492	6660	117	105	6300	1336	8694
1977	3434	706	4140	1996	2148	412	2560	3998	5334	0	85	5100	940	70%
1978	5793	728	6521	2408	2303	66	2402	5787	6660	67	105	6300	1088	8708
1979	3068	508	3576	1722	1735	910	2645	3991	5079	0	85	5100	487	6822
1980	5735	882	6617	2294	2025	557	2582	6023	6510	0	105	6300	1092	8594
1981	6858	717	7575	2844	2332	84	2416	6430	6660	862	105	6300	1077	9144
1982	4615	695	5310	1529	2020	663	2683	5769	6660	186	105	6300	1055	7829
1983	4592	858	5450	1867	2087	467	2554	5279	6334	0	105	6300	892	8167
1984	5641	1/1	6412	2370	2031	324	2355	5626	6518	0	105	6300	989	8670
1985	4517	1170	5687	1879	2171	462	2633	5271	6260	0	105	6300	1130	8179
1986	3593	485	4078	1945	1982	621	2603	4251	5381	0	85	5100	766	7045
1987	2552	685	3237	1530	1800	708	2508	3530	4296	0	70	4200	781	5730
1988	3843	643	4486	1643	2325	409	2734	4934	5715	0	85	5100	1258	6743
1989	3316	605	3921	1407	2296	413	2709	4618	5876	0	85	5100	1381	6507
1990	3476	552	4028	1638	2211	488	2699	4537	5918	0	85	5100	1370	6738
1991	2862	402	3264	1413	2094	612	2706	4155	5525	0	85	5100	827	6513
1992	2555	563	3118	1382	1700	825	2525	3698	4525	0	70	4200	888	5582
1993	2743	583	3326	1557	2006	595	2601	3787	4675	0	70	4200	1058	5757
MEAN	4284	708	4993	1895	2076	499	2576	4965	5837	166		5505	1041	7400

5.2 General Topography and Geology

(1) Geological data

1) Data Collection

a) Geological Map of North Thailand 1/250,000

Sheet I (Nan)

Sheet 2 (Chiang Rai)

Sheet 3 (Phayao)

b) Geological Map 1/50,000 (Map & Report = Thai word)

* Ban Waen Klong (5047-1)

Amphoe Chun Quadrangle (5047-4) = Amphoe Chun

* Chiang Rai(4948-1)

* Ban Mae Pao Luang (5048-4) = Amphoe Phaya Meng Rai

* Amphoe Thoeng (5048-3)

Amphoe Pong Quadrangle (5047-2)

Ban Tham Quadrangle (5047-3)

Amphoe Chiang Kham(5048-2)(1/250,000 Geological map & Report)

2) Drilling & Seismic Survey Report

a) ING-YOM-NAN Diversion Project ING-YOM River Diversion Study Feasibility Report Volume 4 & 5 Geotechnical Investigation

3) Aerial photograph

a) Flight course map (1/50,000)

b) Aerial photograph----- scale 1/30,000.

4) Aerial photographic survey

Stereoscopic vision and analysis of lineation was made along the tunnel alignment A and B route using aerial photograph which was made by RID at 1993.

these analyzed lineament is shown on the 1/50,000 compiled geological map.

5) Geological reconnaissance

Field reconnaissance survey was made to confirm lithological stratigraphical, geological structural feature, weathering of rocks, and rock mechanical characters by observation of major outcrops which was observed in the main river and cuttings made with roads and dam constructions.

As a result of the survey the location of out crops , and dip and strike of bedding is put on topographic map of 1/10,000.

6) Compilation of Geological map

Finally, the geological map of scale 1/250,000 and 1/50,000 was made compiling collected geological maps and referring the information from the aerial photographic survey and field reconnaissance survey. The map of scale 1/250,000 is shown in the Database map (Figure G-1). Some part the compiled map of 1/50,000 is shown in the Database map for Kok-Ing canal route (Figure G-2) and Ing-Yot tunnel alignment (Figure G-3, G-4, G-5).

(2) Core Drilling

On early stage of field reconnaissance survey ,each geological object, drilling points is shown 1/50,000 map (refer to Database map) and these drilling depth is shown in Table S5.2.1, number of drilling hole are 12 and total drilling depth are 877m. Each core drilling is accompanied with Lugeon test of 3 sections of each interval 5 m (from bottom to upward) and for drilling core uni-axial compression test was carried out.

The purpose of these drilling point are to make clear following geological feature . 1) Depth to intact rock on inlet and outlet of tunnel and driving canal to tunnel from Ink diversion dam.

2) Classification of weathered rock and these rock mechanical feature

Result of drilling is shown on Geological Logging chart in the Database map (Figure G-15, to G-19).

T

()

Table S5,2.1 CORE DRILLING POINT ON ING-YOT TUNNEL

ROUTE B	(NORTH)				CONCEPT	UAL STUDY STAGE 1996 RID	
DRILLING	DISTANCE	GROUND	TUNNEL	GH -T	LENGTH	GEOLOGY	CORD
No			BOTTOM				and the state of the
DHB-1	-920	384	352	32	40	Weathered depth of	X= 635, 190
	a de Tra		1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -			Shale(TRpm)	Y=2173, 920
DHB-2	0	388	352	36	45		X= 636, 130
	-					Shale(TRpm)	Y=2173, 920
DHB-3	B1480	400	352	48			X= 635,710
						Lapilly tuff fault zone	Y=2175, 520
DHB-4	*3218	463	351	112	120	Fault zone of phyllite	X= 638, 820
							Y=2175, 580
DHB-5	9915	460	348	112	120	Fault zone of phyllite	
		200 <u>1</u>	the state	1.11.1	5 . DE	(CPpr)	Y=2174, 990
DHB-6	*29500	485	340	145	150		X= 652, 530
· · ·			en en general. Notes de la composition		· .	(TRpc) and fault	
DHB-7	B49205	383	332	51	60	Depth of Sand & Gravel	
							Y=2145, 430
DHB-8	*49800	378	332	46	50		X= 668, 150
			- 841 - 11-			sandst. or/& tuff(TRhs)	Y=2144,010
SUB TOTAL					640		

ROUTE A (NORTH)

DRILLING No	DISTANCE		TUNNEL BOTTOM		LENGTH	GEOLOGY	CORD
DHA-1	1300	403	349	54			X= 635,050 Y=2177,260
dha-2	2580	411	349	62		Fault zone of Phyllite (CPpr)	X= 636, 230 Y=2177, 510
SUB TOTAL	· · ·		•	· · · · · · · · · · · · · · · · · · ·	130		and a state of the second description of the second description of the second description of the second descrip

SOD TOTAL				2-0-0-		and the second	ويستحققهم وردائي أستجرب والمكري ومستقتلين ويتحت ويستعد والاته
ROUTE C	(SOUTH)		. til ate 			· · · · · · · · · · · · · · · · · · ·	
DRILLING No	DISTANCE	6	TUNNEL BOTTOM		LENGTH	GEOLOGY	CORD
DHS-1	2940	386	349	37	1. 1.	Weathered depth of (TRmp)	Y=2159, 31
DHS-2	9200		346	64		Depth of Terrace deposit, weathered condition of shale	Y=2153, 15
SUB TOTAL	<u> </u>				107		
	ant Tarihi <u>k</u> etar	a su tata ta			e e je	۲۰۰۰ کار می معاون والد و بین می مان و این بین کار و این و بین و این	
TOTAL					877		

Remarks ; Distance B=Alingment B of RID Study *=Projected to Alignment

Geological feature of each drilling hole is as follows

a) DHB-1, DHB-2

Shows typical rock feature of Shale of TRmp formation which consist of brownish gray shale. Easily breakable along bedding plane, so rock mechanical characteristics can not judge exactly from RQD. It seems that the Shale will be inferior by water.

b) DHA-1

Shows typical rock feature of Lapilly tuff of TRmp formation which consist of Andesite lapilly and Andesitic tuff. 0-30m is relatively intact. 30m-60m is cracky but Lugeon value is small.

c) DHB-3

Shows rock feature of Fault zone of Lapilly tuff in contrast to intact rock of DHB-2. Om-18m consist of clay and silt of overlain sediment of Quaternary or strongly weathered clayey rock of fault zone. After that, continue cracky Lapilly tuff.

d) DHA-2

The drilling point is selected on the fault which divides CPpr formation and TRmp formation. Drilling core shows strongly weathered and cracky rock feature of broken Phyllite of CPpr formation, especially below 35 m is broken strongly.

e) DHB-4

The drilling point is selected on the typical fault valley which divides CPpr formation and TRhs formation. Surface part (to 18m) consist of alluvial sand and gravel. After that underlain by cracky and deeply weathered Sandstone and Phyllite which is altered to talc. Two Limestone bed of thickness 7m and 12 m is interbedded. Open crack which is eroded by water is found in the Limestone.

f) DHB-5

Shows typical rock feature of CPpr formation which consist of Phyllite and Sandstone fin alternation. Phyllite is dark gray, contain and graphite. Sandstone is hard and each bed is generally thin so in mark of sandstone in the drilling core column means the part in which sandstone layer is relatively dominant. Small scale fault is found along bedding plane accompanied with thin Quartz vein. Intraformation folding is formed. Bedding plane dips generally 30 degree to 45 degree. Drilling core is easily breakable along Phyllite bed.

g) DHB-6

The drilling point was selected to confirm boundary between CPpr and limestone of TRpc formation. But Limestone continue to bottom of drill hole. Surface part (to 23 m) is Talus which consist of sand and gravel. Below that, continue Limestone. To 43 m depth, some cracky part is found, below that generally massive. Very thin (less than 1 mm -5

mm) and slightly muddy limestone is frequently interbedded which dipping generally low angle (10-20 degree).

h) DHB-7

To 19 m, consist of sand and gravel of Quaternary deposit. Below that to 37 m, sand and gravel which include big boulder (diameter more than 1 m), this part with possibility of drilling into limestone cave. Below that, continue Limestone, which is generally massive, but there are found many latent hair crack.

I) DHB-8

To 10 m, consist of clay and sand of Quaternary sediment. To 27 m, is strongly weathered tufficious sandstone in which almost composed minerals is altered to clay minerals. Below that to 30m, consist of cracky Tufficious sandstone rock and to 50 m become massive.

j) DHC-1 and DHC-2

These drilling point are selected to confirm geological condition of first half of alignment C under low hill area which underlain by Jurassic sedimentary rocks. Both drilling core consist of Shale and Sandstone which are brownish gray color. Apparently massive but brittle broken by hammer blow. About to 20 m, strongly weathered and is altered to clayey.

(3) Rock Mass Classification for Tunneling

Rock mass classification to be adapted to design tunnel of the project is considered as follow.

Tunnel design is planned in accordance with geological conditions and it is neccessary to make some standard which is integrated with many geological parameter such as hardness, weathering conditions, interval and conditions of crack and joint. this standard generally called "Rock Mass Classification".

As a effective measure, usually elastic wave velocity is used in major standards but seismic prospecting has not been made for the project on conceptual study of Thai side. So a rock mass classification is made in accordance with information of drilling and field geological survey.

Table S5.2.3 shows the druft of Rock Mass Classification.

In this table, type of rocks is classified following groups shown Table S5.2.2.

This standerd should be made complete after get more information such as elastic wave velocity, additional drilling data on feasibility study stage.

Geological Group	Formation	Acronym	Lithofacies
a	Phu Rang Ka	CPpr	alternation of Phyllite, State & Sand st.associated Quartzite, Tuff & Calcareous shale
b	ρ 3	р3	Shale, Sandstone, Tuff
	Huai Sarian	TRhs, t-p	fin alternation of Shale and Sand st. associated tuff
	Pha Chik,'Ban Tham	TRpc, Pbt	Limestone.
C C	Doi Mon Yao Volcanic	TRv, Lms-2	Rhyolitic & Andesitic tuff, Andesite, Diabase
	Andesite-Rhyolite	L-tp	Andesite, Rhyolite & Tuff
	Granite	Gt	Granite, Granodiorite porphyry
d	Mae Phong	TRmp	Sand st., Shale, Tuff & Lapilly tuff
e	Talus	Qt	unconsolidated Sand, Silt & Gravel

able S5.2.2 Grouping of Geology for Rockmass Classification of Tunneling of Kok-Ing-Nan

Rockmass	ss Classification	Rockmass Classification for Tunneling of Kok-Ing-Nan Geological Overburden Geological	iok-Ing-Nan Geological Feature	Drilling Core
Classification for	Grouping			
	<u>a a</u>			
		more than 300 m	*Fresh & hard rock, relatively few crack	Core recovery > 90%
)		in suala, surdification of suistosity (group a)	Snow columnar shape (10-20cm)
	9	100m to 300m	*Relatively hard, some part altered by	Core recovery 70-90%
	q		weathering, crack is found offen	Show short columnar shap 5-10
			*Rock show clear stratification, casily broken (group	•
	<u>ບ າ</u>		a.b.d)	
.	,	1222 1622 2 00022		
	<u>a. n</u>	Icss than J UUM	*Altered by weathering and somewhat softened (group b). Rock is relatively hard but casily hrakable	Core recovery > 70-50 Show short columnar shap and
	o	• • •		small picces
	P		*Narrow and small fault are sandwiched	group c; ROD 30 >
	l a	less than 100m	*Subjected to severe weathering, rock is	Core recovery < 10
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	partially transformed to sand and clay. Soft and	Show small pieces, sometimes
	<u>ບ</u>		britule with slightly hard portion remaining inside	sand mixed with breeciated
			*Joints are so numerous.	pebles and clav
		-1	*Fault zone which has not been altered completly	· ·
	<u>a .</u>	·	to clay, concisive soli is mixed with rock iragment	· · · · · · · · · · · · · · · · · · ·
	<u>ວ</u> ບ		*If rock is softened by water classified under P	· · ·
	đ			
		less than 50 m	*Fault zone which subjected to severe weathering	
	<u>c</u>	· · ·	* Under sharrow overburden and ailered to clay	
)		discharge is summered rack is crucked also	· · ·
	; 0		*talus which consist of loose sand and mayel with	
	n a	1	clay.	
	4		*E2 type applied espesially to inict and outlet.	
	<u>u</u> -			
	ט			

<Ing-Yot tunnel>

① Treatment for shallow overburden section from inlet to about 2 km.

Main part of this section is overlain by shale sand stone and lapilly tuff of TRmp formation which become cracky and sheared with a lot of faults, in addition is weathered highly because of shallow overburden. Therefore, it is necessary to study some special treatment of tunneling as Forepiling method etc..

② Investigation for limestone of TRpc of the Doi Pha Deang mountain.

Groundwater discharge when tunnel meet to limestone cave is one of serious problem, so it is necessary to make clear the hydro-geological characteristics of limestone, specially it is important to confirm the altitude of bottom of limestone (impervious boundary) of the Doi Pha Deang mountain. There fore additional investigation on the Feasibility Stage is required.

③ Rock mechanical feature of fault zone

Some drilling core of the conceptual study stage show that the rock facies of fault zone of relatively shallow part (some times shallower than 70 m) become cracky and clayey. There are supposed some fault along river cause, so it is necessary to investigate such fault zone.

④ Influence to spring of Phu Sang water fall

This spring of temperature 33°C is flow out as the Phu Sang water fall. The hydrogeological mechanism has not been made clear so influence of tunneling cannot estimate. This fall is famous tourist attraction, it is necessary to investigate the mechanism of the spring and to observe influence during implement of tunnel excavation.

⑤ Investigation of higher mountain area

This area is supposed to be underlain by TRhs but there aren't any available road for transportation of survey instruments, so it is difficult to approach and to investigate specially in the rainy season.

Groundwater discharge of Limestone formation located on Yot valley and nearby Ban Pha Lak village.

There are two Limestone beds between 46 km to the outlet. Especially it is supposed that when the tunnel pass through the Limestone bed located under the Yot river will be meet with groundwater discharge from the Limestone cave or/and fractured zone along fault zone. Therefore it is necessary to investigate rock feature and groundwater of the Limestone bed in the Feasibility Study stage.

Land slide or collapse of entrance to tunnel (include in case of inclined shaft)
 Surface part of the rocks are weathered deeply and completely and became clavey.

and it is observed that many small scale and shallow land slide or collapse occurred after heavy rain on this weathered zone of many kind of formations. So it have to take care to excavate entrance of tunnel and to consider some treatment to inlet and outlet of the tunnel.

(8) Investigation for inclined adits

Seven (7) inclined adits is planned to approach main tunnel. There inclined adits also are big size and long (1.5-3 km length) tunnel. Therefor it's important to make clear geological conditions of these inclined adits, especially for weathered conditions and rock feature of fault zone to design these adits.

<Kok-Ing tunnel>

Geological notice for proposed three alternative alignment of Kok-Ing tunnel, Route A, Route B and route BJ is as follows.

(9) To make clear geology of every alignment

The geological survey has not been made yet, so it is necessary to make clear geological condition of every alternatives, such as depth of weathered zone, rock facies of cach geological unit.

① Geological feature of route A-1 tunnel

A-1 tunnel passes through lower hills underlain by weak geology which is strongly and deeply weathered and crashed eleven (11) supposed faults. Therefore, it is important to confirm rock feature and geo-technical conditions and groundwater of the alignment.

① Fault zone

Another alternative tunnel alignments also pass through some faults, therefore it is necessarily to investigate rock facies of these fault zone.

(12) Land slide or collapse of entrance to tunnel

Near inlet and outlet of each alternative tunnels are underlain by more deeply and more strongly weathered rocks than the Ing-Yot Tunnel alignment and Tulles, so it is necessary more carefully to investigate such part.

(3) Bottom of basalt of tunnel alignment B

The boundary of Basalt lave and t-p and p3 formation will be weak geological condition, so it is necessary to confirm shape of bottom of Basalt.

Following investigation is proposed on the Feasibility Study stage of Thai side to solved the geotechnological problems which has been brought up by result of the Conceptual Study with detail in the Table S5.2.4 - S.2.7. These investigations will be carried out when the feasibility study is started by Thai side.

If the JICA evaluate to progress the project, considering these investigation plan of Thai side, some additional investigation shown as follows and detail in the Table S5.2.8 is necessary on the feasibility study by JICA.

< Investigation with Thai Side >

Investigation with Thai Side consist of seismic prospecting which is necessary to make clear major part along tunnel alignment and adits, and core drilling for shallower part near inlet and outlet, and adits.

① Seismic prospecting

Seismic prospecting (Refraction method) is proposed to investigation of Kok-Ing Tunnel and Ing-Yot tunnel A1,BJ1, BJ2 and B alignment, its inclined adits and some part of canal route and flood control dam. To main tunnel of Ing-Yot tunnel, this survey is planned specially to whole section under lower hills and lower mountain part of ground height bellow 200 m and some part of which cross supposed fault along river cause and to shaft.

Total number of survey line are 31 and total length are about 63.8 km.

② Core drilling

Core drilling is proposed to Kok-Ing and Ing-Yot tunnel and its adits, Kok intake and new diversion wier, on the canal route of Nong Luan lake, Ing diversion weir, and Yao flood control dam. With drilling, Standard penetration test and Lugeon test is made and also some laboratory test such as unite weight, Point load, Uniaxial compression test, Tensile strength test and P.s wave velocity test.

Some special geo-loggings is proposed also, using the equipment donated with expert dispatch from JICA (refer to Table S5.2.8).

5-2-10

Total drilling point are 38 and total length are 2185 m.

③ Schedule

(a) seismic prospecting

About 5 months with 5 survey party will be required to complete total length 63.8 km.

(b) Drilling

About 4.5 months with 4 survey party will be required to complete total length 2185 m.

2 Investigation required to feasibility study with JICA

Investigation with JICA study consist of TDEM and drilling for deeper part

TDEM prospecting (Time Domain Electro-Magnetic method)

TDEM is more available than seismic prospecting (refraction method) and electric prospecting for survey to make clear geology of deeper part and especially these part which is overlain by geology shown higher electric receptivity or higher elastic wave velocity. So, TDEM method is proposed to solve following problems.

(1) To confirm shape of basement of Basalt formation on the Kok-Ing tunnel.

(2) To confirm shape of basement of limestone of TRpc on Doi Pha Deang mountain.

(3) To make clear rock feature of some fault zone.

(4) The geological structure near tunnel elevation on which covered with thick overburden about 500m to 1000m, in high mountain area of Ing-Yot tunnel.

(5) To make clear fissures and fault zone nearby the spring of Phu Sang water fall to suppose hydrogeological mechanism of the spring.

Different survey method is applied, one of these is normal one which applied to analyze shallower object such as above mentioned (1), (3) and (5), and another one is special one to analyze deeper object of (2) and (4).

Number of survey line is 8, 6 are normal method and 2 are special method.

Total lengh of survey line are 11.6 km

② Core drilling

It has been difficult to take satisfactory core from fault sheared zone and it seems difficult to drill deeper part (more than 100 m) on the conceptual study stage of Thai side. Therefore, it's necessary to cooperate with technical advice and on the job training of deeper drilling especially on fault zone and on site test which needs higher technique and experiences such as water pressure test, some kind of geo-logging, rock test, X-ray analysis for clay minerals and observation by optical microscope.

Number of drilling point are 6 and total length are 1415 m.

③ Schedule

(a) TDEM

About 3 months is required to complete survey and analysis after started site survey. (b) Drilling

About 4.5 months with 4 drilling party will be required to complete total length 1300 m.

	DISTANCE	GROU ND	and the second second second	GICAL INVESTIGATION OF RID F	DRILLING	- International Advances	SYSMIC P	ROSPE	CT (km)	}
	· · ·	HEIGHT		a A	No.	Depth	No.	Main	Sub	Total
	-0.4	385	352	AI/WTRmp(Shale)	DHB -0.4	35				0.0
	B-0.1-7.0	400		Fault/WTRmp-hs(Shale,Sand st)			SB 0-	7.70	4.70	12,
NG	B0.6	390	352	Fault/WeatherTRmp(Shale)	DHB-0.6	50	· · · ·			
	B2-(0-3.6)			ALWTRmp(Shale)	1 11 1		S28 0-	2.70	1.30	4.(
	82-0.6	420	352	WTRmp(Shale)	DH8-1SP	80				·
	Adi 1(0-1)			CPpr(Phyllite)	· ·		SAd 1	1.00	0.50	1.
γοτ	Adi-1(0.11)	482	437	CPpr(Phyllite)	DHIAd 1	65	ν.			
	88-8.8			CPpr(Phyllite)/Fault			SB 8	0.80	0.50	1.3
	88	488	348	CPpr(Phyllite)/Fault	DHB-8SP	145	an ag			
	810.5-11.5			Fault/CPpr(Phyllite)	-	£	SB 10-	1.50	1.00	2.5
	Adi 2(0-1.7)			Weather/CPpr(Phyllite)			SAd 2	1.50	1.00	2.5
	Adi-2(0.77)	495	410	Weather/CPpr(Phyllite)	DH2Ad	90				
					ISP			1 A		
TUNNEL	816-18.5			Fault/CPpr(Phyllite)			SB 16-	1.00	1.00	2.0
-	Adi 3(0-1)			Fault/CPpr(Phyllite)	· · ·		SAd 3	1.00	0.50	1.5
	Adi 3(0.2)	530	486	Weather/CPpr(Phyllite)	OH3Ad 1	60				
	817.5-18.5		:	Fault/CPpr(Phyllite)			SB 17-	1.00	0.50	1.5
	820.8-21.0			Fault/CPpr(Phyllite)			SB 21-	1.10	0.80	1.9
	Adi 4(0-1)			Fault/CPpr(Phylite)			SAd 4	1.40	0.60	2.0
	Adi 4(0.15)	535	478	Weather/CPpr(Phyllite)	DH4Ad 1	65	1 A.			
	Adi 5(0-1)			Feather/CPpr(Phyflite)			SAd 5	1.10	0.50	1.6
	Adi 5(0.35)	550	490	Weather/Ths(Shale,Sand st)	OH5Ad 1	70		I		
	834.7-36.7	10		Ths(Shale,Sand st)	· · · · ·		SB 35-	2.00	1.50	3,5
•	Adi 6(0-1)			Ths(Shale,Sand st)			SAd 6	1.40		1.4
	Adi 6(0.3)	660	560	Weather/Ths(Shale,Sand st)	DH6Ad ISP	120	: -			
10.00	846.1			Al/Fault/Pb(Limestone)	1		S8 46	0.80		0.8
	846	420	331	Al/Fault/Pb(Limestone)	DHB-46SP	100				
	848 22-		<u>}</u>	Weather/TRhs(Tuff)			SB 48-	1.60	0.60	2.2
1	49.82 849.42	390	332	Weather/TRhs(Tuff)	DHB 49	60				
	850.38-		031	Weather/TRhs(Tuff)	0110 40		SB 49-	0.80	0.60	1.4
	51.18							0.00	0.00	•••
	Adi 7(0-1)			Weather/Ths(Shale,Sand st)		:	SAd 7	1.00	0.50	1.5
	Adi 7(0.1)	460	412	Weather/Ths(Shale,Sans st)	DH7Ad 1	60				
	B50.38 🥳	420	330	Weather/Ths(Shale,Sand st Tuff)	DHB 50SP	90				
	sub total				14	1090		29.40	16,10	45.5
	A1-1.1-2.2	T	r 	t-p(Shale, Sand		1030	SK1A1-1.1	1.20	0.80	
VOV.	BJT1-0-		•••••	W. t-			SKIBJ-0	2.00	0.80	2.0
кок	BJT1-1.4	430	380	W.Lms2(Tuff)/Fault3	DHKBJT1-	70		2.00	0.00	2.0
	BJT1-2.0			W.Lms2(Tuff)/Fault4.5			SKIBJI-	1.20	0.70	1.9
. •	BJT2-1.0	435	377	#.p-3(Schale)/L-tp(Tuff)/Fault	DHKBJ2- 1.0	65	2.0			
	BJT2-0.0-			W.p3(Shale)/Faulti			SKJBJ2-0	1.20	0.40	1.6
	BJT2-3.3-4.3			W.t-p(Shale, Sand st)/Fault3			SKIBJ-3.3	1.00	0,40	1.4
· · · ·	BJT2-3.5	420	375	W. t-p(Shale, Sand st)/Fault3	DHKBJ2- 3.5	55				
NG	8-0-1.5			Talus/Basalt/t-p(Shale)/Fault		· · · · ·	SKIB 0.0- 1.5	1.50	0,50	2.0
	B-0.01	436	374	Weather/c-p(Shale)	DHK8-0.1	70	- 2 - 2			
	8-4.0-5.5			Talus/Weather/c-p(Shale)	•		SKIB-4.0	1.50	0.50	2.0
TUNNEL		426	369	Weather/c-p(Shale)	DHKB-3.8	65				
OTHER .								- <u></u>	ł	
	auto data 1				5	275			4 4 5	
	sub total				19	325		9.60	4.10	13.7

<u>.</u>

Table S5.2.5

PROPOSAL FOR GEOLOGICAL INVESTIGATION OF RID F/S STUDY STAGE KOK INTAKE

ALTERNA	DISTAN	GROUN	WEIR	GEOLOGY	DRILLING		SYSM			
8 - 14 s.	· · · ·	HEIGHT	BOTOM	A	No.	Dept	No.	Main	Sub	Tola
B	0			(1 (Sand Gravel)	DHKI-B1	30				
A	0			Q1 (Sand Gravel)	DHKI-A1	30				:
sub total	·.				2	60				
KOK-ING	CANAL	· · ·							*34===	
ALTERNA	DISTAN	GROUN	CANA	GEOLOGY	DRILLING		SYSMK	PRC	SPEC	T (km)
		REIGHT	BOTON	Λ	No.	Dept	No.	Main	Sub	Tota
В	3.8	391		11 (Sand Gravel Clay)	DHKI-B2	30				
8	13.2	395		Q1/1p(Shale Sand st.)	OHKI-B4	30				
B .	17.5	397		ge/tp(Shale Sand st.)	DHKI-B5	30				
8	18.8	397	- 25	Qi/lp(Shale Sand st.)	DHKI-B6SP	30				
8	20	397		ga/lp(Shale Sand st.)	a a s		SKI-B20	1,00	0.30	1.30
8	25.3	397		qa/Lasz (Tuff)	DHKI-B7	30				
8	39.3	367		Q1 (Sand Gravel)	DHKI-B8	20				
8		372		Q1 (Sand Gravel)	DHKI-B9	20				
Total			1. <u>1</u>		7	190		1.00	0.30	1.30
KOK-ING	DIVERS	SION	1.11				see la			
ALTERNA	DISTAN	GROUN	WEIR	GEOLOGY	DRILLING		SYSMIC			
		HEIGHT	BOTON	٨	No.	Dept	No.	Main	Sub	Total
8		362		<pre>qa(Sand)/Jan(Sand st. Congl.)</pre>	DHBID-1	40				
6		362		Q2(Sand)/Jan(Sand st. Congl.)	DHBID-2	40				
8		364		Q1(Sand)/JEE(Sand st. Congl.)	DHBID-3	40				
sub total					3	120			· ·	L

CANAL(ING DV.-INGYOT TUNNEL)

ALTERNA	DISTAN	GROUN	CANA	GEOLOGY	DRILLING	i (m)	SYSM	IC PRO	SPEC	T (kn)
		HEIGHT			No.	Dept	No.	Main	Sub	Tolal
Tunnel	0.15-0.8	5		W. as3 (Congl) / Pault		Τ	SB 0	1.00	0.50	1.50
	0.33	394	350	¥. as3 (Congl)/Fault	DHI-IT-1	50				
Siphon		373	350	W. Lost (Tuff)	DHI-IT-2	30				
						1				
sub total		(•			2 80		1.00	0,50	1,50

sub total
YAO FLOOD CONTROL DAM

ALTERNA	GROUN	DAM	GEOLOGY	DRILLING	(m)	SYSM	C PRO	SPEC	<u>T (kn)</u>
	HEIGHT	вото	Ň	No.	Dept	No.	Main	Sup	Total
DAM 1	320	1	TRbs (Sand, Tuff, Shale)	DHF1-1	60	SF1-1	0.60	0.00	0.60
· · · · · · · · · · · · · · · · · · ·	 302		TRbs (Sand, Tuff, Shale)	DHF1-2	80	SF1-2	0.40	0.00	0.40
· · · · ·	 286	1	TRbs (Sand, Juff, Shale)	DHF1-3	60	SF1-3	0.40	0.00	0.40
	 320		TRbs (Sand. Juff, Shale)	DHF1-4	60	SF1-4	0.40	0.00	0.40
	 285	<u> </u>	TRbs (Sand, Tuff, Shale)	DHF1-5	60				
1	 				T		· ·		
sub total	 	1			5 320		1.80	0.00	1,80
	 1	1							
Total	 1			1	770	1	3.80	0.80	4.60

Table S5.2.6 PROPOSAL FOR GEOLOGICAL INVESTIGATION OF JICA F/S STUDY 2nd STAGE ING-YOT TUNNEL

ING-101			and the second	Y					
DISTANC		TUNNE	GEOLOGY	DRILLING		Т.О.Е.М	- 1.	1 - 1 - 1 - 1 	DEMONO
E	ND	L			1		<u>.</u>	L	REMARKS
-	HEIGH	BOTTO	VI	No.	Depth	NO.	Metho	Length(
B3,9-4.6			Fault/CPpr(phyllite)			TMB 3.9	N	0.70	DHB 4
B8.1-8.5			Fault/CPpr(phyllite)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1	TMB 8.1	N	0.40	
B11			Fault/fissure CPpr(phyllite)	· · · · · · · · · · · · · · · · · · ·	1.1	TM8 11	N	1.30	Phu Sang
B16.5	530	345	Fault/CPpr(phyllite)	DHB 16.5	200	·			· · ·
818	550	345	Fault/CPpr(phyllite)	DHB 18	210				
821.5	544	345	Faut/CPpr(phyllite)	DHB-22.5	200				
829.4-31.4			Base of timestone	· · · ·		TMB29.4	S	2.00	Doi Phadeang
826.4	6 00	342	TRhs(Shale,Sandstone)	DH8-26	270			* I.	
B33.2	580	340	Ths(shale/sandstone.)	DHB-33	250			- 41 - E	
B33.7-34.4			Fault/CPpr(phyllite)		с. С	TM833		0.70	Riv.Yuan
B35,5-37,5		i •	Fault/TRhs(shale,sandstone)	and the second	· .	TMB35	s	2.00	8.Than Pung
B46.3-47.3			Al/Fault/Limestone/TRhs(shale)		. 2	TMB46		1.00	
SUB TOTA	L			5	1130		·	8.10	A LONG
KOK-ING 1	UNNEL			1 N N 1					
B1.0-2.9			Basat/c-p(shale)			TMK 1-4.5	N	3.50	
32.1	546	370	Basatt/c-p(shale)	DHK-3.0	180				
SUB TOTA	L	* -		1	180			3.50	
TOTAL		P- 776 - 4.97-8974		6	1310			11.60	

8

8

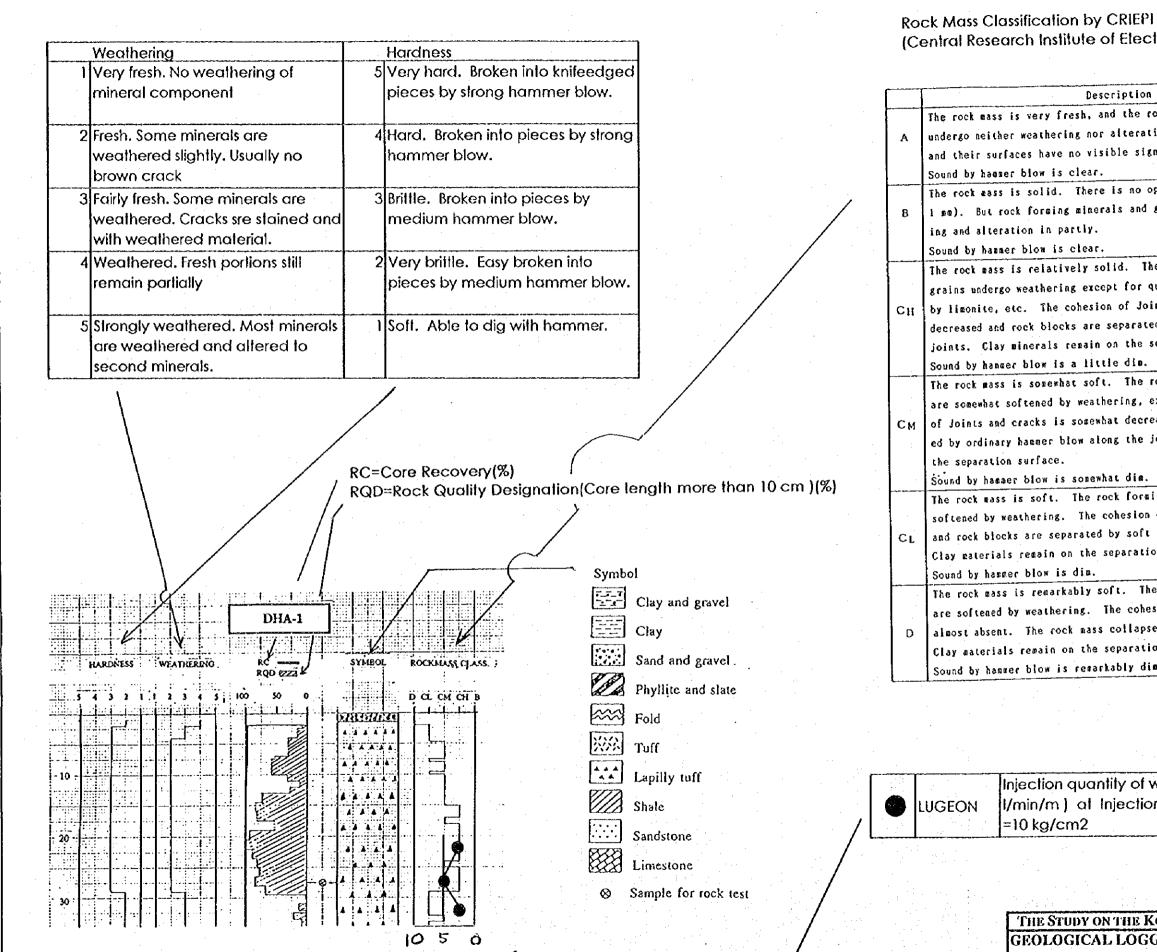
.

Tunnel section	NNEL		Geological Problems have to be solved	Geological In	Geological Investigation Thai Side F/S	Geological	Geological Investigation proposed to JICA F/S	ed to JICA F/S	Remarks
<u>.</u>	Adit		•		- cillie - Ci				<u>.</u>
<u>,</u>				No I and the				1	T
~		Θ	Treatment for lower overburden section	SR 0 -	ŝ) Lengun	
)			DHB 06	39			
19	(B-2	6	Treatment for lower overburden section	S28 O.	400	<u> </u>			+
			Treatment for lower overburden section		DHB-122				1
		0	Rock mechanical feature of fault zone			3	TMB 3 9	0 70	 0
:		0	Rock feature of fault	SB 8	1.30 DHB 8.0	145	TMB 8.1		
		80	Land slide of entrance Geology of Adit	SAd 1	1.50 DH1Ad 1	65			
ø	11	3	Rock feature of fault	SB 10-	2.50				
		•	Infruence to spring of Phu Sang water fall				TMB 11	1 1.30	g
	2	2000	Land slide & Geology Adit	SAd 2	2.50 DH2Ad1sp	06			
91	8	6	Rock feature of fault	SB 16	2.00	DHB 16.5	200		-
<u></u>			· · ·	SB 17	1.50	DHB 18	210		
•		 		SB 21	1.90	DHB 22.5	200		
<u> </u>	8	3(1)(8)	Land slide & Geology Adit	SAd 3	1.50 DH3 Ad1	8			-
	**			SAd 4	2.00 DH4 Ad1	65IDHB 26	270		
8	32	3	Geology of Limestone Mountain Doi Pha Deand				TMR 29.4	2 00	5
8	30	E	Rock fasting of fairly	20 25	2 50				2 9
<u>}</u>	· · · · · · · · · · · · · · · · · · ·	00	Investigation for higher mountain area of TRhs	500		20	TMB 35	200) Ç
	0	000	Land slide & Geology Adit	SAd 5	1.60 DH5A 1				
	6			SAd 6	1.40 DH6A1SP	120			
47 <u>O</u>	Outlet		Depth of Quarternary deposit of Yot vally	SB 46	0.80 DHB 46.6SP	8	TMB 46	5 1.00	Q
•		9	Rock feature of fault	SB 48-	2.20 DHB 49	80			-
		Ð	Land slide & Geology of Outlet	SB 49-	1.40 DHB 50.3SP	8			
	4	000	Land slide & Geology Adit	SAd 7	1.50 DH7A 1	60			
SUB-TOTAL						14 1090	7 1130	81	-
KOK-ING TUNNEL	731							5	
AT1-1-	2.2	3	Geological feature of A-1	SKIA1-1	2.00				
BJT1-1		9	Geological condition	SKIBJ-0	2.80				
BJT1-1.4		6	Geological condition		DHKBJT1-1.4	70			╞
	outiet	Ð	Land slide & Geology Inlet & Outlet	SKIBJ1-2	06.1				
BJT2-1.0		0	Rock feature of fault		DHKBJ2-1.0	65			╞
BJT2-0.0-		60	Rock feature of fault	SKI8J2-0	1.60				_
BJT2-3.3	3.4	9	Rock feature of fault	SKIBJ-3.3	1.40				
BJT2-3.5		0	Rock feature of fault		DHK8J-3.5	55			-
	1.5	8	Land slide & Geology Inlet & Outlet	SKIB-0	2.00 DHKB-0.1				
		9	Land slide & Geology Inlet & Outlet		DHK 0.1	70			
B-4.0	5.5	<u>9</u>	Land slide & Geology Inlet & Outlet	SKIB-4.0	2.00				
	4.5	8	Bottom of Basait			DHKB-3	180 TMK1-4 5	4.5 3.5	ະກ
8-3.8	-	Ð	Land slide & Geology Inlet & Outlet		DHK 3.8	65			_
SUB TOTAL					13.70	5 325.00	1 180.00	3.50	2
									Į

5-2-15

PROPOSAL FOR GEOLOGICAL INVESTIGATION OF RID F/S STUDY Table S5.2.8

					SURVEY HOLE (m)	(آ الا	AX M	MINA	EXAMINATION ITEM	REMARK
		HEIGHT			No.	Depth	BGS PSL		MHT CONE	
KOK-ING	0		397 DHKI-B6	qa(Sand Clay) / tp(Shale Sand stDHKI-B6SP	dDHKI-B6SP	30			×	
CANAL									_	
KOK-ING		430	430 DHKBJ-1.4W.	W.Lms2(Tuff)/Fault3	DHKBJT1-1S	70	×	×	4	_
LUNNEL										
										-
ING-YOT		420		W.TRpm(Shale)	DHB-1SP	80	×	×	5	
		488	488 DHB-8.0	CPpr(Phyllite,Sandstone)	DHB-8SP	145	×	×	9	
-		480	480 DH2Ad 1	Weather/CPpr(Phyllite)	DH2Ad 1SP	06	×	×	4	
		660		TRhs(Sandstone, Shale)	DH6Ad-1SP	120	×	×	×	
		420	420 DHB-46	Pbt(Limestone)	DHB-46SP	100	×	×	×	
		420	DHB 50.3	420 DHB 50.3 Weather/Ths(Shale,Sand st Tuff)	DHB-50SP	06	×	×	4	
sub total					00	725				

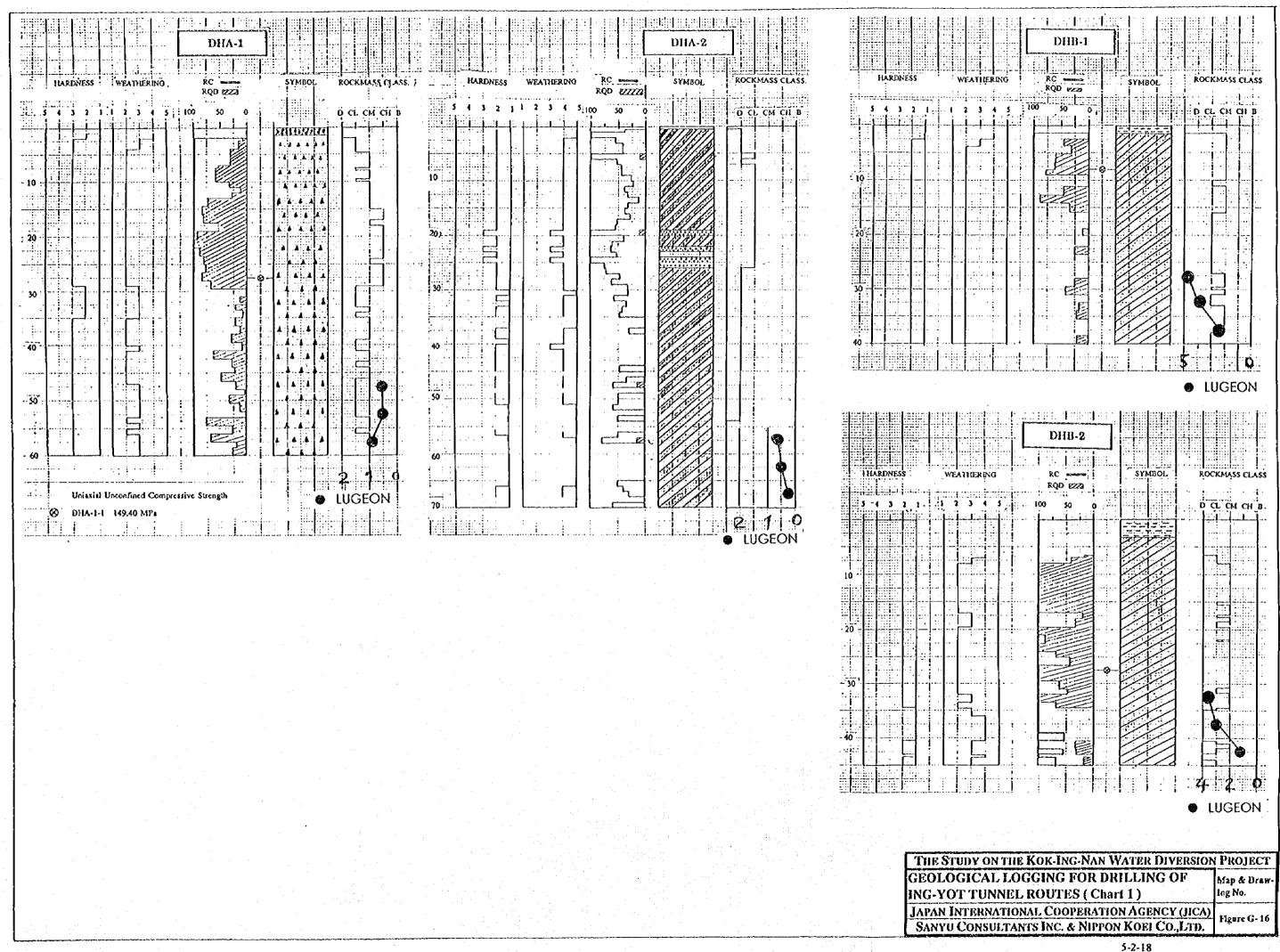

PSL; Suspension PS Logging System
 MHT; Multi Hydraulic Tester

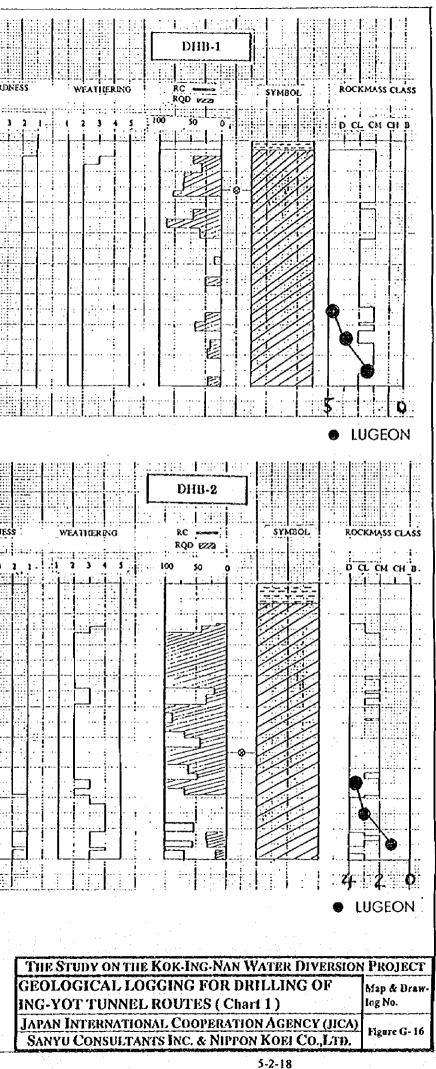
5-2-16

* CONE; Borehple Geophysics System(McCONE)

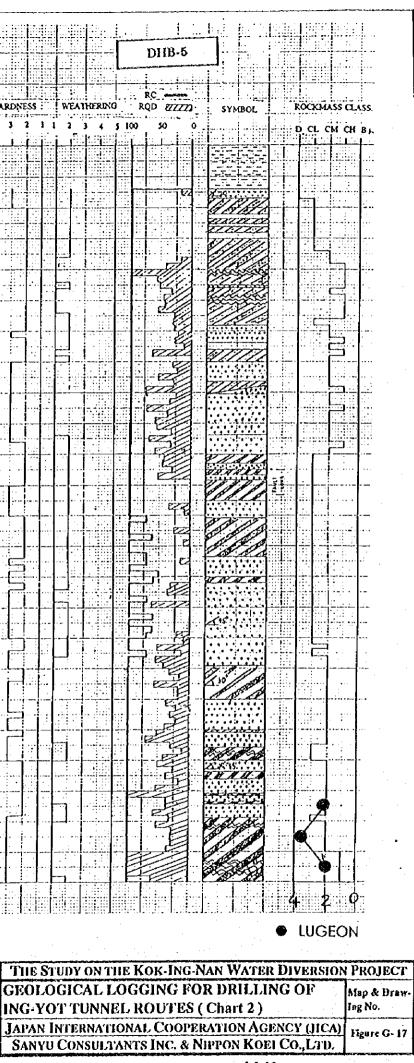
6.000

Column Section, RQD, Rock Classification, Etc. of Drilling Core

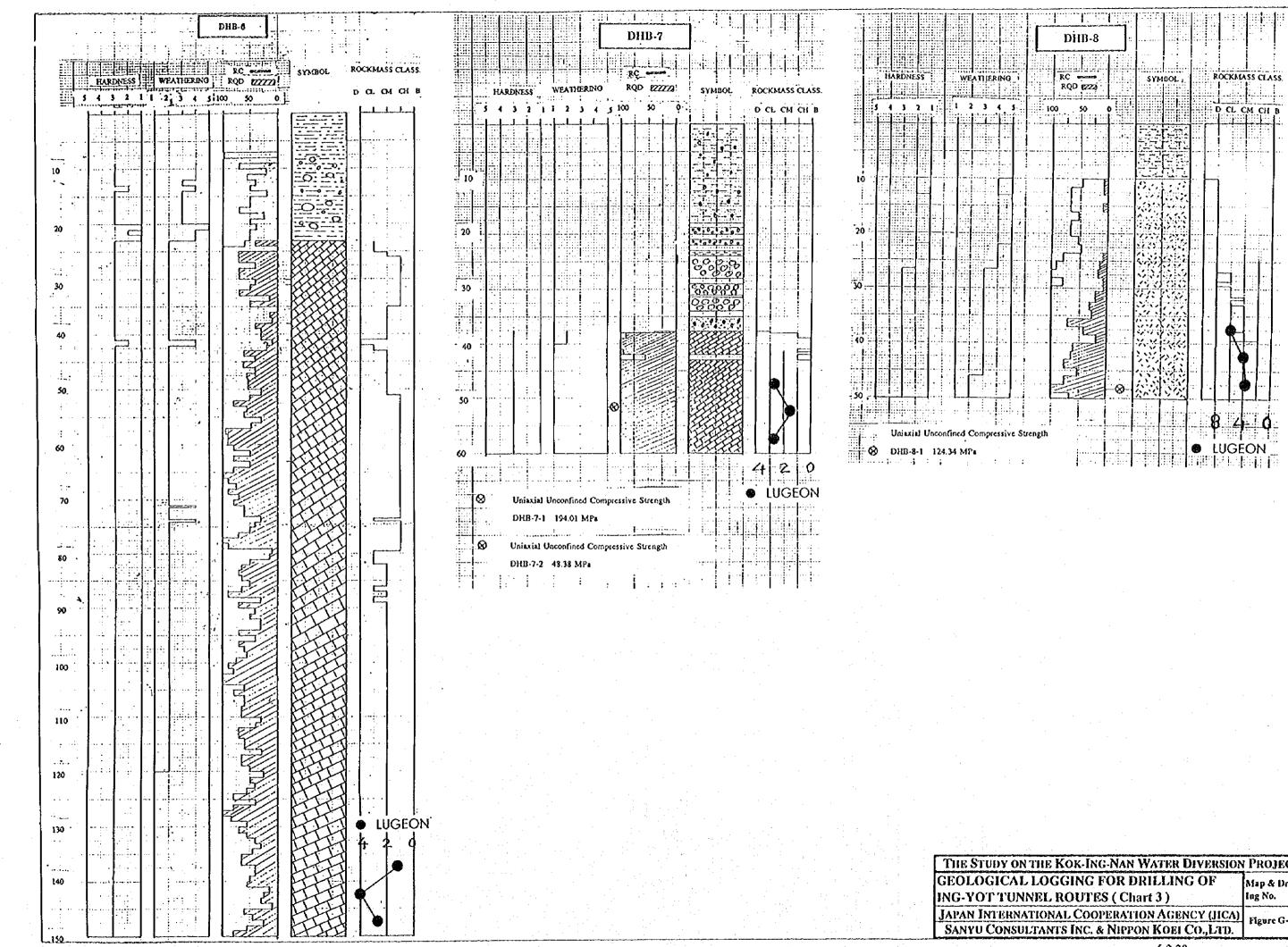

• LUGEON

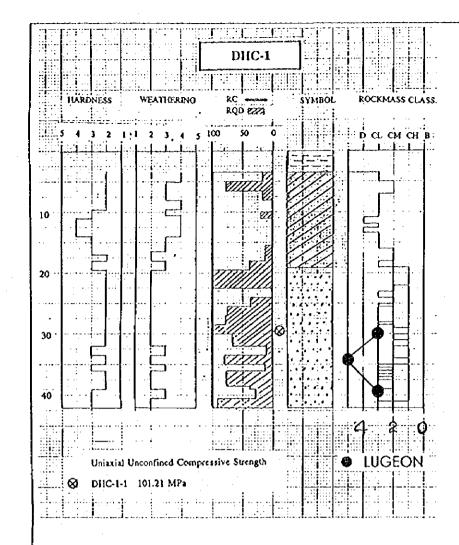

Injection quantity of water (Q)((1/min/m) at Injection Pressure (P) $=10 \text{ kg/cm}^2$ THE STUDY ON THE KOK-ING-NAN WATER DIVERSION PROJECT GEOLOGICAL LOGGING FOR DRILLING OF Map & Draw ING-YOT TUNNEL ROUTE (LEGEND) lag No. JAPAN INTERNATIONAL COOPERATION AGENCY (JICA Figure G- 15 SANYU CONSULTANTS INC. & NIPPON KOEI CO., LTD.

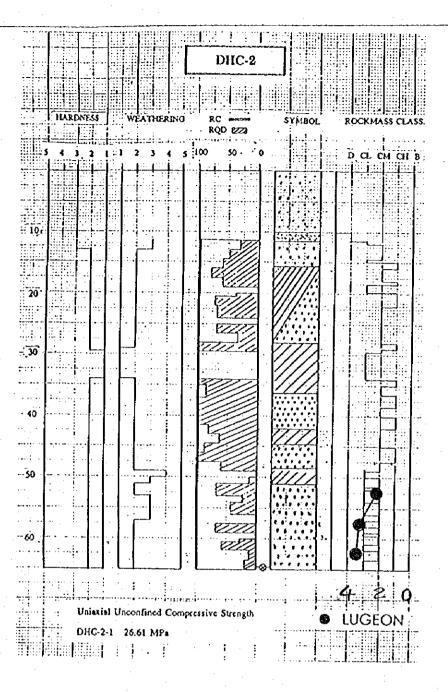
6


(Central Research Institute of Electric Power Industry of Japan)

Description The rock mass is very fresh, and the rock forming minerals and grains undergo neither weathering nor alteration. Joints are extremely tight and their surfaces have no visible sign of weathering. The rock eass is solid. There is no opening joint and crack (even of i mo). But rock forming minerals and grains undergo a little weather-The rock mass is relatively solid. The rock forming minerals and grains undergo weathering except for quartz. The rock is contaminated by limonite, etc. The cohesion of Joints and cracks is slightly decreased and rock blocks are separated by firm hanner blow along joints. Clay minerals remain on the separation surface. The rock mass is somewhat soft. The rock forming minerals and grains are somewhat softened by weathering, except for quartz. The cohesion of joints and cracks is somewhat decreased and rock blocks are separated by ordinary hanner blow along the joints. Clay saterials resain on The rock mass is soft. The rock forming minerals and grains are softened by weathering. The cohesion of joints and cracks is decreased and rock blocks are separated by soft hanner blow along the joints. Clay materials remain on the separation surface. The rock mass is remarkably soft. The rock forming minerals and grains are softened by weathering. The cohesion of Joints and cracks is almost absent. The rock mass collapses by light hammer blow. Clay materials remain on the separation surface. Sound by hammer blow is remarkably dim.

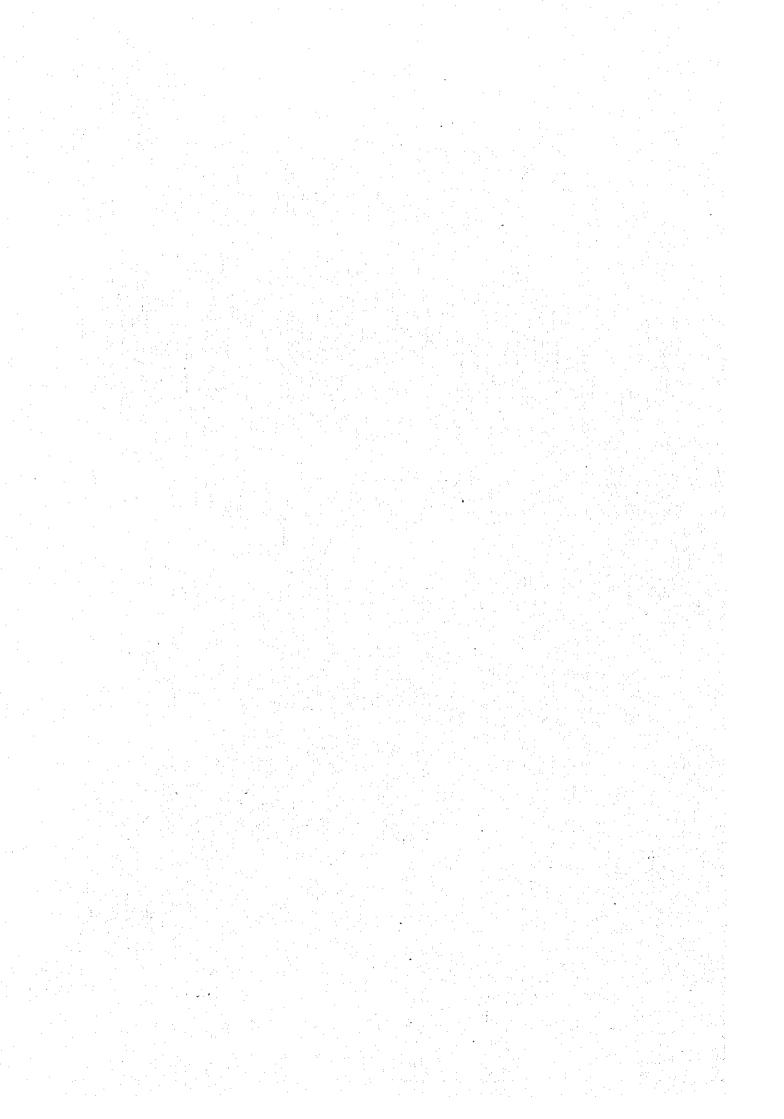



5-2-19



9

Ő.


DY ON THE KOK-ING-NAN WATER DIVERSION	PROJECT
	Map & Draw- Ing No.
TERNATIONAL COOPERATION AGENCY (JICA) CONSULTANTS INC. & NIPPON KOEI CO., LTD.	Figure G- 18

DY ON THE KOK-ING-NAN WATER DIVERSION PROJECT WAL LOGGING FOR DRILLING OF TUNNEL ROUTES (Chart 4)	TUNNEL R TERNATIONA CONSULTANTS	l Coopei	RATION	AGEN			,	ire G	- 19
	ICAL LOGO	GING FO	R DRH	LLING		ION	Map	& D.	
				ومرور مربد برجده				جونون	
				· ·				a di A	
				·					
						•			
	· .		۰.						
			. '		· .				
				·					
				- • -					
									•
					·				
				į.					×

The Kok diversion dam (weir) will regulate water level of the Kok river for the water diversion at the design discharge of 125 m³/s.

(1) Alternative Study of Diversion Damsite

The Thai side study made the alternative study on Kok diversion dam and set up the following two alternatives.

a) Alternative 1: Existing Chiang Rai Weir

Alternative 1: Existing Chiang Rai Weir was selected in connection with the water diversion rout of alternative "B". The Chiang Rai weir was constructed in 1994 by DEDP for the purposes of irrigation about 78,000 rais, water supply for the Chiang Rai City and water conservation of the Kok river and Korn river, a tributary, for river transportation and tourism. The weir is located on the Kok river at Ban Pa Yang Mon, Amphoe Muang, Chiang Rai Province and it is about 7 km downstream from the Chiang Rai City. The irrigation facilities are under construction at present of November 1996 and the intake facility will be constructed from December 1996 or early 1997.

b) Alternative 2: New Kok Diversion Dam

Alternative 2: New Kok Diversion Dam was selected in connection with the water diversion rout of alternative "A". The new diversion dam is planned at downstream of Ban Farm, Muang District, Chiang Rai Province or about 3 km downstream of the existing Chiang Rai weir.

Principal features of the Alternatives are shown in Table S.5.3.1. The Thai side study recommended the Alternative 1: existing Chiang Rai weir as the Kok diversion dam with the following reason.

(It is desired to select Chiang Rai weir as the diversion dam site because; it was already constructed, and the control water level is high enough for diverting water to a diversion canal. Besides, this can reduce the construction cost of new diversion structures.)

Principal Features	Unit	Alternative 1 Existing Chiang Rai Weir	Alternative 2 New Kok Diversion Dam
Hydrology and Reservoir			
- Catchment area	km²	6,220	9,330
- Average annual Inflow	мсм	3,645	
- Peak discharge in 100 year return period	m³/s	890	1,105
- Maximum water level in 100 year return period	m MSL	390.50	386.70
- Backwater level at upstream	m MSL	389.00	386.98
- Control water level	m MSL	389.00	385.00
Length of reservoir - Kok river - Korn river	km km	at 389.00 m MSL 9.1 3.1	at 385.00 m MSL
- Surface area of reservoir	km²	2.77	
- Gross storage	мсм	2.95	
Dam facilities			
- Type of dam		Reinforced concrete dam	Reinforced concrete dam
- Type of gate		Radial gate	Radial gate
- Height of steel gate pane	m	4.0	3.80
- Width of steel gate pane	m	8.0	10.00
- Numbers of steel gate	nos.	11	10
- Cut-off channel bed elevation at upstream and downstream	m MSL	384.75	381.50
- Gate sill elevation	m MSL	385.75	381.50
- Pier top elevation	m MSL	392.00	389.00
<u>Dike</u>	- -		
- Crest level	m MSL	390.50	
- Height	m	0 ~ 3	
- Length	km	10.7	

Table 5.3.1 Principal Features of Alternative Diversion Dams

Source : Thai side study

8

×.

5-3-2

The JICA Study Team reviewed the Thai side study and prepared the comments as follows:

	Alternative 1 Existing Chiang Rai Weir	Alternative 2 New Kok Diversion Dam
Advantage		
1)	The utilization of the existing weir as the Kok diversion dam does not make additional environmental problem.	The operation would be more simple.
2) 	The utilization of the existing weir would save the Project cost.	Water resource of the Kok-Lao river is available.
<u>Disadvantage</u>		
1)	It shall monitor the flood condition in the Chiang Rai city more carefully.	It might make a problem crossing the new irrigation canals.
2)	Joint operation by the both DEDP (mainly in dry season) and RID (wet season) is required.	It might make a problem of land acquisition in the value added paddy field by the new irrigation system.
3)		It might increase the dimension of water diversion facilities due to the lower head between the dam and the Ing diversion dam.

If the above items 1), 2) and 3) in disadvantage of Alternative 2; New Kok Diversion Dam are not serious problem or the cost increase is not so much compared with the total project cost, the new diversion dam might be considerable for the safety of the Chiang Rai city.

The site selection of the Kok diversion dam might not be the major issue to select the optimum route alignment from the technical, environmental and economical point of view. The selection of optimum route will depend on the diversion canal and tunnel alignment since the cost and environmental condition of them will affect to the Project much more. It is recommended to decide the suitable location of the Kok diversion dam based on the optimum route between the Kok river basin and the Nan river basin.

5-3-3

The Thai side study recommended the control water level at diversion structures in order to define the optimum dimension of head regulator of diversion canal which can operate without any effect on the downstream water requirement. The control water level at diversion structures was recommended as follows:

Control Water Level = 389.00 m. MSL for Alternative 1: Existing Chiang Rai Weir Control Water Level = 385.00 m. MSL for Alternative 2: New Kok Diversion Dam

The crest length of intake facility will be about 125 m assuming that approach velocity is 0.5 m/s and overflow depth is 2 m in case of the design water diversion discharge at 125 m³/s.

The rating curve and water level fluctuation in wet season at the Kok diversion damsite are shown in Figures S.5.3.1 to S.5.3.3 respectively. Design intake water level of the Kok diversion dam shall be determined taking into consideration the maintenance flow to the downstream of Kok river, stable water diversion and safety of the Chiang Rai city against floods. Judging from the rating curve and water level fluctuation, the design discharge of 125 m³/s could be diverted within some drawdown. It is recommended to study the possibility of the intake water level as follows:

Alternative 1: Existing Chiang Rai Weir	Normal High WL = 389.00 m MSL
	Low WL = 388.00 m MSL

Alternative 2: New Kok Diversion Dam

Normal High WL = 385.00 m MSL Low WL = 384.50 m MSL

Conceptual layout of the diversion dam is shown in Figures S.5.3.4 and S.5.3.5.

(3) Particular Attention for Water Operation and Flood Releasing

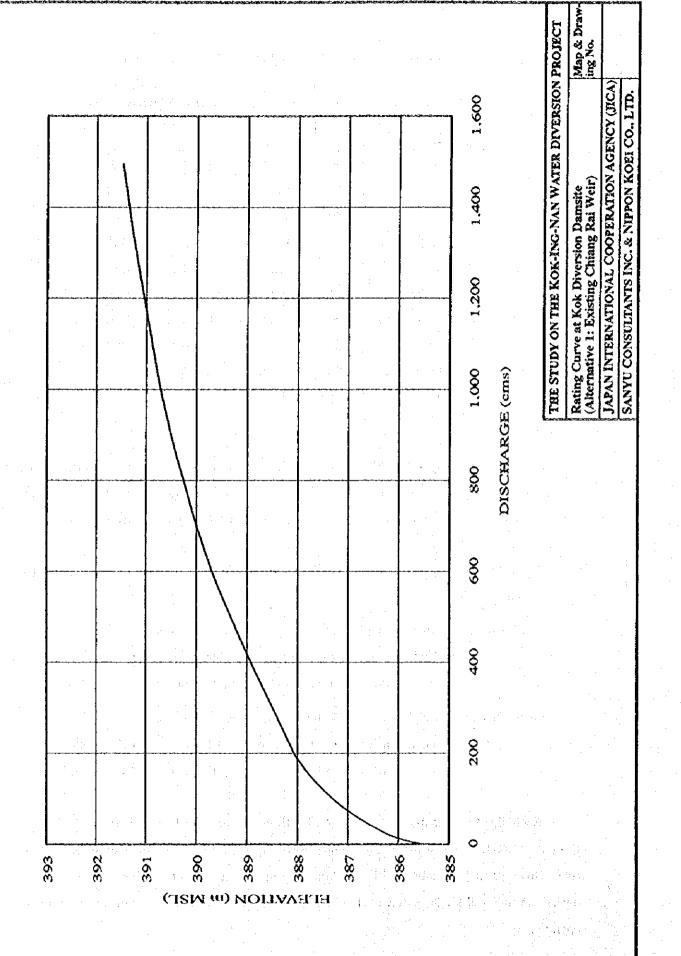
The Thai side study made the preliminary hydrological analysis. Probable flood at the alternative diversion site on the Kok river was estimated as follows:

Probable	Flood and	Water Level a	at Kok Divers	ion Dam
	Existing (ative 1 Chiang Rai /cir		ative 2 iversion Dam
Return Periods (yrs)	Flow (m³/s)	WL (m MSL)	Flow (m³/s)	WL (m MSL)
2	486.85	389.25	638.86	385.55
5	595.50	389.52	761.54	385.90
10	673.05	389.92	852.15	386.10
20	741.74	390.10	932.11	386.25
50	828.41	390.35	1,033.25	386.50
100	890.20	390.50	1,105.26	386.70
500	1,043.82	390.75	1,286.32	387.05
1,000	1,109.86	390.85	1,364.29	387.15
10,000	1,330.30	391.25	1,625.09	387.65

Source : Thai side study

As the results of hydrological analysis are used as basic data for the water resources study and for the design of diversion structures, it is recommended to study the hydrological analysis more carefully. The JICA Study Team regard the preliminary hydrological analysis unreliable.

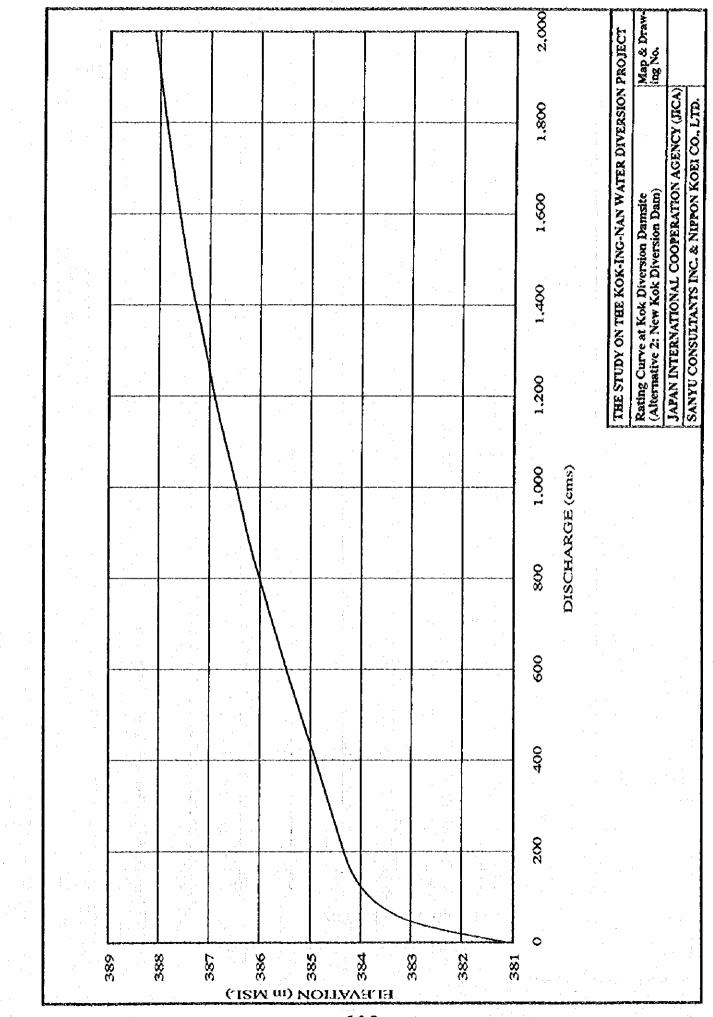
The Thai side study estimated the peak discharge in 100 year return period at the alternative diversion damsites as follows.


Alternative 1: Existing Chiang Rai Weir (catchment area = 6,220 km²) Peak discharge in 100 year return period = 890 m³/s (q = 0.14 m³/s/km²) Maximum WL in 100 year return period = 390.5 m MSL

Alternative 2: New Kok Diversion Dam (catchment area = 9,330 km²)

Flood discharge in 100 year return period = $1,100 \text{ m}^3/\text{s} (q = 0.12 \text{ m}^3/\text{s}/\text{km}^2)$

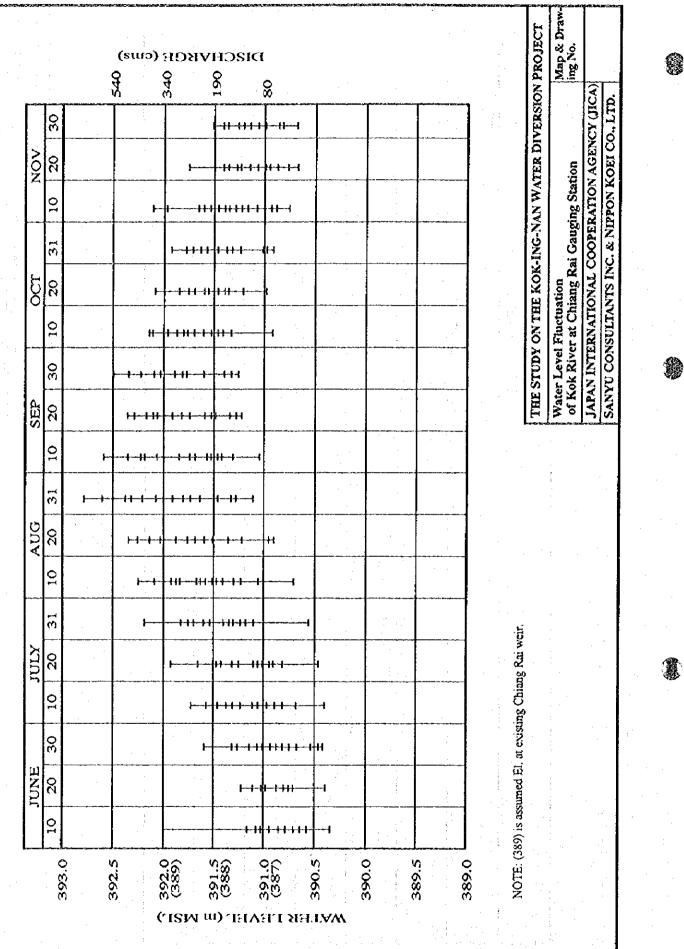
Maximum WL in 100 year return period = 386.7 m MSL


According to the map on a scale of 1/10,000, the elevation of low land area in the Chiang Rai city is about 390.8 m MSL. The Chiang Rai city may be safe against flood from the Kok river. However, it is recommended to establish an operation rule for reliable regulation of the diversion water and for the safety of the Chiang Rai city against flood due to the mistake of gate operation.

5-3-6

-

-



Î

1

5-3-7

.

5-3-8

5.5 Ing Diversion Dam

The Ing diversion dam will regulate water level of the Ing river for the water diversion to the Nan river basin at the design discharge of 175 m³/s which consists of diversion water at 125 m³/s from the Kok river and at 50 m³/s from the Ing river.

(1) Proposed Damsite

The Thai side study set up the following two damsites in accordance with the alternative diversion route alignment.

a) Lower Site

The lower site plan was prepared for the alternative Ing-Yot diversion alignment "A" and "B". The lower site of Ing diversion weir is located on the Ing river at the foot of Mon Kong Khao hill about 2.8 km upstream of the Thoeng bridge. This site is selected to avoid the rise of flood water level at Thoeng District due to the weir construction.

The design of diversion dam with radial gates is not applicable since the pin bearing elevation 364.00 m MSL will be lower than 367.6 m MSL which is the maximum water level in 100 year probable flood. A rubber weir on a reinforced concrete floor was recommended by the Thai side study.

b) Upper Site

The upper site plan was prepared for the alternative Ing-Yot diversion alignment "C". The upper weir site is located on the Ing river about 3.5 km southwest of Ban Huai Luang. Bank elevation at the weir site is at 366.00 m MSL while low water control level upstream of the weir is at 365.50 m MSL. This weir will also be of rubber type. Since hydrological data at the weir site is still unavailable at present, the weir size will be the same as the lower site.

The alternative Ing-Yot diversion alignment "C" was not recommended by the both Thai side and JICA Study Team, since the Ing-Yot tunnel work might be more dangerous and costly due to the poor geological condition. The lower site is recommended for the time being as the Ing diversion damsite from the technical, environmental and economical point of view.

The lower site is located on the flood plain and its catchment area is 2,210 km². The upstream of the lower site spreads as swamp and paddy field. The diversion water of 125 m³/s from the Kok river will flow into the Ing river and increase water level at the damsite above 364 m MSL. The rating curve and water level fluctuation in wet season at the Thoeng bridge, about 2.8 km downstream of the diversion damsite, are shown in Figure S.5.5.1.

It is predicted that cultivation lands on this elevation will be inundated continuously in wet season especially from August to October due to the diversion water of 125 m³/s from the Kok river. In addition, it is required to stop and store the diversion water volume from the Kok-Ing diversion canal (about 3 MCM) in accordance with flood condition in the Nan basin.

The maximum discharge of 784 m³/s ($q = 0.226 \text{ m}^3/\text{s/km}^2$), which was equivalent to 100 year probable flood, was recorded at the Thoeng bridge in September 1980 for the recent 20 years. The recent flood in 1995 marked at 367.45 m MSL, 700 m³/s, which was equivalent to 50 year probable flood. Probable flood at the Thoeng bridge on the Ing river was estimated as follows:

Return Periods (yrs)	Flow (m³/s)	WL (m MSL)
2	293.65	365.60
. 5	413.07	366.60
10	509.50	367.10
20	579.73	367.25
50	700.47	367.50
100	779.89	367.60
500	963.13	367.80
1,000	1,046.46	368.00
10,000	1,311.69	368.20

The extraordinary floods exceeding 50 year and 100 year probable flood occurred for 20 years. The preliminary hydrological analysis by Thai side is questionable. Since the results of hydrological analysis are used as basic data for the design of diversion facilities, it is recommended to study the hydrological analysis more carefully.

The JICA Study Team recommend a flood retention/regulating pond with the Ing diversion dam, taking into consideration that the site area is frequently flooded and that the diversion water of 125 m³/s will increase water level of the Ing river in wet season. The flood retention/regulating pond has the following functions.

- to store the diversion water volume from the Kok river,

- to regulate the water level fluctuation for the stable water diversion to the Nan river basin and

- to protect paddy field from the ordinary floods.

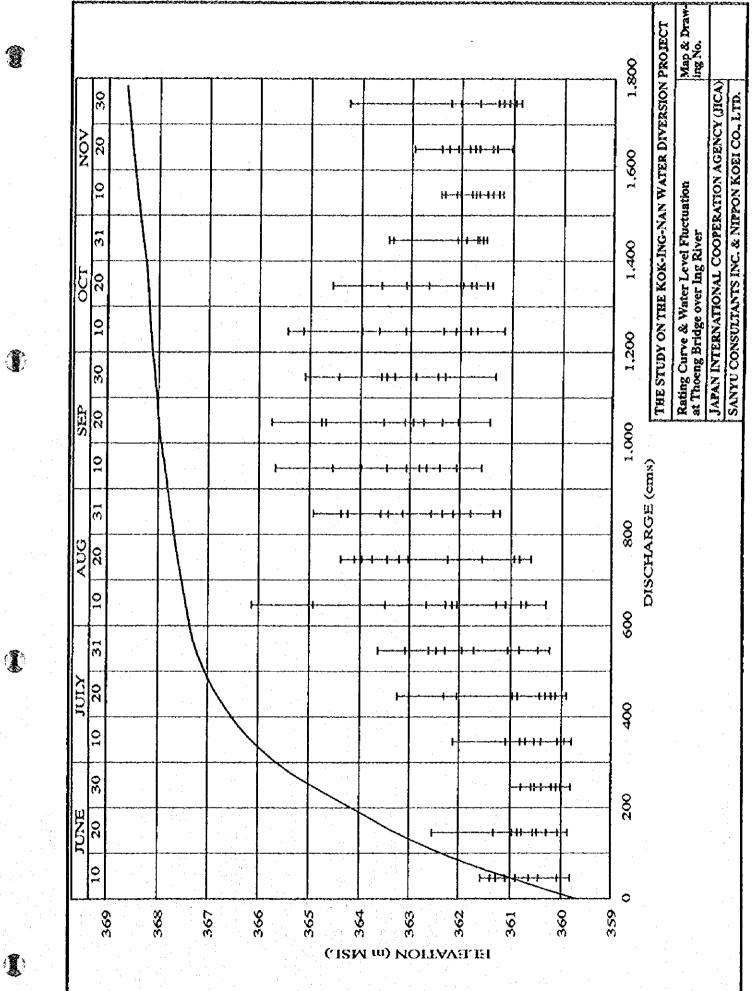
The regulating pond will be provided by the embankment of polder dike along the boundary of swamp. High water level of the regulating pond will be set at 365 m MSL and low water level at 363.5 m MSL. The storage volume is estimated at 6 MCM at HWL 365 m.

It is also recommended to construct a flood diversion canal from the Lao river into the flood retention/regulating pond for the following purposes.

- to protect downstream of the Lao river from floods and

- to utilize flood excess water for the water diversion to the Nan river basin.

(3) Layout of Diversion Dam Structure


The Ing diversion dam is recommended as combined type dam which is composed of reinforced concrete dam with regulating gates and rubber dam. The regulating gates are recommended for the regulation of water level. The intake high water level will be set at 365 m MSL and low water level at 363.5 m MSL.

Conceptual layout of the diversion dam, polder dike and Lao river flood diversion canal is shown in Figure S.5.5.2. Principal features of the conceptual plan of the weir is shown in Table S.5.5.1.

Principal Features	Unit	Recommended by Thai Side Study	Recommended by JICA Study Team
Regulating Pond		none	
- High water level	m MSL	i de la composición d	365 ¹
- Low water level	m MSL		363.5
- Reservoir surface area	km ²		5
- Gross storage	мсм		6
Dam facilities			
- Type of dam		Rubber dam	Reinforced concrete dam and rubber dam
- Type of gate		none	Radial gate
- Height of gate (weir)	m		7
- Width of gate (crest length)	m		10
- Numbers of gate	nos.		1
- River bed elevation at upstream and downstream	m MSL	approximately 358	approximately 359
- Weir sill elevation	m MSL	359.00	359.0
- Weir crest elevation	m MSL	363.50	363.5 (concrete dam)
			365.0 (rubber dam)
- Control water level	m MSL	363.50	HWL 365.0 LWL 363.5
- Maximum water level before the rubber weir deflated	m MSL	364.40	
Intake/Dike			
- Peak discharge in 100 year return period	m³/s	780	780
 Maximum water level in 100 year return period 	m MSL	367.6	367.6
- Crest level	m MSL	369.13	368.6
- Original bank elevation	m MSL	364	364
- Length	km		7

5-5-4

 Table
 5.5.1
 Principal Features of Ing Diversion Dam

£