# 4.3 Highway

### 4.3.1 General Description

The geometric design criteria basically follow the "Highway Design Manual" (Volume 1,1994) and the "Highway Design Standards" (Volume 1,1986) in Oman. These Government standards are used to the maximum extent when applicable. Otherwise, American, British and Japanese standards are referred to for items not covered in the above mentioned manual or standards.

### 4.3.2 Road Classification and Design Speed

The design speeds are based on road classification as shown in Table 4.31.

Table 4.31: Road Classification and Design Speed

| Route No.1 and No.5 Route No.7 and No.9 (sections near R/As)                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route No.7 and No.9 (sections near R/As)                                                                                                                                                                                        |
| (sections near R/As)                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                 |
| n de la companya de<br>La companya de la co |
|                                                                                                                                                                                                                                 |
| 40 kph for curved sections                                                                                                                                                                                                      |
| with small radii                                                                                                                                                                                                                |
| at Agr R/A                                                                                                                                                                                                                      |
| Diamond interchange                                                                                                                                                                                                             |
| 40 kph for curved sections                                                                                                                                                                                                      |
| with small radii                                                                                                                                                                                                                |
| Minimum 25 kph                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                 |

### 4.3.3 Composition of Cross-section

### (1) Highway

The existing cross section is shown in Figure 4.4.

The proposed highway cross section consists of two carriageways each with two 3.75m wide lanes, a 2.0m wide outer shoulder and a 1.2m inner shoulder, and with a 10.0 m wide median in between as shown in Figure 4.5. In the case of the bridge section, additional 0.75 m wide inspection ways are provided on both shoulders.

As the existing old carriageway on Batinah Highway is 7.0 m wide, a transition stretch for width adjustment will be provided joining the existing old carriageway with the

proposed one.

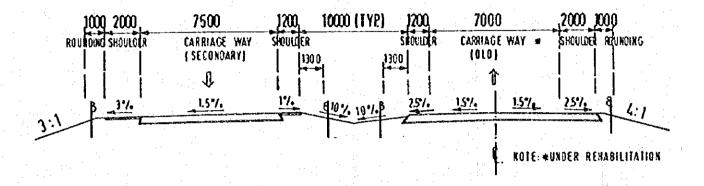



Figure 4.4: Typical Cross-section of Existing Batinah Highway

# (2) Crossroads

Crossroads on Batinah Highway can be divided into four types, i.e. urban or rural roads with single carriageways, urban or rural roads with dual carriageways, according to their locations and traffic volumes. The proposed cross-sections for these road types are shown in Figures 4.6 and 4.7. The proposed widths of main cross-sectional items are summarized in Table 4.32.

Table 4.32: Proposed Widths of Main Cross-sectional Items of Crossroads

| Road Class | ification           | Carriage-way<br>Width                     | Shoulder               | Sidewalk<br>/Verge | Median |
|------------|---------------------|-------------------------------------------|------------------------|--------------------|--------|
| Urban      | Single Carriage-way | $2 \times 3.65 \text{ m} = 7.3 \text{ m}$ | 1.0 m                  | 2.0 m              | •      |
|            | Dual Carriage-way   |                                           | 1.0 m (O)<br>0.6 m (l) | 2.0 m              | 2.0 m  |
| Rural      | Single Carriage-way | $2 \times 3.65 \text{ m} = 7.3 \text{ m}$ | 1.0 m                  | 1.5 m              | -      |
|            | Dual Carriage-way   | $2 \times 3.50 \text{ m} = 7.0 \text{ m}$ | 1.0 m (O)<br>0.6 m (I) | 1.5 m or<br>2.0 m  | Vary   |

Notes: 1. Sidewalk is provided in urban area.

2. (O)= outer, (I) = inner

### (3) Service Road

The proposed service road consists of a single carriageway with 3.50m wide lane of each direction and two 1.5m wide paved shoulders as shown in Figure 4.7.

# (4) Rampway

The rampways are divided into four types according to number of lanes and type of grade separation. The proposed cross sections for these rampways are shown in Figure 4.8, and widths of main cross-sectional items are shown in Table 4.33.

Table 4.33: Widths of Main Cross-sectional Items for Rampway

| Type of<br>GradeSeparation   | Number of Lanes | Carriageway            | Shoulder               | Sidewalk        |
|------------------------------|-----------------|------------------------|------------------------|-----------------|
| Rampway at<br>Grade          | One             | 5.0 m                  | 2.0 m (O)<br>1.0 m (I) | 1.5 m or 2.0 m. |
|                              | Two             | 2 x 3.65 m<br>= 7.3 m. | 1.0 m.(O)<br>1.0 m (I) | 1.5 m or 2.0 m  |
| Highway at<br>Grade : Bridge | One             | 5.0 m                  | 2.0 m (O)<br>1.0 m (I) | <u>-</u>        |
| Highway at<br>Grade : Road   | One             | 5.0 m                  | 2.0 m (O)<br>1.0 m (I) | -<br>-          |

Notes: 1. The carriageway width is planned considering lane widening on assumed curves.

- 2. The highway at grade is applied at Aqr R/A
- 3. A 2.0 m wide sidewalk is provided along the outer shoulder in urban areas.
- 4. (O)= outer, (1) = inner

### (5) Roundabout

The proposed cross-section consists of a single carriageway with two 4.5m-wide lanes, two 1.0m-wide shoulders and a 1.5m or 2.0m-wide sidewalk along both shoulders as shown in Figure 4.6. The carriageway width was planned considering lane widening on assumed curves.

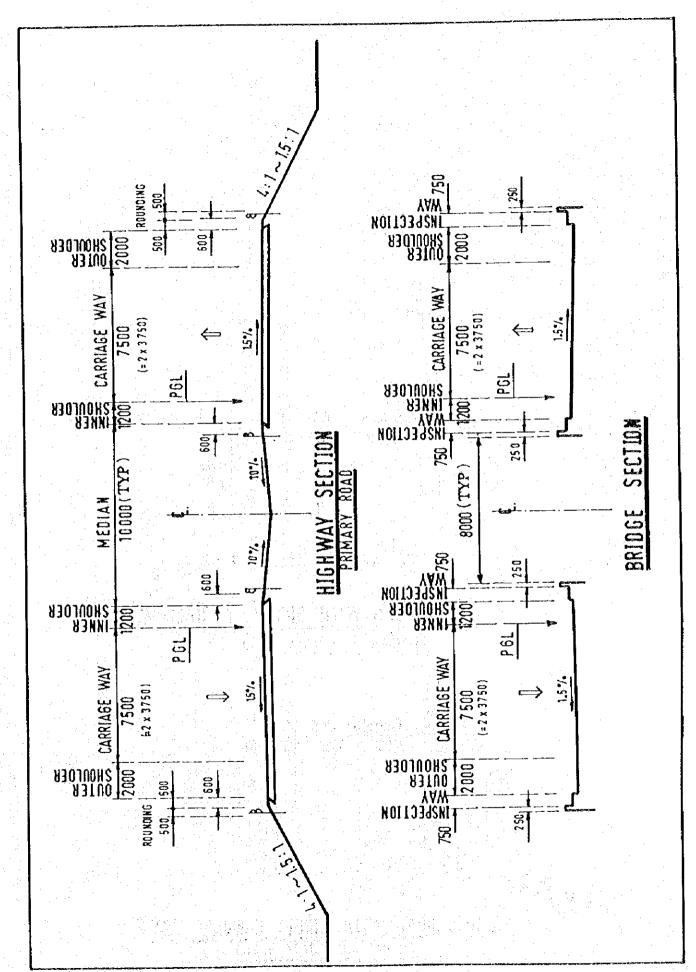



Figure 4.5: Typical Cross-Sectional Details of Proposed Highway and Bridge

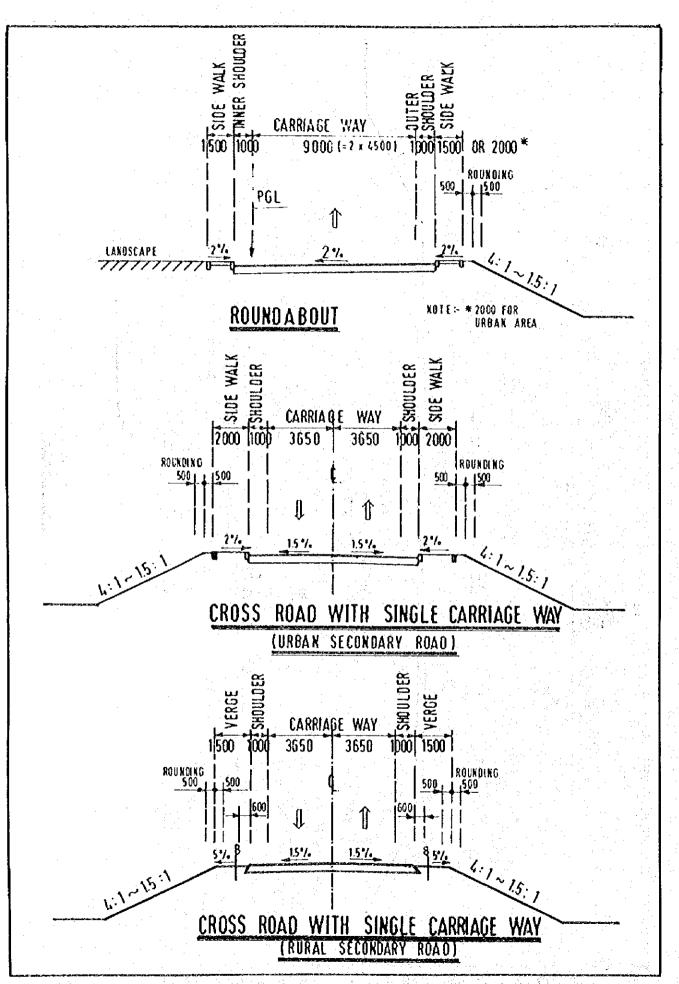



Figure 4.6: Typical Cross-Sectional Details of Proposed Cross Roads and Roundabout

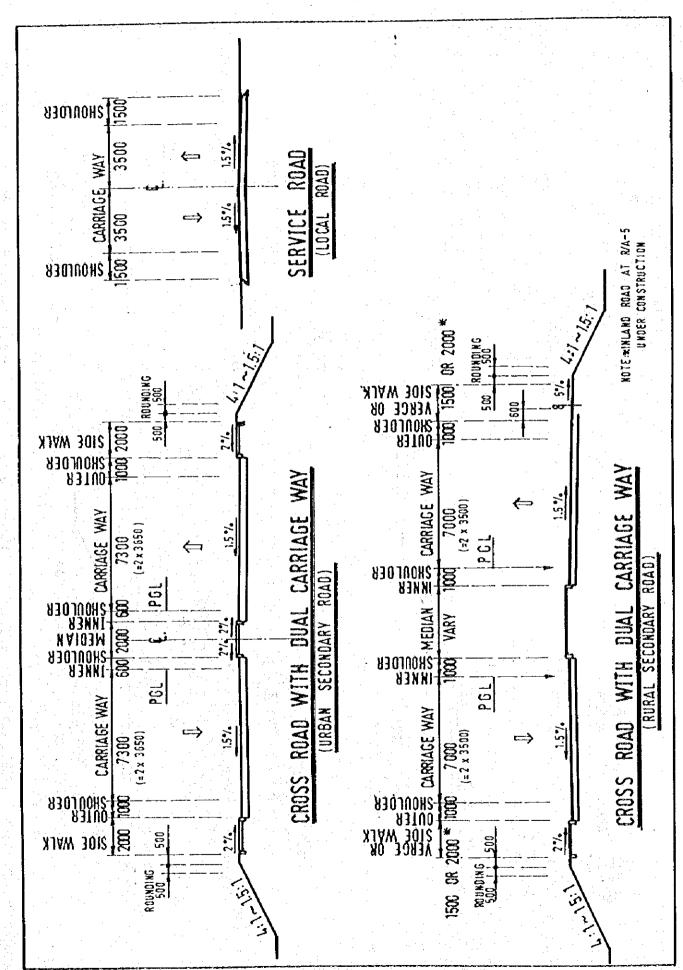



Figure 4.7: Typical Cross-Sectional Details of Proposed Dual Carriageway Cross-Road

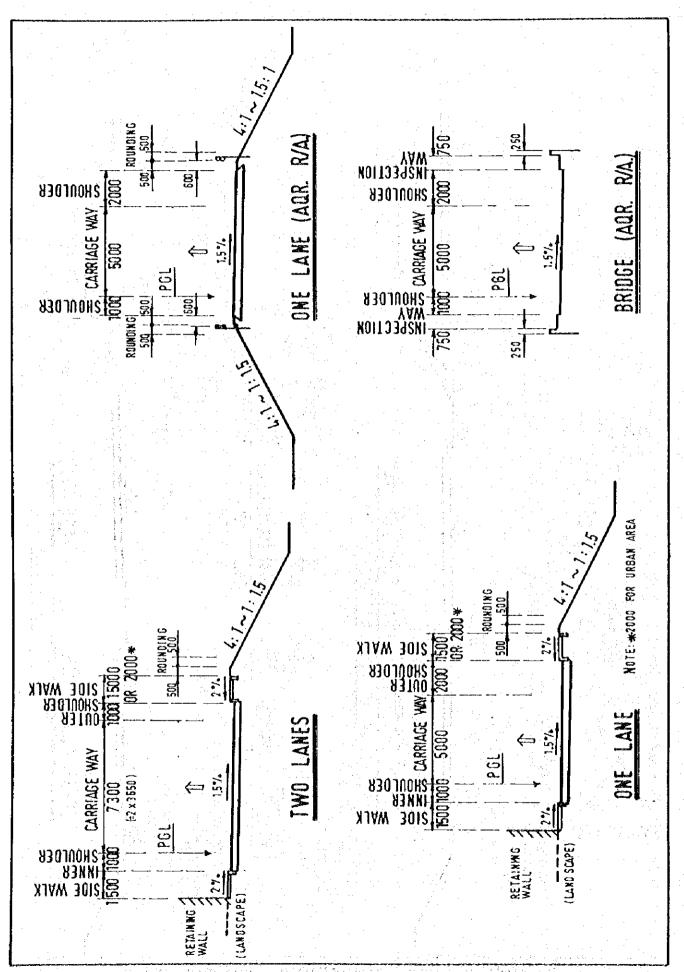



Figure 4.8: Cross-Sectional Details of Proposed Rampways

# 4.3.4 Elements of Design

# (1) Sight Distance

The minimum stopping sight distance of each design speed is shown in the following table. The minimum passing sight distances are also given in the table. These distances are applied to the design of 2-lane roads.

|                                 | Design Speed |        |        |        |
|---------------------------------|--------------|--------|--------|--------|
| Items                           | 120 kph      | 80 kph | 60 kph | 40 kph |
| Min Stopping Sight Distance (m) | 285          | 140    | 85     | 45     |
| Min.Passing Sight Distance (m)  | 790          | 510    | 380    | 240    |

# (2) Horizontal Alignment

### a) Minimum Radius of Curve

The minimum radius of curve is given by the following formula;  $R=V^2/(1.266*(S+100f))$ 

Where,

R = Radius of curve(m)

V = Design speed(km/h)

S = Percentage superelevation(%)
Desirable max.S=8.0% and proposed max.S=6.0%

f = Side friction factor as shown in the following table.

|                      | Design Speed                       |      |      |      |  |
|----------------------|------------------------------------|------|------|------|--|
| ltem                 | 120 kph   80 kph   60 kph   40 kph |      |      |      |  |
| Max. Friction Factor | 0.10                               | 0.14 | 0.15 | 0.17 |  |

Therefore, the minimum radius of curves for each speed are shown as bellow;

| Ite           | ms     | 120 kph | 80 kph | 60 kph | 40 kph |
|---------------|--------|---------|--------|--------|--------|
| Min.Radius of | S = 8% | 630     | 230    | 120    | 50     |
| Curve (m)     | S = 6% | 710     | 250    | 135    | 55     |

### b) Minimum Length of Curves

The minimum length of curve is twice the length of transition curve obtained from the paragraph (Minimum Length of Transition Curve) in the Highway Design Manual. Therefore, the values for each speed are shown in the following table.

|                | Design Speed |        |        |        |
|----------------|--------------|--------|--------|--------|
| Item           | 120 kph      | 80 kph | 60 kph | 40 kph |
| Min. Length of | 200          | 160    | 130    | 90     |
| Curve(m)       |              |        |        |        |

# c) Widening on Curves

It is not necessary to widen the lane width on curves on highways, rampways and roundabouts because the lane widths of these road types have already considered such widening. However, on the crossroads and service roads, such widening are required according to the following:

|            | Radius of Curve |              |              |  |  |
|------------|-----------------|--------------|--------------|--|--|
| Lane Width | 50 to 150 m     | 150 to 300 m | 300 to 400 m |  |  |
| 3.65 m     | 0.3 m/lane      | <u> </u>     |              |  |  |
| < 3.65 m   | 0.6 m/lane      | 0.5 m/lane   | 0.3 m/lane   |  |  |

# d) Minimum Length of Transition Curve

The length of transition curve is given by the following formula;

$$L = V^3/(46.7*q*R)$$

Where,

L = Length of transition curve(m)

V = Design speed(km/h)

 $q = Rate of increase of radical acceleration (m/s <math>^3$ )

This value varies between 0.3 and 0.6m/s<sup>3</sup>, and the higher values are utilized for shorter transition lengths.

R=Radius of curve (m)

The minimum lengths of transition curves for each speed are shown in the following table, when q = 0.6 and the minimum radius R(8%) are applied.

|                     | Design Speed |        |        |        |  |
|---------------------|--------------|--------|--------|--------|--|
| Item                | 120 kph      | 80 kph | 60 kph | 40 kph |  |
| Min. Length of      | 100          | 80     | 65     | 45     |  |
| Transition Curve(m) |              |        |        |        |  |

### e) Minimum Radius without Transition Curve

It is not significant to provide a transition curve when the shift reaches approximately 0.3m as practiced in Britain. (0.2m in Japan). In such cases, the minimum radius is calculated using the following formula:

$$S=1/24*L^2/R$$

Thus, 
$$R=1/7.2*L^2$$

Where,

S = Length of shift (0.3m)

L = Length of transition curve (m)

 $\dot{R} = Radius of curve (m)$ 

The minimum radii without transition curves for each speed are derived and shown in the following table where L is the minimum value.

|                     | Design Speed |        |        |        |
|---------------------|--------------|--------|--------|--------|
| Item                | 120 kph      | 80 kph | 60 kph | 40 kph |
| Min. Radius without | 1400         | 900    | 600    | 300    |
| transition curve(m) |              |        |        |        |

# (3) Vertical Alignment

### a) Maximum Gradient

The maximum gradients for each speed in level terrain are shown in the following table.

|                  | Design Speed |        |        |        |
|------------------|--------------|--------|--------|--------|
| Item             | 120 kph      | 80 kph | 60 kph | 40 kph |
| Max. Gradient(%) | 3            | 5      | 6      | 6      |

When gradient exceeds 2% and the length more than 500m, an additional lane must be provided.

### b) Minimum Vertical Curve Length

The minimum vertical curve length is determined from the following formula;

Where,

L = Curve length(m)

K = Design speed related coefficient

# (chosen from the following table) A = Algebraic difference in grades(%)

|                   | Design Speed                       |      |      |     |  |
|-------------------|------------------------------------|------|------|-----|--|
| Item              | 120 kph   80 kph   60 kph   40 kpl |      |      |     |  |
| Min.Crest K Value | 100*                               | 33** | 11.5 | 4   |  |
| Min. Sag K Value  | 47                                 | 24   | 13   | 5.5 |  |

Notes: \* The min.Crest K value of 100 for 120 kph is adopted in this study for the following reasons.

- The value is 94 in the former 1984 design standards.
- K = 200 mentioned in the Standards is the up limit judging from AASHTO where K is 88 to 164 for 112 kph.
- -K = 100 and K=110 are commonly applied in Britain and Japan respectively.
- It is economical to apply the lower value because of shorten bridge and retaining wall length.
- \*\*The min. Crest K of 33 for 80 kph is adopted in this study for the following reasons.
- The value is 31 in the former 1984 design standards.
- K=49 mentioned in the Standards is the up limit judging from AASHTO where is 33 to 48 for 88 kph.
- K=30 is commonly applied in Britain (85 kph) and Japan (80 kph)
- It is economical to apply the lower value.
- The lower value is applied at R/A-18 to obtain smaller land acquisition.

### (4) Crossfall

### a) Normal Crossfall

The normal crossfall of 1.5% is applied on a straight road section from the crown on a single carriageway, and from the edge of the inner shoulder of a dual carriageway towards the edge of the outer shoulder due to the following reasons:

- The old carriageway of the existing highway has a 1.5% crossfall from the center towards the edge of the carriageway.
- The new carriageway of the existing highway has a 1.5% crossfall from the inner edge of carriageway towards the outer edge of the carriageway.
- A 1.5% crossfall follows the former 1984's design standards, although the new design standards has a 2.0% crossfall.
- When a crossfall of a carriageway and a shoulder is the same, it is easy to construct.

- A smaller crossfall is more desirable for vehicle travel, as long as there are no problems in drainage.

A crossfall of 2.0% is applied to the sidewalk towards the carriageway.

# b) Superelevation

The percentage of superelevation required is derived from;

$$S=V^2/(2.828*R)$$

Where,

S = Percentage superelevation (%)

V = Design speed (km/h)

R= Radius of curve(m)

The proposed maximum superelevations are 6% for roads and 2% for roundabouts due to the following facts:

- 8% is the maximum value in the 1984 design standards.
- It is common practice to utilize a lower rate of superelevation, usually 4% to 6%.
- A lower maximum rate of superelevation or no superelevation is employed within an intersection area or where there is a tendency to drive slowly because of turning and crossing movements.

### c) Minimum Radius for Normal Crown Section

The minimum radius of normal crown section (1.5%) is given by the following formula;

$$R=V^2/(1.266*(S+100f))$$

Where,

S = -1.5%

f = 0.030 (Reference to AASHTO)

The values applicable for each speed are shown in the following table.

|                   |         | Speed  | peed   |        |  |
|-------------------|---------|--------|--------|--------|--|
| Item              | 120 kph | 80 kph | 60 kph | 40 kph |  |
| Minimum radius of | 7600    | 3400   | 1900   | 850    |  |
| curve (m)         |         |        |        | 15,50  |  |
| S = 1.5%          |         | *.     |        |        |  |

# d) Superelevation Run-off

The rates of a superelevation run-off vary by the location of a profile grade line (PGL). The PGL for each type of road is shown in the following table.

| Type of Road                                 | Location of PGL           |  |  |  |
|----------------------------------------------|---------------------------|--|--|--|
|                                              |                           |  |  |  |
| Divided Highway and Crossroads               |                           |  |  |  |
| with Dual Carriageway                        | Inner Edge of Carriageway |  |  |  |
| Undivided Crossroads with Single carriageway | Center of Carriageway     |  |  |  |
| Rampway with 2-lanes and 1-way               | Right Edge of Carriageway |  |  |  |
| Rampway with 1-lane and 1-way                | Right Edge of Carriageway |  |  |  |

The rates of a superelevation run-off for each type of road and for each speed are given in the former 1984 design standards, AASHTO and Japanese standards as shown in the following table.

|                                |         | Design | Speed  |        |
|--------------------------------|---------|--------|--------|--------|
| Type of Road                   | 120 kph | 80 kph | 60 kph | 40 kph |
| Divided Highway and crossroads | 1/200   | 1/150  | 1/125  | •      |
| Undivided crossroads           | -       | 1/200  | 1/175  | 1/150  |
| Rampway with 2 lanes           |         | 1/150  | 1/125  | 1/100  |
| Rampway with 1 lane            |         | 1/200  | 1/150  | 1/100  |

The length of a superelevation run-off is given by the following formula;

Where,

Ls = Length of Run-off(m)

(i.e. Required Length of Transition Curve)

B = Width between Rotation Axis (i.e. PGL) and Edge of Carriageway(m)

I = Absolute Value of Algebraic Difference in Superelevation(m/m)

q = Rate of Superelevation Run-off(m/m)

### e) Maximum Combined Gradient

The combined gradient is derived from the following formula;

$$S = (12 + j2)0.5$$

Where,

S = Combined gradient(%)

I = Crossfall or superelevation(%)

j = Longitudinal gradient(%)

The maximum combined gradient for all speeds is 10% in compliance with the new Highway Design Manual standards.

# (5) Clearances

The limits of horizontal and vertical clearances of the proposed flyovers are illustrated in Figure 4.9. The vertical clearance height is taken as 5.7m considering the minimum clearance height and an overlay of zoom in the future.

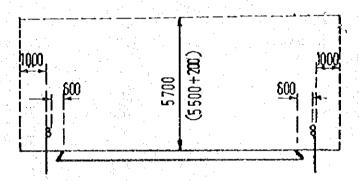



Figure 4.9: Vertical and Horizontal Clearances of Proposed Flyovers

# (6) Summary of Road Geometric Design Criteria

The summary of road geometric design criteria is shown in Table 4.34.

Table 4.34: Summary of Road Geometric Design Criteria

| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>Level<br>45<br>240<br>50<br>90 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| SIGHT DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45<br>240<br>50                      |
| Min.Stopping Sight Distance         m         285         140         85           Min.Passing Sight Distance         m         790         510         380           HORIZONTAL ALIGNMENT         m         630         230         120           Min. Radius of Curve         m         200         160         130           Min. Length of Curve         m         100         80         65           Min. Radius without Transition Curve         m         1,400         900         600           VERTICAL ALIGNMENT         m         3         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240<br>50                            |
| Min.Passing Sight Distance         m         790         510         380           HORIZONTAL ALIGNMENT         m         630         230         120           Min. Radius of Curve         m         200         160         130           Min. Length of Curve         m         100         80         65           Min. Radius without Transition Curve         m         1,400         900         600           VERTICAL ALIGNMENT         %         3         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240<br>50                            |
| HORIZONTAL ALIGNMENT         m         630         230         120           Min. Radius of Curve         m         630         230         120           Min. Length of Curve         m         200         160         130           Min. Length of Transition Curve         m         100         80         65           Min. Radius without Transition Curve         m         1,400         900         600           VERTICAL ALIGNMENT         m         3         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                   |
| Min. Radius of Curve         m         630         230         120           Min. Length of Curve         m         200         160         130           Min. Length of Transition Curve         m         100         80         65           Min. Radius without Transition Curve         m         1,400         900         600           VERTICAL ALIGNMENT         m         3         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Min. Length of Curve         m         200         160         130           Min. Length of Transition Curve         m         100         80         65           Min. Radius without Transition Curve         m         1,400         900         600           VERTICAL ALIGNMENT         %         3         5         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
| Min. Length of Transition Curvem1008065Min. Radius without Transition Curvem1,400900600VERTICAL ALIGNMENTMax. Gradient%356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90                                   |
| Min. Radius without Transition Curve m 1,400 900 600 VERTICAL ALIGNMENT Max. Gradient % 3 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| VERTICAL ALIGNMENT Max. Gradient % 3 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45                                   |
| Max. Gradient % 3 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                  |
| I topic to traditional and the contraction of the |                                      |
| Critical Length of Gradient py 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                    |
| Circum Bengin of Gradient III 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500                                  |
| Min. K on Crest (VCL=KA) m 100 49 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                    |
| Min. K on Sag (VCL=KA) m 47 24 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                  |
| CROSSFALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| Normal Crossfall % 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                                  |
| Max. Superelevation % 8(6) 8(6) 8(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8(6)                                 |
| Min. Radius for Normal Crown Section m 7,600 3,400 1,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 850                                  |
| Max. Rate of Superclevation Run-off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| Divided Road with Dual Carriageway m/m 1/200 1/150 1/125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Undivided Road with Single Carriageway m/m 1/200 1/175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/150                                |
| Rampway with 2-Lanes m/m 1/150 1/125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/100                                |
| Rampway with 1-Lane m/m 1/200 1/150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/100                                |
| Max.Combined Gradient % 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                   |

Note: The value in () indicates the proposed ones.

### (7) Circular Roundabout

The circular roundabout geometric design criteria is summarized as shown below, and the geometric parameters are illustrated in Figure 4.10.

### a) Entry width (e)

Add at least one but not more than two extra lane widths at entry. Maximum 10.5m for single carriageway approach roads. Maximum 15.0m for dual carriageway approach roads.

# b) Approach half width (v)

Between 2.0m and 7.3m.

### c) Average effective flare length (I')

Maximum 100 m.

Minimum 5m (urban).

25m gives good design for rural situations.

Total length of entry widening is approximately 21'.

# d) Sharpness of flare (S)

S = 1.6\*(e-v)/I'Between 0 and 2.9.

### e) Entry angle ( $\phi$ )

Between 20 and 60, but 30 is best.

# f) Entry radius (r)

Between 6m and 100m.

20m provides good practical design.

If a lot of heavy vehicles, (r) not less than 10m.

### g) Inscribed circle diameter (D)

Not less than 28m (not less than 40m for heavy goods vehicle).

### h) Circulatory carriageway around roundabout

Width constant. Width 1.0-1.2 times greatest entry width. Maximum 15m.



Figure 4.10: Geometric parameters and Visibility of Roundabout

### i) Exit

Exit near side curb radius about 40m at mouth, but not less than 20m or greater than 100m. Exit wider at the beginning than width of downstream link.

- j) Visibility: See Figure 4.10.
- k) Pedestrian crossing

Pedestrian crossing points are preferably set back at least 15m from ICD line. The minimum width of crossing is 2.4m.

# (8) Elliptical Roundabout

There is no details of the elliptical roundabout geometric design criteria in the standards mentioned at chapter 4.3.1. Consequently the following geometric parameters are derived from the reconnaissance of existing elliptical roundabouts and the analysis of the as-built drawings.

- a) Entry width
  Same as the circular roundabout.
- b) Approach half width(v) Same as the circular roundabout.

- c) Entry radius(r) See Figure 4.11
- d) Entry angle Not less than 10m.

e) Exist radius(r) See Figure 4.11.

g) Exist angle Not less than 20m.

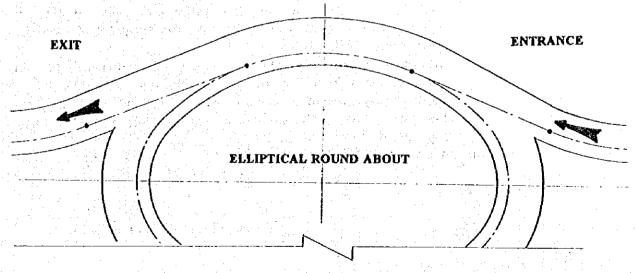



Figure 4.11: Entry and Exist Details for Elliptical Roundabout

# (9) Segregation for right turning traffic

Segregation lanes for right turning traffic are provided where more than 50% of vehicles entering the roundabout are right-turning traffic. According to the results of traffic survey, it is necessary to provide this exclusive right-turn lane at the junction of the inland crossroads with the roundabout at Al Muladdah R/A towards Muscat, and at Sohar R/A from Muscat towards Sohar city area.

# (10) Diverge/Merge at Grade-Separation

The terminal of a ramp is the portion adjacent to the through traveled way, including speed-change lanes, tapers, and islands. At the above portion, the ramp traffic diverges from or merges with high-speed through traffic.

Speed-change lanes are designed in two general forms, the taper type and the parallel type. The new 1994 Highway Design Manual uses the taper type for exits and the parallel type for entrances. The types of diverge or merge lanes in this project are classified as shown below on reference to the 1994 standards.

- Diverge(Parallel Type)

Type D1/2: 1 lane diverge, 2 lane mainline

Type D2/2: 2 lane diverge, 2 lane mainline

The parallel type is applied in order to reduce the land acquisition area and to maintain the smooth traffic flow.

Merge

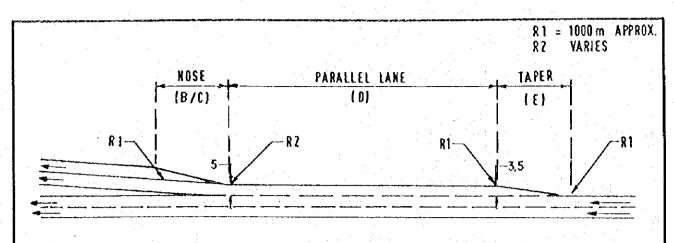
Type M1:1 lane merge, 2 lane mainline

Type M4: 2 lane merge, 2 lane mainline

M4 is the proposed type considering the following matters:

- An additional lane is provided to the downstream of a through way in the case of 2 lane merge according to the Highway Design Manual standards (M3). However, the traffic capacity of Batinah Highway with two lanes in each direction is sufficient to meet the demand of the traffic volume.
- According to AASHTO standards, the minimum length of an auxiliary lane is 762m from the merging end. It is not economical to adopt this style due to the long construction site required.

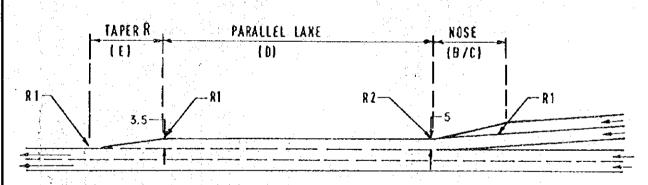
- The traffic demand volume of a ramp is slightly higher than the traffic capacity of a ramp with one lane.


The requirements of above geometric design are illustrated in Figure 4.12.

### (11) T-Junction

The requirements of geometric design for T-junction are illustrated in Figure 4.13.

### (12) Bus Lay-By Layout


The requirements of geometric design for bus lay-by are illustrated in Figure 4.14.



| MAINLINE                                         | MINIMUM<br>ANGLE<br>NOSE<br>TAPER (B) | HOSE<br>LENGTH<br>m (C) | MINIMUM<br>PARALLEL<br>LANE<br>LENGTH<br>m(D) | LENGTH OF<br>PARALLEL<br>LANE<br>TAPER<br>m(E) |
|--------------------------------------------------|---------------------------------------|-------------------------|-----------------------------------------------|------------------------------------------------|
| RURAL DUAL CARRIAGE WAY<br>DESIGN SPEED 120 km/h | 1 : 15                                | 80                      | 95                                            | 75                                             |

# NORMAL DIVERGE

ITYPE 01/2 - 1 LANE DIVERGE. 2 LANE MAINLINE)
ITYPE 02/2 - 2 LANE DIVERGE. 2 LANE MAINLINE)



| MAINLIŘE                                         | MINIMUM<br>ANGLE<br>NOSE<br>TAPER (B) | NOSE<br>LENGTH<br>m (C) | MINIMUM<br>PARALLEL<br>LANE<br>LENGTH<br>m (D) | LENGTH OF<br>PARALLEL<br>LANE<br>TAPER<br>m(E) |
|--------------------------------------------------|---------------------------------------|-------------------------|------------------------------------------------|------------------------------------------------|
| RURAL OUAL CARRIAGE WAY<br>DESIGN SPEED 120 km/h | 1:40                                  | 115                     | 230                                            | 75                                             |

# NORMAL MERGE

(TYPE M1 - ) LANE MERGE 2 LANE MAINLINE)

(TYPE M4 - 2 LANE MERGE, 2 LANE MAINLINE)

NOTE: M4 IS THE PROPOSED TYPE.

Figure 4.12: Diverge and Merge for Grade Separation

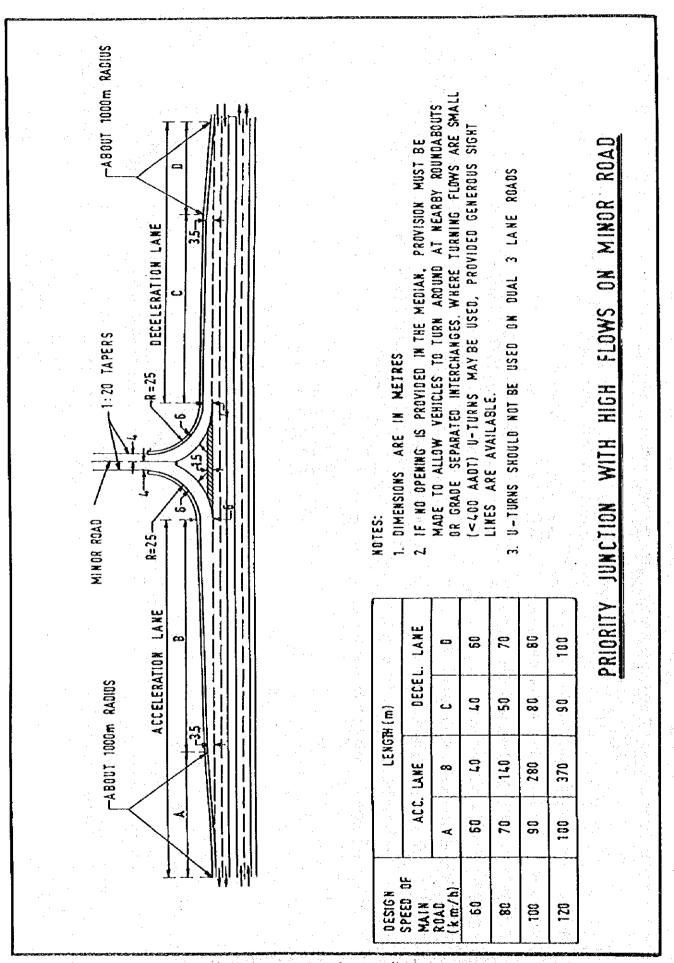



Figure 4.13: Junction Details

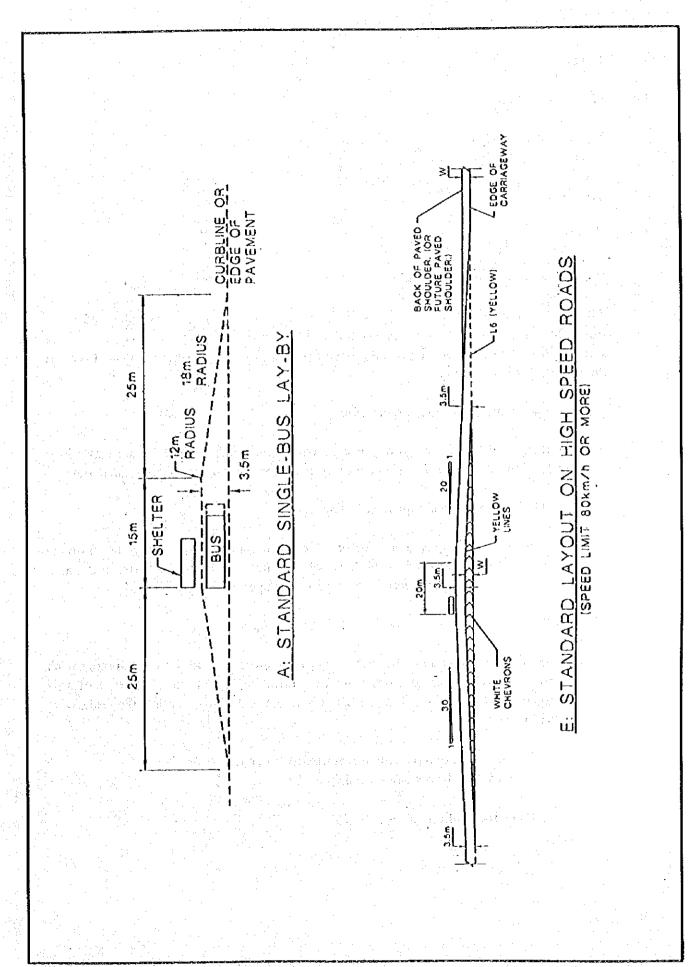



Figure 4.14: Bus Lay-By Layout

### 4.4 Pavement

# 4.4.1 General Description

The pavement design follows the Highway Design Manual (Pavement, Volume 1, 1994) based on AASHTO Interim Guide for Design of Pavement Structures 1972. The type of pavement to be adopted for this Study will be the asphalt pavement which is commonly used in Oman.

# 4.4.2 Elements of Design

### (1) Roadbed Soils

The required numerical figures are the CBR value of subgrade and those values obtained from physical tests of material for granular subbase and aggregate base course. These values will be derived from the results of soil tests and the analyses of collected data at the first stage of this study.

# (2) Equivalent Single Axle Load (ESAL)

The mixed traffic must be converted into an equivalent number of 18kip single axle load (18kip=1,800lb=8,200kg). The procedure for accomplishing this conversion includes:

- Derivation of Load Equivalence Factors

There are load equivalence factors for each kind of axle under the terminal serviceability index 2.5 in the Manual. The index is a number between 0 and 5 which is based on a subjective assessment of the condition of the road.

- Conversion of Mixed Traffic to ESAL Applications

The daily traffic volume, the vehicle type composition and the growth rate for all classes of vehicle are derived from the traffic survey at the first stage of this project. Subsequently, the design ESAL is calculated under the following conditions.

- \* The design life of a pavement is normally 20 years.
- \* The ESAL for heavy truck is taken as 1.5.
- Lane distribution considerations

The distribution factor for each lane is shown in the following table.

| Number of lane | ne Distribution Factor( |  |
|----------------|-------------------------|--|
| 1              | 100                     |  |
| 2              | 80 - 100                |  |
| 3              | 60 - 80                 |  |

# (3) Regional Factor

The regional factor is different depending on the weather conditions and subsoil drainage conditions. The factor in Batinah region is taken as 0.8.

# (4) Structural Number (SN)

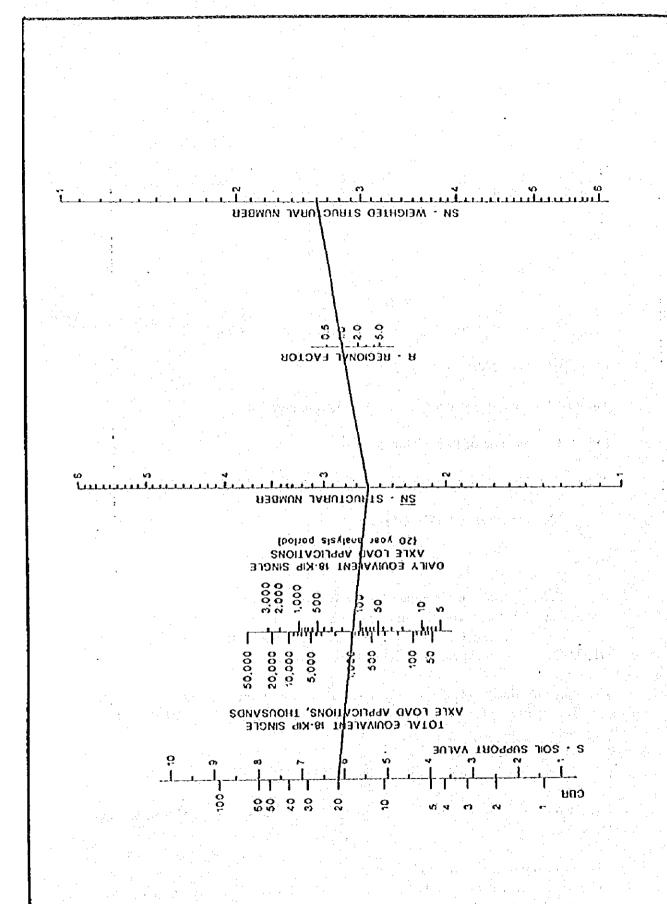
The structural number is derived from the chart in Figure 4.15.

# (5) Combination of Layer Thicknesses

The given structural number should satisfy the SN derived from the following formula:

$$SN = a1*D1+a2*D2+a3*D3$$

where,


SN = Structural number for the total pavement
a1,a2,a3 = Layer coefficients for wearing course, base course and subbase
materials respectively. There are these coefficients in the manual
D1,D2,D3 = Thickness of each layer in centimeter.

The minimum thickness of each layer is 50 mm for wearing course, 100 mm for base course and 150 mm for subbase. In addition, the subbase may be omitted where CBR of the subgrade is greater than 25%.

### (6) Reference Drawings for Pavement Structure

The reference drawings for pavement structure are as followings and shown in Figure 4.16. These are:

- The typical pavement structure of highway.
- The pavement structures of Batinah Highway, crossroads and service road at the recently completed A'Naseem Garden R/A.



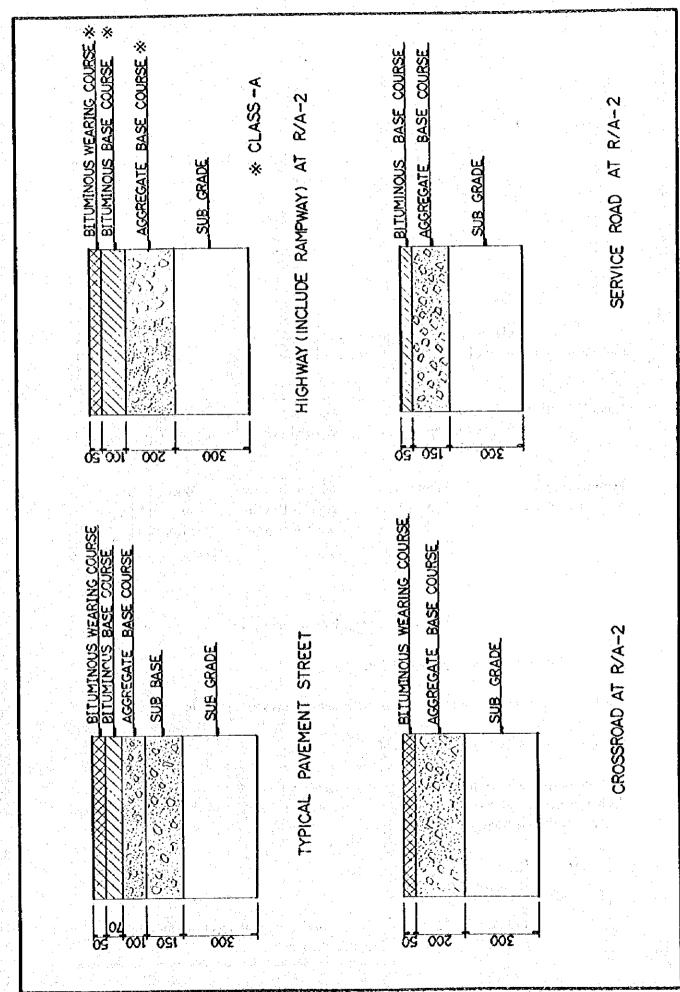



Figure 4.16: Pavement Details of Existing Batinah Highway

# 4.5 Drainage

# 4.5.1 General Description

The drainage design basically flood the new Oman Highway Design Manual standards. Drainage design consists of catchment discharges, open channels, Irish crossings and Irish Bridges, culvert, roundabout drainage and median drainage. The methods of each design and factors to be considered are mentioned here.

# 4.5.2 Hydraulic Method

# (1) Flood Frequency

The following table shows the minimum flood frequencies to be accommodated in particular situations without damage to the road or drainage structure, or disruption to traffic.

| Road Classification                          | Culverts, Irish                                          | Channels                                                 | Storm Sewer                                           |
|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| And the second second                        | Crossings &                                              | & Ditches                                                | System                                                |
|                                              | Irish Bridges                                            |                                                          |                                                       |
| Primary Road<br>Secondary Road<br>Local Road | once in 50 years<br>once in 50 years<br>once in 20 years | once in 10 years<br>once in 10 years<br>once in 10 years | once in 5 years<br>once in 5 years<br>once in 5 years |

### (2) Catchment Discharges

There are two ways to calculate the discharge by catchment areas.

## a) Catchment Area Greater Than 10 km<sup>2</sup>

The discharge is derived from the Flood Frequency Curves as shown in Figure 4.17.

### b) Catchment Area Less Than 10 km<sup>2</sup>

The discharge value is derived from the rational method as shown below. This value should be compared against the value by using method above, and the lesser of the two discharge values is used for design purposes.

$$O = 0.278*C*I*A$$

where,

Q = Peak discharge at the catchment outlet/road intersection (m<sup>3</sup>/s)

C = Run-off coefficient as shown in the manual

I = Rainfall intensity for a specific frequency of storm (mm/h) as shown in Figure 4.18.

A = Catchment area contributing to the flow  $(km^2)$ 

The time of concentration adopted to obtain [1] is derived from the Kirpich formula:

$$Tc = 0.0195 * L 0.77 * S -0.385$$

where,

Te = Time of concentration (minutes)

L = Catchment main stream length (m)

S = Mainstream slope (m/m)

### (3) Open Channels

An open channel is a man-made or natural channel (i.e., wadi) in which water flows with an uncovered surface. The existing open channels may have to be diverted in some places due to the grade separation plans.

The Manning Equation for open channel analysis is adopted as shown below.

$$O = A*R 2/3 * S 0.5/n$$

where,

Q = Discharge  $(m^3/s)$ 

A = Cross-section of flow area  $(m^2)$ 

n = Manning's roughness coefficient as shown in the manual

R = Hydraulic radius (A/WP where WP is the wetted perimeter of flow area (m))

S = Slope of channel bed (m/m)

# (4) Irish Crossings and Irish Bridges

Within the scope of this study, Irish crossings will be those sections of the service roads with scouring protection provided on the bed of wadi, while Irish bridges will be the Irish crossings with box culverts on the highway section.

The detailed design of the above will consist of re-construction of Irish crossings and the extension of box culverts. The scouring protection is secured by means of riprap. The note of this design is to determine the potential scouring depth (D) and the width of downstream protection required (W). These can be determined by the following:

$$d_{max} = Z * [q^2/Fbo] 0.33$$

where,

Z = Factor accounting for the local flow pattern,

Nose of bank or spur: 2.0 - 2.75 Flow at right angles to bank: 2.25 Flow parallel to bank: 1.5 - 2.0

q = Local discharge intensity  $(m^3/s / m \text{ width})$ 

Fbo = Zero bed factor from figure specified in the design standards

d max = maximum scouring depth measured from water level (m)

then, 
$$D = d_{max} - Y$$

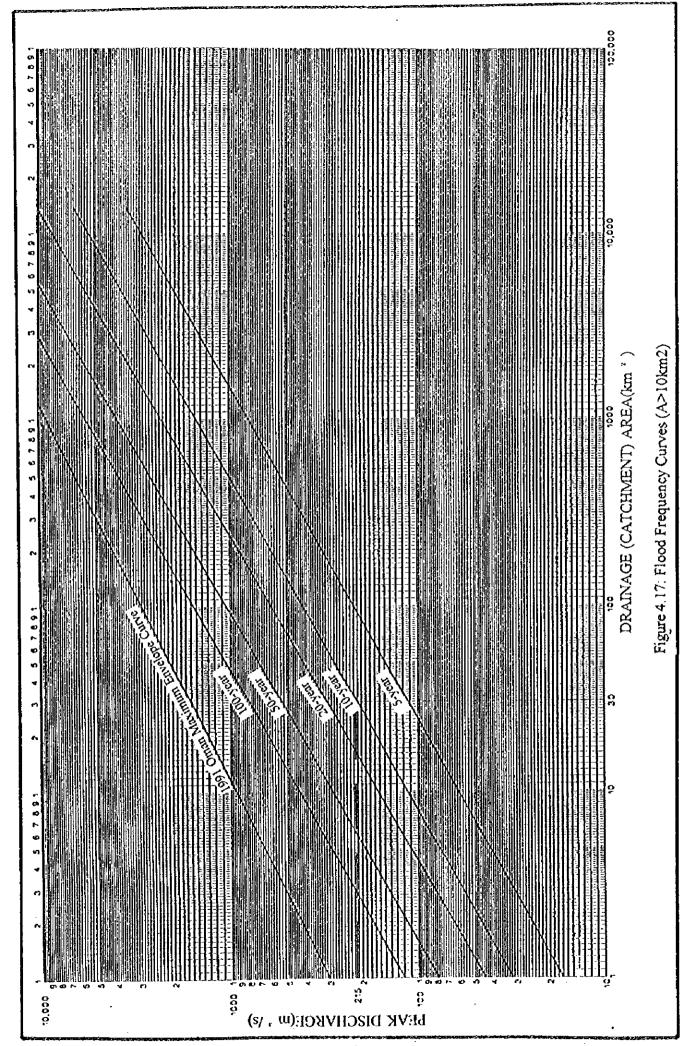
where,

$$Y = \text{water depth}$$
 (at time of scour) (m)  
Hence width of apron  $W = 2.236*D$  (m)

# (5) Culvert

This study will introduce design for some new culverts and extension of many existing culverts. The detailed designs are carried out considering the following conditions:

- Standard sizes for concrete pipe culverts range from 600 mm to 1,050 mm diameter with increments of 150 mm.
- Box culverts vary in span from 1,000 mm to 4,000 mm with a maximum height of 4,000 mm. MOC has published standard structural culvert details for the above range of sizes related to the height of overburden.
- Two basic types of flow characteristic influence the potential discharge of a culvert. The flow is controlled at the culvert inlet or at the culvert outlet. These matters are mentioned in details in the Omani Highway Design Manual.


### (6) Roundabout Drainage

The catch pits are planned at the small ditch along the edge of a roundabout.

### (7) Median Drainage

The median catch pit is provided at the following locations.

- Low point (except Irish Crossings)
- 250 m from high points and Irish Crossings
- 250 m maximum centers elsewhere.



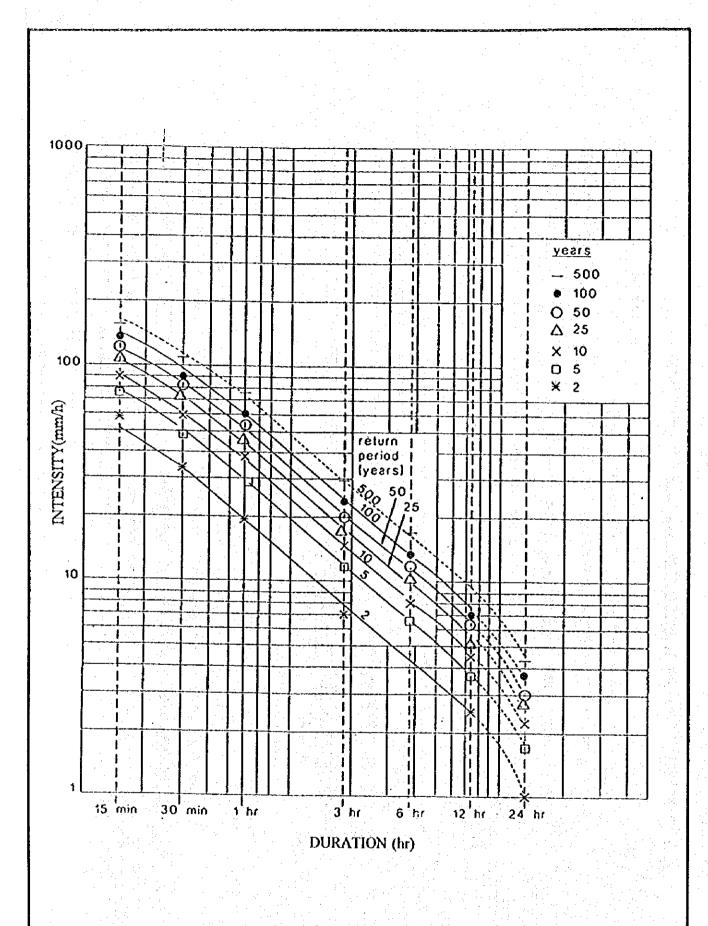



Figure 4.18: Intensity-Duration-Frequency Relationship(A<10km2)

### 4.6 Road Facilities Standard

# 4.6.1 General Description

The road facilities design follows the new 1994 Highway Design Manual. The road facilities related to this project consist of safety barriers, traffic signs, road markings, delineators, street lighting and landscaping. This section discusses the scope of works and the matters to be decided in the design of these facilities.

#### 4.6.2 Elements of Road Facilities

### (1) Safety Barriers

The safety barriers are provided at the outer edges of certain highway sections and median under the following conditions:

- Sections where the embankments are higher than 3m.
- Other embankment areas where there is a potential hazard due to large culverts and so on.
- At obstructions such as bridge piers.
- In medians 11m wide or less where there are no curbs.
- In the median where there are lighting posts.

The type of barrier to be provided will normally be;

- W-beam (weak post) Type A in medians.
- Blocked out W-beam (strong post) Type C in verges

### (2) Traffic Signs

Traffic signs will consist of information signs, warning signs, regulatory signs and supplementary signs for warning or regulatory signs. Most of the traffic signs applicable in Oman are given in the new Highway Design Manual. These signs are given specific identification numberings. In this design study, therefore, these standard specification numberings will be used to specify the type of traffic signs recommended. As for information signs, only English will be used and Arabic writings will not be included in the design drawings.

### (3) Road Markings

Road markings will also include road studs. There are many road marking types with a specific identification number given in the design standards. When applicable, this numbering system may be used in the design drawings to designate the recommended type of markings.

### (4) Delineators

Delineators consist of light reflective markers attached to guardrails, common delineators and Irish crossing markers. These different types of delineators will be used in the design.

# (5) Street Lighting

The design for street lighting will be studied considering existing conditions. However, certain details such as electric cable arrangement or specifications of lighting post will not be included in this project. Hence, the location and the structure of service ducts are designed

### (6) Landscaping

The conceptual design of landscaping will be proposed for each roundabout. However, the details for monument and public installations which are normally undertaken by Muscat Municipality or the Ministry of Regional Municipalities and Environment will not be included in this project.

# CHAPTER 5

CALCULATION ANALYSIS FOR BRIDGES AND HIGHWAY

# CHAPTER 5 CALCULATION ANALYSIS FOR BRIDGES AND HIGHWAYS

# 5.1 Calculation Analysis for Bridges and Structures

### 5.1.1 Superstructure

# (1) General Conditions

BRIDGE TYPE-A

Bridge type : Simple multi-hollow beam bridge

Girder type Post-Tensioned Prestressed Concrete Hollow Girder

 Girder length
 :
 25.900m
 31.900m
 34.900m

 Span length
 :
 25.100m
 31.000m
 34.000m

Bridge width : 12.700m Carriageway width : 7.500m

Live load : Special Truck B1, AASHTO increased 100%

BRIDGE TYPE-B

Bridge type : Three span continuous bridge

Girder type : Post-tensioned prestressed concrete 1-box 2-cell girder

Girder length : 29.9m+29.9m

Span length : 29.5m+30.0m+29.5m

Bridge width : 10.000m Carriageway width : 5.000m

Live load : Special Truck B1, AASHTO increased 100%

### (2) Material Strength and Allowable Stresses

### (a) Prestressing steel (SWPR7B)

Ultimate strength of prestressing steel

Yeild point stress of prestressing steel

Stress at short periods of time

Stress at immediately after seating

Stress at service load after losses

: fpu = 19,000 kgf/cm²

: fpy = 16,000 kgf/cm²

: fpia = 14,400 kgf/cm²

: fpta = 13,300 kgf/cm²

: fpea = 11,400 kgf/cm²

## (b) Concrete

### 1) Girder

| Compressive strength of concrete at 28 days                   | $: \mathbf{fck} = 4$ | 100 kgf/cm²             |
|---------------------------------------------------------------|----------------------|-------------------------|
| Compressive strength of concrete at time of initial prestress | : fci = 3            | 320 kgf/cm²             |
| a) Temporary stresses before losses due to creep and shrin    | nkage                | ing<br>Panggan Artis    |
| Compression                                                   | : f'cta =            | 180 kgf/cm <sup>2</sup> |
| Tension                                                       | : fcta =             | -15 kgf/cm <sup>2</sup> |

# b) Stresses at Service Load After Losses have occurred

| Compression             | *        |                    | : f'caa    | =,   | 140 | kgf/cm <sup>2</sup> |
|-------------------------|----------|--------------------|------------|------|-----|---------------------|
| Tension                 | <u> </u> | (at dead load)     | f'cea      | == ' | 0   | kgf/cm <sup>2</sup> |
| Tension                 |          | (at service load)  | : fcea     | =    | -15 | kgf/cm <sup>2</sup> |
| Shear                   |          | (at service load)  | ιτ ca      | = :  | 5.5 | kgf/cm²             |
| Shear                   |          | (at ultimate load) | : r cua    | =    | 53  | kgf/cm²             |
| Diagonal tension stress |          | (at service load)  | <br>: fpea | ==   | -10 | kgf/cm <sup>2</sup> |

#### 2) Cast-in-place

|               | 4.4             |                     |   |        |    |     |                     |
|---------------|-----------------|---------------------|---|--------|----|-----|---------------------|
| O             |                 | concrete at 28 days |   | . (2.1 |    | 200 | kgf/cm <sup>2</sup> |
| - Lombressive | strength of a   | CONCRETE AT JX GAVS | 4 | T CK   | == | 570 | · KOI/CDY           |
| Compressive   | viiviigiii oi i | vonvivious no du jo |   |        |    | 220 | 17537 6111          |

## a) Temporary stresses before losses due to creep and shrinkage

| Compression | : f'cta | == | 140 | kgf/cm <sup>2</sup> |
|-------------|---------|----|-----|---------------------|
| Tension     | : fcta  | == | -12 | kgf/cm <sup>2</sup> |

## b) Stress at service load after losses have occurred

| Compression                                    | : f'cea | $= 110 \text{ kgf/cm}^2$  |
|------------------------------------------------|---------|---------------------------|
| Tension (all dead load)                        | : f'cea | = 0 kgf/cm <sup>2</sup>   |
| Tension (all dead load and live load + impact) | : fcea  | = -12 kgf/cm <sup>2</sup> |

## (c) Reinforcement

| Yeild point stress of prestressing steel | -   |  | : fsy | = 3,000 | kgf/cm²             |
|------------------------------------------|-----|--|-------|---------|---------------------|
| Allowable tensile stress                 | · · |  | : fsa | = 1,600 | kgf/cm <sup>2</sup> |

- (3) Others
- (a) Modulus of elasticity

| Prestressing steel | : f caa        | • = | 20.0 | × | 105               | kgt/cm <sup>2</sup> |
|--------------------|----------------|-----|------|---|-------------------|---------------------|
| Girder             | : fcea         |     | 3.1  | × | 105               | kgf/cm <sup>2</sup> |
| Girder             | : fcea         | =   | 2.86 | × | · 10 <sup>5</sup> | kgf/cm²             |
| Cast-in-place      | : т <b>с</b> а | === | 2.86 | × | 105               | kgf/cm <sup>2</sup> |
| Reinforcement      | : τ cua        | =   | 21.0 | × | 105               | kgf/cm²             |

# (b) Coefficient of creep

Coefficient of creep of girder concrete :  $\phi = 2.6$ 

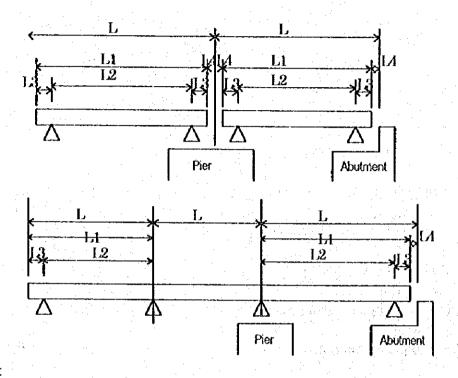
(c) Strain of concrete due to shrinkage

Strain of girder concrete due to shrinkage :  $\epsilon$  s = 20 × 10<sup>-5</sup>

(d) Relaxation of prestressing steel

Relaxation of prestressing steel :  $\gamma = 5.0 \%$ 

(2) Summary of bridge length and span arrangement


| Flyover         | Bridge Length and Span Arrangement |
|-----------------|------------------------------------|
| A'Naseem Garden | 9 @ 32000 = 288000                 |
| Barka           | 11 @ 26000 = 286000                |
| Al Muladdah     | 11 @ 26000 = 286000                |
| Al Kaburah      | 11 @ 26000 = 286000                |
| Saham           | 11 @ 26000 = 286000                |
| Sohar           | 9 @ 35000 = 315000                 |
| Falaj Al Qabil  | 11 @ 26000 = 286000                |
| Aqr             | 4 *3@30000=360000                  |

# (3) Structural Type and Dimensions

Structural type and dimensions of the superstructure are shown in Figure 5.1.

## (4)Structural Details

Required details of bridge length and span arrangement are shown below:



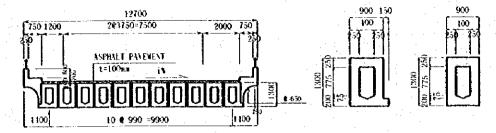
## Where:

L : Bridge span length

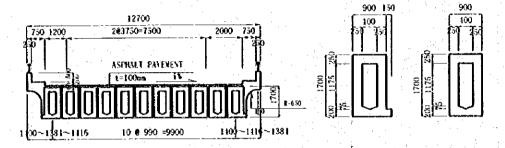
L1: Girder length

L2: Girder span length

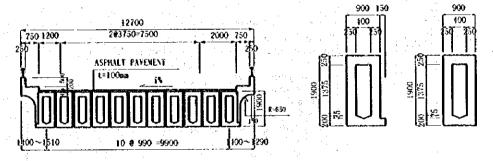
L3: Girder edge overhang length


L4: Movable space

The following lengths are adopted for each superstructure.


Table 5.1 Bridge Length Detail

|         | L       | Ll      | L2      | L3    | L4    | Application        |
|---------|---------|---------|---------|-------|-------|--------------------|
| 25.1m   | 26.000m | 25.900m | 25.100m | 400mm | 50mm  | A'Naseem Garden    |
| 31.0m   | 32.000m | 31.900m | 31.000m | 450mm |       | Barka, Al Muladdah |
|         |         |         | 4.44    |       |       | Al Khaburah, Saham |
|         |         |         |         |       |       | Falaj Al Qabail    |
| 34.0m   | 35.000m | 34.900m | 34.000m | 450mm | 50mm  | Sohar              |
| 3@30.0m | 30.000m | 29.900m | 29.500m | 400mm | 100mm | Agr                |


# Span = 25.1 m (26.0 m)



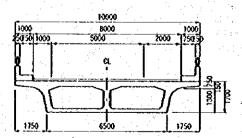
# Span = 31.0 m (32.0 m)

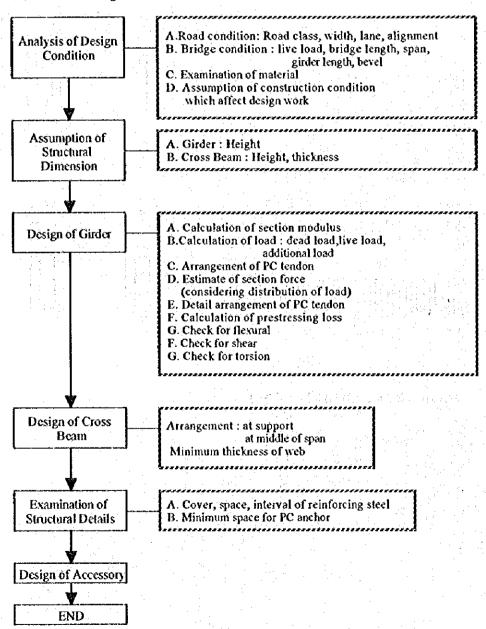


# Span = 35.0 m (34.0 m)



Span = 3 @ 30.0 m ( For Aqr )



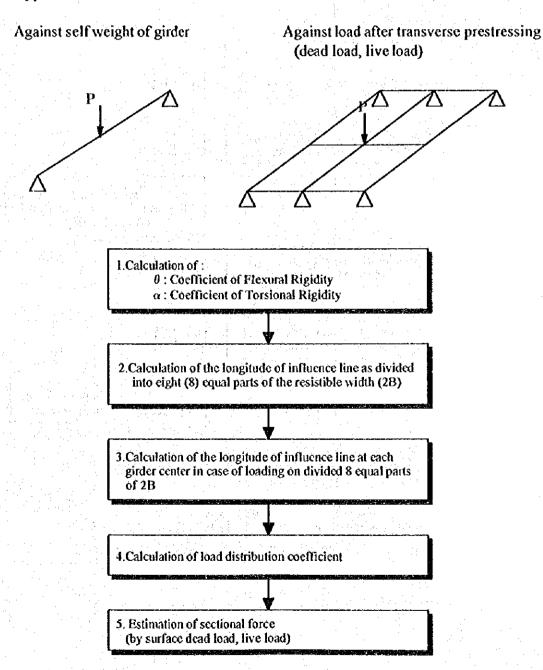


Figure 5.1 Structural Type and Dimensions

50mm movable space is enough from the following examination.

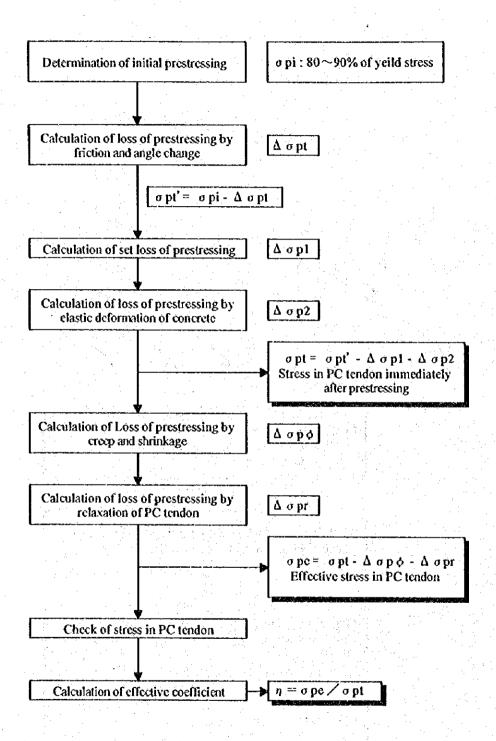
| $\Delta Lt = 0$ | 0.96L + 10 | (mm)     |
|-----------------|------------|----------|
|                 | L(m)       | Δ Tl(mm) |
|                 | 25.1       | 34.10    |
|                 | 31.0       | 39.76    |
|                 | 34.0       | 42.64    |

### (5) Calculation Method

### (a) Procedure for Design Work




#### (b) Structural Analysis


As for structural analysis of superstructure, sectional forces were estimated assuming that its structure is gridwork and applied load is distributed. The Guyon-Massonnet method, which is based on the Plate Theory, was adopted as a load distribution method. Coefficients of load distribution are listed in Tables 5.2 to 5.5(b).

Some girders of bridges in Oman have been damaged by concentration of load on them due to few cross beam. Therefore, bridges with rigid cross beam for this detailed design are planned so that load would be fully distributed.

Application of load distribution is as follows:




#### (c) Calculation of Effective Prestress



## (d) Examination of safety against collapse

Prestressed concrete member will be examined for both cases of design loading and ultimate loading.



#### (6) Calculation of Load

Assumed loading conditions of superstructure in longitudinal and transverse directions are shown in Figures 5.2 to 5.4.

#### (7) Summary of Calculated Reactions

Reactions which were calculated on the above conditions are listed in Tables 5.2 to 5.5(b). As for live load, reaction caused by AASHTO live loading at carriageway center for 25.1 m span is larger than by special truck loading and reaction caused by special truck loading is larger for other cases.

Detailed design of substructure is carried out using these reactions.

#### (8) Design Summary of Super Structures

Design summary of three types of bridges are shown in Table 5.6 to Table 5.8(b).

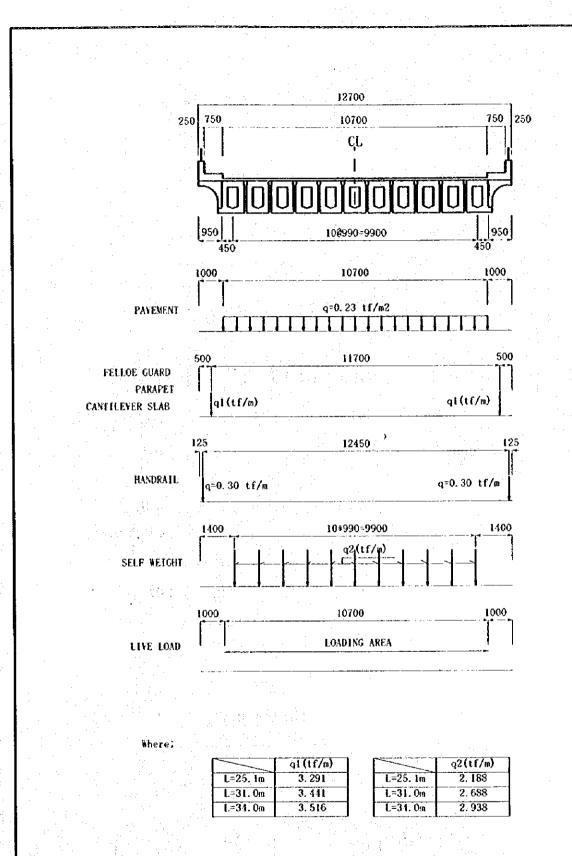



Figure 5.2 (a) Loading Condition for Super-structure in Cross Section (1)

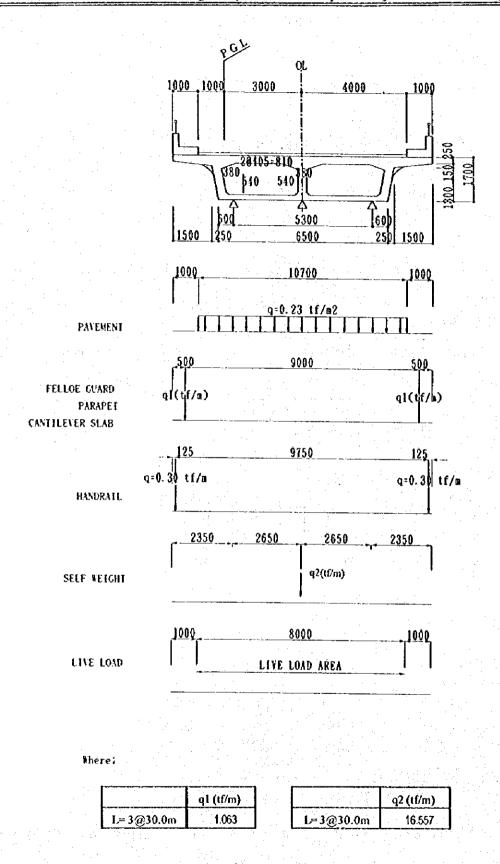
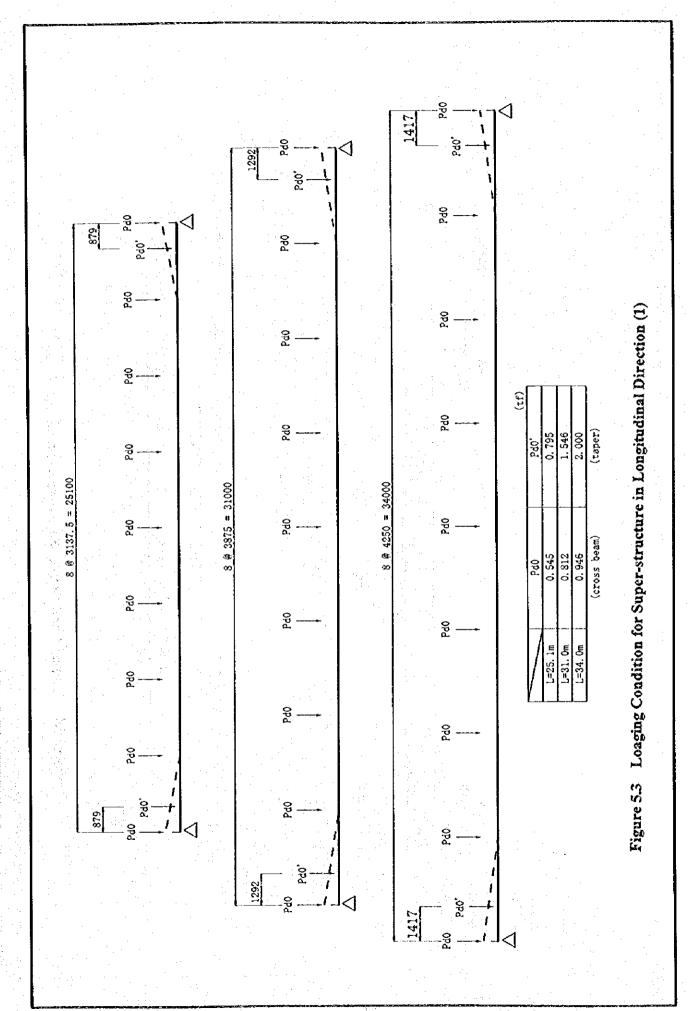
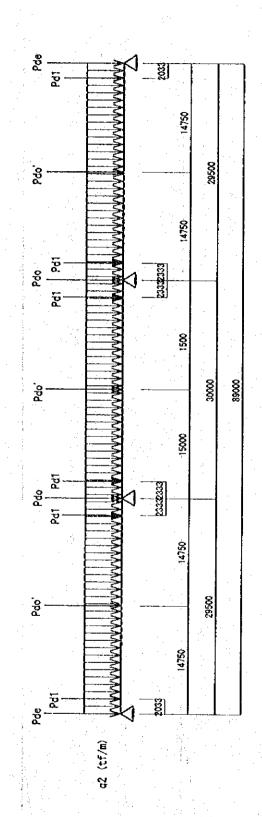





Figure 5.2 (b) Loading Condition for Super-structure in Cross Section (2)



1



| Intermediate Cross Beam) |
|--------------------------|

Figure 5.4 Loaging Condition for Super-structure in Longitudinal Direction (2)

Table 5.2 Summary of Reaction (Span 25.1m AASHTO)

Live Load: HS20-44(AASHTO) increased 100%

CASE-1: Loading at Carriageway Edge

Unit: tf

|       | Dictri           | bution Coeff | icient    | Reaction |                   |                  |          |              |           |                |
|-------|------------------|--------------|-----------|----------|-------------------|------------------|----------|--------------|-----------|----------------|
|       | Curb<br>Overhang | Pavement     | Live Load | Girder   | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total          |
|       | K1               | K2           | К3        | Rd1      | Rd2               | Rd3              | Rd4      | ΣRd          | Ri        | $\Sigma$ Rd+RI |
| Gi    | 0.1964           | 0.9774       | 0.1054    | 31.2     | 0.6               | 8.4              | 2.9      | 43.1         | 20.4      | 63.5           |
| G2    | 0.1882           | 0.9730       | 0.1027    | 30.2     | 1.2               | 8.0              | 2.9      | 42.3         | 19.9      | 62.2           |
| G3    | 0.1812           | 0.9725       | 0.1000    | 30.2     | 1.2               | 7.7              | 2.9      | 42.0         | 19.4      | 61.4           |
| G4    | 0.1760           | 0.9727       | 0.0973    | 30.2     | 1.2               | 7.5              | 2.9      | 41.8         | 18.9      | 60.7           |
| G5    | 0.1727           | 0.9728       | 0.0944    | 30.2     | 1.2               | 7.4              | 2.9      | 41.7         | 18.3      | 60.0           |
| G6    | 0.1716           | 0.9727       | 0.0914    | 30.2     | 1.2               | 7.3              | 2.9      | 41.6         | 17.7      | 59.3           |
| G7    | 0.1727           | 0.9728       | 0.0883    | 30.2     | 1.2               | 7.4              | 2.9      | 41.7         | 17.1      | 58.8           |
| G8    | 0.1760           | 0.9727       | 0.0851    | 30.2     | 1.2               | 7.5              | 2.9      | 41.8         | 16.5      | 58.3           |
| G9    | 0.1812           | 0.9725       | 0.0818    | 30.2     | 1.2               | 7.7              | 2.9      | 42.0         | 15.9      | 57.9           |
| G10   | 0.1882           | 0.9730       | 0.0785    | 30.2     | 1.2               | 8.0              | 2.9      | 42.3         | 15.2      | 57.5           |
| G11   | 0.1964           | 0.9774       | 0.0752    | 31.2     | 0.6               | 8.4              | 2.9      | 43.1         | 14.6      | 57.7           |
| Total | 4.45             | 1 10         |           | 334.2    | 12.0              | 85.3             | 31.9     | 463.4        | 193.9     | 657.3          |

Rd3 = K1 \* Rd3\*

Rd3'=

42.6 tf

Rd4 = K2 \* Rd4' Rl = K3 \* Rl' Rd4'= Ri'≃ 3.0 tf 193.9 tf

(29.0\*3\*0.9\*2\*1.238)

CASE-2: Loading at Carriageway Center

Unit: If

|       | Dictri           | bution Coeff | icient    |        |                   | · ·              | Reaction | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | e e jaring |         |
|-------|------------------|--------------|-----------|--------|-------------------|------------------|----------|-----------------------------------------|------------|---------|
|       | Curb<br>Overhang | Pavement     | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load                            | Live Load  | Total   |
|       | K1               | K2           | К3        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd                                     | RI         | Σ Rd+Rl |
| G1    | 0.1964           | 0.9774       | 0.0899    | 31.2   | 0.6               | 8.4              | 2.9      | 43.1                                    | 17.4       | 60.5    |
| G2    | 0.1882           | 0.9730       | 0.0906    | 30.2   | 1.2               | 8.0              | 2.9      | 42.3                                    | 17.6       | 59.9    |
| G3    | 0.1812           | 0.9725       | 0.0909    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0                                    | 17.6       | 59.6    |
| G4    | 0.1760           | 0.9727       | 0.0912    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8                                    | 17.7       | 59.5    |
| G5    | 0.1727           | 0.9728       | 0.0915    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7                                    | 17.7       | 59.4    |
| G6    | 0.1716           | 0.9727       | 0.0915    | 30.2   | 1.2               | 7.3              | 2.9      | 41.6                                    | 17.7       | 59.3    |
| G7 .  | 0.1727           | 0.9728       | 0,0915    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7                                    | 17.7       | 59.4    |
| G8    | 0.1760           | 0.9727       | 0.0912    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8                                    | 17.7       | 59.5    |
| G9    | 0.1812           | 0.9725       | 0.0909    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0                                    | 17.6       | 59.6    |
| G10   | 0.1882           | 0.9730       | 0.0906    | 30.2   | 1,2               | 8.0              | 2.9      | 42.3                                    | 17.6       | 59.9    |
| G11   | 0.1964           | 0.9774       | 0.0899    | 31.2   | 0.6               | 8.4              | 2.9      | 43.1                                    | 17.4       | 60.5    |
| Total |                  |              |           | 334.2  | 12.0              | 85.3             | 31.9     | 463.4                                   | 193.7      | 657.1   |

Rd3 = K1 \* Rd3\*

Rd3'=

42.6 tf

Rd4 = K2 \* Rd4\*

- Rd4'=

3.0 ff

RI = K3 \* RI'

RI'= 193.9 tf

(29.0'3'0.9'2'1.238)

Table 5.3 Summary of Reaction (Span 25.1m OMAN)

Live Load: Special Truck Type B1 (OMAN)

CASE-1 : Loading at Carriageway Edge

Unit: tf

|       | Dictri           | buton Coeff | ficient   |        |                   |                  | Reaction |              | <u>:</u>  |        |
|-------|------------------|-------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|--------|
|       | Curb<br>Overhang | Pavement    | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total  |
|       | K1               | K2          | К3        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd          | RI        | ΣRd+Ri |
| G1    | 0.1964           | 0.9774      | 0.1551    | 31.2   | 0.6               | 8.4              | 2.9      | 43.1         | 27.2      | 70.3   |
| G2    | 0.1882           | 0.9730      | 0.1424    | 30.2   | 1.2               | 8.0              | 2.9      | 42.3         | 25.0      | 67.3   |
| G3    | 0.1812           | 0.9725      | 0.1295    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0         | 22.7      | 64.7   |
| G4    | 0.1760           | 0.9727      | 0.1165    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8         | 20.4      | 62.2   |
| G5    | 0.1727           | 0.9728      | 0.1033    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7         | 18,1      | 59.8   |
| G6    | 0.1716           | 0.9727      | 0.0902    | 30.2   | 1.2               | 7.3              | 2.9      | 41.6         | 15.8      | 57.4   |
| G7    | 0.1727           | 0.9728      | 0.0773    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7         | 13.6      | 55.3   |
| G8    | 0.1760           | 0.9727      | 0.0647    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8         | 11.4      | 53.2   |
| G9    | 0.1812           | 0.9725      | 0.0523    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0         | 9.2       | 51.2   |
| G10   | 0.1882           | 0.9730      | 0.0404    | 30.2   | 1.2               | 8.0              | 2.9      | 42.3         | 7.1       | 49.4   |
| G11   | 0.1964           | 0.9774      | 0.0285    | 31.2   | 0.6               | 8.4              | 2.9      | 43.1         | 5.0       | 48.1   |
| Total |                  |             |           | 334.2  | 12.0              | 85.3             | 31.9     | 463.4        | 175.5     | 638.9  |

Rd3 = K1 \* Rd3'

Rd3'=

42.6 tf

Rd4 = K2 \* Rd4'

Rd4'= 3.0 tf

RI = K3 \* RI\*

Ri'= 175.5 tf

CASE-2: Loading at Carriageway Center

Unit : tf

|       | Dictri           | bution Coef | ficient   |        |                   |                  | Reaction |              |           |        |
|-------|------------------|-------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|--------|
|       | Curb<br>Overhang | Pavement    | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total  |
|       | K1               | K2          | К3        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd          | RI        | ΣRd+Rl |
| G1    | 0.1964           | 0.9774      | 0.0880    | 31.2   | 0.6               | 8.4              | 2.9      | 43.1         | 15.4      | 58.5   |
| G2    | 0.1882           | 0.9730      | 0.0894    | 30.2   | 1.2               | 8.0              | 2.9      | 42.3         | 15.7      | 58.0   |
| G3    | 0.1812           | 0.9725      | 0.0908    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0         | 15.9      | 57.9   |
| G4    | 0.1760           | 0.9727      | 0.0921    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8         | 16.2      | 58.0   |
| G5    | 0.1727           | 0.9728      | 0.0930    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7         | 16.3      | 58.0   |
| G6    | 0.1716           | 0.9727      | 0.0933    | 30.2   | 1.2               | 7.3              | 2.9      | 41.6         | 16.4      | 58.0   |
| G7    | 0.1727           | 0.9728      | 0.0930    | 30.2   | 1.2               | 7.4              | 2.9      | 41.7         | 16.3      | 58.0   |
| G8    | 0.1760           | 0.9727      | 0.0921    | 30.2   | 1.2               | 7.5              | 2.9      | 41.8         | 16.2      | 58.0   |
| G9    | 0.1812           | 0.9725      | 0.0908    | 30.2   | 1.2               | 7.7              | 2.9      | 42.0         | 15.9      | 57.9   |
| G10   | 0.1882           | 0.9730      | 0.0894    | 30.2   | 1.2               | 8.0              | 2.9      | 42.3         |           | 58.0   |
| G11   | 0.1964           | 0.9774      | 0.0880    | 31.2   | 0.6               | 8.4              | 2.9      | 43,1         | 15.4      | 58.5   |
| Total |                  |             |           | 334.2  | 12.0              | 85.3             | 31.9     | 463.4        | 175.4     | 638.8  |

Rd3 = K1 \* Rd3'

Rd3'=

42.6 tf 3.0 tf

Rd4 = K2 \* Rd4\*

Rd4'=

RI = K3 \* RI'

RI'= 175.5 tf

Table 5.4 Summary of Reaction (Span 31.0m)

Live Load: Special Truck Type B1 (OMAN)

CASE-1: Loading at Carriageway Edge

Unit: tf

|       | Dictri           | buton Coeff | ncient    |        |                   |                  | Reaction |              |           |        |
|-------|------------------|-------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|--------|
|       | Curb<br>Overhang | Pavement    | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total  |
|       | K1               | K2          | К3        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd          | RI        | ΣRd+Rl |
| G1    | 0.1873           | 0.9946      | 0.1668    | 47.7   | 0.8               | 10.3             | 3.7      | 62.5         | 34.8      | 97.3   |
| G2    | 0.1846           | 0.9742      | 0.1517    | 46.5   | 1,6               | 10.1             | 3.6      | 61.8         | 31.7      | 93.5   |
| G3    | 0.1816           | 0.9728      | 0.1364    | 46.5   | 1.6               | 10.0             | 3.6      | 61.7         | 28.5      | 90.2   |
| G4    | 0.1794           | 0.9727      | 0.1211    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 25,3      | 86.8   |
| G5    | 0.1781           | 0.9727      | 0.1059    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 22.1      | 83.6   |
| G6    | 0.1776           | 0.9725      | 0.0906    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 18.9      | 80.4   |
| G7    | 0.1781           | 0.9727      | 0.0755    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 15.8      | 77.3   |
| G8    | 0.1794           | 0.9727      | 0.0604    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 12.6      | 74.1   |
| G9    | 0.1816           | 0.9728      | 0.0454    | 46.5   | 1.6               | 10.0             | 3.6      | 61.7         | 9.5       | 71.2   |
| G10   | 0.1845           | 0.9742      | 0.0306    | 46.5   | 1.6               | 10.1             | 3.6      | 61.8         | 6.4       | 68.2   |
| G11   | 0.1873           | 0.9946      | 0.0163    | 47.7   | 0.8               | 10.3             | 3.7      | 62.5         | 3.4       | 65.9   |
| Total | <b>1</b>         |             | 1 4 4 7 1 | 513.9  | 16.0              | 109.8            | 39.8     | 679.5        | 209.0     | 888.5  |

Rd3 = K1 \* Rd3\*

Rd3'= 54.9 tf

Rd4 = K2 \* Rd4

Rd4'= 3.7 tf

RI = K3 \* RI'

RI'= 208.7 tf

CASE-2: Loading at Carriageway Center

Unit : If

| 1                                        | Dictri           | buton Coeff | icient    |        |                   |                  | Reaction |              |           |        |
|------------------------------------------|------------------|-------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|--------|
|                                          | Curb<br>Overhang | Pavement    | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total  |
| F 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | K1               | K2          | КЗ        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd          | RI        | ΣRd+Rl |
| G1                                       | 0.1873           | 0.9946      | 0.0897    | 47.7   | 0.8               | 10.3             | 3.7      | 62.5         | 18.7      | 81.2   |
| G2                                       | 0.1846           | 0.9742      | 0.0903    | 46.5   | 1.6               | 10.1             | 3.6      | 61.8         | 18.8      | 80.6   |
| G3                                       | 0.1816           | 0.9728      | 0.0909    | 46.5   | 1.6               | 10.0             | 3.6      | 61.7         | 19.0      | 80.7   |
| G <b>4</b>                               | 0.1794           | 0.9727      | 0.0914    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 19.1      | 80.6   |
| G5                                       | 0.1781           | 0.9727      | 0.0918    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 19.2      | 80.7   |
| G6                                       | 0.1776           | 0.9725      | 0.0919    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 19.2      | 80.7   |
| G7                                       | 0.1781           | 0.9727      | 0.0918    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 19.2      | 80.7   |
| G8                                       | 0.1794           | 0.9727      | 0.0914    | 46.5   | 1.6               | 9.8              | 3.6      | 61.5         | 19.1      | 80.6   |
| G9                                       | 0.1816           | 0.9728      | 0.0909    | 46.5   | 1.6               | 10.0             | 3.6      | 61.7         | 19.0      | 80.7   |
| G10                                      | 0.1845           | 0.9742      | 0.0903    | 46.5   | 1.6               | 10.1             | 3.6      | 61.8         | 18.8      | 80.6   |
| G11                                      | 0.1873           | 0.9946      | 0.0897    | 47.7   | 0.8               | 10.3             | 3.7      | 62.5         | 18.7      | 81.2   |
| Total                                    | - 7              |             |           | 513.9  | 16.0              | 109.8            | 39.8     | 679.5        | 208.8     | 888.3  |

Rd3 = K1 \* Rd3\*

Rd3'= 54.9 tf

3.7 tf

Rd4 = K2 \* Rd4\*

Rd4'=

RI = K3 \* RI'

RI'= 208.7 tf

# Table 5.5(a) Summary of Reaction (Span 34.0m)

Live Load: Special Truck Type B1 (OMAN)

CASE-1: Loading at Carriageway Edge

Unit:tf

|       | Dictri           | bution Coef | ficient   |        |                   |                  | Reaction |              |           | ·       |
|-------|------------------|-------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|---------|
|       | Curb<br>Overhang | Pavement    | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total   |
|       | K1               | K2          | К3        | Rd1    | Rd2               | Rd3              | Rd4      | ΣRd          | RI        | Σ Rd+Ri |
| G1    | 0.1863           | 0.9726      | 0.1709    | 57.1   | 0.9               | 11.4             | 3.9      | 73.3         | 38.6      | 111.9   |
| G2    | 0.1838           | 0.9732      | 0.1549    | 55.8   | 1.8               | 11.3             | 3.9      | 72.8         | . 34.9    | 107.7   |
| G3    | 0.1817           | 0.9728      | 0.1389    | 55.8   | 1.8               | 11.2             | 3.9      | 72.7         | 31.3      | 104.0   |
| G4    | 0.1800           | 0.9726      | 0.1237    | 55.8   | 1.8               | 11.1             | 3.9      | 72.6         | 27.9      | 100.5   |
| G5    | 0.1751           | 0.9728      | 0.1068    | 55.8   | 1.8               | 10.8             | 3.9      | 72.3         | 24.1      | 96.4    |
| G6    | 0.1788           | 0.9728      | 0.0907    | 55.8   | 1.8               | 11.0             | 3.9      | 72.5         | 20.5      | 93.0    |
| G7    | 0.1751           | 0.9728      | 0.0747    | 55.8   | 1.8               | 10.8             | 3.9      | 72.3         | 16.9      | 89.2    |
| G8    | 0.1800           | 0.9726      | 0.0588    | 55.8   | 1.8               | . 11,1           | 3.9      | 72.6         | 13.3      | 85.9    |
| G9    | 0.1817           | 0.9728      | 0.0430    | 55.8   | 1.8               | 11.2             | 3.9      | 72.7         | 9.7       | 82.4    |
| G10   | 0.1838           | 0.9732      | 0.0272    | 55.8   | 1.8               | 11.3             | 3.9      | 72.8         | 6.1       | 78.9    |
| G11   | 0.1863           | 0.9726      | 0.0115    | 57.1   | 0.9               | 11.4             | 3.9      | 73.3         | 2.6       | 75.9    |
| Total |                  |             |           | 616.4  | 18.0              | 122.6            | 42.9     | 799.9        | 225.9     | 1025.8  |

Rd3 = K1 \* Rd3\*

Rd3'= 61.4 tf

Rd4 = K2 \* Rd4'

Rd4'= 4.0 tf

RI = K3 \* RI'

RI'= 225.6 U

CASE-2: Loading at Carriageway Center

Unit: tf

|       | т                |              |           |        |                   |                  |          |              |           |        |
|-------|------------------|--------------|-----------|--------|-------------------|------------------|----------|--------------|-----------|--------|
|       | Dictri           | bution Coeff | icient    |        |                   |                  | Reaction | January 1    |           | n      |
|       | Curb<br>Overhang | Pavement     | Live Load | Girder | Cast-in-<br>place | Curb<br>Overhang | Pavement | Dead<br>Load | Live Load | Total  |
|       | K1               | K2 .         | К3        | Rdi    | Rd2               | Rd3              | Rd4      | $\Sigma Rd$  | RI        | ΣRd+RI |
| G1    | 0.1863           | 0.9726       | 0.0900    | 57.1   | 0.9               | 11.4             | 3.9      | 73.3         | 20.3      | 93.6   |
| G2    | 0.1838           | 0.9732       | 0.0905    | 55.8   | 1.8               | 11.3             | 3.9      | 72.8         | 20.4      | 93.2   |
| G3    | 0.1817           | 0.9728       | 0.0909    | 55.8   | 1.8               | 11.2             | 3.9      | 72.7         | 20.5      | 93.2   |
| G4    | 0.1800           | 0.9726       | 0.0913    | 55.8   | 1.8               | 11,1             | 3.9      | 72.6         | 20.6      | 93.2   |
| G5    | 0.1751           | 0.9728       | 0.0916    | 55.8   | 1.8               | 10.8             | 3.9      | 72.3         | 20.7      | 93.0   |
| G6 .  | 0.1788           | 0.9728       | 0.0916    | 55.8   | 1.8               | 11.0             | 3.9      | 72.5         | 20.7      | 93.2   |
| G7    | 0.1751           | 0.9728       | 0.0916    | 55.8   | 1.8               | 10.8             | 3.9      | 72.3         | 20.7      | 93.0   |
| G8    | 0.1800           | 0.9726       | 0.0913    | 55.8   | 1.8               | 11.1             | 3.9      | 72.6         | 20.6      | 93.2   |
| G9    | 0.1817           | 0.9728       | 0.0909    | 55.8   | 1.8               | 11.2             | 3.9      | 72.7         | 20.5      | 93.2   |
| G10   | 0.1838           | 0.9732       | 0.0905    | 55.8   | 1.8               | 11.3             | 3.9      | 72.8         | 20.4      | 93.2   |
| G11   | 0.1863           | 0.9726       | 0.0900    | 57.1   | 0.9               | 11.4             | 3.9      | 73.3         | 20.3      | 93.6   |
| Total |                  |              |           | 616.4  | 18.0              | 122.6            | 42.9     | 799.9        | 225.7     | 1025.6 |

Rd3 = K1 \* Rd3'

Rd3'= 61.4 tf

Rd4 = K2 \* Rd4'

Rd4'= 4.0 tf

RI = K3 \* RI'

RI'= 225.6 tf

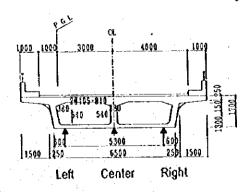
# Table 5.5(b) Summary of Reaction (Span 3@30.0m)

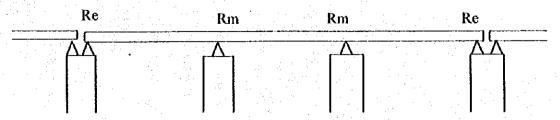
Live Load: Special Truck Type B1 (OMAN)

# At End Pier (Re)

Unit: ti

|       |        | Left  | Centr | Right |
|-------|--------|-------|-------|-------|
| Dead  | l Load | 97.2  | 97.2  | 97.2  |
| Live  | Load   | 59.8  | 59.8  | 59.8  |
| Total | Case1  | 157.0 | 157.0 | 157.0 |
|       | Case2  | 164.4 | 157.0 | 149.5 |


## At Intermediate Pier (Rm)


Unit: tf

|       |       | Left  | Centr | Right |
|-------|-------|-------|-------|-------|
| Dead  | Load  | 194.4 | 194.4 | 194.4 |
| Live  | Load  | 110.2 | 110.2 | 110.2 |
| Total | Case1 | 304.6 | 304.6 | 304.6 |
|       | Case2 | 318.4 | 304.6 | 290.8 |

\*Case 1 shwos the case live load is distributed uniformly

<sup>\*</sup>Case 2 shows the case Live load is distributed eccentrically.

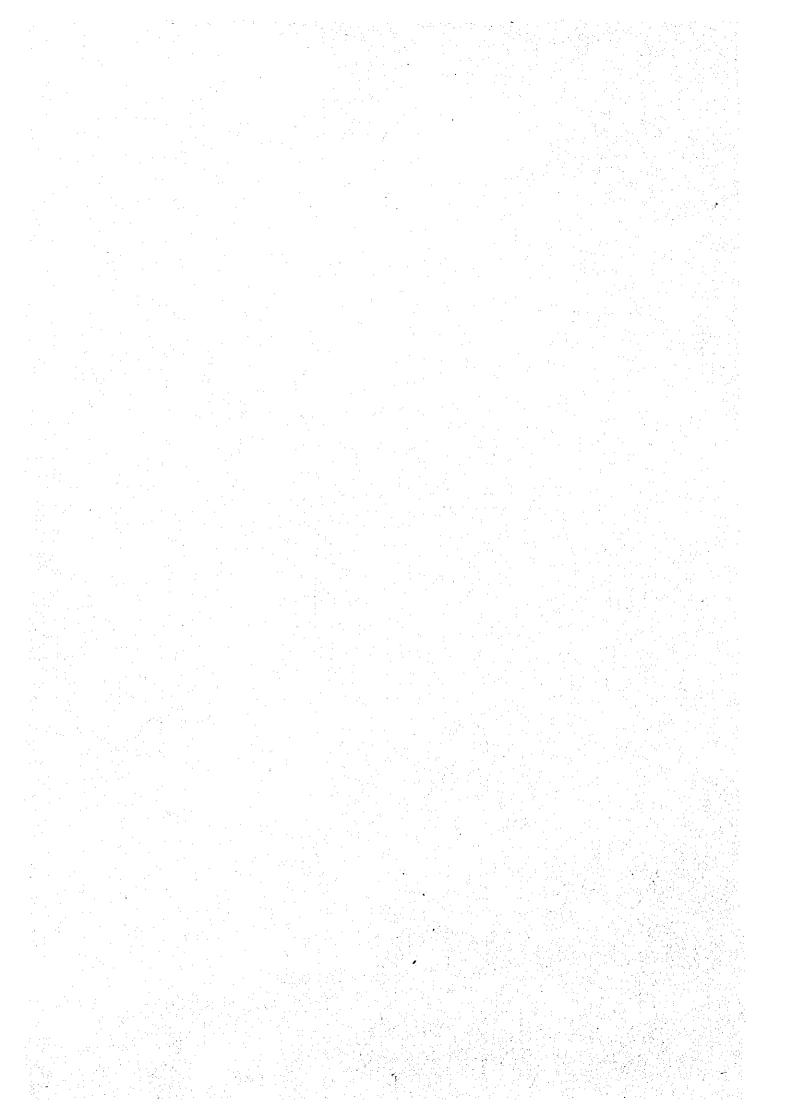




# Table 5.6 DESIGN SUMMARY OF SUPERSTRUCTURE (L=25.1m)

|               | lame of Bridge                     | Span         | 25.1m            |                                         |                                                  | Bridge Length     | Ĺ=               | 286.000                               | m                  | Horizontal A  | lignment      | ∞             | Beve       | el 90 d                               | legree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bridge          | Total Width      | ΣW= 12.700 n       | Design             | Longitudinal direction kh=                |
|---------------|------------------------------------|--------------|------------------|-----------------------------------------|--------------------------------------------------|-------------------|------------------|---------------------------------------|--------------------|---------------|---------------|---------------|------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|--------------------|-------------------------------------------|
|               | Structural Type                    | Simple Bea   | am, Post-tension | ed PC Hollow C                          | Grder (Slab)                                     | Girder Length     | ]=               | 25.900                                | m                  | Span Arran    | gement        |               | 11@25      | 5.100m                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Width           | Effective Width  | W= 10.000 n        | Seismic Coefficier | Perpendicular direction kh=               |
|               | Main Girder                        | Number       | 11               | Nos.                                    | Girder Height                                    | 1.300             | m                | Maximum C                             | Deflection by Live | SL=           | 21.9          | mm (1/ 1146)  |            |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                    | · .                |                                           |
|               |                                    | interval     | 0.990            | m                                       | Ratio of Girder                                  | r Height to Spani | at Center of Spa | an) H/L= 1/                           | 19.3               | (at Support)  | H/L= 1/       | 19.3          |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | 17_190             |                    |                                           |
|               | Cross Beam                         | Number       | 7                | Nos.                                    |                                                  |                   |                  |                                       |                    |               |               |               |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 680<br>38 158 | 1 2 000          | 10 101             |                    | 1 200 750 280                             |
|               |                                    |              | <u>'</u>         | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | l                                                | Cross Beam        | 3.1375           |                                       | Height of Cro      |               | 1.100         | m             | Jram       |                                       | . <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  | ASPHALT PAYDIENT   |                    | \$87                                      |
| :             | Type of Deck                       | Slab         |                  | Type of F                               | C Tendon                                         | 1T-15.2(B)        |                  | Interval                              | of Transverse Pre  | estressing    |               | mm            | n Diag     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | 4.4                | <u> </u>           |                                           |
| ا ا           | Specified Design                   | Strength     | ock=             |                                         | kgt/cm²                                          | Rate of           | ncrease          |                                       | k=                 |               |               |               | Section    | \$                                    | S<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\cap$          |                  | 4.666.60           |                    |                                           |
| n of Si       | Cantilever Section                 | Bendi        | ng Moment        | Slab Ti                                 | nickness                                         |                   | (                | Combined F                            | lexural Stress (kg | pf/cm²)       |               |               | Cross      |                                       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                  | (a) (b) (a)        | (a) (b) (c)        | © Ø                                       |
| Desig         | Cantilever Section                 |              |                  |                                         | mm                                               | Upper             |                  |                                       | Lower              |               |               |               |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 11            | \                | 11 • 111 -         |                    |                                           |
|               | Center of Span                     |              |                  |                                         | mm                                               | Upper             |                  |                                       | Lower              |               |               |               |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •               |                  |                    |                    |                                           |
|               | Internediate Support               | t            |                  |                                         | mm                                               | Upper             |                  |                                       | Lower              |               |               |               |            | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                    |                    |                                           |
|               | Applied Design                     | Theory       | Guyon Masonne    | et Method                               | <u> </u>                                         |                   |                  |                                       | Type of PC Tend    | on            | 12T-15.2      | ?(B)          | Exp        | pansion                               | Usir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng Loca         | tion Type        | of Expansion Joint |                    | Movable Space                             |
|               | Method of Girder                   | Erection     | Erection by Crai | ne                                      |                                                  |                   |                  | <u> </u>                              |                    |               |               |               | 1          | Joint                                 | al e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ach sup         | port             | Transflex Joint    |                    | mm                                        |
|               | <del></del>                        | Bendi        | ng Moment        | Location                                | C                                                | onbined Flexural  | Stress (tVam²)   |                                       | All                | owable Stress | (kgl/cm²)     | }             |            | Item                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit            | Specification    | n (                | Quantity           | Quantity per 1 m <sup>3</sup> of concrete |
|               |                                    | (            | (tf·m)           |                                         | Immediate aff                                    | ter Prestressing  | Al Design        | Load                                  | Immediate after    | Prestressing  | At De         | sign LOad     |            | Concret                               | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m³              | a ck= 400        | kgl/cm²            | 2891.9             | )                                         |
| <br>          | Design Section                     |              | 426.3            | Upper                                   |                                                  | 25.2              |                  | 134.1                                 | -15≦ δ             | ≤180          | -15≦          | <i>ò</i> ≤140 |            |                                       | external                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . m²            |                  |                    | 11573.             |                                           |
| n Girde       |                                    |              |                  | Lower                                   |                                                  | 133.0             |                  | 23                                    | -15≦ δ             | ≤180          | -15≦          | δ ≦140        | eriaks     | Form                                  | internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m²              |                  |                    | 6095.7             |                                           |
| of Main       | Center of Side Span                |              |                  | Upper                                   |                                                  |                   |                  |                                       |                    |               |               |               | in Mat     | Reinforcing                           | ) Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t               |                  |                    | 276.9              | 9                                         |
| esign         | :                                  | <u> </u>     |                  | Lower                                   |                                                  | <del> </del>      |                  |                                       |                    |               | <del></del> - | <del> </del>  | Μg         | Longitu                               | idinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ţ               | 10T-15.2(B       | )                  | 136.               | 5                                         |
| .             | Intermediate                       |              | }                | Upper                                   |                                                  |                   |                  | -                                     |                    |               |               |               |            | မြှေ Transv                           | verse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t               | 1T-15.2(B)       |                    | 9.3                | 3                                         |
|               | Support                            |              |                  | Lower                                   | ļ                                                | <u> </u>          |                  | * .                                   |                    |               |               |               |            | Verti                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _t              |                  |                    | · .                |                                           |
|               | Center of Main Span                |              |                  | Upper                                   |                                                  |                   |                  |                                       | - 13               |               |               |               | <u> </u>   | Tot                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !               |                  |                    | 145.1              |                                           |
|               |                                    |              |                  | Lower                                   | <u> </u>                                         | T                 |                  | ı                                     |                    |               |               |               | Ma         | aximum Stres                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 12681            | kgl/mm²            | σ ра               | = 13300 kgl/mm²                           |
|               | Shear Force                        | <del> </del> | esign Load       | <u> </u>                                | nale state                                       | 1                 | nsion Stress     |                                       | Strrup             | Vert          | ical PC To    | endon         |            | <del> </del>                          | Transmis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sion of         | Horizontal Force |                    |                    |                                           |
|               | End Support<br>Intermediate Suppor | 70.7         | tf tf            | 125.0                                   | t t                                              |                   | kgl/cm²          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    |               |               |               | Remar      | rks                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                    |                    |                                           |
| <del></del> - | Reaction                           |              | Abutment         | Pier                                    | R-max                                            | R-min             | kgf/cm²          |                                       |                    | june da       | ***           |               | }          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                    |                    |                                           |
|               | Reaction by Dead                   |              | 464.4            | 928.8                                   | <del></del>                                      |                   |                  |                                       |                    |               |               |               |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                    |                    |                                           |
| saction       | Reaction by Live I                 |              | 193.9            | 139.9                                   | <del>                                     </del> | <u> </u>          |                  |                                       |                    |               |               |               |            |                                       | in the parameter of the |                 |                  |                    |                    |                                           |
| Œ             | Total Reaction                     | <del></del>  | 658.3            | 1122.7                                  |                                                  | - <del> </del>    |                  |                                       |                    |               |               |               | <b>.</b> . | ·.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4            |                  |                    |                    |                                           |
|               | Reaction for Bea                   |              |                  | 14.4<br>14.4                            |                                                  | <del> </del>      |                  |                                       |                    |               |               |               |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                    |                    |                                           |
| <u> </u>      | <u> </u>                           |              | 1                |                                         | loor S                                           | Support)          | l                | <u> </u>                              | L                  | اـــــا       |               |               | ч          |                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                  |                    |                    |                                           |

# Table 5.7 DESIGN SUMMARY OF SUPERSTRUCTURE (L=31.0m)


|          | lame of Bridge                  | Span         | 31.0m            | : <u>:</u>     |               | Bridge Length                                    | L=                                    | 288.000                                 | m                                     | Horizontal Alig | nment             | 00                                    | Beve     | el 90         | degree     | Bridge            | Total Wioth      | ΣW= 12.700           | m Design                                | Longitudinal direction  | kh=            |
|----------|---------------------------------|--------------|------------------|----------------|---------------|--------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------|-------------------|---------------------------------------|----------|---------------|------------|-------------------|------------------|----------------------|-----------------------------------------|-------------------------|----------------|
| -        |                                 | Simple Bea   | m, Post-tensione | ed PC Hollow C | Girder (Slab) | Girder Length                                    | ]=                                    | 31.900                                  | M                                     | Span Arrange    | ement             |                                       | 9@31.    | .000m         |            | Width             | Effective Width  | W= 10.000            | m Seismic Coefficie                     | Perpendicular direction | kh=            |
| <u> </u> | Main Girder                     | Number       | 11               | Nos.           | Girder Height | 1.300                                            | m                                     | Maximum D                               | effection by Live                     | δL= 27          | 2.4 n             | nm (1/ 1384)                          |          |               |            |                   |                  |                      | · • · · · · · · · · · · · · · · · · · · |                         |                |
|          |                                 | Interval     | 0.990            | m              |               | Height to Span(                                  | at Center of So                       | n) HI = W                               | 18.2                                  | (at Support) H  | M = 1/ 1          | <br> 8 <i>2</i>                       |          |               |            |                   |                  |                      |                                         |                         |                |
|          |                                 |              | <del></del>      |                |               |                                                  |                                       | ······                                  |                                       |                 |                   | <u> </u>                              |          |               |            | 111               | <u> </u>         | 11_11                |                                         | 1 23 1 1 23 4 1         |                |
| ,        | Cross Beam                      | Number       | 7                | Nos.           | Interval of ( | Cross Beam                                       | 3.875                                 | <u>:</u>                                | Height of Cro                         |                 | 1.500             | m                                     | me       |               |            | 1111              | 1 - 1            |                      | 1111                                    | 1 2 1 1                 |                |
| i A      | Type of Deck                    | Slab         |                  | Type of F      | C Tendon      | 1T-15.2(B)                                       | :                                     | Interval o                              | of Transverse Pro                     | estressing      |                   | mm                                    | n Diag   |               | <b>4</b>   | - <del> </del>  _ | 0.1              | VELLINET SANDON      | 15 %                                    |                         | 113            |
|          | Specified Design (              | Strength     | o ck=            |                | kgf/cm²       | Rate of                                          | ncrease                               | *.*                                     | k=                                    | ·               |                   | <u> </u>                              | Section  |               |            |                   |                  |                      |                                         |                         | 120            |
| of Stat  | Cantilever Section              | Bendi        | ng Moment        | Slab TI        | nickness      |                                                  | (                                     | Combined FI                             | exural Stress (kg                     | tiom²)          |                   |                                       | Cross    |               |            | .  <br>           |                  |                      |                                         |                         | 1              |
| Design   | Cantilever Section              |              |                  |                | mm            | Upper                                            |                                       |                                         | Lower                                 |                 |                   |                                       |          |               |            | ·   ·             | စု စ စ           | 0 0 0                | 0 0 0                                   | <pre></pre>             |                |
|          | Center of Span                  |              |                  |                | mm            | Upper                                            | 14 4 4                                |                                         | Lower                                 |                 |                   |                                       |          |               | 1          | տեւյ              | nc-{1 m          | 14 • 110 •           | F-188                                   | <u> </u>                |                |
|          | Intermediate Support            | <u> </u>     | ·····            |                | mm            | Upper                                            |                                       |                                         | Lower                                 |                 |                   |                                       | 1        | * · · ·       |            |                   |                  |                      |                                         |                         |                |
|          | Applied Design                  |              | Guyon Masonne    | et Method      |               | <u> </u>                                         |                                       | 1                                       | ype of PC Tend                        | (<br>on 1:      | 2 <b>T-15.2</b> ( | (B)                                   | Ex       | pansion       | Usi        | ng Loca           | tion Type        | e of Expansion Joint |                                         | Movable Space           |                |
|          | Method of Girder                |              | Erection by Crar | ne             |               |                                                  |                                       | L                                       |                                       |                 |                   |                                       |          | Joint         | at e       | ach sup           | port             | Transflex Joint      |                                         | mm                      |                |
|          |                                 | Bendir       | ng Moment        | Location       | Co            | onbined Flexural                                 | Stress (tVam²)                        |                                         | AJI                                   | owable Stress ( | (kgl/am²)         |                                       |          | İter          | m          | Unit              | Specification    | on.                  | Quantity                                | Quantity per 1          | m³ of concrete |
|          |                                 | . (          | tf·m)            |                | Immediate aft | ler Prestressing                                 | At Design                             | Load                                    | Immediate after                       | Prestressing    | At Des            | ign LOad                              |          | Conc          | rele       | m³                | a ck= 400        | kgt/cm²              |                                         | 1.                      |                |
|          | Design Section                  |              | 697.4            | Upper          |               | 28.8                                             |                                       | 129.8                                   | -15≦ δ                                | ≦ 180           | -15≦              | δ ≦ 140                               | ] [      | F 4           | External   | m²                |                  |                      |                                         |                         |                |
| Grde     |                                 |              |                  | Lower          |               | 121.7                                            |                                       | -4.3                                    | -15≦ ∂                                | ≦ 180           | -15≤              | δ ≤140                                | serials  | Form          | internal   | m²                |                  |                      |                                         |                         | :              |
| of Mair  | Center of Side Span             |              |                  | Upper          |               |                                                  |                                       |                                         |                                       |                 | <u> </u>          |                                       | in Mat   | Reinford      | ing Bar    | t                 | <u> </u>         |                      |                                         |                         |                |
| esign (  |                                 |              |                  | Lower          |               |                                                  |                                       |                                         |                                       |                 | ·                 | <u> </u>                              | ₹        | Long          | gitudinal  | t,                | 10T-15.2(B       | 3)                   |                                         |                         |                |
| Å        | Intermediate                    |              |                  | Upper:         |               |                                                  | · · · · · · · · · · · · · · · · · · · |                                         | · · · · · · · · · · · · · · · · · · · |                 |                   | <u> </u>                              | -        | Francisco Tra | nsverse    | t                 | 1T-15.2(B        | )                    |                                         |                         |                |
|          | Support                         |              |                  | Lower          |               |                                                  |                                       | <del> </del>                            |                                       |                 | · · · · ·         |                                       | <b>'</b> |               | ertical    | ŧ.                |                  | .9 - 4               | <del></del> .                           | ļ                       |                |
|          | Center of Main Span             | 1            |                  | Upper          |               |                                                  |                                       |                                         |                                       |                 |                   |                                       |          |               | Total      | 1                 |                  |                      |                                         |                         |                |
|          | <u> </u>                        | ļ            |                  | Lower          |               | 1                                                |                                       | 1                                       |                                       |                 | · · · · · ·       |                                       | Ma       | aximum St     |            |                   | 12304            | kgt/mm²              | σρα                                     | = 13300 kgf/mm          |                |
|          | Shear Force                     | <del> </del> | esign Load       |                | nale state    | <del>                                     </del> | ension Stress                         |                                         | Stirrup<br>F                          | Vertica         | al PC Te          | ndon                                  |          | <del></del>   | or Transmi | ssion of          | Horizontal Force |                      |                                         |                         |                |
|          | End Support                     | 97.2         |                  | <b>168</b> .1  |               | -6.6                                             | kgl/cm²                               |                                         |                                       |                 |                   |                                       | Rema     | arks          |            |                   |                  |                      |                                         |                         |                |
|          | Intermediate Suppor             |              | H                |                | tf            |                                                  | kgľvcm²                               | 1.52                                    |                                       |                 |                   | - 3                                   |          |               |            |                   |                  |                      |                                         |                         |                |
|          | Reaction                        |              | Abutment         | Pier           | R-max         | R-min                                            |                                       | * * * * * * * * * * * * * * * * * * * * | <u> </u>                              |                 |                   |                                       | -        |               |            |                   |                  |                      |                                         |                         |                |
| totion   | Reaction by Dead                |              |                  |                |               |                                                  |                                       |                                         |                                       |                 |                   | · · · · · · · · · · · · · · · · · · · | -        |               |            |                   |                  |                      |                                         |                         |                |
| 88       | Reaction by Live                | <del></del>  | 209.0<br>888.5   | <del></del>    |               |                                                  | <b></b>                               |                                         |                                       |                 |                   | <u> </u>                              | -        |               | **         |                   |                  |                      |                                         |                         |                |
| :        | Total Reaction Reaction for Bea |              | 000.5            | 1,000.         | 91.3          | 03.8                                             |                                       |                                         |                                       | 1               |                   |                                       | -        |               |            |                   |                  |                      |                                         |                         |                |
| Ļ        | reaction tot Bea                | saig rau     |                  | <u> </u>       |               | Support)                                         | <u>L</u>                              | <u> </u>                                | <u> </u>                              |                 | 1                 | <u> </u>                              | 1        |               |            |                   |                  |                      | <u> </u>                                |                         |                |

# Table 5.8 (a) DESIGN SUMMARY OF SUPERSTRUCTURE (L=34.0m)

|              | Name of Bridge       | Span      | 34.0m            |               |                                       | Bridge Length            | <br>L=          | 315.000      | m                                     | Horizontal Aligna | ient C                 | $\infty$                                | Bevel     | 90            | degree     | Bridge           | Total Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΣW=                     | 12.700 m                | Design            | Longitudinal direction   kl       | h=           |
|--------------|----------------------|-----------|------------------|---------------|---------------------------------------|--------------------------|-----------------|--------------|---------------------------------------|-------------------|------------------------|-----------------------------------------|-----------|---------------|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------|-----------------------------------|--------------|
| -            |                      |           | m, Post-tensione | d PC Hollow G | Girder (Slab)                         | Girder Length            | 1=              | 34.900       | m                                     | Span Arrangem     | ent                    |                                         | <br>@34.0 | <br>)00m      |            | Width            | Effective Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W=                      | 10.000 m                | Seismic Coefficie | Perpendicular direction ki        | h=           |
|              | Main Girder          | Number    | 11               | Nos.          | Girder Height                         | <del> </del>             |                 | f            | eflection by Live                     |                   |                        |                                         |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>*</u><br>- 2 - 2 - 2 |                         |                   | J                                 |              |
|              | Main Oi Gei          |           |                  |               | · · · · · · · · · · · · · · · · · · · | I                        | ····            | L            | · · · · · · · · · · · · · · · · · · · | L                 | · · · ·                |                                         |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
| <u></u>      |                      | Interval  | 0.990            | m             | Ratio of Girder                       | r Height to Span(        | at Center of Sp | an) HVL= 1/  | 17.9                                  | (at Support) H/L: | 1/ 1/.9                |                                         |           |               |            | īm               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 11_111<br>11_111        |                   | 1.111                             |              |
|              | Cross Beam           | Number    | 7                | Nos.          | Interval of                           | Cross Beam               | 4.250           | m            | Height of Cro                         | ss Beam 1.        | 700                    | m<br>                                   | Ę,        |               |            | \$1,130.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AS TUURZA               | <u>1.311</u><br>.yp.evr |                   |                                   |              |
|              | Type of Deck S       | Slab      |                  | Type of P     | C Tendon                              | 1T-15.2(B)               |                 | Interval o   | of Transverse Pro                     | estressing        | n                      | nm                                      | Diagr     | æ             | 1          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASTRUIT PA              |                         | <b>1.</b>         |                                   |              |
|              | Specified Design S   | Strength  | ock=             |               | kgl/cm²                               | Rate of                  | increase        | !            | k=                                    |                   |                        |                                         | Section   |               | i i        | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   | :            |
| of Slab      | Cantilever Section   | Bendir    | ng Moment        | Slab Ti       | nickness                              |                          |                 | Combined Fig | exural Stress (kg                     | ľ(cm²)            |                        |                                         | Cross (   |               | 1          | _ _[             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
| esign        | Cantilever Section   |           |                  | ·             | mm                                    | Upper                    |                 |              | Lower                                 | <u> </u>          | · · .                  | ÷                                       | Ĭ         |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>@                   | o                       | 9 0 0             | <b>9</b>                          |              |
| $ ^{\circ} $ |                      |           |                  |               | mm                                    | Upper                    |                 |              | Lower                                 |                   |                        |                                         |           |               |            | 1                | <u>ilu</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | <u>11 • 311 - L.1</u>   | <u> </u>          | 1 (11 ~1 <b>½</b> 1               |              |
|              | Center of Span       | <u> </u>  |                  |               |                                       |                          |                 |              |                                       |                   | · · ·                  |                                         |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                       |                         |                   |                                   |              |
|              | Intermediate Support |           |                  |               | mm                                    | Upper                    |                 |              | Lower                                 | <u> </u>          |                        |                                         |           | <u>.</u>      | ·          | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ·                       |                   |                                   |              |
|              |                      |           | Guyon Masonne    |               |                                       |                          |                 | I            | ype of PC Tend                        | on   [12]         | 15.2(B)                |                                         | •         | ansion        |            | ng Loca          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e of Expar              |                         |                   | Movable Space                     |              |
|              | Method of Girder     |           | Erection by Crar |               |                                       |                          |                 |              |                                       |                   | . 1                    |                                         | J         | loint         |            | each sup<br>Unit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transilex               |                         | uantity           | mm  Quantity per 1 m <sup>3</sup> | of concests  |
|              | ·                    | 2         |                  | Location      |                                       | Conbined Flexural        |                 |              | Alli<br>Immediate after               | owable Stress (kg | /cm")<br>It Design L   |                                         |           | Iten<br>Concr |            | m <sup>3</sup>   | Specification of the second of | on<br>0 kgVom²          |                         | uantity           | Quantity per 1 in                 | or concrete  |
|              | Design Section       | . (       | af • m)<br>869.0 | Upper         | maneurate a                           | Rer Prestressing<br>36.7 | At Design       | 133,5        |                                       |                   | it Design €<br>15≦ δ ≦ |                                         |           | CONG          | External   |                  | 0 EK- 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v Kilacili              |                         |                   |                                   |              |
| Girder       | Design Section       |           | 003.0            | Lower         |                                       | 102.7                    |                 | -15.0        | <del></del>                           |                   | l5≦ δ ≦                |                                         | Sie       | Form          | Internal   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
| of Main G    | Center of Side Span  |           |                  | Upper         |                                       |                          |                 |              | 10=0                                  | 22 100            |                        |                                         | Materi    | Reinforcia    |            | - t              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <u> </u>                |                   |                                   | <del> </del> |
| 5            | ,                    |           | }                | Lower         |                                       | <u></u>                  |                 |              |                                       |                   |                        |                                         | Main      | <del></del>   | tudinal    | t                | 10T-15.2(I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B)                      |                         |                   |                                   |              |
| Desi         | Intermediate         |           |                  | Upper         |                                       |                          | <u> </u>        |              |                                       |                   |                        |                                         | <u> </u>  | Tran          | sverse     | t                | 1T-15.2(E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3)                      |                         |                   |                                   |              |
|              | Support              |           |                  | Lower         |                                       |                          |                 |              |                                       |                   |                        |                                         | 1         | Ve            | rtical     | t                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
|              | Center of Main Span  |           |                  | Upper         |                                       |                          |                 |              |                                       |                   | 1.                     |                                         |           | T             | olal       | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
|              |                      |           | ·                | Lower         |                                       |                          |                 |              |                                       |                   |                        |                                         | Ma        | ximum Str     | ess in Ter | xdon             | 1241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 1                     | gf/mm²                  | σ pa              | = 13300 kgt/mm²                   |              |
|              | Shear Force          | at De     | esign Load       | at Uitin      | nate state                            | Diagonal To              | ension Stress   |              | Stirrup                               | Vertical          | PC Tendon              |                                         |           | Means fo      | r Transmi  | ssion of         | Horizontal Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                         |                   |                                   |              |
|              | End Support          |           | tf               | 191.8         | 3 tf                                  | -7.0                     | kg!/cm²         |              |                                       |                   |                        |                                         | Remar     | ks            |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | r                       |                   |                                   |              |
|              | Intermediate Suppor  | t         | ť                |               | u                                     |                          | kgf/cm²         |              |                                       | 4,873.5           |                        |                                         |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
|              | Reaction             | <u> </u>  | Abutment         | Pier          | R-max                                 | R-min                    |                 |              |                                       |                   |                        |                                         |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠.                      |                         |                   |                                   |              |
| gog          | Reaction by Dead     | Load : Rd | 799.9            | 1599.8        | 73.                                   | 3 73.3                   |                 |              | 1. 1841. 唐                            |                   |                        | * * * * * * * * * * * * * * * * * * * * |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
| Reaction     | Reaction by Live (   | load:RL   | 225.9            | 225.9         | 38.                                   | 6 2.6                    |                 |              |                                       |                   |                        |                                         | l .       |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
|              | Total Reacto         | n:R       | 1025.8           | 1825.7        | 7 111.                                | 9 75.9                   |                 | ,            |                                       |                   |                        | 1, 1, 1                                 |           |               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                         |                   |                                   |              |
| 1            | Reaction for Bea     | rina Dad  |                  |               |                                       |                          | 1 1             |              |                                       | 1 1               | 1                      |                                         | 1         | 4.7           |            |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                         |                   | and the second second             |              |

# Table 5.8(b) DESIGN SUMMARY OF SUPERSTRUCTURE (L=3@30.0m)

|             | Name of Bridge                         | Span 3@30.0m                                   |                      |                    |               | Bridge Length                 | <u>L</u> ±      | 360.000                     | 360.000 m                 |                           | Horizontal Alignment 900 |                         | Bev             | el 90 de                              | egree                     | Bridge                      | Total Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h ΣW=       | 10.000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Design                  | Longitudinal direction | n kh=                                            |
|-------------|----------------------------------------|------------------------------------------------|----------------------|--------------------|---------------|-------------------------------|-----------------|-----------------------------|---------------------------|---------------------------|--------------------------|-------------------------|-----------------|---------------------------------------|---------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------------------------------|
| <del></del> |                                        | 3 span continuous post-tensioned PC box girder |                      |                    |               |                               | 29.9m+30        | 29.9m+30.0m+29.9m           |                           | Span Arrangement 4'(2     |                          | 9.5m+30.0m+29.5m)       |                 | )                                     | Width                     | Effective Widt              | W=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.000 m     | Seismic Coefficien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Perpendicular direction | kh=                    |                                                  |
|             | Main Girder                            | Number                                         |                      | Nos.               | Girder Height | 1.900                         | m               | Maximum £                   | Deflection by Live        | ∂l≃                       | 23.0                     | mm (1/ 1478)            |                 | · · ·                                 | <u></u>                   | ···                         | National Action Control of the Contr |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <b>!</b>              |                        | <del>                                     </del> |
|             |                                        | Interval                                       |                      | m Ratio of Girder  |               | Height to Span(at Center of S |                 | pan) H/L= 1/ 17.9           |                           | (at Support) H/L= 1/ 17.9 |                          | 17.9                    |                 |                                       |                           |                             | 10000<br>1000 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | Cross Beam                             | Number                                         |                      | Nos. Interval of C |               | Cross Bearn 4.250             |                 | ) m Height of Cro           |                           | oss Beam 1.70             |                          | m                       |                 |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 000                    |                                                  |
|             | Type of Deck                           | Slab RC Slab                                   |                      | Type of PC Tendon  |               |                               |                 | Interval of Transverse Pre- |                           | estressing                | stressing mm             |                         | Siagram         |                                       |                           |                             | 250750 1000 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                    | <u>025</u> 0           |                                                  |
| į .         | Specified Design                       |                                                |                      | kgf/om²            |               | Rate of increase              |                 | k=                          |                           |                           |                          | Logo                    |                 |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1300 5250               |                        |                                                  |
| of Slab     | Cantilever Section                     | Bending Moment                                 |                      | Slab Thickness     |               |                               |                 | Flexural Stress (kgl/cm²    |                           | ን<br>                     |                          | S Se                    |                 |                                       |                           |                             | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
| Design o    | Cantilever Section                     | 6.49 t/m/m                                     |                      | 500 mm             |               | σs 101                        |                 | 1 kg//cm2                   |                           |                           |                          | ပ                       |                 |                                       |                           |                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | Center of Span                         |                                                |                      |                    |               |                               |                 |                             |                           |                           |                          |                         |                 | · · · · · · · · · · · · · · · · · · · |                           |                             | 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 6500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 50                     |                                                  |
|             |                                        |                                                |                      | 500 mm             |               |                               | <del></del>     | 1 kgf/cm2<br>6 kgf/cm2      |                           |                           |                          |                         |                 |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                       |                        |                                                  |
|             | intermediate Support Applied Design    | <u>لــــ</u>                                   | tfm/m<br>Beam theory | 500                | 111116        | σs 826                        |                 |                             | Type of PC Tends          |                           | n   12T-15.2(B)          |                         |                 | Expansion (                           |                           | ng Lóca                     | tion Type of Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ansion Joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Movable Space           |                        |                                                  |
|             | Method of Girder                       |                                                |                      | hod                |               |                               |                 |                             |                           |                           | 121-10.2(0)              |                         |                 | Joint                                 |                           | ach sup                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transfi     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | mm                     |                                                  |
|             |                                        | <del></del>                                    | ng Moment            | Location           | C             | onbined Flexural              | Stress (tf/cm²) | Allo                        |                           | owable Stre               | wable Stress (kgf/cm²)   |                         |                 | Item                                  |                           | Unit                        | Specifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Juantity                | Quantity per 1         | m³ of concrete                                   |
|             |                                        | (tf • m)                                       |                      |                    | Immediate aft | er Prestressing               | At Desig        | n Load                      | Immediate after Prestress |                           | ng At Design LOad        |                         |                 | Concrete                              |                           | m³                          | σck= 400 kgl/cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 718.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                        |                                                  |
| સ           | Design Section                         |                                                |                      |                    |               |                               |                 |                             |                           | 2 .                       |                          |                         |                 | Form -                                | External                  | m²                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1128.5                  |                        |                                                  |
| in Gird     |                                        |                                                |                      | Lower              |               |                               |                 |                             |                           |                           |                          |                         | iterials        |                                       | internal                  | 1 m²                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 915.6                   |                        |                                                  |
| of Main     | Center of Side Span                    | 2549.3                                         |                      | Upper              | · · ·         | 23.7                          |                 | 61.3                        | -15≦ ∂                    |                           |                          |                         | fain Ma         | Reinforcing                           |                           | 1                           | 40T 4E 0(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 80.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>             |                        |                                                  |
| Design      | lalarova fiela                         | -2203.4                                        |                      | Lower              |               | 89.9<br>49.8                  |                 | 6.1<br>2.8                  |                           |                           | <del> </del>             | 15≦ ∂ ≤140<br>0≤ ∂ ≤140 |                 |                                       | gitudinal t<br>ensverse t |                             | 12T-15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (8)         | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 0                      |                                                  |
|             | Intermediate<br>Support                |                                                | -2203.4              | Upper<br>Lower     |               |                               | 4.3             | 50.5                        |                           |                           | ╂                        | -15≦ ∂ ≤140             |                 | S Transv                              |                           | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | Center of Main Span                    | 1745.2                                         |                      | Upper              |               | 15.2                          |                 | 40.9                        | 4                         |                           |                          | -15≦ ∂ ≦140             |                 | Tol                                   |                           | t                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.6                    |                        | · · ·                                            |
|             |                                        |                                                |                      | Lower              |               | 77.3                          |                 | 15.7                        | -15≦ ∂                    | -15≦ ∂ ≦180               |                          | -15≦ δ ≦140             |                 | Maximum Stress in                     |                           | Tendon                      | 118.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7         | .7 kgf/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a pa=                   | 133 kgf/mm             | !                                                |
|             | Shear Force                            | er Force at Design Load                        |                      | at Ultimate state  |               | Diagonal Tension Stress       |                 | Stirrup                     |                           | Vertical PC Tendon        |                          | endon                   | Means for Trans |                                       | Transmis                  | mission of Horizontal Force |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | End Support                            | 390.0                                          | 390.0 tf             |                    | ť             |                               | kgl/cm²         | D19                         | ctc 250                   | - No.                     |                          |                         | Rem             | arks                                  |                           | :                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ing significant and the si |                         |                        |                                                  |
| <b> </b>    | intermediate Suppor                    |                                                | <del></del>          | 904.1              | tf            | -7.2                          | kgt/cm²         | D19                         | clc 125                   |                           | <u> </u>                 |                         |                 |                                       | .*                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | Reaction                               |                                                | Abulment 297.1       | Pier               |               |                               |                 | <u> </u>                    |                           |                           |                          |                         | -               |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
| Reaction    | Reaction by Dead<br>Reaction by Live I | <u> </u>                                       |                      | 696.2<br>330.5     | <b></b>       |                               |                 |                             |                           |                           |                          |                         |                 |                                       | · .                       | *.<br>* .*                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
| æ           | Total Reaction                         |                                                | 471.0                | 1026.              | <del> </del>  |                               |                 | <del> </del>                |                           |                           |                          |                         |                 |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
|             | Reaction for Bea                       |                                                |                      |                    |               |                               |                 |                             |                           |                           | 1                        |                         |                 |                                       |                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |
| <u> </u>    |                                        |                                                | li                   |                    | <u> </u>      | L                             | L               | -L                          | 1                         | J                         |                          |                         | 4—              |                                       |                           | <del> </del>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                        |                                                  |

