
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) THE MINISTRY OF INDUSTRY AND TRADE THE MINISTY OF GEOLOGY AND PRESERVATION OF UNDERGROUND RESOURCES THE REPUBLIC OF KAZAKHSTAN

THE MASTER PLAN STUDY ON PROMOTION OF NON-FERROUS METALS INDUSTRY IN THE REPUBLIC OF KAZAKHSTAN FINAL REPORT

SUMMARY

MITSUI MINERAL DEVELOPMENT ENGINEERING CO.,LTD. SUMIKO CONSULTANTS CO.,LTD.

No. 2

·

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) THE MINISTRY OF INDUSTRY AND TRADE THE MINISTY OF GEOLOGY AND PRESERVATION OF UNDERGROUND RESOURCES THE REPUBLIC OF KAZAKIISTAN

THE MASTER PLAN STUDY ON PROMOTION OF NON-FERROUS METALS INDUSTRY IN THE REPUBLIC OF KAZAKHSTAN

FINAL REPORT

SUMMARY

MARCH 1997

MITSUI MINERAL DEVELOPMENT ENGINEERING CO.,LTD. SUMIKO CONSULTANTS CO.,LTD.

1135603 (7)

C

C

Preface

Two major site investigations have been carried out for the project "Master Plan Study on Promotion of the Non-ferrous Metals Industry (Copper, Lead, Zine, and Associated Metals) in the Republic of Kazakhstan" since the project commenced in November, 1995. The results were consolidated into the Interim Report that was presented to the Steering Committee Meeting held on 23rd of October, 1996, at the venue of the Ministry of Industry and Trade in Almaty, Kazakhstan. The contents of the Interim Report were vigorously discussed between the members of the Kazakhstan side and the JICA Survey Team at the meeting.

The Final Report has been prepared on the basis of the results of the discussion, fully taking into account the requests indicated by the Kazakhstan side. The Report is divided into the main and the supplement reports; the main report includes the Master Plan for Promotion of the Non-ferrous Metals Industry based on the analysis of its present situation that is presented in the supplemental report.

This report summarizes the second part of the Final Report.

(b)

Finally, the JICA Survey Team wishes to express its sincere appreciation to the Kazakhstan counterpart ministries and the related institutions for their cooperation and assistance extended to the team in the course of the Master Plan Study. All the members of the Japanese Survey Team are very much obliged to staff members of the ministries institutions, combines, ministerial branches and local governments who cooperated and assisted them with their collection of information.

Ţ

(

CONTENTS

	Preface		
	-		
	1. Concept of Mas	ster Plan	П
	1-2 Objectives ··		12
	1-2-1 Short Ter	m Objectives (1996-2000)	12
	1-2-2 Medium	Term Objectives (2001-2005)	12
	1-2-3 Long Terr	m Objectives (2006 onward) ·····	12
	1-3 Basic Strategy	for Promotion of the Non-ferrous Metals Industry	12
		•••••••••••••••••••••••••••••••••••••••	
		Supply	
		f Present Situation	
		ncentrator Production Plan	
		ss Estimation of Planned Production	
	2-1-4 Exploration	on and Development	33
		ion ••••••••••••••••••••••••••••••••••••	
	2-2-1 Raw Mate	crials ·····	35
	2-2-2 Metal Pro	oduction Plan	37
	2-2-3 Sulphuric	Acid Production	45
	2-2-4 Precious	Metals and Other By-products	47
1	2-3 Rationalizatio	n and Modernization of Production Lines ·····	48
	2-3-1 Overview		48
	2-3-2 Facilities	and Equipment	57
		nd Quality Control · · · · · · · · · · · · · · · · · · ·	59
	2-3-4 Environm	nental Protection and Safety Control	6 1 .
		n of Waste and Unused Materials ••••••••••••••••••••••••••••••••••••	
	2-3-6 Energy C	onservation	62
		nagement ·····	
		Structure · · · · · · · · · · · · · · · · · · ·	
	-	ent Practice	
	+		
	2-5-1 Market Te	rend ••••••••••••••••••••••••••••••••••••	69

9

2-5-2	Transportation ····· 70
2-5-3	Marketing Strategy 72
2-6 Ind	nstrial Restructuring · · · · · · · · · · · · · · · · · · ·
2-6-1	Polymetal Combines in East Kazakhstan
2-6-2	Shymkent Lead Plant · · · · · · · · · · · · · · · · · · ·
2-6-3	JSC "Balkhashmed" ····· 76
2-6-4	Promotion of Metal Processing Industry
	ort for Implementation of Industrial Plans · · · · · · · · · · · · · · · · · · ·
3-1 Roi	c of Government ····· 91
3-1-1	Government's Policy for Promoting the Non-ferrous Metals Industry
3-1-2	Government Related Organizations
3-1-3	Legislative Measures · · · · · · · · · · · · · · · · · · ·
3-1-4	Administration for Environmental Protection
3-1-5	Establishment of Financial Background · · · · · · · · · · · · · · · · · · ·
3-1-6	Industrial Information System ····· 96
3-2 For	eign Aid •••••••••••••••••••••••••••••••••••
3-2-1	International Funding Agencies 99
	Technical Cooperation 99
3-3 The	JICA Survey Team's View on the Kazakhstan Plans 101
3-3-1	Management Contract ····· 101
3-3-2	Company Ownership From 102
3-3-3	Treatment of Debt 109
3-3-4	Main Project for Industry Reconstruction
	Unification of Non-ferrous Metals Enterprises in the CIS 115
3-3-6	Role of MIT and Min Geo · · · · · · · · · · · · · · · · · · ·
4, Item	s of Promotion Plan ······ 119
	plementation Plan of Production 119
	plementation Schedule of Project 120
	n of Support · · · · · · · · · · · · · · · · · · ·
4-4 Fo	reign Aid •••••••••••••••••••••••••••••••••••
5. Acti	on Program for Political Recommendations

 \bigcirc

List of Figures

Fig.1(1)	Flow from Concept to Proposal 14
Fig.2-1-1(1)	Cu Ore Reserve vs Ore Grade 18
Fig.2-2-2(1)	Production Plan ····· 38
Fig. 2-2-2(2)	Raw Material Supply Flow in the Year 2000 43
Fig.2-4-2(1)	Corporate Structure and Use of Data Base 67
Fig.2-5-2(1)	Domestic Railway Tariff per ton of Goods
Fig.2-6-1(1)	Schematic Procedure in Restructuring of East Kazakhstan
Fig.3-1-6(1)	Corporate Information System
Fig.3-3-3(1)	Money Flow of Non-ferrous Metal Industry Plan · · · · · · · · · · · · · · · · · · 113
Fig.3-3-5(1)	Non-ferrous Metals Industry Union (Cooperation)

List of Tables

Table 2-1-1(1)	Operation Result (1994) 15
Table 2-1-1(2)	Major Deposits, Operating, Development, Pre-development
Table 2-1-2(1)	Mine-Concentrator Production Plan (JSC "Zhezkazgantsvetmet" and JSC "Balkhashmed") 21
Table 2-1-2(2)	Long term production plan of polymetallic ore
Table 2-1-3(1)	Mine-Concentrator Profit-Loss Estimation (Copper-1)
Table 2-1-3(1)	Minc-Concentrator Profit-Loss Estimation (Copper-2) 27
Table 2-1-3(1)	Mine-Concentrator Profit-Loss Estimation (Copper-3) 28
Table 2-1-3(1)	Mine-Concentrator Profit-Loss Estimation (Copper-4) 29
	Mine-Concentrator Profit-Loss Estimation (Copper-5)
Table 2-1-3(2)	Profit Summary of Each Mines (polymetal-1)
Table 2-1-3(2)	Profit Summary of Each Mines (polymetal-2)
Table 2-1-4(1)	Major Ore Deposits in Advanced Exploration Stage
Table 2-2-1(1)	Raw Material Sources of the JSC "Shymkent Lead Plant" and JSC "Balkhashmed" ··· 36
Table 2-2-2(1)	Raw Material Supply-Copper Production Forecast (1996-2010)
Table 2-2-2(2)	Raw Material Supply-Lead Production Forecast (1996-2010) 40
Table 2-2-2(3)	Raw Material Supply-Zinc Production Forecast (1996-2010) 41
Table 2-2-3(1)	Supply and Demand of Sulphuric Acid in Kazakhstan 45
Table 2-2-3(2)	Sulphuric Acid Production

0

0

-- iii --

Table 2-3-1(1)	Recommendations for Improvement of Combine (1)~(4)
Table 2-4-2(1)	Comparison of Number of Employees
Table 2-6-3(1)	Metal Production Plan (1996-2010) and Profit-Loss Estimation
Table 2-6-3(2)	Mine-Concentrator Production of JSC "Balkhashmed"
Table 2-6-3(3)	Mine-Concentrator Production of Koktau-Chilisay
Table 2-6-3(4)	Mine-Concentrator Production of Boshekul ····· 83
Table 2-6-3(5)	Mine-Concentrator Production of Samarskoe
Table 2-6-3(6)	Revised Metal Production Plan and Profit-Loss Estimation of Balkhash Smelter/Refinery · 85
Table 2-6-3(7)	Economic Estimation of JSC "Balkhashmed"
Table 2-6-3(8)	Revised Economic Estimation of JSC "Balkhashmed"
Table 3-3-2(1)	Current situation and evaluation of management transfer
Table 3-3-3(1)	•
Table 4-2(1)	Implementation Schedule for Promotion Plan
Table 4-3(1)	Support Program for Implementation of Action Plan 127
Table 4-4(1)	Possible project by using Foreign Assistance Organization
Table 5(1)	Action Program for the Policy support Measures in Promotion Plan

(}

Summary

Following the breakup of the Soviet Union in 1991 and the subsequent independence of the Republic of Kazakhstan, drastic changes have taken place in the republic's non-ferrous metal (copper • lead • zinc) industry. At present, this industrial base is being reconstructed, with the aim of building "an attractive industry", that will be independent and capable of moving forward in a market economy.

Although the international markets for base metals of copper \cdot lead \cdot zinc are mature markets, the demand for these metals is steadily increasing because they are important raw materials that support various industries. It is very important for Kazakhstan, a republic rich in natural resources, to economically develop these resources so that it can provide more value-added products in harmony with the environment. This will create an important pillar that will support the reconstruction of all its industries.

Problems facing the copper · lead · zinc industries of Kazakhstan:

- · Development of stable markets (both domestic and overseas).
- · Reconstruction of raw material base that is economical as an inland resource rich country
- · Establishing independent production enterprise system for independent management.
- (In order to solve the present problems)
 - ① Huge debt

- ② Shortage of working capital
- ③ Superannuated production facilities
- Lack of stable, continuous operations

(inconsistent product quality + rising costs + unreliable product delivery)

- (5) Cessation of new investments (including improvement · renewal)
- Measure for reliable supply of energy for these industries which tend to consume large amounts of energy
- Rationalizing raw material product distribution
- Environmental protection Establish pollution prevention measures

These problems cover all aspects of the industry.

In order to solve these problems and reconstruct Kazakhstan's industries so they contribute to the national wealth, the republic must: establish industrial reconstruction strategies based on resolute ideas and policies aimed at reconstruction and advancement. Both the public and private sectors must strive for advances in the industry by "planning, doing and observing." In other words, the republic must move forward as a whole and serve both as the focus of the movement forward and its impetus.

In this report, we make recommendations to be included in the master plan study on promotion of nonferrous metal (copper, lead and zine) industry in the Republic of Kazakhstan.

· Preparation and establishment of an industrial base in the target year of 2000.

- 1 -

· Stable industrial growth coupled with structural renovations, 2000 - 2005

· Activate the industrial structure and use high technology, 2005 -

These are our targets. Although we are taking a long-term view of this matter, the present proposals mostly emphasize short-term plans and measures. Our proposals are basic policies outlined below.

[Policy 1] Establish industry scale corresponding to the promotion.

Metal production amounts should be a yardstick for determining the size of the copper · lead · zinc

industries in Kazakhstan.

- Forecasting market trends for metals, all of which are internationally marketable commodities.
- · Future economic potential of natural resources of Kazakhstan, an inland nation in a market economy.
- · Restrict these industries for environmental preservation.

After examining the above items, we set up the metal production on the following scale:

thousand tons/yr

60

	Production Estimate for 1996	Production Estimate for 2000	Production Estimate for 2001-2005	Production Estimate for 2006-2010
Electrolytic copper	320	360	380	380
Lead	90	120	130	130
Zinc	160	220	280	260

[Policy 2] Preparing production systems that are suitable for the size of the industry.

Current production enterprises are classified into three categories based on their present production capital potential (personnel material capital information). The implementation of maintenance of the enterprise corresponds to its category implement reform.

· Companies that have good potential (evaluated and classified as A).

Proceed with "privatization" based on the company's flexibility, efficiency and raising capital, all of which are qualities important to a private company's management, and in this manner build a sound capital enterprise.

Companies that can be reconstructed and turned into companies with potential (evaluated and classified as B).

Depending on the special treatment of the accumulated debt, profitable assets and accumulation of capital, turn these companies into profitable companies.

• Companies that have no potential to continue in a market economy (evaluated and classified as C). If careful re-examination cannot find the company's future potential then close it down.

[Policy 3] Projects for investment in facilities:

Projects to accelerate the development of new mines having high potential and provide facility and equipment to prevent industrial pollution should be given the highest priority.

[Policy 4] <u>Prepare an environmental protection system and aim at constructing industries that are environmentally friendly.</u>

[Policy 5] Strengthen MIT's promotion support function

The MIT must take advantage of their public planning and authority in order to overcome the industry crisis caused by the sudden change in the base of the industry and create steady growth.

Establish policy and industry promotion toward related enterprises, supervision • inspection • strengthen the support function

[Policy 6] Provide promotion capital

① In principle, the companies themselves should be responsible for its supply of the necessary funds.

· Increase the internal finance

Retained profits

- Items exempt from taxation

- Exempt reserve funds · Special depreciation

-Time limit for taxation - Exemption or limited reduction of tax

· Accelerate the smooth practical use of external funds.

As a means of direct financing: evaluate the company stock price and sell it . Introducing foreign capital.

As a means of indirect financing: Financing from export credit agency/multilateral agency

Project financing

Practical use of international financial institutions

National assistance to credit guarantee

- 2) Cost supplement should be the basic rule for public corporation.
- · Government's general accounting, investment and lending program.
- · Two-step loan from international financial organizations
- Foreign aid

()

③ Basically, Kazakhstan should handle its own structural reforms, unprofitable businesses.

· The nation's special accounting (establishment of fund)

Foreign aid

Summary of recommendations are as follows:

(1) Reform the constitution of the industry production organization to make it more profitable

- 1) Raw material bases should be restructured
 - Develop new mines

Increase · decrease production at existing mines

- Withdraw from unprofitable businesses

- Modernize production lines

① Mine

· Mining plan for potentially economical reserves in amount and quality

- Renewal of equipment and facilities to improve productivity

Reduction of production costs

· Investment plan

② Mineral dressing (Beneficiation)

- · Renewal and modernization of facilities
- · Improvement of concentrate quality
- Reduction of costs of transporting concentrate
- Treatment of waste and wastewater

2) Production of raw metals

- Corresponding to a stable supply of raw materials, readjust the facility capacity so that company will be able to stabilize their operations (Target: 2001)

6

① Copper

 JSC "Zhezkazgantsvetmet" 	Electrolytic copper: 200,000 tons/year,	
	Own mine production	Ć
+ JSC "Balkhashmed"	Electrolytic copper: 150,000 tons/year,	~
	Own mine production and toll, Irtysh blister	
 JSC "UK Pb-Zn combinat" 	(Blister: 70,000 tons/year, Domestic mine production) - (Irtysh Copper	· ·
	Smelter)	
	Electrolytic copper: 30,000 tons/year, Irtysh Blister	-
2 Lead		
· JSC "Leninogorsk PC" (Polymet	al Combine): 40,000 tons/year, Battery scrap (Northern Kazakhstan area,	
	Neighboring Russian areas)	
• JSC "UK Pb-Zn Combine":	60,000 tons/year, depending on lead concentrate from	
	domestic mines	
• JSC "Shymkent Lead Plant":	50,000 tons/year Concentrate mainly from mines in	6
	• Uzbekistan • Tajikistan (Purchased concentrate • Toll)	
	Lead waste from copper smelter	
	Battery scrap (Southern Kazakhstan area, Neighboring CIS)	

③ Zinc

R

• JSC "Leninogorsk PC": 100,000 lons/year, Polymetal mine in East Kazakh Pro	JSC	"Leninogorsk PC":	100,000 tons/year, Polymetal mine in East Kazakh Pro	vince
--	-----	-------------------	--	-------

• JSC" UK Pb-Zn Combine": 180,000 tons/year, Polymetal mine in East Kazakh Province

- Improvement of working environment conditions • improvement of pollution prevention facilities.

In particular, SO2 gas countermeasure in sulfuric acid production and exhaust gas desulfurization

- Stable product quality and quality certification • inspection • management

- Energy conservation measures

3) Processing industry

It is necessary to restructure the metal processing industry in order to reinforce competitiveness in terms of quality and price in the world market.

- Active market development in Kazakhstan · CIS, China and Southeast Asia countries

① Secondary processing of copper and its alloys

Secure stable customers

• Completion of reconstruction and modernization of rolled metal production at JSC "Balkhashmed". Improvement of product quality.

② Manufacture lead batteries

· Accelerate construction work at the battery manufacturing plant in JSC "Shymkent Lead Plant".

· Affiliated companies involved in the recycling business.

③ Processing raw zinc metal

Promote zinc galvanizing industries in cooperation with steel industries.

Die-casting industries meeting the demands of the machinery industries in Kazakhstan and CIS.

· Manufacturing dry battery pellets

4) Restructure operation management system

Needless to say, each enterprise has a unified operation vision and will draft and develop an important operation strategy. The management of mining, beneficiation, smelting and processing companies should be separated into divisions. Each division should clarify its income and expenditures. Moreover, each enterprise makes and executes a short-term business plan (budget) then analyzes the difference between the goals and the actual results. Quick adjustments are necessary.

- Financial management

• Division of accounts for mining, beneficiation and smelling operations.

② Concentrate purchasing conditions

- 3 Understand the production costs regarding sales income for each product.
- Purchase management
- (1) Withdraw from bartering and move toward purchasing with currency.
- 2 Reasonable levels of inventories of raw and other materials and finished products.
- 3 Countermeasure for purchase of stable power and energy.
- ① Rationalize distribution.
- Production Management
- ① Production plan under the condition of continuous operation and put it into practice.
- ② Facility maintenance and periodic repair plans
- Personnel Management
- ① Allocate workers according to the needs of the production process, quality rationalization and modernization.

6

- 2 Problem that part of the welfare costs should be borne by each individual worker and salary.
- Information Management
- ① Establish an enterprise database
- 2 Share information within each enterprise and make good use of such information.
- ③ Secure and disclose secret information.
- Activation of organization
- ① Regarding the welfare division:
- Transfer this division to the provincial government.
- Make the division a separate enterprise.
- · Establish the division as a enterprise in the third sector (semi-private company).
- ② Regarding the transportation division
- Make the division a separate company.
- Establish the division as a company in the third sector.
- 3 Make the engineering and repair division a separate company.

5) Important issues regarding the reform of the production system.

Classify the production enterprise according to its production capital potential. Specify important issues

for reforming the production system. We recommend the following.

- East Kazakh Area (Polymetal)
- ① Developing new mines (increase the copper portion)

② Reinforce the copper smelter at Irtysh (70,000 tons/year)

③ Privatization, combining enterprises, strengthening cooperation among enterprises (building a network among enterprises)

① Businesses not related to the main business should be turned into separate companies.

- Lead smelter at Shymkent
- ① Accelerate realization of the lead battery manufacturing project.
- Dustom smelter produces raw lead material mainly used for lead battery.
- Balkhash smelter
- ① Promote the development of its own mines. Close down unprofitable mines.
- ② Move forward the production project that uses the SX-EW process.
- ③ Proceed with the rationalization by changing the company's form.

Ð

(2) Market and market development

- 1) Perspective for base metal demand and world prices
- Increase according to the economic growth (note growth in Asia.)
- There will be no price change until 2000. Prices are expected to go up slowly after 2001.
- This market is mature. At present, there is an approximate balance between world supply and demand.
- The price of this product has poor elasticity, although prices may greatly fluctuate over the short term.

2) Market strategies for the Republic of Kazakhstan

- In order for the CIS market to recover, increase the number of customers and construct a good sales network.
- Participate in the growing Asian market (China and India)
- Establish product quality reliability and a stable supply.

3) Concrete strategic development

- Registration to LME

Stable production \rightarrow Secure reliability of product quality + volume.

- Establish and nurture a Non-ferrous Metal Trading Firm.

- Establish a Trade Promotion Agency.

(3) Promote execution of the promotion plan

1) Promotion policy

- Decide on promotion measures for policy and important non-ferrous metal industry reconstruction promotion (making rules and regulations · budgetary measures)

- Cooperation of every related ministry and approval based on the law

- MIT make plans, guidance, support - management for promotion countermeasures

-With respect to MIT and metal industry system (public corporations · semi-private companies · private companies):

IJ

① Strengthening guidance and support (Require that management committees • duty to report management information)

② Entrust to metal promotion agency the work for management support of public enterprise (except during management entrustment).

2) Establishment of promotion policy support organization (example establishment and management of metal industry policy committee)

- Exploration Agency (jurisdiction of Ministry of Geology + public corporation)

- Non-ferrous Metal Promotion Agency (jurisdiction of MIT • public corporation)

- Non-ferrous Metal Trading Firm (jurisdiction of MIT · Semi-private company)

- Trade Promotion Agency (jurisdiction of MIT · public corporation)

- Society of Non-ferrous Metal Industry (voluntary group by members)

3) Roles of the provincial government

- Adjustment of employment

- Accept public welfare work (controlled by government or making semi-private company.)

- Establishment, investment, management of semi-private enterprise for promotion of local industry company.

- Participate in Environmental Control Technology Center (• a public corporation).

4) Support through revision of laws

- Tax system: Establish a favorable tax law for industry promotion.

- Foreign capital law, provide incentive for participation to foreign capital.

- Company laws, Enterprise accounting laws

D Company inspection system (strengthen inspection · inspector from outside company)

2 Adoption of exemption/depletion system

- Laws concerning privatization

① Make law for management contract system concerning time limit.

2 Enact approval items to private company for underground resource industry.

- Financial countermeasures

① Project finance

2 Introducing foreign capital

3 Examination for establishing Metal Industry Promotion Fund

③ Special account

(4) Environmental protection

Combination of natural environment and implementation of environment protection as components for the maintenance and development of industry.

To protect the environment, prevention countermeasures must be done related by production enterpriseregion-government

- · Pollution control for production activity of enterprise
- · Develop environmental standards and management standards
- · Establishment of inspection and control system
- 1) Role of the Ministry of Environment
- Nationwide environmental protection
- Establishment of environmental standards
- 2) Environmental control and inspection by MIT
- Environmental protection to deal with manufacturing activities
- 3) Environmental control and inspection of each area
- Establish the Environmental Control Technology Center
- 4) Treatment and control of industrial waste
- Control standards

(3)

- Recovery of valuable material
- 5) Improving the working environment

(5) Industry information system

It is necessary to collect, sort and disclose accurate information for quick treatment for the change of enterprise management, environment condition • for introduction of forcign • promotion of forcign investment.

- Internal enterprise information system

- Foreign market information

- Establishment of industry information system and disclosure of information

- Industry statistics

(6) Aid from foreign countries

For the reconstruction and promotion of the Kazakhstan industry, technical cooperation from western countries is needed for the important issues of the industry for economical cooperation, for example foreign financial aid.

- 1) International cooperation organization
- Financial aid

- Development aid

2) Technical cooperation items

- Exploration for new mines

- Environmental protection (control center + training)

- Rationalization • modernization of production

① Make feasibility study

⁽²⁾ Energy conservation measures

3 Control, inspection and guarantee of product quality

- Management control (dispatch qualified consultant · training)

Recommendations will be put into a plan which is listed as one idea of the action plan. The action plan consists of:

Ø

(1)

(

- Actual plan for metal production

- Actual plan of supporting countermeasures

- Possibility of forcign aid to each industrial issue

- Development plans to promote governmental industry promotion policies

Currency Exchange Rate in this Report

Year	TENGE/US\$	TENGE/RUR
1994	35	16.0
1995	60	13.5
1996~	65	(
1*Ref.	1.66 JY/Tenge in F	y 1995

(JY : JAPANESE YEN)

1. Concept of Master Plan

1. Concept of Master Plan

Since 1991, the non-ferrous metals industry of the Republic of Kazakhstan has been facing to the fundamental change due to the collapse of the former USSR system. Based on the new foundation, the non-ferrous metals industry needs to make an industry innovation development strategy and a plan to implement change at a high level.

0

(Past)

The Kazakhstan non-ferrous metals industry was a major base for production and supply of metals under the state planned economy of the former USSR.

(Present)

Kazakhstan is located in the CIS economic region. Under the market economy, the market has changed to a global market. The Non-ferrous Metals Industry produces valuable processed goods using underground mineral resources and produces and sells the profitable goods. The continuous development of the industry contributes to the national wealth.

(Future)

Based on the new foundation for industry, it must produce competitive goods for development and restoration. The competitive goods are as follows:

① The quality must be suitable to international standards and guaranteed.

2 Be able to manage production costs that fluctuate with the international price.

③ Be able to supply stability for the client.

Establish industry organization for independent and continuous development and profitability.

Master plan for non-ferrous metal industry promotion (shown on Figure 1 (1))

Escape Crisis	Establish Industry's	Industry	Industry Activity
Situation	Foundation	Innovation	Changes to High Level

1-1 Ultimate Goal

The ultimate goal of the Master Plan is to reconstruct the presently troubled non-ferrous metals industry in the Republic of Kazakhstan so that the industry can substantially contribute to the national economy under market economy conditions. It is desirable that the industry provide its products necessary for social development at prices competitive on the world market. The industry should also be conscious of the global environment and human health and safety, and operate in harmony with the environment and society.

((§)

(†)

1-2 Objectives

1-2-1 Short Term Objectives (1996-2000)

(1) To rescue the industry from its present troubled state.

(2) To established an industrial base so that the industry becomes competitive under market economy conditions.

(3) To establish environmental conservation and monitoring systems.

(4) To establish systems for resource exploration and mine development.

1-2-2 Medium Term Objectives (2001-2005)

(1) To reform industrial fundamentals and production systems.

(2) To reform the industrial structure.

1-2-3 Long Term Objectives (2006 onward)

(1) To make the profitable operation sustainable.

(2) To establish the base of the industrial growth.

1-3 Basic Strategy for Promotion of the Non-ferrous Metals Industry

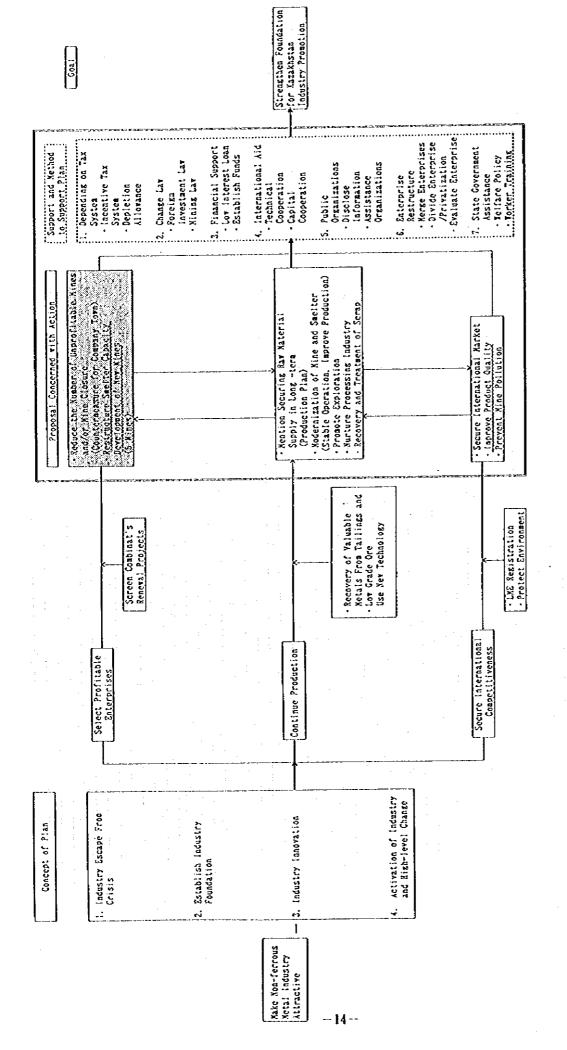
The non-ferrous metals (copper, lead, zine and associated metals) industry of the Republic of Kazakhstan is facing crucial difficulties due to a huge amount of accumulated debt, lack of working capital, shortage of raw materials and other necessary supplies, increasing costs, obsolete facilities and equipment, and so forth. In order to restore the currently troubled Industry, effective measures have to be taken based on the following basic strategies;

(1) The Kazakhstan Government should place the restoration of the Industry in one of the most important items in its economic policy.

(2) The government should prepare an effective plan and provide a legislative background for implementation.

(3) The government should regulate and supervise the performances of enterprises (or combines) that have been privatized or transferred to foreign firms for their management.

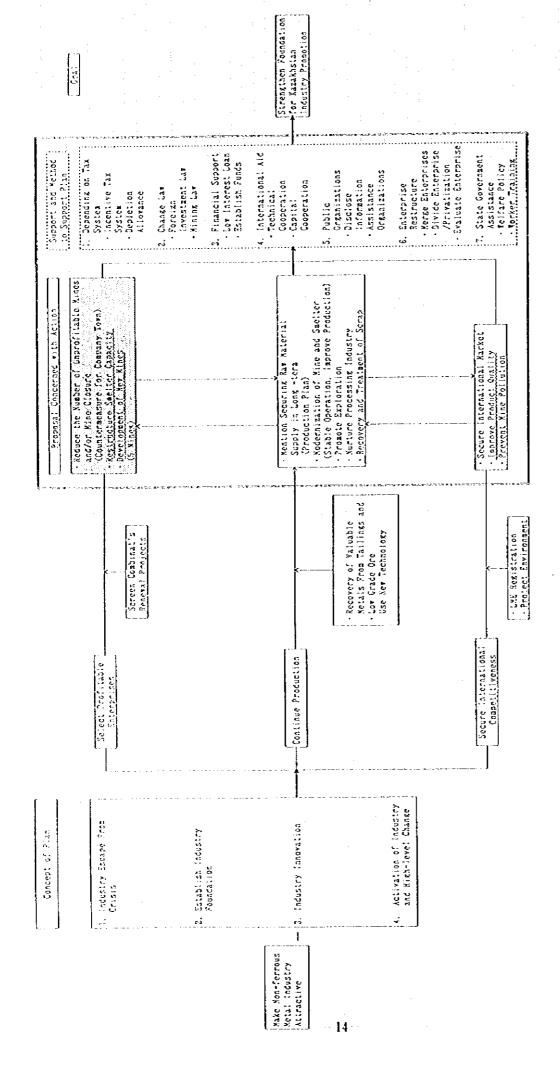
(4) The government should extend its assistance to an enterprise dealing with the most important projects of the Industry. (5) The government should accelerate the programme to remove social welfare burden on enterprises.


(6) The government should found necessary organizations or institutions that take care of nonprofit activities associated with the Industry.

(7) The government should arrange financial assistance from available international funding agencies as required for the restoration.

Fig. 1(1) indicates the procedure from the concept to the proposal for implementation of the Master Plan.

0


 \bigcirc

«Reference-Slow of Kazakhstan Non-ferrous Netal Industry Promotion Plan

Fig.1(1) Flow frem Concept to Proposal

Ć

*Reference-Flow of Xazakhstan Mon-ferrous Metal Industry Premotion Plan

Flow from Concept to Proposal Fig.1(1)

.

É

2. Industrial Plan

0

D

2. Industrial Plan

2-1 Raw Material Supply

2-1-1 Review of Present Situation

The problems with respect to the raw material supply to metal producing plants in Kazakhstan are summarized as follows;

(1) A number of mines and concentrators are now being operated in economically unjustifiable states. Ores are too low grades and costs are too high. Combines operating such mines and concentrators are making considerable losses (Table 2-1-1(1)) which have mounted to critical levels and have lead to a large amount of debt. Accordingly, these combines are placed financially in extremely difficult positions and are forced to reduce their production due to shortage or lack of working capital.

							(Thous	and Tenge)
No.	Name of JSC	Value of Output	Production Cost	Sales Revenue	Profit from Sales	Profit from Other Sales	Profit from Non-Sales Operation	Operating Profit
1	Achpolymetal	276,941	603,090	207,051	-396,039	25,752	-4,315	-374,602
2	Zhezkent MCC (Mining-	633,302	529,248	565,934	36,686	29,042	28,550	94278
	Concentrating Combine)				:		· · ·	
3	Zyryanovsk Lead Combine	1,239,505	1,018,222	1,081,005	62,783	-33,609	-10,981	18193
4	Irtysh PC	92,593	182,272	85,448	-96,824	88	7,116	-89620
5	Karagaily MCC	75,099	89,415	44,339	-45,076	15,337	-22,377	-52116
6	Leninogorsk PC	2,526,658	2,137,991	3,031,324	893,333	3,096	-89,562	806867
7	Tekeli Pb-Zn Combine	245,925	259,392	229,342	-30,050	38,991	-229	8712
8	UK Pb-Zn Combine	7,244,581	4,359,108	5,533,604	1,174,496	100,922	-2,621,749	-1346331
9	Shymkent Lead Plant	1,283,671	1,358,254	1,114,294	-243,960	26,301	-7,660	-225319
10	Akshatau Ken- Baiytu Combinaty	289,584	282,486	244,601	-37,885	, Ó	-45,909	-83794
11	• -	8.548.752	5,869,443	9,702,891	3,833,448	1,990	-1,121,617	2713821
12	Zhezkazgantsvet- met				-			

Table 2-1-1(1) Operation Result (1994)

(2) Since the last stages of the collapse of the former USSR, exploration and development of new resources has been stalled mainly due to a shortage of funds. Despite the general belief, potentially economic resources which

9

0

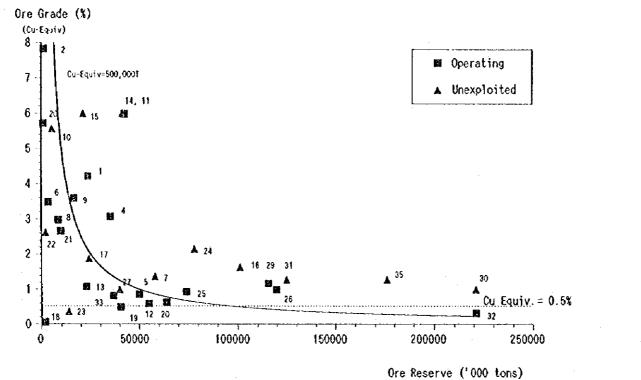
are ready to be exploited, are scarce (Table 2-1-1(2)). The ore reserve-ore grade relation is one of the indications to understand the economic viability of ore deposits and is shown in Fig.2-1-1(1). A curve of 500,000 tons of contained equivalent copper is drawn in the figure and equals to a gross value of US\$1.1 billion at the price of US\$2,200. The gross value is equivalent to a gross operating cost of mining and dressing ores of 50 million tons at US\$22 per ton of ores. In other words, the ore deposits that are plotted below the threshold curve are not economically viable unless their operating costs for a ton of ores are less than US\$22 for the ore deposits with 50 million ton reserves. Normally, the larger the ore reserves are, the smaller the unit operating costs become with increasing unit outputs, and vice versa. It must be noted that ore dressing recoveries are not taken into account. A straight line of 0.5% copper-equivalent is also drawn in the figure and indicates a threshold of economic viability regardless of the mining or processing methods, locations or other factors unless ore reserves exceed the order of a billion tons. A number of operating mines are below this curve. Their economic viability is doubtful, taking account of mining extraction, ore dressing recoveries and smelting and refining charges, even assuming that all the capital costs have been written off. The Kounrad Mine has the reserves of 685,000 thousand tons of contained copper. However, its operation is unprofitable with the average grade far below the threshold line of 0.5% copper. For unexploited ore deposits, capital costs for development of mines and construction of concentrators must be taken into account in addition to operating costs. Therefore, they should be plotted far above the threshold curve to make up for their capital costs. Among the deposits in development or pre development stages, the Maleevskoye and Artemvevskoye are superior in their tonnages and grades, and are located in the proximity of smelters. Small but high grade deposits, such as the Yubileyno-Snegirihinskove, may be commercially exploited. Other unexploited deposits that are plotted above the threshold curve require elaborated feasibility studies according to individual conditions and parameters.

(}

()

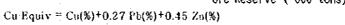
(3) There are two major smelters that are facing extreme difficulty in raw material supplies, namely the JSC Shymkent and Balkhash Smelters. The former has been built to treat lead ores mainly from the Almalik Combine, that is located in Uzbekistan, now to the south of the international border. The latter is relying upon more than one third of its raw materials from foreign sources which are at extremely remote locations, in Mongolia (Erdenet) and Chile (Escondida and Chiquiquamata).

. .


0

٢

0


Start Mining in 2006, 9000 T.T./Yr. 0/P Max. Plan 2,300 T.T./ Yr in 2003, 0/P Reduce Output 4,000 T.T./Yr in 2000 Max, Plan 7,000 T.T./Yr in 2001, 0/P Max. Plan 3,000 T.T./Yr in 2005, O/P Max. Plan 1,000 T.T./Yr in 2009 U/G Max, Plan 300 T.T./Yr in 2001, U/G Start Mining in 2001, 1500 T.T./Yr Start Mining in 2006, 2500 T.T./Yr Max. Plan, 1, 200 T. T. / Yr in 1999 Max, Plan 4,000 T.T./Yr in 1998 Max. Plan 1,200 T.T./Yr in 1999 Max. Plan 1,500 T.T./Yr in 2002 Max. Plan 2,500 T.T. Yr in 1997 Max. Plan 4,000 T.T./Yr in 1997 Max, Plan 1,000 T.T./Yr in 2001 Max. Plan 200 T.T./Yr in 1997 Max. Plan 700 T.T./Yr in 2000 Closed in 1999, too low grade Remarks Max. Plan 1,000 T.T./Yr Mine-Out in 2008 Mine-Out in 2001 Mine-out in 2005 No Concentrator No Concentrator No Concentrator Mine Out 2003 Mine Out 2002 **Barite** 6.00 Development U/G 500 T.T./Yr 0.99 Operating U/G 7,6001 T.T./Yr 0.93 Operating U/G 6,000 T.T./Yr 0.63 Operating O/P 3,700 T.T./Yr 1.16 Operating U/G 2,350 T.T./Yr 0.69 Operating O/P, 2,000 TT./Yr 0.81 Operating U/G 3,280T.T./Yr 0.31 Operating O/P, 7,800TT./Yr 0.86 Operating U/G 2240 T.T./Yr 4.22 Operating, 0/P 500 T.T./Yr 7.83 Operating, 0/P 200 T.T./Yr 3.08 Operating U/G 970 T.T./Yr 3.60 Operating U/G 340 T.T./Yr 5.98 Operating U/G 900 T.T./Yr 0.59 Operating U/G 680 T.T./Yr 1.08 Operating U/G 430 T.T./Yr 2.66 Operating U/G 400 T.T./Yr 2.98 Operating U/G 200 T.T./Yr 3.49 Operating U/G 80 T.T./Yr 0.06 Operating U/G 41 T.T./Yr 0.49 Operating U/G 40 T.T./Yr 0.65 Development Suspended 1.37 Development Suspended 1.82 Development Suspended 5.72 Operating U/G 7 T.T./Yr Present Status 0.37 Developementn Plan 6.00 Detailed Exploration 2.15 Opration Suspended S.S9 Development, U/G 1.63 Development Plan 1.88 Development Plan 0.99 Development U/G 1.27 Development Plan 5.57 F/S Completed 0.36 2.62 Zn Cu-Eo. 8.31 5.17 2.10 3.83 4.18 4.40 3.33 0.84 1.20 7.29 3.24 6.89 0.88 3.37 7.29 3.23 0.55 3.65 3.20 0.07 12.70 4.17 4.23 Ore Grade (%) 3.74 1.30 0.67 1.64 2.67 1.55 0.64 60.0 06.0 0.15 2.00 4.22 0.95 2.89 1.35 1.00 0.94 0.10 0.42 0.44 0.36 2.42 1.11 2.45 0.48 1.96 1.96 0.52 0.85 0.37 0.35 1.85 0.47 0.21 0.78 3 41 0.67 2.42 1.11 ð 0.93 0.99 1.16 0.99 0.69 23.1 0.65 0.81 0.63 1.27 0.31 0.37 3 35.293 3.316 8.359 5,216 42,374 41,319 115,441 176,000 1,430,000 54,856 1,238 1.860 40,600 9.580 2,006 36,733 64,009 40,000 S0.059 6,235 22.927 813 13.635 78,122 119,758 220,899 11.717 23,643 21,473 S7.992 21.075 101.047 24,175 73,981 124.903 221,118 Location Ore Reserve Ë E. Kazakh. E. Kazakh. E. Kazakh. E. Kazakh. Kzyt-Orda Semipala. Semipala. Paviodar T-Kulgan Zhezkaz. Zhezkaz. Zhezkaz. Akchu. Shemonaihinskoye Ridder-Sokolnoye Name of Mine Artemyevskoye W. Zhezkazgan Belousovskoye Zyryanovskoye N. Zhezkazgan E. Zhezkazgan S. Zhezkazgan Akchi-Spassky Zhilandinskaya Nicolaevskoye Grehovskoye Maleevskoye Tishinskoye Shubinskoye Orlovskoye Maleev. Yar Irtishkoye Mirgalimsai Yubileynoe Annensky Shalkiya Chekmar W. Tekeli Boshekul Glubokiy Kounrad Aktogay Achisai Zhairem Koktau Tekeli Tuyuk Sayak Talap 12 JSC "Zyryanovsk Lead Combine" 21 JSC "Tekeli Pb-Zn Combine" JSC "Zhezkazgantsvetmet" Name of Combine 24 JSC "Sary-Arkapolymetal" 4 JSC "Leninogorsk PC" JSC "Zhezkent MCC" 16 JSC "Achpolymetal" 32 JSC "Baikhashmed" 8 JSC "Irrysh PC" 1 JISC "EKCONC" 25 36 S σ 7 1 σ, 2 ŝ 2 2 ~ 00 6 20 20 28 53 8 30 34 ŝ 22 23 27 ~ ź

-17-

Ø

Q

2-1-2 Mine-Concentrator Production Plan

9

A raw material supply plan has been drawn up as shown in attached Tables 2-1-2(1) and 2-1-2(2). Although economic parameters have not been taken into account, it is assumed that some mines and concentrators which are considered economically unjustifiable, remain in operation by absorbing their losses within the entire operation of the relevant combines. The reason is that sudden closure of these mines and concentrators will create a critical shortage of raw materials at smelters and social and labour unrest in the short term. The plan involves the establishment of economically sound bases for the operations in the first 5 years, to reform their systems for profitability in the second 5 years and to make the profitable operation sustainable in the third 5 years.

୍

JSC Desc. Assertion Cate Constraint Cons	Combine	Mine Name	Ore Reserves (K1, 1996) Grade	Wining	Dil. (%)	Re. (%)	Winable Ore Reserves (Kt, 1996) Grade	Recovery in each	1002	1 1007	1009	1000	1 2004	2001				Wetal					12010	2019	1 2012	1 2016	1 2010	1 2020	Total Production (Kt) (until 2035)	Remaining Reserves (Kt) (in 2035)
Sect. Yunge Sect. Yunge (11) <td>kazgantsvet-</td> <td>East Zhezkazgan</td> <td>85,003 Cu(%) 1.00 Pb(%) Zn(%)</td> <td></td> <td>1</td> <td>80</td> <td>73, 981</td> <td>3 82</td> <td>5.830</td> <td>6.000 46</td> <td>6,000</td> <td>6, 000</td> <td>6,000</td> <td>4, 100</td> <td>4, 70(</td> <td>3, 350</td> <td>3, 350</td> <td>3. 350</td> <td>3, 350</td> <td>3, 350</td> <td>3, 350</td> <td>C</td> <td>0</td> <td>(</td> <td></td> <td></td> <td></td> <td></td> <td>59, 330</td> <td>14,65</td>	kazgantsvet-	East Zhezkazgan	85,003 Cu(%) 1.00 Pb(%) Zn(%)		1	80	73, 981	3 82	5.830	6.000 46	6,000	6, 000	6,000	4, 100	4, 70(3, 350	3, 350	3. 350	3, 350	3, 350	3, 350	C	0	(59, 330	14,65
Vert Vert V/G V			139,219 Cu(%) 1.07 Pb(%) Zn(%)	U7G	1	80		82	7, 620 62		7.600 62					5, 300 43	5. 300 43	5, 300 43	5, 300 43	3, 800 31	3.800 31			3, 800 31					97, 220 793	22. 53 19
Apric 1.0 Appic 1.0			42,702 Cu(%) 0.88 Pb(%)		1	80	36, 733 0, 81	82	3.280	3, 280 22	3. 280 22	3, 280 21	3. 280 22	3, 280 22	3, 280		2.350 16	2. 350 16	0	0	C G	0	0	(6, 72 18
Americal V (C) Add(x) U/C I B0 115: (41) (1.16) 2, 354 2, 354 4, 00 <td></td> <td></td> <td>Ag(g/t) 62,009 Cu(%) 0.68 Pb(%)</td> <td>0/P</td> <td>7</td> <td>96</td> <td>64,009 0.63</td> <td>82</td> <td>3.700 19</td> <td>4.000 21</td> <td>4, 000 21</td> <td>4, 000</td> <td>4, 000 21</td> <td>4.000 21</td> <td>4, 000 21</td> <td>2,800 15</td> <td>2.800 15</td> <td>2, 800 15</td> <td>2,800 15</td> <td>2, 000 10</td> <td>2,000</td> <td>2,000</td> <td>2,000 10</td> <td>2, 000 10</td> <td></td> <td></td> <td></td> <td></td> <td>50, 900 264</td> <td>13, 10 20</td>			Ag(g/t) 62,009 Cu(%) 0.68 Pb(%)	0/P	7	96	64,009 0.63	82	3.700 19	4.000 21	4, 000 21	4, 000	4, 000 21	4.000 21	4, 000 21	2,800 15	2.800 15	2, 800 15	2,800 15	2, 000 10	2,000	2,000	2,000 10	2, 000 10					50, 900 264	13, 10 20
hxchi Ag(a') Ag(a') B0 100.020 0 0 0 1.500		Annensky	Ag(g/t) 134,200 Cu(%) 1.25 Pb(%)		1	80	115, 441 1, 16	82		2, 350 22	4, 000 38			4.000 38	4, 000 38	4,000 38	4.000 38	4, 000 38	4,000 38	4, 000 38	2,800 27			2, 800 27	2, 800 21	2.80	2,00	2,000		23, 54 20
2hilandin- skava Aq(q/1) Aq(q/			Ag(g/t) 220,899 Cu(%) 1.06 Pb(%)	U/G	1	80		82	C	0	C O	(0			3,000 24	3. 000 24	3. 000 24	3. 000 24	4, 500 36	4, 500 36	4. 500 36	4, 500 36	6, 000 49	6, 000 49	6,00 4	6, 00 4	6, 000 49		50, 22 26
Initial Ac(c/12) Protection Netal Content Ac(c/12) Protection Netal Content Particle Stress (1, 500, 500, 500, 500, 500, 500, 500, 50			Ag(g/t) 121,000 Cu(%) 1.37 Pb(%)	0/P	7	96		82	0	0	0	. (0	0	C	0	0	0	2, 500 26	2, 500 26	5, 000 52	5, 000 52	5, 000 52	5.000 52	5, 000 52	5,00 5	3, 50	3, 500 37	99,500 1,040	25, 4(2(
variable d U(15) / 0.33 / 0.76 0.67 0.77	150 19		Ag(g/t) Production Wetal Content Grade	0.08		- 67	121 110	· · · · ·	22, 782	23, 230 172 0, 90	24, 880 189 0, 93	24, 880 189 0, 93	24. 880 189 0. 93	25, 080 191 0, 93	22, 780 191 1.02	20, 800 162 0, 95	20, 800 162 0, 95	20, 800 162 0, 95	20, 950 172 1, 00	20, 150 167 1.01	21, 450 182 1, 03	18, 100 156 1, 05	18, 100 156 1, 05	19, 600 169 1. 05	13, 800	13, 80	11.50	11, 500 105 1, 11	568, 660	44, 5
Cu(%) 1.15 Cu(%) 1.15 Cu(%) 1.15 Cu(%) 0.002 10	iashmed"		Cu(%) 0.33 Mo(%) 0.005 Au(g/t) 0.015 Ag(g/t) 0.62				0.31 0.005	15	18	18	18	18	9	9		9	9	9	. 9	9	9	9	13	13	4,000 9			9	400	2.31
Wetal Content 0.28 2.28 0.3			Cu(%) 1.15 Mo(%) 0.004 Au(g/t) 0.40 Ag(g/t) 6.0	0/P	40	. 95	0.69		10	10	10	7	5	5	. 0	. 0	- 0	0	0	0	0	0	00	0	0			0	49	2, 31
Worksi Au(c/1) As(c/1) 0.7 0.2 Boshekii Orf4 i Worksi Au(c/1) 0.7 118.000 0.85 86 0 0 3.501 3.501 7.000			Wetal Content Grade	0/P				83	28	28	28	25 0.32 1.000	0.34	14 0.34 1.000	0.21	0.27	9 0.27 2.300	9 0,27 2,300	0, 27 2, 300	9 0, 27 1, 150	0.27 1,150	9	13	13 0, 28 1, 150	9		(9	1 9	31, 780	8, 220
uo (%) Au (4) Ac togar Current March (1) Ac togar Current March (1) Ac togar Current March (1) Au (4) Au (5) Current March (1) Au (5) Current March (1) Au (5) Current March (1) Au (5) Current March (1) Au (5) Current March (1) Current March		Boshekul	¥o(%) Au(g/t) Ag(g/t)	0/P		· · .	0. 2 176, 000		0	9	g	•					7. 000	7, 000	7.000	4, 900	4, 900	4, 900	4, 900	4, 900	3, 500	3, 500	3, 500	3, 500	139, 300	36, 70
Wo (%) 0.088 0.008 0.008 0.029 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Actogay	Wo(%) Au(g/t) An(g/t)	0/P	4	95	1, 430, 000		- 0	0	0 	20	20 Q	39	39	39	39		9, 000	9,000	18,000	18.000	18, 0001	18,000	20	20	20 36, 000	20 36, 000	828,000	602, 001
			Mo(%) 0.008				0.37 0.008		0	0	0	0	0	d	0	0	d	ď	34	34	15	15	76	16	102	102	136	120	2, 873	429

Table 2-1-2(1) Mine-Concentrator Production Plan (JSC "Zhezkazgantsvetment" and JSC "Balkhashmed")

1

4

0

-21~22-

Table 2-1-2(2) Long term production plan of polymetallic ore

[JSC	Mine Name		Oce Reserve (1.500t. 1995.)	Mining	411. (**)	Re. (*+)	Minable Ore Reserves (1.000x, 1995)	Metal seconery in rach cone.								Produc	tion & N	letal Co	ntent (1	DOO tons/	year)								Tetal	Remaining
				grade(%)			()	grade(%)	(%)	1956	1997	1978	1929	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2012	2014	2016	2018	2020	Production (antil 2033)	Researces (in 2035)
	EKCOLC	Nicolatosloye		23,401	DOP.	,	58	23,643		500	600	\$00	1,000	1,000	1,009	1,000	1,000	1,000	1,000	700	700	7.00	700		200						
1			Cu(**) [5(**)	2.54				2.45	25	9		15	13	10	10	18	18	18	18	B	a la	100	13	- 760	13	.500 9	500 9	500	500	19.050 352	4,593
			Z-(-)	3.76	6 .			048	63		13	18	22	22	0 22	22	0 22	22	22	0	6	0	0	0	0	0	0	. 0	. 0	0	
		Shemuoa Ədashəye	Cu (* 1)	· 1,238		1	98	1251	85	200	200	200	140	100	100	50			6		0		: o	·	· · o	ė	. o	1 N 0	6	417 990	26)
- 1			Pbr)	134				1.30	0	è	ő			0	0		0	ĉ	0	ĉ		0	0	0	0	0	. 0	. 6		32	23**
		Artemperskope	Z# (* •)	8.51		10	97	8.31 21,413	75	12	12	12	200	500	6 1,000	1,000	0	1,000		0	0	0	0	0		o	0	e		62	
			Cuth	210	R			1.96	· 74	· o	0	ő		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15	1,000	1,000	15	1,000	1,000	1,000	1,000	700 10	700			500	500	500	16,950 246	4,523
			РЬ(° н) 7а(° н)	7.66	5			1.96	73 82	6	0	• •	3	28	. 14	H	- 14	11	14	N C	14	14	10	10	10	2	7	2	i	243	
	Leninogorsk PC	Tishlaskaye	C+ (* +)	31,578	SI.S	15	95	35,293	22	970	1,600	1,000	1,209	1,200	1,200	1,200	1.200	1,200	1,200	1,200	1,200	\$40	40	840	40 840	28	28	28	21	958 28.230	7,063
	<i>n</i> .		P5 (* •)	1.00	0			0.85	72 60		1	3	4	1	- 4	1	4	4	1	1	1	3	3	1	3	3	3	- 2		105	20* -
		Ridder-Sokidning	Z.n (* •)	41,716		25		50,059	5 8	2,240	45	- 45	55	55	55	55	55	55	55	55	55	38	ж	38	38	38	38	27	20	144 3,284	
		40 Years Louis	Cu (*+)	0.45	9	1 "	~	0.37	12	6	2,500	2.500	2.500	2,500	2,500	2,500	2,500	1,250	1,750	1,750	1,750	<u>ि</u> ।,750	1,750	1,250	1,250	1,250	· 1,250		. 0	39,590	10,469
			Pb (*+) Zn (*+)	0.41				0.35 0.88	50 83	5	3	5	5	5	5	5	- 5	-	- 1		1	1	4	í	3	3	3	ő	0	165 84	21*.
		Shubinskoya		1,961	SLS	15	95	3,316		်းးဆိ	200	200	200	200	200	<u>ୁ</u> - 200	19	140	14 140	14	140	100	14	16	10 100	10 50	10	1. J. J. C.	0	336 2,690	626
			Cu(*i) Pb(*i)	218				1.85	72 60	. 1	3	2	3	3	3	3	3	2	2	2	2	1	· · · ·		1	1	0	0	0	36	19*•
	1. 1.00		7.4 (*•)	3.97	7			3.37	88	2		6	. 6	6	6	6	6	0 4	4	. 4	0	3	0		0	0	0	0	0	1	
	Irtysh PC	Belousovskoge	Curti)	6,453	SLS. C&F	25	9)	8,355	50		200	200	200	200	200	200	100			0	0	•	0	0		0	0	· · · · · · · · · · · · · · · · · · ·		1,500	6,859
		1.1	Pb (* +)	125	5			0.94	60	- i	i	1	i			i	1	0	0	0	° °	0	0	8	0		0	0	0		82*.
		letysbokoge	Za (*+)	5 1	SI.S. CAF	25	97	3.83	70	340	300	300	े . soo	ं ँ 700	3 200	700	3	700	700	700	490	6 490			0	0	0	0	0	40	
			Cu (*+) Po (*+)	200				1.55	70	. 4	3	3	5	3	~			*		8	490	570	490	. 490 5	490	350 4	350	350	350	13,120 142	3,115
	$-1 = -k_{\rm c}$		Za (**)	5.51	1			0.64	55 72	10	9	1	2	2	2	21	2	2	- 3	2	2	2	2	2	2	1	1	1	1	46	
	1	Vubileyno-Snegiciblaskoy.e	Cu (*i)	4,03	SLS.CAF	25	97	5,216	69	0	0	0	100	200	300	300	300	300	300	300	210	210	210	210	150	150	150	80	11	395	1,085
	1	1. A 1. A 1.	Pb (*+)	0.85	9	· ·		0.67	65	0	0	ő	2	5	7	2	?	2			5	5	5	s	- 4	4	14	2	0	97	210.
	Thesheat	Orkaskapr	ZA (*+)	41,483				4.40	76	0 500	0	0	3	7	10	10	10	10	10	10	1	7	i	7			ŝ	3	ě	138	1
	MCC		Cx (*i)	45	4	1	. ~	4 22	80	30	30	34	4)	1,200	, 1,206 41	- 1,200 - 41	1,200	1,200	1,200	(1,200 41	1,200	1,200		1,200	840	. 840 28	840 28	840	840	33,700 1,138	8.674 20*•
1	·		Fts (*+) Za (*+)	102			1	0.95	0		0		0		•	0		•	0	0	0	0	. 0	0	0	0	0	. 0	.0	0	
	Zyryamosk Lead Combine	Zaryaninakuse	0.01		SI.S. SLC	35	94	54,856		630	500	300	100	0	ő	0	0	0	0	0	- 18	0	18	13	13	13	0	0	- 13	505	53.276
	CALC CONTRACT	and the second second	Cu (**) Pb (**)	010				0.10	· 68 80	2	2	. 0	0	°.		0	0	0	2	0	0	0	0	0	0	0			ò		97*.
		Grehmaloge	Ze (*+)	1.25	9 7 SLC	1	96	0 84 22,927	89	5	3			o		0			ŏ	0	0	0	0		ő	0			0		1.1.1
1.5	1.11	on an ange	Cu (*i)	0.50	6	1 1	~	0.44	68	130 I	400	. 400	400	400	400	400	400	100	400	ા ગઝ	100	+00	400	400	600	- 400	400	400	280	13,910	9,017
			Pb (*+) Zn (*+)	0.46				0.36	80 80			1 1		j		i	i	i	i	- i			i	il					· 1	42	39*•
		Matecsskupe		39,21	SLS.CAF	,	98	41,319		500	550	600	600	1,000	1,200	1,500	1,500	1.500	1,500	-: 1.soo	1,500	1,500	1,500	1,000	1,000	1,000	1,000	2 750	750	134 33,100	
			Cu (**) Fb (**)	2.60				2.42	70		9	10	10	17	26	25	25	25	25	25	25	25	25	17		17	17	13		550	8.215
5			70(*)	18	4 .			1.29	80	29		35	35	53	70	10 87	10 87	87	10	10	10	10	10	7	58	58	58			220	
		A (Chekmar)	Cu (*+)	57,400		' '	. 98	57,992 0 2 1			0	0	0			500	1,000	2,000	3,000	3,000	3,000	3,000	3,000	3,000	2.150	2.100	2,100	1,500	1,500	46.500	11,492
1.1			Fb (**) Zo (**)	0.80	o			0.78	65		0	: 0	ő	0		3	5	10	15	3	15	15	3	3	2	2	2	. 1		41	20*.
1		8		20,000	0		. 98	21,075	89		0	0	0	0		-	17		51	200	51 400	51	51	51	35	35	35	25	25	783	
1.1	1	(Water Yar)	Cu(*+) Pb(*+)	260			- N - 1	2.42	70		0	0	0	0	0	o	0	0				14	17	1,060	1,000	1,000	200	700	200	16,800	4.215
			Zn (**)	78		.I		7 29	80	ő	0	ů	0	0	e e	0	0	0	0	12	23	17	7 58	58	7 52	7 52	د اند -	5	1	112	
				Metal content		nteste -	1.1	0				[]									r										
					- in conte			Pt		72	76	19	100	- 115	128	132	230	m	128	126	125	130	129	119	105	>6	90	80	78		
								2		19	163	37	24	249	293	316	318	54	55 342	- 56 347	36	355	54	49	15	41	35	30	25		
																		3/31	- 341	347	349	255	350	214		173	254	206	202		

1

1

đ

2-1-3 Profit-Loss Estimation of Planned Production

1

Profit-loss estimation has been made for planned production of each mine and concentrator, and is summarized in Table 2-1-3(1) and (2) (Copper-1 to -5 and Polymetal-1 and -2).

Among copper mines and concentrators, the Balkhashmed (Kounrad and Sayak Mines) and the Aktogai will make operating losses through the estimation period. In particular, the losses of the mine-concentrator operation at the JSC "Balkhashmed" is considerable due to low grade ores, low recovery rates at the concentrator and long haulage of Sayak ores. These are the fundamental disadvantages of the Balkhashmed operation and are unsolvable. The mine-concentrator operation at the JSC "Balkhashmed" should be ceased as early as possible from the economic point of view. The production plan of the Aktogai deposits has been made based on the feasibility report published in early 1995. The result of its economic analysis, assuming a copper price at US\$2,200 per ton, indicates that the project will be operated at a loss even without writing off any capital expenditures. A detailed review of the feasibility report will be necessary and may be able to draw an alternative plan that will lead to a profitable operation. The Koktau-Chilisai and Boshekul operations are expected to make operating profits. However, the estimation does not include capital expenditures. Their feasibility should be reviewed particularly for their capital requirements. The development and construction for these operations are in considerably advanced stages, though suspended at the present time. The economic review should be made urgently, from the view point of raw material supply to the Balkhashmed Smelter.

Among polymetal mines, the Tishinskoye, Shubinskoye, Belousovskoye, Irtyshskoye, Zyryanovskoye and Grehovskoye will make operating losses through the estimation period due mainly to high mining costs and overheads. The Orlovskoye, Maleevskoye and Artemyevskoye are regarded as the most profitable of all. However, the Maleevskoye output is still limited and the Artemyevskoye is yet to be developed. Although its ore reserves are not large, the Yubileynoe-Snegirihinskoye is also expected to become a profitable mine once developed. Development of these three mines should be accelerated in order to economically restore all the operations, including smelters and refineries, in the East Kazakhstan Region.

The JSC "Achpolymetal", JSC "Tekeli Pb-Zn Combine" and JSC "Akshatau Ken-Baiytu Combinaty" have been excluded from the production plan. The reasons are that they (1) are making considerable losses by mining economically unjustifiable ores, (2) are remotely located from either lead or zine smelters and (3) are considered small in their contribution to smelters as raw material sources. Development of the Zhairem and Shalkiya deposits also have not been taken into account in the production plan for the same reasons as(2) and (3) above.

(Copper-1)
Estimation
Profit-Loss
oncentrator
Mine-C
Table 2-1-3(1) Mir

	The Autom															i						ſ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·	¥.	ine.	¥5551	MM 1	2000	1000	2002			••								2014	*102	0.202
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Afree Contract			I 1	24.880	24,8801	034'52	040,85	22,780	20, XG0	20,×00	20,800	0.4.0	20,150		18,100	18,100	10,500	13, 400	13,800	11,500	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	100	164	1.6 0	16.0	20.1	1000	54,0	50	8	10'1		30.t	8	6	1.13	1.1%	1.1	1
						+ 	 			.=									• •			
	· · ·	/a/12/																	• • •			
		A.5(4/1)					 													_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		An terts		 											· ·							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca Can	TT	4		615	215	ii,	- 6	*15	<u>12</u>	int a	438	111	451	-1051	Ę	5	1.16	1917	346	E92	10
Methy Methy <t< td=""><td>Cons. Gende</td><td>Cufes</td><td> ×</td><td></td><td>2</td><td><u>-</u></td><td> -<u>-</u> </td><td></td><td>5</td><td>÷.</td><td>12</td><td>24</td><td>37</td><td>2</td><td>27</td><td></td><td></td><td>32</td><td> 2</td><td>42</td><td>5</td><td>1</td></t<>	Cons. Gende	Cufes	×		2	<u>-</u>	- <u>-</u> 		5	÷.	12	24	37	2	27			32	2	42	5	1
			 	ľ				 					—									
Matrix		70.042			1-							_										
		Anton		_													.	_	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						UL Y	06'9	630	019	610	630	430	1019	610	969	610	VIV.	610	(93)	9.9	610	Οų Ş
	Metal Coment	CULTER COLUMN				8	<u>.</u>	181	101	191	102	162	-21	167	E.	341	- 	- 16 - 1		 	10	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		-				
MACC 0 </td <td></td> <td>24.47) 24.47)</td> <td> </td> <td></td> <td></td> <td> · </td> <td></td>		24.47) 24.47)				· 																
		Au (Ar)			0	°	ء-	. 0	-3	- 6	0	9	0		6	ŏ	-¢	° C	-e	-0		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		AP (LC)	1		ñ	g	9	30	104	276	*LC	- 17K	F.	282	NUN	264	265	387	21X	380	124	178
Matrix Horse Horse <t< td=""><td>Recimen</td><td>Cu (tu)</td><td></td><td></td><td>4</td><td>- v</td><td>£</td><td>3</td><td>¥</td><td>3</td><td>-12</td><td><u>.</u></td><td>Ę.</td><td>ម</td><td>23</td><td>- F.</td><td>· 2</td><td>÷</td><td>¥</td><td>-0</td><td>£</td><td>¥</td></t<>	Recimen	Cu (tu)			4	- v	£	3	¥	3	-12	<u>.</u>	Ę.	ម	23	- F.	· 2	÷	¥	-0	£	¥
	Vinteree	ł						—					 .				1					
1;30.16 7.90,66 77.90 11,200	Treat Value (T.1.55)		64 0 F				463.580		465,527	161		1.68 .41		407,744		NO.767	-22	412,222	6277 IV	1242	255,74R	255,748
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Cu (USSYIH)			1 1			052'XI F	139'127	470,047	212,725	312,726	÷.	11,724				1	372.035	241.80	105,195	230,762	230,762
n n	£					•••	_									-						
n n	Zn Zn														:							
a) (1) a) (2) c: 200 d: 5, 200 d: 2, 20 d: 2, 2, 20 <thd>d: 2, 2, 20 d: 2, 2, 20<</thd>	Au (less 1 gr)				0	0	c	ē	ō	0	- 0	ċ		c	-ē		0	0	¢	ō	6	o
0 0	¥.		XU0+			15.240	15.290	16.65	45.480	18.577	18.677	18, 677	41.0015	20 824	212.14	17 200	002.15	182.04	124.0K	10 C.S. 01		24,4%6
D 0	Sates Cost Tittal (T.1	150	1 65 P4		. i	71.417	74,617	-15,015	24.730	51.15	63.552	355.00	67.379	61.454		CT 19	1121	541.95	51.05	151,01	10	41.054
no. NA.39 YYA006 41.023 41.023 41.034 N.044 YYA14 XG001 NYA14 XG001 NA.04 YYA14 YG001 YA144 YG014 YA144 YG014 YA144 YG014 YA144 YG114 YG014 YA144 YG114 YG014 YA144 YG114 YG014 YG144 YG444 <	Frenchi (USSA	G		•	0	-				-e				~-2				-6				
0.06 1°C 31.01 M. 30 M. 101 M. 301 M. 101 M. 201 M. 201 M. 201 M. 201 M. 201 M. 202 201 M. 402 M. 202 201 M. 402 M	11C (125 DM				41,024	41.024	41.024	11.754	41.196	N: 034	15.014	160.35	11.12	X, 083	171.91	AL OUT	36W W	A31.0V	27.648	37.648	21.65	8
UL MCS NILANI NEUCIO	R.C. (C'55 Cu	0.68				UAL EL	161.11	N.M.Z	11.54	17 F.	28.518	X LS RC	20 D 23	115, 92	588 11	27,42%	3 7 7	101-6	ş L	- Si Fi	11,433	18,422
UL PC N1 (N1) NPO (G) NPO (G) NO. (G) N2.	Perdin																	•				
0.01 0.01	Sales Reserve (T.US	55)	34 22		191.44	APP. FG.	1.01.01	lo. Cor	1605 UG1	22.42		_ I	152.356	112,700	¢.	19,91	19,613	346.001	262.274	262 274	214,693	214.095
2 40 44 50 44 50 54 57 55 59 12 59 12 50 12 50 22 54 57 50 49 50 50 49 50 50 48 50 51 40 51 40 51 40 45 40 51 50 50 50 50 50 50 50 50 50 50 50 50 50	Cont Ninte LISS T					.W. 440	14, 840	1,77,940	945-941					10.825	17.975	N.550	94,550	10, 300	15.500	75, 400	92.7.9	639
0.70 19.407 15.010 17.201 17.216 17.216 17.216 17.216 17.546 14.560 14.560 14.560 14.560 14.663 14.663 14.675 17.601 17.670 17.700 17.700 9.660 9.660 9.660 9.660 17.601 17.500 17.500 1	Conc USS 7			· 1	59,712	21-65	217.62	60, 192	21.672	UL0 61	016.61	U29.92	50,2X0	48,360	91 JRD	43.440	43,440	010'11	021.15	OCL IN	27,600	100 ft.
19: 425 100 11: 446 213.446 213.446 213.446 213.446 215.446 154.460 174.460 174.460 174.460 174.460 174.460 175.740 155.640 165.660 104.460 114.640 114.640 94 900 114.640 115.640 151.55.640 175.55.640 175.55.64 143.641 145.640 114.640 115.640 115.640 114.640 114.640 114.640 115.640 114.640 114.640 114.640 115.640 114	Overhead US1				51¥11	17,416	-91 7 '41		9 76 '5'	095 ['] FI	11, 560	095'T1	11.665	14,105	15,015	12.670	12,670	13.720	9 9		96 *	9X) #
100.511 100.511 105.511 105.511 1016.511 1016.511 1017.011 1000.001 3011.211 1207.511 1207.511 1207.51 1001.011 301.511 301.511 301.511 301.511 301.511 301.511	Tensi		10101			213,468	213.964	215.684	- XUN SAL	Ę	1,78,8%0			177.2%	1	55.660	1:5,660	168,560	117,680	115,680	8	90.36
	Cructating Profit C		10 sr1		-	501 511	175,195	176, 403	CAN PAL	462	201-251	297 641		149,000		036,601		177.871	147.544	143.500	115.703	114.703

()

(3)

Ð

9

Table 2-1-3(1) Mine-Concentrator Profit-Loss Estimation (Copper-2)

Ì

				•								,	•							
		1494	1497	1 ture	1000	2000	2001 20	2002 2003	1002 50	2005	2006	2007	2008	00	2010	2012	-10-	2014	2014 2	000
Mine Output	т.т.	9.800	10,000	10,000	001 5	0,00	0W0 -	1000	e.000	1,000	0 1.060	4,000	4 (100	1,000	905	600	4 MG	900	000 1	8
	(m) (m)	9 W		0.37	0.35	0.37	- 0,37	0.0	0.70			0.30	0.24	02.0	55.0	0.3%	0 (U	0.0	0.0	0.0
	(**) #(-															1			· · - · ·
	(m) (k)																			
	Au (81)																			
	∧s (g")																			ן ו
Come: Cu Come	TT.	9 7	198	198	176	66	56	3	5	2	3	3	3	3	56	66		z	75	3
Cons. Grade	5 5		:	. <u>+</u>	<u>+</u>	1	1	2					-	1	1		1	-	-	-
	Ph.(~.)														••-					
	Zn (T+)		:																	
	Υυ (Γ.)				-2		~					,		- <u>-</u> -	r.		ļ	·	F	r.
	Az (gri)																			
Meral Crateon	Cv (LT.)	2	ň	ř	1		1		\$		\$ 5	6			14			;;	- *	~
	₩.(TT)				:															[
	24(11)							—		·	. : • • • •									
	Au (kg)	*	\$65	565	626	-102	797	5	193	51 161	193 E	101	561	¥61	662	162	161	ю.	561	161
	A2 (h2)													•••	—					
Recently	5 5	¥.	£	7	ĥ	- <u>1</u> 0	¥	- 22	-r -		1	3	- ¥	*	5	<u>с</u>		3	8	÷
Moster	(•		·	1									-/ 1	•			.			
Trough Visiture (T.U.S.S)		44.719	A4,280	14.2%	740.35	33,145	33,145 2	21,499 21	21,499 21.	661'12 067'12	21.499	2018-112	21,499	21.499	33,109	33,109	- 140F-12	64712	51 499	669 1.
(41.5S.7) (C)	1 2300	6 61 S74	371,13	61,175	80 X	30,580	10, 489	19.841 19.	841 19	ra 61 (178	113 61 (13	19, R.a.1	19,841	19, 141	30,556	30,554	19,841	19, 441		19,841
Ë						:														
2.4						:										· i				
אט עופאר זפר) אר	42 . Ior	A 144	5.112	511.2	4.445	3657	5 . S . S	1.65.4	1.6586	1.658 1.658	1.64E	1.658	1.658	1.648	2.447	2589	1.648	1.45%	1.658	4.4
9 4	e e			5 ⁻		- e	c	~~c			¢			c			<u>-</u> 0	c	. c	°,
Saler Crea Traat (TUSS)		20.876	20,741	20,741	N.edit	10.721	10.771	10	6.727 6.	6121	127.9 127	12.	6,727	Ę	ASE OF	650.01	6	6, 72.5	6.72-	ĉ. 9
CURANSON HORA	Ű					;	_													
TC (USS DWT)		11.960	15,8,51	15,852	14,100	414.1	62A.7	5 18 S	5,143	5.143 5.143	613		200	1013	2.920	0.26	\$143	1015	(FI 5	1
R.C. A.SSCaM)	0.08- 176	4 916	4,864	4.XK4				1,511	1,514	1.5kd 1.5kd		1.5	1,5114	1.5%4	617.2			1.5%	184	28
Penaln				Ì																
Sales Revenue (T 1'SS)		44 84	.,	15.448	105 04		1		14.772	14 H Jũn H	1	i. E	N. M.	.t. 71	.676 LL	1.749	1.1.1	Ci. 1	217.11	-66 H
Cent March 155 T			000	100	20.76	1999	<u>)7.660</u>	1	10.1.0	30,120 ¹ N0,120	9		20,120	.0¢1'0V	42, 16.E	42,168	-071.01	021.0v	0.1.0	021.05
	YR I	15 130	18,500	14,500	04011	9.15		-FO		7,400	001 ⁻¹ -		00**	100	10,160	10,340	1,400			00*
Overneed USS T	11	7-011 °C	11,300	11,300	10.625	5,650	959	+,52n	4, S20	4,520 4,520	1520	4,520	4.520	1.520	4.326	6,32K	4,520	8	4.520	\$20
(1042)		102.991	001.01	105,100	141 34	- 95 5	055	010	12,040 42	42,040 42,040	10 12 010	0.01	12,040	12.040	58.85C	58, 856	42,040			41.060
Creming Profit of USS		57.255	212.45-	- 49.55		19:1-6	3.276	1.261 - 21	1245 1-22	2611 -27.24	197,251	-11.264	-27,268	27,268	101,21-	-16,107	-27,268	197.12	27.268	192
-				•		:		:		:	:	-								

Kokian		•	-										•									ſ
		-	 30	<u>8</u>	8001		000	1002		1007	HUS	00	 99	100	 1908		2010	2103	102	Solis.		0202
Mune Owner	1 .1	:	, c	ē	180	1,0001	1.000	1,000	1,000	loov.	000	90	1,300	91.1	717	1.1.0	9:1-1	- 1494 - 17 1-1	1.1 404	511	5	1.150
On Graue	Cu (**)	- ···	100-5	100 0	-R	101	- 671	201	1.121	, V	Ę	20°7	1 42	1 87	1 201	1.40	221	12× 1	145	2	Q.	31
	5.5		- <u>-</u>				·															
	ZA (**)		 -		- 		- .											•				
	1.3,01								- 	· 	- - i		<u>.</u>								1	
	Atten																					
Come. Cu Cone	т.т			-	: 	- 52		2	74	721	121-		761	<u>ي</u> ن: ال	1 .	•**				÷.	·	Ľ.
Create Craate	Curie		- P.	A	Ë,	Ř	(¢,	Ţ,	e,	-7.	9	- 2	8	10,	- <u>-</u> - <u>-</u>	\$	۶	- 5	- 0	Ŕ	2	-51
	(a)				- 															••		
	/n re-1		 - -																			-
		1	- e	. 6		1	21		56.4			56-1	. 52.1	11	- -	. 34 	1.35	1.15	111	1.15	1351	1
			5	, · · a	-		- 72	_		-	e		5	ĥ		Fi		20.1	Fi	5	5	r.
Vieut Opwene	Ce LTJ		e	õ "		· <u>-</u>	<u>-</u>		-z			. 91	-3	<u> </u>	-1	17	4	1	12	1	14	51
	T T			·										.—	· ·							
	ZA(LT)				 														. = .			
	Au (Au		·-2	ē	ž	Ξ.	102	5	10	ĥ	ñ	385	2351	112		11 -	117	117	1175	112	211	-11
	Acfiel										. —											
Keconter	55		2	ŝ	Ę	EX.	ş	6	÷	¢,	101	164	83	1	5	5	5		÷	ŝ		2
Masther	/=·)							- - - -					• • • • •								-	
Treal Volum (C.USS)			0	.9	4.0%	111	N.AL	11.644		7, 340	- 1 Me	77,380	77,380	31,400	34,590	14 690	104.9 86	38,690	049'81	1069 81	38,690	1069'11
Cu (U'SSUH)	£	9'7022	-c	2	2 2 5	LOC.EX	FOCIE	100°W	ROCIC	26,506	74,594	74,596	74, 596	Hot'IT	NC.W	34,796	34,294	34.20k		34,554	*	86°, AV
£												_										_[
24															i 1	 		l i i i i I				
Au (lem 1 g/l)	l0=	_5 ,	0	2	14		11	- E	· · · · · · · · · · · · · · · · · · ·	182	784	TRL	712	266		- 26 1	ŝ	201	2	1264	Ъ.	AV.
Å		0'0	- 6	-0	-·2	-0	ō	- ⁶	3		- je	6		·				- e	- 6	52		e
Sales Crief Treat (T.USS)			-0	6	1,911	072'01	01.740	07.01	10.740	COT. + C	24,7031	24.705	24,703	136.21	12.351	12,351	166.21	15.35	12.251	12.351	12,351	13.351
Preight (USSWMD)	2	-2	6	e	167	4(02	-4CO2	6102	6102	0691	0691	0697	Dest	19462		2345	ŚŦĊĹ	245	ŝ	, F	-946	1
TIC (USVOND)		5	- c		1,0151	240.2	50°,	2003	- 295	365-61	864 11	13, 698	13, N9%	4,949	1616'9	- 6 ¹¹⁰	- 979	676'9	6.940	576'5	675'	676'9
R.C. (USSICA IN)	10 U	-921	- 6		64.1	2,659	2.459	1489 T	- 428	\$115	\$115	6,113	\$115	750.0	3.055	3.057	3,057	3.097	1.04	YOY	7,057	3.047
Pendry																1						
Sales Rovenue (T.USS)					1214	100.11	11 001	10022	10672	52,677	42,677	52.677	- 129.55	26, 330	54 110	- 611, 25	1611 YE	1611.92	600.45	062.42	110	911 Y
Cost Mine USSIT					8	5,500	s, son	10053	- 2005	12,650	12,650	12,640	12,650	536.4	5355	6.12	6354	6.326	\$325	\$33	6.125	20
Conu. USST		9 1	- e		Ŕ	-00rt	1007 °C	1007'	- 1007 -7	\$55	\$,520	5,520	3, 520	2,760	- 1961 - 1	2.760	992	2,740	0947	1042	2,760	2,760
Overhead USUT		0.70		<u>e</u>		8	100	1002	1001	1.610	1,6101	1,610	1.610	60	kost	100	ŶQ	Isoa	\$08	1×04	1500	\$03
Tires				8	1.948	B.400	8,600	A.400	005 1	19,780	19,780	19,740	19,740	058.6	068.6	8446	9,490	- 6	068'6	063'6	064 6	1008.6
Operating Profix (T.USS)			c	c	1175	14, 103	107.71	(0), 61	00, 11	32.897	32.497	32.897	32,897	14,449	14 1101	16, 149	16,449	16,449	16,419	14,439	- (6mt '91	16.449
										-												

C

C

6

1 abic 2-1-5(1) Mune-Concentrator Profit-Loss Estimation (Copper-3)

--28 --

0

Table 2-1-3(1) Mine-Concentrator Profit-Loss Estimation (Copper-4)

Renthul		:																			
		19994	2661	8661	1000	2000	1002	2002	1001	1001	2005	2006	2004	2008	2009 2		2012	2014	2015	2048	2020
Mine Campur	К.Г		0		3, 900		7,000	1,000	, 1000	1,000	7,000	8	006	10(16)+	064-1	1000 T	1006 ¹ T	1,500	1005	006.6	3.500
Ore Create	(•)	0.0	o c	00.0	0.65	1.65L	0.45	0.694	0,651	0,651	0,654	9.65	0.051	546	0.65	0.651	0.451	0.65	0,051	0.65	045
	(i) ta				-																
	Za (🖘)										·										
	Au (g:t)				Ĩ.	÷ P		11.0	- 11 6	e e	H o	0.21	0.22	11 9	- E e	- H	IJ	- 11	÷ H	ů.	E.
	A8 (36.1)				81		ан 1	Ē	- 181	- H F	7.19	7 161	81 ¥		161	118	18	ř.	, ivi c	<u>-</u>	1 1
Conc. Cu Conc.	r T.	0	0	10	- 66	93	136	186	186	186	:85	186	130	1 001	1 0 1	130	1 00 1	69	93	66	ß
Core, Grade	Cu (**)	12	Ę	12			12		ñ	5	Ħ	5	5	ħ		៊ីភ	15	-ir	- 5	1	77
	(**) [7b (**)																				.
	(• u),						 														
	Au/213		e	0	1.4	1 A.3	4.3	1 4.3	103	109	ورا	4	1.4	63	<u>-</u> . 2	6.9	16.4	i 16.91	6.3	ļi v	6.3
		0	0				- <u></u> £	555 ⁵	222	3	257	33	- 5	-5	¥:	33	45	- 652	- 165		8
Motel Contenu		0	0				16K .	100	95	91	M	•	Ē	1	: 3 ''	- 11	- 5	5	9	. iei	6
	Ph(T T)						 : :	 -						<u>`</u>		_					
	24(0.12)										. •										
	AN (NS)	0	0	6	287	۲		1	1174	1174	1174	1124	ិរូ	Ţ.	-1	-1 <u>1</u>	뢽	\$#2. *	5	\$	5
	A4 (P4)	0		ō	7				*	57	- 37	Ţ	2	-3	2	- 1	2	77	73	2	77
Kuconto	Cu (nu)	0	c	•			98	т. В	84	44	199 1	\$6	. 4	5	KA		**	 2	- i98	- 192	5
Mount	2																				
Tetal Value (T.USS)		с 	0	6	5. 24	52,724	104,448	105,444	105,448	105,448	844,201	115.448	12,111,157	1.51.1	21,31.6	73.614	73,814	12.724	12.72	14 LL LS	12 A 1
C+ (0.2211)	- 1001	0	0	0	13.133	SCI.54	Ten.2661	36,266	86,2561	X6,264	86,266	R.A., 2665	9380 09	WIN DV	60.386	500, 386	60,346	CC1.01	43,133	13.133	1.13
£					:											_				· ·	
5							۱ <u>ــــ</u>														
Au (lot. 12/1)	49 104	0	0	9	4,367	6,367	127.21	12.74	1274	1-62-51	12.734	12.734	4.91.1	110 8	riak	1,914	¥,914	6,3471	4.24.7	4.1671	1.16.1
Ŷ		c	c		1224	100	1611.5	6777-5	10115.5	\$14.5	614.6	611 V	415.4	4.914	4.514	4, 514	r15'F	3,224	3.224	n an	121
Sales Continue (TUSS)	-		6		21-21	211-0	24,425	26,425	26,125	26.175	25,825	39.22	14.77	i. Z	Ē	14,777	14.71	514.51	ं सन्ध	- arra	21412
French CISSWAC	6	0	•		25161	2516	105	1105	1105	105	1/05	1505	15291		111	- II II	3522	2516	22162	38162	5162
TCAUSSION	Ţ.	¢	0	0	1657 2	165r.2	1,000,11	11,907	14,907	11,907	14,907	14,907	10,435	10.435	10, 135	551.01	587'01	1684.7	657'2	N84.7	7,453
N.C. (USSICA IN)	0.04		ې	0		1,445	6,817	5,887	6,817	6, 287	6.887	6.847	4.101 E	10.7	126.4	1.51 7	1.22.4	1,417	(m.(N++N	644°C
Pernality																				• -	
Sates kerenee (TUSS)		÷		ē	ch et	210.00	129'AL	78,624	78,624	78,624	78,624	78,624	11.037	44 DAT.	14,037	54,037	\$5,037	1215.01	39 312	1211, 61	CIV of
Cost Mine USST	- P	- 2	0	- 0 	066.5	9.00	006'11	1006'11	906'11	11.300	1006'11	11,900	1,330	0113	1,330	000 8	A,330	5.950	- 05°S	1066'5	9 . 6 ¥
Con., LSST		6			10,115	10,115	20,230	20,230	0.2.02	002.02	20,230	002.02	14.101	191 11	19171	14,161	14,161	10,115	10.115	10.115	10,135
Overhead USS T	0.44	0	e	é	UT 2 2		4.480	4.440	045.4	1,480	1087'7	-1.4RG	N.1.K	A.1.36	3.1M	3,136	3,136	0111	97	975	10427
Tori		3	ō-	-0			N, 610	N.610	16,610	36,610	36,6101	36,610	25,427	25.627	23, K27	25,627	25,427	18,205	300,31	14,305	14,205
Cheraling Profile? CSS-		0	0	0			110.51	rlu"¢r	10.24	1024	10.54	42.014	017.62	014.02	01-6	-01-65	10 TO	21.607	21.007	20012	100

ו 2016 ב-1-2(ג) ואאוורירטוורמונדמוטד ג רטווירטטא באוווומוטוו (עטטוטרי-ג)

Nick Definition T T 0 <		1906 0 0 1 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		100 · · · · · · · · · · · · · · · · · ·		vo:	20 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.010 0.0000 0.0000 0.		2004 14.000) 0.120 0.120 1.6 2.17 2.17 2.17 3.38 1.38 1.38	0000 11 000 10 01 0 11 11 11 11 11 11 11 11 11 11 11 11 11			01.11.11.2016		1000 W
TT 0 Curles 0 Nufil 0			50			<u>.</u>			0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02	00001 2010 2010 2010 2010 2010 2010 201	╶┈┨┈╴┨╺┈┨╌╶┨╮╭┧╴╺┧╌╌┤╶╴╽╺┊┨╌╌┠╌╍┠╼╍┨╼╌┨╌╌┨		ž -	7		1000/00/00/00/00/00/00/00/00/00/00/00/00
Coles 0.00 Prives 0.00 Prives 0.00 Writ 0.00			50			<u>\$</u>				0.00 0.00	╡ <u>╴╴</u> ╏╺╷┇┈╷┧┈╻┨╮╭╏╴╻┇ <u>╶</u> ─╎╶╴╽╺┊┨──┠──┠──┨──┨──┨──					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Curles 0.000 0.01 (1) (1) (1) <td></td> <td></td> <td></td> <td>ā</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00 0.179 197 19 19 19 19 19 19 19 10 10 10 10</td> <td>0.00 0.00</td> <td></td> <td></td> <td></td> <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>				ā						0.00 0.179 197 19 19 19 19 19 19 19 10 10 10 10	0.00 0.00					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Marken Marken Zolken Marken Marken Marken								8		0.1199 0.049 0.060 0.060 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	0.030 0.048 0.048					8000 800 800 800 800 800 800 800 800 80
20.°0) WIF, 1 WIF, 1						<u>\$</u>				0.129 9.97 1.15 3.37 3.38 3.38	0.036 0.048 0.048					890 B
Wight Wight Multiplic Multiplic						<u>§</u>		0000 111111111111111111111111111111111	200 11 11 11 11 11 11 11 11 11 11 11 11 1	492-10-0 7946 12-11-11	0.02%		-		000 100 100 100 100 100 100 100 100 100	42000 42000
M. 1911 de (1,4,4,6) (1,4,4,6) (1,4,4,6) (1,4,4,6) (1,4,4,6) (1,4,4,7,1) (1,4,4,6										197 20,17 23,17 23,17 23,17 23,17	23.8	13 13 13 13 13 13 13 13 13 13 13 13 13 1			12 VV VV VV	1145 0011 1145
με τ.τ. 0 με τ.τ. 0 βα(1) 1.5 0 βα(2) 1.5 0 μετατ 0 0						<u>\$</u>			100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1744 1		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				5 0 0 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 (······································				··· <u>·</u>	· ····	<u> </u>		20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7		-2				21 7 20 1200 1200 1200 1200 1200 1200 12
Philes) Zarky Zarky Auryr († 0 PhilTT) Auryr († 0 PhilTT) Auryr († 0 PhilTT) Auryr († 0 PhilTT)							·····			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						0 66 120 120 120 120 120 120 120 120 120 120
2.4.4.4. 2.4.4.4. 3.4.5.4. 3.4.5.4. 3.4.5.4. 3.4.4.5. 3.4.4.5. 4.4.5.5. 4.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5						······································				23.1 23.1 33.6	20 0 028 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					23.7
40.901		·				.			- ay 0 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	23.7 23.8 2.8	0.68 33 338					9 6 C
14(14) 14(14)									2 2 2	22	1. F					12 23 2 3
Curit: Curit: Prit: Art: Auto: O						ş		- <u>7</u>	- <u>*</u> <u>*</u> *	· · · · · · · · · · · · · · · · · · ·		×.				8 5
PhotTT) AntTT) Autor							· · · · · · · · · · · · · · · · · · ·		<u> </u>							5
						\$		<u> </u>		33						3
						• <u>5</u> • • • • • •		<u>z</u> 8	- <u>3</u>		208		-			3
						<u>\$</u>						¥.	16.04	.		
						- 8	_	8	5		_					
Receivery (a (**) 50)		8	Ŕ	8			8	ž	8	8	\$	8	8	66	8	8
 3						_										
5)	5	-0	- 2					75,000	75.000	144,2871	147.42	167.858 23	005 100 522	100.002 254.287	190,674	192.192
91002 1 0	•			-0		ė		000	15,000	141,247	141,247	167,858 22	225,001 300	11 142 200	190,574	187.142
						•	_				_]
2u							,									
Au (team 1g/t) 0 0.0 0	E	_		- 10	- 6					-0		•	-5	-3	- 5	
00			ē	é	ē	è		e	·		0	~			-ō	
Sales Cont Tessi (T.USS) 0		6		C O	-e	5	-0	111.62	23,111	\$5,006	\$3,006	105.95	71.JU 100	445! RX.487	1006 1.3	781.48
From (USEWACIT)			-0	0	•		- c		C XS	3	- 1971-2	1612	-666	1919 19191	at a	552
		•	- <u>-</u> -	-6		-	-0	14.144	111	39.74	39.74	10 609	24.02	12.5761 63.916	SL1 VT 1	61.936
0.0% 175	ő	0			ē	0	. 9	5.9WT	3.98r	13,116	\$11.61	10+'01	17,96,1 23.	660 12 1066	9 15 23X	21.000
			·				-		-							
(25)	- c	ج					-s	49,810	49,119	109.281	182,001	11.657 1.	119.661	008'541 149'661	126,967	175, 400
, eni , eni	¢ -0	6	e	- 2	•	5	- 0	49.500	005'67	6000'666	90.00	99,000	148,500 151	151,0301 158,0001	141.00	194,000
Cone. USS/T 2.40 01 01				- 0		-3	- 6	009-11	21,600	13,200	-00, (†	11,200	90 Y	86, 4,0; 94, 100	01 52 403	001'92
×۲ 0,10				-5	-3			6,300	6300	12,600	12,600	17,600	18,900	25,2001 25,2001	0 11 200	0000
0	- 0	0	ö	0		6	e	UQT"12	1007	00x 75 1	00M 15	114,800 2	212.200 305	00'60 00'500	0	104,401
		e	÷			- -		11575	15.67	616.57	615 57	61.6T	-42.532	00h (()- (10 01)-	.96,633	133,800

(

C

9	

1001 1000 1000 1000	P002 5003: 2002 1002 6602 6mil	2002	2005 2002	#U0):	2004	2010 10102	DESCRIPTION
	0. 0.				- P	9	
41.932 50.318 57.091 83.854 83.8	ST 464 R3 864 K3.	R64 H7. K64	R.T. R64 1 R.J. 1	11 54 705	54, 705	SH, 705 1, 090.	232
25, 253 30, 303 40, 405 50, 506	50 [°] 50 [°] 50 [°] 50 [°]	8	902	- 1	35, 354	I.S.	222
39, 039 39, 039 34, 039 34, 34,		3 8	19, 039 39, 0 16 670 39, 0	339 27 327 870 94 640	27, 327	27, 327 507	100
6885 456 475 501 251	740	452 5-14	134 9C4	1	526	592 7, 735	25
3,000 2,000 2,000	-			~		121	650
00.241 00.241 00.2411 21.164 15.120	0					142, 131	131
						· · · · · · · · · · · · · · · · · · ·	
26,542 26,542 26,542 18,579 13,271 13,	1					121, 747	147
1 13 477 13, 477 13, 477 9, 4UA 6, 739 6, 739			; ; ; ,	-			
5, 236 5, 236 3, 965 3, 118						S 1	
			-		• • • • •	6	
99		3	60	60 60	60		
13, 350 23, 374 i 64,	R6, 74R [16	66. 7 HI	7.H S	ş	46, 724		156
5, R29 [14, 572 29,	29 145 29	29, 145	2 5 5 1 5 1	2.	20, 404		16.1
22, 140 55, 349 1, 10,	110 69H 110	. H69 011	601 HO	110	68†	1. LIX	140
12, 967	so, 337 50, 337 50, 337	60, 207 ;	ģ	0 0	42, 235	12, 236 609, 104	
[1,000 1,000 1,000 1,000 1,106 20.265 40.	40, 530 340	10, 500	530 330	ģ	ZH, 371	12,	F3.
-2, 766 -6, 462 -5, 379 -3, 194 4,	4, 729	6, 790	880 10	Ξ	1 609	÷.	44
19, 000 20, 000 20, 000 20, 000	5 000 5	9			_	1	000
24 2x 2x 2x 24	2				24		NZ.
14, 544 15, 097 15, 097 15, 097 15, 092 18, 116	18, 115	[8,116]	116	19	12, 681	12, 641 212, 936	
7, 564 7, 79H 7, 79H 9, 35A	0, 354	9.35%	6	4 	055.0		172
N2. H71 N2. 871	99, 445 99, 445 99, 445	5 5		115 69,611	69.611 	69. 511 1. 313.	16
	100 00	1251 127		-			202
-5, 840 -5, 787 -4, 137 -4, 640 -10, 390	-12, 545	- 12 - 12 -	12 - 15 ·	10	-15. 664	: .	
2,000 5,000	000		-			000 6	00
	_						
191	AL 36 36	9.	\$	¥.	ž	ж. Т.	
4.297 10.712 10.742 10,742 10,742	10, 742 10, 742	1			1,76,46	: 	
345 A62 A62 A62	RK2 HK2		1		114		
4,321 10,504 10,404 10,904 10,804 10,804	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	-			5, 402		- 20
2, 864 7, 159 7, 159 7, 159 7, 159	7 159	;	~. 		3, 500		64
2, 731 6, 428 6, 429 6, 428	6, 82H j		-		1111		1414
* 74 -271 -271 -271 -271 -271 -271	-260				1042-		ĽĿ
1 000	1.000		•			ۍ ۲	00
	_						
	1		•	•	-÷-		24
4. 444 . 4. 444 . 4. 444 . 4. 444 . 4. 4			:	_	?	F	
	37 I 33 I 37 I 32 I 37 I	:				N5 .02	
. 1. Mil. 1. Mil		;				ž	62
4, 771 4, 771 4, 771 4, 771						Ŕ	86
1 5, M30 6, M30 6, M30 6, M30	3, 415					15	25
	_				4		No
	۲					\$	
						-	
	;	-		1	2	÷	
		2			F		
17,547 15,500 15,600 25,833 36,167	36, 167 36, 167 36	36, 167			25, 317		
3. 527 . 3. 200 . 3, 200 . 5, 333 . 7, 467	7, 467 7, 467 7,	7, 467	. <u>.</u>	-	5, 227		1.n
24.077 21,244 21,244 35,407 49,570	161 0115 181	49.570			34, 694		5×1
11. 204 9. 975 9. 975 16. 623 23. 273	23. 273 23. 23. 273 23. 27	27.1 Z3.273	23, 273 16, 292	92 16. 292	16, 292	16, 292 275, 957	57
11.410 11.800 11.800 27 aoM	12 808 12	27 604		:	19 326		S
-7, 242 -2, 491 -3, 205 -4, 499 -6, 095	1- IN 1-	-4, 422			- 7EE 6-	÷ .	29
			1	i			L ²]

- 31 -

9

Table 2-1-3(2) Profit Summary of Each Mines (polymetal-1)

		500	1 (M2	1 Gus	0001	2000	1007	2002	200%	80	8		2007	ZARK .	NWY	010			
	1 11/1					-	1												
AUNAL ANDO-DOOL AND	Alfakoya						3	¥	2	5	ŝ	25	22	8	13	18	0		
shcome/ore-t	1000				- u	2.2	0.00	6 CQ Q1.	00 01	10.00	710 02	10.92	27.945	7. 945	51, 945	21, 945	1602 160		
Cu Conc.			-	-)A. 1	010 0.7	776 6	1. A. K.	772 20					 +					
D Conc.				+				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 020	120 023	26.073	21.973	191 .11		14		244, 725		:
ZA Conc.	ONT					10 000 C			101 States			16 cM	5.12 1	÷	11 5.77	1: 53"	161 512	一日,一百一年,一日,一日,月月月月,夏,一百一日,百萬福,	:
÷								100 0		0 077		0.77	1054		7, 054		101 255		
Operating End	-4-				75 S				1 220	0.0		1 2 2 2	2 242	2.321	2, 395	[27.5]	12, 726		
ar Tau		<u> </u>		£.	€ 1	£	4.0			57 5 C	000 6						24, 600		
T	\$50000	1000.01	000 00	-						1.J	-								
Or GVAKOYS					1		ť		2	5	5	57		25	5	25	-5		
ucome/ora-1								ACC SOL	200 201	200 201	ICK WIT	Tus BUS	195, 205	195 HOS	195, HOS		409 579		
Gu Cone.			146, 854	- [121''121']-	504 '66	60 C	52 51			GAL 46.	L'AN CAL	Tonu out							
P. Conc.	Ì.												900	900 11	, 600 TT	000	630, 796		
Zh Come.	-4	-	70°,07	F-9 92		44, 004	14, 009	500 H	56	55 '4	65 F						000 .00		
		- *		57,035		545 '89	214 44	5R, 112	217 89	5H, 442	64, 442	244° 445	71+ W	2.1	1				
ng Cont		34, 2M9	14, 249	34,210		45, #52	_ 45, HS2 [45, 852	15, 452	45, 452		12 M52	2.cx *4	24K (11	762 01	10,000	717 100		
1	COURSE		11,232,11	., 12, 257	10.12	14 134	14 434	14.7	140 .41	13, 414		125 11		202 1	140 -				
	. 000055 -	2 000 2	2 000	3,000	-			600	1, 000				ł						
Zyryanouvskoya							:				-								
[none/ore-t	CS3/4	4	1-		1-						····			:	:				
Cu Conc	с typ	1. 562	CH4.1	899	642							-					i oue		•
Ph Conc.		<u>i</u>	1.62	929 1	514			_					1				8,155		
ZA Cone.	Der -	ŧ-		1, M64	1.284												20, 350		•
1	Since .	<u>i</u> _	1.062	1.6	629	1			1		-					:	10, 396		
					202			-			- -						105 21		
NON MUISMAAN		<u> </u>		-			••••		•		-			÷	+ : :		1256 62-		
rrotti affer (at	÷					1	-			:		<u>.</u>					 		
			-	- - -							-	***				ن :	:		
acree/orent	US3/c			-			5	5	-	E	61	5	2	9	5		(11)		
	-		154		ši	141 4	+C1 - S-	- 5, 154	5, 154	5.1.5	5 154	5 15	1.51.5	5, 154	5, 154	1151.5	77, 615		
	<u> </u>		1, 745			1, 7451		547.1	1, 745	1, 745	1 745	512	1, 745	1, 745	1, 745	1 212	26 342		•
		7, 912	1.314	7, 314	7, 314	196 2	111	1114	7, 314	1,314	112 2	7 314	1.2.1	2,314	7, 114	1 112 2	110 304		
h	550000.	5, 560	161 5	5, 191		101 4	1 61 5	161 5	161.5	5, 191	161 5	5 151	161 '5	161.5	161 9	2 (91	172 12		
Ing Cret	\$\$1000.	9. 325		N. MGO	X, 860	8, 1150	H, MAO	09R 'H	9, 860	09w 'H	044 4	8,860	044X **	N, N60	0518 X	944 ×	131,565		
- 2		010	1.622	£2	-4, 571	-5, 248	956	-6, 336	77. 9	ej:1 '1'	-1, 653	-8,154	104.4	-H 7H3	410 h	-17, 703,	101		
Avestagnt					2,000	200 2	-	-							ļ		1000		
												1		i					
•	- 1		\$	36	\$	<u>8</u> ,		Σ.	F	8	6	2	- AC		1.00.00.		121		
1	4			43, 251		72, 045	12, 045	124	104, 124	104, 24	121 101	101 171	171 UN1	100				11、11、11、11、11、11、11、11、11、11、11、11、11、	:
-1				- 068 Y			1	12	17, 224	17.274	22.1	1 22			1990 FL				
				145 69	50 Suc					4		3		501 10	20 B/G	50.906	011 120 1		
		104 67		120.02	s i	un) 60	402 AV				01			1	0.2. 3		550 500		
Operating Cost	25:000	012 07	719 72	SNT T		004 12		8	077 00	9, 9	077 60	0.07 Geo	277 °L.			1	176 954		
141			4C2 *	900 QI.			5	200 m									M), 000		
1	10000		1000	- 100 07	-														
TOTAL						Ì								ľ				And a state of the	
			1001		800	0002	2001	2002	1:00:	¢,	5002	1008	2007	2009	2000	6104	CUTAR	0620114100530	
Gurde,	-		10++ 610	L 356. 557 L			Light stre	000.000	566, XAK	1.27 1.95	A1. +23	561, 42.1	- 20x 20x	1.58 .505	145, 610	TA9 1992	169 062	2、11日,11日,11日日日日月日,11日日日日日日日日日日日	
P. Come.			25, 647		8		161 .13	N16 .PA	A.7, 368	114,65	65, 343	65, 54, 1	63, 203	222.99	51, 57H		1.1.2		
				312,517	700 , 651.	475, 364		584, 050	578, 184	569, 074	N10 695	269 004	S-I6, 675	490, 52H	164, 319	107 999 7 051 712	1 053 747		
	1 1511000			194, 343	22, 42	248, 545	374 246	347, 110	344, 725	16 01	161 012	3-10 15-1	547 XXE	305, 040	246, 934	257. 335 1. 27N, X2X	XXX X12	:	
Operating Cost			_	R16 521	140 00.2	2-10, 651	502 197	274.947	276, 512	271, 049	51.049	271 049	254, 743	2.15, 241	223, 0H2	204 342	C. 605, 505		
Profic after Tex		22. Y		-18, 031	-14, 295	207 2-		5. 741	7.25	6. 934	12, 193	14, 550	1.4.4	16, 075	196, 01	-26 459	1.10		
aces and a	Powerst	5 00	11 000	1000 88	500 7	2	- 555 ¢	ž	1000										

Table 2-1-3(2) Profit Summary of Each Mines (polymetal-2)

-32-

٢

0

(])

2-1-4 Exploration and Development

6)

 \bigcirc

ê ĝ

As aforementioned, assumed resources which are potentially economic, are limited. Exploration and development of new resources must be accelerated in order to make up for depletion of resources by production. A substantial amount of new resources will be required to be placed into production for sustaining the production level of the year 2005. A technical cooperation scheme can be sought for exploration and development projects.

The territory of Kazakhstan was extensively explored for mineral resources during the era of the former USSR. An enormous amount of data are now stored in the archive of the Ministry of Geology and Underground Resources Preservation. It is necessary to assess the past exploration data and prioritize individual ore deposits for further detailed exploration in accordance with their economic potential. Accelerated exploration and economic assessment programmes should be prepared for selected targets on the basis of their priorities.

In addition to the unexploited deposits included in Table 2-1-1(2), a number of ore deposits are still in an advanced exploration stage and are listed in Table 2-1-4(1). In terms of the total amount of contained metals, the Novo-Leninogorsk, Kosmurun, Zhaman-Aibat, Samarskoe, Chatrykul and Koksay deposits are important resources with their metal contents exceeding one million tons on copper equivalent basis. The Kosmurun deposit seems to be the most promising of these as far as its copper and gold grades concern, and will become a major raw material source for copper and zinc.

The Zhaman-Aibat and Samarskoe deposits are now being actively explored and have a good potential to be exploited depending upon the results of the present exploration works. Although their metal grades are as low as 1.87% and 1.54% respectively on copper equivalent basis, low cost mining method, such as room-and-pillar, open-pit or block-caving, are likely to be applicable.

The Chatrykul deposit, together with the Zhaisan which is located in the vicinity, appears to be economically interesting for its appreciably high copper grade. These two deposits, the Chatrykul and Zhaisan, are being explored by a joint venture between Kazakhstan and Canadian firms.

The Novo-Leninogorsk deposit is an important lead and zine raw material source, containing more than 1.5 million tons of each of these metals. However, its grade of 2.83% on copper equivalent basis appears to be economically marginal for an underground exploitation, taking account the top of the ore body is 600 meters below the surface. The average copper grade of 0.49% for the Koksay deposit appears to be also economically marginal, although it is believe that the deposit can be mined by open pit. It is reported that the exploration and feasibility studies have been completed for these deposits. A detailed review of their economic feasibilities will be necessary.

The Akbastau deposit, though its size is relatively small, is important as a copper, lead and zine raw material source. The Dolinnoe and Mizek deposits are principally gold deposits in terms of the proportion of gold to the total ore values. However, the zine content of the Dolinnoe and the copper content of the Mizek cannot be disregarded as raw material sources for these metals. The economic potential of these three deposits is interesting and worthwhile for a detailed study.

Among small deposits with their reserves of less than 5 million tons, those that indicate copper equivalent grade of 5% or better may be economically exploited and are worth for further studies.

No. Name of Cree Deposits Location (Million T) Currents Grade Metal Content Remarks Cree Deposits (Million T) Cut (%) Po (%) Z/1, Z S/2, Z Z/2, Z			•	Table 2-1-4(1) Major Ore Deposits in Advanced Exploration Stage	4(1) N	Aajor O	re Depo	sits in	Advan	iced Expl	oratior	Stage	0		
Cu Equiv. Cu Pb Zn Cu Equiv. 7 (%) (T.T) (T.T) (T.T) (T.T) 7 2.83 87 1,640 1,814 1,446 7 5.98 115 25 181 209 7 5.98 115 25 181 209 8 4.67 85 33 211 83 1.46 133 114 318 232 8 4.47 58 197 487 1.46 133 314 318 232 8 4.47 58 133 324 1.1.46 133 321 1,498 874 2.569 158 2.572 18	°. Vo	Name of	Location	Reserves			G	ade				Metal	Content		Remarks
4 2.83 87 1,640 1,814 1,446 7 5.98 115 25 181 209 7 5.98 115 25 181 209 7 5.98 115 25 181 209 2 6.77 17 58 85 3 6.77 17 58 197 487 8 4.67 85 33 211 209 8 4.67 85 33 211 224 8 4.67 85 33 211 224 8 4.93 220 101 678 616 9 1.46 133 32 37 38 2.699 133 32 20 183 36 8 4.93 2.603 158 37 38 4.47 76 1,500 447 633 37 8 4.47 76 2.38 37 37 8 2.693 331 1,498 <th></th> <th>Ore Deposits</th> <th></th> <th>(Million T)</th> <th>Cu (%)</th> <th></th> <th>(%) UZ</th> <th>Au (g/t)</th> <th>Ag (g/t)</th> <th>Cu Equiv. (%)</th> <th>7. 1. 1. C</th> <th>42 (j. j.</th> <th>zn (T T)</th> <th>Cu Equiv. (T.T)</th> <th></th>		Ore Deposits		(Million T)	Cu (%)		(%) UZ	Au (g/t)	Ag (g/t)	Cu Equiv. (%)	7. 1. 1. C	42 (j. j.	zn (T T)	Cu Equiv. (T.T)	
7 7.68 29 34 200 154 7 5.98 115 25 181 209 7 4.23 43 114 318 209 8 6.77 17 58 38 211 209 8 6.77 17 58 197 487 8 4.67 85 38 211 209 8 4.67 85 38 211 203 1.46 133 2142 58 231 133 8 4.67 85 38 211 224 8 4.93 220 101 678 616 0 12.42 699 1,500 447 633 2 2.569 13 321 158 2,608 2 2.699 1,500 447 616 616 2 0.38 272 499 373 304 2 0.38 272 499 373 310 2 0.38		Novo-Leninogorsk	E.kazakh.	51.1	0.17	1.21	3.55		27.4	2.83	87	1,640	1,814	1,446	
7 5.98 115 25 181 209 7 4.23 43 214 318 209 8 6.77 17 58 197 487 8 6.77 17 58 197 487 8 6.77 17 58 197 487 8 4.67 85 38 211 224 8 4.67 85 38 211 224 11.46 133 21 318 232 11.45 133 20 133 204 11.46 133 321 20 183 2.699 13 32 37 38 4.47 76 23 304 6 2.79 750 23 304 7 2.82 1,500 447 633 8 1.87 3.602 499 3.74 8 1.54 331 1,498 874 8 1.55 3.10 3.10 3.10 <td>~ ~</td> <td>Krasnovarskoe</td> <td></td> <td>2.0</td> <td>1.45</td> <td></td> <td>9.98</td> <td>0.21</td> <td>165</td> <td>7.68</td> <td>29</td> <td>34</td> <td>200</td> <td>154</td> <td>U/G</td>	~ ~	Krasnovarskoe		2.0	1.45		9.98	0.21	165	7.68	29	34	200	154	U/G
7 4.23 43 114 318 2 6.28 43 114 318 3 6.77 17 58 197 8 4.67 85 38 211 8 4.67 85 38 211 8 4.67 85 38 211 1.46 133 220 101 678 2.69 13 32 20 20 8 4.93 220 101 678 2 4.47 76 1,500 447 23 23 2 2 2.039 750 1,500 447 2 2 2 0.38 272 7 23 23 37 2 0.38 272 499 1,498 1,1 1,798 3 1.54 3.602 499 331 1,498 1,1 1,7 3 3.13 943 331 1,498 1,1 1,1 3 3.1.54 931 1,498	i m	Anisimov Kluch		3.5	3.04		5.18	0.28	35.7	5.98	115	25	181	209	No Power Lines U/G
2 6.28 43 114 318 3 6.77 17 58 197 5 4.67 85 38 211 1 1.46 133 28 211 1 1.46 133 28 211 1 1.46 133 38 211 1 1.46 133 38 211 2 133 32 38 211 2 133 32 12 20 3 2.699 101 678 2 4 76 1,500 447 23 5 2.79 76 1,500 447 6 2.79 76 23 23 7 2.82 1,500 447 1 7 2.82 1,500 447 1 8 2.72 331 1,498 4,4 7 2.82 1,500 447 1 8 1.53 331 1,498 1 1	4	Rulikhinskoe		2.2	1.95		2.62	0.55	59.7	4.23	43	29	58		n/6
3 6.77 17 58 197 8 4.67 85 38 211 5 3.59 142 85 38 211 8 4.67 85 38 211 20 8 4.67 85 38 211 20 8 4.93 220 101 678 20 0 12.42 699 1,500 447 23 23 2 2.79 76 1,500 447 4,47 2 0.38 272 499 4,47 1,498 1,498 2 0.38 272 499 1,498 1,498 1,498 1,498 1,446 1,446 2 0.38 272 499 1,498 1,4498 1,449 1,446	<u>г</u> л	Obruchevskove		3.7	1.16		8.59	0.46	22.2	6.28	43	. 4	318	232	0/C
8 4.67 85 38 211 1 1.46 133 20 20 2 1.46 133 32 37 8 4.93 220 101 678 2 0 12.42 699 158 2 2 3 4.47 76 1,500 447 2 4 0.39 750 1,500 447 4 4 0.38 321 1,500 447 4 5 0.39 750 499 4 4 6 0.38 321 1,498 1,1 7 2.82 1,389 331 1,498 4,4 7 2.82 1,389 331 1,498 4,4 7 2.82 1,389 331 1,498 4,4 8 3.154 3 1,72 449 1,1 1,7 8 3.553 97 151 97 151 3.3 3.3 3.3 3.3 3.3 3.3	0	Dolinnoe		7.2	0.24		2.74	7.63	82.3	6.77	17	58	197	487	n/e
1.46 133 20 5 3.59 142 20 8 4.93 220 101 678 0 12.42 699 101 678 2, 3 4.47 76 1,500 447 2, 4 7.50 1,500 447 2, 2, 5 2.79 750 1,500 447 4, 6 2.79 750 499 4, 4, 7 2.82 1,500 447 1, 1, 8 1.87 3,602 499 4, 1, 1, 7 2.82 1,389 331 1,498 1, 1, 8 1.61 89 371 1,498 1, 1, 8 3.13 943 331 1,498 1, 1, 9 1.61 89 172 449 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	~	Strezhanskoe		4.8	1.77	0.79	4.40	0.54	55.8	4.67	85	38	211	224	n/e
5 3.59 142 20 8 4.93 220 101 678 0 12.42 699 158 2, 3 4.47 76 2,37 2,37 6 2.79 1,500 447 2,33 6 2.79 7,500 447 2,33 7 756 1,500 447 2,33 7 0.38 272 499 4,4 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 1,1 7 2.82 1,389 331 1,498 1,1 8 1.54 3.602 499 1,1 1,1 8 1.54 3.1 1,498 1,1 1,1 8 3.13 943 331 1,498 1,1 1,1 8 4.58 3.62 499 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	8	Vavilonskoe		9.1	1.46					1.46	133				0/P
2.69 13 32 37 8 4.93 220 101 678 0 12.42 699 158 2,3 3 4.47 76 1,500 447 6 2.79 750 1,500 447 2 0.39 750 1,500 447 6 2.79 750 4,93 4,47 7 2.82 1,389 331 1,498 4,4 7 2.82 1,389 331 1,498 1, 7 2.82 1,389 331 1,498 1, 7 2.82 1,389 331 1,498 1, 7 2.82 1,389 331 1,498 1, 8 1.61 89 1,72 449 1, 1, 8 3.53 943 97 151 3, 3, 8 3.55 97 151 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	თ	Karchiginskoe		S.1	2.78		0.39	1.0.1	5.5	3.59	142		20	183	0/P
8 4.93 220 101 678 3 4.47 76 23 2,3 4.47 76 1,500 447 23 6 2.79 1,500 447 23 6 2.79 1,500 447 4,4 7 5.038 321 23 4,4 5 0.38 321 4,99 4,4 7 2.82 1,389 331 1,498 4,1 7 2.82 1,389 331 1,498 4,1 1, 7 2.82 1,389 331 1,498 4,3 1,<	0	Nikitinskoe		1.4	06.0					2.69	13	32	37	38	
0 12.42 699 158 2,3 3 4.47 76 23 23 6 2.79 750 447 23 2 0.39 750 447 23 2 0.39 750 447 23 2 0.38 321 23 23 3 2.72 499 44 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 8 1.61 89 172 449 8 4.58 6 195 8 3.53 97 151 3.056 2.974 97 151		Akbastau	Semipala	12.5	1.76			0.69	14.8	4.93	220	101	678	616	O/P and U/G
3 4.47 76 23 6 2.79 750 447 2 0.38 321 447 5 0.38 321 447 5 0.38 321 447 5 0.38 321 447 5 0.38 321 499 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 8 1.61 89 172 449 1, 8 4.58 6 172 449 1, 8 3.53 97 151 3, 3, 8 3.53 97 151 3, 3,	12	Kosmurun	-	21.0			0.75	14.60	20.0	12.42	669	• •	158	2,608	O/P and U/G
6 2.79 1,500 447 2 0.39 750 447 4 0.38 321 447 5 0.38 321 499 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 8 1.54 943 1,498 1,1 3.13 943 311 1,498 1,1 8 3.13 943 331 1,498 1,1 8 4.58 36 172 449 1,1 8 3.53 97 151 3,0 8 3.53 97 151 3,0	13	Mizek		6.8	1.11		0.34	5.38	4.3	4.47	76		23	304	O/P and U/G
2 0.39 750 4 0.38 321 5 0.38 321 6 0.38 321 7 2.82 1,389 7 2.82 1,389 8 1.54 943 1 3.13 943 2 4.00 30 9 1.72 449 1 3.13 943 3 1.54 943 1 3.13 943 3 1.61 89 1 1.72 449 1 1.61 89 3.53 97 151 3.5 0.56 2.974 97 151 3.	4	Rodnikovoye	Zhambyl	22.7		6.59	1.97		17.6	2.79		1,500	447	633	O/P and U/G
4 0.38 321 5 0.38 272 8 1.87 3.602 499 7 2.82 1,389 331 1,498 7 2.82 1,389 331 1,498 1 3.13 943 331 1,498 1 3.13 943 31 1,498 1 3.13 943 31 1,498 1 3.13 943 31 1,498 2 4.00 30 30 1,1 8 4.58 1,72 449 1,1 8 3.53 97 151 3. 0.56 2.974 97 151 3.	15	lrisu	Shymkent	250.0	0:30			0.13	1.2	0.39	750			975	7 O/P
5 0.38 272 8 1.87 3.602 499 7 2.82 1,389 331 1,498 5 1.54 943 1,498 1, 1 3.13 943 31 1,498 1, 2 4.00 30 31 1,498 1, 9 1.61 89 172 449 1, 8 4.58 6 195 8 3.53 97 151 3.	9.	Borly	Dzhekaz.	94.4	3.34			0.03	3.4	0.38	321			359	Mo: 0.01% O/P
8 1.87 3.602 499 4.058 U/G. 5 2.82 1.389 331 1,498 874 0/P 5 1.54 313 943 310 1,725 U/G. 1 3.13 943 310 1,725 U/G. 2 4.00 30 172 449 369 U/G. 9 1.61 89 172 449 369 U/G. 8 4.58 6 195 192 U/G 8 3.53 97 151 106 2 0.56 2.974 97 151 3.405 0/P	17	Karatasskaya		82.4	0.33			0.01	6.5	0.38	272			313	Mo: 0.04% 0/P
7 2.82 1,389 331 1,498 874 0/P 5 1.54 943 311 1,725 U/G, 1 3.13 943 310 U/G 2 4.00 30 1,725 U/G, 9 1.61 89 172 449 369 U/G 8 4.58 6 195 192 U/G 8 3.53 97 151 3.405 0/P 8 3.53 97 151 3.405 0/P	8	Zhaman-Aibat		217.0	1.66				20.8	1.87	3,602	499		4,058	U/G, (R/P)
5 1.54 1,725 U/G, 1 3.13 943 310 U/G 2 4.00 30 1,084 U/G 9 1.61 89 172 449 369 U/G 8 4.58 6 195 192 U/G 8 8 3.53 97 151 106 7 U/G 8 3.53 97 151 3.405 0/P	, 61	Akzhal		31.0		1.07	4.83	0.14	38.7	2.82	1,389	331	1,498	874	0/P
1 3.13 943 310 2 4.00 30 1,084 9 1.61 89 172 449 369 8 4.58 6 195 192 8 3.53 97 151 106 3 0.56 2.974 3740 3.405	20	Samarskoe	Karaganda	112.0	1.24			0.48	2.5	1.54				1,725	U/G, (B/C)
2 4.00 30 1,084 9 1.61 89 172 449 369 8 4.58 6 195 192 8 3.53 974 151 106 9 0.56 2.974 3.405	21	Zhaisan'	Zhambyl	9.9	3.03		.	0.12	4.1	3.13	943			310	n/6
9 1.61 89 172 449 369 8 4.58 6 195 192 8 3.53 97 151 106 8 0.56 2.974 3.405 3.405	22	Chatyrkul		27.1	3.48			0.79	7.2	4.00	30			1,084	U/G.
8 4.58 6 195 192 8 3.53 97 151 106 0.56 2.974 3.405	23	Vayskoe	E.Kazakh.	22.9	0.13	0.75	1.96	0.28	32.9	1.61	68	172	675	369	U/G
8 3.53 97 151 106 0.56 2.974 3.405	24	Novo-Beryozov		4.2	2.11	0.14	4.65	0.39	15.8	4.58		9	195	192	U/G
0.56 2.974 3.405	25	Yablonovoye	T.Kurgan	3.0	•	3.22	5.03	<u></u>	56.8	3.53		62	151	106	3 U/G
	26	Coksay		608.0	0.49			0.12		0.56	2.974			405	0/P

Cu Equiv. Metal Content = Reserves × Cu Equiv. (%)
 Reserves: Category C2 and higher (A+B+C1+C2)
 U/G: Underground, O/P: Open Pit, R/P: Room and Dillar, B/C: Block Caving

(

()

()

-34--

2-2 Metal Production

2-2-1 Raw Materials

(8)

()

(3)

Raw material supplies from foreign sources are partially secured for the Balkhash Smelter until 1999. However, a shortage of raw materials at the Smelter is apparent and critical in short and medium terms, even though it is assumed that the Zhezkent concentrates are supplied and that exploitation of the Koktau and Boshekul deposits are accelerated. A considerable amount of raw materials from unspecified sources is required to sustain its annual production at a level of 150,000 tons of copper that is considered as the minimum production level of a smelter of this kind for an economically viable operation.

Raw material supply sources for the JSC "Balkhashmed" and JSC "Shymkent Lead Plant" in the years 1992 and 1994 are shown in Table 2-2-1(1). Raw material supplies from foreign sources declined significantly for both Combines in 1994. It is reported that the situation is getting worse.

Table 2-2-1(1) Raw Material Sources of the JSC "Shymkent Lead Plant" and JSC "Balkhashmed"

						1001		
-	2661	26						T
	Sources	Marerial	Pb Content Proportation	Proportation	Sources	Marenai	Ph Content Proportation	Proportation
	- - -		т.т.	*			т.т.	*
JSC "Shymkent Lead Plant"	JSC "Achpolymetal"	Conc.	33.5	212	21.2 JSC "Achpolymetal"	Conc.	2.5	2.5
	JSC "Zhezkazgantsvetmet"	Conc.	15.0		9.5 JSC "Tekeli Pb-Zn Comoine"	Conc.	7.4	2.9
:	JSC "Tekeli Pb-Zn Combine"	Conc.	2.0		1.3 JSC "Zezkazgantsvetmet"	Dust	4.4	S.7
-	JSC "Akshatau Ken-Barytu Combinaty"	Conc.	2.0	<u>د</u> ا		:		
•	Others	Slag	2	1.3				
•	Total Domestic		54.5		34.5 Total Domestic	0	14.3	18.4
	Almalık	Conc.	44,0		27.8 Uzbekistan	Conc.	16.4	21.2
- - - - -	(UZDek)	Slag	8.0		S.1 Tazikastan	Conc.	0.1	0.1
:	Kansai	Conc.	30.0		19.0 Other Import	Conc.	46.7	60.3
	Adrasman	Cone	14.0	8.9				
	(Tazik)							
	Other C.I.S.	Conc.	7,5		4.7 refetred		63.7	816
	l otal import		100.1					
To	ľotal Raw Material		158.0		100 Total		(11)	
	19	1992 -				1994		
	Sources	Marenal	Cu Content Proportation	Proportation	Sources	Marerial	Cu Content	Cu Content Proportation
			T.T.	*			т.т.	*
JSC "Baikhashmed"	Own	Conc.	39.1	20.0	20.0 Own	Conc.	29.6	23.8
: .	JSC "EKOCHC"	Conc.	10.0		5.1 JSC "EKCCHC"	Conc.	7.4	6.0
	JSC "Zhezkent MCC"	Conc.	17.0		8.7 JSC "Zhazkent MCC"	Conc.	14.0	11.3
	JSC "Lennogorsk PC"	Conc.	8.0		4.1 JSC "Lennogarsk PC"	Conc.	0.8	0.6
	JSC "Zyryanovsk Lead Combine"	Conc.	3.0		1.5 JSC "Zyryanovsk Lead Combine"	Conc.	2.8	2,3
	JSC "UKPb-Zn Compine"	Blister	31		15.8 JSC "UKPb-Zn Combina"	Blister	19.7	15.9
-	Total Domestic		108.1	55.2	5.5.2 Total Domestic		74.3	6.92
	Erdenet	Conc.	55.5		28.3 Erdenet	Conc.	40.0	32.3
	Chuquicamata	Conc.	14.6	7.5				
	Escondida	Conc.	13.2		6.7 Escondida	Conc.	5.0	2.7
	Others	Conc	4.5		2.3 Iran	Conc.	0.4	0.3
	Total Import		87.8		44.8 Total Import		49.7	40.1
, P	Total Raw Material		195.9		00.0 Total		124.0	100.0

G

([)

2-2-2 Metal Production Plan

For the estimation of the metal production plan, assumptions are made as follows;

- 1) The domestic raw material supply will be made according to the mine-concentrator production plan shown in Table 2-1-2(1) and (2).
- 2) The Zhezkazgan Smelter will treat only raw materials provided by the Zhezkazgan and the Zillandinskaya Mines.
- 3) The Balkhash Smelter will operate basically at a production rate of 150,000 tons of copper cathode, regardless of raw material supplies
- 4) The Irtysh (Globokoe) Copper Smelter produces only blister and will gradually increase its production rate to 65,000 tons (contained copper) by 2004.
- 5) The Ust-Kamenogorsk Refinery will gradually increase its production rates to meet the blister production of the Irtvsh Smelter by 2000.
- 6) Blister copper of the Irtysh will be supplied to Balkhashmed until 1999 for the amount exceeding the capacity of the Ust-Kamenogorsk Refinery.
- 7) Concentrator supplies from Erdenet and Chile sources will continue until 1999 as scheduled.
- 8) All the Zhezkent concentrates will be supplied to Balkhashmed during the forecast period, while concentrates from other sources in the East Kazakhstan Region (e.g. EKCCHC) are supplied to Balkhashmed until 1999 when the production rate of Irtysh Smelter will reach 40,000 tons per annum.
- 9) The lead and zinc production plans will be performed as shown in Fig 2-2-2(1).

The raw materials supply-metal production plan is shown in Table 2-2-2(1), (2) and (3). Concentrates imported from "others" listed in the table are supplies from unspecified foreign sources and indicate absolute shortage of raw materials.

The results of the estimation are summarized as follows;

()

- 1) Raw material supplies are insufficient for the planned production of copper, lead and zinc unless foreign supply sources are secured.
- 2) Shortages of copper concentrate supplies to the Balkhash will continue until 2005 if the supplies from Mongolia and Chile are stopped. New supply sources may have to be sought after 1999.
- 3) The production of the JSC "Shymkent Lead Plant" relies totally on the Almalik concentrates.
- A substantial amount of zinc concentrate supply will be in excess of the planned zinc production beyond 2000. An adjustment of supply-demand balances may become necessary.
- 5) The annual metal production beyond 2005 will be stabilized at levels ranging from 380,000 to 400,000 tons for copper, 130,000 to 140,000 tons for lead and 250,000 to 290,000 tons for zine, according to this production plan.

A raw material flow in 2000 is shown in Fig 2-2-2(2).

Lutter period (2006 to 2010)	2((E) ALWALIC, Toll, Lead slax - KAZAKISTAN Battery scrap Amount of production at mines ¹	Amount of production at mines 🕇	<	~	* The production ratio of sulfuric acid to metal is assumed as follows: Copper 2.0 Lend 0.5 Lend 0.5 Zinc 1.3	
Middle period (2001 to 2005)	ŏ z 👘 👘	1.06,500 106,500 292,400 292,400 (peak period) 65,000 565,800				Production Plan
Early period (1996 to 2000)) sent) ALMALIC, To KIZAKHSTAN Battery wer	x6, 000 x0, 000 166, 000 6, 600 220, 000 330, 000 330, 000 343, 500 343, 500 344, 500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<		Fig.2-2-2(1)
	at of production SHYMKEAT IST-KAMENOCORSK LENIXOCORSK Total	Zine UST-KAMENOCORSK 86 LENIVOCORSK 80 Total 166 (opper UST-KAMENOCORSK 6 (opper UST-KAMENOCORSK 6	 Facility plan Roasting plant facilities IST-AAMENGORSK LENINOGORSK LENINOGORSK SHYMKENT IST-KAMENGORSK LENINOGORSK LENINOGORSK GuliBOKOE Installation of sulfur burning 	facilities (4) Copper electrolytic facilities in UST-KAMENOGORSN (5) Copper smelting facilities in GULBOKOE (6) Proper facilities plan in SMYMKENT	 3. Process improvement plan (1) JARUSTIE process in LENINGORSK 4. Quality improvement plan 5. Establishment of management 6. Establishment of cost management 	

0	

-	
6	
\sim	
- 23	
ం	
ō	
ō	
-	
ىيە ا	
65	
- Ü	
- O	
<u> </u>	
Q	
<u> </u>	
- 62	
_ 0	
- 0	
3	
- X	
- č	
- 67	
Pres	
- 1-	
- 0	
ā	
- 6	
- 5	
ň	
Ý	
া	
<u> </u>	
8	
dda	
ddni	
Supp	
I Supp	
al Supp	
rial Supp	
erial Supp	
terial Supp	
aterial Supp	
Jaterial Supp	
Material Supp	
Material Supp	
w Material Supp	
aw Material Supp	
Raw Material Supp	
Raw Material Supp	
Raw Material Supp	
) Raw Material Supp	
1) Raw Material Supp	
2(1) Raw Material Supp	
-2(1) Raw Material Supp	
2-2(1)	
2-2(1)	
2-2(1)	
2-2(1)	
2-2(1)	
2-2(1)	
2-2(1)	
2-2(1)	
Table 2-2-2(1) Raw Material Supp	

		1996	1997	1998	5 6661	2000 2	2001 2	2002 2	2003 2	2004 2	2005 2	2006 2	2007 2	2008 2	2009	2010
Concentrate Production:			:													
(Contained Cu T.T.) Total	E. Kazakhstan	72	76	84	100	115	128	132	130	127	128	-126	:25	130	129	611
	JSC "Zhezkazgantsvetmet"	169	172	189	189	189	161	191	162	162	162	172	167	182	156	156
	JSC "Baikhashmed"	28	28	28	25	4	4	თ	ი	ø	ნ	6	6	6	6	-13
	Koktau-Chilisai			3	15	15	15	15	35	35	35	35	17	12	17	17
	Boshekul				20	20	39	39	39	39	39 .	39	27	27	27	27
	Aktogai			- 4								0 4	34	75	75	76
	Total	269	276	304	349	353	387	386	375	372	373	415	379	440	413	408
Concentrate Supply to:			:													
(Contained Cu T.T.)	JSC "Zhezkazgantsvetmet"	169	172	189	189	189	191	191	162	162	162	172	167	182	156	156
	JSC "Baikhashmed"	74	75	86	127	119	109	104	124	124	124	158	128	169	169	174
	JSC "Irtysh PC"	22	26	31	36	41	41	52	62	67	67	67	67	67	67	67
	Total	265	273	306	352	349	341	347	348	353	353 -	397	362	418	392	397
Balance of Supply-Demand										ļ		,				
(Contained Cu T.T.)		4	m	-2	÷	4	46	39	27	19	07	18	17	22	21	=
Concentrate Import From:		• .														
(Contained Cu T.T.)	Erdenet	30	25	20	15		:									
	Chile	25	20	20	15											
	Others	.12	18	0	6	26	46	51	31	31	31		27			
	Total	67	63 .	64	39	26	46	51	31	31	31		27			
Blister Supply from JSC "Irtysh PC" to:	C" to:	-														
(Contained Cu T.T.)	JSC "UKPb-Zn Combine"	2	∞	10	15	30	40	50	60	65	65	65	65	65	65	65
	JSC "Baikhashmed"	14	17	20	20	10										:
	Total	2:	25	30	35	40	40	50	60	65	65	65	65	65	65	65
Cathode Production	(1.1.)															
(Smelter Recovery 97%)	JSC "Zhezkazgantsvetmet"	164	167	183	183	183	185	185	157	157	157	167	162	177	151	151
	JSC "Balkhashmed"	150	150	150	169	150	150	150	150	150	150	153	150	164	164	169
	JSC "UKPb-Zn Combine"	7	8 2	<u>0</u>	42 12	30	40	50	60	65	65	65	65	65	65	65
	Total	321	325	343	367	363	375	385	367	372	372	385	377	406	380	385

	1 adie 2-2-2(2)		Materia	ddno I	Kaw Material Supply-Lead Froduction Forecasi (1779	r roau	CTION F	OFCCAS		12424						
		-1996	1997	1993	1999	2000	2001	2002	2003	2004	2005	2006 2	2007	2008	2009	2010
Conceptrate Production:																
(Contained Ph T T) Total	JSC "EKCChC"				m	2	4	14	4	4	14	14	14 4	4	2	2
	JSC "Leninocorsk PC"	10		12	12	12	12	12	12	10	10	10	10	8	ω	2
	ISC "Intvsh PC"		~	N	m	4	4	4	4	εŋ.	m	3	£	с	3	ę
	JSC "Zvrvanovsk Lead Combine"	9	6	e	N	Ø	ი	=	11	:	. t	- 11-	11	11	Ę	8
	Chekmar							÷	S	2	15	15	15	15	1-S	15
	Mahewsky Yar										-	F	3	5	2	7
	Total	18	22	19	23	31	39	44	46	48	S3	54	56	56	54	\$0
Battery Scrup																4
(Contained Pb T.T.)		24	25	27	29	32	32	32	32	32	32	32	32	32	32	32
Raw Material Supply to:																
(Contained Pb T.T.)	JSC "Leninogorsk PC"	24	25	27	29	32	32	. 32	32	32	32	32	32	32 32	32	32
	JSC "UKPb-Zn Combine"	8	- 22	19	. 23	31	39	44	46	48	53	S4	56	56	54	ß
	JSC "Shymkent Lead Plant"															
	Tota:	42	47	46	- 52	63	12	76	78	80	85	86	88	88	86	82
Balance of Supply-Demand												,				ľ
(Contained Pb T.T.)		-31		-28	-24	-16	φ	ရ	<u>۲</u>	2	-10	٩	-	-	N	7
Concentrate Import From:							•									
(Contained Pb T.T.)	Almalik	32	32	42	47	53	53	53	53	53	53	53	53	53.	53	53
	Others	31	- 25	28	24	16	\$	6	7	5	ç	6	-	-		2
	Total	63	57	20	71	69	61	62	60	63	63	62	54	54	53	SS
Lead Production (T.T.)																
(Smelter Recovery 95%)	JSC "Leninogorsk PC"	23	24	26	28	30	30	30	30	.0 30	g	30	80	8	80	8
	JSC "UKPb-Zn Combine"	47	45	4S	45	45	45	50	So	55	80	60	SS	SS	ß	20
	JSC "Shymkent Lead Plant"	30	30	40	45	50	SO.	ŝ	S	50	ŝ	20	ŝ	50	So	Š
•	Total	100	66	111	118	125	125	130	130	135	1	140	135	135	130	130

-40-

Table 2-2-2(2) Raw Material Supply-Lead Production Forecast (1996-2010)

(

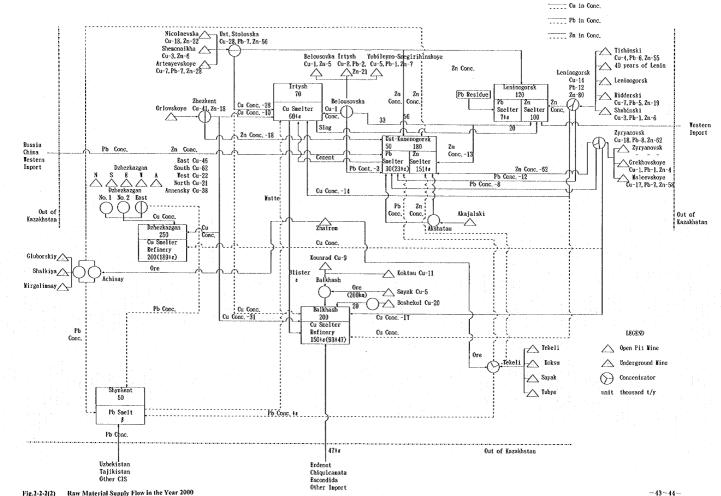
(

D

9

0

Table 2-2-2(3) Raw Material Supply-Zinc Production Forecast (1996-2010)


		1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Concentrate Production:																
(Contained Zn T.T.) Total	JSC "EKCCHC"	23	25	30	42	56	85	82	64	64	62	72	72	72	55	55
	JSC "Leninogorsk PC"	63	04	70	80 80	80	80	80	80	73	73	73	73	55	\$5	SS
	JSC "Irtysh PC"	15	4	4	23	33	36	36	34	31	31	31	22	22	22	22
	JSC "Zhezkent MCC"	13	13	15	18	18	18	8	13	18	18	18	18	18	18	18
	JSC "Zyryanovsk Lead Combine"	38	96 20	41	6	62	74	t 6	њ	16	91	16	16	6	י ה ס	62
	Chekmar							Ø	17	34	S1	5	51	51	51	S1
	Maleevsky Yar											12	23	47	58	58
	Total	152	161	170	203	249	293	315	319	326	343	348	350	356	350	321
Concentrate Supply to:																
(Contained Zn T.T.)	JSC "Leninogorsk PC"	75	75	80	06	8	8	106	106	111	119	111	106	8	94	89
	JSC "UKPb-Zn Combine"	77	86	06	. 113	144	156	166	183	194	207	200	200	194	194	161
	Total	152	161	170	203	244	256	272	289	305	326	311	306	294	288	250
Balance of Supply-Demand																
(Contained Zn T.T.)		-32	-50	-47	-30	s	37	43	30	21	17	37	44	62	62	2
Zinc Production (T.T.)																
(Smelter Recovery 95%)	JSC "Leninogorsk PC"	80	- 06	85	90	90	90	95	95	100	107	8	95	96	85	80
	JSC "UKPb-Zn Combine"	86	8	110	120	130	4	150	165	175	186	180	180	175	175	145
	Total	166	190	195	210	220	230	245	260	275	293	280	275	265	260	225

-41--

(Second

ି

Gi

(

(1

-43~44-

2-2-3 Sulphuric Acid Production

Sulphur must be dealt with one way or another in non-ferrous metals smelters because they treat sulphide minerals and emit sulphurous acid gases which are hazardous to the environment. In an ordinary procedure, sulphurous acid gases are fixed as sulphuric acid. Therefore, the market for sulphuric acid is one of the important factors which are studied for conditions of smelter location. Although statistical data obtained in the course of the current investigation are insufficient, this study indicates the sulphuric acid supply and demand for the period between 1993 and 1995 as shown in Table 2-2-3(1).

		1993	1994	1995
Supply	Smelters		552.9	493.7
	Copper		(215.1)	(215.2)
	Lead/Zinc		(337.8)	(215.2)
	Pyrite Combustion		240	240
	Elemental Sulphuric combustion		240	240
	Import			57.9
	Total Supply	1,179.0	1,032.8	1,031.6
Deman	l Fertilizer	856.7	718.3	938.3
	Synthetic fiber	1.5		
	Synthetic Rubber etc.	49.0	49.0	<u>49.0</u>
	Export		265.5	
	Total Demand	907,2	1,032.8	987,3

Table 2-2-3(1) Supply and Demand of Sulphuric Acid in Kazakhstan

Sulphuric acid production will fluctuate depending upon the sulphide compositions of smelter feeds (mainly concentrates). Table 2-2-3(2) indicates the average annual production rates and theoretically corresponding amounts of sulphurie acid at 100% recovery of sulphur, assuming sulphide compositions of smelter feeds. The JSC Zhezkazgan ores, consisting mainly chalcocite, are low in the theoretical sulphurie acid ratio to a ton of copper metal. The theoretical sulphurie acid production is regarded as the maximum attainable. In the same table, the actual production in the period between January and September, 1996 is cited and indicates generally low recovery rates of sulphur, although the JSC "Zhezkazgantsvetmet" and JSC "Leninogorsk PC" are performing relatively well.

Estimation of yearly production rates of sulphuric acid is extremely difficult due to insufficient information and has been omitted from the production plan of this report. If the sulphuric acid plants perform to their best, an annual total production of around 1 million tons of sulphuric acid can be easily expected, assuming that 60% of the theoretically maximum production can be achieved, and will meet the present demand as shown in Table 2-2-3(1).

)

 $\left(\right)$

Name of		nned N uction	feta) (T.T)	* Sulphide	** Theoretical	Production	Actual Pro 1-9, 1		Remark
JSC	Cu	Pb	Zn	Ratio	H.SO, (T.T)	+++ Ratio	H;SO, (T.T)	*** Ratio	
Zhezkazgantsvetmet	180			cc: py =3:1	234	1.30	96.9	0.699	Average H-SO, Ratio to Metals in Actual
Balkhashmed	150			cp: py =1:0	459	3.06	32.7	0.495	Operations in Japan Cu: 2.7
Globokoe (Irivsh)	65			cp: pv =1:0	201	3,06	***		Pb: 0.7 Zn: 2.0
Leninogorsk PC			. 90	Zn: pv =3:1	224	2.49	90.7	1.471	
UK Pb-Zn Combine		50		ga: py =2:1	48	0.95			
Shymkent Lead		50	150	1 .	374	2.49			
Plant		<u> </u>		ga: py =2:1	48	0.95		0.076	
Total	395	100	240		1,588		220.5		l

(

(

Table 2-2-3(2) Sulphuric Acid Production

Assumed Sulphide Ratios in Concentrate Note

Assuming 100% Recovery of Sulphur Ratio of the Amount of 11:50, to that of Metal Produced ***

When there is insufficient market for sulphuric acid, it is recommended to produce artificial gypsum from sulphuric acid. While sulphuric acid is difficult to store because of its chemically reactive nature in liquid form, gypsum, having a solid form and chemically stable nature, can be stored outdoors for a long period without degeneration. It is commonly believed that artificial gypsum is not cost competitive in Kazakhstan because there are many gypsum deposits which are being mined cheaply. However, production of gypsum is an environmental issue rather than a matter of commercial interest. Taking into account the economic development of Kazakhstan, uses of gypsum will widen, particularity in the construction industry.

2-2-4 Precious Metals and Other By-products

2

Insufficient data have been obtained with regard to precious metal production in the course of the current investigation because such information was designated as confidential from the national secret point of view. At the present time, the plant on extraction and refining of gold and silver is operating at JSC "UK Pb-Zn Combine". The same production has been set up in Balkhash at the JSC "Balkhashmys" and in Stepnogorsk at JSC "Tselinny Mining and Chemical Combine". A number of non-ferrous metals industry and gold mining industry enterprises are producing "dore" alloy. A new plant is being constructed at the JSC "Balkhashmed" but is not yet in operation. A gold doré plant is attached to the lead plant of the JSC "Leninogorsk PC" but is not in operation as well.

The total 1995 gold and silver productions are recorded at 10 and 370 tons, respectively. Taking into account the high gold and silver contents in polymetallic ores, it will be possible to significantly raise levels of the production with appropriate improvement and reinforcement of the present facilities and equipment. The gold and silver production will further increase in future when base metal deposits with high precious metals content, such as the Kosmurun and Mizek, are exploited.

In addition to precious metals, the following by-products are being produced in the course of producing copper, lead and zine metals; copper sulphates, bismuth metals, lead bismuth alloys, cadmium metals, zine oxides, lead oxides, ammoniated rhenium and so forth. Generally, their quality is unsatisfactory for marketing to electronic and other high technology industries in western countries.

No production plan, either for precious metals or for other by-products, can be prepared due to insufficient information.

2-3 Rationalization and Modernization of Production Lines

2-3-1 Overview

Improvement has to be made in facilities and equipment, process and quality control systems, product marketing, corporate management and so forth. The major engineering problems that have been identified at various combines in the course of the two site investigations are summarized in Table 2-3-1(1), together with recommended measures to solve the problems.

(}

¢

Table 2-3-1(1) Recommendations for Improvement of Combine (1)

(

0

JSC	Improvement Items	Improvements to be Effected
UK Pb-Zn Combine	Refining ①Establish the base for a smelting-refining complex of copper. lead and zinc ②Promote production of higher grade products (secure future demand)	(Fully utilize the KIYCET Process for lead smelting for cost reduction (energy saving) and environmental improvement, @Convert the idle zinc electrolysis plant to copper electrolysis plant, for integrated operation involving Irtysh Refinery. @Ensure sulfuric acid production ; acid plant to be reinforced, including installation of sulfur burning equipsent. @Higher grade by-products;secure future demand, @Establish quality control system.
Leninogorsk PC	Wining ①Tishinsky Wine • Improve haulage equipment for developing lower part • Cost reduction (10\$/1) • Raise productivity • Re-estimate low-grade ore reserves in deep portion @Ridder-Skolnoye • Define auriferous bonanza @Shubinsky Wine Ore dressing @Cost reduction @Improve operation performance Refining @Destablish basis for zinc refinery to treat its own ore @Plant exclusively for treating lead batteries (Quas new battery discantling facilities)	 ①The skip equipment at No. 16 level to be moved and improved; LNDs to be increased(study larger type) for cost reduction, (4. 7%/t @LND operation rate to be raised to 50+60% level by maintenance of parts. ①Reduce welfare cost by 1/2. ①Cost reduction (20%); review accounting apportionment of indirect expenses; renew equipment. @Refine counterreasures for spontaneous combustion. ①Install a tailings thickner to raise tailings slurry density during transportation to tailings dam, thereby saving energy. @Study applicability of heavy-media separation to Tishinsky ore, for reduction of personnel and maintenance. @Wequee personnel of repair division (by preventive maintenance, murture of multi-functional operators). ①Japrove floation operation and mutomatic reagent control system (distributed process control by FA computers). @Improve floators (cap 20+30m *) ①Improve recovery of by-products (gold and silver) by utilization of the Jarosite process, @Resure sulfuric acid production; acid plant to be reinforced, incl. installation of sulfur burning equipment. @Actively collect hattery scaps, which has to be made a national policy. @Complete stoppage of sintering machine (advice for isprovement),
Shymkent Lead Plant	Refining ①Establish raw materials procurement system (for maintaining operation) ②Promote diversification of products(secure demand)	DA base for imported ore treatment (strategic point of communication to the Central Asia and the Widdle East). @To be made a toll smelter, by the state policy guidance. @Actively collect lead slag; treat copper smelter flue dust, @Promote lead chericals business; study rerger of Irtysh copper refinery. @Ensure sulfuric acid production; acid plant to be reinforced, incl. installation of sulfur burning equipment.
Zhezkazganstvetuet	Vining ①More efficient operation control ②Raise productivity ③Safety measures, etc. ④Effective utilization of mineral resoures	 (DSystematization of data and information by computers. (EMore efficiency and improved quality of ore reserve calculation by introduction of geostatics method and computers. (Factbility in setting cut-off grade. (DConcentrate and simplify stopes. (EXent) (V) ventilation system; reduce airflor; introduce computers (ventilation simulation). (Resole-controlled LBDs and hydraulic long-hole drills. (Blue larger open-pit mining equipment [loaders. dump-trucks, drills). (EVED vention ensurement; introduction of a cave collapse forecast system. (Displement leaching of copper oxide ore (1, 0% Co. 15 million thand SX-EI process.

Table 2-3-1(1) Recommendations for Improvement of Combine (2)

0

0

()

JSC	Improvement Items	Improvements to be Effected
Zhezkazganstvetmet	Ore dressing ①Improve and stabilize operation ②Prevent mine pollution Refining	 ①Improve flotation operation; introduce automatic control system for reagents. ②Install instrumentation equipment (sensors, flowmeters, pressure gauges, watt meters). ③Inprove water recycling circuit by installing tailings thickeners. ③Inprove acid plant. ②Study conversion to another furnace other than electric furnace. ③Install new casting machine. ④Inprove quality control system. ⑤Construct in -house power generation plant.
Balkhashoed	Vining ①Study cost reduction ②Close/reduce unprofitable mines ③Procote survival measures Ore dressing ①Improve operation performance ②Effective utilization of mineral resources Refining	Convert from rail transportation to truck transportation, CStudy reduction/closure of Kounrad and Sayak Wines. CPromote projects of leaching of copper oxide ore (0.25% Cu, 250million t) and SX-EW process. CModification of processes. @Inprove water recycling circuit by installing tailings thickener. Ollostall equipment for recovering smelter slag (flotation). Ollprove acid plant. @Fully utilize the Yanukov process instead of reverberatory furnaces. @Inprove quality control system.
Zyryanovsk Lead Combin	ne Kining Zyryanovsk Kine @Reduce ground water (24,0001/day), an increasing cost factor. @Prevent dilution, @Raise operation rate of machinery Grehovsk Kine @Review mining method for raising ore grade. @Study mine closure. Kaleevskoye Kine Ore dressing @Cost reduction,	 OPlan preventive measures of water inflow from old pits; abandon part of galleries. OReduce ore mined by sublevel caving method. Olaprove procurement of parts. OWining of high-grade ore. @Isprove parts supply system. @Reparate non-production divisions. @Use larger LHDs; study Testern nanufacturer's machines (4-6 m³/bucket). OConserve tining method mainly to mechanized cut and fill method, to improve pillar recovery. @Construct filler plant, ventilation shaft, waste water treatment plant and concentrator. @Reduce an ining recovery to improve dilution. @Reduce personnel of repair division by preventive maintenance and nurture of multi-functional operation.
	©J∎prove operation performance.	Oxecuce personnel of repair division by preventive naintenance and nurture of addit-inductional operation. @Reduce personnel for site saapling and of assay divisions by procoting automation. ①Ipprove flotation operation and automatic control system of reagents (distribution process control by FA computers). @Study influence of taket recycling; repeated or edressing test using recycled water. @Study ore dressing methods for Waleevskoye ore: Prevent oxidization of crude ore; study particle sizes, reagents, etc; review of flow chart (separate through treatment of slime). @Construction of concentrator at Waleevskoye Wine site.

Table 2-3-1(1) Recommendations for Improvement of Combine (3)

(

(

JSC	Improvement Items	Improvements to be Effected
EXCCHC	Wining Nicolaevsk Wine • Improve working pit slope	(DPlan open-pit stripping(approx 5 million m ³ for 3 years ; 9 million \$), improve explosives consumption(2.958→0.32\$). (@Reduce working pit slope(22 ²). (@Improve maintenance of heavy machinery to raise operation rate from 40%→60%.
	Sheaonaiha Kine Artemyevskoye Nine • Early development Ore dressing	@Use larger dump trucks(increase 110 ton trucks). @Gradually shut donn the mine due to exhaustion of ore reserves ; effective utilization of abandoned pits. @Complete businees plan ; accelerate fund raising.
	(Cost reduction ©Improve operation performance	Offective Operators Operators Operator Operator <thoperator< th=""> Operator Operator</thoperator<>
	©0thers	improve separation of marmatite and pyrite(study of line and cleaning); improve NaCN addition control. ©Naprove Cooper-lead separation performance; review flow chart(Cu-Pb semi-bulk, differential flow); applicability of hot water flotation. DContinue testing for the hard-to-treat Artemyevskoye ore to improve performance. @Peasibility study on Artemyevskoye ore.
Irtysh PC	Vining ①Irtysh Wine • Improve productivity(increase operating days) • Recover delay in backfilling • Separation of non-production divisions ②Yubileyno-Snegirihinskoye Wine • Early development(disclosure of business plan) ③Belousovk Wine Ore dressing ①Cost reduction ②Improve operation performance	OPromote mechanization(renewal of old equipment and system). @Increase capacity of filler plant. @Complete NV ventilation shaft for access to a bonanza in lower part. @Rationalize personnel arrangement ; reduce electric power cost and welfare costs. @Spin-off of beer and brick factories. @Construct surface facilities including concentrator. @Construct only production-related facilities at aine site. @Utilize idle machinery in the country, to minimize investment expenditure. @Utilize infrastructure facilities at JSC 'lrtysh PC'(long-distance commuting). @Gradually shut down the mine. @Ratice reagent requirement per ton of concentrate ; reduce types of reagents. @Ratice faccereater contrate grade ; depress Pe(pyrite). @Stabilize receiving of crude ore.
Zhezkent KCC	Wining ①Prevent dilution, ensure safety Oré dressing ①Improve operation performance, Prevent fluctuation	Disprove filling surface by cut and fill mining method. @Devise preventive measures for accidents. @Reduce personnel by preventive maintenance and nurture of multi-functional operators. @Study influence of water recycling; improve mater recycling circuit; study where to use recycled mater; prevent fluctuation in recycled mater volume and pressure; differential use of recycled mater by quality; separate treatment of unprocessed mater; use of activated carbon. @Promote automatization of ore dressing operations(distributed process control by FA computers). @Reaise Cu concentrate grade(study Pb removal from Cu concentrate, review concentrate pricing system). @There are automatized and sufficience of a suffi

Table 2-3-1(1) Recommendations for Improvement of Combine (4)

1

0

C

JSC	Improvement Items	Improvements to be effected
Tekeli Pb-Zn Combine	Wining (DReview crude ore transportation and mining system (Government assistance unavailable) (Efxploration of surrounding area,	DIn current circumstances, continuance of the entire combine is not possible. (Exeparate non-production divisions, (B)iscontinue crude ore transportation (the concentrator to be moved). (Government exploration to be continued,
Achpolyzetal	Wining Ansaiy • Continue the enterprise by barite production • Rener equipment; isprove operation rate. • Cost reduction by changing mining method. Gulbokiy, Wirgalinsaiy • Operation is difficult to continue. • Improve environmental conservation, • Effective utilization of infrastructure. Achisai • Oxidic zinc ore (Zn0;(C0;)Si0;) cost 458/t	 CRemew dump trucks. Claprove parts supply system.
Sary-Arkapolymetal	Kining @Discontinue long-distance transportation of crude ore.	ŒStudy construction of concentrator at the mine site (e.g., removal of idle equipment). @Overall revie≢ of feasibility study.
Shalkiya Wine Wanagement	Kining ①Confirm relative high grade zone in ore bodies. ②Electrification; improve transportation and drainage costs.	OSelective mining in the upper, lower and boundary zones. @Feasibility study for construction of concentrator. @Ore dressing tests. @Request Covernaent for assistance (exemption/reduction of infrastructure utilization fees, Ex, electricity, road maintenance, tree planting). @Exploration of surrounding areas. @Receive surplus personnel of the JSC*Achpolymetal*. @Seek financial sources for development.

.

2-3-2 Facilities and Equipment

(i)

9

Facilities and equipment are generally superannuated or obsolete in all the combines visited, which has been one of the major causes for low productivity and environmental hazards. It is, as a matter of course, desirable to replace or renew these facilities and equipment by new and modern equivalents, but will, at the same time, require a tremendous amount of investment. Most major facilities and equipment are, though unsatisfactory in their productivity, operational with appropriate maintenance and supervision. At the present stage, excessive investment will neither be allowed nor be recommended from the economic point of view. Investment should be limited to the most urgent and effective items for reformation of the presently troubled states of all combines.

It is necessary to review the traditional concept for optimizing the number of spare facilities and equipment for continuous operations. In the view of the JICA Survey Team, excessive facilities and equipment have been installed in many combines. For example, where two furnaces are required for smelting, a total of four furnaces are installed; two for operation, one for repair and one for spare. With appropriate maintenance and surveillance, the number can be reduced.

In maintaining facilities and equipment, failures are dealt with after they occur, rather than taking adequate preventive measures. Accordingly, the relative proportion of costs for maintenance becomes high and reaches, for example at the JSC "Shymkent Lead Plant", nearly 29% of the total operating cost. Inventory of spare parts and consumables has not been well controlled for proper maintenance. Systems for adequate preventive maintenance and inventory control have to be established.

Kiveet and Vanukov furnaces are well known for their prominent technology as the state of the art in smelting in the former USSR. The Kiveet technology in particular has been exported to such western countries as Italy, Bolivia and recently Canada. However, no adequate operating data were provided by the combines adopting these furnaces on the occasions of the two site investigations. Accordingly, technological assessment of these furnaces cannot be properly made.

Two Vanukov furnaces are employed at the JSC "Balkhashmed". However, their performance appears to be unsatisfactory with generally low utilization and availability according to the verbal information obtained at the site. Although it is claimed that the Vanukov furnaces are operating satisfactorily at the Norlisk Copper-Nickel Smelter in Russia, no operating data are available as well.

The Kiveet furnaces have been adopted at the Globokoe and the Ust-Kamenogorsk Smelters but were not in operation for repair on the occasions of the site investigation. This type of furnace appears to be effective for reducing both energy consumption and environmental damage. According to verbal information obtained at the site, the following disadvantages are associated with the furnaces;

(1) complicated processes for treatment of raw materials prior to feed,

(2) inflexibility for accepting different types of feed materials, particularly of recycled raw materials, and

(3) difficulty in controlling slag quality due to swift furnace reaction.

From the energy conservation point of view, flash furnaces may be an alternative option instead of electric furnaces at the JSC "Zhezkazgantsvetmet". However, this option must be technologically studied in detail for material balances, because the Zhezkazgan ores, comprising mainly chalcocite, are low in sulphur and high in silica contents.

The sulphuric acid plants of all the smelters must undergo major reconstruction or readjustment from the view points of working conditions in the plants and environmental protection. According to Table 2-2-3(1), the sulphurie acid production rates in proportion to the amount of produced major metals are generally low in comparison with the theoretical values. Although major causes exist in the obsolete or superannuated facilities and equipment, the present situation will be significantly improved by maintaining continuous operations which is indispensable in protecting sulphuric acid plants from corrosion. Introduction of appropriate processes for treatment of dilute sulphurous gases will be also effective. Frequent disruptions, mainly due to interruption of electricity supply, will further deteriorate facilities and equipment.

()

-- 58 --

2-3-3 Process and Quality Control

)

9

The present ore reserve estimation in Kazakhstan is being done using a polygonal, panel or other conventional method depending on ore configurations. It has been argued on the basis of comparison between estimation and actual production that the conventional methods tend to overestimate ore grades. In recent years, 'Geostatistics' has been introduced as a standard method for ore reserve estimation in the western world. An economic review of each mining block should be made occasionally according to its tonnage and grade, accessibility, hautage distance, metal prices and other mining and economic parameters in order to maximize operating profits. For example, a cut-off grade of each mining block may be changed, when necessary, referring to metal prices and other parameters. For this purpose, construction of a data base which contains the above mentioned parameters is necessary. A number of computer software packages combining 'Geostatistics' and data base for planning and controlling mining operations are available.

It is desirable from the environmental protection point of view to reclaim concentrator effluent as much as possible. Reclaiming effluent will also be effective in reducing consumption of flotation reagents in some cases. However, a variety of reagents are used in processing polymetallic ores and some of them, when left in reclaimed water, may cause adverse effects on recovery rates and concentrate grades. In particular, it is necessary to eliminate hazardous reagents such as copper sulphate (an activator), cyanides (a depressant) and others. Effective activators and depressants that are suitable for reclaiming effluent are available and commonly used in concentrators in western countries. Flotation tests will be necessary to identify which reagents are the most effective. Installation of tailing thickeners will be effective for controlling the quality of reclaimed water.

The grade of copper concentrates produced in Kazakhstan are substantially lower compared to those produced in the average concentrators in the western world. It is not technologically difficult to raise the concentrate grades by minor modifications of the present procedures. Traditionally, not much attention appears to have been paid to transportation costs most probably because of irrationally inexpensive tariffs controlled by the Central Government of the former USSR. When the Koktau and the Boshekul deposits are exploited, metal grades of concentrates produced at these deposits will become an important parameter influencing operating costs, taking into account their remote locations. Data collection and data base construction will be necessary to appropriately control the total performance of concentrator operations. Adequate instruments should be installed for collecting satisfactory data. A system should also be established in order to properly collect samples, analyze them and feed back the analytical data to the ore dressing process for controlling operating parameters. The present instrumentation in the concentrators in Kazakhstan appears to be generally inadequate for countering any changes in operating conditions. Automation of the operation systems may be desirable.

The lead produced at the JSC "Shymkent Lead Plant" is the only product that has been registered at the London Metal Exchange. The Shymkent lead and the zinc produced at the JSC "Leninogorsk PC" appear to satisfy the quality standards required by the LME, according to the information obtained in the course of this Project.

However, the quality of metals produced in Kazakhstan is generally poor particularly in trace element contents, resulting in low sales prices. Comparison of standard products between Kazakhstan and Japan is shown below.

Copper											
Banda, Jack wigningspreise and an and an anal	Cu	Şe	Te	Bi	Sb	Ás	Pb	S	Ni	Fe	Åg
	(%)				ppm						
Kazakhstan	<u>99.99</u>	<u>≦0.5</u>	≦0.5	≦0. :	<u>2 ≦1.5</u>	1.0	1.0	12	0	4	13
Japan	99, 99	≦0.4	≦ 0. 1	≦0.	1 ≦0. 1	0	<u>0. 4</u>	7.0	0	0	10
Lead	Car, & w										
	Pb	Åg	Cu	As	Sb	Sn	Zn	Bi	Fø		
	(%)				ppm						
Kazakhstan	99.985	10	10	5	10	5	10	60	10		
Japan	99, 995	1	1	1	1	1	1	5	1	_	
Zinc											
Brand Christian Statistical Statistics	Zn	Pb	Fø	Cd	Cu						
			pp	ЯП		_					
Kazakhstan	99.985	80	28	27	7	-					
Japan	<u>99.998</u>	13	2	2	1	•					

Consciousness of quality control is generally low, although formats for quality control, such as process flows, process control standards and quality standards, are provided. At the present time, products are sold with little attention paid to their quality as required in the international market.

It is necessary to introduce a concept of the Deming Cycle (Plan, Do, Check, Action) for quality control practice. A comprehensive set of systems for controlling processes, costs and quality should be established as follows;

(1) A system to prepare, review and finalize operating plans.

(2) A system to counter adverse operating results by relevant sections in a timely manner according to their responsibilities clearly defined.

(3) A system to control material consumptions, production times and hence production costs.

(4) A system to analyze and assess quality of products with adequate instrumentation.

(5) A system to optimize processes.

(6) An education system to elevate the awareness of engineers and workers for cost and quality control, and familiarize them with statistical approaches.

In addition, instrumentation should be upgraded in order to collect adequate data and construct a data base. Continuous and stable operations are also essential for quality control.

に指

2-3-4 Environmental Protection and Safety Control

Environmental problems, associated with operations of mines, concentrators, smelters and refineries, are summarized as follows;

- (1) Dusts generated by handling ores and powdery materials, are hazardous to human health because of their abnormally high contents of heavy metals and silicates and will deteriorate working conditions. Dusts from dry tailing dams may disperse in a significantly large area when strong winds blow and will adversely affect residential areas in the vicinity of the tailing dams.
- (2) Mine wastes, flotation tailings, slag and other waste materials dumped in open air may become continuous supplies of water containing heavy metallic ions to the environment when exposed to rainwater for a long period. The leachate will regionally pollute surface soil and water, and may infiltrate to underground water.
- (3) Mine water and plant effluent contain abnormal amounts of metallic solids and ions, and will pollute soil and both surface and underground water.
- (4) Vapor and fugitive gases from plants, particularly from smelters and refineries, will disperse in a considerably wide area and cause regional air pollution, affecting residential areas. The most notorious pollutant is sulphurous gases that are generated by smelting operations, as it has been repeatedly mentioned in this report.

The majority of the above mentioned problems may be overcome by appropriate monitoring of operations and application of preventive measures. Unfortunately, however, the costs for environmental protection are rather high and tend to be reduced as much as possible. Never-the-less, environmental protection is one of the most important responsibilities of the corporate management. In the world scene, the ISO 14000 (International Standard Organization) has been introduced and enforces all the industries to abide by its standards.

As a general approach, the following measures are recommended;

- (1) Investigation of the present state of environmental deterioration, identifying pollutants in quality and quantity, sources of pollutants, affected areas, degrees of pollution, and so forth.
- (2) Monitoring working conditions in mines and plants including air quality (dust, oxygen, sulphurous gasses, toxic substances), temperature, humidity and so forth.
- (3) Monitoring discharge water from mines, waste dumps and tailing dumps and plant effluent from concentrators, smelters and refineries.
- (4) Monitoring vapor and fugitive gasses from smelting and refining plants.
- (5) Restoration of contaminated soils and conservation of water-sheds.

I

5)

3

99

In order to implement the measures above mentioned, it is necessary to establish a firm system and organization for controlling environmental problems with adequate instrumentation. Employment of environmental specialists and education of employees will be also important. As aforementioned, environmental control is costly and requires a wide range of technology. In this regard, assistance and cooperation by the State

Government will be indispensable financially and technologically. Technical cooperation of foreign countries, where environmental protection methods are being practiced for the non-ferrous metals industry, can be sought.

Mine and factory safety is being routinely carried out under supervision of the Ministry of Industry and Trade and does not appear to include serious problems except for poor working conditions created by environmental deterioration in mines and plants as above mentioned. Recently, however, an unfortunate accident of ground subsidence occurred above a mine of the JSC "Zhezkazgantsvetmet" and caused some causalities. Subsidence caused by underground caving may be forecast by monitoring acoustic omission released by rock bursts. A study is also being carried out by mining engineers at the site for techniques to stabilize the ground by intentional caving for preventing subsidence.

 $\langle a \rangle$

2-3-5 Utilization of Waste and Unused Materials

Recovery of valuable minerals and metals from mine wastes, discarded ores (mostly oxide), tailings and slag, is desirable from the view point of environmental protection. A total amount of 15 million tons of oxide ore with an estimated grade of 1% copper exist at the Zhezkazgan Mines. Of the total amount, 2 million tons have been mined and stockpiled. At the Kounrad Mine of the JSC "Balkhashmed", a total amount of 250 million tons of oxide ores with an estimated grade of 0.25% copper are stockpiled. Leaching extraction of copper from these resources will be beneficial from the raw material supply and environmental points of view. Although the studies for leaching or SX-EW processes have been completed, construction is yet to commence.

Trial flotation of slag from smelting furnaces is being carried out at the Balkhash Concentrator. According to verbal information, approximately 54 million tons of smelting furnace slag with an average grade of 0.67% copper have been stockpiled since the early days of the smelter operation. The test results to-date indicate that some 60% of copper can be recovered by slag flotation. It is planned to treat 1.8 million tons of slag per annum, commencing in 1997. This operation will annually provide the smelter with approximately 7,800 tons of copper in concentrates.

2-3-6 Energy Conservation

Energy consumption to produce a ton of copper, lead and zine metals is as follows;

 Copper:
 $5.39 \ge 10^{6}$ kcal/ton

 Lead:
 $3.95 \ge 10^{6}$ kcal/ton

 Zine:
 $12.47 \ge 10^{6}$ kcal/ton

In general, the proportion of energy costs is high in smelting and refining processes for these metals. Therefore, energy conservation is one of the important items for controlling operating costs. The measures for energy conservation are summarized as follows;

(1) Conversion of Smelting Processes.

Utilization of sulphur contained in raw materials (sulphide) is a fundamental technology for saving energy consumption in smelting processes, and is commonly adopted in various types of smelting furnaces in the world. The Kiveet and the Vanukov furnaces are of this category; the former type is installed at the JSC "UK Pb-Zn Combine" and JSC "Irtysh PC", and the latter at the JSC "Balkhashmed". Assessment of operating conditions of these furnaces is impossible because no operating data were released to the JICA Survey Team on the occasions of the site investigation as they are considered confidential. Judging from the verbal information and the on-site observation, none of these furnaces are working in a satisfactory condition from the energy conservation point of view. Full use of these furnaces is desirable from the energy conservation point of view. It is desirable to take advantage of these furnaces as much as possible.

(2) Various improvements for reducing consumption of fuels.

(3) Reduction of unit costs of fuels

It may be possible to reduce unit costs by changing fuels to inexpensive alternatives, for example, use of coal or coke instead of heavy oil.

(4) Reduction of Exhaust Heat

It is possible to increase combustion efficiency by oxygen enrichment of blasting air.

(5) Utilization of Exhaust Heat

It is possible to generate electricity by a waste heat boiler utilizing exhaust heat. This procedure has been adopted in some smelting plants.

(6) Various Improvements in Refining Plants

Increase of acidity of electrolytic solutions

· Increase of electrolytic solution temperature

Reduction of electrode intervals

• etc.

3)

9

9

(7) Installation of Energy Saving Instruments

At the present time, the unit price of electricity in Kazakhstan appears to be generally low in comparison with that in most western countries, although it varies from place to place. It is, however, an essential problem whether the present electricity price is adequate for operating power plants economically taking into account the fuel (mostly coal) and other costs for power generation or it is necessary to increase the price in the immediate future for stable power supply. Frequent interruptions of power supply are becoming serious recently for normal operation of smelting and refining plants. It has been reported that power plants often interrupt supply to combines because of their unpaid debts. However, such frequent interruptions as above mentioned may have been, in many cases, caused by unstable operations at the power plants. Under the present situation of power supply as above mentioned, installation of an independent power plant may be the only option to secure a stable power supply. It is a very difficult argument whether installation of an independent power plant is economically justifiable or not. A comprehensive and nation-wide study will be required for establishing appropriate power supply and electricity pricing systems.

The underground ventilation system is one of the important items in mining operations for energy conservation. A great deal of electricity is consumed for ventilation in underground mines particularly during the severe winter of Kazakhstan. For example, the 1996 budget of the Zhezkazgan Mines indicates the total electricity consumption of 266 million kWh, of which 172 million kWh or two-thirds are to be consumed for underground ventilation. If 20% of the electricity consumption can be reduced by rationalization of the ventilation system, the saved electricity cost will amount to nearly 70 million tenges at an assumed unit cost of 2 tenges per kWh or to more than one million US. dollars. An optimum underground ventilation system can be easily designed by simulation using personal computers.

٢

(1)

2-4 Corporate Management

2-4-1 Corporate Structure

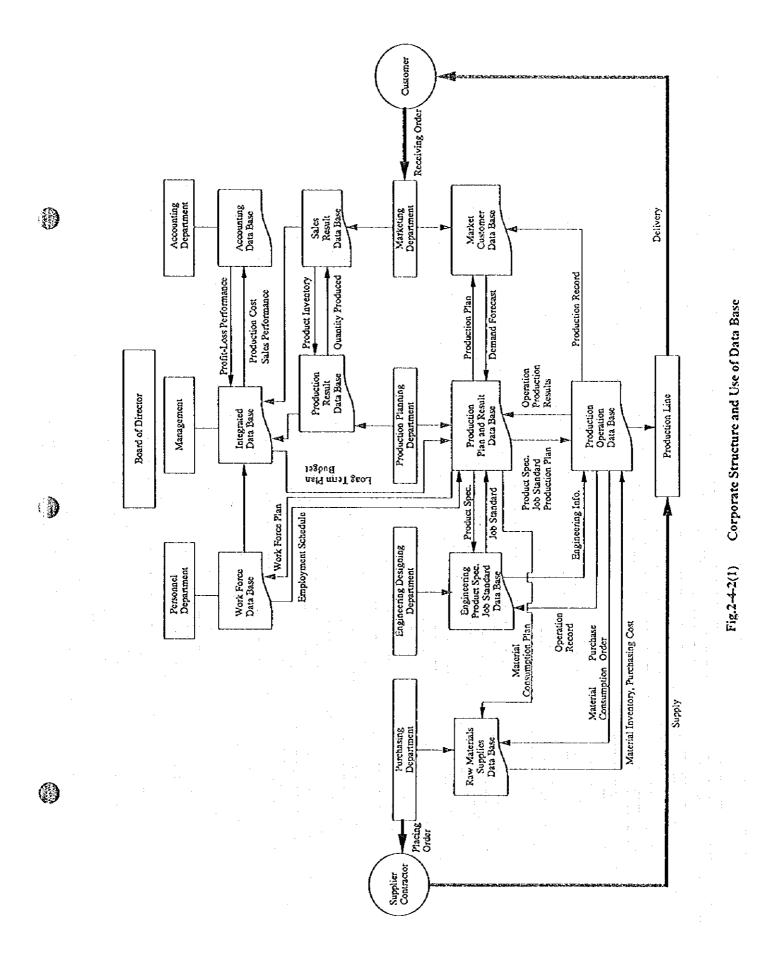
The corporate management in Kazakhstan principally follows the system inherited from the USSR era, and appears to be inflexible in adjusting itself to any changes of business circumstances. A cooperate structure in Kazakhstan is usually complicated, comprising a number of sectors whose roles and duties are strictly defined. There is no system to laterally exchange data and information between the sectors. This type of corporate structure is suitable for producing a large amount of goods with simple specifications under stable market conditions. However, market needs and conditions have been changing very swiftly in recent years. This requires corporate management to respond to such changes without delay in order to survive under the free trade economic circumstances.

2-4-2 Management Practice

(i)

())

(1)


JSC "Leninogorsk PC", JSC "Balkhashmed" and JSC "Zhezkazgantsvetmet", consist of mines, concentrators and smelter-refineries. Although these production sectors are included in a single entity, their performance should be assessed separately. Clear settlement of accounts must be placed between individual production sectors. It is common practice in the western country that concentrates are sold to a smelter at international market prices with prevailing sales terms and conditions, even if the concentrator and the smelter belong to the same corporation. In other words, each production sector should be competitive on the international standard basis. Overhead, such as head office, internal transportation, public relations and other indirect costs, should be shared by each sector according to the degree of benefit it receives.

Although raw data are routinely collected on items necessary for production and cost control in the present practice in Kazakhstan, there is no system for efficient utilization of the collected data. Therefore, it is necessary to construct an appropriate data storage and retrieval system for achieving maximum efficiency in production lines. The roles of data bases in a corporate structure are schematically illustrated in Fig.2-4-2(1). Necessary information should be exchanged between departments in order to improve corporate performance as a whole.

The present workforce in most combines are large for their production capacities as compared to those in western operations. Reduction of the numbers of workers is necessary, particularly in the non-production sector, as improvement of facilities and equipment progresses. Although salaries and wages in Kazakhstan are much lower than in most western countries, their escalation is certainly anticipated within the next few years due to inflation. Since the non-ferrous metals industry is principally labour-intensive, the burden of labour costs will quickly increase as inflation progresses. A comparison of the workforce at operations in Kazakhstan and other countries is shown in Table 2-4-2(1).

According to Table 2-4-2(1), the workforce of the mines in Kazakhstan is two to three times as big as that of North American mines. The number of personnel working in plants of Kazakhstan is far too large compared to that in Japanese plants and reaches nearly ten times.

(]

-67-

Table 2-4-2(1) Comparison of Number of Employees

| North American Standard

Note

æ

<

EKCCHC

Dzhezkazkan (North)

Kazakhstan

Open Pit Mines

Crude Ore Production	I —	15,000.t/D 2,000.t/D		-10,000 t/D	20,000 t/D					
Stripping Ratio					20	-				
Number of Employees	. ,					* East Kazakhstan	נאח			
Salary	. 123			60	51 51	Mine-100				
Hourly	161			164	272	Concentrator-440	011-			
Total	÷19		8:0	-7	369					
Underground Mines	Table Co	DASISTS O	f Product	ion and Emplo	yees for JSCs	Table Consists of Production and Employees for JSCs Zhozkent MCC, Zyryanovsk Lead Combine and Leninogorsk PC.	Zyryanovsh	c Lead Co	ombine and Len	inogorski
			Kazakh	khstan				Wester	Western Countries	
		Dzhezkazgan	4 U				Room &	Cut &	Polaris	Red Dog.
	East	West	i South	Zhezkent	Zyryanovsk	Leninogorsk	Pillar	[Fill	Canada	USA
Production t/D	22,000	15,000	20,000	3,000	6,000	8,000	14,000	2,000	3,000	3,000
Number of Employees										
	•			Mine	. Wine	Minc			Mine	
Salary	560	176	281	1,000	1.250	2,080			127	
				Concentrator	Concentrator Concentrator Concentrator	Concentrator			Concentrator	
Hourly	1.470	166	1.594	011	742	870			++	
Total	1.760	1,170	1,875	1,440	1,992	2,950	420	188	171	330
			JAPAN			Ka	Kazakhstan			
• <u>•</u> ••••••••••••••••••••••••••••••••••	Name of Plant	Plant		Manpower	er Name of Plant				Manpower	
	(() () () () () () () () () () () () ()				2 2 2 2 2 2 2 4 2 Q				71 716 (100.1)	

	[apan	:	Kazakhstan	
	Name of Plant	Manpower	Name of Plant	Manpower
	Tamano	200	Dzhezkazgan	21,246 (1994)
	Production Capacity		Production Capacity	<pre>{ (Combine Total)</pre>
	Blister 263,000 t/yr		Blister t/yr	
	: Electrolytic		Electrolytic	
Copper Smelter	Copper 191,000 t/yr		Copper 211,000 t/yr	•••
& Refinery	. Onahana	150	Balkhash	11,182 (1994)
	Production Capacity		Production Capacity	(Combine Total)
	Blister 294,000 t/yr		Blister t/yr	
	Electrolytic		Electrolytic	
	Copper 247,000 t/yr		Copper 308,000 t/yr	
Lead Smelter	: Chigirishîma	170	Shyakent	2, 587
	Production Capacity		Production Capacity	: (Combine Total)
	Electrolytic			
	: Lead 94,800 t/yr		Refined Lead 160,200 t/yr	
Zinc Refinery		190	Leninogorsk	13,460
	Production Capacity		Production Capacity	<pre>(Combine Total)</pre>
	Electrolytic		Electrolytic Zinc 156,000 t/yr	
	Zine 136,000 t/yr		Refined Lead 20,000 t/yr	
	: Hachinohe	081	Ust-Kamenogorsk	. 9, 544
	Production Capacity		Production Capacity	: (Combine Total)
	Distilled Zinc 108,000 t/yr		Electrolytic Zine 186,400 t/yr	
	Crude Lead 40,000 t/yr		Refined Lead 145,900 t/yr	
			Electrolatio Canat 10 000 + / vu	

-68-

0

0

()

2-5 Marketing

2-5-1 Market Trend

(1) Metal Market

洌

The world metal consumptions are expected to increase toward year 2000 from the 1995 levels, for copper to 14 million tons from 12 million tons, for lead to 6.3 million tons from 5.4 million tons and for zinc to 8.9 million tons from 7.3 million tons. However, metal prices behave erratically in the short term, influenced by world political, economical and social incidents. Therefore, it is very difficult or even impossible to predict future metal prices. It is generally anticipated that metals prices will stay stagnant for the next few years and will make an upturn after the year 2000.

The 10 year average copper price has increased at the rate of 2.5% per year, while the yearly increase of the world consumption is estimated at approximately 7% (from approximately 6 million tons in 1975 to 12 million tons 1995). The increasing rate of copper price at 2.5% per year may be regarded to trade off the world average inflation rate in US dollar term. The present copper price of US\$ one for a pound of copper (US\$2,200 per ton) appears to be reasonable judging from the last 20 years' trend. It is advisable that a long-medium term project is evaluated on the basis of the present copper price. Judging from the long term metal price and consumption trends, the present zinc price at around US\$1,050 per ton appears to be reasonable, while the lead price at nearly US\$700 per ton may be regarded as being too high for long term expectation.

Precious metal prices will remain stable at around US\$400 per ounce for gold and US\$5 per ounce for silver.

(2) Sulphuric Acid

According to verbal information obtained at the JSC "Zhezkazgantsvetuet", the sales prices of sulphuric acid range from US\$15 to 20 (occasionally up to 30) per ton, and are much lower than the current prices in Japan ranging between 12,000 and 19,000 yen per ton (approximately US\$109 and 172 at the exchange rate of 110 yen for 1 US\$). Although the price of goods are generally high in Japan compared to other countries, price differences of more than seven fold between the two countries appears to be unreasonable for producer's goods such as sulphuric acid. The price in Kazakhstan may be inherited from the pricing system determined by the Central Government in the era of the former USSR. In general, the Kazakhstan pricing systems for producer's and consumer's goods appear to be still in confusion and will take some time to be stabilized on the basis of supply and demand. The unreasonably low price of sulphuric acid will discourage smelters from recovering sulphur in the course of smelting processes and may lead to further deterioration of the atmospheric environment.

2-5-2 Transportation

The transportation of the non-ferrous industry products and raw materials represents a large share, by volume and by weight, of the total inland materials transportation. Therefore, the rationalization of transportation is essential by selecting suitable systems considering the materials transportation circumstances.

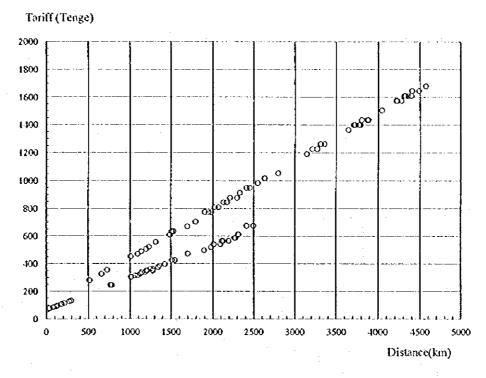
(1) Stop Long Distance Transportation of Crude Ore

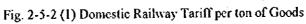
Crude ore transportation should be limited to only short distances and discontinued for long distances. Presently, ore of the Zhairem Mine is transported to the Tekeli Concentrator about 1,100 km. Its transportation cost is US\$ 8 per ton of ore (Fig. 2-5-2(1)). This is equivalent to US\$ 120 per ton of concentrate and 30% of its sales price.

(a)

Urgent study of this matter is necessary considering rising future rail costs.

(2) Rationalization of Inland Transportation


The concentrate should be treated at the nearest smelter. Long distance transportation should be limited to only customers. Transportation cost of concentrates is commonly borne by the mine. On toll based sales, the transportation fee should be borne by the seller according to the toll agreement. Reinforcement and improvement are required to maintain the factories for transportation facilities considering the domestic manufacturing of the facilities.


(3) Consolidation of Transportation Base

A system must be established to make transportation facilities, freight cars, loading and unloading equipment and stock yards available for joint use by relevant parties and organizations. It is important to minimize the overall transportation costs in Kazakhstan. Truck transportation requires five times the energy as rail transportation however trucking is chosen over rail transportation for its convenience and mobility.

(4) Transportation of Finished Products

Since the Kazakhstan market for finished product (metals) is limited, most of the products must be sold in the international market. Where exports are to West European countries, the products will be sold on the basis of C.I.F. (cost, insurance and freight) St. Petersburg. The freight cost from Zhezkazgan to St. Petersburg is approximately US\$90 per ton of cathode according to the verbal information. It is estimated at US\$0.04 per pound of copper which is significant compared to the total smelting-refining cost of US\$0.185 per pound of copper. The inland freight of US\$90 per ton between Zhezkazgan and St.Petersburg appears to be comparable to the international standard for the distance of some 3,500 km. Based on an example of a North America freight of US\$0.03 per ton-km, the freight is estimated at US\$105 per ton for the distance of 3,500 km.

)

Ð

9

2-5-3 Marketing Strategy

The most important strategy is to maintain the quality of products at international standards and to sell them at adequate prices. At the present time, metal traders are purchasing the products of Kazakhstan at substantially lower prices than those on international markets, claiming that the products are low in quality compared to international standards or are not registered at LME. They are then selling them at higher prices, upgrading or processing them at minimal costs if necessary. The producers of Kazakhstan appear to be weak in their bargaining power because of their geographical locations and unfamiliarity with international trading. In particular, depressed Russian industries have placed the non-ferrous metals industry of Kazakhstan in a considerably difficult position for marketing its products. As mentioned in the previous section, it is costly to sell the products to West European countries due to transportation costs for long distances. An alternative market can be sought in China, whose metal consumption is growing at a significant pace as its industrialization progresses. However, transportation costs will again be a major problem because industrial centers are mostly concentrated in the far southeast of the vast country.

(})

(3)

69

It is hoped to create domestic industries which use a large amount of non-ferrous metals, such as automobile, electric appliances and other manufacturing industries. However, markets for the products of these industries are very limited in the CIS countries excluding Russia and have no prospect for rapid growth in the foreseeable future.

Adding value to products is desirable but it will raise costs as well. Therefore, it is a matter of balance between added values and increased costs. The market for processed metals is different from unprocessed metals. Thorough market research will be required.

Presently, the only effective strategy is to produce cost-competitive products with adequate quality by reducing production costs, raising productivity and controlling quality.

As for marketing technique, it may be an option to establish a metal trading corporation, strongly supported by the Ministry of Industry and Trade, which exclusively handles all metal products. Sales competition among metal producers will further weaken their bargaining power against foreign metal traders. Alternatively, a supervisory organization may be attached to the Ministry in order to monitor pricing in metal trading transactions. The latter option is now adopted by the Government of the Republic of South Africa.

2-6 Industrial Restructuring

()

(2

()

2-6-1 Polymetal Combines in East Kazakhstan

There are 6 polymetal combines in the East Kazakhstan region. The JSC "UK Pb-Zn Combine" includes the Irtysh copper smelter (at Glubokoe) Copper Smelter and a complex comprising lead-zine smelter/refineries and a copper refinery. The JSC "Leninogorsk PC" consists of four mines, a concentrator, a complex of zine smelter-refinery and a lead plant for treatment of battery scrap. The JSC "Zhezkazgantsvetmet", JSC "Zyryanovsk Lead Combine", JSC "Irtysh PC" and JSC "EKCChC" are composed of mines and concentrators. All these combines except for the JSC "Irtysh PC", are being managed by domestic or foreign enterprises under management contracts or trust agreements with the Government of Kazakhstan.

According to the financial analysis of the production plan (2-1 and 2-2), only 6 operating and planned mines are economically viable. Although it may be possible to make the other 7 mines profitable by rationalization and modernization of the present operations, their prospect does not appear to be bright. Since sudden closure of unprofitable mines will create adverse effects such as serious shortage of raw materials, industrial unrest and social upheaval, it may be inevitable to maintain their operation at least for the next few years. One option may be to integrate all the combines in the East Kazakhstan Region into a single corporate entity, provided that the corporation can make a profit as a whole. With this transition, the corporation will be able to gradually liquidate unprofitable operations without causing deleterious effects and to improve its economic performance. The following conditions must also be fulfilled for satisfactory results.;

(1) Release the combines from the burden of social welfare and service costs for associated communities by transferring these responsibilities to the local government.

(2) Rescheduling repayment of accumulated debts.

(3) Transformation of management of infrastructure sectors such as power generation, water supplies and intercombine transportation to the local government.

(4) Creation and promotion of the following local businesses to absorb surplus workforce resulting from rationalization of the combines, a) explosive manufacture, mining and agriculture machinery shops, construction material plants and material handling services by separating service sectors of the present combines and by utilizing existing infrastructure, b) metal manufacturing plants, recycled material handling services (for example, collection of scrap batteries) and, c) construction contractors, financial services, retailers and so forth.

(5) Establishment of business training institutions to train and foster entrepreneurs for local and small business.

(6) Financial support by the state and local governments, establishing special funds for promotion of small local businesses.

(7) Political and financial support by the state government, centered on the Ministry of Industry and Trade.

A schematic procedure of the restructuring is shown in Fig.2-6-1(1).

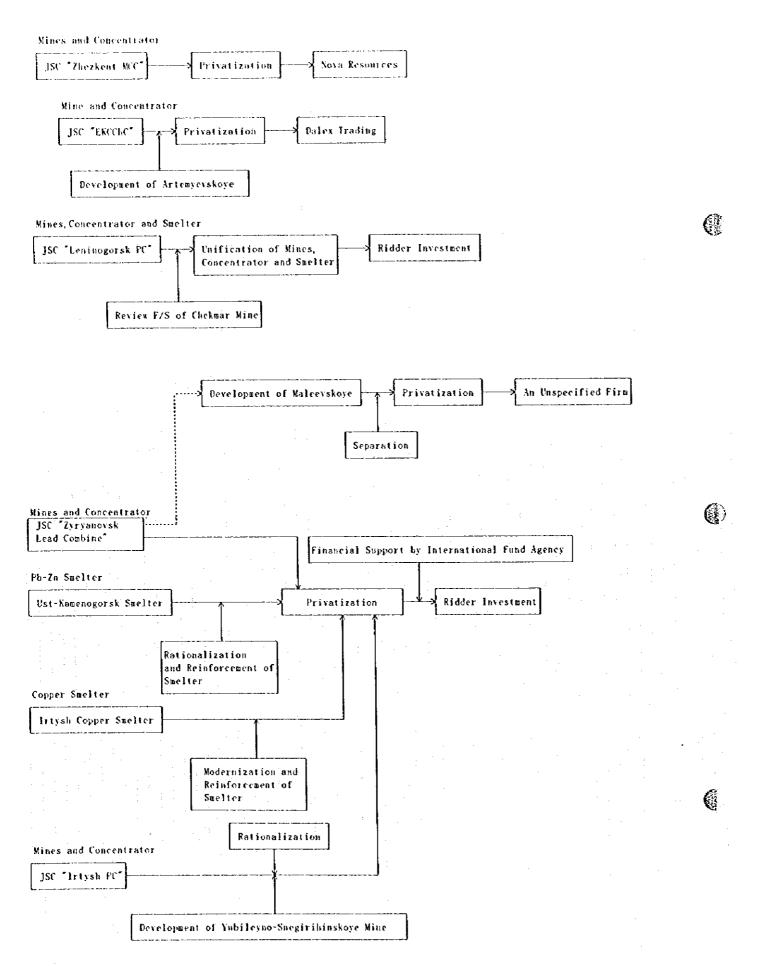


Fig.2-6-1(1) Schematic Procedure in Restructuring of East Kazakhstan

2-6-2 Shymkent Lead Plant

The Shymkent Lead Plant as a custom smelter, is now in an extremely difficult position due to a shortage of raw material supplies. Assuming that raw material supplies are secured, the following measures should be taken to restore the present deteriorated state of its operations.

(1) Raw Metal Supply

£)

)

The raw material supplies are assumed as follows;

Zhezkazgan: Concentrates, 10,000-15,000 T/Y Lead Content.

Mines in Southern Kazakhstan: Concentrates, 10,000 T/Y Lead Content.

Zhezkazgan: Lead Dust, 5,000 T/Y Lead Content.

Balkhash: Lead Dust, 5,000 T/Y Lead Content.

Imported (Purchased or Tolling)

Almalik, Uzbekistan : Concentrates, 10,000-15,000 T/Y Lead Content.

Other CIS: Concentrates and Lead Dust, 10,000 T/Y Lead Content.

Based on the above assumption, the lead production of the Shymkent Plant is expected to be approximately 50,000 T/Y with sulphuric acid production of 25,000 T/Y.

(2) Facilities

The present facilities have been designated for the production of 160,000 tons of lead per annum which greatly exceeds the planned production on the basis of likely supplies of raw materials as above mentioned. Accordingly, the facilities should be reduced and rearranged as follows;

	Present	Post Reformation
Sintering Machine	$75 \text{ m}^2 \text{ x } 2 \text{ series}$	70 m ² x series
Furnace	$10.2 \text{ m}^2 \text{ x} 3 \text{ series}$	10.2 m ² x 1 series
Sulphuric Acid Plant	240 T/D x 3 sets	240T/D x 1 set

(3) Market Forecast

Own Consumption:

The 50,000 tons of lead per annum will be consumed as follows;

Lead Chemical Compounds and Manufactured

Lead, 5,000 T/Y

Lead Battery, 15,000 T/Y

Other Domestic Consumption:10,000 T/YExport (including return to toll customers):20,000 T/Y

According to the expected consumption as above, it is desirable for the Shymkent Plant to produce lead