APPENDIX IV

ENVIRONMENTAL IMPACT STATEMENT AND ENVIRONMENTAL IMPACT ASSESSMENT DATA

Appendices IV Environmental Impact Statement and Environmental Impact Assessment Data

IV.1 Detailed Survey Items

Table	IV-1	Detailed	Survey	Items
Labic	3 Y - E	E/CILLICUS		

		Table IV-1 Detailed Survey Items Detailed survey items
	ems to be investigated	Detailed but voy Kons
(1)	Social environment	- Distribution of houses and facilities
	Resettlement	
		- Distribution of grave yards
		- Existing land use condition
		- Compensation regulations
. :		- Hearing from relevant authorities and residents
	Social and Economic	
	activities	- Effect of traffic to residence and public facilities such as schools,
		mosques and hospitals
		- Industries and their scale to be influenced
· .		- Agricultural areas & productions to be influenced
	Construction waste	
		- Volume and physical and chemical characteristics of waste
		- Location, scale and capacity of disposal sites
		- Waste regulations
	Historical remains &	
	cultural property	- Kinds of HR&CP
	(НР&СР)	- Location of HR&CP
. :		- Characteristics & value of HR&CP
		- Relocation possibility of HR&CP
	Disaster and Risk	
		-Wadi and flash flood
(2)) Natural environment	
	rees, shrubs, vegetation	-Characteristics of trees, shrubs and vegetation
•	1003, 3111005, 1080111105.	- Ecological conditions of flora & fauna
		- Natural environment protection regulations
(2)) Pollution	
(3)	Atmospheric quality	- Existing condition of air quality (SO _X , CO, SPM, NO _X , Pb)
	Munospheno quancy	- Air quality protection regulations
	At the said witnession	- Existing condition of noise level (L _{eq})
	Noise and vibration	- Noise/vibration restriction regulations
** ;		- Water use and pollution
	Water pollution	
٠.	Soil pollution	- Soil character and pollution

IV.2 Environmental Impact Statement

Following is the EIS application form submitted to the Department of Environment and Permission.

Table IV-2 EIS Application Form

SULTANATE OF OMAN Ministry of Environment

كالمنتهجيكاة وزارة البيزيمة

ENVIRONMENTAL IMPACT
STATEMENT FORM L
INFRASTRUCTURE PROJECTS

بيان التأثير على البيئسة النموذج (ل) ــ مشروعات البنيسة الأساسسية

Refer to seperate notes for Explanation of Questions يرجى الرجوع الى نقاط الأسترشاد الاسترشاد لزيد من الاستيضاع

1. PROJECT ORGANISATION

١ ــ تنظيم المســروع : ﴿ ﴿ اللَّهُ اللَّاللَّالِيْعِلَّ اللَّالِيلِمُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّا

A. PROJECT TITLE

١ - استم الشيروع الم

The detailed design study on road development project in Batinah Highway

B. BRIEF DESCRIPTION

ب ـ ملخص مختصس للمشسروع :-

In response to the request of the Government of the Sultanate of Oman, the Government of Japan has decided to conduct this project. Japan International Cooperation Agency (JICA), the official agency responsible for the implementation of technical cooperation programme of Japan, undertakes this study. The study is to prepare the detailed engineering design for the construction of eight (8) flyovers and twelve (12) pedestrian underpasses along the Batinah highway.

C. LOCATION

جاب موقع المسروع الم

Flyover locations: 8 roundabouts and junction area at A' Naseem Garden R/A, Barka R/A, Al Muladdah Jn. Khaburah R/A, Saham R/A, Solyar R/A, Falaj Al Qabail R/A, Aqr R/A. Pedestrian underpass locations:12 site areas at Barka, Al Billah, A' Tareef, Al Qurat, A' Tharmd, A' Suweiq, Al Khadra, Qarih, Majaz A' Sughra, Khor A' Siyabi, Liwa, Asrar Bani Sa'd

OWNER	_ مالك الشروع نــ
NAME Directorate General of Roads, Ministry of Communications	الاسلم:
ADDRESS P.O.Box 27 P.C 114	۲ _ العثسوان :
TELEPHONE NUMBER 702344	٣ _ رتم النلينرن :
CONTACT	_ المسئول الذي يمكن الاتصال
NAME Eng. Abdullah Suleiman Al-Sharji	١ _ الاســم :
ADDRESS P.O.Box 27 P.C 114	۲ ــ العنسران : با ــ العنسران :
TELEPHONE NUMBER 702344	۲ _ رقم التلينون :
CONSULTANTS	_ الاستشاريون :-
NAME Pacific Consultants International (JICA study team)	الله المراجعة المراج المراجعة المراجعة ال
ADDRESS DGR P.O.Box 27 P.C 114	۷ ئے العنسوان :
TELEPHONE NUMBER 785028	ر المراجعة ا المراجعة المراجعة ال
NAME OF CONTACT : كن الانصال بـــه : Yoshimi Takai (JICA study team leader)	٤ ــ اسم الشخص الذي يم
	ـ التاريخ القترح البدء :-
(i) CONSTRUCTION Earliest at May, 1998	۱ - الانشاء :
(ii) OPERATION Earliest at 2000	٢ ـ التشيئيل :
FUTURE DEVELOPMENT None	ح ب التوسيعات المستقبليية :-

۲ .. تغامیل خاصة بالنسروع :..

2. PROJECT DETAILS

A. CONSTRUCTION DETAILS

1 _ التفاصيل الخاصة بالانشاءات : _

Flyover

Superstructure: Prestressed concrete box girder. Substructure: Abutment; Reinforced concrete inverted T-shaped abutment in Right of way area Pier; Rigid framed reinforced concrete pier in roundabout area Standard bridge span: 20 to 30m depending on roundabout sites. Bridge length: 300m, Total flyover length (include approach length): 800m. Foundation: Cast in-situ ϕ 60cm reinforced concrete piles, standard type: without pile.

Pedestrian Underpass

Main underpass structure: Reinforced concrete box culvert shape with $3.0 \text{ m} \times 3.0 \text{ m}$ at cross section and approx. 50 m in length, stairs and canopy at both ends within the area of right of way

B. UTILITIES REQUIREMENTS

ب _ منطابات النشغيل :_

(i) WATER

١ ـ الياه:

Temporary water tank installation on site, water supplied by tank lorry.

(ii) ELECTRICITY

٢ ـ الكهرياء:

Temporary electric generator installation on site for construction machinery

(iii) FUELS

٢ ــ الوقود:

Temporary fuel tank for construction machinery

C. OTHER LOCATIONS CONSIDERED

ج ـ المواقع الأخرى التي تؤخذ في الاعتبار ال

Temporary concrete casting yard for precast concrete productions near the camp site. Borrow pits for enbankment materials and quarry sites for aggregate materials to be approved by the relevant authority.

D. FACTORS DETERMINING PROJECT LOCATION

د - العوامل الذي تحدد موقع الشمروع اس

Traffic volume at roundabouts

E. DETAILS OF PRELIMINARY INVESTIGATIONS

م _ ببانات تقصيلبة عن الاذتبارات الاولية

ALREADY CARRIED OUT

This project is basically an amelioration project of existing highway, therefore it will not cause major impact on natural environment such as geophysical features, flora and fauna against peripheral area of the highway. This project is to improve a traffic condition and to contribute reduction of pollutant exhaust.

3. OFF SITE ANCILLARY DEVELOPMENTS : المرادل المساعدة خارج الزوائي : None 4. POLLUTION CONTROL : عراقيدة الخالون بكرناتها الكيمائية : (i) NATURE AND CHEMICAL COMPOSITION : بالكيمائية الكيمائية : Cenerally no waste water (ii) QUANTITIES : كالكيمائية : Generally no waste water (iii) METHODS OF CONTROL : بالكيمائية : المحادث المصدود : يا الكيمائية : المحادث المصدود : يا الكيمائية الكيمائي		
4. POLLUTION CONTROL : مراتب التلوي المحالة ا	3. OFF SITE ANCILLARY DEVELOPMENTS	٢ _ العوامل المساعدة خارج الوقيع :
A. WASTE WATER (i) NATURE AND CHEMICAL COMPOSITION Generally no waste water (ii) QUANTITIES Generally no waste water (iii) METHODS OF CONTROL No need of control (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS None (ii) NATURE AND CEMICAL COMPOSITION None (iii) MATURE AND CEMICAL COMPOSITION None (iii) QUANTITIES (iii) QUANTITIES None (iii) QUANTITIES None (iii) GUANTITIES None (iii) METHODS OF CONTROL None (iii) METHODS OF CONTROL None (iv) POINTS OF DISPOSAL None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS 1 - detail literate in the control of the con	None	
A. WASTE WATER (i) NATURE AND CHEMICAL COMPOSITION Generally no waste water (ii) QUANTITIES Generally no waste water (iii) METHODS OF CONTROL No need of control (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS None (ii) NATURE AND CEMICAL COMPOSITION None (iii) MATURE AND CEMICAL COMPOSITION None (iii) QUANTITIES (iii) QUANTITIES None (iii) QUANTITIES None (iii) GUANTITIES None (iii) METHODS OF CONTROL None (iii) METHODS OF CONTROL None (iv) POINTS OF DISPOSAL None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS 1 - detail literate in the control of the con		
(i) NATURE AND CHEMICAL COMPOSITION : الكنيات الخلفات ومكوناتها الكيائية ا	4. POLLUTION CONTROL	٤ _ مراتبـة التلـوث :
Generally no waste water (III) QUANTITIES : الكنيات ٢ Generally no waste water (III) METHODS OF CONTROL : تـــــــــــــــــــــــــــــــــــ	A. WASTE WATER	_ مذلفات الباه :_
(ii) QUANTITIES : تالكبيات : Generally no waste water (iii) METHODS OF CONTROL : الكبيات الألبانية المعارفة والدخان في الفلاف الجوي : والمعارفة والدخان في الفلاف الجوي : BMISSIONS TO ATMOSPHERE : الكبيات مذه الأنياء ومكرناتها الكبائية : الكبيات الكبائية الكبائية الكبائية : الكبيات الكبائية الكبائية : الكبيات الكبائية : ۲ ـ الكبيات الكبائية : ۲ ـ الكبيات الكبائية الكبائية : ۲ ـ الكبيات : ۲ ـ الكبيات الكبائية : ۲ ـ الكبيات الكبائية الكبائية : ۲ ـ الكبيات : ۲ ـ الكبيات الكبائية الكبائية : ۲ ـ الكبيات : ۲ ـ الكبيات الكبائية الكبائية : ۲ ـ الكبيات الكبائية	(i) NATURE AND CHEMICAL COMPOSITION	١ ــ طبيعة الخلفات ومكوناتها الكيمائية : ٧
Generally no waste water (iii) METHODS OF CONTROL No need of control (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS None 3. EMISSIONS TO ATMOSPHERE (i) NATURE AND CEMICAL COMPOSITION None (ii) QUANTITIES None (iii) QUANTITIES None (iii) METHODS OF CONTROL None (iii) METHODS OF CONTROL None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS a Little literate litera	Generally no waste water	
No need of control (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS None 3. EMISSIONS TO ATMOSPHERE (i) NATURE AND CEMICAL COMPOSITION None (ii) QUANTITIES (iii) QUANTITIES (iii) METHODS OF CONTROL None (iii) METHODS OF CONTROL None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS (v) MONITORING PROPOSALS ** ** ** ** ** ** ** ** **		۲ _ الكتيات :
None (v) MONITORING PROPOSALS (v) MONITORING PROPOSALS (v) MONITORING PROPOSALS (v) MONITORING PROPOSALS (v) MONITORING PROPOSAL (v) MONITORING PROPOSAL (v) MONITORING PROPOSALS		٢ ـ طرق الراقبــة ؛
None 3. EMISSIONS TO ATMOSPHERE 4. البعانات الغبار والإبخرة والدخان في الغلاف الجوي :ـ (i) NATURE AND CEMICAL COMPOSITION None (ii) QUANTITIES (iii) QUANTITIES (iii) METHODS OF CONTROL None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS		٤ ــ نقاط النصيريف:
(i) NATURE AND CEMICAL COMPOSITION : الكبياء ومكرناتها الكيمائية : None (ii) QUANTITIES : ۲ كال الكبياء ومكرناتها الكبياء ومكرناتها الكبياء ومكرناتها الكبياء ومكرناتها الكبياء ومكرناتها التصريف : ١ كالما التصريف : ١ كالما التصريف : ١ كالما التصريف : ١ ١ كالما التصريف : ١ كالما ال		٥ ـ مقترحات الرصيد:
None (ii) QUANTITIES : ۲ None (iii) METHODS OF CONTROL : ۲ None (iv) POINTS OF DISPOSAL : ١٤ ١٤ ١١٠ ١١٠ ١١٠ ١١٠ ١١٠ ١١٠ ١١٠ ١١٠ ١	B. EMISSIONS TO ATMOSPHERE	ب _ انبعاثات الغبار والأبخرة والدخان في الغلاف الجوي :-
None (iii) METHODS OF CONTROL. : مارق الراتيات : None (iv) POINTS OF DISPOSAL : عامل التصريات : ٤ None (v) MONITORING PROPOSALS : ه مانشرحات الرصيد :		١ ـ طبيعة هذه الأشياء رمكرناتها الكيالية :
None (iv) POINTS OF DISPOSAL None (v) MONITORING PROPOSALS (v) MONITORING PROPOSALS		Y ـ الكفيات : بين من
None (v) MONITORING PROPOSALS : ه ـ متشرحات الرصيد		۲ ـ طرق المراتب :
		٤ _ نقاط التصريف:
		ه منشرحات الرصيد :

C. SOLID WASTES	المسابة :-
(i) NATURE AND CHEMICAL COMPOSI	_ طبيعة الخلفات والكرنات الكيميائية : NON
Demolished asphaltic concrete and cur	b stones, these can be partially reused
(ii) QUANTITIES	_ الكبيــات :
Approximate 22,000 m ³	
(iii) METHODS OF CONTROL	_ طرق الزائيــة :
Crushing asphaltic concrete blocks in reused	to small segments and disposal or partially
(iv) POINTS OF DISPOSAL	_ نقاط التصريف :
Disposal pits shall be approved by the r	elevant authority.
(v) MONITORING PROPOSALS	منترحات الرمسد :
Inspection system in construction supp	rvision
Inspectors of supervision consultants ap 5. POLLUTION HAZARDS	pointed by relevant authority نائلسوٹ :
A. TOXIC OR HAZARDOUS MATERIALS	واد السامة والخطرة :-
(i) NATURE AND CHEMICAL COMPOSIT	- طبيعة المدواد والمكونات الكيمائية : ١٥١١
(ii) QUANTITIES	ر الكميات :
None	
(iii) ORIGINS None	ا الأمساول: (الله الله الله الله الله الله الله الل
3. SPECIAL FACILITIES AND OPERATIONAL PROCEDURES	التسهيلات الخاصة وأجراءات الشغيل :-
(i) SAFETY OFFICIAL	١ _ مسئول السلامة :
None	- Land ()
(ii) EXPLOSIVES	۲ _ المنفح_رات :
None	

IMPACTS ON AMENITIES AND SERVICES

٦ - التأثير على رسائل الراحة والخدمات :

A. EFFECTS ON AMENITIES AND SERVICES

Undertaking safety and smooth traffic cross over at the roundabout section, and installation of underpass to avoid dangerous pedestrian's crossing the highway. So that the construction of flyovers and pedestrian underpasses along the Batinah highway is the urgent task for the state on public safety and smooth traffic flow. Resolving these problems introduces the improvement of important infrastructure element for conveyance and transport and for domestic economic growth.

B. MEASURES TO ALLEVIATE HARMFUL EFFECTS

ب ب الإجراءات التي اتخذت للصد من الأشار الفسارة :..

During the construction phase, embankment earth works may cause dusty condition to atmosphere and may affect to the vicinity residents, periodical water spray measures may alleviate this condition.

SIGNATURE OF APPLICANT

ترتيس متدم الطاب

JICA Study team leader:

Yoshimi Takai

DATE February

,1996

STAMP

التاريخ / /

NAME OF OWNER/COMPANY

اسم المالك/الشركة :

Directorate General of Roads
MINISTRY OF COMMUNICATIONS
SULTANATE OF OMAN

GWATURE/ON OWNER

DATE February

, 1996

STAMP

نرنيع المالك:

لثاريخ / / ١١.

IV.3 Environmental Impact Assessment

1. Social Environment

(1) Grave yard

Table IV-3 Grave yard location

R/A	Location	Grave	
			yard
			location
R/A-2	A'Naseem	Sea side	1 km off
51 4 28	Garden		
P/U 1	Barka	Mt side	2 km off
R/A-3	Barka	Sea side	6 km off
		- 11	
P/U 2	Al Billah	Sea side	3 km off
P/U 3	A' Tarcef	Sea side	2 km off
R/A-5	Al Muladdah	Mt.	0.5 km
		side	off
P/U 4	Al Qarat	Mt.side	2 km off
P/U 5	A' Tharmad	Sea side	2 km off
P/U 6	A' Suweiq	Sea side	2 km off
P/U 7	Al Khadra	Sea side	2 km off

R/A	Location		Grave yard
			location
P/U 8	Qarih	Mt.side	2 km off
R/A-8	Khaburah	Sea side	2 km off
P/U 9	Majaz A' Sughra	Sea side	2 km off
P/U 10	Khor A' Siyabi	Mt.side	2 km off
R/A-10	Saham	Sea side	3 km off
R/A-12	Sohar	Mt. side	1 km off
P/U 11	Liwa	Sea side	1 km off
P/U 12	Asrar Bani Sa'd	Sea side	3 km off
R/A-14	Falaj Al Qabail	Mt. side	1 km off
R/A-18	Aqr	Sea side	1 km off

(2) Waste disposal site

Table IV-4 Waste disposal site

Location of the		Waste disposal	Location of disposal yard
Project		management	managed by Municipality
1 Toject		_	
	-	(Municipality)	General waste & building rabble
A' Naseem Garden	R/A-2	Barka	3 km towards mounten side
Barka	P/U-1	Barka	10 km towards mounten side
	R/A-3	Barka	10 km towards mounten side
Al Billah	P/U-2	Barka	15 km towards mounten side
At Tareef	P/U-3	Masan'ah	10 km towards mounten side
Al Muladdah	R/A-5	Masan'ah	9 km towards mounten side
Al Qarat	P/U-4	Masan'ah	10 km towards mounten side
A' Tharmad	P/U-5	Suweiq	5 km towards mounten side
A' Suweiq	P/U-6	Suweiq	5 km towards mounten side
Al Khaddra	P/U-7	Suweiq	15 km towards mounten side
Qarih	P/U-8	Suweiq	15 km towards mounten side
Al Khaburah	R/A-8	Khaburah	10 km towards mounten side
Saham	R/A-10	Saham	10 km towards mounten side
Majas A' Sughra	P/U-9	Saham	10 km towards mounten side
Khar A' Siyabi	P/U-10	Sohar	5 km towards mounten side
Sohar	R/A-12	Sohar	10 km towards mounten side
Falaj Al Qabail	R/A-14	Sohar	10 km towards mounten side
Liwa	P/U-11	Liwa	10 km towards mounten side
Asrar Bani Sa'd	P/U-12	Shinas	20 km towards mounten side
Agr	R/A-18	Shinas	10 km towards mounten side

2. Natural Environment

(1) Vegitation at R/A and P/U area

Table IV-5 Planted major trees at R/A, P/U area and road side

Location of the		Road	Inside	Tree species	Size	Planting condition
Project		side	R/A			
A' Naseem R/ Garden	A-2	x		Pithecellobium Dulce	H=2 - 3 m	12 m pich :
Barka P/	U-1	х	- -	Zizyphus Spina- Christi	H=2 - 3 m	15 m pich :
		x		Ficus Benjamina	H=2 - 3 m	
R/	A-3	Х		Zizyphus Spina- Christi	H=2 - 3 m	15 m pich :
		х		Ficus Benjamina	H=2 - 3 m	
			X X	Pongamia Glabra Phoenix Dactylifera Azadirachta Indica	H=2 - 3 m H=5 - 7 m H=4 - 6 m	
Al Billah P/	U-2	x	X	Zizyphus Spina- Christi	H=2 - 3 m	15 m pich :
A' Tareef P/	U-3	х		Ficus Benjamina	H=2 - 3 m	15 m pich :
Al Muladdah R/	A -5	x x		Pongamia Glabra Prosopis Cineraria	H=2 - 3 m H=2 - 3 m	15 m pich :
Al Qarat P/	Ü-4	x		Azadirachta Indica	H= 6 m	15 m pich :
A' Tharmad P/	U-5	х		Zizyphus Spina- Christi	H=2-3 m	15 m pich :
A' Suweiq P/	U-6	х		Carissa Grandiflora	H=2-3 m	15 m pich :
Al Khaddra P/	U-7	х		Pongamia Glabra	H=2 - 3 m	15 m pich :
	U-8	x		Pongamia Glabra	H=2 - 3 m	15 m pich :
Al Khaburah R/	A-8	X		Azadirachta Indica	H=2 - 3 m	15 m pich :
		#1	X	Tecoma Stan	H=5 - 7 m	
Saham R/A	1-10			Pithecellobium Dulce	H=2 - 3 m	20 m pich :
		X		Zizyphus Spina- Christi	H=2 - 3 m	
	J.	. * *	x	Pongamia Glabra	H=2 - 3 m	
			X X	Ficus religiosa Casuarina Equisentifolia	H=5 - 6 m H=5 - 7 m	

Majas A' Sughra	P/U-9	x		Pongamia Glabra	H=2 - 3 m	15 m pich :
	P/U-10	x		Phoenix Dactylifera	H=6 m	15 m pich:
Siyabi						
		x	14 1	Azadirachta Indica	H=6 m	1.5
		X	1	Delonix Elata	H=6 m	
Sohar	R/A-12	x		Carissa Grandiflora	H=6 m	15 m pich :
		х		Azadirachta Indica	H=6 m	
		х		Bougainvillae sp.	H=1 - 2 m	
		х		Phoenix Dactylifera	H=6 m	
			x	Pithecellobium Dulce	H=2 - 3 m	
			x	Ficus Rerogiosa	H=5 - 7 m	
			x	Hibiscus Rosa-	H=1 - 2 m	
				Sinensis		
Falaj Al Qabail	R/A-14	х		Pongamia Glabra	H=2 - 3 m	15 m pich :
			х	Tecoma Stans	H=5 - 7 m	
			х	Peltophorum Inerme	H=5 - 7 m	
Liwa	P/U-11	x		Zizyphus Spina-	H=2 - 3 m	20 m pich :
				Christi		
Asrar Bani Sa'd	P/U-12	х		Pongamia Glabra	H=2 - 3 m	15 m pich :
Aqr	R/A-18	x		Pithecellobium Dulce	H=2 - 3 m	15 m pich :

3. Pollution

(1) Air Quality and noise level: Monitoring results

Table IV-6 Hourly average values of measured parameters

Hourly average values for chemical pollutants recalculated to mass concentrations

R/A 3 Barka (Sat) 25 May 1996

Time	Leq	NOx ppbV	CO ppmV	SO2 ppbV	SPM mg/m3
0600-0700	67.8	27	0.1	8	259
0700-0800	66.8	70	1	4	187
0800-0900	66.4	46	0.5	8	220
0900-1000	66.8	21	0.4	10	353
1000-1100	67.4	16	0.3	8	522
1100-1200	67.3	14	0.2	7	665
1200-1300	67.6	12	0.4	6	1226
1300-1400	67.2	13	0.1	6	890
1400-1500	66.9	6	0	6	2442
1500-1600	67.1	7	0	4	1160
1600-1700	67.2	9	0.3	2	787
1700-1800	67.1	7	0.2	3	626
1800-1900	66.2	19	0.4	4	522
1900-2000	65.8	59	0.8	6	606
2000-2100	64.5	77	1.7	7	960
2100-2200	58.2	66	1.8	5	321
Daily Average		29	0.5	6	734

NOx	CO	SO2
	."	
mg/m3	mg/m3	mg/m3
51.6	0.1	21.3
133.7	1 2	10.6
87.9	0.6	21.3
40.1	0.5	26.6
30.6	0.3	21.3
26.7	0.2	18.6
22.9	0.5	16
24.8	0.1	16
11.5	0	16
13.4	0	10.6
17.2	0.3	5.3
13.4	0.2	8
36.3	0.5	10.6
112.7	0.9	16
147.1	2	18.6
126.1	2.1	13.3
56	0.6	15.6
		<u> </u>

Table IV-7 Hourly average values of measured parameters

Hourly average values for chemical pollutants recalculated to mass concentrations

P/U 3 A'Tareef, (Sun) 26 May 1996

Time	Leq	NOx ppbV	CO ppmV	SO2 ppbV	SPM
0600-0700	68.2	59	0.3	4	238
0700-0800	66.1	33	0.5	6	471
0800-0900	66.3	11	0.5	4	424
0900-1000	66.5	12	1	3	427
1000-1100	66.3	12	0.5	. 3	479
1100-1200	65.9	12	0.5	3	582
1200-1300	66.2	9	0.3	3	617
1300-1400	66.3	3	0.3	3	961
1400-1500	67.5	3	0.8	3	221
1500-1600	66.4	6	0.1	6	234
1600-1700	65.8	17	0.1	7	1174
1700-1800	68.6	6	1.3	3	491
1800-1900	66.8	8	0.3	2	573
1900-2000	66.3	14	0.7	2	654
2000-2100	65.2	20	1.5	6	789
2100-2200	66.6	34	1	4	823
Daily Average		15	0.6	4	572

		4.25
NOx	CO	SO2
mg/m3	mg/m3	mg/m3
112.7	0.3	10.6
63	0.6	16
21	0.6	10.6
22.9	1.2	8
22.9	0.6	8
22.9	0.6	8
17.2	0.3	8
5.7	0.3	8
5.7	0.9	8
11.5	0.1	16
32.5	0.1	18.6
11.5	1.5	8
15.3	0.3	5.3
26.7	0.8	5.3
38.2	1.7	16
64.9	1.2	10.6
30.9	0.7	10.3

Table IV-8 Hourly average values of measured: parameters

Hourly average values for chemical pollutants recalculated to mass concentrations

R/A 8 Al Khaburah, (Mon) 27May 1996

Time	Leq	NOx ppbV	CO ppmV	SO2 ppbV	SPM
0600-0700	65.5	32	0,5	4	565
0700-0800	65.4	34	1.1	8	1137
0800-0900	65.3	7	0.6	8	1170
0900-1000	66.6	11	0.4	8	1208
1000-1100	65.6	13	0.9	8	1126
1100-1200	65.1	7	0.5	9	970
1200-1300	63.8	8	0.7	7	825
1300-1400	64.1	4	0.2	6	671
1400-1500	64.2	1	0.1	. 6	394
1500-1600	66.5	3	0.2	6	439
1600-1700	64.8	6	0.2	7	614
1700-1800	65.7	7	0.8	7	805
1800-1900	64.7	34	1.1	8	938
1900-2000	65.1	41	2	7	1341
2000-2100	64.4	14	1,3	4	1174
2100-2200	61.7	18	1.9	5	1145
Daily Average		15	0.8	7	907.6

1 to 1 to 1		
NOx	CO	SO2
mg/m3	mg/m3	mg/m3
61.1	0.6	10.6
64.9	1.3	21.3
13.4	0.7	21.3
21	0.5	21.3
24.8	1	21.3
13.4	0.6	23.9
15.3	0.8	18.6
7.6	0.2	16
1.9	0.1	16
5.7	0.2	16
11.5	0.2	18.6
13.4	0.9	18.6
64.9	1.3	21.3
78.3	2.3	18.6
26.7	1.5	10.6
34.4	2.2	13.3
28.7	0.9	18

Table IV-9 Hourly average values of measured parameters

Hourly average values for chemical pollutants recalculated to mass concentrations

P/U 9 A'Sughra, (Tue) 28May 1996

Time	Leq	NOx ppbV	CO ppmV	SO2 ppbV	SPM
0600-0700	75.1	55	0.5	4	1196
0700-0800	72.8	53	0.8	5	1126
0800-0900	71.3	90	0.7	6	898
0900-1000	70.4	63	0.7	6	664
1000-1100	69.7	6	0	2	1303
1100-1200	69.6	2	0.1	6	1313
1200-1300	69.5	0	0	3	1074
1300-1400	68.8	0	0	4	688
1400-1500	70.2	0	0.1	4	1167
1500-1600	70.4	0	0	3	921
1600-1700	70	1	0	3	1146
1700-1800	69.8	0	0	3	1106
1800-1900	68.7	4	0.6	9	932
1900-2000	69.4	25	0.5	20	714
2000-2100	68.4	40	0.6	11	741
2100-2200	67.8	47	1.2	8	728
Daily Average		24	0.4	6	982.3

NOx	CO	SO2
mg/m3	mg/m3	mg/m3
105.1	0,6	10.6
101.2	0.9	13.3
171.9	0.8	16
120.3	0.8	16
11.5	0	5.3
3.8	0.1	16
0	0	8
0	0	10.6
0	0.1	10.6
0	0	8
1.9	0	8
0	0	8
7.6	0.7	23.9
47.8	0.6	53.2
76.4	0.7	29.3
89.8	1.4	21.3
46.1	0.4	16.1
		3 1 1 1 th

Table IV-10 Hourly average values of measured parameters

Hourly average values for chemical pollutants recalculated to mass concentrations

R/A 12 Sohar, (Wed) 29 May 1996

Time	Leq	NOx ppbV	CO ppmV	SO2 ppbV	SPM
0600-0700	65.4	55	0.6	7	694
0700-0800	62.7	67	0.7	10	835
0800-0900	60.7	15	0	4	264
0900-1000	61.1	4	0	2	259
1000-1100	60.4	5	0	1	312
1100-1200	60	2	0]	29 4
1200-1300	59.4	. 1	0	0	284
1300-1400	59.9	2	0	0	264
1400-1500	60.6	3	0	0	229
1500-1600	60.3	2	. 441	0	179
1600-1700	61.1	4	0	0	222
1700-1800	61.3	8	1	0	280
1800-1900	60.3	16	1.6	1	816
1900-2000	59.7	118	2.4	6	648
2000-2100	59.5	7 3	1.1	3	485
2100-2200	66.7	50	0.7	2	394
Daily Average		27	0.5	2	403.7

e de la companya de	e"	
NOx	CO	802
mg/m3	mg/m3	mg/m3
105.1	0.7	18.6
128	0.8	26.6
28.7	0	10.6
7.6	0	5.3
9.6	0	2.7
3.8	0	2.7
1.9	0	0
3.8	0	0
5.7	0	0
3.8	1.2	0
7.6	0	0
15.3	1.2	0
30.6	1.9	2.7
225.4	2.8	16
139.4	1.3	8
95.5	0.8	5.3
50.7	0.7	6.2
		1

(2) Noise: Monitoring results

Noise measurements data are reported for the following parameters: time at end of monitoring interval (TIM); monitoring interval duration (ELT); Leq average sound pressure level during the monitoring interval; sound exposure level (SEL); minimum recorded level during interval (MINL); maximum recorded level (MAXL); maximum peak (MAXP); percentage overload (OVL); percentage overrange (OVL); percentage underrange (UNR);

Table IV-11 R/A 3 Barka, Noise monitoring result

Time	6.00	7.00	8.00	0.00	10.00	11.00				15:00				1,00	1000	
	0.00	7.00	0.00	7.00	110.00	111.00	12.0	13.0	14.0	15:00	10:00	117:0	18:0	19:0	20:0	21.0
	1				<u> </u>	Tari	0	0	0			0	0	0	0] 0
End	5:59	6:59	7:59	8:59	9.59	10:59	11:5	12:5	13:5	14:59	15:59	16:5	17:5	18:5	19:5	20:5
time						· .	9	9	9		100	9	9	9	9	9
Leq	67.8	66.8	66.4	66.8	67.4	67.3	67.6	67.2	66.9	67.1	67.2	67.1	66.2	65.8	64.5	58.2
SEL	103.	102.	101.	102.	102.3	102.7	103.	102.	101.	102.8	102.6	102.	101.	101.	100.	99.0
-	- 2	3	9	2			0	5	8			6	6	3	0	
UNR	0	0.35	7.95	10.5	9.48	4.87	6.51	5	3.82	6.9	0	0	0	0.	0	0
OVR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OVL	0	0	0	0	0	0	0	0	0	0	0	ō	0	0	0	0
MINL	61.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.0	57.4	56.1	55.2	52.7	52.2
MAX.	85.6	83.4	87.0	88.0	94.0	84.1	87.7	83.7	85.1	84.2	88.7	95.8	90.7	91.6	87.8	92.5
L				1.5				4.		100						
MAX	97.6	95.6	97.7	102.	102.1	99.3	101	99.5	100.	98.2	99.6	105.	99.8	101	98.2	115
P				1		1.	4		2			9		7		

Table IV- 12 P/U3 A' Tareef, Noise monitoring result

· · · · · ·								, .			6					
Time	6:00	7:00	8.00	9:00	10.00	11:00	12:0	13.0	14:0	15:00	16.00	17:0	18:0	19:0	20:0	21:0
1.0	\$. 3.	3.5					0	0	0	- 1 - 1 - 2 - 2		0	0	0	0	0
End :	5:59	6:59	7:59	8:59	9:59	10:59	11:5	12:5	13:5	14:59	15:59	16:5	17:5	18:5	19:5	20:5
time			,			. 4:	9	9	9			9	9	9	9	9
Leq	68.2	66.1	66.3	66.5	66.3	65.9	66.2	66.3	67.5	66.4	65.8	68.7	66.8	66.3	65.2	66.6
SEL	103.	101.	101.	101.	101.8	101.4	101.	101.	103.	101.8	101.3	104	102.	101.	100.	102.
	7	6	7	9		1.2	. 7	5	3	1.5		1	2	7	6	1
UNR	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	, 0
OVR	0	0	0	0	0	0	0	0	. 0	0	- 0	0	. 0	0	0	0
OVL	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	: 0	<u> </u>
MINL	58.3	55.7	55.5	55.8	54.1	55.8	55.0	56.0	56.8	56.5	57.1	57.9	57.0	57.0	56.2	0
MAX	88.1	82.6	85.9	91.5	87.9	87.5	86.0	85.0	86.7	84.3	85.2	90.7	85.7	88.1	85.7	95.7
L						23.5		. 11.			100		ja .			
MAX	100.	94.6	99.5	101.	101.2	99.1	99.5	99.0	100.	96.4	97.6	104	97.5	101.	98.6	123.
P	3	11.25		5		1, 1,			2			3		7		6

Table IV-13 R/A8 Al Khaburah, Noise monitoring result

Time	6:00	7 :00	8.00	9:00	10:00	11:00	12:0	13:0	14:0	15:00	16:00	17:0	18:0	19:0	20:0	21:0
							0	0	0			0	0	0	0	0
End	5:59	6:59	7:5 9	8:59	9:59	10:59	11:5	12:5	13:5	14:59	15:59	16:5	17:5	18:5	19:5	20:5
time				14			9	9	9		,	9	9	- 9	9	9
Leq	65.5	65.4	65.3	66.6	65.6	65.1	63.8	64.1	64.2	66.5	64.8	65.7	64.7	65.1	64.4	61.7
SEL	101.1	100.9	100.	102.	101.1	100.6	99.3	99.5	99.7	101.9	100.3	101.	100.	100.	99.8	97.1
			8	1	5							2]	: 5		
UNR	0	0	0	0	0	0	0	0	0	0	. 0	0	0	- 0	0	38.4
OVR	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
OVL	0	0	50.0	0	0	0	0	0	0	0	0	0	0	0	0	0.04
MINL	56.3	56.2	57.5	57.9	56.6	55.2	55.8	55	56.5	56.9	-58.1	56.9	57.3	56.8	55.9	0
MAX	92.4	87.5	90.4	87.7	87	90.3	83.6	85.4	83	97.3	83.8	81.7	81.1	85.6	85.1	93
L			1 4		1.4	4						1.1				
MAX	99.5	109	103	98.6	100.1	100.7	95.1	96.6	95	107.9	95.5	101	96.3	96.8	98.8	112
P																

 Fable IV-14
 P/U 9 A' Sughra, Noise monitoring result

2.5	9.11		1410			10 7 E	<u> </u>	, .	10131	1110111		1 () (11			*.	
Time	6:00	7:00	8:00	9:00	10:00	11:00	12:0	13:0	14:0	15:00	16:00	17:0	18:0	19:0	20;0	21:0
							0	0	0	1		0	.0	0	0	0
End	5:59	6:59	7:59	8:59	9:59	10:59	11;5	12:5	13:5	14:59	15:59	16:5	17:5	18:5	19:5	20:5
time	1.		144	4.			9	9	9			9	9	. 9	9	9
Leq	75.1	72.8	71.3	70.4	69.7	69.6	69.5	68.8	70.2	70.4	70.3	69.8	68.7	69.4	68.4	67.8
SEL	111	108	107	106	105.2	105	105	104	106	105.9	105.5	105	104	105	104	103
UNR	. 0	0	0	0	0	0	0	0	0	0	0	. 0	0	. 0	0	0
OVR	0	0	0	0	0	0	0	0	0	0	0	. 0	- 0	0	0	0
OVL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
MINL	69.4	65.4	63.5	60.7	60.8	60,7	62.6	61.2	61.1	601	61.1	57.2	52	52.4	51.2	0
MAX	94.7	88.0	97.4	90,0	90.0	90.4	87.4	89,6	90.5	89.7	88.3	91.7	91.7	97.3	88.9	93.0
L	100		1. 92.5		- 77				:						11.7 11.1	
MAX	102.8	98.9	99.4	99.1	101.1	103.3	99.8	101.	101.	101.5	101.1	116.	121.	109.	100.	113.
P			1171 12 14 14		1	1		5	1		1 E	8	3	0	9	1

Table IV-15 R/A 12 Sohar, Noise monitoring result

Time	6:00	7:00	8:00	9:00	10:00	11:00	12:0	13:0	14:0	15:00	16:00	17:0	18.0	19:0	20:0	21:0
tiet wie tiese	7 4			1 1/4			0	0	0			0	0	C	0	0
End	5:59	6:59	7:59	8:59	9:59	10:59	11:5	12:5	13:5	14:59	15:59	16:5	17:5	18:5	19:5	20:5
time		1 1 1	1.5				9	9	9			9	9	9	9	. 9
Leq	65.4	62.7	60.7	61.1	60.4	60	59.4	59.9	60.6	60.3	61.1	61.3	60.3	59.7	59.5	66.7
SEL	100.9	98.2	96.2	96.5	95.8	95.5	94.9	95.3	96.0	95.7	96.5	96.3	95.7	95.2	94.9	102.
						3	1.1.1	\		A STATE OF THE STA				2 + 1	, i	1
UNR	0	0	0	0	0	0	0	- 0	0	0	0	0	0	C	0	0
OVR	0	: O	0	0	0	0	0	0	0	0	0	0	0	C	0	0
OVL	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0
MINL	60,8	56.3	55.1	55.6	53.5	52.6	53.5	53.8	53.6	54.5	54.1	54.3	51.5	51.3	51.2	51.8
MAX	80,0	77.1	75.9	77.8	76.9	80.2	78.8	74.2	88.9	74.9	84.7	79.8	79.8	77.1	80.2	96.2
L	4 F		4. 4	•	\$ 1	3 s 1			- 14		3. 3.	10.00		. (/ :!	14.1
MAX	89.1	88.3	89.7	89.3	90.0	92.9	90.5	88.8	98.7	89.4	106.1	98.0	98.0	91.4	96,1	114.
$\mathbf{p} \sim \mathbb{R}$		4	1 2 2 2	7. 44	K.			5.34	- 1					1.		8

(3) Noise level of construction machines

Table IV-16 Noise level of construction machine

	Table IV-16	Noise level of constru	ction machine
Type of machine	Capacity	Noise power level	(with noise controled)
		dB(A)	dB(A)
Buldozer	3 ton	104 - 108	
	15 ton	11 - 115	98 - 103
	21 ton	112 - 116	
Tractor shovel	0.8 m3	105 - 109	
	1.2 m3	106 - 110	100 104
	1.5 m3	108 - 112	
Back hoe	0.35 m3	105 - 109	99 - 103
	0.6 m3	107 - 111	101 - 105
Track	10-11 ton	107 - 113	
Tipper track	10 ton	107 - 113	
Craweler crane	80 - 100 ton	99 - 103	
Track crane	40 - 50 ton	102 - 104	
Concrete Breaker	20 kg	114 - 118	108 - 112
	30 kg	120 - 124	111 - 115
Tire roller	8 -20 ton	102 - 106	
Macadam roller	10 - 12 ton	102 - 106	
Vibrator roller	1 ton	101 - 106	
	2.5 ton	106 - 111	
	3 - 4 ton	107 - 112	
Tamer	100 kg	103 - 108	
Transit mixer	4.4 m3	109 - 113	
Asphalt finisher	2.4 - 4 m	105 - 109	
Air compressor	10.5 m3/min	108 - 112	99 - 103
	17m3/min	109 - 113	100 - 106
Generator	75 k VA	102 - 106	90 - 94
	175kVA	109 - 113 mail	93 - 97
	300 - 400kVA		94 - 98

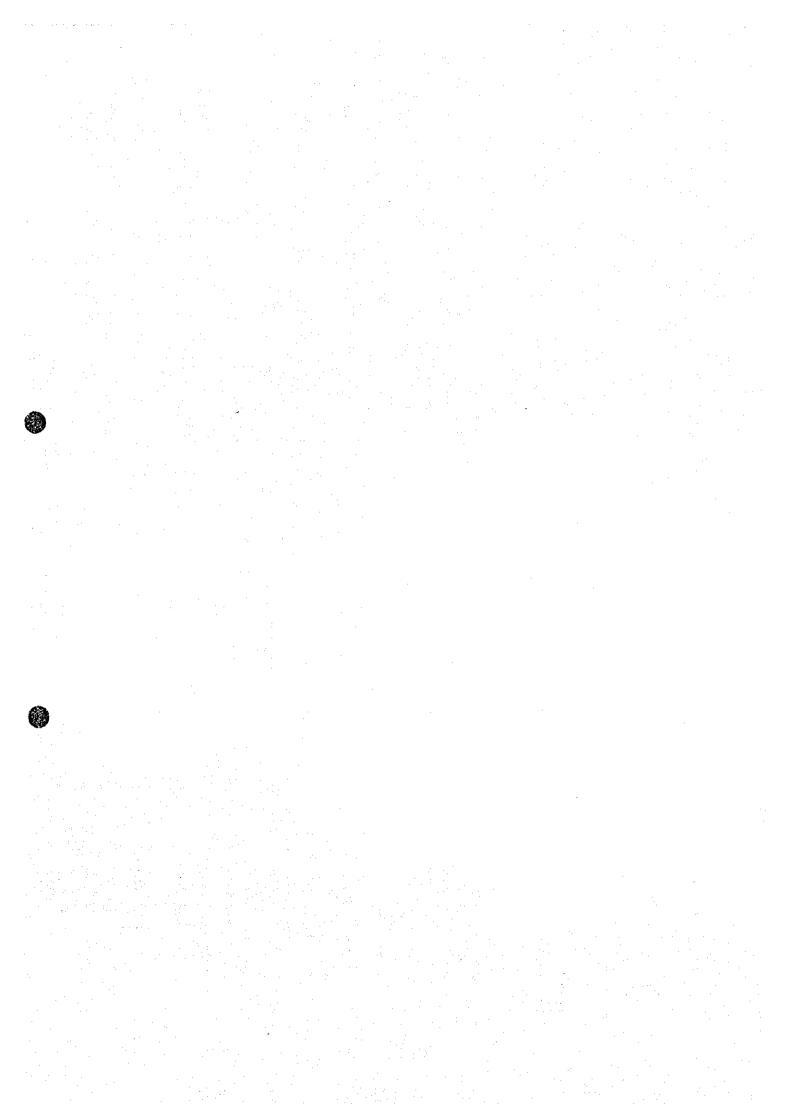
(4) Water and soil

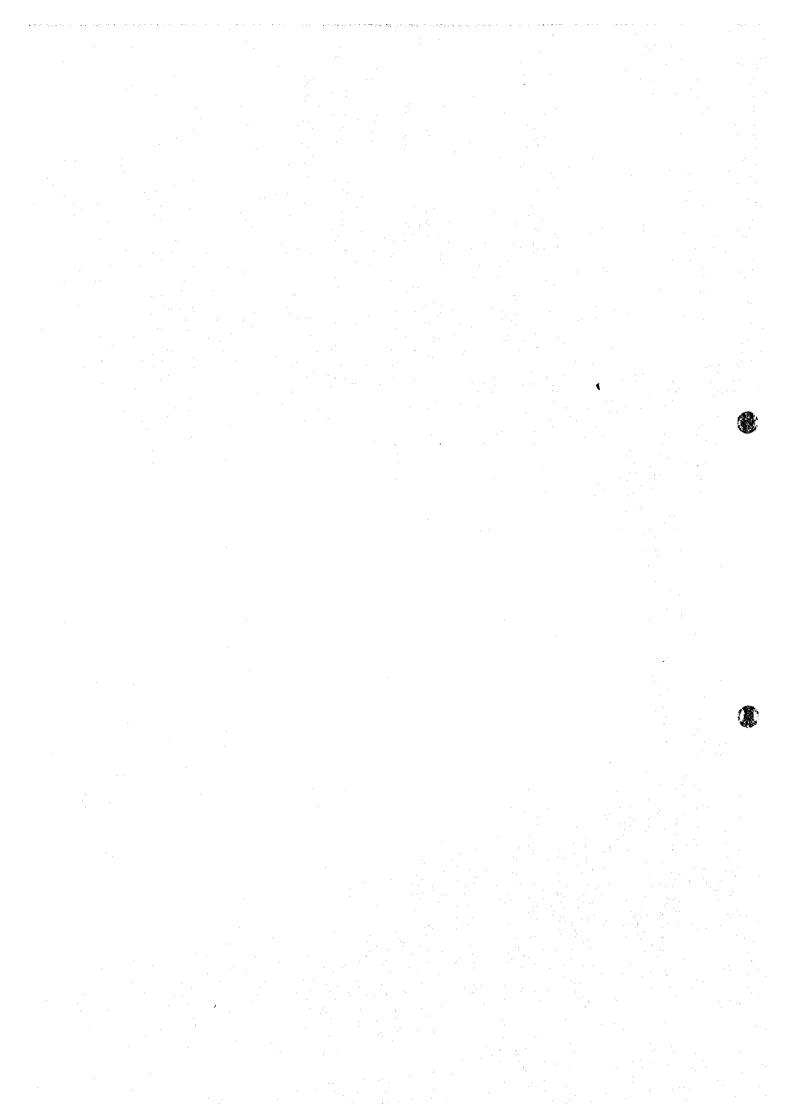
Table IV-17 Ground water and soil condition

Location of t	he	Wat	Soil	
Project		Water obtaining resource	Ground water	Soil Type
A' Nascem Garden	R/A-2	Open well and Tanker	Brackish water at 20 m	Silty sand
		delivered	depth	
Barka	P/U-I	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
	R/A-3	Open well and Tanker	Fresh water at 25 m	Sandy
4		delivered	depth	gravel
Al Billah	P/U-2	Open well and Tanker	Brackish water at 25 m	Silty sand
		delivered	depth	
A' Tareef	P/U-3	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
Al Muladdah	R/A-5	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	* 1
Al Qarat	P/U-4	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	
A' Tharmad	P/U-5	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
A' Suweig	P/U-6	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	
Al Khaddra	P/U-7	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	
Qarih	P/U-8	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	i stakey
Al Khaburah	R/A-8	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
Saham	R/A-10	Open well and Tanker	Fresh water at 25 m	Sandy
;		delivered	depth	gravel
Khar A' Siyabi	P/U-10	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
Sohar	R/A-12	Open well and Tanker	Fresh water at 15 m	Sandy silt
		delivered	depth	
Falaj Al Qabail	R/A-14	Open well and Tanker	Fresh water at 15 m	Sandy
	1.	delivered	depth	gravel
Liwa	P/U-11	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel
Asrar Bani Sa'd	P/U-12	Open well and Tanker	Fresh water at 25 m	Silty sand
		delivered	depth	
Agr	R/A-18	Open well and Tanker	Fresh water at 25 m	Sandy
		delivered	depth	gravel

Table IV-18 Chemical character of soil

Location	Soil type	Avera	age value o	f chemical ana	lysis
		Moisture content	pН	SO3 (mg/l)	Cl (%)
R/A2 Nascem	Gravelly soil	11.9	8.09	152	0.04
	Sandy soil	-	8.12	168	0.04
R/A3 Barka	Cohesive soil	27.2 (Individual)	•	_	-
	Gravelly soil	_	8.18	55	0.03
	Sandy soil	10.2	8.21	137	0
R/A5 Muladdah	Cohesive soil	21.4	8.38	135	0.16
R/A8 Al Khadra	Cohesive soil	20	8.58	130	0.02
	Sandy soil	-	7.81	198	0.25
R/A10 Saham	Cohesive soil	18.8	8.82	276	0.13
egyt a selet e	Sandy soil	<u>-</u>	•	-	
R/A12 Sohar	Cohesive soil	19.9	8.5	55	0.02
R/A14 Falaj Al Qabail	Gravelly soil	22.8	9.07	106	0.01
R/A18 Aqr	Gravelly soil	_	9.11	118	0


Table IV-19 Chemical character of water at near project areas


Location	Value of chemical analysis					
	рН	SO3 (g/l)	Cl (mg/l)			
A'Tareef-1	7.14	_	238.6			
Wusdam As Sahil	7.78	0.05	65.2			
Al Hijari	8.25	0.151	53.9			
Ohi	8.22	0.096	70.5			
Al Agr	8.09	0.109	119.1			

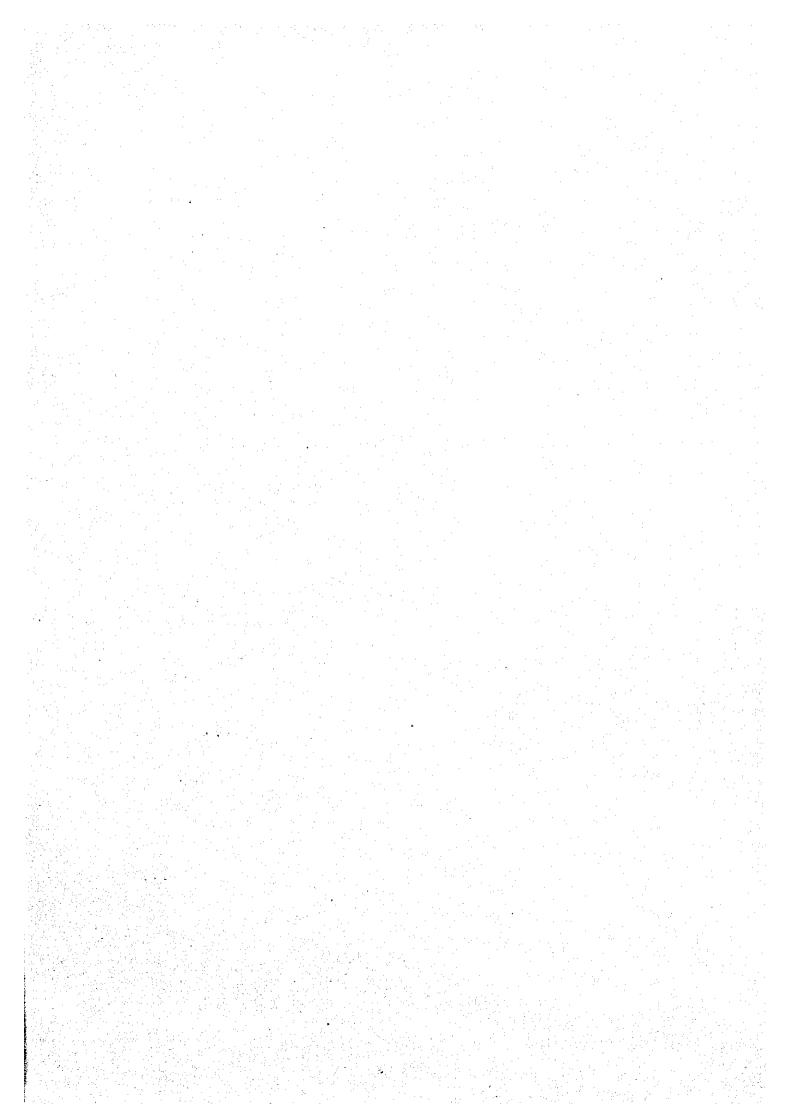

(5) Specialists participated the study work for Environmental survey and the Environmental Impact Assessment

Table IV-20, Major specialists participated the ElA study

Consultant firm: Swissboring of Oman	Corp., P.O.Box 2694 Ruwi, Postal code 112 Muscat, Sultanate
Personnel	Fields of Specialty
Mr. Guy. Salerno	Geotechnical and Soil mechanics engineer, Project manager
Mr. T.Sivalumaran	Public relation, Supervisor
Mr. Omer Hamood Ali Al Hasni	Public relation
Mr. Charels Outschorn	Foreman for Ambient air and noise monitoring
Dr. Ian Evans	EIA specialist, Persons Engineering Science, Lincoln, UK
Mr. Richard Russel	EIA assistant, Persons Engineering Science, Oman

