high annual average growth rate of 9.4% in the industrial sector and 11.8% in the service sector over the past three years from 1993 to 1995.

Amphoe Bang Saphan is basically considered to be an agri-based area with approximately 87% of worker population of the Amphoe being engaged in the agricultural sector. The increase in the number of workers in the industrial and service sectors as stated above can be explained by the recent industrial development through the establishment of major steel factories in the Amphoe. However, since the population trend in the Amphoe shows a fairly low annual average growth rate of 0.6%, it can be assumed that most workers engaged in both sectors have been transferred internally from the agricultural sector within the Amphoe.

Local Economy

A. A. Barris

Local economy of Amphoe Bang Saphan is primarily based on agriculture, but it also involves the industrial and service sectors. As stated previously, approximately 87% of the total labor force of the Amphoe is engaged in the agricultural sector which covered a total area of 546.2 km² as of 1993. Major agricultural activities sector in the Amphoe are coconut plantation, fisheries, and stock farming.

Most farmers living inland acquire their income principally from coconut plantation with supplemental income from stock farming and local employment. Major crops are coconuts, para trees, rambutan, durian, mango, cashew, pineapple, corn, ginger, and chili. Rice is not grown in large amounts and therefore not considered as a major crop in the Amphoe. Fishermen living along the coastal area mainly gain their income (approximately 80% of the total) from local fishing. However, since fishermen also own some agricultural lands in the coastal area, they also earn supplemental income from coconut plantation. Like farmers, some fishermen obtain supplemental income through local employment as well. Major fish are pra too, tuna, shrimp, crab, and oyster. In addition to fishing, shrimp culture is also practiced but at a small scale. Fish processing factories are located near fishing villages to produce fish feeds for livestock. In terms of marketing, most farm and fishing products are sold locally and some are also sold at markets close to Bangkok and its surrounding area.

Besides the agricultural sector, the industrial sector has been playing an important role in Amphoe Bang Saphan in recent years, generating employment opportunities for the local communities. A steel-based industry is the largest one at present, employing about 1,000 workers.

Land Use and Land Ownership

According to Table F.1.9, 34.3% or 334.9 km2 of total fruit tree and crops lands in Changwat Prachuap Khiri Khan are located in the Amphoe. This is the largest share among the Amphoes in the changwat. Coconut plantations then represent the largest segment of fruit and crops in the Amphoe. According to interviews of local people, most farmers in Amphoe Bang Saphan have their own lands and are mostly engaged in coconut plantation. Since their lands are divided into small parcels, it is rather difficult to identify land ownership clearly and accurately.

Income Distribution

According to Table F.1.10, the majority of households in Amphoe Bang Saphan earn an annual income of approximately 20,000 bath or more. They account for 6,760 households or 53.6% of the total households in the Amphoe. Compared to other Amphoes, household income in the Amphoe is close to the changwat's average in each income class. The minimum wage for an unskilled worker as of 1995 was 118 bath per day in Changwat Prachuap Khiri Khan and 145 bath in Bangkok and other major cities.

General Education

In terms of quality and quantity of labor force available for future development in Amphoe Bang Saphan, the Amphoe has not been well developed yet. At present, the number of secondary school graduates in the Amphoe is estimated to be around 690 per year, and the number of graduates employed in the industry sector is anticipated to be at around 130 only, assuming that 15% of secondary school graduates are employed in the local industrial sector. According to some interviews of local government officers and industrial factory managers in the Amphoe, most workers employed locally are not educated well enough up to a high school diploma. In fact, there are no university level educational institutions in Amphoe Bang Saphan as well as in Changwat Prachuap Khiri Khan. However, there is a semi-higher educational institution called the Rajabhat Institute Petchaburi, which is a public institution offering bachelor degree in a relatively wide variety of subjects for students in the changwats of Petchaburi and Prachuap Khiri Khan.

In Amphoe Bang Saphan, the number of students in 1995 totaled 13,873, consisting of 2,093 (15.1%) in pre-schools, 7,052 (50.8%) in primary schools, 715 (5.2%) in extended primary schools, and 4,013 (28.9%) in secondary schools. In the past four years from 1992 to 1995, the number of schools has not increased significantly.

However, increase in the number of students has been observed in pre-schools and secondary schools with annual average growth rates of 10.1% and 18.5%, respectively, as illustrated in Table F.1.11. This trend reflects the latest national development policy in education that priority should be given to expand the number of pre-schools to further build up basic education as well as to expand the number of secondary schools to develop the trained workers needed for the further development of the country.

In terms of the ratio of primary school graduates going on to a secondary school in Amphoe Bang Saphan, the ratio for the Amphoe is 107.3%. This is higher than the average ratio of 91.9% of Changwat Prachuap Khiri Khan, according to Table F. 1.12. It should be noted that the ratio of the Amphoe and Amphoe Pran Buri exceeded 100% in 1995, due mostly to the fact that some primary school graduates did not go on to secondary school but returned to school sometime later.

Vocational Education

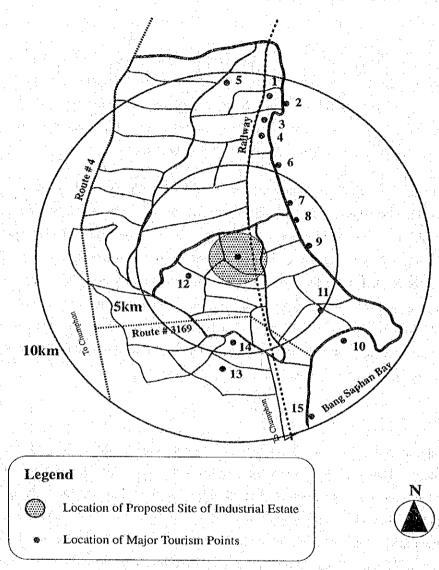
The first vocational school in Amphoe Bang Saphan was established in May 1996 by the Department of Vocational Education under the Ministry of Education. The vocational school is then called Bang Saphan Industrial and Commercial College, which offers three kinds of formal vocational education programs: a 3-year vocational certificate program (upper secondary level), a 2-year technical certificate program (junior college level), and a 2-year diploma program (university level). For a 3-year vocational certificate program, 10 courses are available: auto mechanics, electrical engineering, welding, accounting, trading, electronics, mechanical engineering, dress making, food/nutrition science, and construction. For a 2-year technical certificate program: industrial engineering, commercial science, and domestic science. For a 2-year diploma program: auto mechanics, electrical engineering, welding, mechanical engineering, accounting, and secretary service.

Public Health

According to information obtained from Bang Saphan Community Hospital under the Ministry of Public Health as presented in Table F. 1. 13, there is only one hospital for the local community. The number of patients visiting the hospital has increased recently, particularly during construction of and after establishment of the steel factories, due mostly to the traffic accidents caused by commercial vehicles passing through the Amphoe. In addition to the hospital, public hygiene stations and public health centers are also located in the Amphoe. The public health personnel includes 4

F - 6

physicians, 1 dentist, and 1 pharmacist. All these numbers are below the average of the changwat.


The most prevalent diseases observed in Amphoe Bang Saphan are the diseases of the respiratory system, digestive system and poisoning and violence, as presented in Table F.1.14. According to Bang Saphan Community Hospital, most cases of diseases of the digestive system have been reported to be diarrhea, since one of the main local foods in the Amphoe is fresh fish caught locally.

In Amphoe Bang Saphan, water sources locally available are mainly shallow wells, deep wells, and rivers. The water supply system uses combined water from both deep wells and rivers and distributes drinking water by pipe only to sanitary districts in the Amphoe. In other areas of the Amphoe, drinking water is supplied mainly in the form of bottled water for individual consumers and by water tank trucks for large consumers, both of which are provided by local private water venders. Water taken from shallow wells either individually or communally is used only for bathing and washing, since it is mostly undrinkable. Under these circumstances, water-born diseases are generally not observed in the Amphoe.

<u>Tourism</u>

In Amphoe Bang Saphan, a total of 15 major tourism points are identified, as presented in Table F.1.15. Of these, 5 tourism points are located near the proposed site of the industrial estate, namely Ban Nhong Mongkon Beach in the area of Tambon Thongchai, Ban Don Sam Ran Beach, Ban Thung Lang Beach and Klang Aow National Park in the area of Tambon Maeramperng, and Kao Boat Temple in the area of Tambon Kamnert Noppakhun. These tourism points are approximately 5 km away from the proposed site of the industrial estate. Their locations are presented in the figure below.

F - 7

Major Tourism Points in Amphoe Bang Saphan

esse, esperator, essente do sejatado encidad

Note: The number of each tourism point is referred to the site number in Table F.1.15.

F.2 Environmental Impact Assessment

This section forecasts the environmental impact of the industrial activities on the air and water quality after operation of the industrial estate in the year 2011 in the Bang Saphan area. The impact on the air and water quality by pollution sources are evaluated by the use of environmental models. In the case of air quality, a so called diffusion model is normally adopted and the environmental impact is calculated using computer programs. And for estimating water pollution, a mixing model is adopted.

For forecasting the environmental impact caused by the industrial activities in the Bang Saphan area, the iron/steel making industry and the thermal power plant are assumed to exert large influence on the environmental quality in this area. Therefore in this study, in addition to the environmental impact caused by the activities of the industrial estate, those caused by the iron/steel making industry and the thermal power plant are also considered. Furthermore, the readily available data and information which characterize the emissions or effluents, meteorology and air/water chemistry of the project area were utilized for estimating the environmental impact.

F.2.1 Impact of Project Implementation

If the Bang Saphan I/E is not implemented in the proposed area, it is likely that the area will remain roughly as it is now. The implementation of the industrial estate will have both a direct and an indirect impact on the surrounding areas. The largest environmental impact of the project implementation is likely to occur during construction activities such as excavation, landfilling, construction of buildings and infrastructure. After the completion of the project, pollutants from factories such as air emissions, water effluent and disposal of solid and liquid wastes have potentially damaging environmental impacts. Furthermore, the new industrial estate will increase traffic, and it will enhance demand for housing and services in the area. Implementation of the industrial estate will also increase other activities and business in the area, and thus increase the number of workplaces in the service sector. The landscape will change totally from the existing coconut plantations to the factory buildings. Therefore, from the environmental conservation standpoint, it is necessary to pay careful attention to prevent pollution and changes during the construction and operation, and it is also necessary to consider how the landscape of the project will blend into the surrounding area.

During the construction phase, fugitive dust, sediments and erosion from construction activities will be the major pollutants which affect local air and water quality. And during the operation phase, stack emission gases and effluent waters from factories will have the most important influence on the environment in and around the Bang Saphan area. Therefore, proper measures should be taken to mitigate and control these pollutants, such as proper construction techniques, flue gas desulfurization process, wastewater treatment facilities, etc. Table F. 2.5, Table 2.6 and Table F.2.7 indicate the estimated of significant indices of gaseous emission and water effluent loads by type of industry. And the environmental impact, mitigative measures and monitoring plan in regard to the main items such as physical resource, biological resource, etc. in the Bang Saphan area are summarized in Table F.2.3 and Table F.2.4 for the construction phase and operation phase respectively.

F.2.2 Air Pollution

Stack effluent gas rises up and diffuses in the atmosphere due to the effects of exhaust velocity and buoyancy caused by high stack gas temperature. In order to know the impact of effluent gas from stack, it is necessary to calculate the ambient ground level concentration in the objective area. The ambient ground level concentration of effluent gas from stack can be calculated and predicted by using the smoke plume-puff formulae mentioned in Table F.2.3. And these calculations contain many assumptions which are shown below, such as meteorological conditions, emission gas volume, concentration of pollutants, etc. In this study the ambient concentration of stationary sources in the Bang Saphan area including the iron industry and the thermal power plant was forecast using computer programs with regard to significant air pollution indices of SO_2 , NO_2 and TSP. The coal-fired thermal power plant of IPP to be built in the Bang Saphan area with a capacity of 1,400 MW will be the largest contributor to air pollution.

(1) Condition and assumption for calculation

Meteorological condition

Items	Data collected at	Year
Wind direction	Prachuap Khiri Khan station	1993 - 1995
Wind speed	Prachuap Khiri Khan station	1993 - 1995
Solar radiation	Bangkok	1993 - 1995
Temperature	Prachuap Khiri Khan station	1986 -1995

Background concentration of SO₂, NO_x and TSP

Background concentration of SO_2 , NO_x and TSP in the Bang Saphan area are shown in Table F.1.2.

Emission source

Pollution loads

Pollution loads concerning SO_2 , NO_x and TSP were estimated as shown in Table F.2.5 and F.2.6. The concentrations of pollutants discharged into the air are assumed as follows by type of industry and by pollutant.

	Industrial Estate	Iron/Steel Industry	Thermal Power Plant
$\overline{SO_2(ppm)}$	356	356	320 (*)
NO, (ppm)	93	93	350 (*)
TSP (mg/m3)	300	300	120 (*)

(*): Emission standards for a new power plant

Stack height and effluent gas temperature

Type of Industry	Stack Height	Effluent Gas Temp.
Industrial Estate	20 m	230 °C
Iron/Steel group	100 m	150 ℃
Thermal power plant	150 - 200 m	150 °C

Operating time

Industrial Estate	: 12 hours/day (7:00 p.m 7:00 a.m.)
Iron/Steel group	: 24 hours/day
Thermal power plant	: 24 hours/day

Diffusion formula

In order to obtain the long-term average concentration of SO_2 , NO_x and TSP, plumepuff formulae indicated in Table F.2.3 were used for the computer calculation according to the meteorological and emission conditions.

Calculation of Long-term average concentration

Long-term average concentration, in other words annual average concentration, is obtained by averaging over 8,760 hr (one year) of one-hour average concentrations which can be calculated on the basis of emission and meteorological data for one year

by using the above mentioned equations. Actual calculation is carried out by dividing meteorological conditions into a few classes. Thus long-term average concentration can be obtained by multiplying the corresponding concentration by the probability of occurrence of the class. Namely,

$$\mathbf{C} = \sum_{k \neq i} \mathbf{C}_1 (\mathbf{D}_i, \mathbf{V}_j, \mathbf{ak}) \bullet \mathbf{f}_1(\mathbf{D}_i, \mathbf{V}_j, \mathbf{ak}) + \sum_{k \neq i} \mathbf{C}_2 (\mathbf{ak}) \bullet \mathbf{f}_2(\mathbf{ak})$$

where C: annual average concentration; C_1 (D_i , V_j , ak): 1 hr concentration at wind direction D_i , wind speed V_j and stability ak (windy condition, calm 1 condition); $f_1(D_i, V_j, ak)$: probability of occurrence of wind direction D_i , wind speed V_j and stability ak (windy condition, calm 1 condition); C_2 (ak): 1 hr concentration at stability ak (calm 2 condition); $f_2(ak)$: probability of occurrence of stability ak (calm 2 condition).

Calculation of effective stack height

Following two formulae were used for the calculation of effective stack height.

	Windy condition	CONCAWE formula
	Calm condition	CONCAWE formula and Briggs formula
	- CONCAWE fo	rmula
ì	Δ H = 0.1	75 $Q_{\rm H}^{1/2} / u^{3/4}$
	— Briggs formula	

 Δ H = 1.4 Q_H^{1/4} (d θ /dz)^{-3/8}

where, Δ H: raising height (above stack, m); u: wind speed (m/sec); d θ /dz: vertical gradient of potential temperature (°C/m); Q_H: heat emission of stack gas (cal/sec).

The emission rate of heat Q_{μ} can be given by

$$Q_{\rm H} = \rho Q_{\rm G} C_{\rm p} \Delta T$$

where, ρ , C_p : density $(1.293 \times 10^3 \text{ g/Nm}^3)$ and specific heat at constant pressure (0.24 cal/deg. g) of stack gas, respectively; Δ T: temperature difference between air and stack gas (°C); Q_G : stack gas emission rate (Nm³/sec)

(2) Result of calculation

Equal-concentration contours with regard to SO_2 , NO_x and TSP are illustrated in Figures F.2.1 ~ F.2.3 respectively and the following table indicates maximum ground level concentrations. The result of calculation shows that the concentrations of SO_2 , NO_x and TSP are all within the ambient air quality standard of Thailand as shown in Table F.2.12 as of the year 2011 when the factories in the Bang Saphan area, which are factories in the industrial estate, the iron/steel making mills and thermal power plant, are into operation. It is assumed that the concentrations of NO_x and TSP will not change remarkably as compared with those of present concentrations. However, the concentration of SO_2 is forecast to become relatively high compared with the present concentration in a near range of the industrial zone.

			Air	Quality Stand	lards
	Maximum Ground Level Concentration	Ambient Concentration (Reference)*	l-hr average value	24-hr average value	I-yr average value
SO ₂ (mg/m ³)	0.034	0.003		0.30	0.10
NO ₂ (mg/m ³)	0.012	0.017	0.32	~	
TSP (mg/m ³)	0.008	0.096		0.33	0.10

Maximum Ground level Concentration in Bang Saphan Area

Note: * Data measured during March 12 to 15, 1995, in Bang Saphan area.

F.2.3 Water Pollution

Wastewater generated from the industrial estate is to be treated by a central wastewater treatment facility to be installed in the I/E. The central wastewater treatment facility receives wastewater from factories in the I/E. Each factory should pre-treat the wastewater previously before discharging it to the central facility. This pre-treated wastewater in each factory, which is discharged to the central treatment facility, should conform with IEAT's standard shown in Table F.2.15. Treated wastewater in the central treatment facility should meet the industrial effluent standards provided by the Ministry of Industry. With regard to the wastewater generated from iron/steel making industry, it is also treated by the treatment facility installed in the site.

(1) Characteristics of wastewater by type of industry

The composition of industrial wastewater is complex and it varies largely according to the difference in the manufacturing process even among the same types of manufacturing factories. However, it is necessary to understand the characteristics of the wastewater to be generated for formulating appropriate mitigation measures. Furthermore, each factory should make every effort to minimize generation of wastewater by adopting water saving techniques such as recycling and reuse of wastewater. Table F.2.4 shows characteristics of wastewater according to the type of manufacturing industry.

(2)Estimate of quantity of wastewater generated

In accordance with the IEAT criteria for wastewater treatment in the I/E, total wastewater to be treated can be estimated at 80% of water consumption. Table F.2.7 summarizes the quantity of wastewater by type of industry. This table also indicates the effluent loads of wastewater in connection with the major pollution indices of BOD and suspended solid (SS) when the wastewater is discharged to the receiving water with a value of industrial water effluent standards.

(3)Influence of effluent water on the receiving water

> Wastewater is discharged into a receiving water after being treated at the central wastewater treatment facility. In this study, the receiving water is assumed to be the Mae Ramphung river. Pollutants discharged into the river are mixed with water and diluted. The factors influencing the dilution are : (a) the Brownian movement of the pollutant particles in water, (b) the density current caused by differences in water density and in pollutant concentrations, and (c) the turbulent flow resulting from disorder of water flow. Of these, the contribution of molecular migration due to the Brownian movement is very small, and the effect of turbulent diffusion caused by wind, changes of water flow rate and water depth, and water bottom conditions is generally very important.

> In rivers, dilution and advection of pollutants proceed with the linear flow of water downstream. In this study, it is assumed that the treated wastewater is discharged into the Mae Ramphung river and mixed completely. Hence, concentrations of pollutants are determined by the flow rate of river water, and can be simply expressed by the following equation:

> > Pollutant Concentration C = $\frac{C_0q_0 + C_1q_1 + C_2q_2}{q_0 + q_1 + q_2}$

F - 14

where, C_0 : Average concentration of a given pollutant in river water (mg/l); q_0 : Flow rate of river water (Mae Ramphung river = 135 MCM/year); C_1 , C_2 : Concentration of the pollutant in wastewater flowing into the river (mg/l) (BOD = 20 mg/l, SS = 30mg/l); q_1 , q_2 : Flow rate of wastewater (m³/day).

The flow rate of wastewater and the concentration of pollutants in wastewater which were used for the calculations are summarized in Table F. 2.7. The following table shows the forecast of pollutants concentration in the Mae Ramphung river in connection with BOD and SS when the treated wastewater from the industrial estate and the iron/steel making industry is discharged into the river. A BOD value of 8 ppm is still admissible considering the fact that toxic waste will be removed in the wastewater treatment facility, however further degradation of the river water should be avoided and more high grade treatment of wastewater should be considered after 2011.

Forecast of Pollutants Concentration in Mae Ramphung River

	Concentration to be Forecast	
BOD ₅ (mg/l)	8.2	2 - 6
SS (mg/l)	17.5	3 - 22

* : Data at Klong Maerampung, 1994 - 1996. Average is used for the forecast.

F.2.4 Solid Waste Disposal

(1) Load of Solid Waste

Solid wastes generated as a result of human activities are divided into two categories. One is municipal solid waste and the other is industrial solid waste. Furthermore, industrial solid wastes are classified into two types of waste, those that present a hazard to the environment as a result of improper disposal or handling, and those that do not.

1) Municipal Solid Waste

Municipal wastes generated in the Bang Saphan area are disposed now by dumping to the ground and burning. IEAT indicates that the waste generation rate in residential and commercial zone is 0.8 kg per person per day. Table F.2.8 shows the conditions of existing municipal solid disposal in the Bang Saphan area.

When the Bang Saphan I/E is implemented in the proposed area, the total residential population in the year of 2011 is estimated to be 127,000 - 160,000 including current residents and natural growth of the population of Bang Saphan District. This means that the municipal waste generated from residential and commercial zone in the Bang Saphan area in 2011 will increase three or four times in quantity and this demands the establishment of appropriate waste collection systems and disposal methods such as sanitary landfill and incineration. The volume of municipal waste to be generated in the Bang Saphan area in 2011 is estimated at 37,000 to 47,000 tonnes per year.

Industrial Solid Waste

2)

Industrial wastes are generally divided into two categories, general waste and hazardous waste. General waste does not present a hazard to the environment. Hazardous waste has physical, chemical, or biological characteristics which require special handling and disposal procedures to avoid risks to health and/or adverse environmental effects. As described in the Interim Report, the Department of Industrial Works (DIW) gave a definition of industrial hazardous wastes in the Notification No. 25 in 1988.

Wastes, both general and hazardous ones, generated in the Bang Saphan I/E include coal ash from the thermal power plant, refractories from the steel industry, organic sludge, wastewater treatment sludge, sludge and slurries containing chemicals, and off-specification products. Some of these wastes may contain heavy metals, chlorinated hydrocarbons and other chemicals, and require special care in disposal. Table F.2.9 indicates an example of existing waste management practice in Thailand.

IEAT has presented the design criteria for solid wastes disposal. According to the IEAT's criteria, solid waste generation rate in industrial estates is 18 kg per rai per day and the quantitative ratio of hazardous waste to total wastes generated is 10% to 15%. Table F.2.10 summarizes the estimated general wastes and hazardous wastes which would be generated in the Bang Saphan area. In this table, the ratio of hazardous wastes generated from general manufacture is assumed to be 15%.

(2) Treatment and Disposal of Solid Wastes

1) General Wastes

For the treatment and disposal of general wastes, there are two methods. One is by landfill and the other is by incineration. IEAT recommends to use incinerator or sanitary landfill for the treatment and disposal of general wastes. The table above indicates that the amount of general wastes to be treated in the industrial estate by these two methods is about 10,000 tonnes per year, and 150,000 tonnes and 480,000 tonnes per year in the iron/steel industry and the thermal power plant respectively. Refractories generated from the iron/steel industry will be reclaimed, and more than half of remaining wastes will be treated by landfill. IEAT will charge factories a treatment fee depending on the quantity and quality of wastes for incineration. Facilities to be equipped in the disposal site and incinerator are indicated in Table F.2.11 in accordance with the IEAT's design criteria.

2) Hazardous Wastes

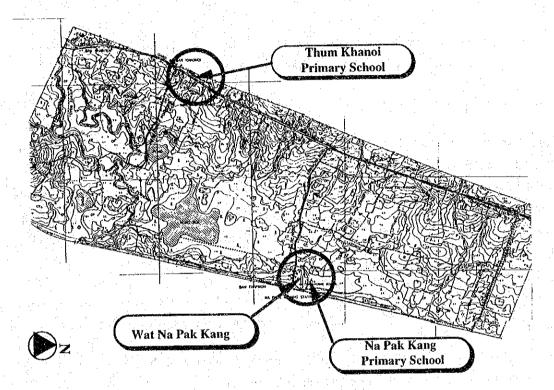
A hazardous waste treatment facility should be constructed in the I/E area or adjacent to the I/E area for treatment and disposal of hazardous wastes generated from the Bang Saphan industrial estate. The table listed above shows that the total amount of hazardous wastes to be treated is about 1,800 tonnes per year. The Ministry of Industry (MOI) has the responsibility for treatment and disposal of hazardous wastes and has the guideline to implement an industrial waste treatment center. MOI has already established a new company, the General Environmental Conservation (GENCO), by a joint investment with G.C.N. Holding Co., Ltd., for constructing treatment centers. Considering these precedent examples, the facilities for treatment and disposal of hazardous wastes generated from the Bang Saphan I/E will be constructed and managed by a joint venture between the government and private sectors.

MOI will set up the standards for treatment and disposal of wastes. Operation of the facilities will be sub-contracted to a private firm. Treatment and disposal of hazardous wastes, after they are sorted by each factory, are entrusted to the private firm. This private firm is responsible for all waste collection, treatment and disposal activities, but its operations (including service fees and treatment specifications) are regulated by the DIW. In the case of the Samae Dam hazardous waste treatment center, which is Thailand's first hazardous treatment center, DIW has issued tender documents to select thae private company to operate the center and provide the service to all factories. The bidder who offers the lowest price for waste disposal would be considered to operate the center. Considering the facilities and functions of the Samae Dam treatment center and GENCO's facilities, the waste treatment facility to be constructed in the Bang Saphan area should have the following features:

a) Capacity

Sufficient capacity to collect, treat, and dispose off the total quantity of hazardous wastes generated from the Bang Saphan I/E.

- b) Treatment and disposal system
 - i) Securing landfill
 - ii) Physical-chemical treatment facility (to treat acidic and alkaline wastes together with heavy metals)
 - iii) Solidification facility (Cd, Hg)
 - iv) Stabilization facility (other heavy metals)
 - v) Wastewater treatment facility
 - vi) Incinerator (including air emission control equipment)
- c) Collection and transportation system,
- d) Sample analyzing function.


F.2.5 Social Environment Impacts

The following are the major social environment impacts in the Bang Saphan area prior to implementing the project.

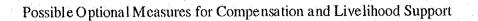
Relocation of Social Facilities

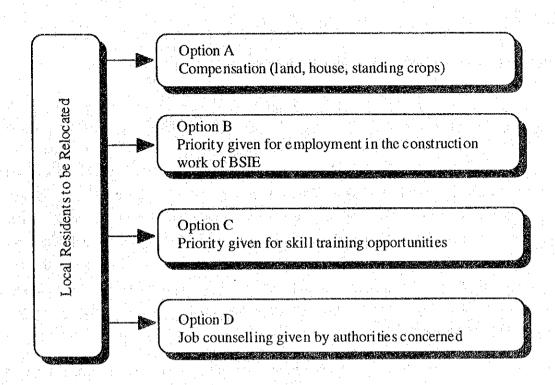
In the proposed site of the industrial estate, two primary schools and one temple are identified as shown in the figure below. The two primary schools, namely Wat Na Pak Kang Primary School and Thum Khaonoi Primary School, reportedly had 122 and 106 students respectively in 1995. The temple is called Wat Na Pak Kang. The Wat Na Pak Kang Primary School is sited in the grounds of the Wat Na Pak Kang temple which is located in the middle of the eastern part of the site. The Thum Khaonoi Primary School is

located along the road near the southwestern corner of the site.

Existing Social Facilities in the Proposed Site

A preliminary relocation plan of each social facility has been examined and suggested in the study. The plan should be further examined and finalized in detail prior to implementation of the project. The following are taken into consideration in the plan:


- (1) Considering that a temple is to be respected as a religious asset of local people and community, the Wat Na Pak Kang temple is suggested to be preserved as it is.
- (2) To maximize utilization of the site, the existing two primary schools are proposed to be relocated outside in the following manner.
 - 1) The Thum Khaonoi Primary School is located in the site of Phase I, and a certain number of students who are living outside the site are expected to remain there. The school is advised to be preserved until construction of new school buildings is completed in a relocating site and then be relocated as soon as possible before construction of Phase I starts. The relocating site should be selected nearby the project site, considering the commuting distance of the remaining students.


2) The Na Pak Kang Primary School is located in the site of Phase II, and a certain number of students who are living outside the site are expected to remain there. However, since the commuting routes of the students are occupied by the industrial estate and also by the expansion area of Sahaviria's factories, the school is presumed to be closed after construction of Phase II and start of Sahaviria's upstream factories. The school is suggested to be preserved for the time being and then be closed later on.

Relocation of Local Residents

In the site, approximately 170 establishments have been identified as of 1995. However, since some establishments are not in use at present, it is assumed that approximately 120 establishmentsor 70% are being occupied by local residents. Since the local residents currently living in the site are planned to be relocated to the outside area, the following are possible alternative measures for compensation and livelihood support to be carried out prior to the project implementation:

- (1) Option A is basically to provide individual compensation for private lands, houses, and standing crops which most of the local residents in the site seem to posses.
- (2) Option B is to give priority to the local residents who wish to get employed in the construction work of the Bang Saphan industrial estate.
- (3) Option C is to give priority to the local residents who wish to get trained in order to obtain basic skills to be employed locally. In this case, the recently opened Bang Saphan Industrial and Commercial College could be the one to provide training opportunities for both full time courses and part time courses.
- (4) Option D is to give priority to the local residents who wish to get a job counseling to for local employment. In this case, the Department of Employment in the Ministry of Interior could be the key government agency.

14 S S S

F - 21

F.3 Monitoring Plan

1.

F.3.1 Monitoring of Air Pollution

(1) Location and Number of Monitoring Stations

A monitoring station must be able to grasp the level of air pollution and the pattern of its changes over the entire area its covers. Its covering range must be determined in the light of meteorological conditions, topographical features, and the distribution of pollution sources in the area. Upon determining the location of monitoring stations in areas crowded with pollution sources, such as industrial zones, it is considered that one monitoring station should cover an area of about 3 km in radius. And a broader area of about 5 to 10 km in radius should be covered for residential and other less polluted areas in general. Therefore, one monitoring station can cover entire the Bang Saphan area which includes the area of the iron/steel industry and the thermal power plant. For selecting the location of a monitoring station, the following factors must be considered:

The station must be located in a densely polluted area and in the area that represents the characteristic air pollution pattern.

2. Additional stations must be set on the periphery of the area to monitor the amount of pollutants coming into the area from the neighboring province.

3. The monitoring station must be arranged taking future land utilization plans into consideration.

4. The monitoring station must be arranged in a proper manner to effectively evaluate the air pollution control measures being planned.

(2) Measurement Items at Monitoring Stations

Generally, for the purpose of investigating pollution caused by industrial activities, the main items to be monitored are SO_2 , NO_x , and SPM. Other particular pollutants (such as hydrocarbons, HCl, CO, etc.) will be added as occasional demands. The major artificial sources of each pollutant are presented in Table F. 3.1.

(3) Structure and Instruments of Monitoring Stations

An integrated air pollution monitoring station must be equipped with the following analyzers and instruments: SO_2 , NO_x , CO, hydrocarbon and oxidant analyzers, high

and low-volume air samplers, and meteorological instruments to monitor wind velocity, wind direction, atmospheric temperature, solar radiation intensity, etc.

A part of an existing building is often utilized as a fixed station. A fixed station is usually unmanned, and should preferably be made of ferro-concrete instead of wood for fire prevention. In case of a prefabricated building, the use of heat insulating materials and an air conditioning system is essential and windows should be made as small as possible.

F.3.2 Monitoring of Water Pollution

(1) Monitoring Station

In the same manner as the monitoring of air pollution, a monitoring station of water pollution should be installed in the Bang Saphan area. Wastewaters generated by factories, which are discharged into rivers after being treated, will have an effect on the receiving environment. Therefore, monitoring of water quality should be executed with regard to both the effluent water and the receiving environment. Monitoring of effluent water, this means in-factory sampling, should be undertaken both before and after the wastewater treatment process. Measuring items and frequency are different depending on the characteristics of the water quality between effluent waters and the receiving environment. General measuring items and frequency ranges are mentioned below.

(2) Measuring Items and Frequency

3.

Significant items that must be monitored are those that are contained in any of the following categories:

- 1. Primary pollutants arising from the process or site.
- 2. Heavy metals or chlorinated hydrocarbons which are known to bioaccumulate.
 - Nutrients (compounds of phosphorus or nitrogen).

Examples of the above are given in Table F. 3.1.

Monitoring of effluent waters should be carried out continuously, daily, monthly, and sporadically according to necessity. However, it is not necessary to monitor the water quality of the receiving environment as frequently as in-factory monitoring because of its long time average influence. Table F. 3.2 shows measuring frequency ranges by pollutant and by sampling location.

	the northeast mon	the northeast monsoon which brings dry and cool air from China,
	the southwest mor	the southwest monsoon which brings moist and warm air from the Indian Ocean.
2) Wind speed	3.7 - 6.0 knots (1.9 - 3.1 m/s) : monthly average.	m/s) : monthly average.
	44 knots (22.65 m/s) : maximum (May).	aximum (May).
3) Wind direction	February - April	: South
	May - September	: West
	October - January	: North
4) Temperature	Mean	: 27.0 °C
	Mean max.	:-33.1 °C. (April)
	Mean min.	: 19.6 °C (January)
5) Rainfall	1,153 mm per year	
6) Sea water quality	General	: Sea water quality in the district is generally good and within
		standards conditions.
	Temperature	: 29.6 °C (May), 28.7 (October)
	pH	: 8.1 (May), 7.8 (October)
	BOD	: 0.6 mg/l (May), 1.8 mg/l (October)

5 ¢

Table F.1.2 Ambient Air Quality in Bang Saphan area

STATION	STATION Ban Tah Kham Stn1	ham Stn1	Ban Tah K	Ban Tah Kham Stn2	Ban Tah Kl	Ban Tah Kham Stn3 Average value Standard	Average value	Standard
	Detected range	Detected range Average Value ^(21,1) Detected range Average Value ^(21,1) Detected range Average Value ^(21,1) of 3 Stns.	Detected range	Average Value ⁽²²¹⁾	Detected range	Average Value ^(33,1)	of 3 Stns.	
TSP (mg/m ³) 0.045 - 0.084 0.062	0.045 - 0.084	0.062	0.101 - 0.126 0.117	0.117	0.095 - 0.120 0.110	0.110		0.096 0.330 (**2)
SO, (me/m ³) 0 - 0.007	0 - 0.007	0.004	0 - 0.003	0.002	0 - 0.003	0.002	0.003	0.300 ^(**2)
NO ₂ (mg/m ³) 0 - 0.058	0 - 0.058	0.036	0 - 0.044	0.015	DN	ND	0.017	0.320 ^(#3)
		1	4 - (5×1) - 24	verage in I hour.				

(c.× (%1) : Average value in 3 days. (%2) : Average in 24 hours. Source : SSI Ilof Steel monitoring. Project Report

	Measured Point- 1	Measured Point- 2	Standard (*1)
BOD ₅ (mg/l)	2 - 6	2 - 6	20 - 60
SS (mg/l)	6 - 22	3 - 20	30 - 150 (*2)
Oil & Grease (mg/l)	ND - 0.8	ND - 0.8	5.0
рН (-)	7.0 - 7.6	7.1 - 7.6	5 - 9

F-26

Table F.1.3 Summary Result of Main Water Pollution Indices in Klong Maerampung

Note: Average value from Dec. 1994 to Apr. 1996.

(*1); Effluent standards by MOI.

(*2); Depend on dilution ratio of wastewater and receiving water.

Parameters	Average	NEB Standard (1)
Water Temperature (°C)	29.7	≦ 33 °C
pH	8.1	** (2)
Salinity (ppt.)	31.1	**
Dissolved Oxygen (ppm.)	7.2	**
BOD (ppm.)	3.5	
NO ₂ (ppm.)	0.0019	**
NH ₃ (ppm.)	0.015	**
PO ₄ (ppm.)	0.006	**
SS (ppm.)	16.36	
Chlorophyll A (mg/m3)	4.58	
Total Bacteria (cfu/ml)	18,917	
Total Coliform (MPN/100 ml.)	412.9	* (3)
Fccal Coliform (MPN/100 ml.)	384.9	*

 Table F.1.4
 The Average Results of Coastal Water Quality in 1995

Remarks : (1) NEB Standard for Class 7 Industrial Zone where water is used for industrial activities such as receiving water for industrial effluent. After effluent discharge, the water

quality must be within the standards.

 $(2)^{**} = may be established as necessary.$

 $(3)^* = not include natural floatable solids.$

Source : Notification of the Ministry of Science Technology and Energy, dated June 7, B.E.2534 (1991)

A moboe & Tambon	1987 61,639 11,812 9,757 8,709			ਖੋ	Population				Y	Ann. Ave. Growth
	61,639 11,812 9,757 8,709	1988	1989	1990	1991	1992	1993	1994	1995	1987 - 95
Bang Saphan	11,812 9,757 8,709	62,496	63,219	63,668	64,377	64,669	64,146	64,748	65,503	0.76%
Tongchai	9,7 <i>5</i> 7 8,709	11,837	11,925	11,963	11,974	9,981	9,740	9,721	10,138	-1.89%
Chaikasem	8,709	766,6	10,002	10,089	10,212	10,811	10,595	10,680	10,528	0.96%
Thong Mongkon		8,881	9,074	9,205	9,376	9,014	9,027	9,139	9,042	0.47%
Ron Thong	9714	9,992	10,354	10,523	10,785	13,020	12,955	13,095	14,228	4.89%
Kamnert Noppakhun	9,248	9,186	9,070	8,926	8,810	8,160	8,149	8,303	7,873	-1.99%
Pong Prasart	7,020	7,080	7.206	7,301	7,414 5 006	7.554	7,520	7,609	7,515 6 170	0.86%
Surviummere										
66,000			·					16,000		
	• • • •			· ·				14,000	· ·	
65,000							· · · · ·	, L		
					2	2	 	Popu	Tongchai	chai
000 64,000								 Jiati 00 01	Chail	Chaikasem
					> • 1	•		on b	−o− Thon	Thong Mongkon
							7			Kamnert Noppakhun
							1	amt	Pong	Pong Prasart
4 	Q		· · ·					4000		Maeramperng
62,000				· ·	۰.					· · · · · · · · · · · · · · · · · · ·
•					•			2,000		
61.000										
	000									

Copyright and College Difference of the contract of the second s second se second s second s second se

F-2:

F-28

Local Community		Area		Poj	oulation			House	old
Tambon Name	Muban Name	km2	Male	Female	Total	%	Density	Number	Size
A 1 Tongchai	1 Ban Tamkiriwong		349	323	672		· - :	131	5,1
2	2 Ban Pakklong	~	635	648	1,283	-		252	5.1
3	3 Ban Krut	-	758	697	1,455	· -	-	316	i 4,6
4	4 Ban Tung Rua Yao	-	568	553	1,121	-	-	231	4
5	5 Ban Nong Rawang	-	699	698	1,397	-		280	5.
±6	6 Ban Tamuang	-	638	679	1,317		· _	253	5.
7	7 Ban Mongkon	-	456	409	865	-	-	184	4.
8	8 Ban Takien Song Pinong	-	309	378	687	-	·	132	5
9	9 Ban Tang Sai	·	231	205	436	~	-	88	5.
10	10 Ban Chai Mongkon		360	332	692	-		149	4
11	11 Ban Don Sung	-	102	[111]	213	-	-	43	5
	Sub-Tot	al 94	5,105	5,033	10,138	15.5	108	2,059	4.
B 12 Chaikasem	1 Ban Nong Yaphong	-	736	690	1,426		· •	277	5
13	2 Ban Nong Chan	- - - - -	379	362	741		-	150	4
14	3 Ban Dong Maingam		473	488	961		-	165	5
15	4 Ban Morasuab	-	454	432	886	-	•	165	5
16	5 Ban Si Yack Bankrut	-	621	588	1,209	· -	-	240	5
17	6 Ban Huay Kai Tor	-	363	348	711	-	~	140	5
18	7 Ban Nong Mai Kaen	÷	519	496	1,015	-	· ·	174	5
19	8 Ban Hin Tang		313	348	661	-	·. +	139	4
20	9 Ban Nong Phong	-	472	478	950	-	: -	196	4
21	10 Ban Sarm Kum	-,	282	261	543	-	-	117	4
22	11 Ban Kao Mun	•	326	344	670		-	147	4
23	12 Ban Huay Takien	_	395	360	755	-	_	177	4
	Sub-Tot	al 162	5,333	5,195	10,528	16.	L 65	2,087	5
C 24 Thongmongkon	1 Ban Wang Yao	· · _	240	266	506	· -	-	93	: 5
25	2 Ban Pong Ko	5 . S -	1,037	915	1,952		~	409	4
26	3 Ban Rat Prasong	-	809	727	1,536	-	·	321	. 4
27	4 Ban Huay Kaeb		518	508	1,026		-	218	- 4
28	5 Ban Tammarat	-	593	581	1,174	·· -		2.58	4
29	6 Ban Kao Kaen		668	7.24	1,392	-	-	2.99	4
30	7 Ban Sab Sombuan	-	432	413	845	-		186	
31	8 Ban Nai Lock	-	321	290	611	-	-	128	4
	Sub-Tol	tal 223	4,618	4,424	9,042	13.	8 4		
D 32 Ron Thong	1 Ban Don Samnak	· · ·	1,276	1,220	2,496			527	
33	2 Ban Sai Ku	: -	235	266	501		·	103	
34	3 Ban Kao Din	-	674	653	1,327	-		145	
35	4 Ban Samyaek	. . .	867	800	1,667	-	ŕ.	373	4
36	5 Ban Ko yai Chim	·	1,517	1,562	3,079	-	-	716	
37	6 Ban Pa Ron	· · · · · · · · · · · · · · · · · · ·	460	416	876	· -	-	182	
38	7 Ban Wang Ngam Kaen	eta (* <mark>1</mark>	670	671	1,341	-	-	325	5
39	8 Ban Klong Roi		456	341	797	· -	-	199) 2
40	9 Ban Klong Ploen		504	467	971	-	'	241	
41	10 Ban Tung Chuek	-	537		856	-	÷ - †	152	2
42	11 Ban Huay Plu		168	1 A A A A A A A A A A A A A A A A A A A	317	-		7	[
	Sub-To		7,364		14,228	21.		2 3,034	

Table F.1.6 Present Population and Household in Amphoe Bang Saphan by Tambon and Muban in 1995

Local Community			Area		Pop	ulation	ملیسمی		Househ	ıold
Tambon Name	• •	Muban Name	km2	Male	Female	Total	%	Density	Number	Size
E 43 Kamnert Noppakhun	1	Ban Tarad Bang Saphan Ya	ai -	1,102	843	1,945	-	÷	460	4.2
44	2	Ban Na Pak Kang		424	416	840	-	-;	170	4.9
45	3	Ban Por Dang	-	440	379	819	· _	. –	160	5.1
46	4	Ban La Harn	.	533	483	1,016	-	: - .	185	5.5
47	-5	Ban Huay Sai Kao	.	591	561	1,152	- '	- 4	261	4.4
48	6	Ban Don Thong	~	453	496	949	-	-	199	4 8
49	7	Ban Nong Ta Ja	2	303	308	611	-	- '	122	5.0
50	8	Ban Don Sanoa		281	260	541	-	-	115	4.7
		Sub-Tota	al 55	4,127	3,746	7,873	12.() 144	1,672	4.7
F 51 Pongprasart	1	Ban Fai Tah	-	688	715	1,403	- 1	-	279	5.0
52	2	Ban Hin Kong	· _	551	497	1,048	1 - 1 -	-	190	5.5
53	3	Ban Cha Muang	_	425	399	824	·:	· -	161	5.1
54	4	Ban Tam Mah Rong		451	445	896	-	·	170	5.3
55	5	Ban Rak Muang	· '_	305	293	598	•	-	116	5.2
56	6	Ban Huay Kaen		308	286	594	. – ·	· · · <u>-</u>	114	5.2
57	7	Ban Tung Pao	-	210	222	432		-	92	4.7
58	8	Ban Tung Kitai	-	331	324	655		1 <u>-</u>	137	4.8
59	9	Ban Ton Throng Lang	· -	307	259	566	-	:	122	4.0
60	10	Ban Tung Nun		243	256	499	1 - 1-	- [.] ,	96	5.2
		Sub-Tot	al 79	3,819	3,696	7,515	11.	5 95	1,477	5.1
G 61 Maeramperng	1	Ban Don Samlarn	-	351	373	724	-	·	150	4.8
62	2	Ban Tah Manao	· · -	439	447	886	· - '		185	48
63	3	Ban Ao Yang	-	238	239	477	<u>_</u>	11 A.	99	4.8
64	4	Ban Tah Kam	·	223	227	450	• -		. 93	. 4.8
65	5	Ban Pak Klong		881	749	1,630		1. <u>-</u> 412	305	5.3
66	6	Ban Lang	· · ·	819	836	1,655	'	-	348	4.8
67	7	Ban Tung Larn Kuay	_	183	174	357	-	-	55	6.5
		Sub-Tot	al 35	3,134	3,045	6,179	9.	4 174	1,235	5.(
Grand Total			876	33,500	32,003	65,503	100.	0 75	13,476	4 9

Table F.1.6 Present Population and Household in Amphoe Bang Saphan by Tambon and Muban in 1995(continued)

Table F.1.7 Characteristics of Sanitary Districts in Amphoe Bang Saphan in 1995

				Sanitary District	strict			
Character	Kamnert Noi	mnert Noppakhun	Ban K	Crut.	Ron Th	ong	Total	
Pomulation	3,097	(4.7%)	6,573 (10.0	(10.0%)	9,070 (13.	(13.8%)	18,740	(28.6%)
Household Number	721	(5.4%)	1,332	(026.6)	1,864	(13.8%)	3,917	(29.1%)
Average Household Size	43		4.9		4.9			r T
Area (km2)	2.8	- 1	10.5		39.5	· · · ·	1.	
Density	1,106	, ,	626	ł	230			
		-		-				

Source: Bang Saphan District Administration Office

Note: Since each sanitary district covers a couple of mubans partially and therefore can be hardly defined population and area with a limited information available at this moment, it is then assumed that all the population and area of the concerned mubans are fully taken into account as sanitary district in order to raoughly picture the characteristics of each sanitary district in Amphoe Bang Saphan.

F-31

Table F.I.8 Number of Labor Force in Amphoe Bang Saphan by Sector from 1993 - 1995

		Lab	Labor Force		Ann. Ave. Growth
Sector	Type -	1993	1994	1995	1993 - 1995
	Skilled Labor	713	862	1,025	12.9%
Industry Sector	Unskilled Labor	1,782	1,973	2,243	8.0%
	Sub-Total	2,495	2,835	3,268	9.4%
	Skilled Labor	524	634	712	10.8%
Service Sector	Unskilled Labor	392	423	568	13.2%
	Sub-Total	916	1,057	1,280	11.8%
	Skilled Labor				•
Agriculture Sector	Unskilled Labor				
	Sub-Total			1	100
Grand Total		3,411	3,892	4,548	10.1%

Source:

F-32

Prachuap Khiri Khan Provincial Office, Ministry of Labor Force and Welfare

Note: 1) Definition of skilled labor is bacically more than high school graduate by educational level and also white color position by job status. 2) Information on labor force in agricultural sector was not able get during the first field survey in December

		Area	(100.0%)	(91.8%)	(0.7%)	(0.3%)	14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	•	3	(7.2%)								Khiri Khan		
		Other Area	17.4	16.0	0.1	0.1				1.2						a Hua Hin D Pran Buri a Bang Saphan Noi	C Bang Saphan CT hap Sakae E Kui Buri	Muang Prachuap Khiri Khan	· . · ·	
- I,		e Area	(100.0%)	(15.6%)	(8.9%)	(2.4%)	(38.3%)	(73%)	(20.2%)	(7.3%)			100%	1.07778		C Pra C Pra C Bar		a W G	mm	
		Vegetable Area	575	9.0	5.1	14	22.0	4	11.6	4.2			•							
4		rops Area	(100:0%)	(11.6%)	(3.4%)	(24.4%)	(34.3%)	(5.7%)	(17.8%)	(2.8%)		іп 1993	206							
	and (km2)	uit Tree & C	977.8	113.1	33.5	239.0	334.9	56.0	174.2	27.2		by Amphoe	80%							
	Farm Holding Land (km2)	Field Crops Area Fruit Tree & Crops Area	(100.0%)	(19.4%)	(12.3%)	(4.7%)	(9.4%)	(26.9%)	(3.8%)	(23.4%)		n Land and	402							
	Far	Field Crop	1,602.4	311.1	1.77.1	75.4	151.1	431.6	61.0	375.0		Utilization of Farm Holding Land by Type of Farm Land and by Amphoe in 1993	60%							
i.		геа	(100.0%)	(6.2%)	(22.8%)	(10.4%)	(12.0%)	(33.7%)	(14.1%)	(0.9%)		g Land by T	50%							
		Paddy Area	190.6	11.8	43.4	19.8	22.9	64.2	26.8	1.6		arm Holdin _i	40%							
		Area	(200.0%)	(11.4%)	(11.1%)	(10.0%)	(15.1%)	(17.5%)	(25.1%)	(0.7%)		ization of F	30%							
		Housing Area	101.1	11.5	11.3	10.1	15.3	17.7	25.4	9.8	tion Office	U fi	20%							
		Total Area	2,930.6	472.5	290.5	345.8	546.2	<u>573</u> .6	283.0	419.1	ıl Administra		10%							
			1an	Khin Khan							Source: Prachuap Khiri Khan Provincial Administration Office		0%0	Housing Area	Paddy Area	ps Arca	ps Area	Vegetable Arca	Other Area	
		Muang & Amphoe	Prachuap Khiri Khan	Muang Prachuap Khin Khan	im	Thap Sakae	Bang Saphan	Bang Saphan Noi	Bun	1 1 1 1	æ: tuap Khiri Kf			Housin	Padd	Field Crops Area	Fruit Tree & Crops Area	Vegetabi	a B B	
		Muan	Prach	Muan	Kui Buri	Thap	Bang	Bang	Pran Bun	Hua Hin	Source: Prachus						ц			

ł

Table F.1.9 Utilization of Farm Holding Land by Type of Farm Land and by Amphoe in 1993

Manuality Manufact	& Amphoe P Khiri Khan Prachuap Khiri Khan kae phan Noi p P Khiri Khan Provincial /	Der Und (100.0%) 6.3 (100.0%) 6.3 (100.0%) 3 (100.0%) 3 (100.0%) 3 (100.0%) 5 (100.0%) 5 (100.0%) 2.7 (100.0%) 2.7 (100.0%) 1.0 flows 2.7 (100.0%) 1.0 flows 2.7 (100.0%) 1.0 flows 2.7 (100.0%) 1.0 flows 1.0	ler 6,000 83 (8.6%) 29 (3.1%) 158 (3.9%) 02 (7.2%) 47 (7.8%) 84 (15.4%) 74 (15.6%) 74 (15.6%)	a by Income	Class Per J	13,942 2,179 1,774 1,774 1,904 1,904 1,904 1,358 1,358 1,338	0,000 (18.8%) (20.7%) (17.1%) (20.4%) (20.4%) (20.3%) (20.3%) (20.3%) (20.3%) d by Ampt	40,096 6,015 6,612 5,728 5,603 3,385 8,603 3,385 8,603 2,993 2,993		OliMid 832 832 832 304 913 232 232 2,100 2,100 194	
Diffuir Khan 74335 (100/67) 6.38 (8.64) (1.06) (1.15) (1.17) (1.16) (1.17) (1.11) (1	p Khiri Khan Prachuap Khiri Khan kae phan Noi n p Khiri Khan Provincial <i>F</i>	(100.0%) 6.3 (100.0%) 3 (100.0%) 3 (100.0%) 3 (100.0%) 5 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0	83 (8.6%) 29 (3.1%) 139 (4.2%) 138 (3.9%) 147 (7.8%) 134 (15.6%) 134 (15.6%) 134 (15.6%)	9,009 (1 1,156 (1 1,268 (859 1,470 (1 1,010 (1,032 (1,032 (1,032 ((11.0%) (11.0%) (9.4%) (9.4%) (14.4%) (12.3%) (12.3%) (12.3%) (12.7%)	15,942 2,179 1,774 1,904 1,904 1,858 2,321 1,338 1,338	(10.3%) (20.7%) (20.7%) (20.4%) (20.4%) (12.9%) (12.9%) (20.3%) (20.3%) d by Ampl	40,090 6,612 6,728 6,760 3,385 8,603 2,993 2,993 100 in 1994		4,903 304 328 328 194 194	
Prednap Khir Khan 10371 (1000%) 339 (3.1%) 1.174 (10.1%) 6.012 (6.36%) 334 Rate 9.177 (1000%) 339 (3.1%) 1.174 (10.1%) 6.012 (6.36%) 334 Prima Noi 7.23 (1000%) 335 (1304) (117%) 5.738 (6.36%) 334 Phan Noi 7.032 (1000%) 1.014 (117%) 1.338 (207%) 3.335 (81%) 3.335 Phan Noi 7.032 (1000%) 1.014 (136%) 1.001 (147%) 1.338 (207%) 3.335 (81%) 3.335 Phan Noi 7.032 (1000%) 1.0124 (136%) 1.032 (137%) 1.338 (203%) 2.939 (45%) 2.100 (1000%) Phan Bun	Prachuap Khiri Khan kae phan Noi p Khiri Khan Provincial A	(100.0%) 3 (100.0%) 4 (100.0%) 3 (100.0%) 5 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0	29 (3.1%) 39 (4.2%) (38 (3.9%) 47 (7.8%) 84 (15.6%) (24 (15.6%) (15.6%)	1,156 (1 859 (859 (1 1,470 (1 1,010 (2,214 (1,032 (1,032 (1,032 ((11.0%) (9.4%) (9.4%) (1.7%) (1.7%) (1.23%) (15.7%) (15.7%)	2.177 1.7774 1.904 2.568 1.858 2.321 1.338 1.338	(17.1%) (17.1%) (20.4%) (20.4%) (12.9%) (20.3%) (20.3%) nd by Ampl	6,013 6,612 6,760 3,385 8,603 2,993 2,994 10e in 1994		304 304 2,100 194 194	
Image: signed by the second	kae phan Noi ri p Khiri Khan Provincial A	(100.0%) 4 (100.0%) 3 (100.0%) 5 (100.0%) 5 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0	39 (4.2%) 58 (3.9%) 47 (7.8%) 84 (15.6%) 024 (15.6%) n-Municipal Area	1,268 (859 (1,470 (1,010 (2,214 (1,032 (1,032 (1,032 (12.2%) (9.4%) 14.4%) 12.3%) 15.7%) Class Per /	1.774 1,904 1,858 1,858 2,321 1,338	(17.1%) (20.4%) (26.4%) (12.9%) (20.3%) (20.3%) nd by Ampf	6,612 5,728 6,760 3,385 8,603 2,993 2,993 1994		328 328 2,100 194 194	
Late 9.17 (100.0%) 338 (9.9%) (100.1%) 5.728 (2.4%) 2.328 phan 12.613 (100.0%) 324 (7.3%) (1.1%) 2.468 (3.6%) 913 phan 12.33 (100.0%) 2.341 (1.3%) 1.382 (5.4%) 3.353 (43.6%) 913 phan No 1.802 (100.0%) 1.034 (15.6%) 1.032 (15.7%) 1.382 (2.6%) 2.100 pKhiri Khan Provincial Administration Office Number of Households in Non-Municipal Area by Income Class Per Annun and by Amphoe in 1994 1.032 (15.7%) 1.338 (20.3%) 2.993 (45.5%) 2.100 Pan Bin Description Difference Class Per Annun and by Amphoe in 1994 1.004	kae phan Noi ri p Khiri Khan Provincial A	(100.0%) 3 (100.0%) 5 (100.0%) 5 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0	58 (3.9%) 47 (7.2%) 47 (7.8%) 724 (15.6%) 724 (15.6%) m-Municipal Area	859 1,470 (1 1,010 (2,214 (1,032 (1,032 (1,032 ((9,4%) 1.7%) 14,4%) 12.3%) 15.7%) 15.7%) Class Per /	1,904 1,858 1,858 1,338 1,338	(20.7%) (26.4%) (12.9%) (20.3%) (20.3%) nd by Ampf	5,728 6,760 3,385 8,603 2,993 2,994 noe in 1994		328 2,100 1913 194	
Qhan 12,613 (100.0%) 903 (7.2%) 1,470 (11.7%) 2,568 (20.4%) 6,760 543 543 133 233 (81.8) 232 200 100 101 (14.4%) 1,588 0.64.8% 5,477 913 222 200 547 (13.5%) 1,323 (20.4%) 5,663 1413 222 222 220 220 220 220 220 222 222 222 222 222 222 223 (81.8) 222 220 220 220 220 220 220 222 222 220 221 222 223 223 233 233 233 233 233 233 233 233 233 233 233 234	phan Noi ri p Khiri Khan Provincial A	(100.0%) 5 (100.0%) 2.7 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 f Households in No	02 (7.2%) 47 (7.8%) 84 (15.4%) 134 (15.6%) n-Municipal Area	1,470 (1 1,010 (2,214 (1,032 (1,032 (1,032 (1.7%) 14.4%) 12.3%) 15.7%) 15.7%) Class Per /	2,568 1,858 1,338 1,338 Annum ar	(20.4%) (26.4%) (12.9%) (20.3%) (20.3%) d by Amph	6,760 3,385 8,603 2,993 10e in 1994		913 232 194	
phan Noi 7,032 (100 0%) 547 (7.8%) 1,010 (144%) 1.888 (26.4%) 3.335 (48.1%) 2.210 0 n 18,022 (100 0%) 1,024 (156%) 1,032 (157%) 1,338 (203%) 8,603 (47.7%) 2.100 194 pKhiri Khan Provincial Administration Office 1,024 (156%) 1,032 (157%) 1,338 (203%) 2,993 (45.5%) 194 Pan Bun	phan Noi ri p Khiri Khan Provincial <i>k</i>	(100.0%) 5 (100.0%) 2.7 (100.0%) 1.0 (100.0%) 1.0 f Households in No	47 (7.8%) 84 (15.4%) 024 (15.6%) n-Municipal Area	1,010 (2,214 (1,032 (1,032 (1,032 (144%) 123%) 15.7%) Class Per /	1,858 2,321 1,338 Annum ar	(26.4%) (12.9%) (20.3%) nd by Ampl	3,385 8,603 2,993 1,994 10e in 1994		232 194	
ri (12,9%) 2,7% (12,9%) 2,7% (15,6%) 1,024 (15,6%) 2,321 (12,9%) 8,603 (4,7%) (5,5%) (5,5%) (5,5%) 1,022 (15,7%) 1,338 (20,3%) 2,993 (45,5%) (5,5%) (100,0\%) (100,0\%)	p Khiri Khan Provincial A	(100.0%) 2.7 (100.0%) 1.0 tion Office of Households in No	84 (15.6%) 124 (15.6%) n-Municipal Area	2,214 (1,032 (1,032))))))))))))))))))))))))))))))))))))	12.3%) 15.7%) Class Per /	2.321 1.338 Annum ar	(12.9%) (20.3%) nd by Amph	8,603 2,993 10e in 1994		2,100	
p Khiri Khan Provincial Administration Office I.034 I.15.6% I.032 (15.7%) I.338 (20.3%) 2.993 (45.5%) I.94 P Khiri Khan Provincial Administration Office Number of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 Hu Hi President of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 I.94 Hu Hi President of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 East Sophan Noi	p Khiri Khan Provincial A	(100.0%) 1.0 tion Office of Households in No	124 (15.6%) n-Municipal Area	1,032 () a by Income	(5.7%) Class Per /	1,338 Annum ar	(20.3%) nd by Amph	2,993 100 in 1994		194	
p Kliri Khan Provincial Administration Office Number of Householdts in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 Hua Hin Pran Bui Bang Sephan Noi Bang Sephan Noi Ban	p Khiri Khan Provincial A	tion Office of Households in No	n-Municipal Area	a by Income	Class Per /		id by Ampl	100 in 1994			
p Khiri Khan Provincial Administration Office Number of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 Ha Hin Pana Buti Pana Buti Pana Sapha Noi Bang	p Khiri Khan Provincial A	tion Office of Households in No	n-Municipal Area	a by Income	Class Per	Annum ar	nd by Amph	noe in 1994			: ' . : ' .
p Khiri Khan Provincial Administration Office Number of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994 Hua Hin Pana Buri Pana Buri Pana Saphan Noi Bang Saphan Noi Bang Saphan Noi Thap Sake Kui Buri Prenturp Khiri Khan 0.6 10% 20% 30% 40% 50% 100%	p Khiri Khan Provincial A	tion Office of Households in No	n-Municipal Area	a by Income	Class Per	Annum ar	ad by Amph	1994 I I I I I I I I I I I I I I I I I I			1.1
lds in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994	Number	of Households in No	n-Municipal Area	a by Income	Class Per /	Annum ar	ad by Amph	100 in 1994			÷ '
Number of Households in Non-Municipal Area by Income Class Per Annum and by Amphoe in 1994	Number	of Households in No	n-Municipal Area	a by Income	Class Per /	Annum an	ad by Amph	1994 hoe in 1994			
200° 50° 50° 50° 10°										•	
20% 10% 20% 10% 10%	Hua Hin										
	Prant Burn Burn Burn Burn									· ·	
20° 10° 50° 50° 50° 10° 10° 10°											
% 10% 20% 40% 50% 70% 80% 90% 100%	Bang Saphan Noi									Z Unknown	
\$ 10% 20% 40% 50% 60% 70% 80% 90% 100%											S S
% 10% 20% 40% 60% 70% 80% 100%	Bang Saphan					- 44					32
200 30% 40% 50% 60% 70% 80% 90% 100%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
50% 10% 20% 80% 90%	1 nap Sakac										3
% 10% 20% 40% 50% 60% 70% 80% 90%	Kur Run										
% 10% 20% 40% 50% 60% 70% 80% 90%											÷ .
% 10% 20% 30% 40% 50% 60% 70% 80% 90%	Muang Prachuap Khiri Khan										
10% 20% 30% 40% 50% 60% 70% 80% 90%											
				50%	60%	70%	80%	%06	100%		
						 	•			. :	

viel Type Student School Student Public 1,085 - 1,364 Private 339 - - 1,369 Private 2,98 - 1 350 Private 2,98 - 1 350 Private 2,98 - 1 350 Private 1,53 - 8 269 Private 153 - 8 269 Private 0 0 0 0 0 Private 153 1.4% 8 269 Private 0 0 0 0 0 Private 0 0 0 0 0 0 Private 2,034 - 3 2	Student School	1994		1995	Ann. Ave. Growth	rowth
Iype Junction Junction <thjunction< th=""> Junction <thj< th=""><th></th><th>Student</th><th>School</th><th>Student</th><th>School 1992 - 1995</th><th>-1995</th></thj<></thjunction<>		Student	School	Student	School 1992 - 1995	-1995
Public 1,085 - 1,364 Private 339 - 1,364 Sub-Total 1,424 12.8% - 1,697 Public 7,187 - 34 7,320 Public 7,485 67.5% 35 7,670 vy School Public 153 8 269 Private 153 8 269 Private 0 0 0 0 Drivate 153 1.4% 8 269 Privite 7,034 - 3 2.250						•
Private 339 - 333 Sub-Total 1,424 12.8% - 1,697 Public 7,187 - 34 7,320 Public 7,187 - 34 7,320 Private 298 - 1 350 Public 7,485 67.5% 35 7,670 vy School Public 153 8 269 Private 153 8 269 Private 0 0 0 0 Drivate 153 1.4% 8 269 Private 0 0 0 0 0 Drivate 153 1.4% 8 269 Privit 7.034 - 3 2.250	,364	1,799	•	•		1
Sub-Total 1,424 12.8% - 1,697 Public 7,187 - 34 7,320 Private 298 - 1 350 Private 298 - 1 350 Sub-Total 7,485 67.5% 35 7,670 vy School Public 153 8 269 Private 0 0 0 0 Drivate 153 1.4% 8 269 Private 0 0 0 0 0 Drivate 153 1.4% 8 269	1	1		-	<u>,</u>	10102
Public 7.187 - 34 7,320 Private 298 - 1 350 Sub-Total 7,485 67.5% 35 7,670 vy School Public 153 - 8 269 Private 0 0 0 0 0 Private 153 1.4% 8 269 Private 0 0 0 0 0 Drivate 153 1.4% 8 269	,697 14.3% -	2,090 16.6%		2,095 15.1%	W	10. T 10
Fublic 7,485 67.5% 35 7,670 Sub-Total 7,485 67.5% 35 7,670 Sub-Total 7,485 67.5% 35 7,670 Vy School Public 153 8 269 Private 0 0 0 0 Drivate 153 1.4% 8 269 Drivate 0 0 0 0 0 Drivate 153 1.4% 8 269	320 - 34	6,992	34	6,702	34 -	
D-Total 298 - 1 500 D-Total 7,485 67.5% 35 7,670 153 67.5% 35 7,670 153 153 8 269 0 0 0 0 0 0 153 1.4% 8 269 10-Total 153 1.4% 8 269		240		350	•	
b-Total 7,485 67.5% 35 7,670 153 - 8 269 0 0 - 0 0 153 1.4% 8 269 10-Total 153 1.4% 8 269	350	1		÷.		54 -
D-Total 153 - 8 153 1.4% 8 0-Total 153 1.4% 8	.670 64.5% 35	7,341 58.3%	, 35	7,052 50.8%	35	% C I -
153 - 8 0 - 0 10-Total 153 1.4% 8 2 2	0	500	×	715	00	
0 - 0 b-Total 153 1.4% 8 2 034 - 3 2	703 - 0	cor .	с і і			
Sub-Total 153 1.4% 8	0	0	0	0	0	
Sub-10tal L33 Lat //e 3 2 Data - 3 2 2	760 239 8	509 4.0%	80	715 5.2%	8	47.0%
Diffie		C	4	3 336	4	'
	C - NC7*2	-+0,-	- -			
	0 - 0	0	0	677		
	0020 10 002 3	2 647 21 0%	4	4.013 28.9%	5	18.5%
- 12			C. 200	20 UUL 220 24	48	5.7 %

Source: Prachuap Khiri Khan Provincial Office, Minisury of Education

F-35

Table F.1.12 Number and Ratio of Primary School Graduates Going on to Secondary School from 1992 - 1995

in Changwat Prachuap Khiri Khan by Amphoe

Ratio	1995	·%6-16	91.6%	66.0%	82.2%	107.3%	89.0%	100.7%	96.7%					Khan]	<u>.</u>	*.
 Secondary	Enters	6,867	1,291	587	788	1,300	492	1,079	1,330					chuap Khiri		u In Noi				
Primary St	Graduates Enters	7,470	1,410	889	959	1,211	553	1,072	1,376	· · ·	 	ıt Prachuap		-Muang Prachuap Khiri Khan	■ Kui Bun 	-Bang Saphan Bang Saphan Noi	-Pran Buri Hua Hin			
Ratio	1994° - C	84.6%	83.5%	75.4%	88.3%	86.5%	%6'LL	84.8%	89.7%			n Changwa	4 · · ·	•]	•
Secondary	Enters	6,848	1,153	676	804	1,129	399	1,439	1,248			992 - 1995 i		} ≺??¶	içi i			8 1 1 1 1 1		2661
 Primary S	Graduates	8,092	1,381	896	911	1,305	512	1,696	1,391			ool from 19				1 1 1 1 1	1 1 1 2 2 3			
Ratio	1993 C	72.8%	67.9%	48.8%	71.5%	85.2%	43.0%	0%L'6L	89.0%		· · · ·	ndary Sch mphoe				4		Р 		
Secondary	Enters	5.642	941	413	646 946	822	250	1,340	1,230			g on to Seco Khan by A		G				i F F Si F F F F F F		1994
Primary 5	Graduates	7,746	1,386	846	904	965	582	1,681	1,382			uates Goin Khiri						k 	: -	
Ratio	1992 (66.8%	59.8%	46.0%	69.0%	77.0%	46.8%	72.7%	79.1%		lucation	hool Grad	1 1 1 1 1 1 1 1				¥			1993
Secondary	Enters	5.124	850	364	656	672	261	1,233	1,088		nistry of Ed	Primary Sc								
Primary S	Graduates	7,665	1,421	161	951	873	558	1.696	1,375		l Office, Mi	d Ratio of]					4			
	Muang & Amphoe	Prachuap Khiri Khan	Muang Prachuap Khiri Khan		¢	lan	an Noi				Prachuap Khiri Khan Provincial Office, Ministry of Education	Number and Ratio of Primary School Graduates Going on to Secondary School from 1992 - 1995 in Changwat Prachuap Khiri Khan by Amphoe								1992
	Mua	Prachuap	Muang Pre	Kui Buri	Thap Sakae	Bang Saphan	Bang Saphan Noi	Pran Buri	Hua Hin	Source.	Prachuap I		120.0%	100.0%	80.0%	60.0%	40.0%	20.0%	0.0%	

F-36

Table F.1.13 Number of Public Health Facilities and Personnel in Amphoe Bang Saphan in 1995

(1) Public Health Facilities

Ownership	Facility Type	Total	Ratio of Population to Facility	cility Remarks
		Number	Bang Saphan Provincial Average	al Average
Gevernment Owned Institution	Community Hospital	,	5,503 and 5	65,859 60 Bcds at Present, additional 30 Bcds on Plan
	Health Center	13	5,039	6,147
	Public Health Station		65.503	
	Public Health Education Center	inter	65,503	
Private Owned Institution	Medical Clinic	4	16.376	
	Nursery	2	32.752	
	Drug Store	13	5,039	5,622
			•	
(2) Public Health Personnel				
Status	Personnel Tvne	Total	Ratio of Population to Personnel	sonnel

	นอุธ	7,318	119	25,612	1,787	2.414
lation to Personnel	Number Bang Saphan Provincial Average				· · ·	
Ratio of Popul	Bang Sapha	16,376	65,503	65,503	36'T	2,977
				•••• • • •	33	22
Personnel Type		Physician	Dentist	Phamacist	Professional Nurse	Technical Nurse
Status		Government Public Health Personnel Physician				

Source: Bang Saphan Community Hospital, Ministry of Public Health

95
- 1995
993 -
16
rom
ani
nd
g Sa
ang
с с с с с с
ğ
du
A.
t ir
tien
Pal
Ľ,
٠,
0,10
- pe
Le v
λ.
ss
Ine
f II
ੁੱਧੂ
rou
С С
ause
Ű
[en
T.
-
le F.1.1
le.F
[ab
(mi

1
Number Type of Disease
1 Discases of Respirate
2 Discases
3 Poisonir
4 Acrid n
5 9101 6 Discases of Gland and Metabolism
7 Other C
3 390 9 Discase of Genito-Urinary System

F-38

Source: Bang Saphan Community Hospital, Ministry of Public Health

		Site L	Site Location	
Site Number	r Tourism Point	in Muban	in Tambon	Remarks
1	Lamlar Island	Ban Tang Sai	Thongchai	
2	Saikaew Beach	Ban Tamkiriwong	Thongchai	
æ	Saikaew Cave	Ban Tamkiriwong	Thongchai	
4	Kiriwong Cave	Ban Tamkiriwong	Thongchai	
Ś	Tongchai Mountain	Ban Tung Rua Yao	Thongchai	
9	Ban Krud Beach	Ban Pakklong	Thongchai	
7	Ban Nhong Mongkon Beach	Ban Mongkon	Thongchai	
~~~	Ban Don Sam Ran Beach	Ban Don Samlam	Maeramperng	
6	Ban Thong Lang Beach	Ban Tah Manao	Maeramperng	
10	Gulf of Mae Ram Pung		Maeramperng	
11	Klang Aow National Park		Maeramperng	
12	Kao Boat Temple		Kamnert Noppakhun	
13	Kao Ma Rong Cave		Pongprasart	
14	Pole of Amphoe Bang Saphan	ũ	Pongprasart	Religious Monument of Buddhist
15	Suan Luang Beach		Pongprasart	
Source: Annual Ope	Source: Annual Operation Report 1995, Bang Saphan Community Hospital, Ministry of Public Health	an Community Hospite	al, Ministry of Public I	fealth
			· · · · ·	

Tourism points located within 5km from the proposed site of an industrial estate

Table F.1.15 Major Tourism Points in Amphoe Bang Saphan

F-39

Environmental Impact, Mitigating Measure, and Monitoring Plan Table F.2.1

During Construction Phase of Bang Saphan I/E

							(1/3)
	Item	Environmental Impact	Level	of Impact	pact *	Mitigative Measure	ing Plan
			MA	ME	MI	<u></u>	
		Physical Resource					
	1.1	Air Quality					· . ·
	 	- The major construction activity will naturally generate fugitive dust which affect local air quality.	7			- Control of fugitive dust emission by spraying with water Check ambie quality.	ambient air
		- Traffic around the site is another source of fugitive dust, especially traffic on unpaved roads around the site.		$\mathcal{A}_{\mathcal{A}}$		- Vehicle speed limit and water spraying on roads is required	
	-	Surface Water Oualtiv					
						- Proper construction techniques must be employed to prevent - Check surface water sediment or soil erosion into surface water.	rface water
F-4		- Domestic wastewater from construction workers and staff, if not properly treated, will contaminate groundwater or surface water.		~		- A conventional wastewater treatment system must be con- structed to handle all wastewater from construction activities	
0	۳ -						
	}	- Effluent from cesspools of construction workers camps, when seeping into the ground, would bacterially contaminate the acuifer and groundwater locally.		. ~ .		- Cesspools and solid waste collection areas must be located for apart from groundwater sources to prevent contamination of	
		This can be serious if the cesspool is near the domestic water wells.				leachate	
	4						
		- A large amount of soil will be excavated from the site during the site preparation for construction.		~		- Cut and fill operation is recommended.	
n ann an Stain An Stain An Stain An Stain		- Most of excavated soil is subsoil which possesses unfavourable chemical and physical properties for plant growth. Thus, disposal of this soil in surrounding areas which are used for economic crop plantation would cause damage.		· <b>&gt;</b>		- Sell the soil to local private construction companies in the area. Select idle lands far away from agricultural land to be used as a disposal site.	
	Lebel	Lebel of Impact : $MA = Major$ , $ME = Medium$ , $MI = Minor$					

Table F.2.1 Environmental Impact, Mitigating Measure, and Monitoring Plan

During Construction Phase of Bang Saphan I/E

				(During constru	(During construction phase, 2/3)
Item	Environmental Impact	Level o MA	of Impact * ME MI	Mitigative Measure	Monitoring Plan
	Ridorical Resource				
6					
i			~	- The mitigative measures specified for surface water quality must be taken into consideration since any effects on water quality will also affect aquatic lifes.	
r	Human U.s. Values				
7					
<b>ˈ</b>	and the second sec		~	- Establish workers communities and control development such that it is strictly within the land use development frame work and regulations of local authorities concerned.	
۲ ر	2 Asriculture				
			7	- Control the fugitive dust emission by spraying with water.	
L	- Disposal of soil excavated from the construction site may affect agricultural		- - - -	- Use idle land as soil disposal sites or practice cut and fill	
	and land. The matter of the state				
с с					
\$			N	- The access road must be well maintained. Pavement of the access road must be considered	
	- Sudden increase in traffic volume will give rise to more potential of accidents		~	- Warning signs and stop signs must be put up to warn	
				motorists at every junction. - Truck drivers must be instructed to drive within speed limit	

Lebel of Impact : MA = Major, ME = Medium, MI = Minor.

Table F.2.1 Environmental Impact, Mitigating Measure, and Monitoring Plan

During Construction Phase of Bang Saphan I/E

					During const	(During construction phase, 3/3)
		Level of Impact *	of Im	bact *	Mitticative Measure	Monitaring Plan
Ħ	ttem the second s	MA	ME	IW		
	4 Quality of Life Values					
4	4.1 Socio-Economics.					
	- There will be a lot of people who move to live and work in the area A large number of people living together may cause the following problems:		۰ <u>۲</u>		- Housing units must be properly planned to avoid slum problems. Proper sanitary systems including water supply, waste	
	2. Disputes and crimes.				treatment and health care must be provided to prevent poor	•
	<ol> <li>Overuse of existing infrastructure.</li> <li>Abuse of child and woman labor.</li> </ol>				- Improve the access roads, schools, hospitals, health centers	
					and source public minase accurs.	
4	4.2 Public Health					
 F-42	- Construction activities will create mostly dust which will settle on floor, roof, things or even food Some respiratory related and gastrointestinal		~		- Provision of medical services at the site should be imple- mented for primary care to give prompt treatment and to	
	diseases may spread				minimize sick leave	
4	4.3 Archaeology and Historical Values.					
1				۲.	- No ancient places and objects near the site therefore no mitigative measure is required.	
114	4 4 Aesthetics and Tourism					
	- Some beachfront areas may be dirty or damaged due to invasion of construction workers. This will affect local tourism.		>		- An access to the beachfront must be provided for local tourists with a proper safety measure.	
] )						-

Lebel of Impact : MA = Major, ME = Medium, MI = Minor.

Table F.2.2 Environmental Impact, Mitigating Measure, and Monitoring Plan During Operation Phase of Bang Saphan I/E

	化化学学校 医甲基乙基 化乙基基乙基乙基乙基乙基 化电离体化 医外外外的 网络小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小		• • •		(1/4)
		Level of	Level of Impact *	Mitiastive Measure M	Monitoring Plan
Item		MAN	ME MI		0
-	Physical Resonance				
11					
	- Stack emission gas from the thermal power plant, the iron/steel ind	~		- The adverse effects can be minimized by using - Emission and ambient air quality	ssion and ambient air quality
	and the industrial estate is the main source of particulates and gaseous emis- sions and expected to have high impact to ambient air quality. The impact	<u>.</u>		proper stack height and state-of-the-art air pollution established to ensure efficiency of	ished to ensure efficiency of
	of air quality on human health and environment are caused preliminary by			control systems such as Electrostatic Precipita-the control system. tor(EP), Flue Gas Desulturization(FGD), Low NO,	ontrol system.
	Intermain air poluutaius, uaineir 3023, 1102 and 2011			Burner, etc.	
c	Surface Water Onality				
	- Sea water is expected to be affected by thermal pollution of cooling water	-         		- Cooling water must be cooled down by means off- Check	Check sea water temperature at
	since the power plant uses sea water for cooling.			ing system before disposal to	ischarge point of cooling
				~ I	
	- Wastewaters from equipment cleaning, cooling, dust collecting, and other	· · · · · · · · · · · · · · · · · · ·			Treated effluent from central
	process from the thermal power plant, iron/steel industry and the industrial	 - -		discharging to the central facility. The pre-treated treatme	The pre-treated treatment facility should be moni-
	estate are expected to contain several pollutants such as heavy metals, acidic		<u> </u>	wastewater should be treated in the central treatment tored to check the compositions	to check the compositions
	& alkaline waste, oily discharge, and suspended solids. It can adversely			facility	before discharging to receiving
	affect quality of receiving water stream.			- Minimize a generation of waste water by adopting water stream	stream.
				water saving technique such as recycling and reuse	· · · · · · · · · · · · · · · · · · ·
				ot wastewater.	
1.3	3 Groundwater Hydrology and Quality				
	- The impacts on groundwater quality are from contamination by leachate	7		- The wastewater treatment plant units, ash dump-1 he observation wells should be	observation wells should be
	from ash dumping, chemical storage, oil spills and process wastewater.			ing areas, etc. with seepage and leakage potentially constructed to monitor une cuerts.	fucted to monitor the enerty.
	This leachate may contain toxic heavy metals and high suspended solids	-		to contaminate groundwater sources must be lined	
	which easily contaminate the shallow aquiter.		-	MINI CONTRACT OF A CARACTER STREET STREET STREET	

Lebel of Impact : MA=Major, ME=Medium, MI=Minor.

, , , , , , , , , , , , , , , , , , ,		purng operation	0 T	nase	5 6		peration ruase of bang Saphan 1/2.		· · · · ·	(Operatic	(Operation phase, 2/4)
	,		Level		of Impact	*					
	ltem	Provide the second s	MĂ	A ME		MI	Mittigative	itive Measure	Ire	Moni	Monitoring Plan
	I.4	Soils									
		- Gaseous emission and fly ash from the power plant, if present in consider- able amount, may fall on the ground and can change soil property and quality.	~			<u>                                      </u>	- The mitigative measures recommended for quality will alleviate the adverse impacts.	neasures recome the adverse in	g for	BIT.	
		- Soil may receive acid rain attributed by SO ₂ and NO ₂ released from the power plant and other industrial plants.									
		- The leakage and seepage containing heavy metals and other toxic substances from the wastewater treatment plant, ash storage area, coal storage yard, may pollute groundwater aquifer	7			<u>- 2</u> 8	- Covering the floor/basin of wastewater treatment plant, ash storage area, coal storage yard with cement or other lining materials is recommended.	/basin of waste area, coal sto ng materials is	n of wastewater treatment coal storage yard with tterials is recommended		
F-4	6	Biological Resources	<b>_</b>								
14	2 ]	Aquatic Ecology and Fisheries.									
		- The oil leakage from barges may cause visual pollution to the sea. The oil spill may cause serious effects to marine organisms and also nearby environment.	>		 	<mark>, 2</mark>	- The wastewater treatment facility for ballast water should be provided.	atment facility :	for ballast wat		
		- Thermal pollution impacts may cause some problems to fishes and eco- nomic species.				<u>~ ĉ</u>	- Cooling water must be cooled down before disposal to reduce thermal effects.	st be cooled d nal effects.	own before dis		
la anna an taona an tao an Tao an tao an	3 ]]	Human Use Values.									
	3.1 1	users and the second									
		Land use and housing development attributed construction workers will slow down. Some portions of the growth will remain to serve the personnel at the factory.			7						
ا منتخب ا	3.2 /	Agriculture		<u> </u>	-						
	<b>10 13</b>	- Fly ash emission of the power plant containing heavy metal elements will affect economic crops since some of them are toxic to plant biological activity.	~			for for	- Adverse effects of the emission fly ash on eco- Quality and quantity of metals in nomic crops are alleviated by the measures applied tress and soil adjacent to the plant for soil pollution.	the emission f viated by the m	ly ash on ecc easures applie	<ul> <li>Quality and quantity d tress and soil adjacen ishould be monitored</li> </ul>	Quality and quantity of metals in ress and soil adjacent to the plant bould be monitored

÷.

•		
;	rlan	
	Monitoring	
3	and	
	Measure,	
· .	Mitigating	
	Impact,	
	Table F.2.2 Environmental Impact, Mitigating Measure, and Monitoring Plan	
	Table F.2.2	

During Operation Phase of Bang Saphan I/E

							(Operation phase, 3/4)
			Level	Level of Impact	act *	Mitioative Measure	Monitoring Plan
	Item	ENVITODMERICAL	MA	ME	MI		
	3						
					1 1 1 1 1 1 1 1	- A four-lane road should be provided for the access road.	
		- Traffic accidents will be increased.			7	<ul> <li>Installation of accurate lighting system and warning lights is recommended.</li> </ul>	
	- -	Chanty Of Lars Vatures					
<b>F-</b> -	;	- The industrial estate will benefit the residents in two aspects i.e. increase of land mice and more employment onnorthuities		~		- Priority for employment in the factory must be given to local people.	
45		A lot of people migrating to settle in the area may cause many problems i.e. crimes, disputes, crowded areas, abouse of child and woman, etc.		7		<ul> <li>Public relation programs must be set up to inform local people of industrial estate activities.</li> <li>Co-ordinate with the community committee.</li> </ul>	
		and more thanks					
	<b>4</b>	Public Healtn - Air emissions from the power plant are mainly SO ₂ . No, and TSP. Prolonged and chronic exposure to these air pollutants may be harmful to human respiratory system.	>			<ul> <li>A medical center must be set up in the industrial estate to provide primary medical care and basic nursing care services.</li> <li>Blood level of certain heavy metals must be</li> </ul>	
						assessed for those who work in the areas of exces- sive exposure.	
· · · · · · · · · · · · · · · · · · ·							

经专款承担 化同烯酸盐 化分配分子分配分子 自主的

Lebel of Impact : MA= Major, ME = Medium, MI = Minor.

Table F.2.2 Environmental Impact, Mitigating Measure, and Monitoring Plan

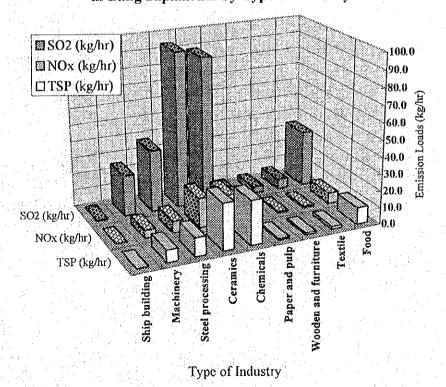
During Operation Phase of Bang Saphan I/E

								(Operat	(Operation phase, 4/4)	4)	
		Level	Level of Impact *	act *					•		
Item	m Environmental Impact	MA	ME	MI		Mungauve measure		INIO	Monitoring Flan	an	T
43	3 Archaeology and Historical Values.										<b>r</b>
	- Rural society will change to more consumer and materialistic urban society			۸ ا							1
L	- The way of living will change from the accustomed simple and peaceful rural society to more complicated, rushing, noisy and crowded conditions.	1		۲.							
4	4.4 Aesthetics and Tourism										1
	- More tourists will be expected and this will result in many types of extended local industries for local people.	70		√ - ^ iin ind	An access ) good con licate restr	<ul> <li>An access road must be improved and maintained in good conditions. Signs must be provided to indicate restricted areas.</li> </ul>	intained vided to				
	- There will be more entertaining places to serve plant's staff.			√ -S ind	- Some donation industrial estate.	Some donation to communities should be made by industrial estate.	made by		· · ·		[]
.											1.

Lebel of Impact : MA= Major, ME = Medium, MI = Minor.

for t	he Calculation of Air Pollution Simulation	
	Diffusion Formula	
Plume formula (Windy condition, $u^{c(x, x)} \ge 1.0 \text{ m/sec}$ )	$y_{z} = \frac{Q}{(2 \pi)^{1/2} \pi / 8 R \sigma_{z} u} \left\{ \exp \left\{ -\frac{(z - Hc)^{2}}{2 \sigma_{z}^{2}} \right\} + \exp \left\{ -\frac{(z - Hc)^{2}}{2 \sigma_{z}^{2}} \right\} \right\}$	$\frac{(z + He)^2}{2 \sigma_z^2}   $
Puff formula [Calm 1 condition, $c(x = 0.5 \text{ m/sec} \le u \le 1.0 \text{ m/sec})$	$y(z) = \frac{Q}{(2 \pi)^{1/2} \pi / 8 \gamma} \left( \frac{1}{\eta^2} \exp \left\{ -\frac{u^2 (z + He)^2}{2 \gamma^2 \eta^2} + \frac{1}{\eta^2} \exp \left\{ -\frac{1}{\eta^2} + \frac{1}{\eta^2} + \frac$	$\frac{u^{2} (z + Hc)^{2}}{2 \gamma^{2} \eta^{2}} $
Puff formula (Calm 2 condition, $c(x)$ $u \leq 0.4$ m/sec)	0 1 1	
Notations R	$: R^{2} = X^{2} + Y^{2}$ : $\eta \cdot {}^{2} = X^{2} + Y^{2} + \alpha^{2} t \gamma^{-2} (Z - He)^{2}$	
C: X:	$ \frac{1}{2} + 1$	(m ³ /m ³ or kg/m ³ ) (m) (m)
He σ	: Vertical distance e: Effective stack height ;: Diffusion parameter along with Z direction (windy condition)	(m) (m) (m)
Q	: Wind speed Emission rate : Diffusion parameter along with horizontal direction (Calm condition) : Diffusion parameter along with vertical direction (Calm condition)	(m/sec) (Nm ³ /sec or kg/sec) (m/sec) (m/sec)

Table F. 2.3Diffusion Formulaethe Calculation of Air Pollution Simulation

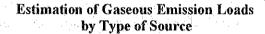

Table F.2.4       Characteristics of Wastewater of Main Industries         Characteristics of Wastewater	Waste water varies greatly with material, the kind and degree of processing, etc. It is commonly characterized by . (1) high concentrations of organic matters; (2) high concentrations of semi-solid wastes and floating substances ; and (3) big seasonal fluctuations. For a hygicnic reason, washing water (sometimes, high-temperature water) is often discharged in a large volume. Since in principle no hannful substances such as heavy metals are mixed in waste water, excess sludge generated at treatment of the waste water can be dehydrated and dried, and be recovered as the resource for manure, livestockfeed, etc. It is broadly classified as a protein group, a fat and oil group and a carbohydrate group. The contents of oil, nitrogen and phosphorus are generally high.	2 7 N	Generally speaking, the pulp and paper making industries are typical water-using industries and the pollution load of waste water is high. The wastewater is characterized by its particularly high COD and coloration well. However, the type of factory to be introduced in Bang Saphan I/E are manufacturing factories of office paper, paper containers and boxes, etc. These kind of factories generate not so much wastewater and the pollutant load of wastewater is also not so high.	There is the possibility that those substances of a wide range from inorganic may be mixed in wastewater in correspondence with the production process, and the chemical industry generally discharges complicatedly polluted waste water. It often contains harmful substances, foul-smelling ingredients, is strongly acidic or alkaline and has high-COD ingredients.	waste water contains pieury of inorgaine supended ingredients and is atkaline. I ne ceramic industry may give birth to coloring ingredients and harmful substances	This industry is also a water-consuming industry. Wastewater from the cooling and cleaning processes for coke furnace contains ammonia, cyanide, phenols, etc. Besides, there is wastewater from the dust collecting process of each furnace which contains suspended solids (coke dust and ore), and that from the pickling process which contains acid, iron and oil. Majority of the wastewater is cooling water. Recycling of the waste water is very much developing in this industry and newly built steel mill recycles more than 90% of industrial water.	Thermal Power PlantThermal power plants discharge large quantities of effluent water from the cooling process. In this project, the thermal power plant is planned to locate close to the sea. In this case, the plant uses sea water for cooling. The temperature of wasted cooling water in normally high, and such waste water can cause thermal pollution or the elevation of temperature to the vicinity of discharging outlet possibly resulting the destruction of marine ecosystem.	
Type of Industry		Textile Industry Τ α	Paper & pulp In-G ct dustry ol		Ceramics Industry W	Iron' Steel making B B W	Thermal Power Plant ¹¹ (Fossil-Fuel) th pc	
			Ē-	<b>48</b>				

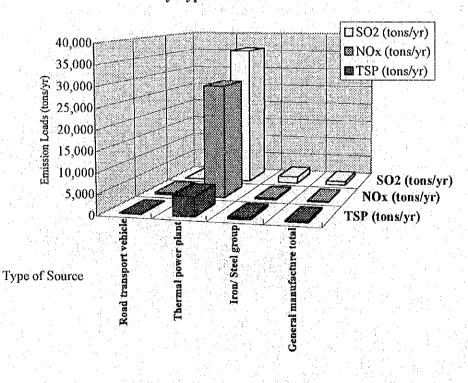
	I	by Lype of	muusury			
Type of Industry	SC	$D_2^{(1)}$	NC	<b>)</b> x ²⁾	TSP	Emission Volume "
-71 7	(Nm ³ /hr)	(kg/hr)	(Nm ³ /hr)	(kg/hr)	(kg/hr)	(Nm³/hr)
Food	11.8	33.8	3.1	6.4	10.0	33,215
Textile	2.0	5.8	0.5	1.1	1.7	5,729
Wooden and furniture	1.3	3.7	0.3	0.7	1.1	3,68⁄
Paper and pulp	1.0	2.9	0.3	0.5	0.9	2,835
Chemicals	31.0	88.6	8.1	16.7	26.1	87,159
Ceramics	32.8	93.7	8.6	17.6	27.6	92,140
Steel processing	13.0	37.1	3.4	7.0	11.0	36,528
Machinery	8.6	24.7	2.3	4.6	· · · · 7.3	24,28
Ship building	0.2	0.5	0.0	0.1	0.1	440
General manufacture total	101.8	290.8	26.6	54.7	85.8	286,020
WARDER AND AND A COMPANY OF A DESCRIPTION OF A DESCRIPTIO					Leonine and the	

 Table F.2.5 Estimation of Gaseous Emission Loads in Bang Saphan I/E

 by Type of Industry

1), 2), 3): Calculated based on the units by Nomura Research Institute Ltd.





#### Estimation of Gaseous Emission Loads in Bang Saphan I/E by Type of Industry

	and the second	V	y a ype of S	ounce	and the second s	and the second second second	· · · · · · · · · · · · · · · · · · ·
		SO	2	NO	x	TS	P ·
	Type of Source	(tons/yr)	(%)	(tons/yr)	(%)	(tons/yr)	(%)
(1)	General manufacture total	907	2.4	171	0.6	268	4.8
(2)	Iron/ Steel group	1,642	4.3	309	1.1	484	8.7
(3)	Thermal power plant	35,840	93.3	28,175	96.6	4,704	84.7
	Stationary Sources Total (1)+(2)+(3)	(38,389)	(99.9)	(28,654)	(98.2)	(5,456)	(98.2)
(4)	Road transport vehicle	27	0.1	514	1.8	100	1.8
	Grand Total (1)+(2)+(3)+(4)	38,416	100.0	29,168	100.0	5,556	100.0

Table F. 2.6 Estimation of Gaseous Emission Loads in Bang Saphan Areaby Type of Source

Note: ton/yr = 12 hr x 260 days x ton/hr





Type of Industry	Wastewater to be Treated (m ³ /day)	BOD Load (kg/day)	SS Load (kg/day)
Food	8,664	173	260
Textile	4,840	97	145
Wooden & furniture	352	7	11
Paper & pulp	56	1	2
Chemicals	20,672	413	620
Ceramics	5,920	118	178
Steel processing	6,000	120	18(
Machinery	4,956	99	149
Ship building	152	3	4
General manufacture total	51,612	1,032	1,548
Iron/Steel group	79,840	1,597	2,395

## Table F.2.7 Estimation of Wastewater to be Treated by Type of Industry

Sanitation Name	The place for solid waste disposal ( year : 1995)	Area(Rai)		Methodology of Solid Waste Disposal
Kamnoed Noppakhun	Plain area around with rice field,	8 Rai,		Dumping to the ground and
Sanitation	Moo 5, Kamnoed Nappakhun Sub- District, outside sanitation area 3 kms.	2 -3 tonnes/day	No record	burning.
	Plain area, Moo 4, Ronthong Sun-District, public area, outside sanitation area 1.5 kms.		a and	Dumping to the ground and burning.
Ban Krud Sanitation	Plain area, outside sanitation area.	3.06 Rai, 2 -3 tonnes/day	No record	Dumping to the ground and temporary burning.

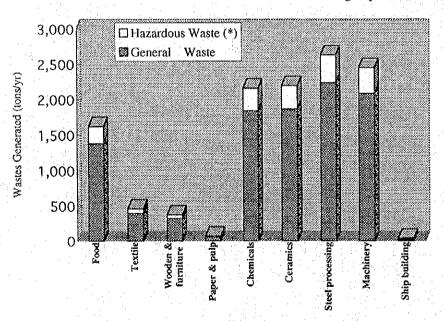
 Table F. 2.8
 Existing Municipal Solid Disposal Sanitation in Bang Saphan Area

Source : Information from Questionnaires of Environmental Management in Sanitation and Municipal Area of Prachuap Khirikhan Province, Survey by Southeast Asia Technology Co., Ltd., January 1996.

Waste Management Practice	Type of Waste
On-site landfill	Bio-sludge, Activated carbon, Ash, Wastewater treat- ment sludge, etc.
On-site burial	Activated carbon, Spent charcol, Spent catalyst, Mud, etc.
On-site land farming	Oil & sludge, Slop tank drain, Bio-sludge, etc.
Incineration on-site	Waste oil, Tank bottom, Bio-sludge, Waste from Filter Press, Reactor skimmings, Wastewater, etc.
On-site pavement	Bituminous waste
Collected by sanitary district	Factory and office debris, etc.
Stored on-site	Waste polymer, Spent catalyst, Brine mud, Spent solvent, Skimmer and mud, Resins, etc.
Sold outside	Waste oil, Waste polymer, Off spec. product, etc.
Regenerated by supplier	Spent catalyst
Fixed with cement	Waste contaminated with heavy metals

Table F. 2.9 Existing Waste Management Practice

Source : The Monitoring and Control of Industrial Hazardous Waste: Hazardous Waste Management in Thailand, TDRI, 1995.


an distant of the second states and the second states and the second states and the second states and the second	an a		(Unit : tons/yr)	
Type of Industry	General Waste	Hazardous Waste (*)	Total	
Food	1,377	243	1,620	
Textile	387	68	456	
Wooden & furniture	316	56	374	
Paper & pulp	57	10	68	
Chemicals	1,836	324	2,160	
Ceramics	1,865	329	2,194	
Steel processing	2,235	394	2,629	
Machinery	2,080	367	2,447	
Ship building	29	5	34	
General manufacture total	10,181	1,797	11,978	
ne zako nazioaria katendaria katendari ya Urupakan Pipalak ika katendaria ta katendari katendari katendari kate				
Iron/Steel group	90,000 150,000 ** 60,000 ** Sludge from polishing and plating			
	1	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Thermal power plant	480,000	(Ash)	480,000	
(1) A set of the se	Ash, Dust, Others	(400,000) (Reuse/Sale)		

## Table F. 2.10 Estimation of Industrial Solid Wastes Generated in Bang Saphan Area

(*) :Hazardous waste is assumed to be 15 % of total solid wastes.

(**): Although the sludge generated from the pickling and plating process will contain Ferrite, Zinc, etc., heavy metal will not be contained. Therefore, the sludge will be recycled efficiently.

Estimation of Industrial Solid Wastes Generated from Bang Saphan I/E



Type of Industry

Table F. 2.11	Site	and Incinerator for Treatment and Disposal	
n an That yn tager yn d		of General Wastes	

I.	Disposal site:
:	must be composed of
	a) Incinerator building
	b) Car parking and car washing area
	c) Ash removal pond
2	Incinerator building:
	must be composed of
1	a) Storage room
ŀ	b) Waste separation room
	c) Incinerator area
Ŀ	d) Rest room
3	Incinerator:
	a) To be installed sufficient amounts of incinerators
	b) Working hour = 8 hours or 12 hours
	c) Emission must meet the air emission standards of MOI
	d) Incinerator must be composed of :
	- Automatic feeder
	- Temperature controller and other significant parameters
	- Stack height $\geq$ 15 m - Secondary chamber (dust burning) can control temperature to
	1,000 °C and retention time is 0.5 seconds or higher
	e) Ash removal
	- Amount of ash from incinerator can be estimated from 20 % of total
	solid wastes

Source : IEAT

(CO)inflated detection.Nitrogen dioxide $0.32$ Gas phase chemi- luminescence(NO2) $0.30$ $0.10^*$ Sulfur dioxide (SO2) $0.30$ $0.10^*$ Suspended $0.33$ $0.10^*$ Suspended $0.33$ $0.10^*$ Gravimetric- high volumeGravimetric- high volume(SPM) $0.20$ Chemi- luminescence	Pollutants	1 h average mg/m ³	8 h average mg/m³	24 h average mg/m ³	1 year average mg/m³	Methods of measurement
(NO ₂ )     chemi-luminescence       Sulfur dioxide (SO ₂ )     0.30     0.10*       Suspended     0.33     0.10*       Gravimetric- particulate matter     Gravimetric- high volume       (SPM)     Photochemical     0.20       Oxidunt (O ₃ )     Oxidunt (O ₃ )     Chemi- luminescence	and the second	50	20			the second second
Suspended       0.33       0.10*       Gravimetric-high volume         particulate matter       (SPM)       Second and the second	•	0.32				chemi -
Photochemical 0.20 Oxidant (O ₃ )	Suspended particulate matter				i per parte di desta de la competencia d	Gravi metric-
U.01 We asning	Photochemical	0.20		0.01		

### Table F. 2. 12 Ambient Air Quality Standards (Thailand)

en nan sin an galagae paleg

· ·	Vol. 98, part 197, dated December 1, B.E. 2524 (1981) 4322 - 4323.	. :
(2	2) Methods of Measurement : Notification of the Ministry of Science, Technology and	1
	Energy, issued under National Environmental Quality Act B.E. 2518, B.E. 2521,	
	published in the Royal Government Gazette.	
· · · .	Vol. 98, part 197, dated December 1, B.E. 2524(1981) p. 4299 - 4306.	1
	는 것은 것은 것은 것 같은 것을 보면서 가장에 물러 있었다. 이 것 같은 물건이 있는 것 같이 있다.	

#### Source:

Laws and Standards on Pollution Control in Thailand, 3ided, PCD, Sept. 1994

No.	Substances	Proposed standard values	Sources
1	Particu late		•Boiler and furnace
		0.3 g/Nm ³	Heavy Oil as fuel
		0.5 g/Nm ³	Coal as fuel
		400 mg/Nm ³	·Steel manufacturing
		$400 \text{ mg/Nm}^3$	·Cement plant and calcium carbide plant
		$400 \text{ mg/Nm}^3$	Rock and grave aggregate plants
		0	(production capacity more than 50,000 th)
		500 mg/Nm ³	Other source
2.	Smoke opacity	not exceed 40% Ringelmann sca	
<u>3</u> .	Aluminium	$(dust) 300 \text{ mg/Nm}^3$	Furnace or smelter
J.	radiimmuum	(Al) 50 mg/Nm ³	
4.	Akohol	0.05 lb/m	Any source
5.	Aldehyde	0.05 lb/m	Any source
	Ammonia	25 ppm	Gasplant
6.		$25 \text{ mg/Nm}^3$	Any source
7	Antimony	0.05 lb/min	Any source
8	Aromatics		
9.	Asbestos	$27 \mu \text{ gNm}^3$	Any source
10.	Arsenic	$20 \text{ mg/Nm}^3$	Any source
11.	Beryllium	$10 \ \mu \text{ g/Nm}^3$	Any source
12.	Carbonyls	25 ppm	Burning refuse
13.	Chlorine	$20 \text{ mg/Nm}^3$	Any source
14.	Ethylene	0.03 lb/min	from production or by usage
15.	Ester	0.05 lb/min	Any source
16.	Fluorine	$0.3 \text{ lb/t } P_2O_5$	Any source
17.	Hydrogen chloride	200 mg/Nm ³	Any source
18.	Hydrogen fluoride	$10 \text{ mg/Nm}^3$	Any source
19.	Hydrogen sulphide	100 ppm	Any source
20.	Cadmium	1.0 mg/Nm ³	Any source
21.	Copper	dust 300 mg/Nm ³	Any source
		$(Cu) 20 \text{ mg/Nm}^3$	
22.	Lead	dust 100 mg/Nm ³	Any source
~~~		$(Pb) 30 \text{ mg/Nm}^3$	
23.	Mercury	0.1 mg/Nm ³	Any source
24.	CO	$1000\mathrm{mg/Nm^3}$	Any source
25.	SO ₂	500 ppm	H_2SO_4 production, Other activities:
2.)	5Q	400 ppm	·Bangkok and its vicinities
		700 ppm	•Other area
20	NO	1,000 mg/Nm ³	Combustion source
26.	NO _x		HNO ₃ production and others
07	ATA No. 1	2000 mg/Nm^3	
27.	Nitric acid	70 mg/Nm ³	Any source
28.	Organic material	0.01 L/min	Any source
29.	Phosphoric acid	3 mg/Nm^3	Any source
30.	Sulphur trioxide	35 mg/Nm ³	Any source also in
1.1		as H_2SO_4	combination with H_2SO_4
31.	Sulphuric acid	35 mg/Nm^3	Any source

Table F. 2.13 Emission Air Quality Standards (Thailand)

Source: ONEB (1989)

Quality Indicator	Units	Standards	Remarks	
BOD (5 days, at 20°)	mg/1	20 - 60	Fishery canning	
	Max 100			
			Starch industry	· · ·
			Centrifugal	Max 60
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Sedimentation	Max 00 Max 100
			Noodle industry	Max 100
			Tanning industry	Max 100
· · ·			Pulp industry	Max 100
			Frozen food industry	Max 100
Suspended solids (SS)	mg/l	Depend on dilution	Ratio	
and a second		ratios of wastewater	1/8 to 1/1 50	Max 30
		and receiving water	1/151 to 1/300	Max 60
			1/301 to 1/500	Max 150
an an an an an an an Arland. An an				
Dissolved solids (DS)	mg/l	Max 2000 or under	If salinity of receiving	water is higher
		office's consideration	than 2,000 mg/1, DS in	
		but not more than 5,000	should not be higher th	
:	an a		of the DS in the receivi	ing water
pН		5-9	a da serie da serie Esta serie da serie d	
• · · · ·		a second a second de la seconda de la se		
Cyanide as HCN	mg/l	Max 0.2		
Oil & Grease	mg/l	Max 5.0	Refinery & Lubricant	allinduomi
		1110x 3.0	Rennery & Euoneaner	Max 15.0
Free Chlorine	no o/1	M 10		IVIA IJ.V
	mg/l	Max 1.0		
	at in ta			
Heavy Metals				
Zinc (Zn)	mg/1	Max 5.0	Zinc industry	Max 3.0
Mercury (Hg)	mg/l	Max 0.005	Zinc industry	Max 0.002
Lead (Pb)	mg/l	Max 0.2	· · · · · · · · · · · · · · · · · · ·	
Manganese (Mn)	mg/l	Max 5.0		

Table F. 2. 14 Industrial Water Effluent Standards (Thailand) - Selected Indicators

Source : Laws and Standards on Pollution Control in Thailand, 3rd ed., PCD, Sept. 1994.

	from Factory that is allowed t	o discharge to I/	E
1.	Average BOD5	≤ 500	mg/l
2.	Average Suspended Solids	≦ 200	mg/l
	pH	5.0 - 9.0	
4	Temperature	≦ 45	
	Sulphide as hydrogen sulphide	≦ 5	mg/l
	Cyanide as hydrogen cyanide	≦ 2	mg/l
	Oil and grease	≦ 10	mg/l
8		≦ 10	mg/l
	Formaldehyde	≦ 2	mg/l
	Phenol and Cresols	≤ 1	mg/l
	Free Chlorine	≦ 5	mg/l
	Insecticide	none	
	Radioactive compound	none	
·	.Fluoride (F)	≦ 5	mg/l
	Free Ammonia	≦ 5	mg/l
	. Total Ammonia Nitrogen as N	≤ 50	mg/l
	Mercury and Mercury Compound	≦ 0.005	mg/l
_	Soluble Iron and Manganese	≤ 10	mg/l
	Chromium, Arsenic, Silver, Selenium	>	
	Lead, Nickel, Barium, Copper	,	
	Cadmium, Total or Each	≦ 1	mg/l
2	Other materials that should no	ıt	• • •
	discharge into the wastewater pipeline		
	- High viscosity material - Settleable solids that cause pip	ρ	
	clogging		
	- Calcium Carbide Sludge		
2	1. Synthetic Detergent	≦ 30	mg/l
	2. Chloride (Cl) as Chlorine	≦ 2,000	mg/l
i ang			

Table F. 2. 15 Standard for Wastewater Effluent from Factory that is allowed to discharge to I/E

Source : IEAT

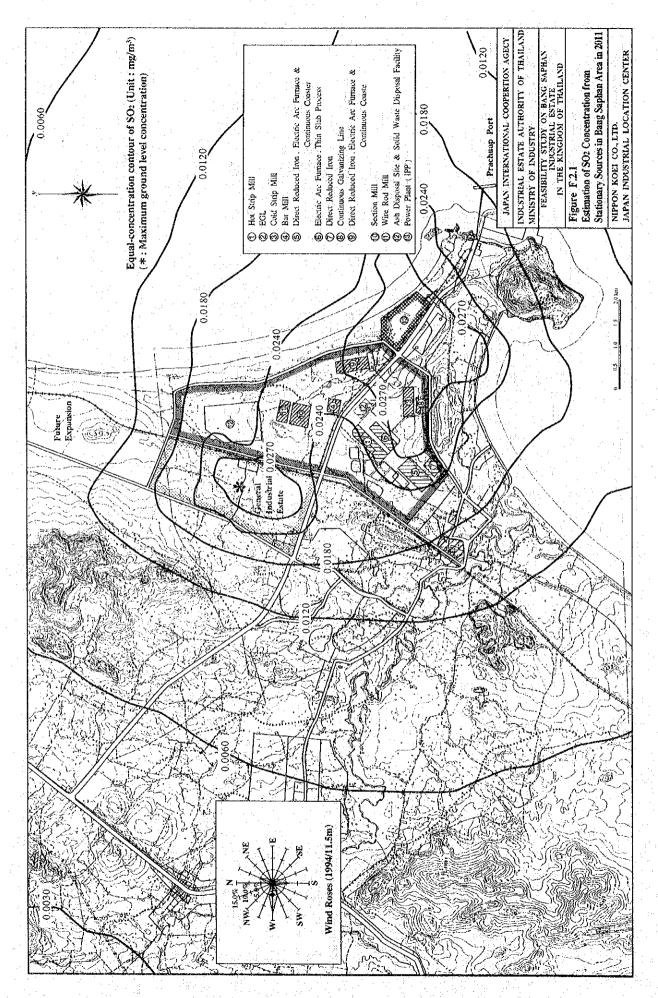

Pollutant	Main Industrial Polluting Source
Air Pollutants	
	Sulfuric acid production, industries using heavy oil as fuel, metal industry, pulp mill
Nitrogen Oxides (NO _x)	Nitric acid manufacture, various industries accompanying combustion
Particulate Matter (PM)	Various industries accompanying combustion (boiler, furnace, kiln, etc.)
	Gas industry, metal refinery, internal combustion, motor vehicles
	Motor vehicles, oil storage, refining sites, painting facilities
Hydrogen Chloride (HCl)	Soda industry, plastic process
Others (heavy metals and thier of Water Pollutants	compounds, asbestos, offensive odors, etc.)
	Almost all industryies, especially ceramics, paper, pulp, food processing, stone quarryng, mining
BOD, COD	Almost all industries, especially food processing, pulp, petroleum, chemical, fermentation
	 Mineral oil (petrochemical, machinery, iron/steel) Biological oil and fat (food, oil & fat industry
-	Electroplating, inorganic industry, iron/steel mill, leather manufacture
Substances 1) Heavy metal ion (Hg, Cd, Pb, Cr, Zn, Cu, As, etc.) 2)Nov. metals (model)	 Metal mining, electroplating, inorganic chem., glass, organic synthesis Electroplating, synthetic chem., aluminum, glass, chemical fertilizer Pesticide, industrial chemical, plasticizer, plastic monomer, organic solvents for electronic industry.

Table F. 3. 1 Significant Pollutants to be Monitored

Table F. 3. 2	Frequency of	Water Monitoring	by P	Parameter
----------------------	--------------	------------------	------	-----------

Monitoring Item	Monitoring Frequency		
n-Factory Monitoring (Effluent Water)			
Those primary pollutants which affect the perform- ance of the wastewater treatment process or can have immediate effect on the receiving environment. BOD/COD, Temperature, Oil & Grease, pH			
Other primary pollutants	Daily - weekly		
Other pollutants relevant to the receiving waters.	Monthly - annual		
Feedstock composition as required by delivery of raw materials.	Sporadic		
teceiving Environment			
 Dissolved oxygen (to assess the effects of discharges containing BOD). Chlorophyll - a (to assess the effects of discharges containing nutrients on alga growth). Biological uptake for discharges containing bio accumulative pollutants. 	seasonal.		

and Petrochemical Industries, OEPP. 1993

