Table 8-12 Stduy of Optimum Water Discharge of Manuel Jorge No.4

1100	n t			faximim Povor	Dischange			C C C C C C C C C C C C C C C C C C C
		0.277m3/sec 0.292m3/sec 0.300m3/sec 0.306m3/sec 0.320m3/sec 0.335m3/sec	.292m3/sec (0.300m3/sec/	.306m3/sec 0	.320m3/sec (.335m3/sec	TO MENT BY
1.Major Feature			((
Catchment Area	Z Z	200	20.00	8.32	8.32	28.32	8 32	
Mond Tonk Water Total	3 E	202	20.500	20.00	203.00	00.100	200.00	
Outlet Water Level		388,40	388.40	388.40	388.40	388.40	388	
Gross Head		115.56	15.56	15.56	115.56	115.56	115 56	
Effective Head	P	111.634	111.767	111.870	111.881	112.000	112,102	
Maximum Discharge	m3/sec	0.277	0.292	0.300	0.306	0.320	0.335	
Maximum Output	≱	208.9	220.5	226.7	231.3	242.3	253.7	
Firm Peak Output	×	76.4	76.5	76.5	76.5	76.5	9.92	izhrs peak genaration
Firm Output	¥.	36.3	36.3	36.4	36.4	36.4	36.4	97%(355days) Firm Output
Annual Energy Production Construction Cost (A)	dwp dc\$	1,274.8	1,287.5	1,292.4	1,295.9	1,301.5	1,308.0	exel. Interest during
メラヴュ 「			• • •	•				Construction
a) Construction Cost per kW	US\$/kw	21,062	19,988	19,454	19,076	18,228	17,433	
b) Construction Cost per kWh	US\$/kWb	3.45	3.42	3.41	3.40	3.39	3.38	
c) Benefit	9:	٥	0	0	0	c	ć	
Loss Factor of Effective Energy	१७२	2.4	. 9.	0.00	, 4,	. o.	. o	
Effective Output	ž	74.2	74.3	74.3	74.3	74.3	74.4	
Ellective Energy	MAN 9511	1,212.3	1,224.4	1.229.1	1,232.4	1,237.7	1,243.9	
•	US\$/KWb	0.062	0.062	790.0	0.062	140.4	0.062	
3. M	\$Sn	10,861	10,875	10,875	10,875	10,875	10,889	
Benefit of kWh	SSN N	75, 163	75,911	76,203	76,408	76,739	77,125	
lotzi Annual beneilt (5)	e co	00,000	90, (90	81,011	207,10	87,514	88,014	
d) Cost	3	è	č	č	Ġ		9	CRF=0.08(1+0.08)750/
O & M Cost	€ ≽€	1.000	1,000	1.000	8.174	7.174	8.174	(1+0.08) 50-1)=
Total Annual Cost (C-1)	rs\$	403,647	404,335	404,597	404,783	405,179	405,738	incl. Capital recover
Total Annual Cost (C-2)	\$\$2	43,999	44,074	44, 103	44,123	44,166	44,227	excl. Capital
c) Benefit Cost Ratio :(B)/(C-1)		0.2131	0.2146	0.2152	0.2156	0.2162	0.2169	
Benefit Cost Ratio :(8)/(C-2)		1.955	1.969	1.974	1.978	1.984	1.990	
d) Benefit - Cost : (B)-(C-1) Senefit - Cost : (B)-(C-2)	\$\$0 0\$\$	-317,624	-317,549	-317,519	-317,500	-317,565	-317,724	
e) Justifiable Investment Cost f) Necessary Aid Fund	nss uss	937,684	3,461,403	949,177 3,461,076	951,420	955,023 3,461,581	959,380 3,463,314	(B)/(0.08174+0.01) (A)-{(B)/(0.08174+0.01)}

Estimated Construction Cost of Munuel Jorge No. 4 Table 8-13

A. Preparetion Works A. Preparetion Works B. Civil Works I. Intake Dame 2. Sedimentation Basin 3. Headrace Channel 4. Head Tank 5. Penstock and Spillway 6. Powerhouse 7. Intake & Channel for Local 84, 719 6. Powerhouse 7. Intake & Channel for Local 84, 719 6. Powerhouse 7. Intake & Channel for Local 80, 336 7. Intake & Channel for Local 80, 336 7. Intake & Channel for Local 81, 757, 698 82. Gates 83. Penstock 84, 770 84, 770 84, 770 85, 800 85, 800 85, 800 86, 800 87, 800 88, 800 88, 800 89, 800 80, 80	292m3/sec 292m3/sec 116, 504 112, 079 60, 138 578, 061 657, 919 85, 864	116, 504 112, 079	0.306m3/sec (1 1		Nemarks
116,504 112,079 57,944 570,108 657,919 84,719 214,592 or Local 60,336 1,757,698 1,757,698 1,757,698 1,757,698 1,757,998 1,757,698	116, 504 112, 079 60, 138 578, 061 657, 919 85, 864	116, 504	116, 504			
n way or Local quipment tor	112, 80, 578, 657, 85,	112,079		116, 504	116, 504 P/H	access road
aray or Local quipment tor	578, 657, 85,	112,079	i i	i i	6	
ay Local quipment tor	578, 657, 85,	000	112, 079	112, 079	112,079	
ray or Local quipment tor	578, 657, 85,	61, 328	62, 219	64, 242	605, do	
way or Local quipment tor	657, 85,	582, 331	585, 275	592, 282	599, 697	
way or Local quipment tor	89 89	657, 919	657, 919	657, 919	657, 919	
or Local quipment tor		86, 372	86, 899	87, 891	88, 938	
or Local quipment tor	224, 797	230, 217	234, 293	243, 774	253, 900	
quipment tor	609	60, 336	60, 336	60, 336	60, 336	
4, 31, 98, 98, 135, 105, 107, 107,	1,7				1, 839, 173	
4, 31, 98, 135, quipment tor 258,						
31, 98, 135, 135, 258,	4,860	4,950	5,040	5, 130	5, 265	
98.3 135, 958, 258,	32, 211	32, 349	32, 470	32, 683	6,028	
135, 958, 258, 1 216,	101, 400	102, 700	103, 675	105, 950	108, 550	
958,	138, 471	139, 999	141, 185	143, 763	146, 749	
958, 258,						
ator 938, 258, 1918		200	0	0	\ \ \ \ \ \	
238,	938, 600	927, 200	918, 600	898, 600	878,500	
310		758,000	258,000	258,000	228	
1, 640,	1, 196, 600	1, 185, 200	1, 176, 600	1, 156, 600	1, 136, 500	
ing						
1. Engineering Fee 720,000	720,000	720,000	720,000	720,000	720,000	
2. Administration Cost 60,000	60,000	60,000	60,000	60,000	000,09	
Sub-total 780,000	780,000	780,000	780,000	780,000	780,000	
F. Physical Contingency						
	11,	11,650	11,650	11,650	11,650	
2. Civil Works 175,770	177,	179,058	179,902	181,852	183, 917	
	69	66, 69	70, 592	71, 881	73, 375	
quipment	99,	59, 260	58, 830	57, 830	56, 825	
5. Project Controlling 78,000	78,	78,000	78,000	78,000	78,000	
Sub-total 393, 988		397, 968	398, 975	401, 214	403, 767	
Total (Project Cost) 4,399,907	4, 407, 404	4, 410, 253	4, 412, 283	4, 416, 604	4, 422, 694	

9

Table 8-14 Calculation Sheet of Energy Production for Oputimamzation on Maximum Discharge (Case-B, With Strage Capacity)

Item		15days Omax	16days Qmax 25days Qmax (Qmax=0.30)		15days Qmax	15days Qmax	55days Qmax	15days Qmax 15days Qmax 55days Qmax 65days Qmax 75days Qmax 85days Qmax 95days Qmax	75days Qmax	35days Qmax	95days Qmax
Maximum Discharge:Qmax	(#3/s)	0.335	0.306	0.300	0.292	0.282	0. 277	0.272	0.264	0.257	0.253
Firm Discharge:Qf-345	(m3/s)	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110	0.110
Firm Discharge:Qf-355	(m3/s)	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055
1. Energy Production											
Annual Power Discharge. (m	(p-s/gw)	72, 505	71.925	71.736	71.505	71, 105	70.855	70, 555	69, 995	69, 435	69.075
Penstock Diameter:D	€	0.462	0.441	0.440	0.431	0.424	0.420	0.416	0.410	0.404	0.401
0 1. 33333		0.35715	0, 33567	0.33466	0.32556	0.31853	0.31453	0.31054	0.30459	0.29866	0.29571
Ratio of (0.33456/0°1.3333) (A)	3	0.93702	0.99698	1,00000	1.02794	1.05063	1.06399	1.07765	1.09873	1, 12054	1. 13173
Gross Mead (115,56-113,112)*A (m)	(a) A	115, 560	115, 560	115, 560	115.560	115,560	115, 560	115.560	115.560	115,560	115.560
Loss Head (m)		2.294	2.441	2,448	2.516	2.572	2,605	2.638	2.690	2, 743	2,770
Heffective Head	(u)	113, 266	113, 119	113.112	113.044	112, 988	. 112,955	112.922	112.870	112.817	112, 790
Efficiency of kWh	(n tg)	0.5771967	0.6771967	0.6771967	0.6771967	0,6771967	0.6771967	0, 677 1967	0.6771967	0,6771967	0, 6771967
Energy Production	(አሦስ)	1, 308, 038	1, 295, 893	1, 292, 403	1, 287, 462	1, 279, 631	1, 274, 763	1, 268, 990	1, 258, 342	1, 247, 684	1,240,914
C Townson											
100000000000000000000000000000000000000											
1). Maximum Output (ntg=0.6894)	34)										
He=115, 560-(A) #3, 690	æ	112, 102	111.881	111.870	111.767	111,683	111.634	111.583	111.506	111.425	111.384
Pmax	(KM)	253. 7	231.3	226.7	220.5	212.8	208.9	205.1	198.9	193, 5	190.4
2). Pf-345 (ntg=0.62142)											
He=115.56-(A)+1.362	Œ	114.284	114. 202	114.198	114, 160	114, 129	114.111	114.092	114.064	114.034	114.019
PC-345	(KX)	76.6	76.5	76.5	76.5	76.5	76.4	76.4	76.4	76.4	76.4
3)Pf-355 (n tg=0.59373)											
He=115.56-(A)*1.932	(w)	113.750	113.634	113, 628	113.574	113, 530	113, 504	113.478	113, 437	113.395	113.373
Pr-355	(**)	36. 4	36.4	36.4	36.3	36.3	36.3	36.3	36,3	88.3	36.8

Table 8-15 Study of Optimum Inner Diameter of Penstock Pipe

(1/2)

	Unit						Ē	ner Dlamet	nner Diameter : D (m)							
		0.31	0.32	0.33	0.34	0.35	9. 0	0.37	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.45
Rated Generating Discharge : Qg	m3/sec	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.330	0.310	0.330
Andual Power Discharge	ac/s-day	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03	72.03
Average Power Discharge (72.03/365)	m3/sec	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734	0.19734
Efficiency of T/G : ntg (Avg. per Annum)		0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677
Generating Sour per Annum : Tg	hrs	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
Manning's Roughness Coefficient of	-														-	
Penstock Steel Lining : n		0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
Fraction Loss Mead at Generating														-		
MK=(124.5+n~2/D~1.333)+v~2/(2g)	Ø	0.02980	0.02516	0.02135	0.01821	0.01560	0.01343	0.01160	0.01006	0.00876	0.00765	0.00671	0.00590	0.00520	0.00460	0.00408
Loss Power/Energy due to Friction															-	
Loss Power: Pk=9.8ahigangantg	Ş	0.039	0.033	0.028	0.024	0.020	0.018	0.015	0.013	0.011	0.010	600.0	0.008	0.007	9000	0.002
ERPRATA		3	288	245	209	179	154	133	115	100	88	77	89	09	23	47
(Quantities of Penstock per Meter)																
Thickness of Penstock Pipe t=0.006m	А	900.0	0.006	0.006	0.006	900.0	900.0	900.0	900.0	9000	900.0	900.0	900.0	900.0	900*0	900'0
Weight of Penstock, ₩=(D+0.006)π+0.06#7.85#1.0665	ب	050.0	0.051	0.053	0.055	0.056	0.058	0.059	0.061	0.062	0.064	990.0	290.0	0.069	0.070	0.072
Common Excavation of Penstock Line																
Vec={(D+1,35+0,5)+(D+1,35+1,0+0,5)}1/2+1,0+0.5	2	2.650	2.670	2,680	2.690	2.700	2.710	2,720	2.730	2.740	2.750	2.760	2.770	2.780	2.750	2.800
Rock Excavation of Penstock Line															==	
Verw{(D+1.35+0.5)+(D+1.35+1.0+0.5)}1/2#1.0#0.5	13	2.660	2.670	2.680	2.690	2.700	2.710	2.720	2.730	2.740	2.750	2.760	2.770	2.780	2,790	2.800
Saddle Concrete										-						
Vcsz(D+0.15)*0.56*0.4+((d+0.35)+(d+0.53))0.5*0.6*1/12	7	0.046	0.047	0.047	0.048	0.049	0.050	0.000	0.051	0.052	0.052	0.053	0.054	0.054	0.055	950.0
Anchor Block Concrete												•			-	
Vca=(0/0.43702)^0.5*90/224	13	0.338	0.344	0.349	0.354	0.360	0.365	0.370	0.375	0.380	0.384	0.389	0.394	0.399	0.403	0.408
Gutter Comete															-	. –
Vcg=0.053	F	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	250"0	0.053	0.053
Masonry Wall																
ABP 1.789	a	1.739	1.789	1.783	1.789	1.789	1,789	1.785	1.789	1.789	1.789	1.789	1.789	1.789	1.789	1.789
Form Works															. , –	
Af=(D/0.43702)~0.5+340/224	웹	1.278	1.299	1.319	1.339	1.358	1.378	1.397	1.415	1.434	1.452	1.470	1.468	1.506	1.523	35.
Weight of reinforcement steel bar	-															
Wr=Vcs*0.04+Vca+0.03		0.012	0.012	0,012	0.013	0.03	0,013	0.013	0.013	0.013	0.0.4	0.014	0.014	0.014	0.014	0,014

6

	Velibels Cast	•	Big 21a		45.03.0 **********************************	4. 1.0 (1)	1 3	4, 1, man		P. 0.724		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(1) (1)	1 3	f. (93)	i 3	1 (((()))	6	1 (41)	3.	(450)	3	8 8.42e		, 15a heenst (USS)	9' t 4000	1	7,0
(1) Disert fact			!										**	=	c.					<u> </u>										
						1	•	:					:		*								2					:	ž	
Saddle Caserers		***	= ;		= :		: :	: :	: :		: :	: :	;	= =		= =		-		-	= :	•	= :		= }	1	· ;	7	= ;	
								3																		1			: :	
Beaning Companies		:	•		\$:	\$	Ĭ.		•	11.11	:		:			***	1,788	_	1, 13	:	1.1			;		-	-	:	
form derive				1.23		1.310	3	1, 334	<u>-</u>	*	1.33	*	1	3	1	<u>-</u>	5			;		7		3	_	£ .		3	:	_
Antackersonner due	•	-	=		=	P. D17	~	6. 813			:	=	=	=	. 613		6.113			13 6.04	:	:	2	•	2	*	:	¥ .	=	
Discussioners Borte			۽ ج 	- :	: :	- :	: ;	- •	• ;	- ;	- :	• • • • • • • • • • • • • • • • • • •	- :	7 2	- :	÷ ;	- ;	* ;		: :	* ;		* ;		: ;		\$;		: :	1
		• 				:	 !	<u> </u>	<u> </u>					:	:			 j		 •	i 				•		;	•	 i	
Pleasure figs	•		<u>.</u>	<u>.</u>	ř	R 2	:	ř	į	<u>.</u>	j_	<u> </u>	i	\$	•	; ;	£	<u>:</u> :	•	*	5		•		;		<u>*</u>	:	:	
5) Administration Cast	<u>:</u>		•		<u>:</u>	•	<u> </u>		<u>;</u>					3	*	ž		1		3	<u> </u>		•		:		Ē		<u> </u>	1
(4) Physical Continuency			<u>*</u>			-	:	-	;	-		: 		Ė		•		=		<u> </u>		•	:		2	•	:	•	:	
(t) level of (t)-(2)-(3)-(4)					8 7		<u>.</u>		į		· · ·	•		•						31,1			_ <u>:</u>				ž.		ž,	
of at young granted failery.		Compared to the Com		 .																										
C. B. Pop (1 to) "a./ (r (1 to) "m-1)					<u>a</u>	4	11.			<u>.</u>				B. 44174	<u>. s</u>	Ĭ.	ā_	. en 7.	7		ž á.				. earl?	•.	1		i	
O & B Reste		r.			9			<u></u>	<u>.</u>		¥ .		_	900	. A.	98010	-	•		ŧ		_			9. 61 904			ė.	-i-	
. Angeles (2, 13,) . Angeles (2, 13,) . Angeles (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	<u>.</u>	<u>. </u>	ž ž		<u>.</u>		ž :		14.44	i :				2 5	·	167.23	<u> </u>	2 12 13		z =	11.				1 1	-	2 2	d	213.33	
. Annual Blonce Samuelly (Court)																		-												
(1) have force of Output	•			ŝ		:	•	77.	•		•		:		:			<u>.</u>	:			:		•	_	:				
(3)tons face of Me	. :			64.4	•			•	•		***		•	4	}		-		•	1. 474			<u> </u>		;	*	:	į		
																														
į	_	3.5		781. TS		44. 73		ī.	=	178, 63					11.33	<u></u>	1,	•	: :	ž	<u>.</u>			:		2		- -		
Athen lessy and leastly in		; ;	4. 043 321. 15 70. 111 274. 25 17, 094 232. 74				14.09 (18.48		* * *	17.85	14, 543	1.67		5	169, 67	į	 # 	£ 3	2 2	5.172 Ph.13	4.134		3,1	2	7.01	3	Ę	3	3.	
																														
Total Cont. 15. 15. (3) 15. (42) 1051.	1	$\frac{1}{2}$	1111	_	317 202		112.139	7	117.300	4	198	110.10		121.01		108 11	7	11.21	717	7787	2	J	يقطط		-]	11		115.01	

(2/2)

Table 8-15 Study of Optimum Inner Diameter of Penstock Pipe

Table 8-16 Optimum Development Plan of Manuel Jorg No.4 Project

	Case	Unit	Description	Remarks
	Iten			
1.	Catchment Area	km2	8.32	
2.	Intake Water Level	EL.m	507.00	
3.	Head Tank Water Level	EL.m	503.96	
4.	Outlet Water Level	EL.m	388.4	Minus 2m of F.W.L
5.	Gross Kead	in in	115.56	Hg=H.T.W.L-T.W.L
	Effective Head	m	109.17	
7.	Power Discharge			
	Maximum Discharge	m3/s	0.310	
	Peak Firm Discharge	m3/s	0.110	Qf×24/12hrs
	Firm Discharge	m3/s	0.055	Qf: 97% Firm(355days)
8.	Power Output			
	Maximum Output	kW	230	
	Firm Peak Output	kW	73.1	
	Firm Output	kW	35.9	
9.	Annual Energy Production	Mwh	1,252.6	
10.	Power structure			
	Intake Dam (L×H)	n	11.0×2.0	
	Headrace Channel (L×B)	m	1,150×0.57	
	Slop of Headrace Channel		1/500	
	Head Tank Storage Capacity	m3	2,400	12hrs×Qf×3,600sec
	Penstock ($\Phi \times L$)	m	0.394×225.6	Maximum v= 2.54m/s
11.	Electromechanical Equipment		<u> </u>	:
	Type of Turbine		Cross flow	
	Installed Capacity of Turbine	kW	253	
	Type of Generator		3-phase synchronous	
	Installed Capacity of Generator	kVA	290	
	Transmission Line (kV×km)	ka	30kV×5.5	lcct
12.	Construction Period	year	1	

Table 8-17 Calculation Sheet of Energy Production of Manuel Jorge No.4

Run-off	Natu. Q Pian 2	MJ No.4, 8.32kmZ	Effective Head	Ratio of Efficiency	!fficiency	Effective Head Ratio of Efficiency Ratio of Pt/Ptanx	Efficiency	Power Output Energy	Energy	
9	CA=10.00km2	Discharge	He=115.56-(56.1225972	Quse/Quax	of Turbine	Quse/Qmax of Turbine 9.8*Qin*He* 7 t/Ptmax	of Generator		Production	Remarks
	(X)	Qin=(X*8.32/10-0.127)	+1.000)					;		
- -	(#3/svc)	(#3/sec)	(a)	900	3		3	(K)		212 000
- :	1.09		101.801		06.00	0.4			L	T BEX = 660. UAR
2	ccc o		101.60	\perp	00.00	۸.۱			1	
X	0.520	0,306	109 167	986.0	76 93	0.00		226.381	54 602.3	
35	0.504	0.292	109,167	0.943	77.40	95.3	89.97	217.784	53,239.8	
35	0.491	0.282	109.167	0.908	77.65	8.28	89,35	210.356	51,376.8	
55	0.485		109.167	0.892	77.75	81.3	89.92			
33	0.479			0.876	77.80	7.68			49, 199.8	
12	0.470			_	77.80	87.2				
23	0.461				77.70	9.18				<u>.</u>
33	0.457				77.65	83.5				
105	0.452			L.	77.55	82.0				
115	0.447				77.35	80.4				
125	0.439			0.769	77.01	8.77.9	89.69			
135	0.431				76.80	75.5				
145	0.421	0,223		0.720	76.35	72.4	89.52			
155	0,419				76.25	71.8				
365			109.167	0.693	75.75	69.1	89.42			
175	0.400				74.95	65.5	89.27	147.312		1
185	0.395	50.202		0.650	74.55	63.8	89.17			_
195	0.389	9 0.197	109,167	0.634	73.95	61.8	89.07		33,837.0	1 1
205	0.385	5 0.193		0,624	74.15		89.01			
212	0.378	3 0.187			74.55	59.4			32,336.8	r-3
225	0.367				74.80	56.6		126.647	31,154.1	
8	0.364	0.176							30,208.0	
245		5 0.169						119.947	29,403.9	
255										
265								3 107.173	3 26,401.2	
275	0.331	1 0.148	109.167	0.479		46.2	87.87	7 102,363	3 25,144.4	
똤	0.324	4 0.143		0.460	72.85	4.1	87.58	3 97.313	3 23,961.2	
8				_	71.45	39.2		85.741	1 21,966.5	
띩	0,291	: 0.115		7 0.37	69.25		3 85.73	3 73.112	2 19,062.4	First peak 73.1 kW
315	0.275	5 0.102	112.647	905.0	_]				3 17,691.0	
22	0.248		113.104	0.433	72.05	6.64	88.23		1 15,625,7	
33		0.074		3 0.415				51.090		
345	0.236	690.0	113.270	0.40	70.73	42.3	3 87.42	47.614	4 11,844.5	95%Firm 47.6kW
355	0.219	9 0.055	113.468	3 0.356	58.35	33.0	85.48	35.868		10,017.8 97%Firm 35.9kW
365	0.192	0.033	113,690	0.287	70.80					631
F	_	-			!			L	l	•

Table 8-18 Respective Case of Abade River Development Schemes

.

Case	ties E	Case-A		Case-8		-		2-3673 3			Remark
Too a human a man	ĵ	0.		2-8	2-3	10[3]	<u>و</u> د	7	2	Total	
Mark Steam		2 6	7 0	, 6	0.0		2	n c	0.0	,	
Tributary	200	21.5	2,10	2.10	3.6.0		2	21.6	96.0		
2.lotake Water Level	EL. 8	551.50	551.50	430.00	430.00	•	511.50	428.60	428.60	-	
J. Bead Tank Water Level	1	8	548.00	428.50	428.60		208.30	428.60	428.60	•	
4. Outjet Hater Level	9	00°C	430.00	318.00	318.00	228 60	428.60	318.00	318.00	8	
15. Gross Read (8.1. W.L-T.W.L)	pa	173.00	118.00	110.60	110.60	225.60	80.30	110.60	03.011	8 8	
6.bffective Bead		167.60	113.70	107.30	100.00	221.00	74.60	107.30	106.00	181.99	
7. Power Discharge			-	T		613.00				100.00	
Max (will Discharge	2 3/s	0.78	0.78	0.78	1.12	•	0.78	0.78	1, 12	1	Quax=Qf x3 = 40days Q
Farm Discharge	2/3	0.259	0.259	0.259	0 372		0.261	192.0	0.374	•	95%ffm(=345days)
8. Power Output						1.240				066	
Naximum Output	ž	9%	043	009	850	1,490	330	009	820	1,240	
Fars Output	ž	9.862	2002.2	190.8	273.5	25.0	118.3	192.5	276.0	310.8	
9. Annual Energy Production	SMB	4,850	3,300	3,100	4,400	6,400.0	2,020	3, 130	4,450	5, 150.0	
						7,700.0				6.470.0	
To Power attracture		20.00	30 00 00		36, 6, 5, 00		30 65 00		30 60 06		
Readment Channel (1.KR)]	1 020 20 8	1 020 8 1 000 1 8 0 000 1		0 0 0 0 0 3		6.20 × 0.2		60.65		
Inlet Change (LX8)	1	0.0000	3.0000	7-	0.00×000		0,000		1.750×0.6		
Sead Tank (LXB)		39.72×4.0	39.72×4.0	12.0×25.0	12.0×25.0	, , , , , , , , , , , , , , , , , , ,	36.0×4.0	12.0×25.0	12.0×25.0		
Penstock (> 1)		0.7×557.0	0.7×385.0	اہر!	0.85×220.0				0.85×220.0		
Tallrace (LXB)	<u>,</u>	0.2×5.0	-	0.7×10.0	0.85×10.0		<u> </u>	0.7×10.0	0.85×10.0		
111.Electromechanical Equipment											
Type of Turbine		Pel ton	Pelton	Pelto	Pel ton		Gross flow	Pelto	Pelton		
Installed Capacity of Turbine	₹	¥.	7.17	299	\$		433	667	ğ		
installed Capacity of Coperator	1/3	301		10E	-		037	100	000		
Transmission Line (KVA X cct.)		16.5	16.3	6.0	3		16.3	0.3	0.3		Anna barrella and and and and an advantage
to Committee of the control of	-	100		50,		3,0			-		
13. Construction Period	2 \$, 660, 7th	7,000,704 5,825,559 4,459,229	4,480,720	6, 175, 358	10, 3, 6, 769	3,694,720	4,068,458		3, 889, 585 7, 763, 178	
14.Economical Index	_ -										
Costruction Cost per KW	WX/SSU	8,392			<u> </u>	8,320				7,842	
						K.055				7,810	
רופניות הפני שבני אבים	DAY/KID	2				G 3				5 S	
Benefit Cost Ratio (8)/(C.1)		0.450				0.454				9	
Banefit Case Pacific (0)		, ,				0.469				0.48	
מייוולפן המצר שמיום לפולורילו	- -	4,429				1,161				4.40	
Benefit-Cost(C.1)	323	-398,394	_			-517.176				167 627	
						584 199				455 018	
Reperit-Cost(C.2)	3	2.16, 434				326,118			-	266,936	
Incliffable levertment Cort	1	1 EAE 199				396,839				336 577	VIA 6.19100 621 (0)
	3	75				5,673,941		-		4 724 443	4, 724, 443, 1(8)/(0,01)
Necessary Aid Fund	\$3	4,342,642				5,637,414				4,007,267 (A)-	(A)-((B)/(0.08174+0.01))
	_					6,367,986				4,959,862	

Table 8-19 Economical Comparision of Combined Abade River Development Schemes

ltes	tait			15 <u>2] </u>		se t	Regards
~ 	<u> </u>	Case)	(1-113(1-1)	(3-1) t (1-2')	{C-3+C-3}	[C-]+C-3.]	
		11				ļ	
Kajor Fealure							
Cricknent Aren	let	- 1.10	1.10	13.00	1.13	13.15	
		1					
intake Water Level (Bo. 1 P/S)	[] 8	\$\$1.50	151.10	551.50	\$11.50	511.50	
Intake Water Level (No. 2 7/5)	11.2	ł -	430.00	430.00	128. 60	428.10	
	1						1
lend Tunk Water Level (No. 1 P/S)	li.a	\$48,00	518.50	548.00	598.10	508.30	
Sead Tank Vater Level (No. 2 P/S)	ti.e	-	128. 60	428, 60	428.40	428.60	
			1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
[aitrace Vater Leve] (No. 1 P/\$)	IL.	375.00	130.00	439.00	178.60	478, 60	
ailrace Vater Level (No. 2 P/S)	IL. a	'	318.00	318.00	318.00	318.00	
#1114CE ##16; [642] (#0.1 1/3)	1 17 18		310. 48	3,5.00	310.00	310. 50]
alah Assa Yash	l _		111 65	130.00	110.15	140 40	} }1. T. W. L-F. W. L
olal Gross Fead	1	133.00	130.60	130.00	138, 16		1. 1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
otal Effective Head		357, 60	331.00	\$11.70	181.10	180.60	
	١.,		ا ا				
azinum Discharge (Fo. 1)	13/sec	1	0. 780	0.750	9.780	9, 760	
ariese Discharge (Vo. 1)	#J/sec	1	0.740	£. 110	8.780	3. 130	
irm Discharge (No. 1)	#3/sec	1	0.251	D. 250	6. 366	0. 111	
ire Discharge (#c. 2)	#3/sec		9, 151	0.372	0.211	0, 37 (
	1	1	ļ 1				
azievo Oulpul (Ko. 1)	i Y	140	618	160	310	390	
animom Output (#o. 2)	11	-	600	120	100	850	
otal Maximum Cutput	11	140	1,240	1, 410	190	1,240	ļ
	`						i
ira Cotyut (No. 1)	LY	211.6	103.1	203.2	118.3	118.3	17% (355days) Pirm Gotynt
irm Cetpet (No. 2)	l th		380.8	113. 5	112.5	276.0	
stal firm Cutpst	1	111.6	314	121. 7	310. \$	314. 3	
are: File veryer	""	}	,,,,	***.*	3,5,4	311. 3	
	N4.					2 490	ļ
oin: Abount Baerry Production	KAP	4,850	6, 400	9,766	\$, \$\$0	1, 110	
							l , ,
eastructica Cost (A)	651	7, 848, 744	10, 316, 781	37, 001, 127	7, 763, [78		excl. Interest foring
			i	ĺ			Cosstruction
Eccsonical loter	l	l l		امند	- 4-4		
) Construction Cost per LY	D28/FA	-	0, 310	8, 055	7, 862	7, 810	
) Coastruction Cost per hWh	B28\FAF	1. 63	l. (1	1. 5€	1.51	1, \$0	
					İ		
) Bezefit			· •				
less facion of Effective Cutput	*	3. 1	3.7	3, 7	3. 7	3. 1	
Loss Factor of Effective Evergy	X	5. 7	5. 9	5. 1	5. 1	\$.7	
Effective Cutput	18	187. 6	378.4	451. 1	211. 3	378.7	
Effective Inergy	XXY	5, 573. 6	1, 035. 1	1, 26]. 1	4, 851. 5	6, 101. 7	
tv value	US\$/EY	145.13	145, 13	145.23	115. 23	165.23	
	uss/eva		0. 663	0.083	0.012	9, 063	
reself of ly	831	41, 113	55, 103	16, 170	43, 467	\$5,145	
Perelis of typ	831	363, 560	354, 182	110, 168	301, 100	378, 175	
Toist danual Eezefit (B)	031 0 51	315, 311	429, 286	\$11, 858	344, 567		
seigt maneel Eccelly (E)	031	010, 311	157, 161	£10,000	211, 111	433, 430	
					[l	
Cost							CB7=0.08 (1+0.08) TSO/
Capital Recovery Factor: CAF	¥	8, 134	8, 114	8. 174	8. 174	1.114	[{3+0.08} *S0-1)=0.0817
D & W Cost	K.	1,000	1.000	1. 000	1.000	1.000	
Total Annual Cost (C-1)	U S \$	123, 715	246, (1)	1, 101, 057	112, 184		izel. Espital recevery cos
Total Anaual Cost (C-2)	155	11,111	103,168	12G, 819	17, 132	91, 841	excl. Capital recovery cra
					I	İ	
Fenefit Cost Batio : (1)/(C-1)		0.450	0.451	0. (10	9. 484	0. 488	
Hearfit Cost Batio : (8)/(C-1)		1.124	1.161	4.306	1. 431	1. 475	•
			ł				
	954	-111, 314	-\$17, 174	-511, 111	-317, 627	-655, 014	
) Eegefit - Cost : (B)-(C-13		,	****			· ·	
) Eenefit - Cost : (8)-(C-1) Penefit - Cost : (8)-(C-2)		248 514	352 124	116 118 6	566 616 I	198 (40)	
)	054	स्या, स्त्रस	316, 118	316, 433	265, 836	336, 593	
Pemefil - Cost : (B) - (C-2)	054						int file dates and the
	US\$	241, 634 3, 661, 121 4, 342, 642	326, 128 6, 678, 375 5, 637, 614	316, 838 } 5, 633, 841 6, 367, 886	3, 155, 111 3, 155, 111 4, 607, 267	4, 124, 643	(2) /{0. 0317440. 01) (A) - {48} / {0. 0817440. 02}}

Item	Unit	Description
1. Plant Type 2. Construction Cost Installed Capacity Annual Plant Factor Service Life Generator Terminal Energy Auxiliary Power Use Annual Energy Production Construction Cost 3. Power Value	kW % year MWh % MWh US\$	Diesel Power Plant 1,000 kW x 1 unit = 1,000 kW 81% 15 1,000 kW x 8,760 hrs x 0.97 x 0.81 = 7,096 MWh 2.5 7,096 MWh x (1 - 0.025) = 6,919 MWh 980 US\$ x 1,000 kW = 980,000 US\$
(A) kW Value a) Capital Recovery Factor b) Capital Recovery Cost c) O&M and Administration Cost d) Total Fixed Cost (b)+c)) e) Unit Fixed Cost per kW f) kW Value	US\$ US\$ US\$/kW US\$/kW	C.R.F=0.08 (1+0.08)^15/{(1+0.08) ^15-1}= 0.11683 Discount Rate = 8% 980,000 x 0.11683 = 114,493 980,000 x 0.03 = 29,400 (Ratio 3%) 143,893 143,893 ÷ 1,000 kW = 143.89 143,89 x 1.0093 = 145.23 (Adjustment factor for kW value \alpha = 1.0093)
(B) kWh Value a) Diesel Oil Calorific Value b) Fuel Consumption Rate c) Fuel Cost d) kWh Value	Kcal/kg kg/kWh US\$/kWh US\$/kWh	10,170, Gas oil 0.255 (Specific gravity of Fuel: 0.848) 0.255 kg/kWh + 0.848 x 0.206\$/1 = 0.062 0.062 ÷ (1-0.025) x 0.97675 = 0.062 (Adjustment factor for kWh value β = 0.9689)

Adjustment Factor for kW and kWh

Item		Loss	of kW	Loss	f kWh
Rem	-	Hydro	Thermal	Hydro	Thermal
Transmission Loss Rate Forced Outage Auxiliary Power Use Scheduled Outage Rate Total	% % %	0.9 0.5 0.3 2.0 3.7	0.1 2.0 2.5 - 4.6	0.9 0.5 0.3 4.0 5.7	0.1 - 2.5 - 2.6

kW Adjustment Factor kWh Adjustment factor $\alpha = (1-0.009)(1-0.005)(1-0.003)(1-0.02)/\{(1-0.001)(1-0.025)\} = 1.0093$ $\beta = (1-0.009)(1-0.005)(1-0.003)(1-0.04)/\{(1-0.001)(1-0.025)\} = 0.9689$

Table 8-21 Estimated Cost of Small Hydropower Projects in Abade River

	A-0.0			Case B					ر چ چ			
		T. T.	- C-1		(B-1)+(B-2)	(9-1) • (8-2')	៊ី	C-2		(C-1) + (C-5) (C-1) + (C-5.)	(C-1) + (C-5.)	Resaries
	Amount (US\$) Amount (US\$)	1	(SS) A	(\$\$)	- 1		Amount (US\$) Amount (US\$)		SS SS	Anount (15.5)	Amount (115\$)	
1. Preparation Works (access Road)	66, 990	1	88, 726	88, 726		99, 847	21, 835	88, 726	88, 726	110,561	110, 561	Access Road of P/H
Z. Civil Works												
(1) Intake Dam	92, 494	92, 494	0	92, 494	92, 494	184, 987	92, 494	٥	92, 494	92, 494	184,987	
(2) Sedimentation Basin	93, 104	93, 104	0	71, 360	93, 104	164, 464	93, 104	0	71, 360	93, 104	104, 464	
(3) Headrace	549, 461	549, 461	368,063	735, 816	9:7, 524	1, 285, 277	272,913	0	584,983	272, 913	857, 897	
(4) Head Tank	155, 265	155, 265	155, 265	179,988	310, 530	335, 253	157, 685	157,685	179,988	315, 370	337, 673	
(5) Penstock and Spillway	201, 916	172,029	80, 422	84, 827	252, 451	256, 856	151, 828	82, 347	86, 477	234, 175	238, 304	
(6) Powerhouse	116, 143	94,846	92, 808	126,959	187, 654	221, 805	75,043	808,26	126, 959	167, 851	202, 002	
(7) Tailrace	2431	2465. 1	2431	3558. 5	4, 896	6,024	2157, 1	2431	3558, 5	4, 588	5, 716	
Sub-total	1,210,813	1, 159, 663	698, 990	1, 295, 001	1, 858, 653	2, 454, 665	845, 224	335, 271	1, 145, 818	1, 180, 495	1,991,042	
3. Sydraulic Poniment												
(1) Trachracks & Dates	6.800	9.800	6,650	8,000	16, 450	17,800	9, 800	6,650	8,000	16, 450	17, 800	
(2) Persitoria	403,000	279, 500	162, 500	175, 500	412,000	455,000	481,000	162, 500	175, 500	_	656, 500	
Sub-total	412,800	289, 300	169, 150	183, 500	458, 450	472,800	400, 800	169, 150	183, 500		674, 300	
5	·				_ -							
A. Creetromechanical equipment (1) Tuebine and Constant	4 200 000	2 940 000	2, 770, 000	3 730 000	5, 710, 000	6, 670, 000	940,000	2, 770, 000	3, 730, 000	3, 710,000	4, 670, 000	
(2) Transmitterion (ton	567, 600	560, 720	30,960	30,960	591, 680	591,680		10, 320	10, 320		571,040	
		200 000	000	000		4 261 600	-	700 200	47		0.0	
Sub-total	4, 767, 600	3, 500, 720	2, 800, 960	3, 760, 560	0, 301, 080	ngo 'rez''	77, 'Me '.	7, 180, 320	3, (40, 320	4, 281, 040	0, 241, 040	
S. Project Controlling												
(1) Engieering Fee	720, 000	360, 000	360, 000	360, 000	720,000			360,000	360, 000			
(2) Administration Cost	66.00		30,000	30,000	900,000			30,000	30,000			
Sub-total	730,000	390,000	390, 000	350, 000	780,000	780, 000	330, 000	330, 000	390, 000	780, 000	780,000	
5. Physical Contingency												
(;) Preparation Works	6, 099				9,985	_		8, 873	8,873			
(2) Civil Works	121,081	115,966		-	185, 865			33, 527	114, 582			
(3) liydraulic Equipment.	206, 400	144, 650			229, 225			84, 575	91,750		337, 150	
(4) Electrosecanical Equipment	238, 380	175,036	140,048	_	315,084			139,016	187,016	214,052	262, 052	
(5) Project Controlling	78,000	39,000	39, 000	39,000	78,000			39,000	39,000	78,000	78,000	10% of P.C
Sub-total	650, 560	475, 764	342, 395	457, 171	818, 159	932, 935	446, 142	304, 991	441, 220	751, 133	887, 362	
Total (project Cost)	7,888,764	5, 826, 569	4, 490, 220	6, 175, 358	10, 316, 789	12,001,927	3, 694, 720	4, 068, 458	5, 989, 585	7, 763, 178	9,684,305	7
7. Interest during Constraction	252, 440	186, 450	143, 687	197, 611	330, 137	384, 062	118, 231	130, 191	191,667	248, 422		309, 808 D. 4KT=0. 4 × 0, 08 × 1
Groud Total (investment Cost)	8, 141, 204	6, 013, 019	4, 633, 907	6, 372, 970	10, 646, 926	12, 385, 989	3,812,951	4, 198, 649	6, 181, 251	8, 011, 600	9, 994, 203	K=0.08, 1=1 year
										-		

Calculation Sheet of Power Energy of Abade River Development Cheme (Case A) Table 8-22

Ţ

		Production (AVA)	1	S	S	939. 5 225, 482. 9	S	6 221,	Ç	3 195,	9 182		0 166	1	8 154	. 9 150	6 146	7	0 134	530. 4 129, 997. 7	0	5 122	0	2 116	_	တ	438, 4 107, 512. 8	1	y	9 95,	372. 1 91, 207. 4	2 87	345. 1 84, 274, 3	5		7	1 73	-	287.8 70,419.3	267. 9 66, 675. 9
	Efficiency Power Energy	of Generator				90.00		89. 97	89.89	89. 77	89. 70	89. 60	89. 52	89, 42	89, 35	89. 28	89.17	88. 97	88.91	88, 77	88. 67	88.61	88.51	88. 42	88. 23	88, 23	88.03	87.92	87.72	87.43	87.22	86. 93	86. 73	86.48	86, 32	86. 17	85.80	85.80	85. 55	85, 10
urbine)	y Ratio of		,		ij		50 1.000	0. 967	0.				80 0.729			.0	0	0.	0	15 0.572	0.	0.	0		Ö	Ö.			Ö	0		60 0 394		0.	0.	90 0.352		0	25 0.322	70 0.302
	of Efficiency		Q.	81.	81.	81.							0, 706 82. 8			0.644 82.0				0, 555 82, 15					81.	.18	81.	81.	81.	0.417 81.		387	0.376 80.	364	355	0.349 79.	333	0, 333 79.		303
) 	Effective Head Ratio of				167. 564								170, 292										548				171.822			_	172, 124		172, 233		172.316	172. 339	172, 309		172, 436	172 500
Omax	Abade 9. 1km2 Effec			3. 787	1. 209	0. 927	0.828	0.748	0.688	0.632	0.600	0.571	0.551	0. 527	0.513	0.502	0.485	0.460	0.450	0. 433	0.422	0.414	0.403	0.393	0.378	0.378	0, 363	0.353	0.341	0.325	0.313	0, 302	0.293	0.284	0, 277	0.272	0. 259	0, 259	0.251	22.6 0
	Abade 10km2 Ab	<u></u>	(m.5/ S.)	4. 161	1. 329	1.019	0.910	0.822	0.756	0.694	0.659	0.628	0.605	0.579	0. 554	0		0.506			0.463		0.443		0.415		o.	၁	0.375		0				_	0.299		0	0, 276	
	Run-off	N.o.			51	2.5	35	45	ડિ	હ	75	85	ક્ક	105	115	125	135	145	155	165	175	185	195	202	512 713	225	235	245	255	265	275	285	295	305	315	37.5	335	3.15	355	

Table 8-23 Calculation Sheet of Power Energy of Abade River Development Cheme (Case B-1)

			Qmax=0.78m3/s Qf=0.26m3/s		(Pelton turi	bine)			
Kun-of F	Abade 10km2 Abade 9, 1km2 Discharge Discharge		Effective Head	Ratio of	Efficiency Ratio	Ratio of	Efficiency	Power Energy	Energy
2		S.	ne-110-(1, 1265015Q 2) (m)		or lurbine	Pt/Ptmax	of Generator	(8/3)	Production (two)
	4. 161	3, 787	113, 663	1.000	81.50	1.000	90.00	15	(1114)
2	1. 329	1, 209	113. 663		81.50		90.00	637.3	229 425 4
52	1.019	0. 927	113, 663		81.50		90.00	637.3	152 950 3
35	0.910	0. 828	113.663		81.50		90.00	637.3	152 950 3
45	0. 822	0.748	114.011	0	82, 10	0	80.08	617.4	150, 564, 7
25	0.756	0.688	114, 626	Ö	82, 75		89. 90	574.9	143,078.8
છ	0.691	0. 632	115, 157	o	83.00	Ö	89.80	531.2	735.
75	0.659	0.600	115.436	0.769	83.00	_	89. 72	505. 2	124 369 7
88	0. 628	0.571	115.672		82, 90	O	89.65	481.5	118 390 0
ક	0, 605	0.551	115. 839		82.80	Ö	89.56	463.5	113 301 6
105	0.579	0.527	116.021		82.70	o	89. 45	443.2	108 796 7
115	0.564	0.513	116, 122		82. 65		89.38	431.5	104 055 R
125	0.552	0.502	116.201		82. 60	o	89, 32	422.0	102 419 6
135	0.533	0.485	116. 323		82, 50	_		407.0	99 481 8
145	0.506	0.460	116. 489		82, 35			385.3	95 079 6
155	0.495	0.450	116, 554	0	82.30			376.6	91 435.2
165	0.476	0.433	116, 662	Ö	82.15			361.3	88 545 3
175	0.464	0. 422	116.729		82.05			351.6	85, 540, 6
35	0, 455	0.414	116.778	Ö	82.00			344. 4	83, 514, 0
195	0.443	0.403	116.841	0	81.85			334. 5	81 463.5
202	0. 432	0.393	116. 898	.0	81, 80	0, 520	88. 42	325.7	79, 226, 3
215	0.415	0.378	116, 983		81.60			311.7	76, 497, 1
27.5	0.415	0, 378	116.983		81.60			311.7	74, 818.0
235	0.399	0, 363	117. 060		81.45		88. 05	298.7	73, 255, 9
245		0.353	117.111		81.30		87.92	289.7	70, 605, 1
255	0.375	0.341	117, 170		81. 20		87.71	279. 1	68, 247. 1
265	0.357	0.325	117. 248	_	81.00	Ö	87.42	264.3	65, 207, 7
275	0.344	0.313	117, 301		80.80	O.	87.15	253. 4	62 126.9
282	0.332	0, 302	117, 349		80.60	0	86.89	243.3	59, 607, 4
33	0.322	0. 293	117. 388		80.45	0	86.65	235.0	57, 397, 6
305	0.312	0.284	117. 425	0.364	80.20		86.37	226.3	55, 356, 6
315	0.304	0. 277	117. 454	0.355	80.00	o,	86, 17	219.5	499
325	0, 299	0.272	117.472	0.349	79.90	0.353	86.05	215.4	52 184 9
335		0. 259	117. 520	0.333	79. 55	0.336	85.65	203. 5	50 265 2
345		0. 259	117.520		79. 55	0.336	85.65	203.5	48 843 3
355	- 1		117. 550	0	79. 25	0.324	85, 37		47 911 8
365	0. 260	0. 237	117. 601		78.70	0, 303	84. 80	182.0	45, 327. 7
lotai		, 							3, 299, 475. 0

Table 8-24 Calculation Sheet of Power Energy of Abade River Development Cheme (Case B-2)

1

			Querx=0, 7843/s, Qf=0, 259a3/s		(Pelton Turbine)				
Run-off		Abude 10km2 Abade 9. 1km2			Efficiency R.	o e		Power Energy	Energy
Š.	Discharge	Discharge	557460'2)	Guse/Qmax	of Turbine P	t/Ptmax	of Generator		Production
	(m3/s)	٤.			(%)		(8)	(₹¥)	(kWh)
	4.161	3.787	107, 305	1.000	81.50	1.000	90.00	601.	-
15	1. 329	1, 209	107, 305	1.000	81, 50	1.000	90.00	601.	216, 591. 5
55			107, 305	1.000	81.50	1.000	90.00	.109	144, 394. 4
35		0.828	107.	1. 000	81.50	1.000	90.00	601	144, 394. 4
45	0.822	0.748		0.959	82. 00	0.967	89.98	581.	142, 015. 3
55		0. 688	108.	0.	82.80	0.902	89, 90	542.	134, 880. 7
SS						0. 833	89. 79	500.	125, 083. 4
75	0.659	0.600	108.	o		0. 793	89. 71		117, 075. 5
8 8			108.	0. 733		0.755		452.	111, 374. 1
ક	0.005		108.			0.728		435.9	106, 626. 5
105			109.	_		0.697		416.7	102, 307. 5
115			601			0.679		405.6	98, 667. 0
12				_		0.664	.68	396	96, 262. 9
135	6 0.533		109.			0.641	.68		
145			100			0.608	88		
155		0.450	100			0.595	88		
165	5 0.476	0. 433	169			0.572	88.		
175	5 0.464	-	109.	_		0.557	88		
186	5 0.455	0.414				0, 546			- 1
195	_					0.531	88.		1
205		0, 393	109, 763			0.517	88.	305. 6	
215						0.496	88.		71
22.	0	0, 378				0.496	88	-	70
23						0.476	87.		89
**	Ö	0.353				0.463	87.	_	99
25	Ó					0.447			63, 990. 4
265	Ċ	0.	110, 028			0.424	87.		
.77						0.408			58, 225, 9
38.						0, 393	86.	228.	_
2	5 0.322	0. 293				0.381	86.	220.2	_
30	o					0.368	86.	212.	_
31	Ö	0. 277				0.357	86.		50, 131. 7
32;		0.				0.351			48,
33:	0	0,	0 110, 236	_		0, 333	85.	190.	
345	Ö	0	110			0 333	85.	190.	45
35	5 0. 276	0.	110.		79.	0.322	85.	183.3	
36			7 110, 297	0.303	_	0.301	84. 70	170.	
Total									3, 101, 969. 5

Calculation Sheet of Power Energy of Abade River Development Cheme (Case B-2')

Table 8-25

ij	Abade 10km2 Abade	13. 06km2	Effective Head	Ratio of	Efficiency Ratio	Ratio of	Efficiency	Power Energy	Energy
ġ Z	Discharge (m3/s)	Discharge (m3/s)	le=110, 6-(3, 6719087Q-2) 	Quse/Gmax	of Turbine	Pt/Ptmax	of Cenerator	S	Production (LWh)
-	4. 161	5, 434	105, 994	1.000	81.50	1,000	90.00		/v
15	1. 329	1. 736	105, 994		81.50			853	307 204 7
2.5	1, 619	1.331	105, 994	1.	81.50		90.00	853.3	204, 803, 1
35	0.910	1.188	105. 994	1	81.50			853.	204 803. 1
3	0.822	1.074	106, 368		82.00	0, 968			201, 483, 4
55	0. 756	0.987	107.021		82.80	Ġ	_		191 568 9
65	0.694	906 0	107. 584	0	83.00	0.837	89. 79	712.2	177, 946, 9
75	0.650	0.861	107.880		83.00	Ö	89. 71	<u> </u>	166 760.9
85	0.628	0.820		•	82, 90		89. 67	6/6.1	158 829 0
95	0.605	0.790	108.308		82, 80			621	152, 148, 9
201	0.579				82.70				145 964 1
115	0.564				82.65			579.	140,825,8
125	0.552	0, 721	108.692		82. 60				137 437.5
135	0.533	0.696	108, 821	0.622	82, 50	0.646		546.	133 488. 1
145	0.506	0.661	108.996	0	82, 35	_		_	127 601 6
155	0. 495	0.646	109, 065		82, 30			505	122 726 5
3	0.476	0.622		0.555	82.15	0.576	88.74	484.	
175	0.464	0.606			82, 05	_		471.9	114, 812, 3
-85	0.455	0.594	109. 303		82.00		ļ	462.	112 093. 1
135	0.443	0, 579	109, 371		81.85			448.	109, 341. 8
50%	0.432	0.564	109.431		81.80			437.	: 06, 346, 1
215	0.415	0.542	109, 521		81.60			418.	102, 696, 6
275	0.415	0, 542	109. 521		81.60			418.	100, 447, 3
735	0.399	0.521	109. 603		81.45			401.	98, 343, 3
245	0.388	0.507	109, 657		81.30			388.8	94, 775, 1
255	0.375	0.490	109. 719	_				374.	91, 615.3
265	0.357	0, 466	109, 802			_			87, 496. 1
275	0.344	0. 449	109, 859					340.	83, 337, 7
285	0.332	0.434	109, 910					326.	79, 987, 2
202	0.322	0.421	109.951	0, 375		0.384	86,48	315.	76, 993, 1
ဒ္ဓင္တ	0.312	0.407	109. 990						74 269. 6
315	0.304	0.397	110.021					294.	71, 820. 5
322		0.390	110.040	0,349	79, 90	0	85.91		70,045,0
335		0.372	110.011		79, 50	0.337	85.48		67, 434, 3
55		0.372	110.091		79.50	0.	85.48	272	65
355	0. 276		110, 123	Ö	79.25	0.			<u> </u>
365	0.260	0, 340	110, 177	0.303	78.70			244.	60, 825, 5
Total L									4

6

Calculation Sheet of Power Energy of Abade River Development Cheme (Case C-1) Table 8-26

			Quiax=0.78m3/s, Qf=0.261m3/s	n3/s	(Cross Flow	Turbine)			
Run-off	2	9km2	Effective Head	Ratio of	Efficiency	Ratio of	Efficiency	Power Energy	Energy
 S	Discharge (m3/s)	Orscharge (n3/s)	Ie=80, 3- (9, 384089719, 27 	duse/dust	01 10Toline	r L/ r cmax	(%)	(kw)	(kWh)
	4, 161	3, 824		1.	76. 60	;	90.00	393.1	:
15	1. 329		74, 591		76. 60	1.000			
25		0.936	74, 591	-:	76.60	1.			
35	0	0, 836	74. 591	1, 000	76.60	1.			
45		0	74. 945	0	77. 10				
35	0.756	0	75.770		77.75	0		360.5	89, 425, 6
65			76.483	0					-
75		0. 606	76.858	0.		0			1
×	_		77.174	Ö	76, 65	0			
95	 		77, 399	0	76. 20				
105	L		77, 643	0		0			Ì
115		_	77.779	Ö		0			
125	0.552		77, 885						
135		Ö	78.048	0					
145				0	_				1
155		0. 455	78. 358	0					
8			A	0.	74.80				
175	0.464	0.426		o	74.65				
581					74.50				
195	O			Ö	74.25				
205	5 0. 432			Ö		0.520			48, 780. 3
215			78. 935	o	_				1
225	5 0.415		78. 935	Ö				;	Į
235									
35.5	5 0.388	0.357		O	_				\Box
255	O								l
265									
27.5	Ö	0.316		0.405					37, 195. 6
285	5 0.332	0.305							35, 426. 2
295	0	0, 296		Ö.					33, 891, 9
305	Ö	0.287		Ö	_				32, 489, 3
315	5 0.304	0.279		Ö	-	0			
325	Ö					0		124.	30, 263. 0
335		5 0. 262		Ö	_	0.			29, 237, 9
34,	Ö	5 0. 262	79.	Ö					28, 577. 8
355	Ö	5 0. 254	79.	o		ö			28, 297. 5
365		_	79.	Ö	_		84.47		27
Total									2,021,086.2

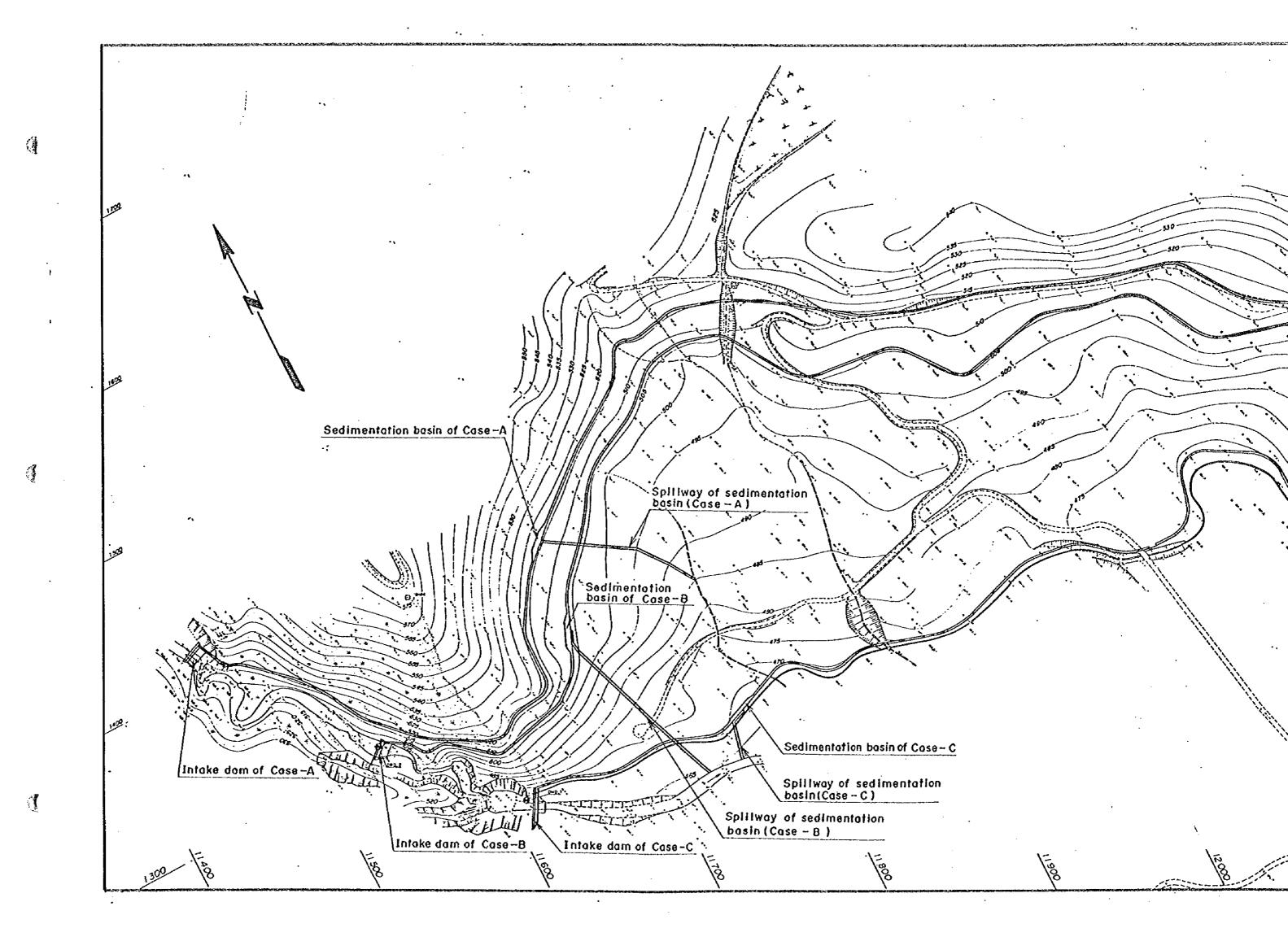
Calculation Sheet of Power Energy of Abade River Development Cheme (Case C-2) Table 8-27

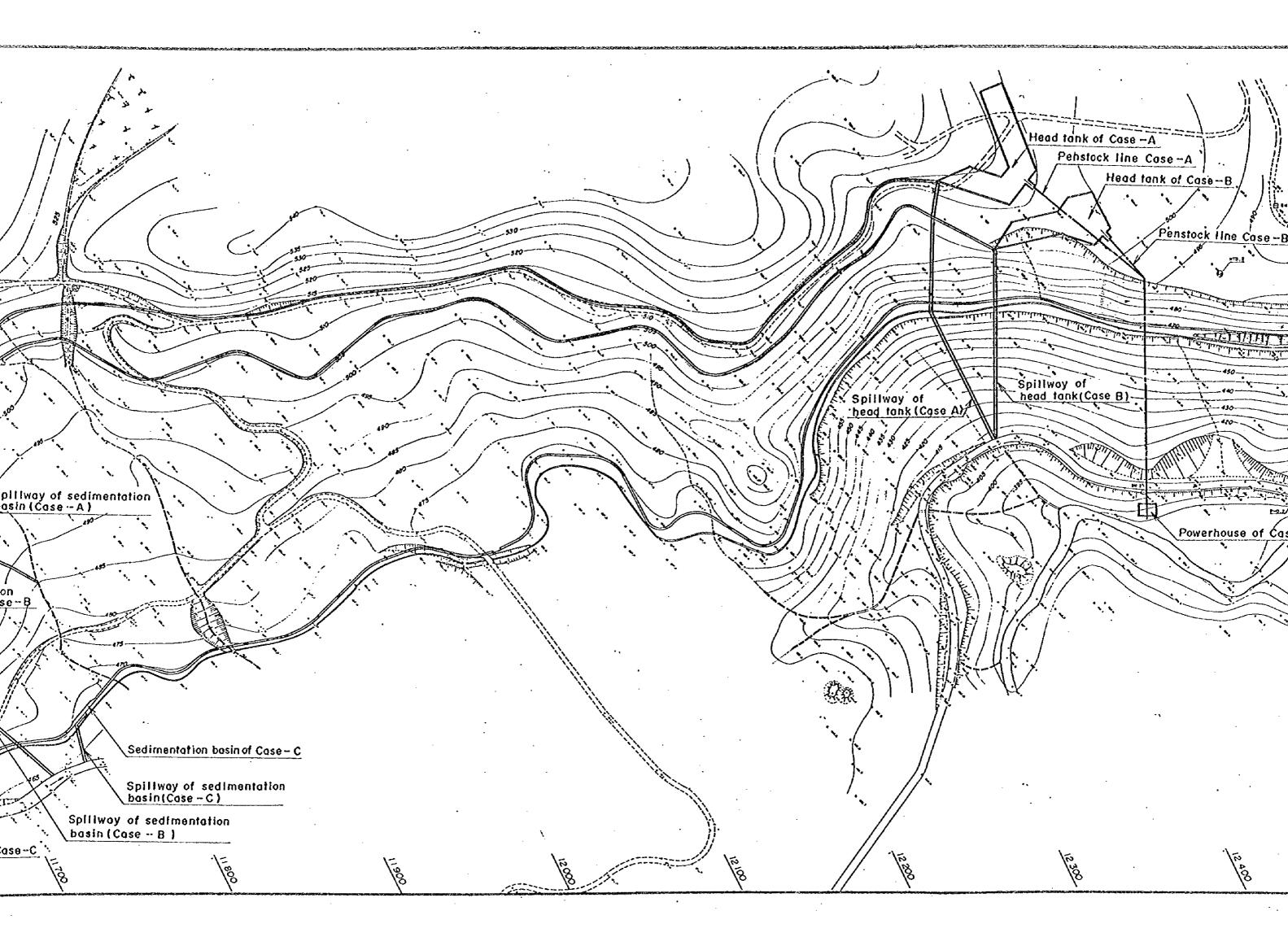
(m3/s) 1	(m3/s) (m3/s) 1. 221 1. 221	(#) 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 107.305 108.305 109.006 109.006 109.006 109.300 109.300 109.429	1, 000 1, 000 1, 000 1, 000 1, 000 1, 000 1, 000 1, 000 1, 000	(%)	くり押3・/2・	1000 1000 10		10770001
			1.000			8	(k#)	(KWh)
		107, 305 107, 305 107, 305 107, 509 107, 985 108, 613 108, 796 109, 106 109, 106 109, 429 109, 429	1. 000 1. 000 1. 000 0. 968	81.50				-
		107, 305 107, 305 107, 509 107, 985 108, 613 108, 796 109, 106 109, 106 109, 300 109, 429	1,000	81.50			601.6	216, 591, 5
		107. 305 107. 509 107. 985 108. 613 108. 796 109. 066 109. 145 109. 300 109. 429	0.968	81.50				
		107, 509 107, 985 108, 613 108, 796 109, 066 109, 145 109, 300 109, 429	0.968	81.50	1.000	00 06		144, 394. 4
		107. 985 108. 613 108. 796 109. 066 109. 145 109. 206 109. 300 109. 429	0 801	81.85				
		108. 397 108. 613 108. 796 109. 066 109. 145 109. 300 109. 429		82.65	0.00			135, 903. 6
		108. 613 108. 796 109. 066 109. 145 109. 300 109. 429	0.818	83.00		_		126, 032. 3
		108, 796 108, 926 109, 066 109, 145 109, 300 109, 429 109, 479	0.776	83.00	0.800		480.0	118,073.8
		108. 926 109. 066 109. 145 109. 206 109. 300 109. 429	0.740	82, 95				112,516.1
		109. 066 109. 145 109. 206 109. 300 109. 429	0.713	82. 80	0.735		440.	107, 731. 6
	0000	109. 145 109. 206 109. 300 109. 429 109. 479	0.682	82. 75			421.	103, 349, 0
	000	109. 206 109. 300 109. 429 100. 479	0, 665	82.65			409. 6	99, 680. 2
	0.	109, 300 109, 429 109, 479	0.650	82. 60			400.	97, 222, 8
		109, 429	0.628	82.55			386.	94, 442.
	·	109, 479	0, 596	82.40			365.	90, 271.
			0. 583	82.80				87, 040. 8
	0.	109, 563	0.561	82, 50			344.	84, 441.
		109, 615	0.547	82. 10			333.	81, 334.
		109, 653	0. 536	82, 00			326.	79, 221.
00000000		109, 702	0.522	81.90				77, 265. 0
0 0 0 0 0 0		109.746	0, 509	81.80				75, 132. 8
		109.812	0.489	81.65				72, 536.
00000	0.381	109.812	0.489	81.65				70,961.
00000		109.872	0.470	81, 50				69, 476.
0 0 0	0.	109.911	0.457	81.35			274.	66, 944.
0 0 0	Ö	109, 957	0.442	81.25				64, 710.
0	357 0.328	110.017	0.421	81.00				61, 811.
0	0	110.059	0.405	80.80		87. 12		58, 853. (
	0	110.096	0.391	80.60	0			56, 461. 8
Ö			0.379	80. 45			222. 6	54, 365, 2
0	0	110, 155	0.368	80.25	.0			52, 444. 9
	Ö	110, 177	0.358	80, 10	0	-		50, 717. 8
0	o	10.101	0, 352				204.	49, 470. 2
o		110.228	0, 336				193.0	47, 650. 3
345 0. 2	o.	110.228	0, 336	79, 65				46, 318. 4
Ö	276 0.254	110, 252	0.325	79.35	0, 325		185.6	45, 431. 6
365 0, 2		162 011	0, 306	78,80			172.	
Total								3, 128, 712, 9

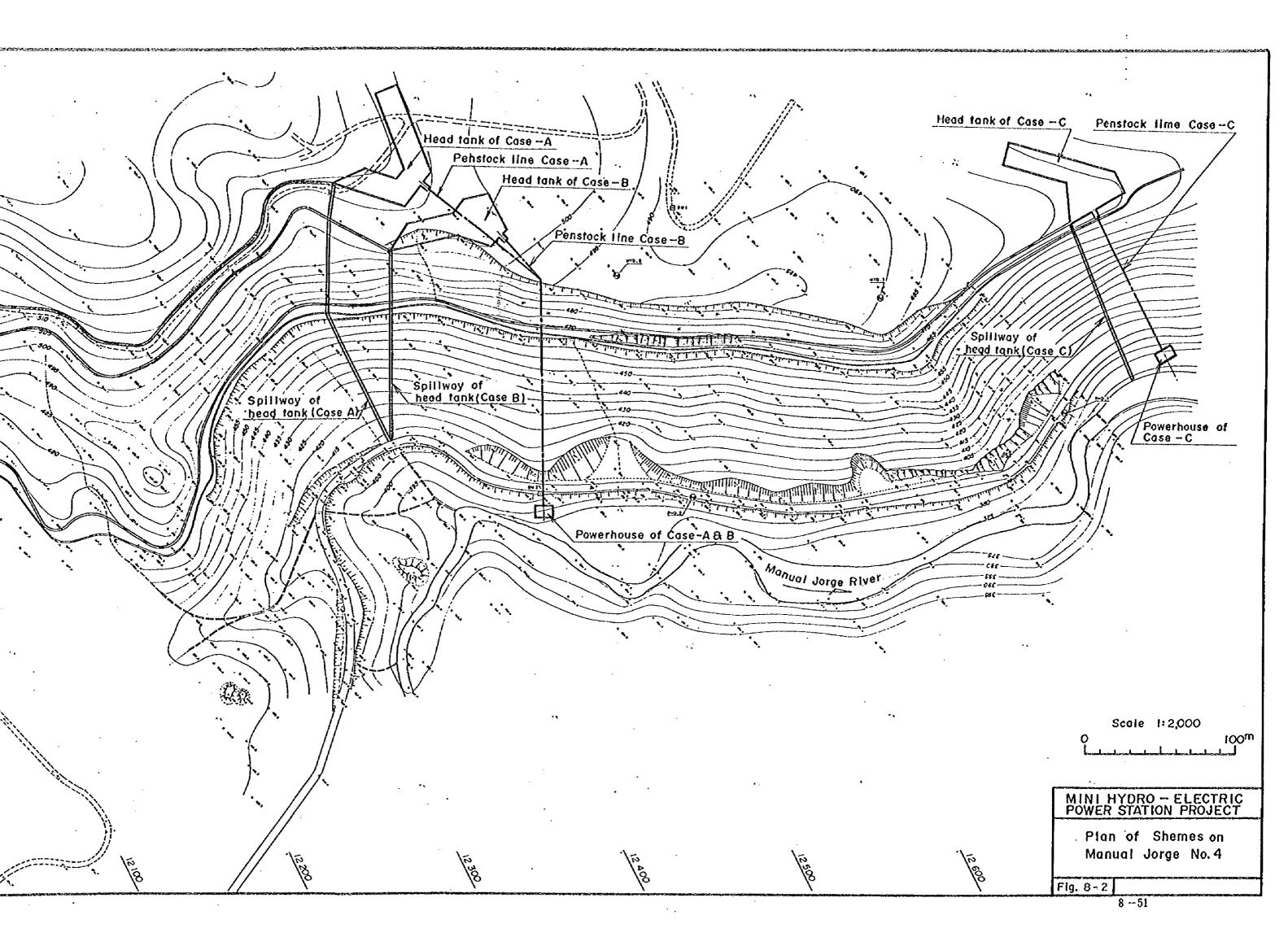
Calculation Sheet of Power Energy of Abade River Development Cheme (Case C-2') Table 8-28

I

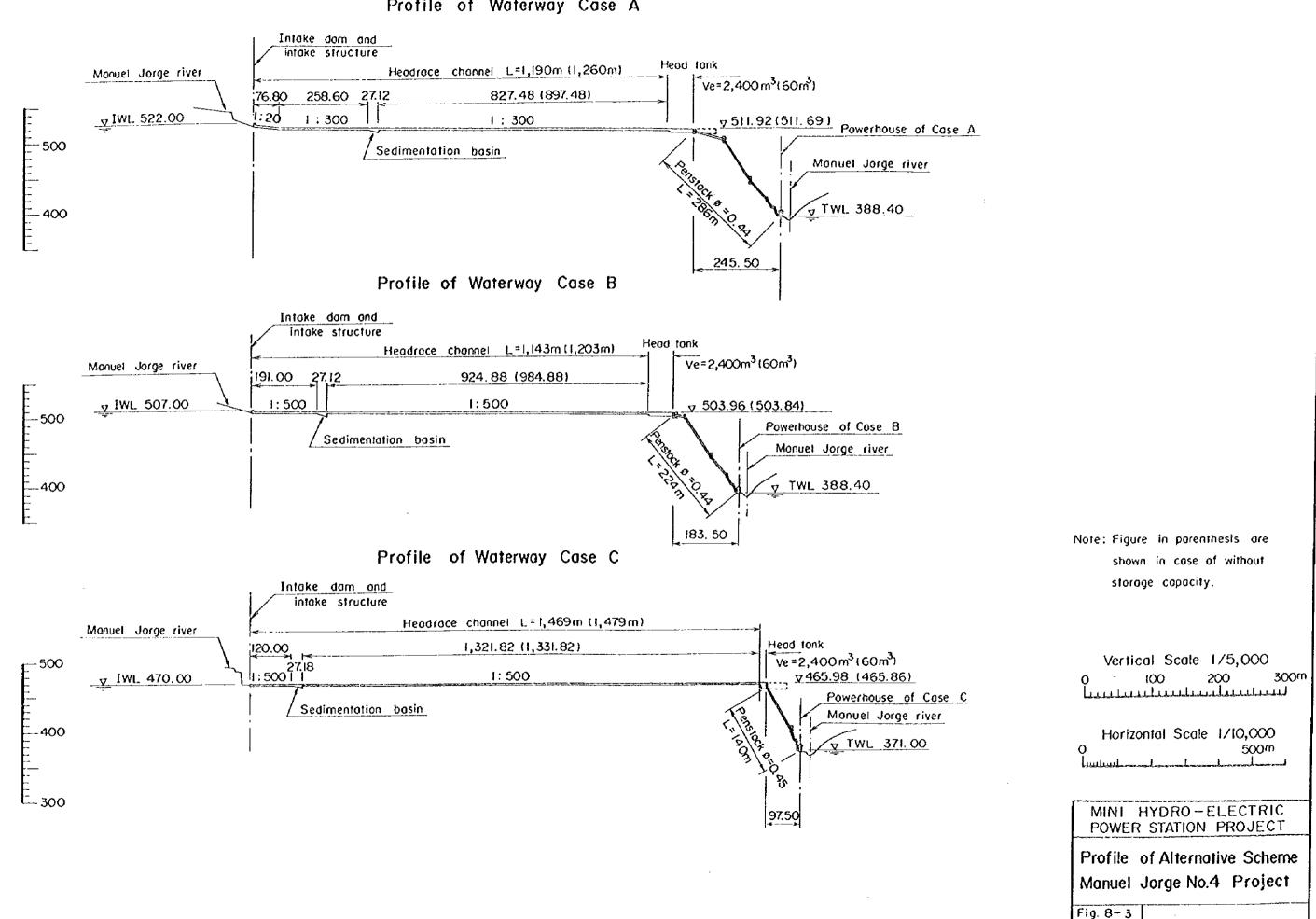
Name of Allere Oracle December Control			Qmax=1, 12m3/s, Qf=0, 374m3/s	13/s	(Pelton Turb	ine)				
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Run-off	Abade 10km2	Abade 13, 15km2	Effective Head	Ratio of	Efficiency	Ratio of	Efficiency		Energy
4. 151 1.05 1.05 1.00 1.00 1.00 90.00 853.2 1. 1370 1. 137 1.05 1. 100 1. 100 1. 100 91.50 1. 000 90.00 853.2 1. 1370 1. 1370 1. 137 1. 000 1. 000 90.00 86.2.8 1. 1370 1. 137 1. 000 1. 000 90.00 86.2.8 1. 000 86.2.8 0. 756 0. 054 0. 054 1. 000 1. 000 0. 000 86.2	Š.	Discharge	-	(e=110, b=(3, 671908/QZ) 	uuse/cmax	or inrolne (%)	יינ/ זיינחומא	or venerator (%)		(KWh)
1,250 1,748 105,994 1,000 81,50 1,000 90,00 853.3 1,019 1,1370 1,05,994 1,000 81,50 1,000 90,000 853.3 0,010 1,1370 1,05,994 1,000 81,50 1,000 90,00 853.3 0,010 1,1370 1,05,994 1,000 81,50 1,000 90,00 825.3 0,010 1,101 105,994 1,000 81,50 1,000 90,00 825.3 0,010 0,024 1,001 105,994 1,000 81,50 1,000 80,00 825.3 0,026 0,024 0,024 1,000 1,000 1,000 81,20 1,000 1,000 0,025 0,026 1,000 1,000 1,000 1,000 1,000 1,000 0,025 0,026 0,026 1,000 1,000 1,000 1,000 1,000 0,025 0,026 0,024 1,000 1,000 1,000 1,000 1,000 0,025 0,026 0,026 1,000 1,000 1,000 1,000 1,000 0,025 0,026 0,026 1,000 1,000 1,000 1,000 1,000 0,026 0,026 0,026 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,000 1,000 1,000 1,000 1,000 0,027 0,020 0,020 1,000 1,0		191 7	7	105, 994		81.50		90.00	853.	1
1 019 1 340 1 340 1 100 81.50 1 000 90.00 853.3 1 010 1 1340 1 1340 1 105.994 1 1000 81.50 1 000 90.00 853.3 0 0.375 0 0.994 1 0.0547 81.50 0 0.973 89.96 774.8 0 0.659 0 0.914 1 0.0547 82.00 0 0.973 89.96 774.8 0 0.659 0 0.914 1 0.0547 82.00 0 0.973 89.96 774.8 0 0.659 0 0.914 1 0.0547 82.00 0 0.973 89.96 774.8 0 0.650 0 0.924 1 0.0571 82.00 0 0.973 89.96 774.8 0 0.650 0 0.924 1 0.0571 82.00 0 0.973 89.96 774.8 0 0.650 0 0.974 1 0.0571 1 0.0571 82.00 0 0.975 89.55 625.2 0 0.650 0 0.774 82.00 0 0.775 89.55 625.2 0 0.650 0 0.774 1 0.0571 82.00 0 0.775 89.55 625.2 0 0.650 0 0.775 1 0.0572 1 0.0572 82.00 0 0.775 89.00 0 0.650 0 0.775 1 0.0572 1 0.0572 82.00 0 0.775 89.00 0 0.650 0 0.775 1 0.0572 1 0.0572 82.00 0 0.775 89.00 0 0.650 0 0.775 0 0.675 1 0.0572 82.00 0 0.675 89.00 0 0.650 0 0.775 0 0.675 1 0.0572 82.00 0 0.675 89.00 0 0.650 0 0.775 0 0.675 1 0.0572 82.00 0 0.675 89.00 0 0.650 0 0.650 0 0.0572 0 0.675 82.00 0 0.675 89.00 0 0.650 0 0.650 0 0.0572 0 0.675 82.00 0 0.675 88.00 0 0.775 0 0.650 0 0.650 0 0.077 0 0.675 81.50 0 0.675 88.00 0 0.775 0 0.650 0 0.650 0 0.077 0 0.675 81.50 0 0.675 88.00 0 0.775 0 0.650 0 0.650 0 0.077 0 0.675 81.50 0 0.675 88.00 0 0.775 0 0.650 0 0.675 0 0.075 0 0.675 81.50 0 0.675 88.00 0 0.775 0 0.650 0 0.675 0 0.075 0 0.075 81.50 0 0.675 88.00 0 0.775 0 0.675 0 0.675 0 0.075 0 0.675 81.50 0 0.675 88.00 0 0.775 0 0.675 0 0.675 0 0.675 0 0.675 81.50 0 0.675 88.00 0 0.675 0 0.675 0 0.675 0 0.675 0 0.675 81.50 0 0.675 88.00 0 0.675 0 0.675 0 0.675 0 0.675 0 0.675 0 0.675 88.00 0 0.675 89.00 0 0.675 0 0.675 0 0.675	<u> </u>	1 329	-3	105. 994	1	81.50		90.00	853.	307, 204. 7
0, 510 1, 197 1, 05 1, 00 81, 50 1, 00 90, 00 8, 20 9, 20 9, 20 9, 20	75		1.340	105, 994		81.50	: 	90.00	853.	204, 803. 1
0, 8822 1, 081 1,063 10 0,053 10 0,053 20 0,074 20 88,09 89,09 11,081 0, 7346 0, 904 1,06,971 0,812 83,70 0,892 80,00 716.9 0, 654 0, 914 1,07,842 0,812 83,00 0,882 80,00 716.9 0, 654 0, 877 1,08,00 0,817 82,00 0,785 80,55 652.0 0, 658 0, 756 0,827 0,776 1,08,471 0,827 82,00 0,785 80,44 582.0 0, 659 0, 701 1,08,471 0,680 82,75 0,698 80,41 582.0 0, 559 0, 701 1,08,471 0,680 82,75 0,698 80,41 582.0 0, 550 0, 701 1,08,471 0,680 82,50 0,765 80,83 10,60 0, 550 0, 701 1,08,274 0,580 0,684 82,70 0,673 80,10 80,10 80,10 80,10 80,10 <t< td=""><td>35</td><td>L</td><td>1, 197</td><td>105, 994</td><td></td><td></td><td></td><td>90.00</td><td>853.</td><td>204, 803. 1</td></t<>	35	L	1, 197	105, 994				90.00	853.	204, 803. 1
0,776 0,094 106,974 0,888 82,70 0,999 89,90 774,8 0,076 0,037 0,034 82,00 0,887 99,80 774,8 0,050 0,037 0,034 82,00 0,887 99,80 681,8 0,050 0,887 0,086 108,00 108,276 0,705 89,65 650,0 0,057 0,087 0,706 108,276 0,707 82,00 0,705 89,65 650,0 0,570 0,707 0,707 108,276 0,707 82,00 0,705 89,10 650,0 0,570 0,707 108,477 0,680 82,00 0,705 89,10 650,0 82,0 668 89,27 650,0 70,0 668 89,0 70,0 668 89,0 70,0 80,0 80,0 70,0 80,0 70,0 80,0 80,0 80,0 70,0 80,0 80,0 80,0 80,0 70,0 80,0 80,0 80,0	2		1.081	106, 310						
0, 604 0, 913 107, 542 0, 815 82, 90 0, 682 89, 90 716, 91 0, 653 0, 667 0, 677 82, 90 0, 775 89, 55 660, 2 <td>95</td> <td>O</td> <td>0.994</td> <td>106.971</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	95	O	0.994	106.971						
0, 650 0, 867 107, 843 0,774 85, 00 0, 867 89, 65 660, 22 0, 650x 0, 650x 0, 727 82, 00 0, 737 82, 00 0, 765 89, 65 660, 0 0, 650x 0, 700 0, 700 82, 20 0, 700 89, 65 665, 0 1 0, 650x 0, 700 0, 700 82, 20 0, 700 89, 37 565, 0 90, 27 80, 25 665, 0 0, 550x 0, 700 80, 20 0, 680 82, 20 0, 680 89, 30 665, 0 1 0, 550x 0, 600 0, 680 82, 20 0, 680 82, 20 0, 680 89, 30 660 80, 20 0, 550x 0, 600 82, 20 0, 680 82, 20 0, 680 89, 30 650, 20 0, 475 0, 600 82, 20 0, 680 82, 20 0, 680 89, 30 660, 20 0, 475 0, 600 82, 20 0, 600 82, 20 89, 30 80, 40 80, 40 8	65	0	0.913	107. 542						
0, 523.8 0, 826.0 108, 906 0, 717 82, 90 0, 737 89, 55 650.0 0, 656.5 0, 776 108, 776 0, 710 82, 78 0, 770 89, 47 559.0 0 0, 573 0, 761 108, 471 0, 662 82, 75 0, 700 89, 47 589.0 0 0, 552 0, 771 108, 550 0, 663 82, 50 0, 673 89, 37 582.0 0 0, 552 0, 552 0, 771 108, 784 0, 618 82, 50 0, 660 89, 13 582.0 0 0, 552 0, 550 0, 618 82, 50 0, 650 89, 10 557.0 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 88, 20 80, 20 89, 20 88, 20 80, 20 89, 20 88, 20 80, 20 88, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 89, 20 88, 20 89, 20 89, 20	75	o	0.867	107.843						
0, 605 0, 705<	85	o	0.826	108, 096						_
0, 579 0, 742 108, 471 0, 680 82, 75 0, 706 89, 44 559, 0 0, 564 0, 742 108, 650 0, 678 82, 65 0, 678 80, 37 552, 37 542, 37 552, 37 542, 37 542, 37 552, 37 542, 37	် 	0	0.796						_	
0. 564 0. 776 108, 580 0. 667 82, 56 0. 688 89, 37 582, 9 0. 552 0. 726 108, 665 0. 648 82, 50 0. 663 89, 19 550, 2 0. 552 0. 726 108, 974 0. 584 0. 666 82, 50 0. 668 89, 19 550, 1 0. 495 0. 651 108, 974 0. 584 82, 50 0. 668 89, 19 550, 1 0. 495 0. 656 108, 974 0. 587 82, 50 0. 668 89, 19 550, 1 0. 495 0. 656 0. 656 109, 044 0. 589 82, 20 0. 668 88, 91 550, 1 0. 416 0. 616 0. 616 109, 044 0. 554 82, 20 0. 668 88, 91 465, 5 0. 412 0. 616 109, 044 0. 554 82, 20 0. 568 88, 57 465, 5 0. 412 0. 516 109, 166 0. 554 82, 20 0. 568 88, 57 416, 2 0. 412 0. 415 <td>105</td> <td>0</td> <td>0.761</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	105	0	0.761							
0. 552 0. 726 108. 665 0. 648 82. 60 0. 650 89. 19 570. 2 0. 553 0. 701 108. 796 0. 626 82. 50 0. 650 89. 19 549. 9 0. 566 0. 666 108. 71 0. 626 82. 50 0. 650 89. 19 549. 0 0. 476 0. 676 109. 644 0. 581 82. 20 0. 694 88. 71 488. 67 0. 476 0. 676 109. 644 0. 582 82. 20 0. 694 88. 71 488. 67 0. 475 0. 678 109. 783 0. 545 82. 20 0. 656 88. 67 465. 5 0. 475 0. 678 109. 784 0. 550 88. 59 465. 5 465. 5 0. 443 0. 583 109. 564 0. 550 88. 59 465. 5 88. 59 465. 5 0. 415 0. 516 109. 506 0. 487 81. 60 0. 550 88. 49 465. 5 0. 415 0. 516 109. 506 0. 487 81. 60 0. 540<	115	С	0 742	108.580						L
0, 533 0, 701 108, 796 0, 626 82, 50 0, 656 89, 10 549, 0 0, 506 0, 656 108, 974 0, 584 82, 40 0, 618 89, 00 521, 1 0, 476 0, 651 109, 944 0, 589 82, 20 0, 618 89, 10 500, 0 0, 476 0, 676 109, 101 0, 559 82, 20 0, 604 88, 91 488, 6 0, 476 0, 676 109, 102 33 0, 546 82, 20 0, 584 88, 91 468, 6 0, 435 0, 588 0, 588 0, 588 109, 487 81, 80 0, 554 88, 50 465, 5 0, 435 0, 588 109, 487 81, 60 0, 594 88, 50 465, 6 0, 435 0, 586 10, 90, 50 0, 487 81, 60 0, 504 88, 20 0, 384 0, 586 0, 586 0, 488 81, 45 0, 488 88, 40 462, 6 0, 384 0, 384 0, 486 81, 50 0, 504	125	0	0.726							!
0, 506 0, 665 108, 974 0, 584 82, 40 0, 618 89, 00 520. 1 0, 405 0, 651 109, 044 0, 581 82, 30 0, 604 88, 91 500. 0 1, 0, 476 0, 610 100, 161 0, 545 82, 30 0, 581 87, 7 478. 0 0, 464 0, 610 100, 183 0, 545 82, 30 0, 583 88, 47 478. 0 0, 455 0, 464 0, 582 0, 534 82, 00 0, 584 88, 49 465. 5 0, 413 0, 583 100, 254 82, 00 0, 554 88, 49 465. 5 0, 415 0, 546 100, 415 0, 576 81, 50 0, 554 88, 49 465. 5 0, 415 0, 546 100, 415 81, 60 0, 554 88, 49 465. 5 0, 415 0, 546 10, 570 81, 60 0, 504 88, 49 465. 5 0, 387 0, 415 81, 60 0, 504 88, 49 465. 5 87, 32	135		0.701							
0, 405 0, 651 109, 044 0, 581 82, 30 0, 664 88, 91 500 0 0, 476 0, 676 0, 676 100, 161 0, 559 82, 20 0, 581 88, 77 488, 6 0, 456 0, 610 100, 161 0, 559 82, 20 0, 583 465, 5 0, 456 0, 432 0, 583 109, 285 0, 584 88, 50 465, 5 0, 443 0, 583 109, 285 0, 580 88, 50 465, 5 0, 445 0, 584 109, 156 0, 487 81, 60 0, 559 88, 30 462, 7 0, 415 0, 546 109, 566 0, 487 81, 60 0, 559 88, 20 415, 5 0, 415 0, 546 109, 566 0, 487 81, 60 0, 569 88, 20 462, 1 0, 356 0, 358 0, 487 81, 60 0, 569 88, 20 415, 5 0, 357 0, 358 0, 487 81, 60 0, 484 88, 00 415, 5 0	145		0.665	108.974						128,
0, 476 0, 626 100, 161 0, 559 82, 20 0, 565 88, 67 478, 2 0, 456 0, 456 0, 558 82, 20 0, 565 88, 67 475, 2 0, 455 0, 458 100, 286 100, 286 0, 554 88, 20 6, 559 88, 39 465, 5 0, 432 0, 588 100, 284 0, 524 81, 30 0, 559 88, 39 462, 4 0, 432 0, 546 100, 566 0, 487 81, 80 0, 559 88, 30 460, 3 0, 432 0, 546 100, 566 0, 487 81, 60 0, 504 88, 20 470, 3 0, 546 100, 566 0, 487 81, 60 0, 504 88, 20 421, 5 0, 388 0, 516 100, 566 0, 487 81, 60 0, 504 88, 20 421, 5 0, 388 0, 510 100, 504 81, 60 0, 504 87, 87 31, 0 0, 375 0, 469 100, 707 0, 446 81, 20 0, 454 87, 20 <td>155</td> <td></td> <td>0.651</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>123</td>	155		0.651							123
0, 464 0, 610 100, 733 0, 545 82, 05 0, 554 88, 67 475, 2 1, 455 0, 455 0, 558 0, 554 82, 00 0, 554 88, 67 465, 5 465, 5 2, 443 0, 432 0, 583 109, 285 0, 530 81, 50 0, 554 88, 40 465, 7 3, 415 0, 415 0, 415 109, 506 0, 487 81, 60 0, 504 88, 20 421, 5 0, 415 0, 516 109, 506 0, 487 81, 60 0, 504 88, 20 421, 5 0, 415 0, 510 109, 506 0, 487 81, 60 0, 504 88, 20 421, 5 0, 350 0, 510 109, 506 0, 487 81, 60 0, 504 88, 20 421, 5 0, 350 0, 510 100, 506 0, 487 81, 60 0, 504 88, 20 421, 5 0, 352 0, 352 0, 487 81, 60 0, 504 88, 20 421, 5 0, 344 0, 469 81, 25	165		0.626							119,
6 0.555 0.534 82.00 0.554 82.00 0.554 88.59 465.5 5 0.443 0.583 0.580 0.520 81.90 0.559 88.49 452.4 5 0.415 0.568 109.156 0.577 81.80 0.526 88.37 440.2 5 0.415 0.546 109.566 0.487 81.60 0.504 88.70 421.5 5 0.415 0.546 109.566 0.487 81.60 0.504 88.70 421.5 5 0.415 0.510 109.569 0.487 81.60 0.504 88.70 421.5 6 0.328 0.468 81.45 0.484 88.00 401.2 401.9 7 0.338 0.468 81.45 0.484 88.00 402.9 8 0.344 81.60 0.544 81.85 0.470 87.87 391.9 9 0.347 0.470 81.25 0.470 <t< td=""><td>175</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>115,</td></t<>	175									115,
6 0.432 0.583 109,354 0.520 81,90 0.536 88,49 452.4 5 0.432 0.568 109,415 0.577 81,80 0.526 88,37 440,3 5 0.415 0.546 109,415 0.547 81,60 0.504 88,20 421,5 5 0.415 0.546 109,506 0.468 81,45 0.504 88,20 421,5 6 0.399 0.510 109,506 0.468 81,45 0.470 87,87 391,9 7 0.398 0.468 81,45 0.470 88,00 403,9 403,9 403,9 8 0.375 0.493 109,707 0.440 81,25 0.470 87,87 37,26 9 0.357 0.469 109,707 0.440 81,25 0.456 87,37 87,38 1 0.357 0.469 109,707 0.440 80,85 0.415 87,07 87,28 2	185									112,
6, 432 0, 558 100, 415 0, 557 81, 80 0, 626 88, 37 440, 3 6, 415 0, 546 100, 506 0, 487 81, 60 0, 504 88, 20 421, 5 6, 415 0, 546 100, 506 0, 487 81, 60 0, 504 88, 20 421, 5 7 0, 156 100, 506 0, 468 81, 45 0, 484 88, 20 403, 9 8 0, 388 0, 510 100, 544 0, 456 81, 35 0, 470 88, 90 403, 9 9 0, 357 0, 493 100, 707 0, 408 81, 25 0, 474 87, 65 37, 37 5 0, 357 0, 437 100, 902 0, 308 80, 40 0, 415 87, 57 36, 30 6 0, 324 0, 410 100, 902 0, 376 80, 40 0, 415 86, 30 30, 31 8 0, 324 0, 410 100, 902 0, 356 80, 40 0, 384 86, 30 30, 31 9 <	195									
6 415 0.546 0.546 100.566 0.487 81.60 0.564 88.20 421.5 5 0.415 0.546 100.566 0.487 81.60 0.564 88.20 421.5 5 0.399 0.575 100.589 0.468 81.45 0.546 88.20 421.5 5 0.388 0.450 100.644 0.456 81.35 0.470 87.87 391.9 5 0.375 0.469 100.640 0.410 0.452 87.65 377.6 6 0.375 0.469 100.791 0.410 80.85 0.415 87.07 342.8 6 0.372 0.470 80.85 0.415 87.07 342.8 37.15 6 0.372 0.470 80.40 0.415 80.40 0.387 86.80 317.5 7 0.410 100.902 0.366 80.40 0.387 86.80 317.5 8 0.229 0.378	202									
5 0, 546 109, 506 0, 487 81, 60 0, 504 88, 20 421, 5 5 0, 399 0, 555 109, 589 0, 468 81, 45 0, 484 88, 00 403, 9 5 0, 388 0, 510 109, 644 0, 456 81, 35 0, 470 87, 87 391, 9 5 0, 388 0, 493 109, 707 0, 440 81, 25 0, 454 87, 66 377, 6 5 0, 357 0, 452 109, 791 0, 419 81, 00 0, 415 87, 07 347, 8 377, 6 5 0, 344 0, 452 109, 791 0, 404 80, 85 0, 415 87, 07 347, 8 377, 6 5 0, 344 0, 437 109, 942 0, 306 0, 306 0, 306 0, 306 0, 306 0, 307 80, 30 377, 6 6 0, 342 0, 410 100, 942 0, 356 0, 306 0, 306 0, 306 0, 306 0, 306 0, 306 0, 306 0, 306	215		:			L				
5 0. 399 0. 575 109. 589 0. 468 81. 45 0. 484 88. 00 403. 9 5 0. 388 0. 510 109. 644 0. 456 81. 35 0. 470 87. 87 391. 9 5 0. 375 0. 493 109. 707 0. 410 81. 25 0. 454 87. 65 377. 6 5 0. 357 0. 469 109. 707 0. 410 81. 25 0. 452 87. 37 357. 3 5 0. 357 0. 452 109. 701 0. 410 81. 80 0. 432 87. 07 342. 8 5 0. 357 0. 344 0. 452 109. 342 0. 404 80. 85 0. 415 87. 07 342. 8 5 0. 327 0. 312 0. 410 109. 942 0. 356 0. 364 86. 10 275. 1 5 0. 304 0. 304 0. 357 80. 35 0. 364 86. 10 275. 6 6 0. 285 0. 285 0. 364 86. 30 0. 364 86. 30 291. 1	225		. -							
5 0.388 0.510 100.644 0.456 81.35 0.470 87.87 391.9 5 0.375 0.493 100.707 0.410 81.25 0.454 87.66 377.6 5 0.357 0.469 109.791 0.419 81.00 0.432 87.32 357.3 5 0.344 0.452 100.849 0.404 80.85 0.415 87.07 342.8 5 0.332 0.437 109.900 0.309 80.40 0.415 86.80 320.2 6 0.322 0.423 109.982 0.306 80.40 0.387 86.80 306.3 5 0.312 0.410 110.013 0.357 80.05 0.364 86.30 306.3 5 0.293 110.084 0.351 79.65 0.364 85.57 275.6 5 0.285 0.375 110.084 0.325 79.65 0.340 85.57 275.6 5 0.286	235		_							_ }
5 0, 375 0, 493 81, 25 0, 454 87, 66 377, 6 5 0, 357 0, 469 109, 791 0, 419 81, 90 0, 432 87, 32 357, 3 5 0, 357 0, 469 109, 791 0, 419 81, 90 0, 432 87, 07 342, 8 5 0, 337 0, 437 109, 900 0, 300 80, 65 0, 400 86, 80 320, 2 6 0, 322 0, 410 109, 982 0, 306 80, 40 0, 387 86, 55 317, 5 5 0, 322 0, 410 109, 982 0, 366 80, 25 0, 374 86, 30 306, 3 5 0, 204 0, 400 110, 013 0, 357 80, 05 0, 364 86, 10 297, 1 5 0, 285 0, 285 0, 364 86, 10 86, 10 297, 1 275, 6 6 0, 285 0, 285 0, 375 110, 084 0, 325 79, 65 0, 340 85, 57 276, 6	245					<u> </u>				
5 0. 357 0. 469 109, 791 0. 419 81, 00 0, 432 87, 32 357, 3 5 0. 344 0. 452 100, 849 0. 404 80, 85 0. 415 87, 07 342.8 5 0. 332 0. 437 100, 902 0. 378 80, 65 0. 400 86, 80 320, 2 6 0. 322 0. 410 109, 982 0. 366 80, 40 0. 374 86, 55 317, 5 5 0. 312 0. 410 100, 982 0. 366 80, 25 0. 374 86, 30 306, 3 5 0. 204 0. 400 110, 013 0. 357 80, 05 0. 364 86, 10 297, 1 5 0. 285 0. 285 0. 367 86, 10 86, 10 297, 1 5 0. 285 0. 375 110, 084 0. 335 79, 65 0. 340 85, 57 275, 6 5 0. 285 0. 375 110, 110 0. 335 79, 65 0. 340 85, 57 266, 8 <tr< td=""><td>255</td><td>ļ</td><td></td><td></td><td>Ċ</td><td>81.25</td><td></td><td></td><td></td><td></td></tr<>	255	ļ			Ċ	81.25				
5 0.344 0.452 109.849 0.404 80.85 0.415 87.07 342.8 5 0.337 0.437 109.000 0.300 80.65 0.400 86.80 329.2 6 0.322 0.423 109.042 0.378 80.40 0.387 86.55 317.5 5 0.312 0.410 109.082 0.366 80.25 0.374 86.30 306.3 5 0.204 0.400 110.013 0.357 80.05 0.364 86.10 297.1 6 0.285 0.393 110.032 0.351 79.50 0.357 85.93 291.1 5 0.285 0.375 110.084 0.325 79.65 0.340 85.57 275.6 5 0.285 0.366 86.10 0.340 85.57 275.6 6 0.285 0.374 85.25 264.8 7 0.286 0.307 84.72 246.6	765		0		0	81.00				
6 0.337 0.437 109.00 0.300 80.65 0.400 86.85 329.2 6 0.322 0.423 109.042 0.378 80.40 0.387 86.55 317.5 5 0.312 0.410 109.082 0.366 80.25 0.374 86.30 306.3 5 0.304 0.400 110.013 0.357 80.05 0.364 86.10 297.1 5 0.285 0.393 110.037 0.351 79.50 0.357 85.93 291.1 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 5 0.285 0.363 10.305 79.30 0.328 85.25 264.8 5 0.260 0.367 84.72 246.6 6 6 0.260 0.367 84.72 246.6	275	0	Ö		Ö	80.85				
6 0. 322 0. 423 109. 942 0. 378 80. 40 0. 387 86. 55 317. 5 5 0. 312 0. 410 109. 982 0. 366 80. 25 0. 374 86. 30 306. 3 5 0. 304 0. 400 110. 013 0. 357 80. 05 0. 364 86. 10 297. 1 5 0. 285 0. 285 0. 367 85. 93 291. 1 297. 1 5 0. 285 0. 375 110. 084 0. 335 79. 65 0. 340 85. 57 275. 6 5 0. 285 0. 375 110. 084 0. 335 79. 65 0. 340 85. 57 275. 6 5 0. 286 0. 367 85. 25 264. 8 266. 8 5 0. 260 0. 367 84. 72 246. 6	285	Ö	Ö		Ö	80.65				_
5 0. 312 0. 410 109, 982 0. 366 80, 25 0. 374 86, 30 306, 3 5 0. 304 0. 400 110, 013 0. 357 80, 05 0. 364 86, 10 297, 1 5 0. 285 0. 285 0. 357 10, 037 0. 355 79, 65 0. 357 85, 93 291, 1 5 0. 285 0. 285 0. 375 110, 084 0. 335 79, 65 0. 340 85, 57 275, 6 5 0. 285 0. 375 110, 084 0. 335 79, 65 0. 340 85, 57 275, 6 5 0. 276 0. 363 363 110, 111 0. 305 79, 30 0. 328 85, 25 264, 8 5 0. 260 0. 360 0. 307 84, 72 246, 6 4,	295	o	Ö		o.	ļ				
5 0.364 0.400 110.013 0.357 80.05 0.364 86.10 297.1 72,1 5 0.299 0.393 110.037 0.351 79.90 0.357 85.93 291.1 70,1 5 0.285 0.375 110.084 0.325 79.65 0.340 85.57 275.6 67,2 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 66,2 5 0.276 0.363 110.116 0.324 79.30 0.328 85.27 275.6 64,86 5 0.260 0.367 84.72 246.6 61,450	305	Ö	Ö		Ö					
5 0.295 0.397 0.351 79.90 0.357 85.93 291.1 70.1 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 67.8 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 66.6 5 0.276 0.363 110.116 0.324 79.30 0.328 85.25 264.8 64.8 5 0.260 0.342 110.171 0.305 78.85 0.307 84.72 246.6 61.450	315	0	_		o -	_	0	86, 10		72,
5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 67. 5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 66. 5 0.276 0.363 110.116 0.324 79.30 0.328 85.25 264.8 64.8 5 0.260 0.342 110.171 0.305 78.85 0.307 84.72 246.6 61,450	325	0			o		0			70,
5 0.285 0.375 110.084 0.335 79.65 0.340 85.57 275.6 66, 5 0.276 0.363 110.116 0.324 79.30 0.328 85.25 264.8 64, 5 0.260 0.342 110.171 0.305 78.85 0.307 84.72 246.6 61, 4,450, 0.260 0.307 84.72 246.6 4,450,	335	o			o		0			67,
5 0.276 0.363 110.116 0.324 79.30 0.328 85.25 264.8 64 5 0.260 0.342 110.171 0.305 78.85 0.307 84.72 246.6 61.6 4,450	345				0,		0.			99
5 0.260 0.342 110.171 0.305 78.85 0.307 84.72 246.6 61.450	828	Ö	0.	110.	0.		ပ			ম্
4,450,	365	Ö	Ö	110.	0.		o.			61
	Total									-



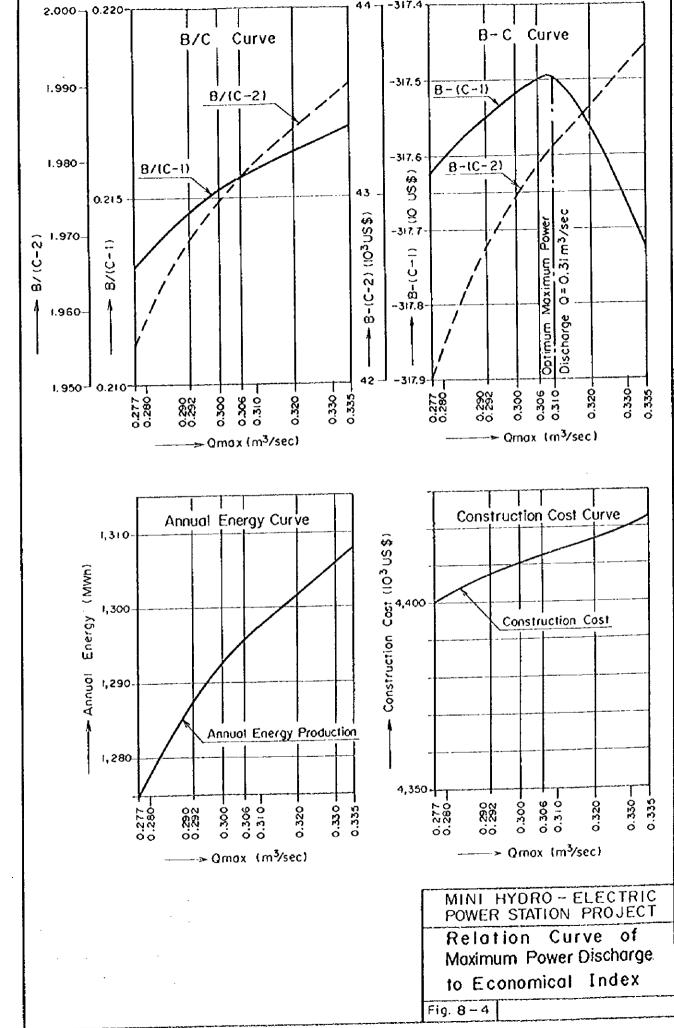

DE S. TOMÉ CARTA DA ILHA

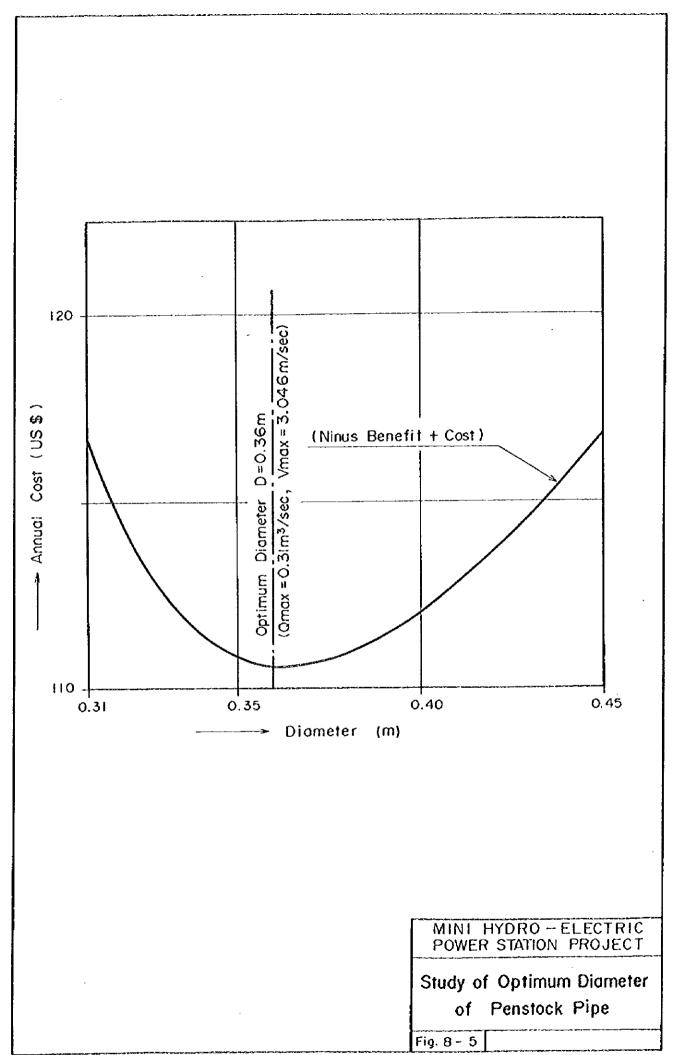

ESCALA I 75.000

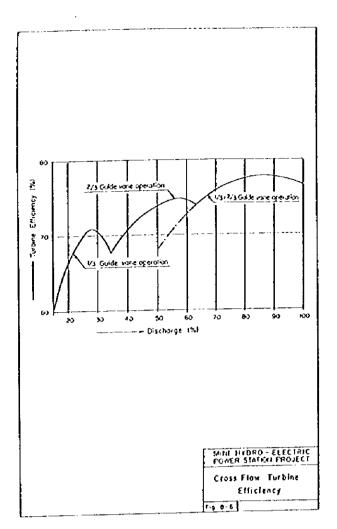
8 - 49

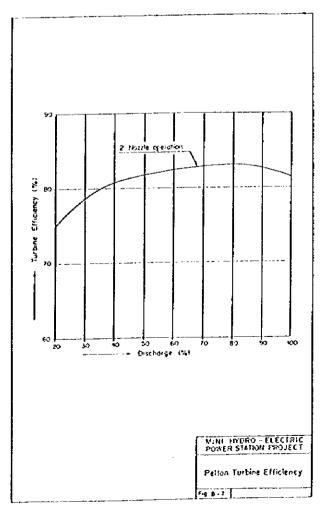

Consistent principals (1997) and the consistent principal (1997) and the constitution of the constitution

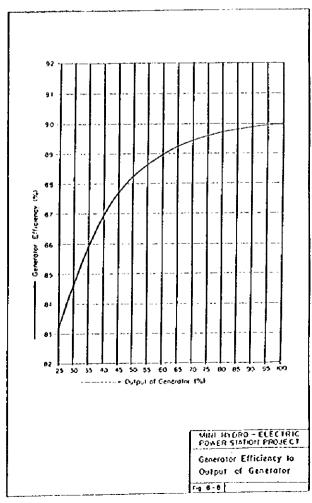
Profile of Waterway Case A

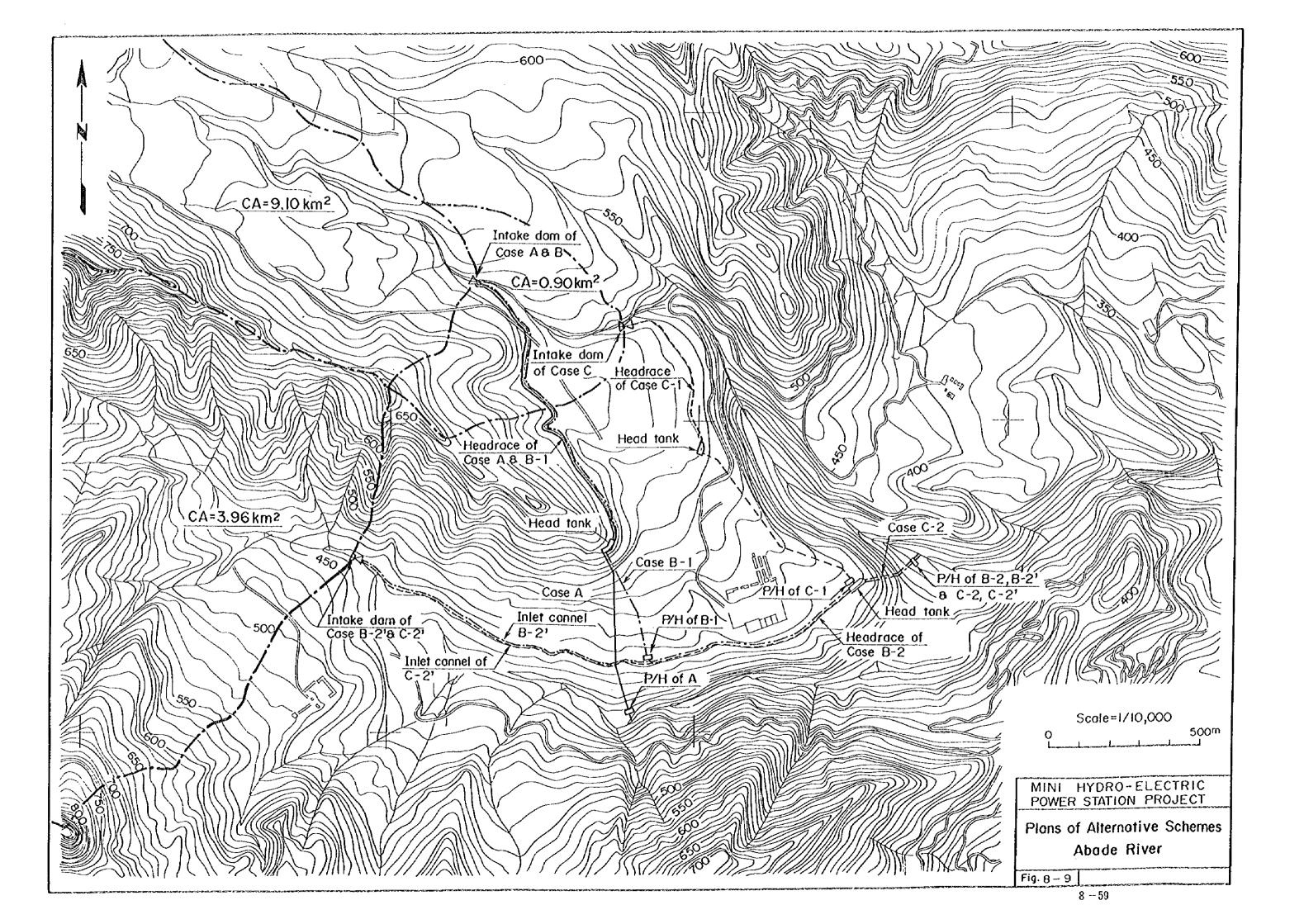

	-	

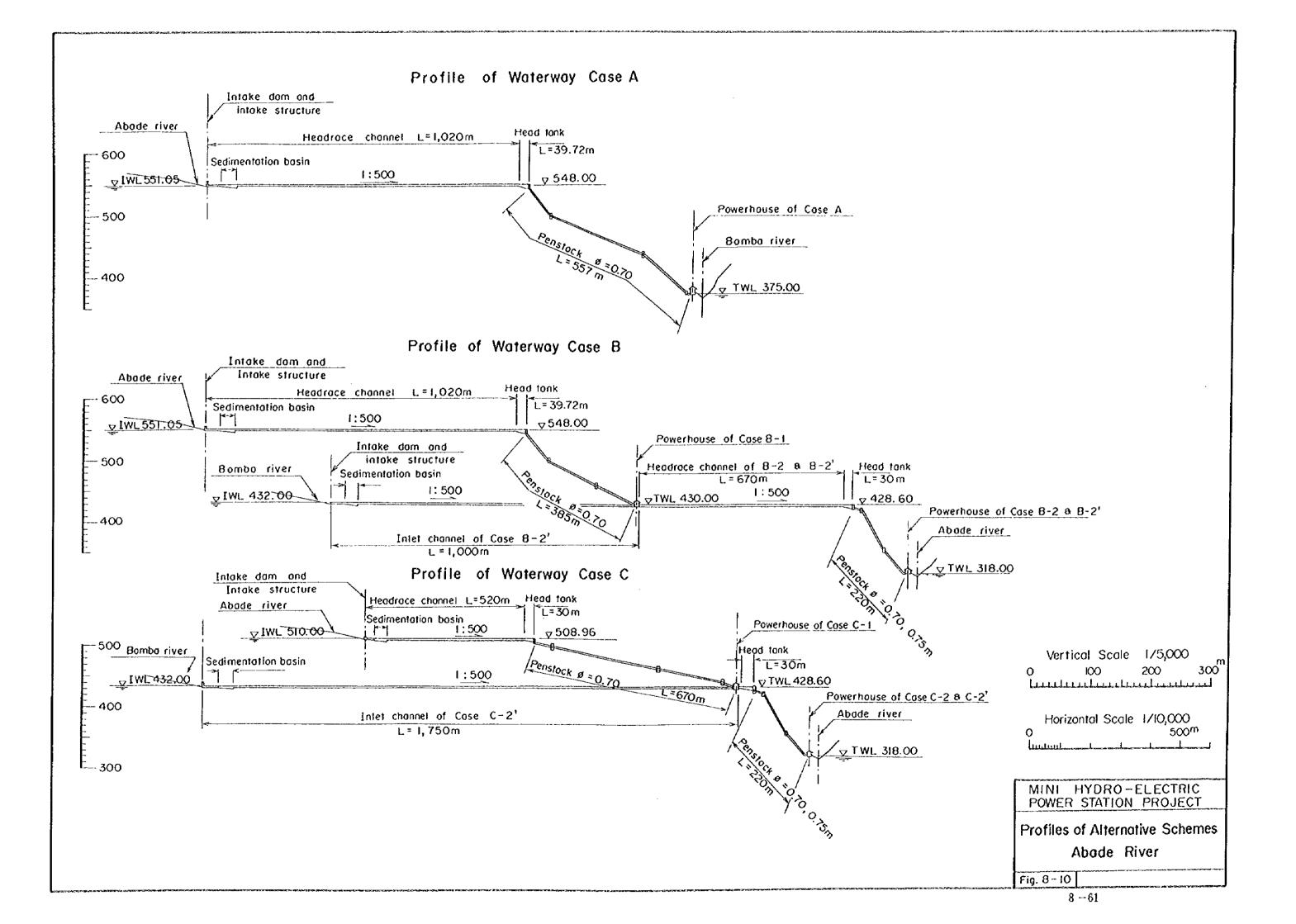

•

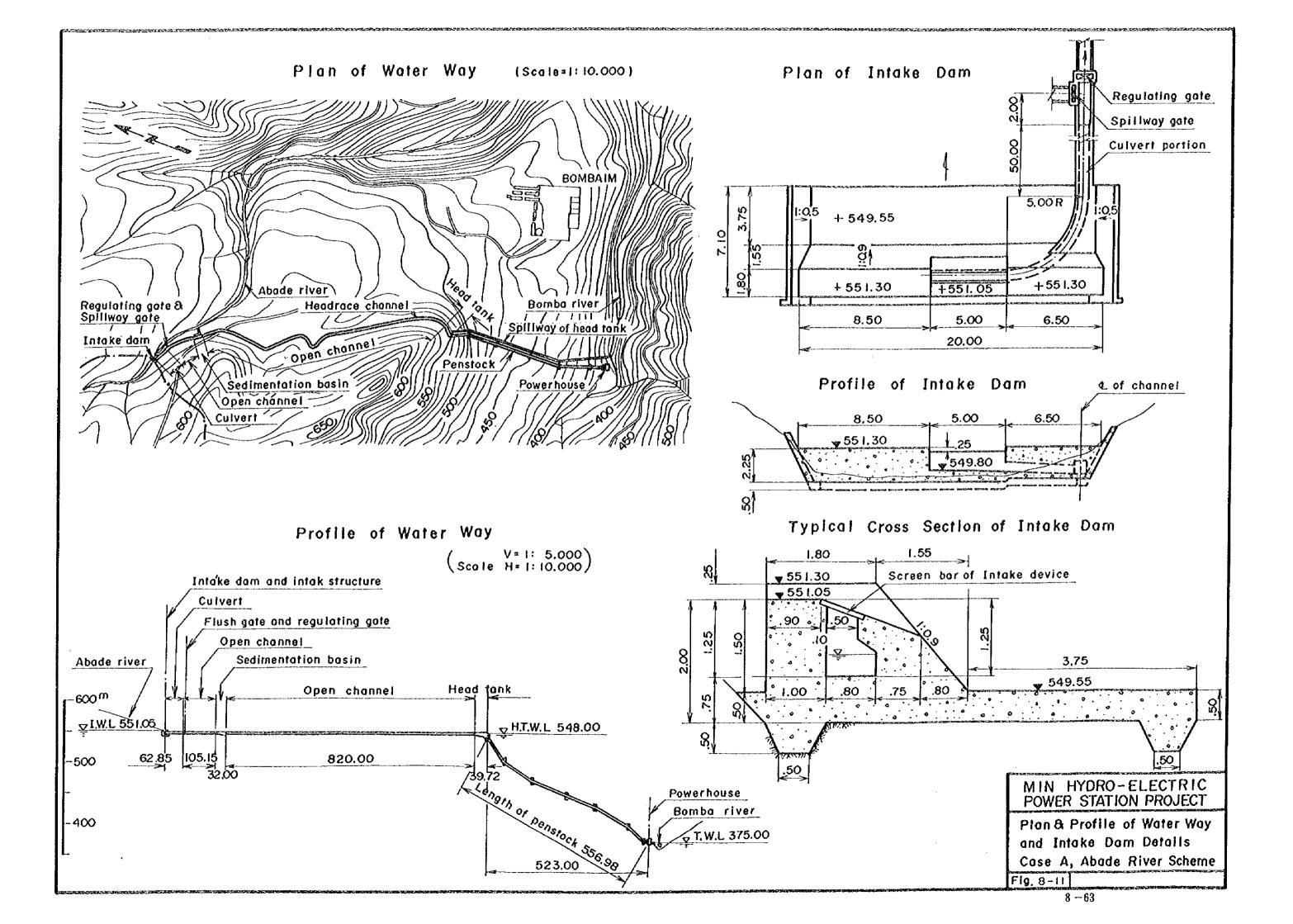

S. Carlo

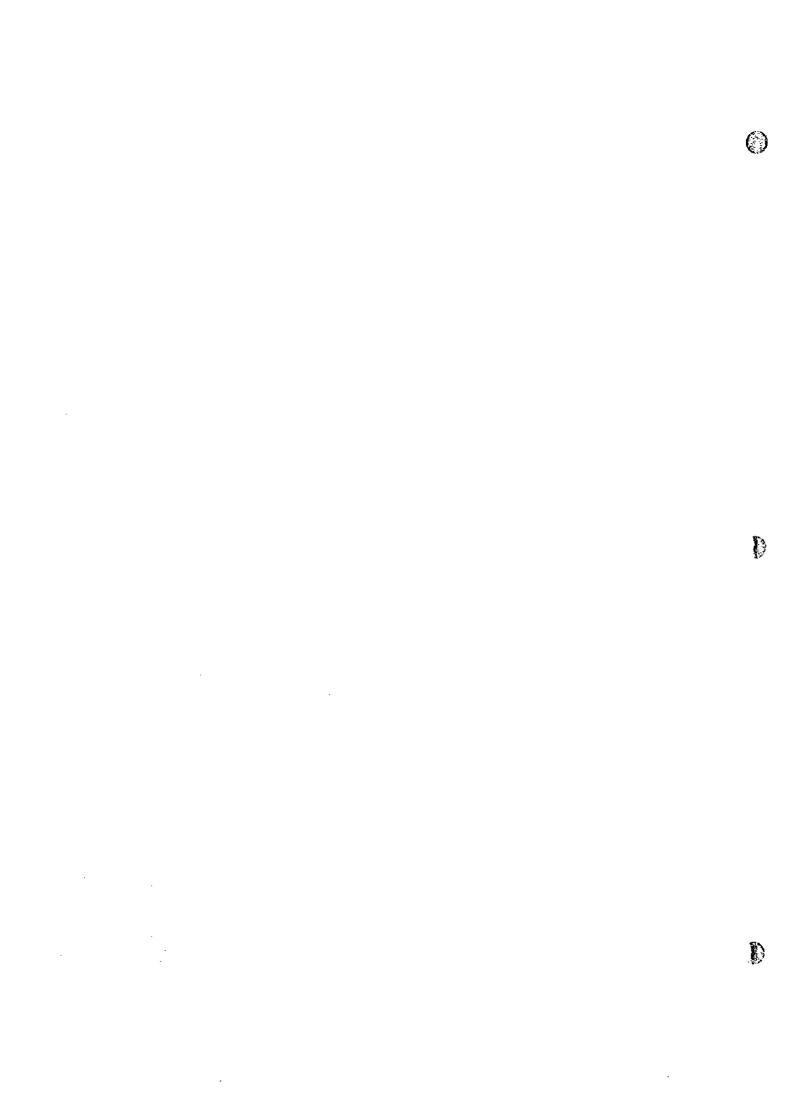

•

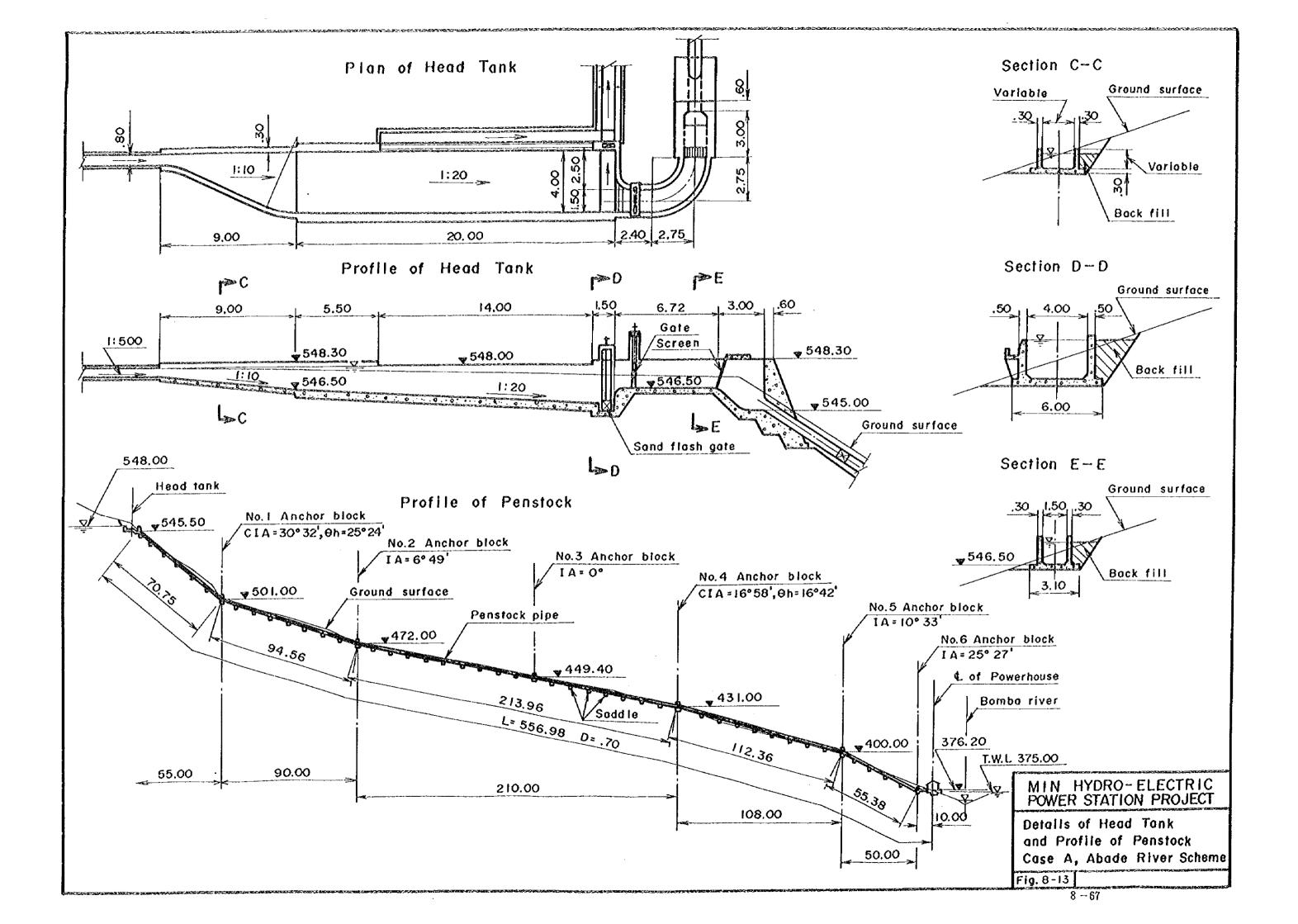




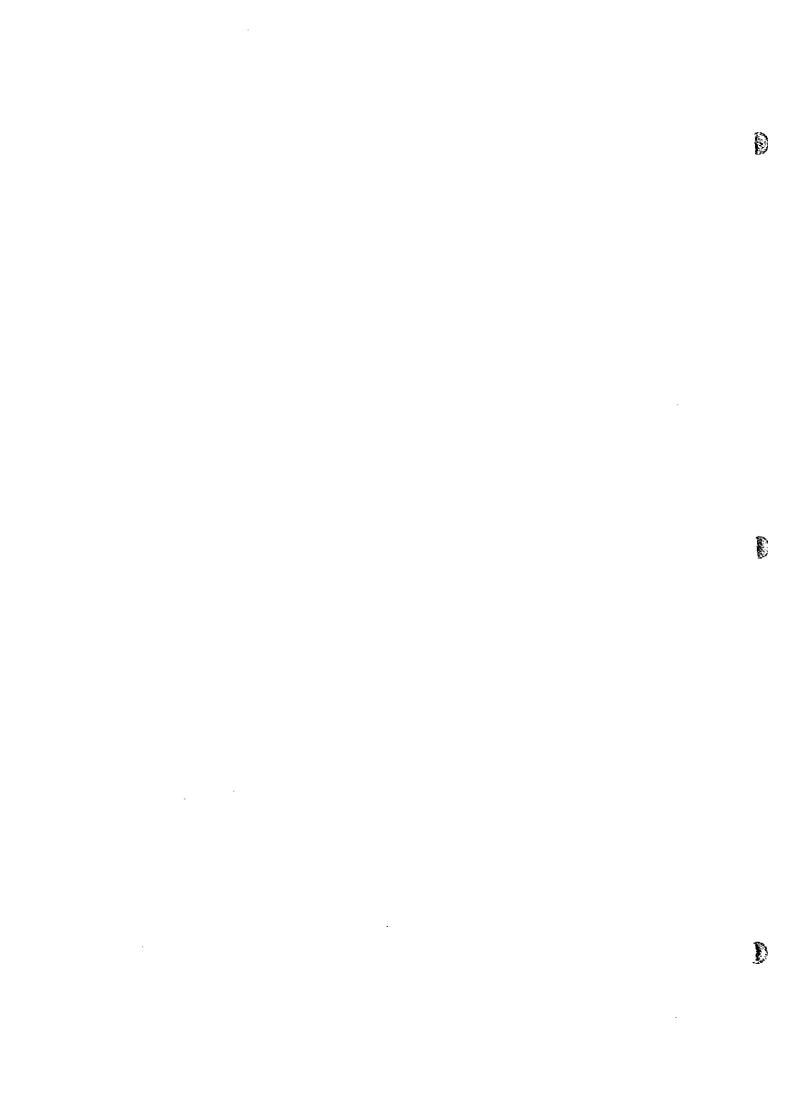


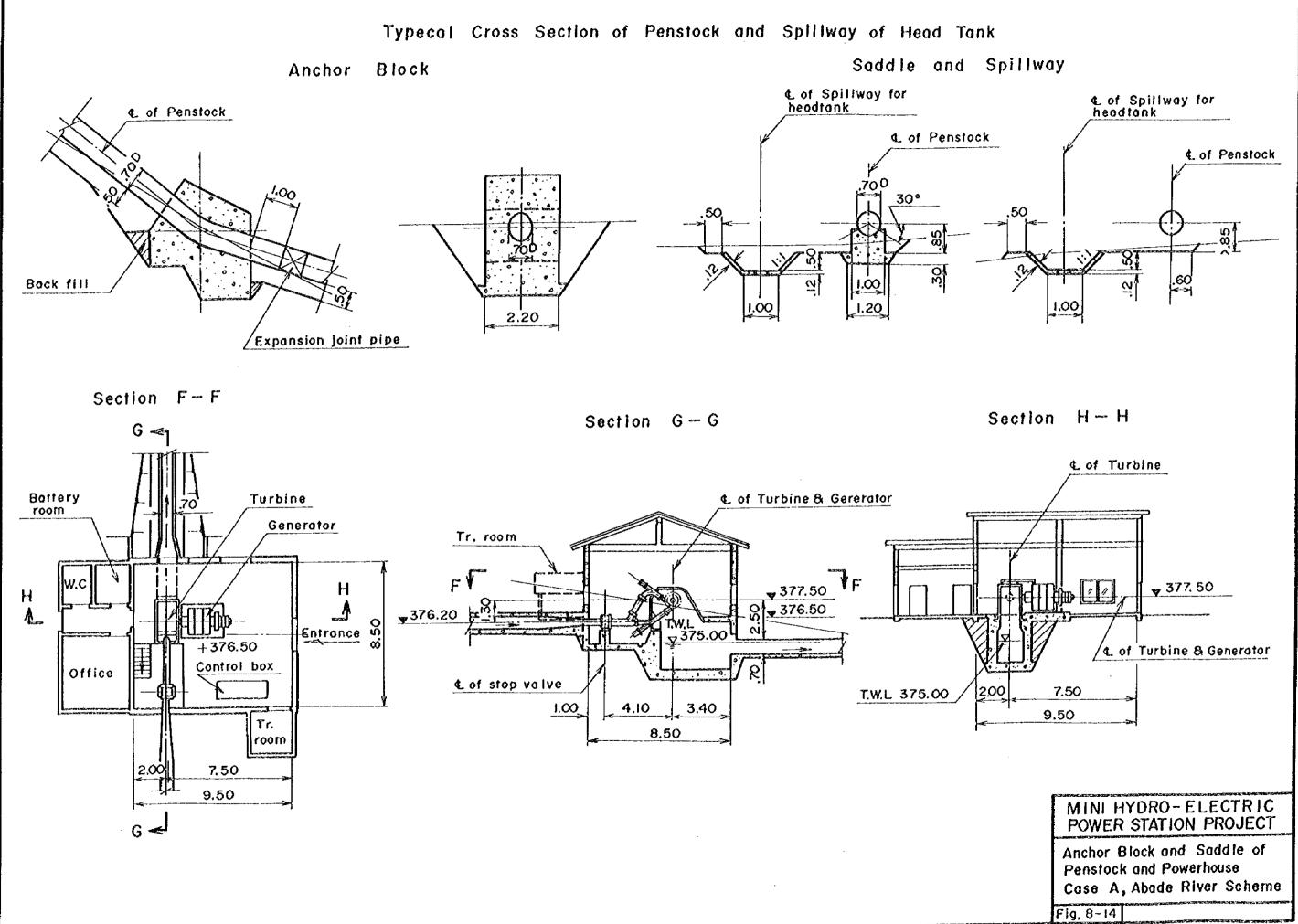







·		




Typecal Cross Section of Headrace Plan of Sedimentation Basin Culvert Portion 32.00 6.00 14.00 3.00 6.00 3.00 Spillway 1:15 1:20 549.04 .20 08, Regulating gate 1.20 Open Channel Portion Profile of Sedimentation Basin r≫B Regulating gate 9,00 14.00 9,00 548,99 W > 2.0 m 1:500 Side overflow spillway **550.04** 549.74 **549.04** 548.24 Sand flash gate 6.00 1,00 19.50 5.00 .80 L_→ A 1.04 Section B-B Section A - A Side overflow spillway 4.00 Spillway **√**550.04 ¥549.74 ¥550.04 Sand flosh gate Spillway €548.13 MIN HYDRO- ELECTRIC POWER STATION PROJECT Details of Sedimentation Basin and Headrace Channel Case A, Abade River Scheme Fig. 8-12 8 - 65

		-	

Chapter 9

GROUND SURVEY AND GEOLOGICAL INVESTIGATION

1

9. GRAND SURVEY AND GEOLOGICAL INVESTIGATION

9.1 Existing Topographical Maps and Geological Data

The existing topographical maps below related to this mini-hydropower project investigation were collected:

- (1) S = 1/75,000 map: entire Sao Tome Island, 1sheet (original, prepared 1961)
- (2) S = 1/25,000 map: entire Sao Tome Island, 5 sheets (original, prepared 1958)
- (3) S = 1/10,000 map: Manuel Jorge River Basin, 3 sheets (blueprint, prepared 1966)

 Abade River Basin, 3 sheets (blueprint, prepared 1966)

Regarding 1/10,000 scale maps, they were collected placing emphasis on the Manuel Jorge and Abade river basins. Geological data are enumerated in 9.3.2.

9.2 Ground Survey

As indicated in 9.1 above, the largest scale of existing topographical maps is 1/10,000, and since the scale was too small for a feasibility study to be carried out on the Manuel Jorge No. 4 site based on the results of the studies described in Chapter 8, and since the year of preparation was old and changes had occurred in structures such as buildings and in roads with subsequent elapse of time, ground survey is was done for the purpose of preparing 1/1,000 scale topographical maps with which study of the power generation project and feasibility design can be achieved. Together with this, cross-sectional surveying was done for studies to avoid damage from floods to power generation structures at the intake dam and powerhouse sites.

As a result of field reconnaissance, it was learned that no bench mark (BM) to be the basis for elevation existed in the vicinity of the project site (although there had been some in the past) and, therefore, the elevation of the point appearing to coincide the most according to the existing 1/10,000 scale topographical map and local topography was taken as the datum point of EL. 390.90 (= EL. 396.50 m + 0.40 m).

And with this as the basis, bench marks at 4 locations were provided in the Manuel Jorge No. 4 project area for ground survey and future implementation of the project.

Further, since triangulation points having plane coordinates to indicate plane positions do not exist in the neighborhood similarly to the case of bench marks, topographical maps with the coordinate values of points read on 1/10,000 scale topographical maps, which are considered the most appropriate to be based on as bench marks are prepared.

For the scope of survey, since there are 5 or 6 waterfalls from 2 m to around 18 m in the vicinity of the intake site, it was considered that a place of stable topography and geology which moreover would be economical must be selected from EL. 500 m of this location to around 470 m. The headrace and head tank areas would require an elevation range roughly the same as the intake site, but especially, in order to make it possible for the head tank to assume a reservoir-like role, consideration was given so that there would not be insufficiency of its capacity. The area of the powerhouse and outlet would be related to the topographies at the head tank and penstock, and asking into consideration the relationship between power station space and outlet water level and flood water level, a range long in the upstream-downstream direction from river bed elevation 410 m to 370 m was selected.

The scope of survey and items and quantities are given in Fig. 9-1 and Table 9-1.

Table 9-1 Quantities Planned in Ground Survey

Item	Unit	Quantity	Remark
Benchmark installation	Point	4	
Topographical surveying (scale 1/1,000)	m^2	285,000	
Stream cross-sectional surveying (50 m traverse)	Traverse	6	Intake dam site (3 sites)
Stream cross-sectional surveying (100 m traverse)	Traverse	8	Powerhouse site (2 sites)

9.3 Geological Investigations

9.3.1 Selection of Investigation Work

Examinations were made of the contents of various geological investigations such as geophysical prospecting and boring scheduled to be carried out hereafter based on the results of field topographical and geological investigations in the First Field Survey. As a result, of geophysical prospecting (refraction method seismic prospecting), 8 traverses, 600 m, and boring, total 70 m,

seismic prospecting was called off due to the conditions below, and it was decided to ascertain the geology of the project site by boring and surface geological exploration.

(1) Geological Conditions

The plan is for intake facilities to be provided downstream or upstream of water falls located approximately 1 km west of the Santa Luzia hamlet at the midstream section of the Manuel Jorge River, with headrace, head tank, penstock, and powerhouse provided along the left bank.

According to the results of field investigations, there are parting layers of basalt and agglomerate at the slopes on both banks upstream and downstream of the waterfalls at the intake dam site, while at the river bed, there are very small distributions of river deposits.

Consequently, it is thought unnecessary for underground geological distributions and geological structures of the projected dam site to be estimated by velocity Layer classifications which are analysis results of seismic prospecting. Likewise, outcrops are seen along drag roads with regard to the headrace, penstock, and powerhouse sites, and the necessity for investigations by seismic prospecting is not seen for these sites also.

(2) Land Use at Investigation Site

Cacao is widely cultivated in the left-bank area in general of the Manuel Jorge River midstream, and there is a possibility of various difficulties being encountered when setting out seismic prospecting traverses.

(3) Vibration Source in Seismic Prospecting

In most cases, explosives are generally used as the vibration sources in seismic prospecting, but on investigating the conditions for using explosives at the site, it was found that explosives are not available in Sao Tome and Principe, and importing would need to be done. And to use explosives, it may be expected that considerable time would be consumed in making applications and receiving permits and approvals.

Alternatives would be hammering and weight dropping, but vibration energies would be small with these methods, and there is a possibility that obtaining the results of investigation aimed for such as layer thicknesses of deposits will not be achieved.

(4) Investigation Firm

There is no firm is Sao Tome and Principe capable of performing seismic prospecting (including boring), and it would be necessary to look to Gabon, from which there are scheduled airplane flights, or other countries. Even then, it would be necessary to bring in seismic prospecting equipment and specialists from Europe.

9.3.2 **Geological Investigation**

Literature and geological maps obtained as geological data concerning the mini hydro power development project survey are as follows:

1) Sao Tome Island Geological Map

Scale: 1/75,000

Year published, publisher unknown

2) Sao Tome Island Land Use Map

Scale: 1/50,000

1974, Sao Tome and Principe National Geographical Institute

3) Sao Tome Island Soil Map

Scale: 1/50,000

1960, Overseas Survey Committee, Foreign Ministry, Portugal

- 4) Proposal for Hydro Power Resources Development in the Democratic Republic of Sao Tome and Principe, Civil Engineering and Geology Volume, May 1981 Planning and Survey Research Institute, GUIDOPROEKT, U.S.S.R.
- 5) Ditto: Drawings

In the present survey, boring investigations were carried out at the midstream stretch of the Manuel Jorge River as a mini hydro power development site. Boring consisted of 6 drillholes

totaling 90 m, with 2 holes each of 10 to 20 m drilled at the intake dam, head tank, and powerhouse sites. In selection of boring investigation locations, since suitable topographical maps were not available, existing 1/10,000 topographical maps were used. Consequently, there are places where the boring investigation locations are deviated from the projected locations of structures.

Details of boring investigation locations and results of investigations are given in Fig. 10-6 ~10, and, regarding these investigation works, geological profiles were prepared based on 1/1,000 scale topographical maps newly made, and these are given as Figs. 10-6 to 10-10.

9.4 Execution

Ground survey and geological investigation works were executed by Gabon-based GERI-LOISON S.A.R.L., the contractor, during a period of about 3 months from end-July to mid-October, 1996. The Contractor had been selected by competitive bids based on the tender documents which included technical specifications of the works concerned.

