3 COST ESTIMATE FOR CDPP PRIORITY PLANS FOR COMMUNITY INFRASTRUCTURE DEVELOPMENT

Chapter 3 carries out the cost estimate for the four priority plans presented in Chapter 2.

3.1 Basic Conditions of Cost Estimate

The cost estimate of the project was made under the following two conditions:

- (1) People's Participatory Program (PPP) Basis
- (2) Local Competitive Bidding (LCB) Basis

3.1.1 People's Participatory Program (PPP) Basis

Civil engineering works will be carried out on the contract basis under an initiative involvement and participation of beneficiary villagers (refer to as "villagers" herein after) in associate with NGO(s), for the following projects:

- (1) Rural Road Rehabilitation Project in Namtar/ Tilar Area, (Described in Section 2.1 in detail)
- (2) Rural Water Supply Network Development Project in Chisapani Area. (Described in Section 2.4 in detail)

The NGO(s) who undertake these works will be selected, judging from their management and supervising experiences and skills in the past similar project they had been involved, evaluated by some third parties.

- i) These organisations or groups should consist of several engineers, and they are expected to train villagers for the maintenance work as well as for a further sustainable development in the future.
- collection and transportation of materials are classified into two types as described in Section 3.2.1 (listed in Table 3.3.1 for detail). Basically, aggregates such as boulder, nubbles, cobbles, etc. will be collected by villagers. However, other construction materials such as steel bars, gabion wire, cement, and other ready-made/ precast materials such as pipes and plastic tanks will be fully supplied by a certain agency or organisation under accurate quantity estimation by NGO(s). These materials will be transported by vehicles up to motorable road-head, and then transported by villagers to the respective sites.
- iii) Compensation to the villagers for participation effort will be made in cash payment within the respective project budget.
- iv) The construction of the above civil works will be mostly carried out by common labourer under proper technical instruction by project engineers, using simple construction tools and equipment, such as portable mixer, portable lammer, vibrator, etc. However if machinery and equipment are required, it will basically be provided by the NGO(s), in co-operated with funding agencies..

3.1.2. Local Competitive Bidding (LCB) Basis

Civil engineering works will be constructed on the contract basis. The contractors who undertake these works will be selected through local competitive bidding. The construction of such civil works will be carried out by using construction machinery and equipment which will be provided by the contractors. Villagers may participate in simple labour works, such as collection of materials or simple construction works with tools, or light equipments, if required. The following projects will be carried out under LCB basis.

- Micro-Hydropower Plant Project in Namtar/ Tilar Area (Described in Section 2.3 in detail)
- Rehabilitation of Namtar Irrigation Project in Namtar/ Tilar Area (Described in Section 2.2 in detail)

The Contractors who undertake these works will be expected to transfer some sustainable skills and technologies to the villagers useful for the maintenance of the system, through partially employing them as common labourers.

3.2 Market Price Survey

3.2.1 Material Price and Labour Cost

The unit prices of materials and labour waged are estimated at 1996/97's price level, making reference to the Garrigaon Irrigation Project, an example scheme conducted under people's participation program. This project had been carried out in Phedigaon, Palung VDC, Makwanpur District, during February, 1996 to July, 1996, under assistance of HMG-N/ILO/IFAD/WFP. Information was also obtained from the Makwanpur district, the Ministry of Local Development, District Irrigation Office of Makwanpur District and the market investigation was done in Hetauda and Kathmandu. The list of unit price obtained through investigation in the Makwanpur District (Hetauda) as well as Kathmandu are shown in Table 3.2.1.

Other assumptions are as the following:

- (1) The cost estimate for the community infrastructure project is in local (L.C.) currency portions only.
- The exchange rate used for the cost estimate is as follows:
 US\$ 1.00 = NRs. 55.75 = ¥ 109.10, as of June 11th, 1996.

3.3 Unit Rate Analysis

The unit price for construction materials at respective sites are analysed under the following conditions:

3.3.1 Unit Rate for Major Construction Materials

Construction materials are classified into two groups; aggregates and other construction materials.

Aggregates,

Aggregates, such as boulder, rubbles, cobbles, etc., are assumed to be collected within 2 km from the respective sites, under people's participation program. Therefore, cost for collection of these materials are assumed to bear associated transportation cost. For sand, transportation cost is added at Chisapani and Namtar areas. In Chisapani, sand has been transported from quarry site in Palung bazaar by porters who charges NRs.1 / kg. In Namtar, sand is available within 2 km from the respective sites, and assumed to be transported by trucks. In Phedigaon and Phatbazar area, sand quarry is nearby and villagers effort has been expected.

Other materials

On the other hand, the cost for other materials are assumed to be supplied and transported by private parties, hence the unit rate for materials at site bear transportation cost and indirect costs, such as contractors profit and government tax.

The unit rate for construction materials at each of three construction sites (Namtar, Chisapani, Phedigaon) are listed in Table 3.3.1.

3.3.2 Unit Price Schedule for Major Construction Work Items

The unit price schedule for the major construction work items at respective sites are analysed under the following conditions:

Unit price for major construction work items on PPP basis

The unit price schedules for the major work items on PPP basis merely consist of costs for specified quantity of labour, materials ("other materials" bear indirect cost, as described in the previous paragraph) and equipments (tools). Finally, indirect cost such as contractor's profit and government tax will not be added to these unit prices schedule, therefore, the government tax should be exempted from PPP based construction works.

Unit price for major construction work items on LCB basis

The unit price schedules for the major work items on LCB basis are estimated based on those of PPP basis. Since transportation cost as well as indirect cost have been omitted in the unit rate of aggregates as described in section 2.1.3, 10 % is added on price schedule for PPP basis at first. Then 15 % of total price is added as contractor's profit, and finally another 5 % of total price is added as the government tax portion. Therefore, the unit prices on LCB basis have increased by a total of 30.25 % from those of PPP basis.

Tables 3.3.2 through 3.3.4 summarise the site-wise unit prices for major construction work items on both PPP and LCB bases (Table 3.3.2), the cost of labour components within each site-wise unit price on PPP basis (Table 3.3.3) and LCB basis (Table 3.3.4), respectively.

The unit prices are divided into the following four (4) work groups:

Work Group	Price	Item N	Vo.	
Earth works Concrete works Stone works Other miscellaneous works	01 06 08 15	- - -	05 07 14 16	

3.4 Cost Estimate

The cost estimate is made at the price level in 1996/97. For all works, the cost is estimated first at the unit price level, based on the work quantities shown in Bill of Quantities. The Bill of Quantities are estimated for preliminary design under feasibility level.

As described in the Main Report, the feasibility level preliminary design was made for the following three priority out of four priority plans for infrastructure development works in the Study Areas, respectively:

Priority plans

Namtar Area:

- Rural Road Improvement Project
- Micro-Hydropower Development Project

Chisapani Arca:

- Rural Water Supply Network Development Project

Priority plan (Designed by District Irrigation Office)

In Namtar area, preparation of an irrigation rehabilitation project is undertaken by District Irrigation Office of Makwanpur District. Therefore, only the features of this project will be introduced in Section 3.5.2.

- Rehabilitation and Improvement of Namtar Irrigation Project

3.4.1. Direct Construction Cost

The cost estimate was therefore made for each work based on the unit prices described in the previous sections and work quantities obtained through its feasibility level design. The total construction cost for civil works for each of the above four projects has been estimated and summarised as follows:

(1) Rural Road Improvement Project in Namtar/ Tilar Area:

NRs. 3.038 millions (US\$ 54.5 thousands, Table 3.5.1)

(2) Rehabilitation and of Namtar Irrigation Project:

NRs. 4.50 to 6.00 millions (US\$ 75 to 110 thousands, Table 3.5.3)

(3) Micro-Hydropower Scheme in Namtar/ Tilar Area:

NRs. 5.454 millions (US\$ 97.8 thousands, Table 3.5.4)

(4) Rural Water Supply Network Development Project in Chisapani Area:

NRs. 1.968 millions (US\$ 35.3 thousands, Table 3.5.5)

3.4.2 Indirect Cost

For small scale projects, especially for people's participation program basis, indirect cost mainly consists of engineering service/ technical support and physical contingency. The cost for preparatory work, which may be relatively very small compared to those of construction of mechanical measures for disaster prevention, is assumed to be covered within the former category.

(1) Engineering service/ Technical support

Engineers are expected to conduct detailed survey, detailed designs as well as a further technical support to a community based project for some period of time, so that the people will be trained and the project becomes sustainable. This cost is assumed to be 30 % of the construction direct cost (20 % for Micro-hydropower Project in Namtar/ Tilar, due to its characteristics as "plant type".

(2) Physical contingency

Physical contingency covers the fluctuation of direct construction costs, and assumed to be 20 % of the sum of direct construction cost and cost for engineering service/ technical support.

3.4.3 Cost Estimate for Total Project Cost

Finally, cost estimate for the total project cost is the sum of direct and indirect costs. The total project cost for each of the four prioritised/ project for community infrastructure development was estimated and summarised as follows:

Rural Road Improvement Project in Namtar/Tilar Area:

NRs. 4.739 millions (US\$ 85.0 thousands, Table 3.5.1)

(2) Rehabilitation and of Namtar Irrigation Project:

NRs. 7.0 to 8.0 millions (US\$ 125 to 145 thousands, Table 3.5.3)

(3) Micro-Hydropower Scheme in Namtar/ Tilar Area:

NRs. 7.854 millions (US\$ 140.9 thousands, Table 3.5.4)

(4) Rural Water Supply Network Development Project in Chisapani Area:

NRs. 3.070 millions (US\$ 55.1 thousands, Table 3.5.5)

Cost estimate for each of the individual project will be explained in detail in the following sections 3.5.1 through 3.5.4.

3.5. Cost Estimate for Priority Projects for Community Infrastructures

3.5.1 Rural Road Improvement Project in Namtar/ Tilar Area:

The cost estimate of the project was made under the conditions of 'People's participation program' basis at Namtar/ Tilar, as described in the preceding sections.

The major components for the rural road improvement are as follows:

Gabion structures (checkdams, prop walls), Side-ditch (wet masonry and dry nubble masonry types), Surface drainage (stone pitching), Drainage pipe culvert (RCC pipes) and Drop-chutes (vegetated riprap). Based on the work quantities estimated in Section 2.1.1 of this Sector Report, the construction cost as well as the total project cost for the rural road improvement project in Namtar/ Tilar Area are estimated. The total project cost is estimated at NRs. 4.739 millions (US\$ 85 thousands), among which the total construction cost is estimated at NRs. 3.038 million (US\$ 54.5 thousands) as is summarised in Table 3.3.1. It is noted that the miscellaneous cost, which is given as 20 % of the total direct construction cost for major works, basically should bear the cost for the following items: minor work items such as for vegetation and extra materials for the future development as well as spare parts for the maintenance of the system, such as gabion wires, cement, RCC pipe for culverts, etc.

Table 3.3.2 shows the breakdown cost for the major work items. Besides the cost estimation on PPP basis, estimation on LCB basis, which includes contractor's profit as well as government tax, is given in the right column of the same table as a reference.

The organisations or groups who undertake these works should consist of several engineers, and they are expected to technically support the community through training villagers for the basic construction works, maintenance works as well as a further sustainable development in the future. In this way, it is expected that basic appropriate technologies and skills, such as an adequate establishment of gabion boxes, excavation of side-ditches, etc. to be transferred to the community.

3.5.2 Rehabilitation and of Namtar Irrigation Project:

The survey, design and cost estimate of the system has been undertaken by the District Irrigation Office of Makwanpur since July 1996. The proposed major construction work items are as follows

Intake structure (side intake type); Head reach canal (reshaping of existing canals: 1.0 km on Dungeon side, and 2.5 km on Namtar side); Suspended aqueduct over Manhari khola (clear span; about 100 m); Crossing structures (15 nos.); and reshaping of main canal

(about 3.5 km). Among these works, the most expensive item will be the suspension aqueduct, of which the cost for construction is estimated to be in the range of NRs. 2 to 3 millions (on direct cost basis), and the total construction cost of whole system is to be in the range of NRs. 4 to 5 million (on direct cost basis), respectively. Thus, the cost for the said aqueduct will be estimated to be about 55 to 65 % of the total construction cost. Finally, the total project cost is estimated to be in the range of NRs. 700 to 800 millions.

3.5.3 Micro-Hydropower Scheme in Namtar/ Tilar Area

The cost estimate of the project was made under the conditions of "Local Competitive Bidding (LCB)" basis at Namtar/ Tilar area, thus the construction cost bears contractors profit as well as the government taxes, as described in the preceding sections.

The major components of the scheme are as follows:

Intake works (constructed on Checkdam D-1) on the Manahari Khola; Desilting basin with Spillway (wet stone masonry and valves); Connecting pipe (6 kgf/cm2 HDP pipe I.D. 250 mm), Revert/ Stream crossing structures (wet stone masonry, 5 nos.); Forebay tank (wet stone masonry and sluice gate); Generating plant and distribution system (Plant: 20 kW, distribution line: 9.4 km).

The work quantities for construction is estimated on a preliminary design basis as is summarised in Section 2.3 of this Sector Report. The total project cost is estimated at NRs. 7.854 million or US\$ 140.9 thousands, of which the construction costs have been estimated at NRs. 5.442 million (or US\$ 97.6 thousands), as is summarised in Table 3.5.3.

It is noted that an amount of 100 lit./ sec. of water will be introduced through intake constructed on Checkdam D-1, and generates about 18 kW of electricity, distributed to 140 households as well as community facility such as Kalika Secondary school, health post, etc. Surplus amount of water could be used for supplemental irrigation by initiative effort of the villagers in the area.

3.5.4 Rural Water Supply Network Development Project in Chisapani Area

The cost estimate of the project was made under the conditions of 'People's participation program" basis at Chisapani, as described in the preceding sections.

The feasibility level preliminary design was made for the rural water supply network development in Chisapani Area for 78 households and a school, as described in the Section 2.4 of this Sector Report. The major components for the network are as follows:

Intake protection structure (precast unit), storage tanks, distribution tanks (both in RCC), delivery tanks, household storage tanks (both in plastic tanks), related structures (precast unit), and HDP pipelines.

Based on the quantity estimate given in Chapter 2 hereof, the project cost, including costs for engineering service as well as physical contingencies, is estimated at NRs. 3.07 million (US\$ 55.1 thousands). Among this, total construction cost for the project was estimated at NRs. 1.968 million (US\$ 35.3 thousands) as summarised in Table 3.5.5. It is noted that the miscellaneous cost, which is given as 20 % of the direct construction cost, basically should cover the cost of extra materials and spare parts for the maintenance

of the system, such as pipes, cement, pipe fittings, extra plastic tanks for the future development, sprinkler unit, etc.

Since the network is divided into three major blocks (systems), system-wise breakdown of the associated direct construction cost for the major components are also summarised in Table 3.5.6.

Table 1.1.1 Important Factors in Design of Rural Water Supply Scheme (1/4)

Design Criteria for the Design Guidelines for Community Based Gravity Flow Rural Water Supply Schemes published by HMG-N/ UNICEF

- 1. Table A-1: Domestic Water consumption Figures: It shows the common basic water demand on per capita basis.
- 2. Table A-2: Institutional Water Consumption Figures: It shows some basic idea of water demand at school and health post
- 3. Table A-3: Water Demand Projections: It explains the definition of how water demand should be estimated
- 4. Safe Yield = 0.9 * measured source yield at the peak of the dry season.
- Consumption Pattern:
 It shows water consumption pattern during a day in percentage.
- 6. Peak Flow Factor for the above consumption pattern = 3: The peak hours of a daily consumption is explained as between 7:00 - 12:00
- Storage Tank Capacity:
 A suggested method for determining storage tank capacity is explained by a graph and table
- 8. Flow Velocity:
 Suggested maximum and minimum flow velocities within the pipeline are explained for various cases.
- 9. Table A-9: Suggested Tap Flow Rates: Suggested tap flow rates are explained for design water supply level
- 10. Static Head: Acceptable static head for various types of pipelines are explained.
- 11. Table A-11: Residual Head Acceptable residual head for each of the components are explained
- 12. Table A-12: Maximum Distance of Standpost Location from Users Guideline for determining a location of a standpost/ tapstand is explained.

Table 1.1.1 Important Factors in Design of Rural Water Supply Scheme (2/4)

Design Criteria for the Design Guidelines for Community Based Gravity Flow Rural Water Supply Schemes published by HMG-N/ UNICEF

1. Table A-1: Domestic Water consumption Figures

Type of Supply Area	Daily Water consumption
Rural Village	45 lcd
Bazaar Area	60 lcd

lcd = litre. per capita. per day

2. Table A-2: Institutional Water Consumption Figures

	· · · · · · · · · · · · · · · · · · ·	
- School	10 Ng	per student
- Health Post	1000 Ng	for out patients only and without improved
		sanitary condition e.g. WC
•	3000 l/d	for out patient only with improved sanitary
		condition

3. Table A-3: Water Demand Projections

At the time of survey
When construction is completed and water scheme is
commissioned.
After 15 or 20 years service life

4. Safe Yield = 0.9 * measured source yield at the peak of the dry season.

5. Consumption Pattern

Table A-4: Water Consumption Pattern

Hours	% of Daily Demand
05:00 - 07:00	25
07:00 - 12:00	35
12:00 - 17:00	20
17:00 - 19:00	20
19:00 - 05:00	Negligible

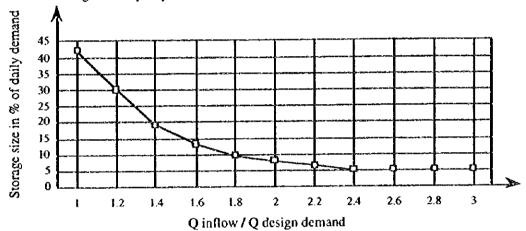

6. Peak Flow Factor for the above consumption pattern = 3

Table 1.1.1 Important Factors in Design of Rural Water Supply Scheme (3/4)

Design Criteria for the Design Guidelines for Community Based Gravity Flow Rural Water Supply Schemes published by HMG-N/ UNICEF

7. Storage Tank Capacity

The storage tank capacity should be estimated on the basis of following graph:

Preliminary storage can also be estimated on the basis of following method.

Table A-5: Balancing Storage

Supply Meets Demand In	Hours 18-24	Hours 15-18	Hours 12-15	Hours 9-12	Hours <9
Storage Volume (hours of average demand)	10	8	6	4	0

8. Flow Velocity

a) Minimum velocity

On stream intakes, if no sedimentation is provided, the minimum flow velocity shall be:

- In down hill stretches 0.8 m/s

1.0 m/s

- In up-hill stretches

hill stretches 1.0 i

If a sedimentation is provided, the minimum flow velocity can be reduced to:

- In down hill stretches 0.4 m/s

- In up-hill stretches 0.5 m/s

b) Maximum velocity

- Desirable 2.3 m/s
- Maximum 3.0 m/s

Table 1.1.1 Important Factors in Design of Rural Water Supply Scheme (4/4)

Design Criteria for the Design Guidelines for Community Based Gravity Flow Rural Water Supply Schemes published by HMG-N/ UNICEF

9. Table A-6: Suggested Tap Flow Rates

Design Water Demand (Vd)	Peak Flow Rate (I/s)	Remarks
4,500 - 6,000	0.20	Bazaar
3,300 - 4,500	0.15	Bazaar
3,375 - 4,500	0.15	Village

When the design demand is less than 3,300 l/day, the tap flow is 0.1 l/s.

10. Table A-7: Static Head

a) Transmission main

- For HDP pipes pressure class 10 kg/cm² not more than 100 m
- For GI pipes pressure class conforming to BS 1387 medium grade not more than 160 m
- For more than 160 m use welded joints for pipe & fittings

b) Distribution lines

-	Acceptable	60 m
-	Exceptional cases	80 m
-	With self-closing taps (e.g. Jayson Taps)	20 m

11. Table A-8: Residual Head

Structure		Residual Head
- Standpost	Desirable	5 m
-	Acceptable	up to 15 m
- BPCS and Storage tanks		10 to 15 m

12. Table A-9: Maximum Distance of Standpost Location from Users

Walking Distance	Desirable	In Exceptional Cases
- Horizontal	150 m	250 m
- Vertical	50 m	40 m

Design population per standpost: 100

Table 1.1.2 Check List for Implementation of Rural Water Supply Network Development

Responsibility of Beneficiaries / Users Committee

For implementing a community water scheme, the responsibilities of the implementing agencies should be clearly defined. The responsibilities of the users committee at different stages of the scheme implementation cycle would be as follows:

Planning Phase

The committee will participate in the following tasks during the planning phase:

- Make innitial request for the scheme based on demand-led approach
- Form a Water Users' committee with at least two woman members
- Selection of source and its regular measurement
- Involve actively during both pre-feasibility and feasibility study
- Resolve source disputes
- Clear the source area where intake is to be built and make access track wherever needed
- Get fully informed and agree for deisgn and cost estimate of the scheme
- Collect maintenance fund at the agreed rate for each Delivery tank (equivalent to Tap stand)
- Establish a protection zone around and on the catchment of the source and plant suitable tree species with assistane of district forest office
- Identify and recruit a VMW for the operation and maintenance caretaker (preferablyfemale) and two health workers (sewikas) for each delivery tank
- Involve the actual beneficiaries (women members also) to decide delivery tank location

Note: VMW = Village maintenance worker; OnG = on going; NY = not yet done

Construction Phase

The committee will mobilise the local community for the following tasks:

- Digging trench and backfilling
- Collecting and supply local materials such as stones, sand etc.
- Excavating at intake, storage tank, distribution tank, etc.
- Transporting pipes and other construction material from road-head to scheme site
- Unskilled labour for construction of intake, storage tank, distribution tank, etc.
- Organizing and managing store taking responsibility of cement, pipes, together with implementing agency.
- Keening minutes of all expenditure and decision on the scheme development.
- Organising regular meeting and solve all local problems
- Providing necessary support to the construction in charge
- Acquiring land for intake, storage tank, delivery tank, etc.
- Supervising construction and control quality in co-operation with the construction in charge

Operation and Maintenance Phase

Users' Committee will undertake the following activities during the operation and maintenance phase

- · Collect money on regular basis to pay the VMW and purchase spares
- Supervise the VMW
- Organise labour contribution for maintenance and repairs
- Supervise the delivery tank group and encourage them to participate more in spreading the health and hygiene education message to beneficiaries
- Co-ordinate with village development committee

Table 1.1.3 Check List for Step by Step Implementation Procedure for Rural Water Supply Network

The steps for implementation for a community based gravity flow rural water supply network development in Chisapani Area are as follows:

- * Request for the scheme by the user with VDC's recommendation
- * Pre-feasibility study
- * Formation of Users' Committee
- * District Assembly priorities for feasibility study
- * Feasibility study
 - Hydrological
 - survey of all potential water sources
 - regularly monitor the selected sources
 - Social aspects
 - assessment of the felt need
 - assessment of the community cooperation and interest
 - location of the delivery tanks (equivalent to "Tapstand")
 - Health / sanitation activities
 - Selection of villge woman workers
 - Technical
 - Altimeter (or Abney level) survey of the altitudes of intake, storage tanks, distribution tanks, etc.
- * Initial layout
- * Preliminary cost estimate of different optins
- Districts assembly selects scheme for construction
- * Detail Survey with Abney or Theodolite or Automatic level
- * Final assessment of the safe source yield
- * Final layout of the scheme
- * Design, cost estimate preparation
- Users' Committee agrees on the service level, the design and cost estimates of the scheme
- * Agreement with Users' Committee
- * Identification of the VMW and the formation of Delivery tank Group
- * Training of the users' committee Village Health Workers
- * Procurement of the materials, and then transportation to site
- * Construction activities
- * On the job training of the VMW and health workers
- * Completion Ceremony
 - Provide ownership certificare
 - Fix renumeration of VMW
 - Provide extra tools and materials to VMW
 - Fill completion Report
- * Operation and maintenance
- Training of VMW, Users' committee, Village Health Workers, Delivery tank Groups
- * Monitoring and Evaluation
- Provision of spares and materials through cooperatives

Table 1.3.1 Present Status of FMIS in the CDPP Area

Name of Raver	Name of Scheme	Command Area	Approximate Canal Leneth	Facilities Damaged by the 1993 Disaster	Present	Kemarks
Manahan Khola,	Upper (ILO) Scheme, Right bank, Namtar No.2	50 ha in Namour Tilar		Intake and Head reach, Crossing structures along distributing canal		- Rehabilitation project proposed by villagers. - Under Appraisal by DIO, for integration with Dungeon scheme (40 ha)
	Lower scheme, Right bank, Namtar No.2	3 ha in Namtar/ Tilar	1.5 km (Head reach: 0.5 km)	Intake, Head reach	In Use	- Rehabilitated by vilagen Lost most of its command area (right bank) by scouming in the 1993 disaster
	Upper (Dungeon) Scheme, Lett bank, Namtar No.4	40 ha in Dungeon	3.5 km (Head reach: 1.0 km)	Intake, Head reach	in Use	- Kchabiitated by villagers Irngaung over 30 ha out of 40 ha - Under Appriusal by DIO, for integration with ILO scheme (50 ha)
	Lower scheme, Left bank, Namtar No.4	•	1.5 km (Head reach: 0.5 km)	Intake, Head reach	Not In Use	- Lost all most of its command area (left bank) by scoung in the 1993 disaster - Used only by a water mill
Gorduwa Khola	Upper (Gorduwa) Scheme, 10 ha in Namtar Left bank, Namtar No.2	10 ha io Namtar	3.0 km (Head reach; 1.8 km)	Intake, Head reach	In Use	Rehabilitated by vallagers. Low efficiency due to its irregular canal bed slope
	Lower scheme, Left bank, Namtar No.2	2 ha in Namar	1.0 km (Head reach: 0.4 km)	Intake, Head reach	In Use	Rehabilitated by villagers. Lost most of its command area (right bank) by scouring in the 1993 disaster.
	Lower Scheme. Right bank. Namtar No.7	30 ha in Northern Ward-7	5.0 km (Head reach: 0.8 km)	Intake, Head reach	er O	- Kehabiltated by villagers.
Khade Khola	Khade scheme, Right bank, Namtar No.4	30 ha in Jyarpu/ Bhadaure	3.0 km (Head reach: 0.7 km)	Intake, Head reach	in Use	- Rehabilitated by villagers - Imgating about 20 ha out of 30 ha - Villagers hope to get additional water from Syares scheme
Syarse Khola	Syarse scheme, Right bank, Namar No.4	15 ha in Jyarpu	L.0 km (Head reach: 0.3 km)	Intake, Head reach, Distributing canal	so use	-Kenabilitated by villagers Imgating about 8 ha out of 15 ha, due to disconnection at a landslide section
Dhungakate Khola	Dhungakate Khola - Gangaon trregation Project 100 ha. Right bank. Palung No. 8 Phedigi. (Phabazant.) 9 Phatba. (Phabazant.) 9 Right Sanka.	100 ha. Phedigaon 20 ha. Phatbazar (Garrigaon)	Pipe: 0.85 km; Canal: 2.0 km (Head reach: 1.0 km)	Intake, Head Reach	In Use	Intake and head reach, Rehabilitated by IFAD/WFP/ILO, in July 1996
		15 ha, Leit bank Phedigaon	0.3 km	Intake, Head Reach	Not In Use	Intake site was eroded deeply down to foundation rock. Deep gap is seen between intake and head ceach.
Charte Khola	Ghatte small schemes, Right bank, Palung No. 9 (Phedigaon)	15 ha, Kight bank Phedigaon	0.3 km	Intake, Head Reach	Not In Use	Intake can be rehabilitated relatively cheap. Check whether unigation would induce further landslide.
Bhottekhona Khol	4 -	70 ha, Left bank Phedigaon 20 ha, Solm 50 ha	3,0 km (Head reach: 1.2 km)	Inake, Head Keach, Pipe Aqueducis 4 nos.	Not In Use	New intake and major work required, including 4 nos. of pipe aqueduct
Mahadev Khola	Small schemes, Left & Right bank Bangkhona, Karkigaon, Palungbazar	70 ha, Kight bank Bangkhora, Karkigaon, Pulungbazar	1.0 km 1.0 km 1.2 km (Head reach: 0.1km)	(3 Intakes and Mead Reaches	fn Use	Rehabilitated by farmers. Amount of intake water has been decreased down to 60 %

Source: Field survey in May - June, 1996, by the Study Team

Table 1.4.1 Available Turbines in Nepal (under 100 kW)

Turbine Type	Power Ontput(Max)	Power Output(Min)	Head(Max)	Head(Min)
	(kW)	(kW)	(m)	(m)
Propeller	5	1	5	1
Turgo	10	2	20	4
Turgo	10	2	20	4
Crossflow	50	1	30	5
Crossflow	50	5	50	5
Crossflow	50	1	-	12
Crossflow	250	3	100	3
Pelton	50	1	150	25
Pelton	100	1	150	30
Pelton	1000	100	1000	100
Francis	1000	100	150	5

Source; Micro-Hydro Design Manual by Intermediate Technology Publications 1993,

Note; The above turbines can be supplied by Nepalese manufacturers.

Table 1.4.2.1 Potential Number of Biogas Plants and Potential Biogas Production(1/2)

	Potential		Potential	
District	of Bioga		Produc	
	(No.)	(%)	(1000 x m3)	(%)
Mountain Region:	9,656	0.75	3,715	0.56
Sindhupalchoke	1,578	0.12	598	0.09
Dolakha	1,493	0.12	397	0.06
Sankhuwasabha	933	0.07	369	0.06
Bajhang	906	0.07	362	0.05
Taplejung	805	0.06	362	0.05
Bajura	790	0.06	348	0.05
Kalikot	699	0.05	287	0.04
Darchula	659	0.05	248	0.04
Solukhumbu	489	0.04	203	0.03
Jumla	427	0.03	162	0.02
Mugu	276	0.02	115	0.02
Humla	267	0.02	89	0.01
Rasuwa	146	0.01	83	0.01
Dolpa	106	0.01	62	0.01
Mustang	61	0.00	22	0.00
Manang	21	0.00	8	0.00
Hill Region:	455,038	35.46	243,023	36.48
Syangja	27,895	2.17	11,547	1.73
Gulmi	19,658	1.53	10,677	1.60
Sindhuli	18,086	1.41	10,114	1.52
Khotang	17,734	1.38	9,822	1.47
Dhading	17,528	1.37	9,261	1.39
Kavrepalanchok	16,966	1.32	8,751	1.31
Baglung	16,337	1.27	8,695	1.31
Surkhet	15,915	1.24	8,477	1.27
Bhojpur	15,699	1.22	8,151	1.22
Arghakhanchi	14,723	1.15	7,845	1.18
Ilam	14,492	1.13	7,797	1.17
Aghham	14,486	1.13	7,789	1.17
Palpa	14,200	1.11	7,673	1.15
Salyan	13,867	1.08	7,628	1.15
Makwanpur	13,348	1.04	7,519	1.13
Dailekh	13,334	1.04	6,777	1.02
Tanahu	13,239	1.03	6,689	1.00
Rukum	12,606	0.98	6,570	0.99
Panchthar	12,478	0.97	6,383	0.96
Pyuthan	12,140	0.95	6,344	0.95
Baitadi	12,088	0.94	6,108	0.92
Rolpa	11,736	0.91	6,105	0.92

Source: Present Structure of Biogas Sector in Nepal by Consolidated Management Services Nepal, 1993

Table 1.4.2.1 Potential Number of Biogas Plants and Potential Biogas Production(2/2)

	Potential l		Potential	-
District	of Biogas		Produc	
	(No.)	(%)	(1000 x m3)	(%)
Okhaldhunga	11,632	0.91	5,772	0.87
Ramechhap	11,565	0.90	5,694	0.85
Kaski	10,872	0.85	5,618	0.84
Kathmandu	9,140	0.71	4,873	0.73
Parbat	8,119	0.63	4,837	0.73
Myagdi	7,586	0.59	4,798	0.72
Lamjung	7,490	0.58	4,761	0.71
Dhankuta	7,362	0.57	4,660	0.70
Terhathum	7,266	0.57	4,011	0.60
Udayapur	7,240	0.56	3,962	0.59
Jajarkot	6,314	0.49	3,870	0.58
Bhaktapur	5,897	0.46	3,768	0.57
Nuwakot	5,236	0.41	3,458	0.52
Lalitour	5,108	0.40	2,735	0.41
Dadeldhura	3,986	0.31	2,120	0.32
Gorkha	1,670	0.13	1,364	0.20
Tarai Region:	818,504	63.79	419,450	62.96
Rupandehi	63,367	4.94	32,856	4.93
Siraha	62,658	4.88	32,751	4.92
Dhanusa	55,466	4.32	28,753	4.32
Morang	54,533	4.25	28,027	4.21
Sarlahi	53,704	4.19	26,380	3.96
Saptari	49,988	3.90	25,166	3.78
Rautahat	45,596	3.55	23,138	3.47
Chitawan	41,767	3.25	23,031	3.46
Nuwalparasi	41,141	3.21	21,604	3.24
Kapilbastu	39,728	3.10	18,878	2.83
Parsa	37,310	2.91	18,212	2.73
Dang	37,133	2.89	17,968	2.70
Bara	36,885	2.87	17,881	2.68
Kailali	35,975	2.80	17,648	2.65
Banke	32,018	2.50	17,591	2.64
Kanchanpur	32,006	2.49	15,888	2.38
Mahottari	31,833	2.48	15,645	2.35
Sunsari	31,773	2.48	14,850	2.23
Jhapa	27,753	2.16	13,425	2.02
Bardiya	7,870	0.61	9,758	1.46
Total in Nepal :	1,283,198	100	666,188	100

Source: Present Structure of Biogas Sector in Nepal by Consolidated Management Services Nepal, 1993

Table 1.4.2.2 Construction Materials and Appliances

	Particular	Unit	4 m3-type	6 m3-type	8 m3-type	10 m3-type	15 m3-type	20 m3-type
1.	Building Materials:	piece						
	Bricks	bag	1,200	1,400	1,700	2,000	2,400	2,800
	Sand	bag	60	70	80	90	110	120
	Gravel	bag	30	35	40	50	60	70
	Cement	bag	11	13	16	19	27	34
	6 mm rod	metre	50	60	70	70	90	100
	Paint	litre	1	1	1	2	3	4
2.	Building Labour							
	Skilled labour	days	8	8	11	11	13	15
	Unskilled labour	days	20	25	30	35	45	55
3.	Pipes & Appliances	! ::						
	Vert. mixer device	piece	1	1	1	1	1	-
	Hor. mixer device	piece	-	_	-	-	-	1
	Inlet pipe	piece	2	2	2	2	2	2
	Dome gas pipe	piece	1	1	1	1	į	1
	GI pipe	piece	12	12	12	12	18	24
	Socket	piece	3	3	3	5	5	6
	Elbow	piece	5	6	8	8	10	12
	Tee	piece	1	2	2	3	4	5
	Union	piece	1	1	1	1	1	1
	Nipple .	piece	3	3	4	4	6	6
	Main gas valve	piece	1	1	1	1	1	1
ĺ	Water drain	piece	1	1	1	1	1	1
	Rubber hose	metre	1	1	1	2	2	2
	Gas stove	picce	1	1	i	2	2	2
	Gas lamp	piece	-	1	1	1	2	3
	Tefton tape	roil	2	2	2	3	3	4

Remarks: In case of stone masonry: for 4 and 6 m3,

for 8 and 10 m3,

:1 extra bag of cement

for 15 and 20 m3,

: 8 and 10 m3, 2 extra bag of cement :15 and 20 m3, 3 extra bag of cement

Source: Construction Manual by Biogas Support Programme 1994

Table 1.4.2.3 Plant Construction Cost

(1) Sample Plant Cost Quotated by GGC for FY 1992/93

Unit: NRs

Description/Plant Size	4 m3	6 m3	8 m3	10 m3	15 m3	20 m3
1. Biogas Accessories	1,765	1,765	1,765	2,130	3,125	3,480
2. Pipe and Fittings	3,142	3,241	3,922	4,523	5,359	7,070
3. Cement	2,420	2,860	3,520	4,180	5,940	7,480
4. Bricks, Pebbles, Sand Labour, Transport	4,985	5,970	7,180	8,225	9,850	11,590
5. Construction Charge + Guarantee	2,400	3,150	3,850	4,500	5,850	7,000
Calculated Total	14,712	16,986	20,237	23,558	30,124	36,620
Approximate Cost	15,000	17,000	21,000	23,500	30,000	36,500

Source: Present Structure of Biogas Sector in Nepal by Consolidated Management Services Nepal, 1993

(2) Materials and Labour Supplied by Users according to Quotation of GGC for FY 2049/50

Description	/Plant Size	4 m3	6 m3	8 m3	10 m3	15 m3	20 m3
1. Cement	(bag)	11	13	16	19	27	34
2. Brick	(piece)	1,250	1,500	1,750	2,000	2,400	2,800
3. Sand	(bag)	60	70	80	90	110	120
4. Pebble	(bag)	30	35	40	50	60	70
5. Labour	(days)	25	30	40	45	54	70

Source: Present Structure of Biogas Sector in Nepal by Consolidated Management Services Nepal, 1993

Main Features of Site-wise Problems and Proposed Improvement Works on the Rural Road Improvement in Namtar Area Table 2.1.1

Site No.	Problems and Symptoms	Geological / Topographical	Mechanical Measures	Vegetative Measures	Expected Effects	Material	Remarks
		-					
Site - 1	Slope Collapsed on ms	- Located on a Devastated	Gabion checkdam, Side-ditch Line-sodding with locally deminant grasses over	Line-sodding with locally dominant grasses over	Stabilisation of slopes, Check further collapse	Gabion, Wet masonry, - Vegetated Riprap,	 Vegetation should be done by villagers' participation;
			Drop-chute channels with Vegetated riptup	surface of embankment, possibly with Straw-mat / Jute-net	Effective drainage of rain water	Vegetation (Rooted:	Vegetation (Rooted: - Rooted cuttings of grass cuttings of grasses and should be planted in rainy shrubs).
	Slope Collapsed on vs		Gabion prop wall		Stabilisation of slopes	Straw-mat, Jute-net	 Backfill with soil firmly: Confirm bearing strength of the earth
Site - 2 - a	Road shoulder failure on value to slope failure	- Saddle portion of hill slopes;	Gabion prop wall	(Natural vegetation)	Retain required road-width	Gabion	
Site - 2 - b	1 on ms	 Insufficient drainage of rain water 	- Insufficient drainage of rain Gabion prop wall, Side-ditch (Natural vegetation water	Natural vegetation enhanced by backfill soil	Stabilisation of slopes on ms. Gabion, Dry rubble masonry		 Installation of proper drainage facilities along
			Surface dramage, Drainage pipe culvert, Drop-chute	(behind) and soil dressing (over) on gabion wall	Effective dramage of rain	Stone-Pitching, Drainage pipe culvert, o	and across the road will be effective
Site - 3	Tendency of mass soil movement over a long downward slope on vs	- Situated above the layer of a pust large-scale landslide; - Appearance of weathered rock in the middle of slope on vs.	Gabion prop wall piled on levelling cement mortar and wet masonry layers	Vegetated gabion	Stabilisation of slopes on vs		- Prop wall can be based on the weathered rock by placement of a thin layer of levelling cement mortar and small volume of wet
	Development of gully/ rill erosion over natural vegetation on ms	- Irregular slopes	Removal of unstable surface soil, grading of irregular slopes in advance; Gabion prop wall, Side-ditch	Plantation of rooted cuttings of grasses along contour lines	Secure the safety of road by Check further guilly/ rill erosion: Rapid drainage of rain water		masonry in between
Site - 4	Tendency of mass soil movement over a long downward slope on vs	 Situated above the layer of a past large-scale landslide; High water contents; 	Surface dramage, Side-dirch. Plantation of grass and Drainage pape culvert. Drop-shrubs over naked slopes chutes	Plantation of grass and shrubs over naked slopes	Highly focused on an effective drainage of rain water	Stone-Pitching, Wet masonry, Dranage pipe culvert	- Drainage of rain water is very important
		- High undulation of slopes due to repeated landslide	Gabion checkdam, Gabion prop wall,	Vegetated gabions	Control washouts of soil particles	Gabion, Vegetation	- Remove unstable surface soil, and grade or trim irregular slopes in advance
Site - 5	Subsidence and destruction of road subgrade caused by Clumsy drainage of rain water	- Cavity development due to pipe clogging and careless embankment	Removal of embankment, Surface drainage, Side-ditch, Drainage pipe culvert, Drop- chute	Vegetated drop-chute	Rapid and effective drainage Gabion, Wet maxonry, - Road-shoulder should be of existing excess water Stone-Pitching, protected by gabions drain Drainage pipe culvert, culvert across the road	Gabion, Wet masonry, Stone-Pitching, Drainage pipe culvert,	- Road-shoulder should be protected by gabions drain culvert across the road
			Gabion checkdam, Gabion prop wall.	Vegetated gabions	Road shoulder protection	Vegetated Riprap	

Note: vs = Valley side; ms = Mountain side

Field Survey by the Study Team in May - June, 1996

Source:

Summary of Proposed Major Construction Works on the Rural Road Improvement in Namtar Area Table 2.1.2

S.M. Maior Construction Washin	Matarial	Count	•	nension	Work Items Unit	Hair	Quantity	Remarks
S.N. Major Construction Works	Material	(nos.)	B (m)	L (m)	Quantity	Onit	Quantity	Remarks
1. Site - 1								
Gabion checkdam (Upper)	Gabion box	2 rows	_	35.00	250 m3/m	m3	88	Vegetation
• • • • • • • • • • • • • • • • • • • •	Gabion box	2 rows		20.00	2.50 m3/m	m3		should
Gabion prop wall (ms)	Gabien box	2 rows		15.00	2.50 m3/m	m3		be done by
Gabion prop wall (vs)			-	20 00	0.31 m3/m	m3		•
Side-ditch (Type-A)	Wet masonry Vegetated Riprap	l nos. L nos.	2.00	5.00	10.00 m2/ nos.	m2		villagers' participation
Drop-Chute Vegetation	Rooted Cuttings		2.00 per requi		10.00 m2/ nos.	1112	10	participation
2. Site - 2								
Site - 2-a								
Gabion prop wall (vs)	Gabion box	3 rows	-	15.00	4.50 m3/m	m3	68	
Site - 2-b		_						
Gabion prop wall (ms)	Gabien box	2 rows	-	20.00	2.50 m3/m	-		Installation of
Side-ditch (Type-B) Surface Drainage	Rubble stone Stone-Pitching	l nos. 3 nos.	3.00	20.00 5.00	0.31 m3/m 15.00 m2/nos.	n) 2	6 45	side-ditch, stone piching, and
Drainage pipe culvert	Aggregates,							3 drain culvert
pipe d = 200 mm	RCC pipe, etc.	3 nos.	-	5.00	• -	nos	3	across the road
Drop-Chute	Vegetated Riprap	3 nos.	2.00	5.00	10.00 m2/ nos.	m2	30	will be effective
Vegetation	Rooted Cuttings	As	per requi	ired				
3. Site - 3	~ · · ·			50.00	2.50	•		
Gabion checkdam (Upper)	Gabion box	2 rows	-	50.00	2 50 m3/m	m3		Prop walt can be
Gabion prop wall (vs) Side-ditch (Type-B)	Gabion box Rubble stone	5 rows 1 nos.	-	60.00 60.00	9.00 m3/m 0.31 m3/m	m3 m		based on the weathered rock
Vegetation	Rooted Cuttings		per requi		0.50 m57m	***	17	Testifetes feek
4. Site - 4								
Gabion checkdam (Upper)	Gabion box	2 rows	•	80.00	2.50 m3/m	m3	200	
Gabien prop wall (ms)	Gabion box	2 rows	-	50.00	2.50 m3/m	m3	125	
Gabion prop wall (vs)	Gabion box	4 rows	-	25.00	6.50 m3/m	m3	163	
Side-ditch (Type-A)	Wet masonry	1 nos.	3.00	50.00 5.00	0.31 m3/m	m m3	16	Drainage of rain water
Surface Drainage Drainage pipe culveit	Stone-Pitching Aggregates,	3 nos.		5.00	15.00 m2/ nos.	m2	45	is very important
pipe d = 200 mm	RCC pipe, etc.	3 nos.	-	5.00		nos	3	
Drop-Chute	Vegetated Riprap	3 nos.	2.00	5.00	10.00 m2/nos.	m2	30	
Vegetation	Rooted Cuttings	As	per requi	boni				
5. Site - 5								
Gabion prop wall (ms)	Gabien box	2 rows	-	10.00	2.50 m3/m	m3	25	Road-shoulder
Gabion prop wall (vs)	Gabion box	2 rows	-	10.00	2.50 m3/m	m3		should
Side-ditch (Type-A)	Wet masonry	l nos.		10.00	0.31 m3/m	m		be protected
Surface Drainage Drainage pipe culvert	Stone-Pitching Aggregates,	3 nos.	3.00	5.00	15.00 m2/ nos.	m2		by gabions
pipe d = 200 mm	RCC pipe, etc.	3 nos.	-	5.00	-	กอร	3	
Drop-Chute	Vegetated Riprap	3 nos.	2.00	5.00	10.00 m2/ nos.	m2	30	
Vegetation	Rooted Cuttings	Ası	per requi	ired				
5. Drainage Facilities Developn					0.31	_		
Side-ditch (Type-B)	Rubble stone	- N	200	6,000.00	0.31 m3/m	m3		Drainage Structures
Surface Drainage Drainage pipe culvert	Stone-Pitching	30 nos.	3.00	5.00	15.00 m2/ nos.	m2	450	Are Proposed to be provided
pipe d = 200 mm	Aggregates, RCC pipe, etc.	30 nos.	-	5.00		nos	30	every 200 m
Drop-Chute	Vegetated Riprap	30 nos.	2.00	5.00	10.00 m2/ nos.	m2	300	along the Road
Vegetation	Rooted Cuttings	Ası	er requi	red				

Note: 1. Quantity is rounded to integer
2. vs = Valley side; ms = Mountain side

Table 2.2.1 Rehabilitation/ Development Plans for Farmer Managed Irrigation Schemes in Namtar/ Tilar

Source	Location	Scheme Name	Structures to be Improved/added	Effect on Community (Infrastructure)
Manahari Khola	Right bank	Namtar/ Tilar	New Intake, Improve Head reach,	- Total area of 50 ha will be Imigated
		Namtar Upper Scheme	New Suspension Aqueduct over Manahari	in Namtar/ Tilar
Manahari Khola	Left bank	Dungeon (Upper) Scheme	Dungeon (Upper) Scheme Improve Intake and Head reach.	- Total area of 40 ha will be fully
			Enlargement of Canal Section	Irrigated in Dungeon
Gorduwa Khola	Left bank	Gorduwa (Upper) Scheme	Improve Head reach and Canal bed slope	- Total area of 20 ha (part of Namtar scheme)
		•	Improve Landslide sections by HDP pipe	will be Irrigated.
Khade Khola	Right bank	Khade scheme	Improve Intake with Screen pipe and	- Total area of 30 ha will be Irrigated
	·····		Head reach using HDP, New Regulating unit	in Jyarpu/ Bhadaure
		Upper scheme	New Distributing (HDP) Pipeline	- Orchard field will be Irrigation in Bhadaure
Syarse Khola	Right bank	Syarse scheme	Improve Intake with Screen pipe and	- Total area of 15 ha will be irrigated
•			Head reach using HDP, New Regulating unit	- Micro hydropower plant using surplus water

Source: Field survey in May - June, 1996, by the Study Team

Table 2.3.1 MINIMUM MONTHLY AND YEARLY DISCHARGES (m3/s) at MANAHARI

YEAR	JAN	FEB	MAR	APR	МАУ	JUN	JUL	AUG	SEP	ост	NOV	DEC	YEARLY Mini.
1963	4.3	3.5	3.0	2.8	1.9	1.8	5.9	18.2	16.2	122	7.2	5.5	1.8
1964	4.3	3.3	2.9	25	1.9	1.8	5.9	23.5	24.5	11.6	7.5	5.6	1.8
1965	4.3	3.7	3.0	2.6	1.8	1.8	10.6	21.0	26.6	15.4	9.9	6.9	1.8
1966	5.1	4.5	3.7	2.8	2.5	2.2	16.3	23.5	24.9	13.3	9,4	6.8	2.2
1967	4.7	3.4	3.1	2.5	1.6	1.3	7.3	28.5	29.7	10.4	7.3	5.8	1.3
1968	5.1	3.5	2.6	2.0	1.7	5.6	16.0	12.3	15.9	15.9	9.4	6.7	1.7
1969	4.7	3.4	3.1	2.6	2.2	3.9	6.7	17.1	32.4	12.8	7.5	5.5	2.2
1970	4.3	3.2	3.7	5.8	3.0	3.5	9.8	26.8	19.0	9.2	7.2	7.0	3.0
1971	6.5	5.8	5.3	3.0	4.3	5.3	28.6	40.0	25.5	14.0	9.8	5.7	3.0
1972	4.4	3.7	2.9	2.6	2.5	25	7.3	25.3	21.8	15.5	9.8	6.0	2.5
1973	4.5	3.5	3.0	2.3	2.8	3.0	24.2	22.4	23.0	14.5	7.5	5.0	2.3
1974	4.5	3.7	3.1	3.9	3.4	3.7	38.0	32.4	26.5	14.6	8.8	6.1	3.1
1975	4.9	4.0	3.5	3.2	3.2	3.1	12.8	31.0	47.4	18.0	12.6	6.6	3.1
1976	5.2	3.4	2.0	2.0	2.0	7.8	37.0	34.0	29.0	13.0	8.2	5.8	2.0
1977	4.3	3.3	2.8	3.6	3.3	3 .3	15.4	28.0	20.0	12.0	7.7	6.0	2.8
1978	4.8	4.0	3.6	3.3	4.8	5.7	20.0	31.0	30.0	15.5	9.5	6.7	3.3
1979	5.3	4.6	3.3	3.1	2.5	2.3	9.0	36.0	28.6	13.4	9.4	6.1	2.3
1980	4.3	3.4	2.3	1.8	3.9	3.4	7.8	23.0	14.0	8.7	6.9	5.8	1.8
1931	5.6	4.8	4.4	4.6	4.6	3.4	8.4	23.0	23.0	12.0	8.1	5.2	3.4
1982	4.2	3.6	28	2.6	2.2	3.9	6.2	16.0	20.0	21.6	12.6	7.0	2.2
1983	5.4	4.6	4.2	3.0	4.2	1.2	12.6	35.8	51.2	11.4	6.9	5.0	1.2
1984	3.8	2.6	2.4	2.4	2.4	2.8	5.8	20.5	28.0	10.1	5.6	4.8	2.4
1985	4.3	3.5	3.3	3.3	3.3	4.1	6.1	16.1	37.2	17.2	8.7	6.6	3.3
1986	5.6	5.2	4.6	4.4	52.8	4.8	28.8	63.8	19.7	8.4	5.7	5.0	4.4
1987	3.4	3.0	3.1	3.1	3.4	3.3	13.0	96.0	68.8	6.8	7.0	11.4	3.0
1988	8.4	7.6	6.2	6.8	8.2	7.3	7.6	17.9	13.8	11.4	8.7	8.2	6.2
1989	8.2	7.9	7.9	8.2	9.8	14.6	17.0	18.8	9.0	5.2	2.8	1.7	1.7
1990	3.1	1.0	0.9	0.8	0.8	5.0	8.4	6.8	31.2	17.9	7.6	5.5	0.8
EXTREME	1.1	1.0	0.9	0.8	0.8	1.2	5.8	6.8	9.0	5.2	2.8	1.7	0.8

NAME OF SITE MANAHARI
STATION No. 465
EST.DATE 13 JUN. 1963
NAME OF RIVER MANAHARI

LATITUDE 27° 33′ 00″ N LONGITUDE 84° 48′ 10″ E ELEVATION 305m CA. AREA 427km2

Table 2.3. 2 MINIMUM MONTHLY AND YEARLY DISCHARGES (m3/s) at CHECK DAMSITE Discharge estimated from Specific Discharge at Manahari

<u> </u>	Γ										<u> </u>	<u> </u>	<u> </u>
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEARLY Mini
1963	0.36	0.29	0.25	0.24	0.16	0.15	0.50	1.54	1.37	1.03	0.61	0.47	0.15
1964	0.36	0.27	0.25	021	0.16	0.15	0.50	1.99	2.07	0.98	0.63	0.47	0.15
1965	0.36	0.31	0.25	0.22	0.15	0.15	0.90	1.78	2 25	1.30	0.84	0.58	0.15
1966	0.43	0.38	0.32	0.23	0.21	0.18	1.38	1.99	2.11	1.12	0.79	0.57	0.18
1967	0.39	0.29	0.26	0.21	0.14	0.11	0.61	2.41	2.51	0.88	0.61	0.49	0.11
1968	0.43	0.29	0.22	0.17	0.14	0.48	1.35	1.04	1.34	1.34	0.79	0.56	0.14
1969	0.40	0.29	0.26	0.22	0.19	0.33	0.56	1.45	2.74	1.03	0.64	0.47	0.19
1970	0.36	0.27	0.31	0.49	0.25	0.30	0.83	2.27	1.61	0.78	0.61	0.59	0.25
1971	0.55	0.49	0.45	0.25	0.36	0.45	2.42	3.38	2.16	1.18	0.83	0.48	0.25
1972	0.38	0.31	0.24	0.22	0.21	0.21	0.62	2.14	1.84	1.31	0.82	0.51	0.21
1973	0.38	0.30	0.25	0.19	0.23	0.25	2.05	1.89	1.94	1.23	0.63	0.42	0.19
1974	0.38	0.31	0.26	0.33	0.29	0.31	3.21	2.74	2.24	1.23	0.74	0.52	0.26
1975	0.42	0.33	0.29	0.27	0.27	0.26	1.03	2.62	4.01	1.52	1.07	0.55	0.26
1976	0.44	0.29	0.17	0.17	0.17	0.66	3.13	2.87	2.45	1.10	0.69	0.49	0.17
1977	0.36	0.28	0.24	0.30	0.28	0.28	1.30	2.37	1.69	1.01	0.65	17.0	0.24
1978	0.40	0.34	0.30	0.28	0.40	0.48	1.69	2.62	2.54	1.31	0.80	0.56	0.28
1979	0.44	0.38	0.28	0.26	0.21	0.19	0.76	3.04	2.42	1.13	0.79	0.52	0.19
1980	0.36	0.29	0.19	0.15	0.33	0.29	0.66	1.94	1.18	0.74	0.58	0.49	0.15
1981	0.47	0.41	0.37	0.39	0.39	0.29	0.71	1.94	1.94	1.01	0.68	0.44	0.29
1982	0.36	0.30	0.23	0.22	0.19	0.33	0.52	1.35	1.69	1.83	1.07	0.59	0.19
1983	0.46	0.39	0.36	0.25	0.36	0.10	1.07	3.03	4.33	0.96	0.58	0.42	0.10
1984	0.32	0.22	0.20	0.20	0.20	0.24	0.49	1.73	2.37	0.85	0.47	0.40	0.20
1985	0.36	0.30	0.28	0.28	0.28	0.35	0.52	1.36	3.15	1.45	0.74	0.56	0.28
1986	0.47	0.44	0.39	0.37	4.46	0.41	2.43	5.82	1.67	0.71	0.48	0.42	0.37
1987	0.29	0.25	0.26	0.26	0.29	0.27	1.10	8.12	5.82	0.57	0.60	0.96	0.25
1988	9.71	0.64	0.52	0.57	0.69	0.62	0.64	1.51	1.17	0.96	0.74	0.69	0.52
1989	0.69	0.67	0.67	0.69	0.83	1.23	1.44	1.59	0.76	0.44	0.24	0.14	0.14
1990	0.09	0.08	0.07	0.06	0.06	0.42	0.71	0.57	2.64	1.51	0.64	0.46	0.06
EXTREME	0.09	0.08	0.07	0.06	9.06	0.10	0.49	0.57	0.76	0.44	0.24	0.14	0.06

Remarks: Catchment Area at Manahari is 472 km2 and that at the Proposed Check Damsite is 36.1 km2.

Table 2.3.3 Hydraulic & Power Calculation for Micro-Hydropower

Item

Calculation/Dscription

1. Pipe, its Discharge & Hydraulic Gradient

1) Applied Pipe:

HDP pipe (10 kgf/cm²) from view-points of cost,

durability and flexibility

0 10 inch (250 mm: Maximum size in common use in Nepal)

Flow velosity: 2.3 m/sec (Desirable Velosity for HDP)

2) Discharge:

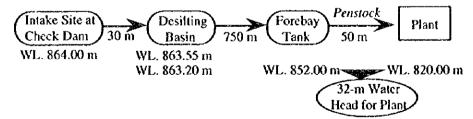
$$0.113 \text{ m}^{3/\text{sec}} (= 1/4 * \pi * 0.25^{2} * 2.3)$$

3) Hydraulic Gradient, I:

by Hazen-Williams formula for pipe flow

$$I = \left(\frac{V}{0.84935 \cdot C \cdot R^{0.63}}\right)^{1.852}$$

where, V: Flow velocity in pipe (m/sec: =2.3 n/sec for HDP)


C: Velocity Coefficient of pipe (150 for HDP)

R: Hydraulic Depth(m: =1/4 * pipe Diameter = 0.0625 m)

Accordingly,

$$I = \left(\frac{2.3}{0.84935 \cdot 150 \cdot 0.0625}\right)^{1.852}$$
$$= 0.015 \text{ or } 1/67$$

2. Water Levels along the Pipe

3. Power received by Consumers

$$P_{net} = e_0 \cdot 9.8 \cdot Q h_{gross} = 0.50 \cdot 9.8 \cdot Q \cdot h_{gross}$$

= 0.50 \cdot 9.8 \cdot 0.113 m3/sec \cdot 32 m
= 17.70 kW > Power Demand: 15,000 w OK!
(Refer Annex-8, Section 1.5.1 Micro-hydropower)

Table 2.3.4 Work Quantity for Micro-hydropower Project in Namtar / Tilar Area

Item	Works	Unit	Quantity	Remarks
1 Intake Works				
1.1 Steel p	ipe	m	11	¢ 250mm
1.2 Screen	-	kg	350	
1.3 Screen	Frame, etc	kg	170	
	Masonry for Step	m3	5.5	
	ation for Step	m3	4	
1.6 Stop V		set	1	\$ 250mm
	laneous Works	%	10	•
2 Desilting Basin	with Spillway			
	late for Top Cover	kg	180	10 m2, t=2.3mm
	Masonry(CM 1:3)	m3	27	
2.3 Concre	-	m3	0.5	
2.4 Excava	-	m3	50	
2.5 Backfi	H	m3	20	
2.6 Stop V	/alve	set	1	∮ 250mm
	gate (circle type)	set	1	ø 450mm
	laneous Works	%	10	•
3 Connecting Pip	pe —			
3.1 HDP p		m	830	I.D. ø 250mm, 6kgf/cm2
3.2 Excav	-	m3	125	
3.3 Backfi	11	m3	58	
3.4 Stone	Soling	m3	25	
	onry for pipe Support	m3	28	15-m interval, 0.5 m3/pc
	xing for pipe Support	set	56	
	llaneous Works	%	10	
4 Rivert/Stream	Crossing Structure (5 lo	cations)		
4.1 Stone	Masonry	m3	13	(2.62 m3/pc)
4.2 Excav	ation	m3		(2.50 m3/pc)
4.3 Backfi	11	m3		(1.50 m3/pc)
4.4 Pipe fi	xing	set	10	(2 set/pc)
4.5 Misce	llaneous Works	%	10	
5 Forebay Tnak				
5.1 Stone		m3	25	
5.2 Excav	ation	m3	29	
5.3 Backfi		m3	12	
	for Penstock	kg	220	
	gate (circle type)	set		∮ 450mm
5.6 Misce	llaneous Works	%	10	
6 Generating Pla	nt & Distribution Syten)		
6.1 Genera	ating Plant & Distribution	Sytem	L.S.	
(Plant: 20	kW, Distribution Line: 9.	4 km)		

Table 2.4.1 Potential Water Supply for Network Development in Chisapani Area

Name of Group	Number of	Number of Nos. / Name		Amount of Water Supply (1/min.)	Supply (1/3	min.)		Potentia	Potential Amount of Water Supply	ater Supply	
•	Kousehold	of Source	Chhap W	Chhap E	Majuwa	Total	1/ day	•	I/ hh/ day.	V hh/ hr.	1/ hh/ 10 min.
S-1	36	9	20.0	10.0	, 	30.0	43,200.0	•	1,200.0	50.0	8.3
S-2	21	2	4	10.0	•	10.0	14.400.0	ı	0.096	40.0	6.7
S-3	21	т	1	•	20.0	30.0	43.200.0	•	1.600.0	66.7	11.1
Total	78	1	20.0	20.0	30.0	70.0	100.800.0	Average	1.292.3	53.9	9.0
Bhattidanda (D-1-3, T-1-2)	17	S-1	16.0	1	,	16.0	23,040.0	2	1.355.3	56.5	4.6
Upper West (D-1-2)	ď	S-1	0.4	ı	,	0,4	5.760.0	ŀ	1.152.0	48.0	8.0
Mid West (D-1-1)	4	S-1		10.0	ı	10.0	14,400.0	ı	1.028.6	42.9	7.2
Lower west (D-2-1, 2-2, 2-3)	[2]	S-2 / S-3	•	10.0	10.0	20.0	28.800.0	•	1,371.4	57.1	9.5
Majuwa (D-3-2)	11	S-3		1	10.0	10.0	14.400.0	ŀ	1,309.1	54.5	9.1
Mid Majuwa (D-3-1)	'n	S-3		•	5.0	5.0	7,200.0	ı	1,440.0	60.0	10.0
Lower Majuwa (D-3-3)	'n	S-3	•	,	5.0	5.0	7,200.0	•	1.440.0	0.09	10.0
Total	78	•	20.0	20.0	30.0	70.0	100.800.0	Average	1,292.3	53.8	9.0

Source:

Table 2.4.2 Daily Available Water Amount and Potential Irrigation Performance

Irrigation ConditionsCase-A (Standard)Case-B (Deficit)Irrigation Interval7 (days)5 (days)Application Rate28.0 (mm/m²)15.0 (mm/m²)Daily Application Rate4.0 (mm/m²/day)3.0 (mm/m²/day)Crop Density Coefficient0.60.6

Clob Density	Cocincient	0.0						
Daily Available Water	Total Net Irrigable		Total Gross Irrigable		Total Net Irrigable			ss Potential de Area
Amount	day	Schedule	Per Sch	iedule	day	Schedule	Per Se	hedule
(m³/day)	(m'/day)	(m²)	(m²)	(Ropani)	(m'/day)	(m²)	(m²)	(Ropani)
150	37.50	262.50	437.50	0.88	50.00	250.00		0.83
200	50.00	350.00	583.33	1.17	66.67	333.35	555.58	1.11
250	62.50	437.50	729.17	1.46	83.33	416.65	694.42	1.39
300	75.00	525.00	875.00	1.75	100.00	500.00		1.67
350	87.50	612.50	1,020.83	2.04	116.67	583.35		1.94
400	100.00	700.00	1,166.67	2.33	133.33	666.65	1,111.08	2.22
450	112.50	787.50	1,312.50	2.63	150.00	750.00	,	2.50
500	125.00	875.00	1,458.33	2.92	166.67	833.35	1,388.92	2.78
550	137.50	962.50	1,604.17	3.21	183.33	916.65	1,527.75	3.06
600	150.00	1050.00	1,750.00	3.50	200.00	1000.00	1,666.67	3.33
700	175.00	1225.00	2,041.67	4.08	233.33	1166.65	1,944.42	3.89
800	200.00	1400.00	2,333.33	4.67	266.67	1333.35	2,222.25	4.44
900	225.00	1575.00	2,625.00	5.25	300.00	1500.00	2,500.00	5.00
1,000	250.00	1750.00	2,916.67	5.83	333.33			5.56
			(Divided by cro	p Dens. coef.)			(Divided by o	top Dens. coe

Table 2.4.3 Description of Water Storage and Supply Tanks

Tank		Nos of H	ousehold t	o Supply I	Tank	Capacity	(litre)	Supply	Destinations &
Name	Sub- Type	Total	Indirect	Direct	Total		Reserved	Source	Remarks
S-1 S			L L	-		·	l		Kennong .
Storage Ta			rī	·····			I		
I -	<u>11117</u>								
S-1	I	36	36	-	9,000	7,200	1,800	S-1A,C-F	Distribution tanks D-1-1, 2, 3
Distribution	<u>n Tank</u>								& Delivery tank T-1-2
D-1-1	II-a,b,c	14	14	-	4,000	2,800	1,200	S-1	Storage tank S-2 (S-2 System),
									Delivery tanks T-1-1-1, 2
D-1-2	II-a,c	5	5	-	1,500	1,000	500	- ditto -	Dist'n tank D-1-1 & 5 hh
 					2.000	2.000	200	1144.	Direct Supply from S-1B
D-1-3	ll-b	14	14	-	3,000	2,800	200	- ditto -	Delivery tanks T-1-3-1, 2, 3
Delivery T				4	900	600	D-1-1	D 1 1	4.5
T-1-1-1	II-c-750	4	-	4	,000 1,000			D-1-1 - ditto -	4 household 5 household
T-1-1-2	II-c-1000	5	-	5 5	1,000	1,000		- ditto -	5 household
T-1-1-3	II-e-1000	5 3 4	-	3	600	600		D-1-2	3 household
T-1-2	II-c-750 II-c-750	3	-	3 4	800	800	-	D-1-2 D-1-3	4 household
T-1-3-1 T-1-3-2	H-c-1000	5	-	5	1,000			- ditto -	5 household
T-1-3-2	11-c-1000	5	•	5	1,000				5 household
			-	']	1,000	1,000	-	- unto -	1 Rousehold
hh	Storage Ta	<u>aux</u> 36		36	200	200			
nn 	H-C-200	30	-	30	200	200	<u> </u>		
S-2 S	ystem								
Storage Ta	nk								
5.2	,	0.3	22		< 000	* 000	1 200	S-2A, B,	Distribution tanks D-2-1, 2, 3
S-2	1	22	22	-	6,000	4,800	1,200	D-1-1	Districution tanks D-2-1, 2, 3
Distribution	n Tank								
D-2-1	II-a,b,c	7	4	3	2,700	2,000	700	S-2	Deliv. tanks T-2-1-1,2 & 3 hh
	.,,,,,			, i	. ,				D-2-2 (S-2 System)
D-2-2	II-a,b	10	10	-	3,000	2,000	1,000	- ditto -	Delivery tanks T-2-2-1, 2, 3
	•								Additional Supply from D-2-1
D-2-3	II-b,c	5	3	2	1,000	1,000	-	- ditto -	Deliv, tank T-2-3-1 & 2 hh
Delivery T									
T-2-1-1	II-c-750	3.	-	3	600	600	-	1	3 household
T-2-1-2	II-c-750	1	-][600	600	-		School Tap
T-2-2-1	II-c-750	-4	-	4	800	800			4 household
T-2-2-2	II-c-750	4	-	4	800		-		4 household
T-2-2-3	II-c-400	2 3	-	2	400	400	-		2 household
T-2-3-1	II-c-750		-	3	600	600	-	D-2-3	3 household
1 .	Storage T		}						
hh	H-c-200	21		21	200	200	-		
S-3 S	veiem		L					.	
Storage Ta				·····					
S-3	I 	٥,	21		6,000	4,200	1.800	S 3A D C	Disribution tanks D-3-1, 2
Distribution	,	21	21	-	0,000	4,200	1,000	. 3-3 л,в,с	Distribution tanks D-5-1, 2
		ا ج	اء		1.500	1.000	500		Dist'n tank D-3-3 (surplus)
D-3-1	II-a,c	5	5	-	1,500	1,000	500	S-3	& Deliv. tanks T-3-1-1, 2
D-3-2	II-b,c	11	6	5	2,500	2,200	300	- ditto -	Deliv. tanks T-3-2-1, 2
D-3-2	11-0,0	1 1	U]	2,500	2,200	300	- 01110 -	& 5 household
D 3 3		_		ار	0.000	1.000	1.000	D 2 1	Deliv. tank T-3-3-1 & 3 hh
D-3-3	II-a,b,c	5	2	3	2,000	1,000	1,000	D-3-1	
Delivery T	onk			1					Dist'n tank D-2-1 (S-2 System)
T-3-1-1	<u>анк</u> П-с-400	ار		اد	400	400		D-3-1	2 household
T-3-1-1	H-c-750	2 3 3	-	2 3	600	600	-		2 nouschold 3 household
T-3-1-2 T-3-2-1	R-c-750 B-c-750	3	-	3	600	600	-		3 household
T-3-2-1 T-3-2-2	11-c-750	3	-	3	600	600	-		3 household
T-3-2-2	R-c-400	2	_	2	400	400	-	D-3-3	3 nouscnoid 2 houschold
			-	4	400	400	-	D-3-3	Z BOOSCHOIG
i i	Storage Ta								
hh	H-c-200	21	-	21	200	200			

Table 2.4.4 Design for Water Storage and Supply Tanks

	Storage Tank	alk.		Dimension	(m) u		Require	Required Capacity (m3)	y (m3)	Require	Required Water Depth (m)	epth (m)
Vame	Sub-Type	Capacity (m3)	B	7	Н	Hf	ಣ	Ъ	၁	Ha	HP	Hd
-	H	00.6	2.00	3.00	1.50	1.80	1.80	7.20	ı	1.60	1.30	0.10
-2)-red	90.9	2.00	2.00	1.50	1.80	1.80	4.20	,	1.60	1.15	0.10
S - S	► -	6.00	5.00	2.00	1.50	1.80	1.80	4.20	'	1.60	1.15	0.10

7	Distribution Tank	Fank		Dimension	(m) u		Required	d Capacity (m3)	y (m3)	Reg	Required Water Depth (m)	er Depth	(H)	Float Valve
Name	Sub-Type	Capacity (m3)	В	7	Н	Hf	ਲ	P	ပ	Ha	HB	Hc	Hd	Required
D-1-1	II-a,b,c	3.50	1.50	2.00	1.25	1.40	08'0	2.20	0.60	1.25	1.00	0.30	0.10	Š
D-1-2	II-a,c	1.50	1.00	1.50	1.05	1.20	0.50	,	1.00	1.05	1	0.75	0.10	No
D-1-3	II-b	3.00	1.25	2.00	1.15	1.30	0.20	2.80	1	1.15	1.10	•	0.10	Yes
D-2-1	II-a,b,c	2.50	1.25	5.00	1.00	1.15	0.70	1.20	09.0	1.00	0.75	0.30	0.10	Š
D-2-2	II-a,b	3.00	1.25	2.00	1.20	1.35	1.00	2.00	ı	1.20	08.0	ı	0.10	ŝ
D-2-3	II-b,c	1.00	1.00	1.00	1.10	1.25	ı	09.0	0.40	1	1.10	0.50	0.10	Xes
School	II-a.c	1.50	1.00	1.50	1.05	1.20	0.50	•	1.00	1.05	,	0.75	0.10	Yes
D-3-1	II-a.c	1.50	1.00	1.50	1.05	1.20	0.50	1	1.00	1.05	1	0.75	0.10	ŝ
D-3-2	II-b,c	2.50	1.25	2.00	0.95	1.10	0:30	1.20	1.00	1	0.95	0.50	0.10	Xes
D-3-3	II-a,b,c	3.00	1.25	2.00	1.25	1.40	2.00	0.40	0.60	1.25	0.45	0.30	0.10	°Z

Ready-made	teady-made Plastic Tank	Dimension (m)	m (m)	Number	Design Re	Design Requirement	Float Valve		Nos. of Tanks in Each System	in Each Sy	/stem
Sub-Type	Sub-Type Capacity (m3)	D	H	of House	Or (m3)	Hr (m)	Required	S-1	S-2	S-3 Total	Total
II-c-1000	1.10	1.077	1.204	S	1.00	1.10	Yes	प	•		7
II-c-750	0.83	9.60	1.103	3 to 4	0.80	1.07	- op -	m	5	8	=
П-с-400	0.41	0.772	0.874	7	0.40	0.86	- op -	1	p.ad	7	
II-c-200	0.23	0.696	0.595		0.20	0.53	- op -	36	21	12	78

Table 2.4.5 Summary of Pipeline Design in Chisapani Area

Tank Name		Pipe Line			Hydr	aulic Desi	gn of Pipe	line		Breakdo	wn of Pip	e Length	Ref	ated
S-I System			Name			Velocity V						I	Stro	ctures
Si A. S. I. S. I. 125 0.083 0.679 15 24 5676 72000 200 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	! I			(mm)	_	(m√s)	(m)	(m)	(m)	(m)	(m)	(m)	BP	vc
Sign Sign Sign Sign Sign Sign Sign Sign									240.0	370				
S-DD S-1D S-1 12.5 0.083 0.679 27.83 181.17 816.0 816 0 0 1 1 1 1 1 1 1 1														1
S.HE SIE SI 125 0.083 0.679 21.04 8.996 359.0 359 0 0 0 1 1														
S-IF S-IF S-I	S-ID											t .		
S-18 S-18 D-1-1 25.0 0.417 0.849 16.16 8.84 409.0 0 409 0 0 1 S-18 S-18 D-1-2 125 0.067 0.511 35.65 101.35 318.0 318.0 0 1 D-1-2 S-1 D-1-2 125 0.030 0.241 4.18 2.82 473.0 473 0 0 0 1 D-1-1A D-1-2 D-1-1 125 0.020 0.163 0.044 4.18 2.82 473.0 473 0 0 0 0 D-1-3 S-1 D-1-3 2.50 0.170 0.316 0.41 4.59 55.0 0 55.5 0 0 1 D-1-3 S-1 D-1-3 2.50 0.170 0.316 0.41 4.59 55.0 0 55.5 0 0 0 D-1-3 S-1 D-1-1 12.5 0.050 0.407 2.07 32.93 91.0 91 0 0 0 0 D-1-1-2 D-1-1 T-1-1-2 12.5 0.050 0.489 4.56 15.41 413.0 413 0 0 0 0 D-1-1-2 D-1-1 T-1-1-2 12.5 0.050 0.489 4.56 15.41 413.0 413 0 0 0 0 D-1-1-2 D-1-1 T-1-1-2 12.5 0.050 0.489 4.56 15.41 413.0 413 0 0 0 0 D-1-1-2 D-1-1 T-1-1-2 12.5 0.050 0.489 2.90 32.10 91.0 91 0 0 0 0 D-1-1-3 D-1-1 T-1-1-2 12.5 0.050 0.497 1.28 2.00 5.00 5.00 5.00 0.00 D-1-1-3 D-1-3 T-1-3-3 12.5 0.050 0.497 1.28 2.00 5.00 5.00 5.00 0.00 D-1-1-3 D-1-3 T-1-3-3 12.5 0.050 0.497 1.28 2.00 5.00 5.00 5.00 0.00 D-1-1-3 D-1-3 T-1-3-3 12.5 0.050 0.499 2.88 80.1 8.4 0 0 1 D-1-3 D-1-3 T-1-3-3 12.5 0.050 0.499 2.88 80.1 8.4 0 0 1 D-1-3 D-1-4 D-1-3 T-1-3-3 12.5 0.050 0.499 2.88 80.1 8.4 0 0 0 1 D-1-3 D-1-4 D-1-3 T-1-3-3 12.5 0.050 0.499 2.88 80.1 8.4 0 0 0 1 D-1-3 D-1-4 D-1-3 T-1-3-3 12.5 0.050 0.499 2.88 80.1 8.4 0 0 0 0 0 D-1-3 D-1-4 D-1-3 T-1-3-3 12.5 0.050 0.499 0.00 0.10 D-1-3 D-1-4 D-1-3 T-1-3-3 12.5 0.050 0.499 0.00 0.10 D-1-4	S-IE	S-IE	S-1	12.5	0.083	0 679	21.04	80.96	359.0	359	0]]
Sign Field of Transmission Main For Sign Field of Main Fie	S-IF	S-IF	S-1	12.5	0.083	0.679	24.79	97.21	423.0	423	0	0	1] 1
SAB S.1B D.1-2 1.2 1.2 0.067 0.511 35.65 104.35 31.60 018 0 0 1 1 1 1 1 1 1 1	[p.4-1 [S-I	D-1-1	25.0	0.417	0.849	16.16	8.84	409.0	0	409	0	0	2
Sub-Total of Transmission Main for S-1 D-1-7 S.I.	!!	i			0.067	A 511	35.65	104.35	918.0	810	n	n	1	I ₄
D-1-12 S-1 D-1-2 1-25 0.030 0.241 4.18 2.82 473.0 473 0.0 0 0 D-1-14 D-1-2 D-1-1 12.5 0.020 0.163 0.49 31.51 117.0 117 0 0 0 0 D-1-14 D-1-2 D-1-1 12.5 0.020 0.163 0.49 31.51 117.0 117 0 0 0 D-1-14 D-1-2 1-1-1 D-1-1 T-1-1-1 T-1-1 T-1-1-1 T-1-1-1 T-1-1-1 T-1-1-1 T-1-1-1 T-1-1-1 T-1-1-2 12.5 0.060 0.493 4.56 15.44 143.0 143 0 0 0 1.71-1-1 D-1-1 T-1-1-2 12.5 0.060 0.489 4.56 15.44 143.0 143 0 0 0 0 1.71-1-3 D-1-1 T-1-1-2 12.5 0.000 0.489 4.56 15.44 143.0 143 0 0 0 0 0 1.71-1-3 D-1-1 T-1-1-2 12.5 0.000 0.489 2.68 80.81 84.0 84 0 0 1 0.71-1-3 D-1-3 T-1-3-2 12.5 0.000 0.489 2.68 80.81 84.0 84 0 0 1 0.71-1-3 D-1-3 T-1-3-2 12.5 0.000 0.489 2.68 80.81 84.0 84 0 0 1 0.71-1-3 D-1-3 T-1-3-3 T-1-3-3 12.5 0.000 0.489 2.68 80.81 84.0 84 0 0 1 0.71-1-3 D-1-3 T-1-3-3	Sub-Total				0.007	0311	33.03	1012.75						
District					0.030	0211	4 18	2.82				L	t õ	
D-1-3 S-1 D-1-3 ZSO 0.170 0.346 0.44 4.59 SSO 0 SS 0 0.50 0.0 0.55														
Sab-Trotal of and Distribution line for S-1 Fil-1-1 [1-1-1] Fil-1-1 [1-1-1] Fil-1-1 [1-1-1] Fil-1-1 [1-1-1] Fil-1-1 [1-1-1] Fil-1-1 [1-1-2] Fil-1-1 [1-1-3] Fil-1-2 [1-1-3] Fil-1-3 [1-1-3] Fil-1-3 [1-1-3] Fil-1-3 [1-1-3] Fil-1-3 [1-1-3] Fil-3-1 [1-1-3] Fil-3-2 [1-1-3] Fil-3-3 [1-1										i	l	1	1	i
Ti-l-1 [D-1-1	D-1-3	<u>S-1</u>	D-1-3	25.0		0.346	0.41	4.59						
Till-12 Dill Till-2 Dill Till-2 Dill Till-2 Dill Till-2 Dill Till-3 Dill-3 Dill													0	
T.1-1-3 D.1-1 T.1-1-3 T.2-5 D.000 D.489 Z.90 32.10 91.0 91 0 0 0 0 0 0 0 1 1		1					i i			•				
Tilly Dilly 17:13 Dilly 17:14	T-1-1-2	D-1-1	T-1-1-2		0.060									1
Tiling	T-1-1-3	D-I-I	T-1-1-3	12.5	0.060			32.10	91.0					1
Tiling	T-1-2	D-1-2	T-1-2	12.5	0.040	0.326	5.98	19.02	397.0	397				2
Tile 1-1-3 Tile	T-1-3-1	D-1-3	T-I-3-1	12.5	0.050	0.407	1.28	2.00	56.0	56			0	
T-1-3-3 D-1-3 T-1-3-3 D-1-3 T-1-3-3 D-1-3 T-1-3-3 D-1-5 D-1-5	T-1-3-2	D-1-3	T-1-3-2	12.5	0.060	0.459	2.68	80.81	84.0	84	0)	0]]	0
Delivery line (30 m) for 36 hh 12 5 0.012 0.098 . . . 1.080,0 1.080 0 0 0 0 0 0 0 0 0						0.489	2.84	9.16	89.0	89	0	0	0	1
Sub-Total of Delivery line in S-1 Sub-Total of S-1 S-2 System Sub-Total of S-2 S-2A S-2A S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 D-2-1 S-2 D-2-2 S-2 D-2-3 S-2 D					h				1.090.0	1.080		0	n	1
Sub-Total of S-1	\				0.012	0.050							 	
S-2 System S-2 System S-2			ry line in S	j-1	-	· ·			2,031.0	2,031	0	0	<u> </u>	L
\$\frac{\text{S}_2\text{A}}{\text{C}_2\text{A}} \begin{array}{ c c c c c c c c c c c c c c c c c c c	1				<u> </u>		<u>-</u>	<u> </u>	6,507.0	6,043	464	0	6	24
S2B D-1-1 S-2 D-2-1 12.5 0.000 1.019 30.89 61.11 558.0 0 558 0 1 1 2				26.0	0.143	0.210	0.23	202.60	1 200 0	· ·	1200		1 3	
D-2-1 S-2 D-2-1 12.5 0.120 0.978 23.51 14.49 2040 2041 0 0 0 0 0 0 0 0 0							-							
D-2-1A D-3-3 D-2-1 38.0 0.500 0.411 2.10 5.90 292.0 0 0 292.0 0 D-2-2 S-2 D-2-2 38.0 0.666 0.587 7.42 27.58 606.0 0 0 606 0 3 2 2 2 2 38.0 0.666 0.587 7.42 27.58 606.0 0 0 606 0 3 2 2 2 2 2 3 3 0 0.660 0.529 5.22 1.78 517.0 0 0 517 0 3 3 3 3 0 0.660 0.529 5.22 1.78 517.0 0 0 517 0 3 3 3 3 0 0.661 0.529 5.22 1.78 517.0 0 0 0 517 0 3 3 3 3 0 0 0 1 0 0 1 0 0 0												1		[;
D-2-2 S-2 D-2-2 38.0 0.666 0.587 7.42 27.58 606.0 0 0 606 0 2. D-2-2 D-2-1 D-2-2 38.0 0.600 0.529 5.22 1.78 517.0 0 0 517 0 3 Sub-Total of Transmission Main for S-2					1				1					
D-2-2A D-2-1 D-2-2 38.0 0.600 0.529 5.22 1.78 517.0 0 0 517 0 3										_				
Sub-Total of Transmission Main for S-2	D-2-2	S-2	D-2-2	38.0	0.666	0.587	1.42	21.58	606.0	U	º,	606	1	Ł
D-2-3 S-2 D-2-3 12.5 0.060 0.489 78.81 194.0 194 0 0 1 0 0 1 0 0 1 0 0					0.600	0.529	5.22	1.78	517.0	0				
T-2-1-1 D-2-1 T-2-1-1 12.5 0.040 0.326 2.77 26.73 184.0 184 0 0 0 1 T-2-1-2 D-2-1 T-2-1-2 12.5 0.040 0.326 0.50 4.00 33.0 33 0 0 0 0 1 T-2-2-1 D-2-2 T-2-2-1 12.5 0.050 0.407 1.64 2.86 72.0 72 0 0 0 0 1 T-2-2-2 D-2-2 T-2-2-2 12.5 0.050 0.407 2.25 2.25 99.0 99 0 0 0 0 1 T-2-3-1 D-2-2 T-2-2-3 12.5 0.030 0.244 2.53 1.97 286.0 286 0 0 0 0 1 T-2-3-1 D-2-3 T-2-3-1 12.5 0.037 0.299 6.19 1.31 482.0 482 0 0 0 0 2 Exhivery line (30 m) for 22 hb 12.5 0.012 0.098 -	Sub-Total	of Transi	nission M	ain for S-2				:	3,465.0	204	1,846	1,485	2	15
T-2-1-1 D-2-1 T-2-1-1 12.5 0.040 0.326 2.77 26.73 184.0 184 0 0 0 1 T-2-1-2 D-2-1 T-2-1-2 12.5 0.040 0.326 0.50 4.00 33.0 33 0 0 0 0 1 T-2-2-1 D-2-2 T-2-2-1 12.5 0.050 0.407 1.64 2.86 72.0 72 0 0 0 0 1 T-2-2-2 D-2-2 T-2-2-2 12.5 0.050 0.407 2.25 2.25 99.0 99 0 0 0 0 1 T-2-3-1 D-2-2 T-2-2-3 12.5 0.030 0.244 2.53 1.97 286.0 286 0 0 0 0 1 T-2-3-1 D-2-3 T-2-3-1 12.5 0.037 0.299 6.19 1.31 482.0 482 0 0 0 0 2 Exhivery line (30 m) for 22 hb 12.5 0.012 0.098 -	D-2-3	5.2	D.2.3	12.5	0.060	0.489		78.81	1910	194	0	0	1	0
T-2-1-1 D-2-1 T-2-1-1 12.5 0.040 0.326 2.77 26.73 184.0 184 0 0 0 1 T-2-1-2 D-2-1 T-2-1-2 12.5 0.040 0.326 0.50 4.00 33.0 33 0 0 0 0 1 T-2-2-1 D-2-2 T-2-2-1 12.5 0.050 0.407 1.64 2.86 72.0 72 0 0 0 0 1 T-2-2-2 D-2-2 T-2-2-2 12.5 0.050 0.407 2.25 2.25 99.0 99 0 0 0 0 1 T-2-3-1 D-2-2 T-2-2-3 12.5 0.030 0.244 2.53 1.97 286.0 286 0 0 0 0 1 T-2-3-1 D-2-3 T-2-3-1 12.5 0.037 0.299 6.19 1.31 482.0 482 0 0 0 0 2 Exhivery line (30 m) for 22 hb 12.5 0.012 0.098 -					0.000	0.102		10.01						0
17-2-1-2 D-2-1 T-2-1-2 12.5 0.040 0.326 0.50 4.00 33.0 33 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1					0.030	0.326	277	2673						
T-2-2-1 D-2-2 T-2-2-1 12.5 0.050 0.407 1.64 2.86 72.0 72 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1							
T-2-2-2 D-2-2 T-2-2-2 12.5 0.050 0.407 2.25 2.25 99.0 99 0 0 0 0 1 T-2-3-1 D-2-3 T-2-3-1 12.5 0.030 0.244 2.53 1.97 286.0 286 0 0 0 0 T-2-3-1 D-2-3 T-2-3-1 12.5 0.037 0.299 6.19 1.31 482.0 482 0 0 0 0 Edivery line (30 m) for 22 bh 12.5 0.012 0.098 - - 660.0 660 0 0 0 Sub-Total of Delivery line in S-2 - - 1,816.0 1,816 0 0 0 0 Sub-Total of S-2 - - 5,475.0 2,214 1,846 1,415 3 22 S-3 System S-3 A S-3 A S-3 38.0 0.500 0.441 2.50 1.50 347.0 0 0 347 0 2 S-3 B D-3-1 38.0 0.500 0.441 1.27 3.73 176.0 0 0 176 0 1 D-3-3 D-3-1 D-3-3 38.0 0.500 0.441 1.59 60.41 221.0 0 0 221 0 1 Sub-Total of Transmission Main for S-1													1	
T-2-2-3 D-2-2 T-2-3 12.5 0.030 0.244 2.53 1.97 286.0 286 0 0 0 0 1 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 3 3 3 3 3 3 3							1	L						
T-2-3-1 D-2-3 T-2-3-1 12-5 0.037 0.299 6.19 1.31 482.0 482 0 0 0 0 2 Delivery line (30 m) for 22 bh 12-5 0.012 0.098 - - 660.0 660 0 0 0 0 Sub-Total of Delivery line in S-2 - - 1,816.0 1,816 0 0 0 0 Sub-Total of S-2 - - -														
Delivery line (30 m) for 22 bh 12.5 0.012 0.098 - - 660.0 660 0 0 0 0 0 0 0 0														۱ ،
Sub-Total of Delivery line in S-2 Sub-Total of S-2 S-3 System S-3A S-3A S-3 System S-3A S-3A S-3 System S-3A S-3A S-3 System S-3B D-3-1 Syst				12.5		0.299	6.19						1	-
Sub-Total of S-2	Delivery li	ne (30 m)	for 22 hh	12.5	0.012	0.098			660.0	660	0	. 0	1	
S-3 System S-3A S-3A S-3 38.0 0.500 0.441 2.50 1.50 347.0 0 0 347 0 2 D-3-1 S-3 D-3-1 38.0 0.500 0.441 1.27 3.73 176.0 0 0 176 0 1 D-3-3 D-3-1 D-3-3 38.0 0.500 0.441 1.59 60.41 221.0 0 0 221 0 0 Sub-Total of Transmission Main for S-1 744.0 0 0 744 0 4 D-3-2 S-3 D-3-2 25.0 0.140 0.285 0.86 2.14 165.0 0 165 0 0 1 Sub-Total of and Distribution line for S-1 165.0 0 165 0 0 1 T-3-1-1 D-3-1 T-3-1-1 12.5 0.024 0.196 0.71 4.29 121.0 121 0 0 0 0 T-3-2-2 D-3-2 T-3-2-1 12.5 0.040 0.326 1.46 23.54 97.0 97 0 0 0 0 T-3-3-1 D-3-3 T-3-3-1 12.5 0.040 0.326 4.38 80.62 291.0 291 0 0 0 0 T-3-3-1 D-3-3 T-3-3-1 12.5 0.024 0.196 0.72 49.28 123.0 123 0 0 0 Delivery line (30 m) for 22 hh 12.5 0.012 0.098 -	Sub-Total	of Deliver	ry line in	S-2	-	<u> </u>	-	-	1,816.0	1,816	0	0	1	<u> </u>
S-3A S-3A S-3 38.0 0.500 0.441 2.50 1.50 347.0 0 0 347 0 2 0 0 0.341 0 0 0 0 0 0 0 0 0					-				5,475.0	2,214	1,846	1,415	3	22
D-3-1 S-3 D-3-1 D-3-3 38.0 0.500 0.441 1.27 3.73 176.0 0 0 176 0 0 0 0 0 0 0 0 0											<u></u>			т—
D-3-1 S-3 D-3-1 D-3-3 38.0 0.500 0.441 1.27 3.73 176.0 0 0 176 0 1 1 1 1 1 1 1 1 1														
D-3-3 D-3-1 D-3-3 38.0 0.500 0.441 1.59 60.41 221.0 0 0 221 0 0 Sub-Total of Transmission Main for S-1 744.0 0 0 744 0 4 0 4 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0			D-3-1	38.0	0.500	0.441	1.27	3.73	176.0	0	0	176	0	į
Sub-Total of Transmission Main for S-1 744.0 0 0 744 0 4 D-3-2 S-3 D-3-2 25.0 0.140 0.285 0.86 2.14 165.0 0 165 0 0 1 Sub-Total of and Distribution line for S-1 165.0 0 165.0 0 165 0 0 0 1 T-3-1-1 D-3-1 T-3-1-1 12.5 0.024 0.196 0.71 4.29 121.0 121 0 0 0 0 1 T-3-1-2 D-3-1 T-3-1-2 12.5 0.036 0.293 1.69 28.31 136.0 136 0	D.3.3					0.441	159	60 41			n	221	lo	
D-3-2 S-3 D-3-2 25.0 0.140 0.285 0.86 2.14 165.0 0 165 0 0 1					0.505									
Sub-Total of and Distribution line for S-1 165.0 0 165 0 0 1 T-3-1-1 D-3-1 T-3-1-1 12.5 0.024 0.196 0.71 4.29 121.0 121 0 0 0 0 1 1 1.3-1-1 12.5 0.036 0.293 1.69 28.31 136.0 136 0 0 0 0 0 1 1 1.3-2-1 12.5 0.040 0.326 1.46 23.54 97.0 97 0 0 0 0 0 1 1 1.3-2-2 12.5 0.040 0.326 4.38 80.62 291.0 291 0						0.005						t	-	
T-3-1-1 D-3-1 T-3-1-1 12.5 0.024 0.196 0.71 4.29 121.0 121 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	D-3-2	S-3	D-3-2	25.0	0.140	0.285	0.86	2.14						
T-3-1-2 D-3-1 T-3-1-2 12.5 0.036 0.293 1.69 28.31 136.0 136 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								<u> </u>						<u> </u>
T-3-2-1 D-3-2 T-3-2-1 12.5 0.040 0.326 1.46 23.54 97.0 97 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												E .] ¹
T-3-2-2 D-3-2 T-3-2-2 12.5 0.040 0.326 4.38 80.62 291.0 291 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1						
T-3-3-1 D-3-3 T-3-3-1 12.5 0.024 0.196 0.72 49.28 123.0 123 0 0 0 0 1 Delivery line (30 m) for 22 hh 12.5 0.012 0.098 660.0 660 0 0 0 0 Sub-Total of Delivery line in S-3 1,428.0 1,428 0 0 0 0 Sub-Total of S-3 2,337.0 1,428 165 744 0 10 Grand-Total 14,319.0 9,685 2,475 2,159 9 56														
Delivery line (30 m) for 22 hh 12.5 0.012 0.098 - - 660.0 660 0 0 0 0 Sub-Total of Delivery line in S-3 - - 1,428.0 1,428 0 0 0 9 Sub-Total of S-3 - - - 2,337.0 1,428 165 744 0 10 Grand-Total - - - 14,319.0 9,685 2,475 2,159 9 56	T-3-2-2	D-3-2	T-3-2-2		0.040	0.326								
Delivery line (30 m) for 22 hh 12.5 0.012 0.078 - - 660.0 660 0 0 0 0 Sub-Total of Delivery line in S-3 - - - 1,428.0 1,428 0 0 0 5 Sub-Total of S-3 - - - 2,337.0 1,428 165 744 0 10 Grand-Total - - - 14,319.0 9,685 2,475 2,159 9 56	T-3-3-1	D-3-3	T-3-3-1	12.5	0.024	0.196	0.72	49.28	[123.0]	123	0	0	0	1
Sub-Total of Delivery line in S-3 1,428.0 1,428 0 0 0 5 Sub-Total of S-3 2,337.0 1,428 165 744 0 10 Grand-Total 14,319.0 9,685 2,475 2,159 9 56				·			-	-			0	0	0	0
Sub-Total of S-3					Ī				i			l	<u> </u>	
Grand-Total 14,319.0 9,685 2,475 2,159 9 56						· · · · ·		ļ						
					<u> </u>	<u> </u>	<u> </u>	<u> </u>						1
	Grand-To	otal			· •		-							

Note: BP = Break Pressure Tank; VC = Valve Chamber w/ Gl Air/ Flush Valve

Table 2.4.6 Summary of Quantity for Rural Water Supply Network System in Chisapani Area

Name of Major Component		Unit		Qua	ntity		Remarks
•	Description		S-1	S-2	S-3	Total	
1 Intake Protection Structure		nos.	6	2	3	11	Precast Unit
2 Storage Tank	9,000 lit.	nos.	t	-	-	1	
·	6,000 lit.	nos.	-	1	1	2	
	Sub-Total	nos.	1	Í	1	3	RCC (1:4) Tank
3 Distribution Tank	3,500 lit.	nos.	1	-	-	1	
	3,000 lit.	nos.	1	1	1	3	
	2,500 lit.	nos.	-	1	1	2	
	1,500 lit.	nos.	1	1	1	3	S-2: School Tank
	1,000 lit.		-	i	-	1	
	Sub-Total	nos.	3	4	3	10	RCC (1:4) Tank
4 Delivery Tank	1000 lit.	nos.	4	-	-	4	
•	750 lit.	nos.	3	5	3	11	
	400 lit.	nos.	-	1	2	3	
	Sub-Total	nos.	7	6	5	18	Plastic Tank
5 Household Tank	200 lit.	nos.	36	21	21	78	Plastic Tank
6 Related Structures	BP Tank	nos.	6	3	-	9	Plastic Tank
	Valve Ch.	nos.	24	22	10	56	Precast Unit
	Sub-Total	nos.	30	25	10	65	
7 HDP Pipeline	12.5 mm	m	6,043	2,214	1,428	9,685	
-	25.0 mm	m	464	1,846	165	2,475	
	38.0 mm	m	0	1,415	744	2,159	
	Sub-Total	m	6,507	5,475	2,337	14,319	10 kgf / cm2
8 Burying length of pipeline	Burying	m	4,800	4,100	1,800	10,700	75 % of Pipeline

Table 3.2.1 Price Investigation

Item	Unit	Rate (NRs)	Remarks
<u>Labourer</u>			
Foregion	m.đ	95	
Skilled Jabour	ni.đ	105	
Common labour	മ്പ.ർ	60	
Mason	€.m	105	
Carpenter	m.đ	105	
Steel worker	m.đ	105	
Electrician	m.đ	95	
Plumber	ភា.đ	95	
Driver	m.đ	85	Light vehicle (80)
Operator (B)	m.đ	85	Light equipment
Material	and the state of t		
Sand	m3	140	
Gravel	m3	500	
Boulder	m3	190	
Cement	bag (50 kg)	270	Hetauda (Ex factory)
Steel bar	t	27,500	Varies by size
Timber	m3	900	
Gabion wire	kg	40	Medium coated
HDP Pipe (Inside Dia. mm) *			
12 5	m	17	10 kgf /cm2
25	m	41	10 kgf /cm2
38	m	96	10 kgf /cm2
50	m	154	10 kgf/cm2
001	កា	460	10 kgf /cm2
150	m _.	978	10 kgf/cm2
250	я	1,976	6 kgf /cm2
Ready Made Plastic Water Storag	e Tank (litre) *		
200	Nos	830	
400	Nos	1,660	
750	Nos	3,113	
1000	Nos	4,150	
Concrete Pipe (Dia mm)		NP-21 NP-3	
200	W	280 / 800	NP-2: Light duty
300	m	420 / 960	NP-3: Heavy duty
600	m	890 / 1.850	
900	m	1,720 / 3,640	
1200	m	2,400 / 5,200	
Fuel and Oil	· -		
Petrol	liter	31.5	
Diesel	liter	11	
Lubricant (Engine) Oil	liter	48	

Note: (1) Rates are obtained from Makwanpur District Office for the Fiscl Year 95/96

^{(2) *} Market Price at Kathmandu

Table 3.3.1 List of Unit Rate for Materials (at Site) in the Study Area

			Unit Rate	(NRs.)			Unit Rate (NRs.)	(NRs.)			
S.	N Description of Item	Unit	Market	Quarry	Namtar (30 km)	km)	Chisapani (82 km + porter)	m + porter)	Phedigaon (82 km)	82 km)	Remarks
			Price	Site	Transportation	@ sitc	Transportation	@ site	Transportation	@ site	
											Gravel, Boulder, Stone,
9.	. Sand	m3	•	140.00	99.62	239.62	1,699.62	1,839.62	•	140.00	(40.00 Timber are collected at
덩		E E	•	500.00	,	\$00.00		500.00		200.00	500.00 cach site
8	. Boulder	E B	•	190.00	•	190.00	•	190.00	ı	00.061	190.00 Sand: transported from Palung to Chisapan:
ġ	. Cement	bag	270.00		23.68	293.68	100.78	370.78	23.20	293.20	293.20 @ Porter charge NRs.1 /kg
8	Stone	m3		330.00	•	330.00	,	330.00	ı	330.00	330.00 Namtar: within 2km
8	. Steel bar	% %	27.50	,	0.47	27.97	2.02	29.52	0.46	27.96	
9.	. Timber	a3	•	900.00	,	900:00	•	900.00	,	900.00	
8	. Gabion wire	* ?!	40.00	•	0.80	40.80	2:00	42.00	0.46	40,46	
8	. HDP Pipe (Inside Dia.)										Loading, unloading and
	12.5 mm	ጸዝ	17.00	•	0.20	17.20	0.50	17.50	0.40	17.40	17.40 Transportational Cost
	25 mm	Rm	41.00	•	0.20	41.20	0.70	41,70	05.0	41.50	41.50 and Distance for
	38 mm	R _m	96.00	,	0.40	96.40	1:00	97.00	08.0	08.80	96.80 HDP Pipes and fluings,
	50 mm	Rm	154.00	•	0.60	154.60	1.60	155.60	1.20	155.20	155.20 Tanks and Hume Pipes:
	100 mm	Rm	460.00	,	1.20	461.20	2.60	462.60	2.20	462.20	462.20 Ex-Hetauda:
	150 mm	Rm	.978.00	•	1.70	979.70	3.80	981.80	3.20	981.20	981.20 Namtar (30 km)
	250 mm	Rm	1,976.00	•	1.70	1,977.70	4.10	1,980.10	3.20	1,979.20	1,979.20 @ NRs. 2,900 / crane truck
8	. Plastic Water Tank										Ex-Kathmandu:
	200 litre	Zos.	\$30.00	•	216.00	1,046.00	276.00	1,106.00	216.00	1,046.00	1,046.00 Phedigaon (60 km)
	400 litre	No.	1,660.00	•	270.00	1,930.00	330.00	1,990.00	270.00	1,930.00	1,930.00 Chisapani (60 km + Porter)
	750 litre	Nos.	3,112.50	•	360.00	3,472.50	480.00	3,592,50	360.00	3,472.50	3,472.50 @ NRs. 5,400 / crane truck
	1.000 litre	Nos.	4,150.00	•	540.00	4.690.00	00:069	4,840.00	240.00	4.690.00	
.0). Concrete Hume Pipe										
	dia. 200 mm	Æ.	800.00	ı	72.00	872.00	190.00	990.00	72.00	872.00	
	dia. 300 mm	Rm	960.00	ı	72.00	1.032.00	ı		72.00	1.032.00	
	dia, 600 mm	R.	1,850.00	ı	240.00	2,090.00	1		240.00	2.090.00	
	dia, 900 mm	Rm	3,640.00	,	360.00	4,000.00	•	•	360.00	4,000.00	
	dta. 1200 mm	Ra	5,200.00	,	540.00	5,740.00	•		\$40.00	5,740.00	

Table 3.3.2 List of Unit Price for Major Work Items (People's Participation Program Basis (PPP) and LCB Basis)

					Unit Rate (NRs.)	(NRs.)		
S.	Description of Item	Unit	Namtar	ar	Chisapani	ໝາ	Phedigaon	aon
			ddd	LCB	ddd	LCB	PPP	LCB
91.	E/W Excavation in Soft Soil	m3	43.00	57.00	43.00	57.00	43.00	57.00
05.	E/W Excavation in BMS and Hard soil	m3	98:00	130.00	98.00	130.00	98.00	130.00
03.	E/W Excavation in Boulder Mixed Soil under Shallow Water (Depth < 2.0 m)	£	222.00	295.00	222.00	295.00	222:00	295.00
કું	E/W Backfill with common soil	m3	34.00	45.00	34.00	45.00	34.00	45.00
8	Stone Soling in Foundation	т3	194.00	258.00	194.00	258.00	194.00	258.00
8	P.C.C. 1:2:4 incl/ formwork	m3	4,505.00	5,984.00	5,710.00	7.584.00	4,458.00	5.921.00
02.	R.C.C. 1:2:4, incl/ steel & formwork	m3	7,076.00	9,399.00	8,428.00	11,194,00	7,027.00	9.334.00
8		m3	2,075.00	2,756.00	3,046.00	4,046.00	2,031.00	2.698.00
8	Stone Masonry Wall (CM 1:4)	m3	1,876.00	2,492.00	2,841.00	3,774.00	1,830.00	2,431.00
10.	Rubble Masonry (CM 1:3)	m3	1,921.00	2,552.00	2,892.00	3,841.00	1.877.00	2,493.00
11.		m3	1,722.00	2,287.00	2,687.00	3,569.00	1.676.00	2.226.00
<u>ci</u>		m3	441.00	586.00	441.00	286.00	441.00	286.00
Ξ.	Plastering 20 mm (CM 1:4)	m2	80.00	106.00	127.00	169.00	77.00	102.00
14.	Gabion Box	т3	751.00	00:866	760.00	1,009.00	748.00	994.00
3.	HDP Pipe Joining, Laying	· · · ·						
	250 mm	R	1.990.00	2.643.00	1,993.00	2.647.00	1,992.00	2,646.00
	150 mm	Rm	992.00	1,318.00	994.00	1,320.00	994.00	1.320.00
	50 mm	Ra	161.00	214.00	162.00	215.00	161.00	214.00
	38 mm	Rm	103.00	137.00	103.00	137.00	103.00	137.00
	25 mm	Rm	47.00	62.00	48.00	\$6.00	48.00	00.43
	12.5 mm	Rm	23.00	31.00	24.00	32.00	24.00	32.00
91	Transportation						-	
	Cement	100 kg	18.00	24.00	146.00	194.00	46.00	61.00
	G.I. Wire	100 kg	18.00	24.00	146.00	194.00	46.00	61.00
	Binding Wire	100 kg	18.00	24.00	146.00	194.00	46.00	61.00
	Note: Contractor's Profit and tax are:		Excluded for Pec	Excluded for People's Participation Program (PPP) basis	n Program (PP)		BMS: Boulder mixed soil	nixed soil

Included for Local Competitive Bidding (LCB) basis

Table 3.3.3 List of Unit Price for Major Work Items (People's Participation Program Basis)

					Unit Rate (NRs.)	(NRs.)		
S.	N Description of Item	c.i.	Namtar	tar	Chisapani	ani	Phedigaon	taon
			Total	Labour	Total	Labour	Total	Labour
					_			
9	1. E/W Excavation in Soft Soil	m3	43.00	42.00	43.00	42.00	43.00	42.00
8,8	2. S/W Excavation in Boulder Mixed Soil 3. F/W Pycavation in Boulder Mixed Soil	m3	98.00	95.00	98.00	95.00	98.00	95.00
								-
į	4. E/W Backfill with common soil	m3	34.00	33.00	34.00	33.00	34.00	33.00
- -	05. Stone Soling in Foundation	щ3	194.00	161.00	194.00	161.00	194.00	161.00
ර 	06. P.C.C. 1:2:4 incl/ formwork	m3	4,505.00	1,481.00	5.710.00	2,028.00	4,458.00	1,450.00
0	07. R.C.C. 1:2:4, incl/ seed & formwork	m3	7,076.00	1.620.00	8,428.00	2,167.00	7,027.00	1.589.00
ő 	08. Stone Masonry Wall (CM 1:3)	m3	2,075.00	896.00	3,046.00	1,397.00	2,031.00	867.00
ŏ	09. Stone Masonry Wall (CM 1:4)	m3	1.876.00	880.00	2,841.00	1,409.00	1.830.00	849.00
<u> </u>	10. Rubble Masonry (CM 1:3)	m3	1,921.00	788.00	2,892.00	1,289.00	1,877.00	759.00
_	11. Rubble Masonry (CM 1:4)	m3	1,722.00	772.00	2,687.00	1,301.00	1,676.00	741.00
	 Dry Rubble Masonry Wall 	m3	441.00	371.00	41.00	371.00	441.00	371.00
	13. Plastering 20 mm (CM 1:4)	겉	80.00	35.00	127.00	90.09	77.00	33.00
<u>-</u>	14. Gabion Box	m3	751.00	336.00	260.00	337.00	748.00	336.00
	15. HDP Pipe Joining, Laying							
	250 mm	Rm	1,990.00	111.00	1,993.00	111.00	1,992.00	111.00
	150 mm	RB	992.00	61.00	994.00	61.00	994.00	61.00
	50 mm	æ	161.00	14.00	162.00	14.00	161.00	14.00
	38 mm	Rm	103.00	11.00	103.00	11.00	103.00	11.00
	25 mm	Rm	47.00	8.00	48.00	8.00	48.00	8.00
	12.5 mm	Rm	23.00	2.00	24.00	7.00	24.00	7.00
	16 Transportation							_
	Cement	100 kg	18.00	2.00	146.00	105.00	46.00	2.00
	G.I. Wire	100 kg	18.00	2.00	146.00	105.00	46.00	9:00
	Binding Wire	100 kg	18.00	2.00	146.00	105.00	46.00	5.00
	Note: Contractor's Profit and tax are:		Excluded for Pe	Excluded for People's Participation Program (PPP) basis	n Program (PPF		BMS: Boulder mixed soil	nixed soil

Included for Local Competitive Bidding (LCB) basis

Table 3.3.4 List of Unit Price for Major Work Items (Local Competitive Bidding (LCB) Basis)

					Unit Rate (NRS.)	(NRs.)		
S	S.N Description of Item	Cair	Namtar	tar	Chisapani	pani	Phedigaon	gaon
ı			Total	Labour	Total	Labour	Total	Labour
						-		
0	01. E/W Excavation in Soft Soil	m3	27.00	26.00	57.00	26.00	57.00	56.00
0	02. E/W Excavation in Boulder Mixed Soil	m3	130.00	126.00	130.00	126.00	130.00	126.00
Ç,		m3	295.00	287.00	295.00	287.00	295.00	287.00
0	04. E/W Backfill with common soil	m3	45.00	8.4	45.00	44.00	45.00	44.00
S	05. Stone Soling in Foundation	m3	258.00	214.00	258.00	214.00	258.00	214.00
0	06. P.C.C. 1:2:4 incl/ formwork	m3	5,984.00	1,967.00	7.584.00	2,694.00	5.921.00	1,926.00
0	07. R.C.C. 1:2:4, incl/ steel & formwork	m3	9,399.00	2,152,00	11,194.00	2.878.00	9,334.00	2,111.00
S	08. Stone Masonry Wall (CM 1:3)	m3	2,756.00	1,190.00	4,046.00	1,856.00	2,698.00	1,152.00
0	09. Stone Masonry Wall (CM 1:4)	m3	2,492.00	1,169.00	3.774.00	1,872.00	2,431.00	1.128.00
	10. Rubble Masonry (CM 1:3)	m3	2,552.00	1,047,00	3,841.00	1,712.00	2,493.00	1.008.00
	1. Rubble Masonry (CM 1:4)				•			<u>.</u>
	12. Dry Rubble Masonry Wall	m3	\$86.00	493.00	286.00	493.00	286.00	493.00
	13. Plastering 20 mm (CM 1:4)	ш2	106.00	46.00	169.00	80.00	102.00	8.4
	14. Gabion Box	m3	00'866	146.00	1,009.00	448.00	994'00	446.00
	15. HDP Pipe Joining, Laying							
_	250 mm	Ry Ly	2,643.00	147.00	2,647.00	147.00	2,646.00	147.00
	150 mm	R.	1,318,00	81.90	1,320.00	81.00	1,320.00	81.00
	50 mm	Rm	214.00	19.00	215.00	19.00	214.00	19.00
	38 mm	R _{II}	137.00	15.00	137.00	15.00	137.00	15.00
	25 mm	Ę,	62.00	11.00	\$.00	11.00	8.8	11.00
	12.5 mm	R _m	31.00	00.6	32.00	00.6	32.00	00.6
	16 Transportation							•
	Cement	100 kg	24.00	3.00	194.00	139.00	61.00	7.00
	G.I. Wire	100 kg	24.00	3.00	194.00	139.00	61.00	7.00
	Binding Wire	100 kg	24.00	3.00	194.00	139.00	61.00	7.00
	Note: Contractor's Profit and tax are:		Excluded for Pec	Excluded for People's Participation Program (PPP) basis	n Program (PPF		BMS: Boulder mixed soil	nixed soil

Included for Local Competitive Bidding (LCB) basis

Table 3.5.1 Summary of Quantity and Construction Cost for Rural Road Improvement Project in Namtar Area

S.N	Major Construction Works	Unit	Quantity	Unit Price (NRs.)	Amount (NRs.)	Remarks
1. Site - 1	I					
G	ibion Structure	m3	176	751	132,176	I Checkdam, 2 Prop wall
Ex	cavation in soft soil	m3	35	43	1,505	20 % of Gabion Volume
	de-ditch (Type-A)	m	20	(614)	12,880	Wet stone masonry
\mathbf{D}_{i}	op-Chute	nos.	ł	900	900	Vegetated riprap (10m2/nos
Su	ob-total				147,461	
2. Site • 2						
	te - 2-a	_			61.060	B #4.3
-	abion Structure	m3	68	751	51,068	Prop wall (vs)
	cavation in soft soit Sub-total-Site - 2-a	m3	14	43	602 51,67 0	20 % of Gabion Volume
Si	te - 2-b					
G:	abion Structure	m3	50	751	37,550	Prop wall (ms)
Ex	cavation in soft soil	m3	10	43	430	20 % of Gabion Volume
Si	de-ditch (Type-B)	m	20	(154)	3,076	
	rface Drainage	กดร	3		7,650	Stone pitching (15 m2/nos)
D:	rainage pipe culvert	nos	3		18,744	RCC Pipe (D = 200mm)
	rop-Chute	nos	3	900	2,700	Vegetated riprap (10m2/nos
	Sub-total Site - 2-b ib-total				70,150 121,820	
3. Site - 3	,					
G	abion Structures	m3	665	751	499,415	I Checkdam, I Prop wall
E	cavation in soft soil	m3	159	43	5,719	20 % of Gabion Volume
Si	de-ditch (Type-B)	m	60	(158)	9,497	Dry rubble masonry
	b-total				636,451	
4. Site	=					
G:	abion Structures	m3	483		366,488	I Checkdam, 2 Prop wall
E	cavation in soft soil	m3	159	43	4,214	20 % of Gabion Volume
	de-ditch (Type-A)	m	50	• •	34,275	Wet stone masonry
	rface Drainage	ถอร	3		7,650	Stone pitching (15 m2/ nos)
	rainage pipe culvert	nos	3	6,248	18,744	RCC Pipe (D = 200mm)
	rop-Chute ab-total	nos	3	900	2,700 434,071	Vegetated riprap (10m2/nos
5. Site - 5	5					
G	abion Structures	m3	50	751	37,550	I Checkdam, I Prop wall
	cavation in soft soil	m3	10	43	430	20 % of Gabion Volume
	de-ditch (Type-A)	m	10	(614)		Wet stone masonry
	urface Drainage	nos	3		7,650	Stone pitching (15 m2/ nos)
D	rainage pipe culvert	BOS	3	-	18,744	
D:	rop-Chute	คอร	3	900	2,700	Vegetated riprap (10m2/nos
St	ib-total				73,514	
	age Facilities Development Over				0.000	B 111
Si	de-ditch (Type-B)	m3	1,860	· · ·	949,260	Dry rubble reasonry
	rface Drainage	nos	30		76,500	Stone pitching (15 m2/ nos)
	rainage pipe culvert	nos	30		187,440	RCC Pipe (D = 200 mm)
	rop-Chute	nos	30	900	27,000	Vegetated riprap (10m2/nos
	ib-total Lof Major Construction Works				1,240,200 2,531,697	
	laneous Works	20 % of M	lajor Works		506,000	
		20 X 61 M	,		3,037,697	
	sb-total of Direct Cost sering Service	30 % of D	izect Cost	30%	911,309	
	tering Service ab-total				3,949,006	
9. Physic	al Contingency	20 % of M	lajor Works	20%	789,801	
G	rand Total				4,738,807	
			(Say,		4,739,000)	

Note: 1. Quantity is rounded to integer

^{2.} Unit Price in () vary accordance with the volume ratio between excavation and material

^{3.} vs = Valley side; ms = Mountain side

^{4.} Miscellaneous works includes Cost for: Vegetation, Spare parts (wire, RCC pipes, etc.), Equipments

Table 3.5.2 Summary of Quantity and Construction Cost for Construction Work Items for Rural Road Improvement Project in Namtar Area

			PPP Basi		LCB Bas	
S N Work Items	Unit	Q'ty U	nit Price	Amount	Unit Price	Amount
l. Site-1						
1-1. Gabion (Checkdams, Prop-wall)	m3	176	751	132,176	998	175.64
1-2. Excavation in soft soil	m3	45	43	1,935	57	2,56
I-3. Stone Masonry Wall (CM1:3)	tn3	6	2,075	12,450	2,756	16,53
I-4. Vegetated Riprap (t=15cm)	m2	10	90	900	120	1,20
Total of Site-1				[47,46]		195,94
2. Site-2						
Site-2-a						
2-1, Gabioa	m3	63	751	51,068	998	67.86
2-2. Excavation in soft soil	m3	14	43	602	43	793
Total of Site-2-a				51,670		68,66
Site-2-b				22.660	000	40.00
2-3. Gabion (Upper Checkdams)	m3	50	751	37,550	998	49,90
2-4. Excavation in soft soil	m3	20	43	860	57 130	1,14 1,95
2-5. Excavation in hard soil	m3	15 3	98 34	1,470 102	45	135
2-6. Backfill w/ common soil	m3	12	341	4,092	453	5,43
2-7. Backfill w/ Boulder, Gravel	m3 m3	6	441	2,646	586	3.51
2-8. Dry Rubble Masonry Wall 2-9. Stone Pitching (t=20cm)	m2	45	170	7.650	226	10.170
2-10. RCC Hume Pipe, NP-3, 200	m	15	872	13,080	1,050	15.75
2-11. Vegetated Riprap (t=15cm)	m2	30	90	2,700	130	3,60
Total of Site-2-b				70,150		91,59
Total of Site-2				121,820		160,25
3. Site-3		***		160.415		663,679
3-1. Gabion	m3	665 159	43	499,415 6.837	57	9,06
3-2. Excavation in soft soil	m3	139	441	8,379	586	11,13
3-3. Dry Rubble Masonry Wall Total of Site-3	តា3	13	4-11	514,631	.130	683,86
that of the t						•
4. Site-4	_	Qʻty		244.400	030	407.03
4-1. Gabion	m3	438	751	366,488	998 57	437,02
4-2 Excavation in soft soil	m3	123	43 98	5,289 1,470	130	7,01 1,959
4-3. Excavation in hard soil	m3	15 3	34	102	45	13:
4.4. Backfill w/ common soil	m3 m3	12	341	4,092	453	5,430
4-5. Backfill w/ Boulder, Gravel	m3	16	2.075	33,200	2,756	44.09
4-6. Stone Masonry Wall (CM1:3) 4-7. Stone Pitching (t=20cm)	m2	45	170	7,650	226	10.17
4-8. RCC Hume Pipe, NP-3, 200	m	15	872	13,050	1,650	15,75
4-9. Vegetated Riprap (t=15cm)	m2	30	90	2,700	130	3.60
Total of Site-4				434,071		575,17
5. Site-5		Q'ty				
5-1. Gabion		50	751	37,550	998	49.90
5-2. Excavation in soft soil	m3	15	43	645	57	85
5-3. Excavation in hard soil	m3	15	93	1,470	130	1.95
5-4. Bockfill w/ common soil	m3	3	34	103	45	13
5-5. Backfill w/ Boulder, Gravel	m3	12	341	4,092	453	5.43
5-6. Stone Masonry Wall (CM1:3)	m3	3	2,075	6,225	2,756	8.26
5-7. Stone Pitching (t=20cm)	m2	45	170	7,650	226	10.17
5-8. RCC Hume Pipe, NP-3, 200	m	15	872	13,080	1,650	15,75
5-9, Vegetated Riprap (t=15cm)	តា2	30	90	2,700	120	3,60
Total of Site-5				73,514		95,06
6. Drainage Facilities Development Ov						
6-1. Excavation in soft seil	m3	3,000	43	129,000	57	171,00
6-2. Excavation in hard soil	m3	150	98	14,700	130	19,50
6-3. Backfill w/ common soil	m3	32	34	1,088	45	1,44
6.4. Backfill w/ Boulder, Gravel	m3	117	341	39,897	453	53,00
6-5. Dry Rubble Masonry Wall	m3	1,860	411	820.260	586	1,089,96
6-6. Stone Pitching (t=20cm)	m2	450	170	76,500	226 1,050	101.70 157.50
6-7, RCC Hume Pipe, NP-3, 200 Total of 6	m	150	872	130,800 1,241,155	1,050	1,630,10
	dian III			•		
Sub-total of Cost for Major Construc			a I	2,531,697		3,341,41
7. Miscellaneous	20 %	of Sub-tot	ai	000,000 20a 72a 2		668,00 4 000 41
Sub-total of Direct Cost	10.0%	f Direct Cost	ı 30%	3,037,697	(\$2v	4,009,41 1,202,82
8. Engineering Service	30 % O	i Datei Ces		911,309 200 010 8	(Say,	
Sub-total	20 CZ ~1	f Major Wor	ks 20%	3,949,006 789,801		5,212,23 1,042,41
9. Physical Contingency	20 % ()	i major viol	ns 2011C			_
					-	
Grand Total				4,738,807 4,739,000)		6,254,68 6,255,000

Table 3.5.3 Anticipated Cost for Rehabilitation of Namtar Irrigation Project

S.N	Major Work Items	Unit	Quantity	LCB Basis (NRs.) Quantity Unit Price Amou	(NRs.) Amount Remarks	Conditions
Dungeon	Danocon Scheme:					
Int	Intake structure	nos.		180,000	180,000 Diverting 400 lit/sec.,	Newly constructed
He	Headreach canal-1	E	800	65	52,000 Intake - T/O: Earth canal	Existing Enlarged
He	Headreach canal-2	E	250	100	25,000 T/O - R/B-1: Earth canal	Newly constructed
Tu	Furnout structure	nos.		200,000	200,000 220 lit/sec. Diverted to Aqueduct;	Newly constructed
Re	Regulating basin-1	nos.	-	200,000	200,000 Located at the Entrance to the Suspended Aqueduct	•
Ä	Main canal-1	Æ	1,200	65	78,000 T/O - Road-head: Existing Earth canal	Partially Reshaped
ບໍ່:	Crossing structures	nos.	C1	60.000	120,000 Existing wooden structures	Reinforced
Namtar	Namtar Scheme:					
Su	Suspended Aqueduct	nos.	7	3,000,000	3,000,000 Clear span: 70 m: Pipe (HDP) suspended by cable	e Newly constructed
					and scartold, 2 Adultients (ACC recommended)	
Re	Regulation basin-2	nos.		200,000	200,000 Located at the Exit from the Suspended Aqueduct	Newly constructed
H	Headreach canal-3	ε	909	100	60,000 R/B-2 - Farmland: Earth canal	Reshaped
Ï	Main canal-2	E	1.600	65	104,000 Passing Farmland - Water tank near school	Reshaped
Ü	Crossing structures	nos.	61	30,000	60,000 Existing Aqueduct	Rehabilitated
	,	nos.	7	90.000	420,000 Box Culvert and Gabion Protections	Reconstructed
R	Retaining wall	nos.	C1	40,000	80,000 Total length of 25 m slided	Rehabilitated
	,	nos.		80,000	80,000 Total length of 10 m	Newly constructed
×	Recovery from Landslide:	E	100	130	13,000 4 locations: Total length of 100 m;	Excavated
	•	E	70	2,200	154,000 Total length of 70 m	MDP Pipe burried
T	Total of Anticipated Direct Construction	Constru	ection Cost		5,026,000	

Note: Cost of structures are referred to the Cost Estimate in Rural Road Improvement (3.5.1). Micro-Hydropower Scheme (3.5.3) in Namtur/ Tilar Area

Table 3.5.4 Work Quantity & Construction Cost for Micro-hydropower

Item Works	Unit	Quantity	Unit Price (NRs)	Cost (NRs)	Remarks
1 Intake Works					
1.1 Steel pipe	m	11	10,560	116,160	ø 250mm
1.2 Screen	kg	350	31	10,780	•
1.3 Screen Frame, etc	kg	170	31	5,236	
1.4 Stone Masonry for S		5.5	2,756	15,158	
	т3 т3	4	130	520	
1.5 Excavation for Step		1	190,300	190,300	<i>∮</i> 250mm
1.6 Stop Valve	set s %	10	130,300	33,815	φ 230ππ
1.7 Miscellaneous Work Sub-tota	· -	10	•	371,969	
2 Desilting Basin with Spillwa	y				
2.1 Steel Plate for Top C		180	30	5,445	10 m2, t=2.3mm
2.2 Stone Masonry (CM		27	2,756	74,412	
2.3 Concrete(1:2:4)	m3	0.5	9,399	4,700	
2.4 Excavation	m3	50	130	6,500	
2.5 Backfill	m3	20	45	900	
2.6 Stop Valve	set	1	190,300	190,300	ø 250mm
		1	163,350	163,350	\$ 450mm
2.7 Shuice gate (circle ty		10	105,550	44,561	y isonini
2.8 Miscellaneous Work Sub-tota		10	-	490,167	
3 Connecting Pipe					
3.1 HDP pipe	m	830	1,990	1,651,700	ø 250mm, 6 kgf/cm2
3.2 Excavation	m3	125	130	16,250	
3.3 Backfill	m3	58	45	2,610	
3.4 Stone Soling	m3	25	258	6,450	
3.5 S.Masonry for pipe S		28	2,756	77,168	15-m interval, 0.5 m3/pc
3.6 Pipe fixing for pipe 3		56	1,430	80,080	15 mineral, ors merpe
3.7 Miscellaneous Work		10	-	183,426	
Sub-tota		10	-	2,017,684	
4 Rivert/Stream Crossing Stru	ucture (5 locations)				
4.1 Stone Masonry	m3	13	2,756	35,828	(2.62 m3/pc)
4.2 Excavation	m3	12	130	1,560	(2.50 m3/pc)
4.3 Backfill	m3	8	45	360	(1.50 m3/pc)
4.4 Pipe fixing	set	10	1,430	14,300	(2 set/pc)
4.5 Miscellaneous Work		10	-	5,205	• ′
Sub-tota				57,253	
5 Forebay Tnak					
5.1 Stone Masonry	m3	25	2,756	68,900	
5.2 Excavation	m3	29	57	1,653	
5.3 Backfill	m3	12	45	540	
5.4 Screen for Penstock	kg	220	30	6,655	
5.5 Sluice gate (circle ty		1	163,350	163,350	ø 450mm
5.6 Miscellaneous Work		10	-	24,110	•
Sub-tot:				265,208	
6 Generating Plant & Distribu					
6.1 Generating Plant & l (Plant: 20 kW, Distribut		L.S.		2,240,000	(US\$40,000)
Total of Dire	ct Cost			5,442,281	
7 Engineering Service	20 % of Direc	et Cost		1,088,000	Include Technocal Service
Sub-total Physical Contingency		anda kasat		6,530,281	
x Provided Continuency	20 % of above s	เมา-เดเสโ		1,306,000	
Total Cost	20 × 01 110010			7,836,281	·

Table 3.5.5 Summary of Components and Construction Cost for Water Supply Network System in Chisapani Area

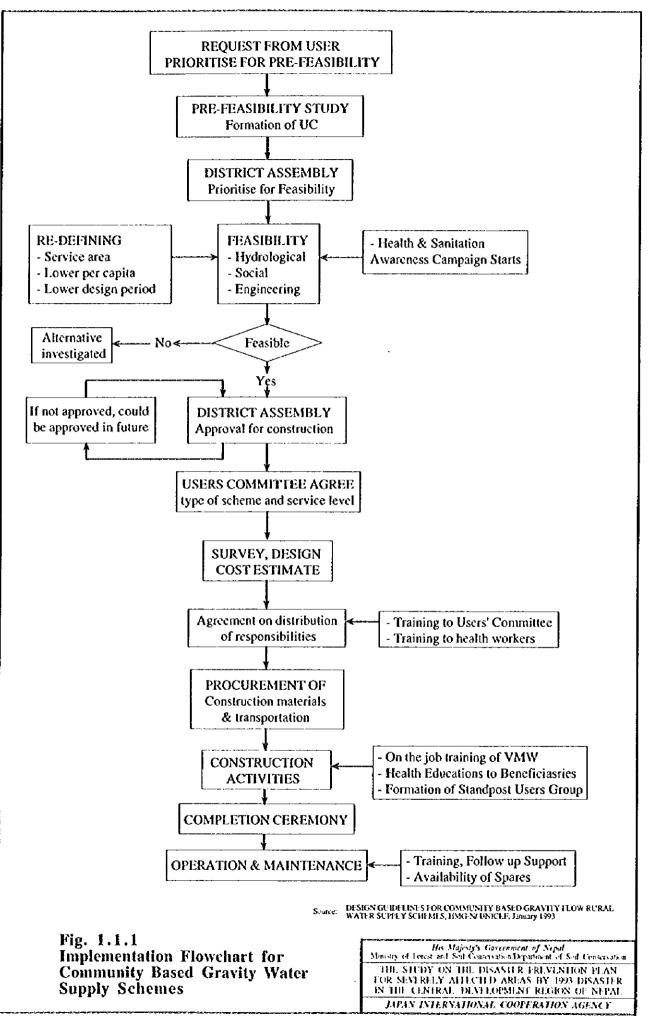

Name of Major Component Description		Quantity	Unit Rate (NRs.)	Amount (NRs.)	Remarks
1 Intake Structure	nos.	11	1,610	17,710	Precast concrete unit, w/ HDP Strainer, Steel Screen
2 Storage Tank	nos.	3	-	260,080	RCC Tank, incl/pipe fittings, 9,000 lit.: 1 nos.; 6,000 lit. 2 nos.
3 Distribution Tank System					RCC Tank, incl/ pipe fittings,
S-I Syster	n nos.	3	~	120,420	3,500, 3,000, 1,500 lit.
S-2 System	n nos.	4	-		3,000, 2,500, 1,500, 1,000 lit.
S-3 Syster	n nos.	3	-	113,450	3,000, 2,500, 1,500 lit.
Sub-total	nos.	10	-	373,430	•
4 Delivery Tank size					
1000 lit		4	7,130		Ready-made Plastic Tank,
750 lit		11	5,700		incl/Pipe fittings,
400 lit	nos.	3	3,850	•	Precast valve chamber
Sub-total	nos.	18	-	102,770	1
5 Household Storage Tank 200 lit	nos.	78	2,490	194,220	Ready-made Plastic tank, incl/ Pipe fittings,
6 Related Structures					Sprinkler set (extra pipe 20m)
Break Pressure Tank	nos.	9	2,180	•	Plastic tank 200 lit.
Precast Valve Chamber		56	810	•	w/pipe fittings,
Sub-total	nos.	65	-	64,980	Precast chamber with valve
7 HDP Pipeline (Inside dia.			2.1		
12.5 mn		9,685	24		Household line: 2,400 m
25.0 mm		2,475	48	•	Another 10 % in the air
38.0 ma		2,159	103	222,377	
Sub-total	m	14,319	-	573,617	
8 Burying Community Pipelines					
75 % of total length	m	10,700	5	53,500	1
Sub-Total of Items 1 to 8				1,640,307	
9 Miscellaneous	%	20		328,000	20 % of Sub-total
Total Direct Cost				1,968,307	
10 Engineering Service Sub-Total	%	30		590,000 2,558,307	30 % of Total Direct Cost
11 Physical Contingency	%	20		512,000	30 % of Sub-total
Grand Total				3,070,307	
			(say, NRs.	3,070,000	•)

Table 3.5.6 Summary of Cost Breakdown for Water Supply Network System in Chisapani Area

Name of Major Com	ponent		Quantity		Amount	Remarks
				(NRs.)	(NRs.)	<u></u>
S-1 System		205	6		9,660	
1-1 Intake Structure		nos.		1,610	100,820	
1-2 Storage Tank	S-1	nos.]	100,820	47,400	2,000
1-3 Distribution Tank	D-1-1	nos.	I	47,400		0,000
	D-1-2	nos.	1	31,120	31,120	1,500 1.1.12
	D-1-3	nos.	1	41,900	41,900	2,000 1111
1-4 Plastic Tank	1000 lit.	nos.	4	7,130	28,520	Denistry tanks
	750 fit.	nos.	3	5,700	17,100	G e
	400 lit.	nos.	-	3,850	-	- do -
	200 lit.	nos.	36		89,640	Trouserrore carrie
1-5 Related Structures	BP Tank	nos.	6	2,180	13,080	
	Valve Ch.	лos.	24	810	19,440	
1-6 HDP Pipeline	12.5 mm	m	6,043	24	145,032	Household line: 1080m
	25.0 mm	m	464	48	22,272	
	38.0 mm	m	0	103	-	
	Burying	m	4,800	5	24,000	
Total of S-1 System					589,984	
S-2 System						
2-1 Intake Structure		nos.	2	1,610	3,220	
2-2 Storage Tank	S-2	nos.	1	79,630	79,630	0,000 1.44
2-3 Distribution Tank	D-2-1	nos.	1	39,690	39,690	2,500 litre
	D-2-2	nos.	1	42,640	42,640	3,000 litre
	D-2-3	nos.	1	26,110	26,110	1,000 litre
	School	nos.	1	31,120	31,120	1.500 litre
2-4 Plastic Tank	1000 lit.	nos.	-	7,130		Delivery tanks
	750 lit.	nos.	5	5,700	28,500	
	400 lit.	nos.	1	3,850	3,850	- do -
	200 lit.	nos.	21	2,490	52,290	Household tank
2-5 Related Structures	8P Tank	nos.	3	2,180	6,540	
	Vaive Ch.	nos.	22	810	17,820	
2-6 HDP Pipeline	12.5 mm	m	2,214	24	53,136	Household fine: 660m
	25.0 mm	m	1,846	48	88,603	
	38.0 mm	m	1,415	103	145,745	
	Burying	m	4,100	5	20,500	
Total of S-2 System	-				639,399	
S-3 System						
3-1 Intake Structure		nos.	3	1,610	4,830	
3-2 Storage Tank	S-3	nos.	1	79,630	79,630	0,000 1.1.1
3-3 Distribution Tank	D-3-1	nos.		31,120	31,120	1,500 litre
	D-3-2	nos.	1	38,950	38,950	2,500 litre
	D-3-3	nos.	1	43,380	43,380	
3-4 Plastic Tank	1000 lit.	лоs.	_	7,130	•	Delivery tanks
	750 lit.	nos.	3	5,700	17,100	
	400 lit.	nos.	2	3,850	7,700	
	200 lit.	nos.	21	2,490	52,290	
3-5 Related Structures	Valve Ch.	nos.	10	810	8,100	
. > remed ordering	12.5 mm	B)	1,428	24	34,272	Household line: 660m
3-6 HDP Pipeline	25.0 mm	m	165	48	7,920	
5.0 HDI ERCHIO	38.0 mm	m m	744	103	76,632	
	Burying		1,800	5	9,000	
Total of S-3 System	Pushing		1,500		410,924	
ingini 9.9 97 Man					710,727	
Crand Total		L			1,640,307	
Grand Total					1,040,207	

Table 3.5.7 Breakdown Quantities and Cost for Rural Water Supply Network in Chisapani Area

S.N Works Items	Unit	Quantity	PPP Basi Unit Rate	is (NRs.) Amount	LCB Bas Unit Rate	is (NRs.) Amount
			Olli Kale	Allioun	Oliv Marc	71010011
Fanks I-Reinforced Concrete Tanks	nos.	13				
Storage Tanks	nos.	3				
Distribution & School Tanks	nos.	10				
1-1. Excavation	m3	3.948	43	168	57	225
1-2. Reinforced Concrete *	m3	49.767	8,428	419,436	11,194 7,584	557.092 50.600
1-3. Levelling Concrete *	m3	6.672 9.852	5,710 3,046	38,102 30.008	4,046	39,86
1-4. Wet Stone Masonry 1-5. Stone Soling	m3	13.344	194	2,590	258	3,44
1-6. Precast Manhole Cover	nos.	13	288	3,744	348	4,52
1-7. Precast Chamber Cover-S	nos.	3	1,055	3,165	1,274	3,82
1-8. Precast Chamber Cover-D	nos.	10	740	7,400	894	8,94
1-9. Pipe fittings-Strage tank	nos.	3	2,122	6,366	2,562	7,680
1-10. Pipe fittings- Dist'n tank	nos.	10	1,692	16,920	2,043	20,430
Sub-Total	ce	20		527,898 105,612		696,62. 139,32:
I-11. Miscellaneous Works Total	K	20	-	633,510	-	835,94
		18				
2. Delivery Tanks	nos.	18	4,840	19,360	5,844	23,376
2-1. Ready-made Plastic Tank (1000 lit2-2. Ready-made Plastic Tank (750 lit.)		11	3,593	39,523	4,339	47,72
2-3. Ready-made Plastic Tank (400 lit.)		3	1,990	5,970	2,403	7,20
2-4. Pipe fitting for Deliv. Tank	set	18	748	13,464	903	16,25
2-5. Precast Valve Chamber	nos.	18	611	10.998	738	13,28
Sub-Total				89,315		107,85
2-6. Installation and Other Misc. 15 % Total		15%		13,455 102,770		16,178 124,034
				•		
3. Household Tank 200 lit.	nos.	78 78	1.104	86,268	1,335	104,130
3-1. Ready-made Plastic Tank (200 lit.)	set	78 78	1,106 1,154	90,012	1,393	108,65
3-2. Pipe fitting incl/ Sprinkler set Sub-Total	361	70	1,100	176,280	1,525	212,78
3-3. Installation and Other Misc. 10 %		10%		17,940		21,27
Total				194,220		234,06
4. HDP Pipelines	m	14,319				
4-1, 12.5 mm	m	9,685	24	232,440	32	309,920
4-2, 25.0 mm	Rl	2,475	48 103	118,800 222,377	64 137	158,40 295,78
4-3. 38.0 mm 4-4. Burying Pipelines (75 % of total)	m	2,159 10,700		53,500	7	74,90
Total of HDP Pipelines				627,117		839,00
Related Structures						
5. Break Pressure Tank	nos.	9	1.100	0.054	1 225	1201
5-1, Ready-made Plastic Tank (200 lit.)	sei sei	9	1,106 265	9,954 2,385	1,335 320	12,01. 2,89
5-2. Pipe fitting for BP Tank 5-3. Precast Valve Chamber	nos.	9	611	5,499	738	6,64
Sub-Total		-		17,838		21,53
5-4. Installation and Misc. 10 %		10%		1,782		2,15
Total				19,620		23,69
6. Intake Protection Structure	nos.	11				
6-1. Excavation	m3 m2	1.020 4.990		44 968	57 258	4: 96:
6-2. Stone Soling 6-3. Dry Rubble Masonry	m3	0.698		308	586	30
6.4. Precast Unit (PCC 1:4)	nos.	11	1,069	11,759	1,291	14,20
6-5. HDP Strainer "1/2	nos.	11	156	1,716	188	2.06
Sub-Total				14,795		17,58
6-6. Installation and Misc. 20 % Total		20%		2,915 17,710		3,51 21,10
		**		•		
7. Precast Valve Chamber	nos. m3	56 3.910	43	168	57	4
7-1. Excavation 7-2. Stone Soling	m2	14.146		2,741	258	96
7-3. Precast Unit (PCC 1:4)	nos.	56	555	31,080	670	37,52
7-4. Valve and Pipe Fittings	nos.	56	129	7,224	156	8,73
Sub-Total		1077		41,216 4,144		47,2 6 4,72
7-5. Installation and Misc. 10 % Total		10%		45,360		51,99
						

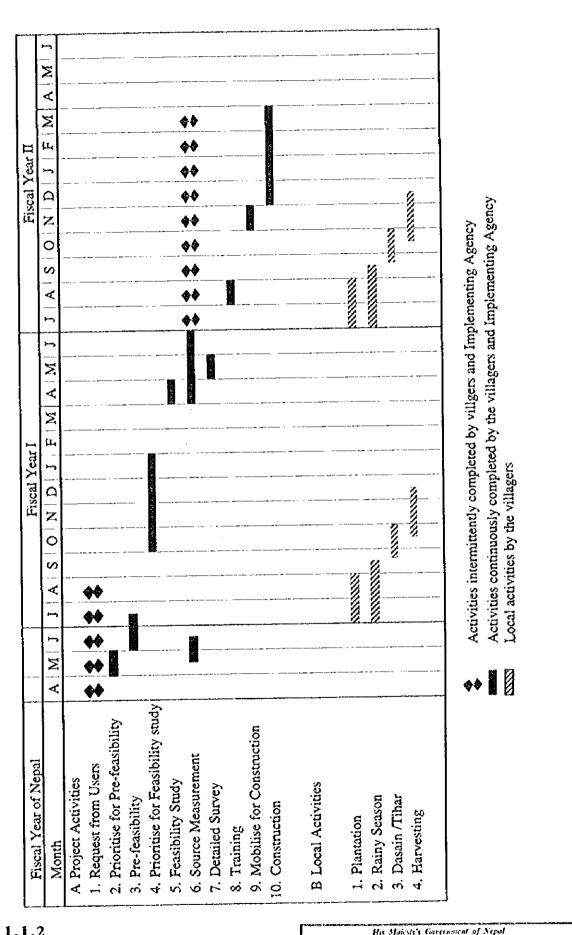
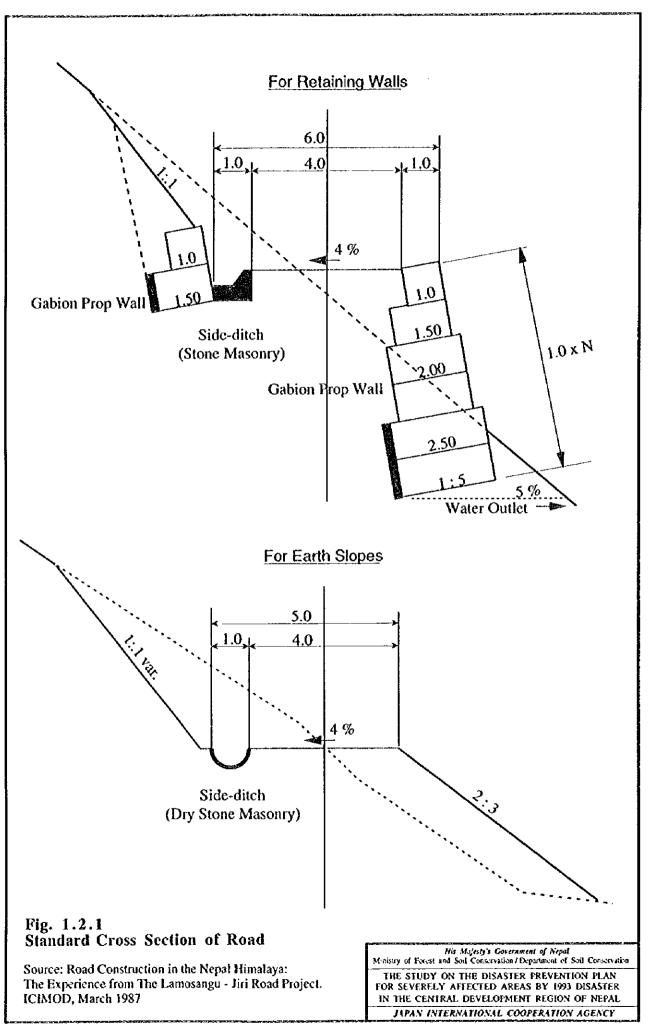
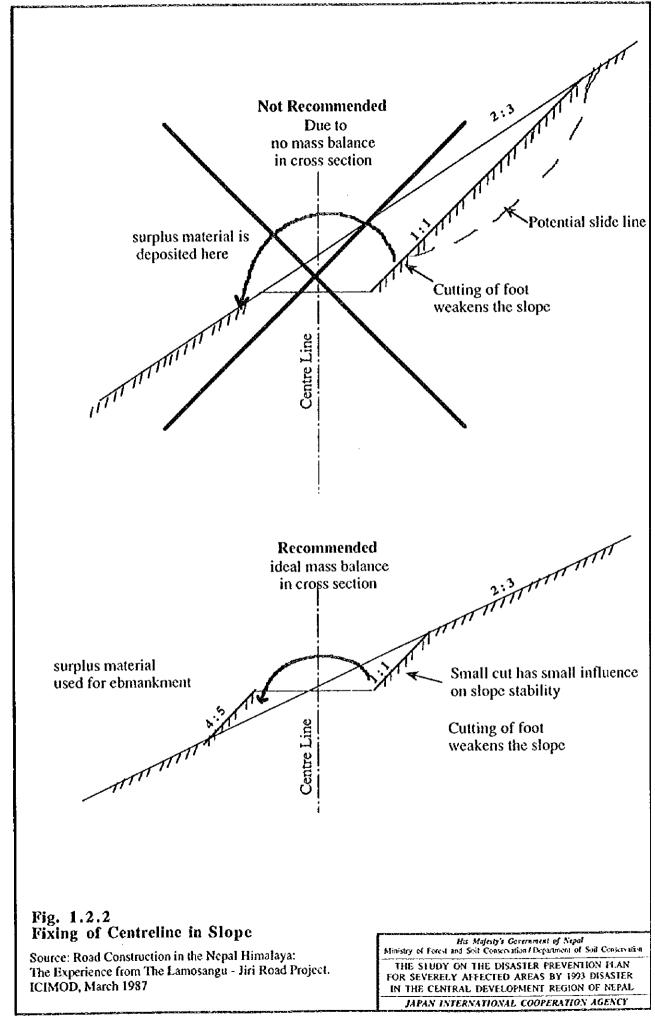
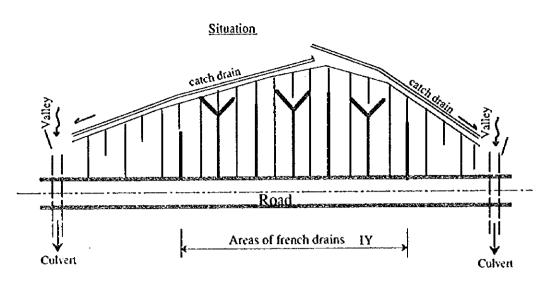
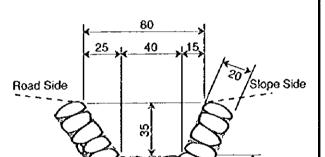





Fig. 1.1.2 Sequence of Activities and Implementation Schedule for the Rural Water Supply Network Development

His Majesty's Government of Nepal Ministry of Local and Soil Consequence Alepatronic of Soil Consequence THE STUDY ON THE DISASTER PREVENTION FEAN FOR SEVERLEY ATTICLED AREAS BY 1993 DISASTER IN THE CENTRAL DISCLOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY



SLOPE DRAINAGE SYSTEM

Road Side Slope Side Inlet

읾

Dry Masonry: Type A

SIDE DITCH

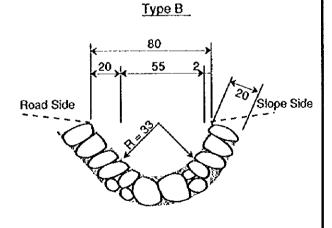
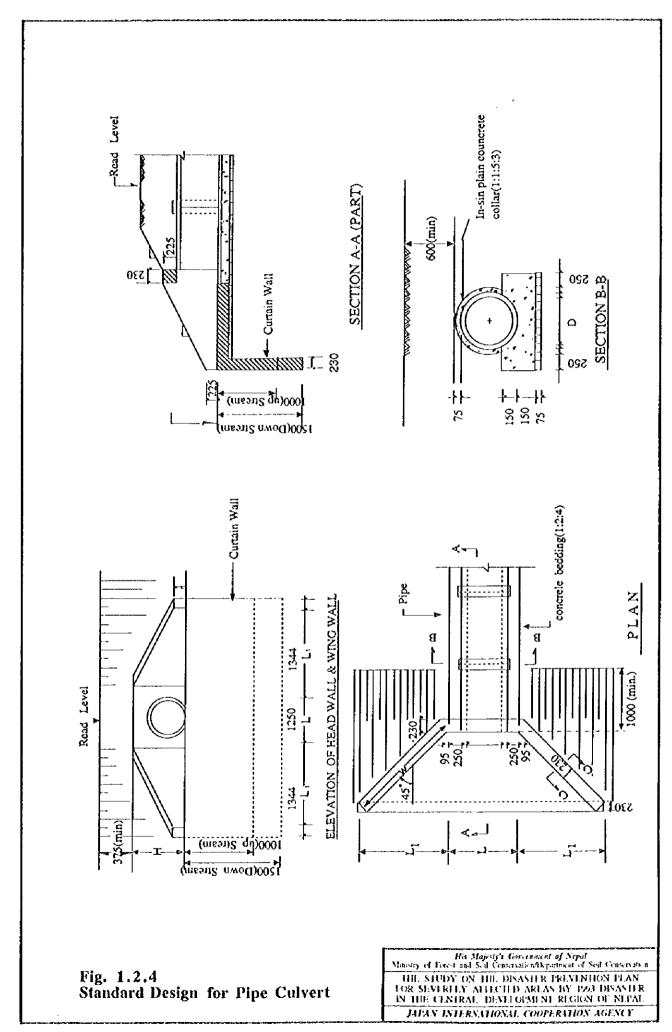
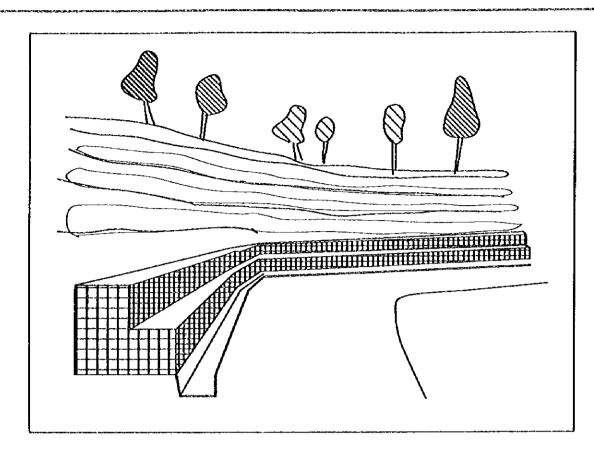




Fig. 1.2.3 Slope Drainage System and Standard Cross Section of Side Ditch

Source: Road Construction in the Nepal Himalaya: The Experience from The Lamosangu - Jiri Road Project. ICIMOD, March 1987 His Majesty's Government of Nepal Ministry of Forest and Soil Conservation / Department of Soil Conservation

THE STUDY ON THE DISASTER FREVENTION PLAN FOR SEVERELY AFFECTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

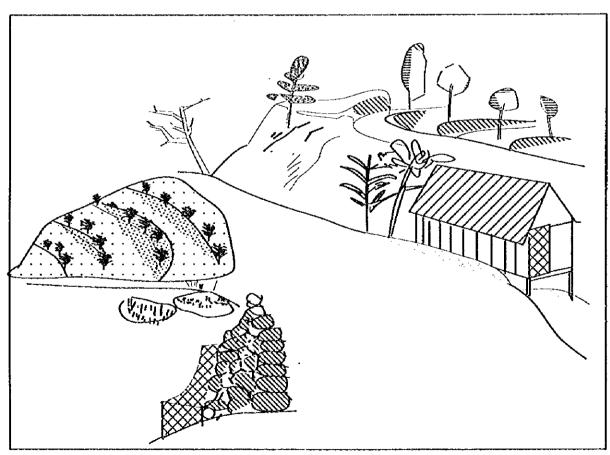
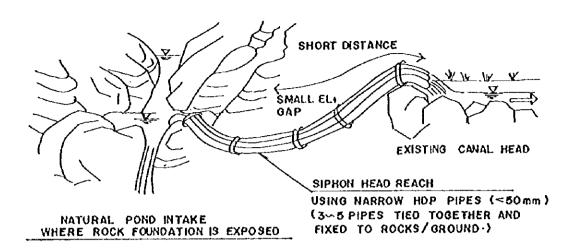



Fig. 1.2.5 Schematic Drawing of Slope Protection

His Majesty's Government of Nepal Munistry of Ferest and Soil Conservation/Department of Soil Conservation

THE STUDY ON THE DISASTER PREVENTION PLAN FOR SEVERELY AFFECTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

SYSTEM CAN BE ADOPTED WHERE A HEAD REACH WAS WASHED AWAY AND WHERE THE HYDRAULIC GRADIENT IS MAINTAINED BETWEEN INTAKE AND EXISTING CANAL HEAD

SHORT DISTANCE (<20-0m)
SMALL ELEVATION GAP (<1-0m)

SIPHON HEADREACH SYSTEM CANAL Sa Siphon Headreach System CANAL FLOW PLAN

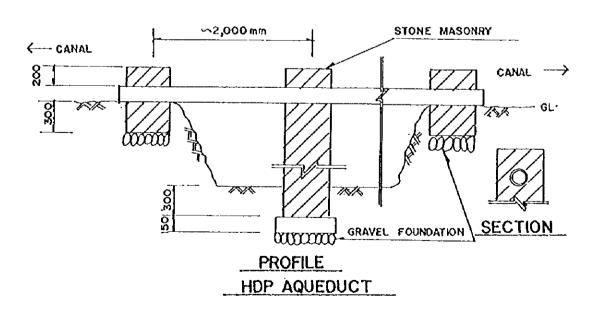
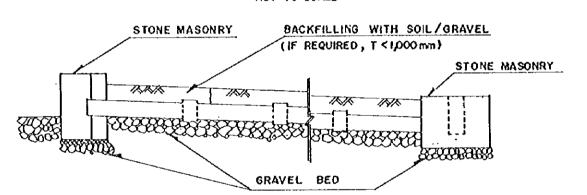
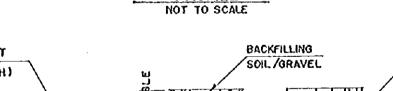




Fig. 1.3.1 Schematic Diagram for Siphon and Aqueduct with HDP Pipes

His Majesty's Government of Nepal Ministry of Total and Soil Conservation/Department of Soil Conservation THE STUDY ON THE DISASTER PREVENTION PLAN TOR SEVERLEY ATTLCTED AREAS BY 1923 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

PROFILE

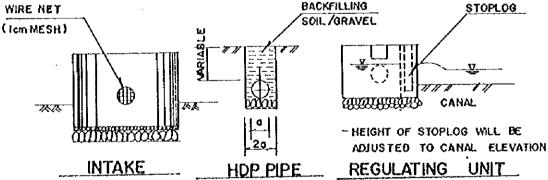
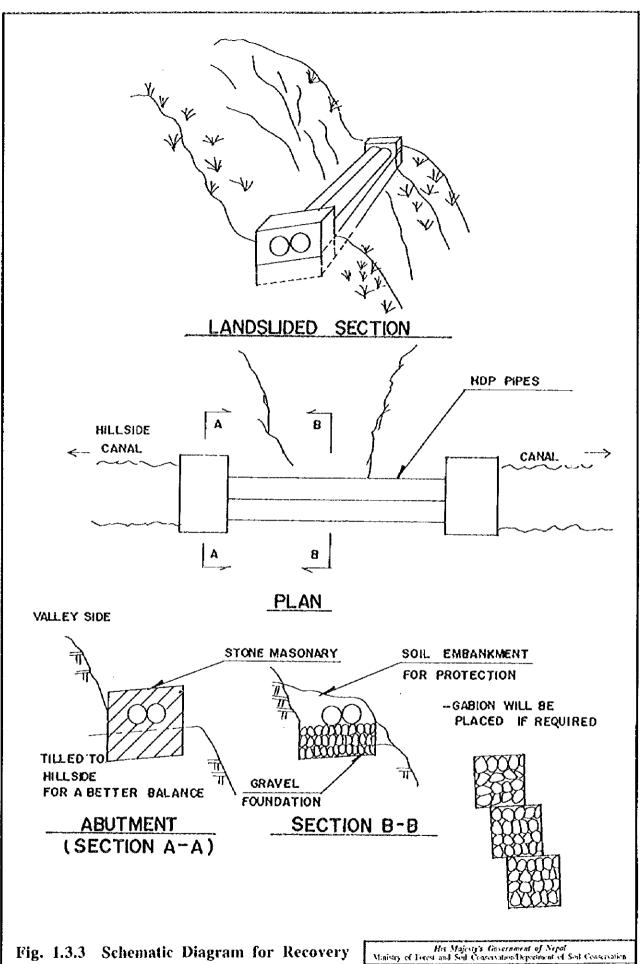



Fig. 1.3.2 Schematic Diagram for Intake & Headreach Using HDP in Fmis

His Majesty's Government of Nepal
Ministry of Legisland Soil Conservation Department of Soil Conservation

THE STUDY ON THE DISASTER PREVENTION FLAN TOR SEVERELY AFFECTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVILOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

of Canal at Landslide Section

THE SHIPY ON THE DISASTER PREVIOUS HAN TOR SEVERILY ARTICHED AREAS BY 1923 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF STEAL JAPAN INTERNATIONAL COOPERATION AGENCY

Fig. 1.3.4 Vegetative Measures (1/5)
: Brush Layer

His Majosty's Government of Nepal Ministry of Forest and Soil Conservation/Department of Soil Conservation THE STUDY ON THE DISASTER PREVENTION PLAN FOR SENTRILLY ATTICITED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

Source: Nepal SPWP Manual No.1; Environmental Protection Measures

Name: Live Stacking	Function: A quick and effective measure of secure a vegetative cover.	Species:	
~~~~	Stabilisation of soil only after recting of the plants	Trees: Sisau Phaledo Lahare Pipal	Golainchi Bainsh Khirro
Tree species	Construction Steps:  1. Prepare hole with iron bar (crow bar).  2. Plant cutting richt side up as deep	Kavro Dabdade Bushes: Asuro	Sajiwan Cimali
000000000000000000000000000000000000000	as possible.  3. Tamp the soil around the cutting. The cutting must be firm in the ground so that it cannot be readily moved or pulled out.	Siudi Grasses: Napier	Bihaya Bihaya
Cuting of branches:  Use for backhoding in whee		Bamboos: Any other spe and concerne	Bamboos: Any other species recommended by farmers and concerned professionals
Construction Period: During dormant season Tree species: Falgun, Chaitra Keep cutings in moist place for two weeks Bush species: Before start of monsoon (Josth)	Material: - Long, straight stems of trees and brushes that root easily (approx Im/m²) - Crow bar to prepare holes	Remarks:	

Fig. 1.3.4 Vegetative Measures (2/5) : Live Stacking

His Majesty's Government of Nepol Ministry of Forest and Sed Conservational Apartment of Sod Conservation THE STUDY ON THE DISASTER FREVENHON PLAN FOR SEVERLLY AFFECTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVILOPMENT REGION OF SEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

Source: Nepal SPWP Manual No.1; Environmental Protection Measures

Fig. 1.3.4 Vegetative Measures (3/5) : Brush Wattles

His Majesty's Government of Nepal Ministry of Forest and Soil Conservation Department of Soil Conservation THE STUDY ON THE DISASTER PREVENTION PLAN

THE STUDY ON THE DISASTER PREVENTION PEAN FOR SEVERELY AFFICUED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

· · · · · ·	Ι		<u></u>
	Tree Seedings (From nursery give preference to farmers interest)	Other: Ritha Tuni Okhar Sisau Tea Coffee Alainchi	
·	igs (From r ers interes	Fruits: Ofrus	
Species:	Tree Seedings (From nu ence to farmers interest)	Fodder: Badahar Kutmero Korralo Khanyu etc	Remarks:
Function: The mulching helps the plants to grow faster by regulating the mois-	ture. Stabilises slope and and provides fuel, fodder, fruits.	Construction steps: 1. Dig the pits 30 x 30 x 30 cm. 2. Remove plastic tube from seed- ling. 3. Plant seedling. 4. Cover with soil and mulch and tamp gently (Soil preferably topsoil or forest soil).	Material: - 1-2 rooted plants per m² (from nursery) - Mulching material such as compost, chopped grass
Name: Pioneer Plantation	Sketch:	Mulich Mulich Mulich Mulich	Construction period: At beginning of vegetation period (Asar - Shrawan)

Fig. 1.3.4 Vegetative Measures (4/5) : Pioneer Plantation

His Majesty's Conservation of Nepal Ministry of Forest and Sail Conservation Department of Sail Conservation THE STUDY ON THE DISASTER PREVENTION PLAN FOR SEVERILY ATTLCTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

Source: Nepal SPWP Manual No.1; Environmental Protection Measures

Fig. 1.3.4 Vegetative Measures (5/5) : Vegetated Riprap

His Majoriy's Government of Nepal Ministry of Forest and Soil Conservation/Appartment of Soil Conservation THE STUDY ON THE DISASTER PREVENTION PLAN

THE STUDY ON THE DISASTER PREVENTION PLAN TOR SEVERLLY ATTLETED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF SEPAL

JAPAN INTERNATIONAL COOPERATION AGENCY

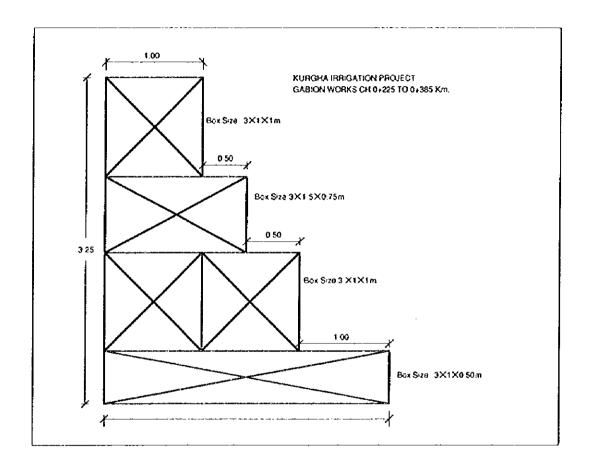



Fig. 1.3.5 Cross-section of Gabion Revetment Wall

His Majesty's Government of Nepal Ministry of Toron and Sed Conservation Department of Soil Conservation THE STUDY ON THE DISASTER PREVENTION IT AN TOR SEVERFLY ATTLETED AREAS BY 1993 DISASTER IN THE CENTRAL DEVILOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

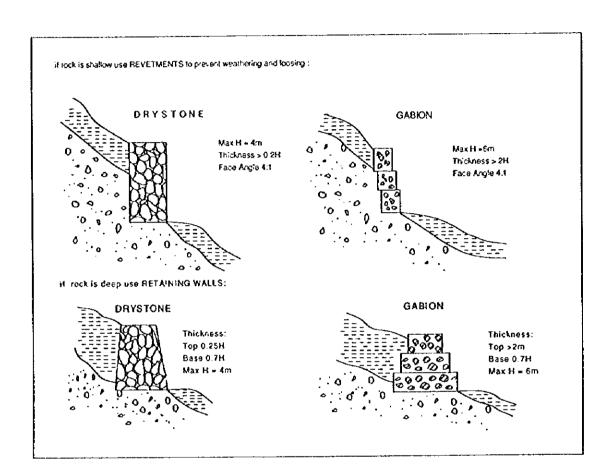
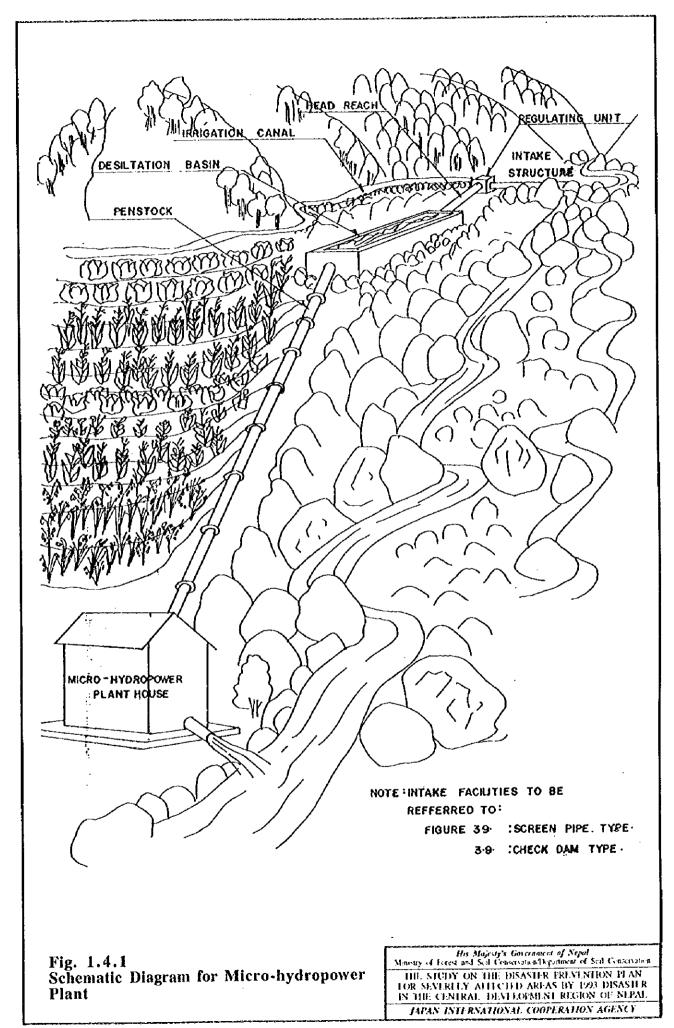
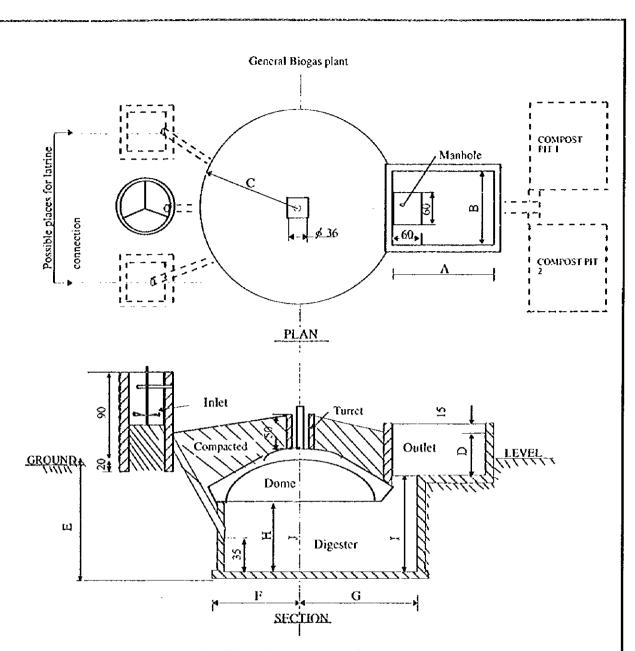




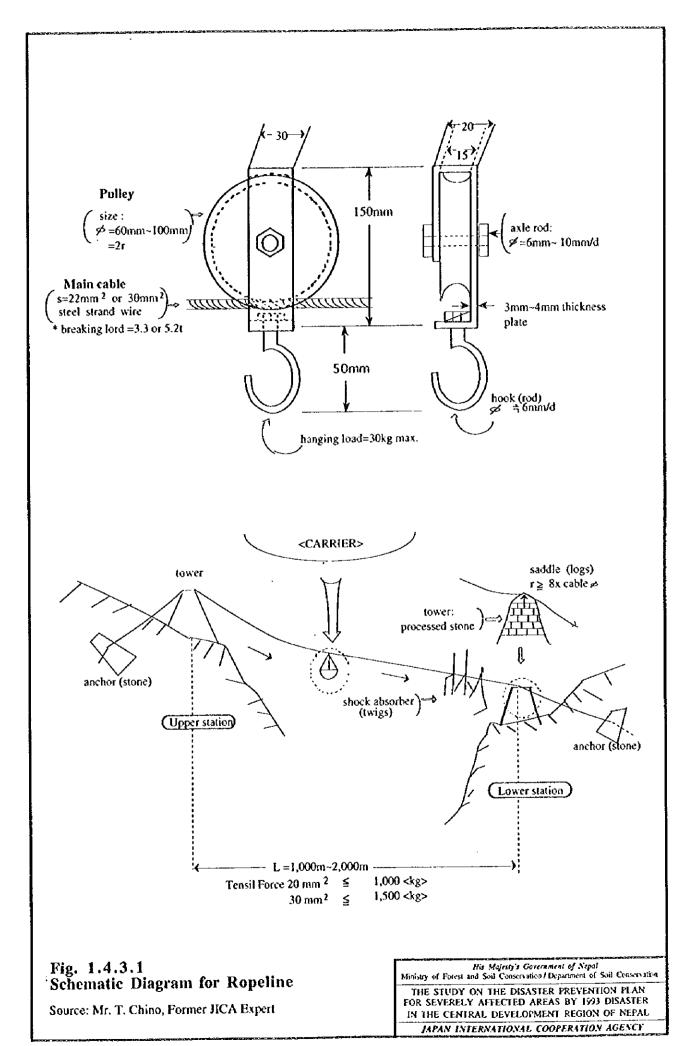

Fig. 1.3.6 General Design of Retaining Wall

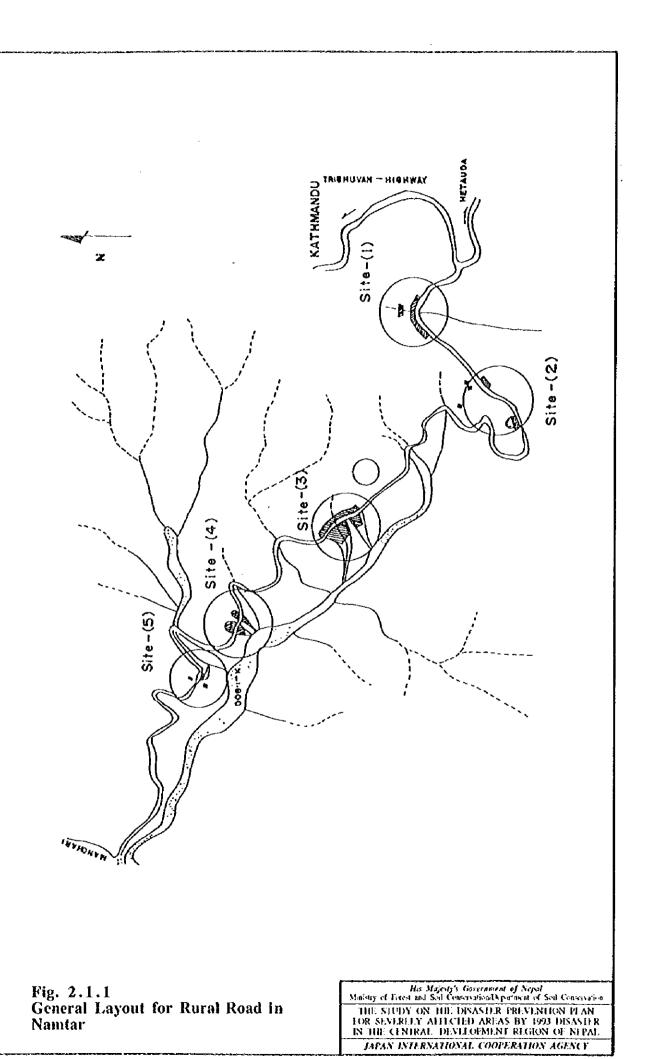
His Majesty's Government of Nepal Ministry of Firest and Soil Conservation/Department of Soil Conservation THE STUDY ON THE DISASTER PREVENTION PEAN FOR SEVERELY AFFICIED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JAPAN INTERNATIONAL COOPERATION AGENCY

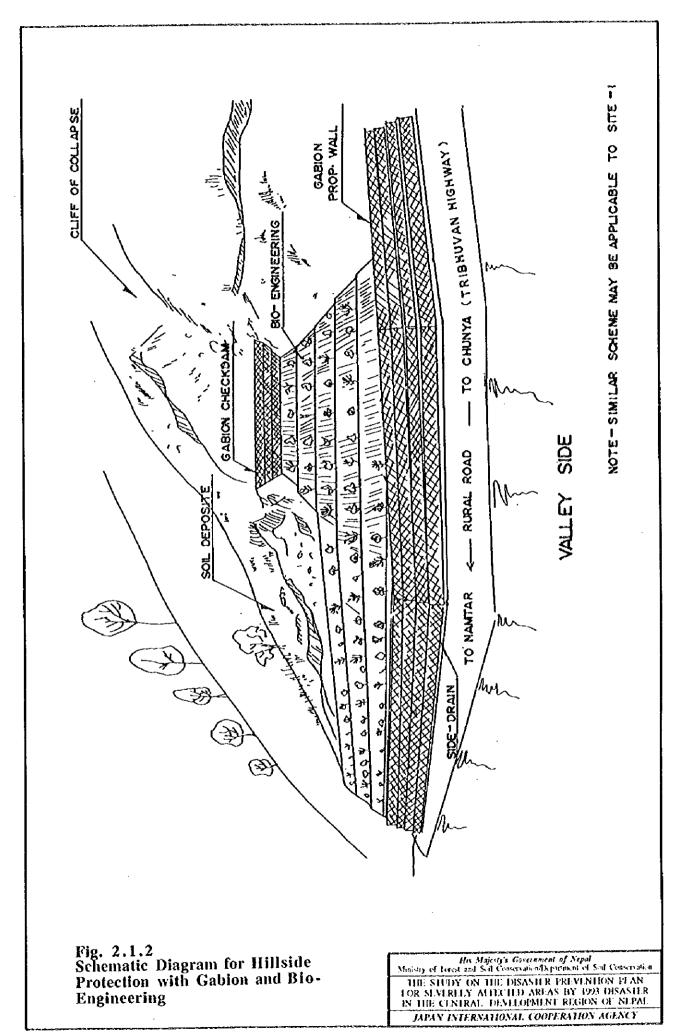




**Dimension of Diffrent Component of Various Sized Plants** 


Dimei	usion of r	mirem Co	viboucur o	i various	Sizea Pla	nts
			PLANT SIZE	E (m3)		
COMPONENTS	4	6	8	10	15	20
Α	140	150	170	180	248	264
В	120	120	130	125	125	176
С	135	151	170	183	205	233
D	50	60	65	68	84	86
Е	154	155	172	168	180	203
F	102	122	135	154	175	199
G	195	211	230	243	265	293
Н	86	92	105	94	115	115
1	112	116	127	124	132	137
}	151	160	175	171	193	203


Fig. 1.4.2.1 General Dimensions of Biogas Plant


Source: Construction Manual by Biogas Support Program (BSP), 1994

His Majesty's Government of Nepal Ministry of Forest and Soil Conservation/Department of Soil Conservation

THE STUDY ON THE DISASTER PREVENTION PLAN FOR SEVERELY AFFECTED AREAS BY 1993 DISASTER IN THE CENTRAL DEVELOPMENT REGION OF NEPAL JUPAN INTERNATIONAL COOPERATION AGENCY







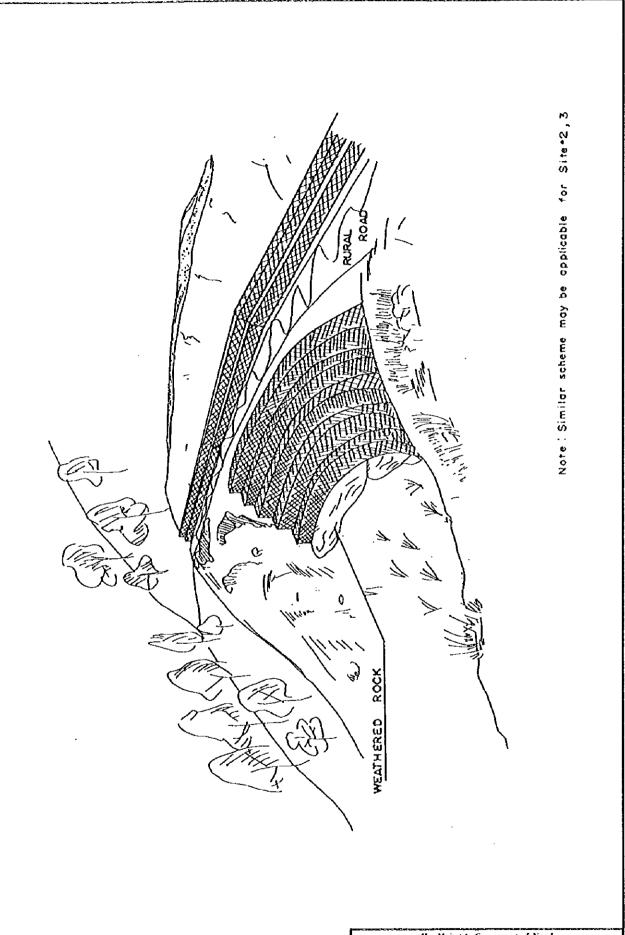
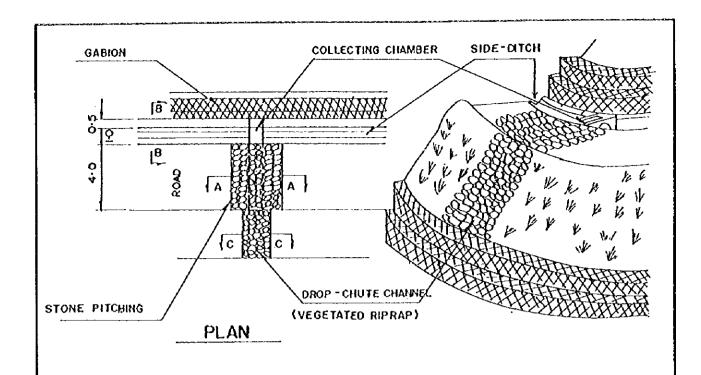
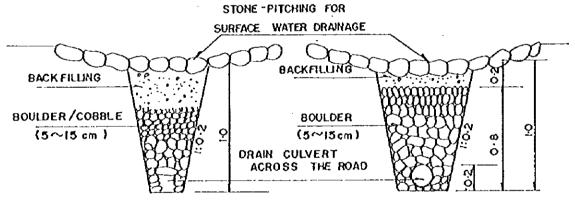
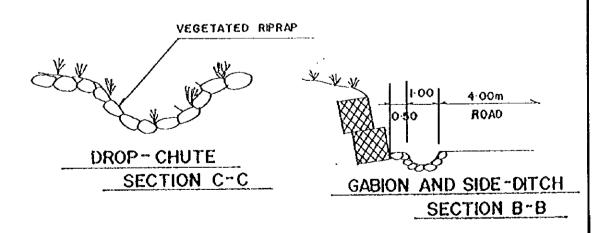





Fig. 2.1.3 Schematic Diagram for Valley Side Protection with Gabion

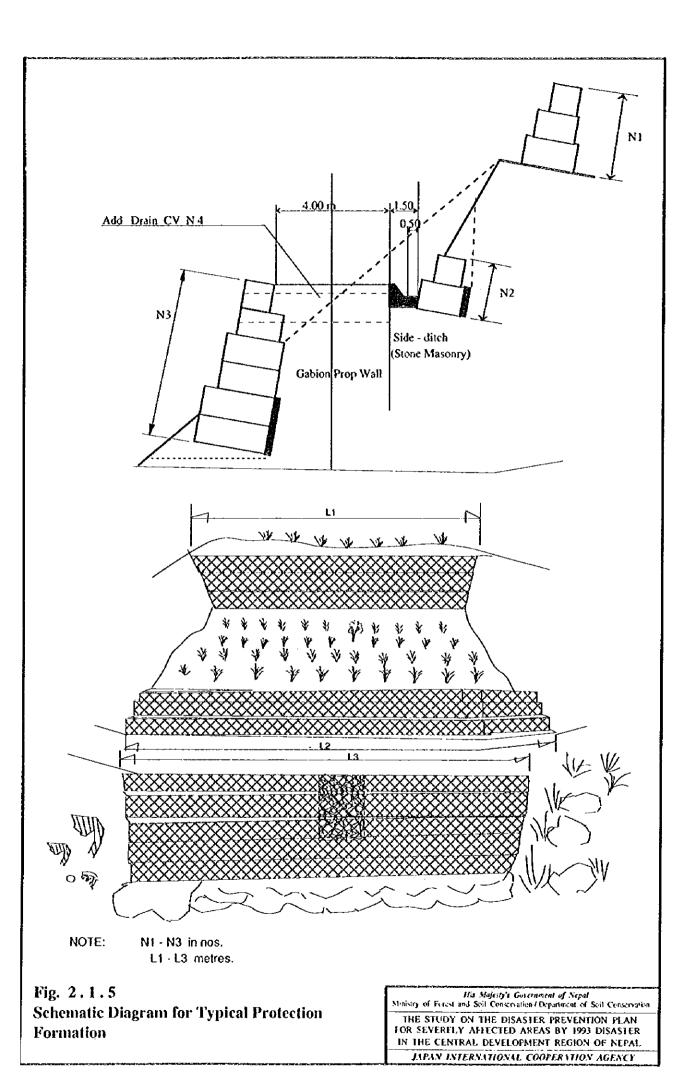
His Majesty's Gavernment of Nepal
Ministry of Lorest and Scal Conservation Department of Scal Conservation
THE STUDY ON THE DISASTER PREVENTION FLAN
TOR MEVERIES ATTICITED AREAS BY 1993 DISASTER
IN THE CENTRAL DEVELOPMENT REGION OF NEPAL
JAPAN INTERNATIONAL COOPERATION AGENCY





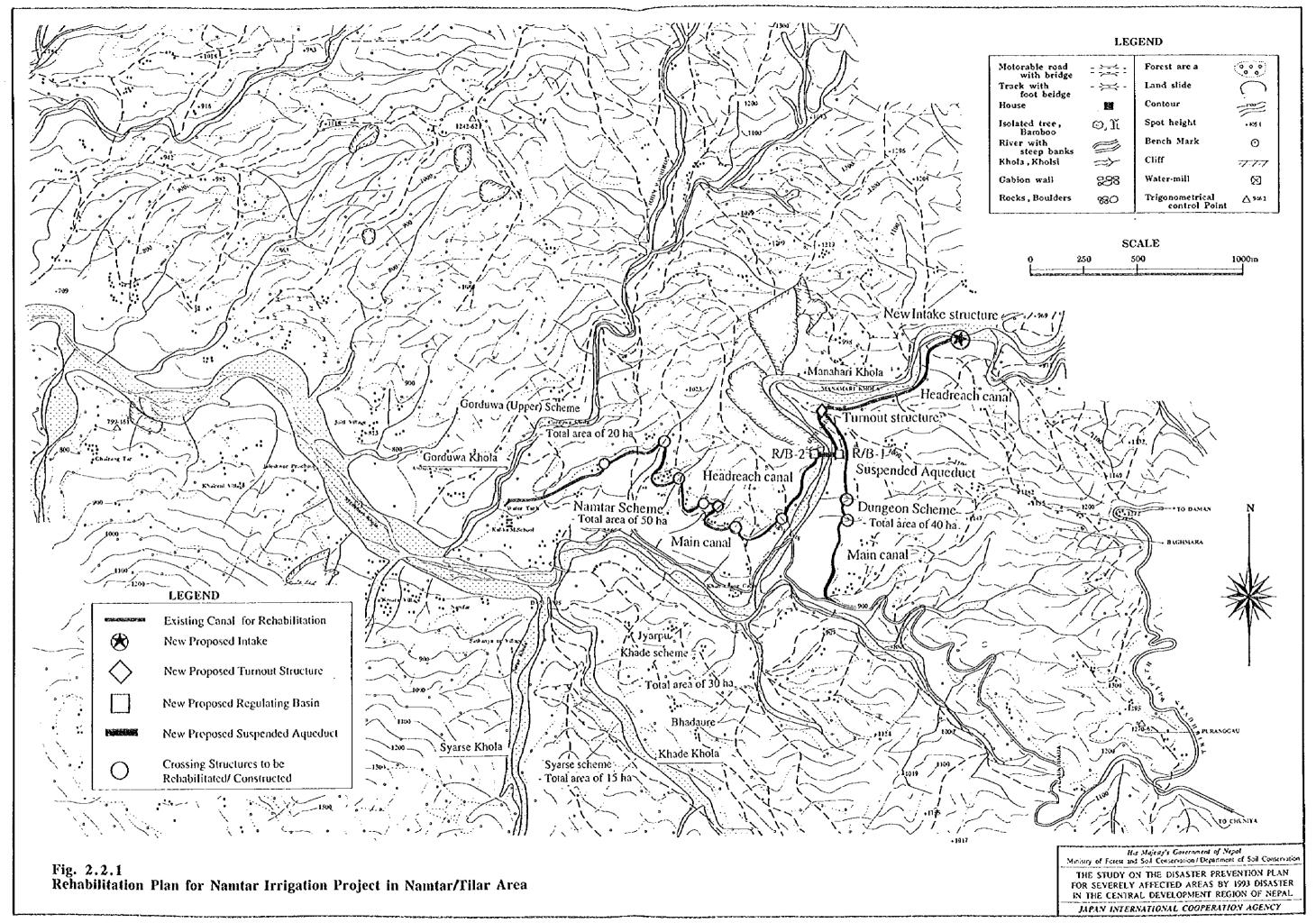

FRENCH (RUBBLE) DRAIN

DRAIN PIPE CULVERT

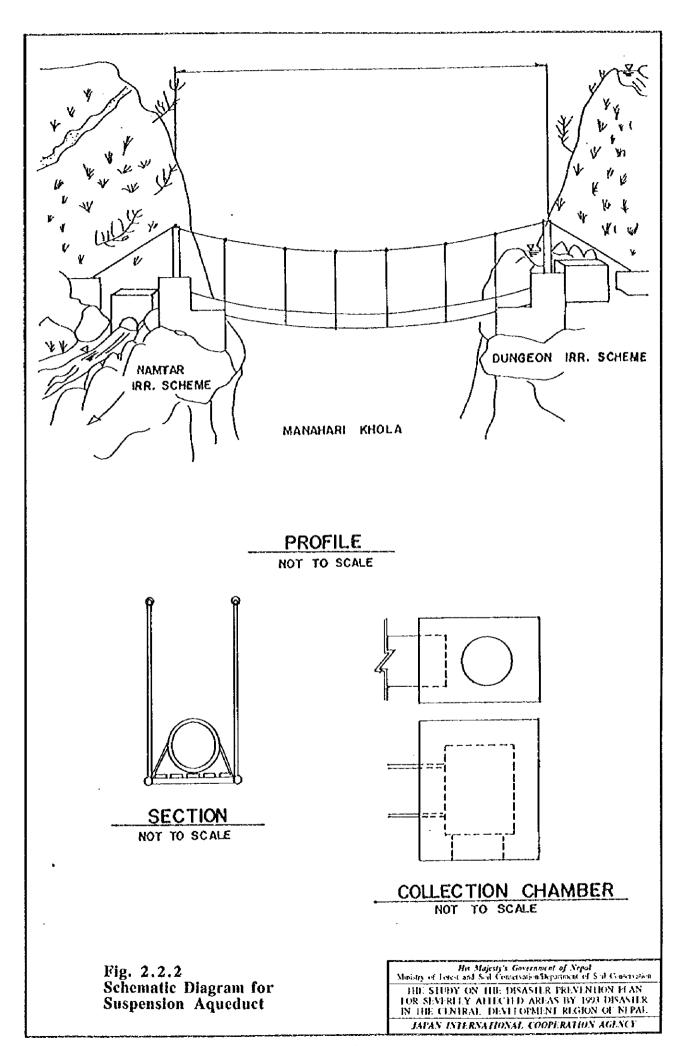

## SECTION A-A



NOTE: SCHEMATIC APPLICABLE TO ALL SITE ESPECIALLY Site-(4),(5)


Fig. 2.1.4 Schematic Diagram for Road Surface Drainage System

His Majesty's Government of Nepal
Ministy of Essel and Soil ConstraintinDepartment of Soil ConstraintinDepartment of Soil Constraintin
THE STUDY ON THE DISASTER PREVENTION FLAN
FOR SEMERITY ATTECHED AREAS BY 1993 DISASTER
IN THE CENTRAL DEVILOPMENT REGION OF NEPAL
JAPAN INTERNATIONAL COOPERATION AGENCY




A9 - 142







