2.3 Amounte of Conservable Water by Industry

T)

 (\mathbf{I})

Table 2.6 shows the amount of water that can be conserved and the conservation ratio for the above 20 factories divided by type of business. The following can be seen from the Table.

(1) The highest conservation ratio is in the chemical industry followed by machinery and metal processing. Both of these businesses have a high consumption ratio of cooling water. Furthermore, the reason for the high conservation ratio is that recirculation of this water is not being fully carried out.

As mentioned in 2.1, the ratio of the cost of water and wastewater for machinery and metal processing to the shipment price of products is extremely high compared to that of the same industry of Japan. However, this ratio can be reduced by promoting the water conservation.

② The conservation ratio of the textile industry is close to 20%. This is because the reclamation of wastewater, which has many technical and economic problems, is included. If this was excluded, the conservation ratio would come down to the same level as that of the food business, i.e., 12.5%.

A large volume of washing water is used in the textile industry in order to maintain the quality of products at a high level. Since the conservation of that water is difficult, the conservation ratio is low.

The ratio of the cost of water and wastewater of this type of business to the shipment price of products is quite high. However, because the quantity of water that can be conserved is small, one of the only ways this ratio can be lowered is to promote the reclamation of wastewater, a measure which involves many technical and economical problems. An alternative is to increase the shipment price, that is, to make the product a high value added product.

③ The conservation ratio of the food business, 12.5%, is the lowest among all the types of businesses. The reasons of this low level are that a large quantity of cleaning water is necessary in order to maintain the sanitary state of food at a good level, and it is difficult to conserve that water.

The effect in the event of a future rise in fees is as described in 2.2. Viewed by type of business, an increase in the conservable water volume can be expected through the reclamation of wastewater.

Table 2.6

Expected Water Conservation for Industries

Unit of Water Volume;m³/day

Industry	Machine &	Food	Textile	Furniture	Total
	Metal			& Chemical	
	Processing			Industry	
No. of Factories	6	6	5	3	20
City Water	1,495	1,094	1,092	488	4,169
Well Water		426	4,265	298	4,989
River Water	103		1, 985	312	2,400
Total	1,598	1,520	7.342	1.098	11, 558
Conserv.Volume	411	190	1,421	333	2,355
Conserv.Rate %	25.7	12.5	19.4	30.3	20.4
Note	There are	Change of	1.Control of	There are	
	many casés	bottle wa-	dyeing water	many cases	
	of once	shers is	is in-	of once	
	through	required.	sufficient	through	
	use of		2. Including	use of	
:	cooling 👘		reclamation	cooling	•
	water.		of dyeing	water.	•
			waste water		

2.4 Total Amount of Conservable Water in All Industrial Water

Of the factories that did not become the subject of this survey, the main ones are the machinery and metal-processing factories, including the MPP Group (ex TAM). The volume of industrial water being used by these is estimated to be about 3,000m³/day. The conservation ratio that is possible in this type of business is about 25%, as shown in Table 2.6. Thus, a total quantity of about 750m³/day can be conservable in these factories.

The total of this estimated quantity for the 20 factories and the potentially conservable amount of about 2,355m³/day (Table 2.6), that is, about 3,100m³/day, is the estimated volume of industrial water that can be conservable.

6

G

3. WWTP Project

Background

A schematic survey of the WWTP project was made for the following reasons.

(1) As the ratio of factory wastewater to the total volume of inflow wastewater is high, the volume of flow of factory wastewater and the pollutant load (COD_{cr}, BOD, SS, etc.) has to be grasped as accurately as possible when drawing up the plan of the WWTP project. This time, the JICA study team studied 20 factories whose combined wastewater volume was believed to make up more than 80% of the total factory wastewater. Based on that data, the study team will comment on any point that warranted comment in the WWTP project planned by Maribor City.

(2) We carried out a survey on measures to be taken on textile/dyeing factory wastewater which contains a great amount of difficult-to-decompose COD_{cr}, because its share of this wastewater is high.

3.1 Outline of Project

A proposal was submitted on WWTP construction to various enterprises in 1995 and it is now being studied by Maribor City. The outline of the proposal is as follows.

(1) Inlet conditions

٢

I

Wastewater volume:	36,600m³/d	
COD:	691mg/L	25,517kg/d
BOD:	311mg/L	11,400kg/d
SS:	342mg/L	12,517kg/d
T-P:	15mg/L	550kg/d
T-N:	47mg/L	1,730kg/d

(2) Treated water conditions

5

COD mg/L - 100 100 BOD mg/L - 20 20 SS mg/L - 35 35 T-P mg/L - 2 2 T-N mg/L - 10 10 (3) Population increase rate - 10 (3) Population increase rate - 10 (4) Sewer pipe laying rate - 10 1996 78% - 1997 81% - 1998 83% - 1999 85% - 2000 89% - 2001 91% - 2003 95% -		Phase 1	Phase 2	Phase 3 & 4	
SS mg/L 35 35 T-P mg/L. 2 T-N mg/L 10 (3) Population increase rate 10 (3) Population increase rate 10 (4) Sewer pipe laying rate 78% 1996 78% 1997 81% 1998 83% 1999 85% 2000 91% 2001 91% 2002 93% 2003 95%	COD mg/L	•	100	100	
T-P mg/L. 2 T-N mg/L 10 (3) Population increase rate 10 (3) Population increase rate 0.25% 1996 to 2000 0.5% (4) Sewer pipe laying rate 78% 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	BOD mg/L	-	20	20	
T-N mg/L 10 (3) Population increase rate 1996 to 2000 0.25% 1996 to 2020 0.5% (4) Sewer pipe laying rate 78% 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	SS mg/L	•	35	35	
(3) Population increase rate 1996 to 2000 0.25% 2000 to 2020 0.5% (4) Sewer pipe laying rate 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2003 95%	T-P mg/L.			2	
1996 to 2000 0.25% 2000 to 2020 0.5% (4) Sewer pipe laying rate 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	T-N mg/L	•		- 10	
2000 to 2020 0.5% (4) Sewer pipe laying rate 78% 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	(3) Population increase r	ate			
(4) Sewer pipe laying rate 1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	1996 to 2000	0.25%			
1996 78% 1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	2000 to 2020	0.5%			
1997 81% 1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	(4) Sewer pipe laying rate	e .			
1998 83% 1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	1996	78%	-		
1999 85% 2000 89% 2001 91% 2002 93% 2003 95%	1997	81%			
2000 89% 2001 91% 2002 93% 2003 95%	1998	83%			
2001 91% 2002 93% 2003 95%	·· 1999	85%			
2002 93% 2003 95%	2000	89%			
2003 95%	2001	91%			
	2002	93%	· .		:
2004 to 2020 95%	2003	95%			
	2004 to 2020	95%		•	

IV−43

(5) Rate of increase of industrial water consumption

1996 to 1997	0%
1999 to 2000	2%
2001 to 2020	1%

(6) Rate of collection of fees from households for use of sewers

64

1996 to 2000	80%
2001	83%
2002	86%
2003	89%
2004	92%
2005 to 2020	95%

(7) Construction schedule

Phase 1	2000	
Phase 2	2002	
Phase 3 & 4	2004	

3.2 Study of Fee System

3.2.1 Fee System and Pretreatment for Reducing Pollutant Load

The total system for Maribor City's entire wastewater can be divided into the WWTP and factories. Therefore, if Maribor City's entire total system was to be optimized using some sort of evaluation function, detailed data of both the factories and WWTP are necessary. However, as the WWTP is in the bidding stage and there is no detailed data, studies on optimizing the total system cannot be made. We therefore decided to investigate what sort of effect various fee systems would have on the actions of the factories and to submit the results as material for evaluating what sort of fee system would be best for Maribor City to adopt in the future. In other words, the process of judging whether or not the pretreatment of the factory would ultimately be appropriate and, based on that result, the preparation of a proposal for the optimum pretreatment system, will have to be done in accordance with the steps shown in the flow chart of Fig.3.2.1(1). However, in the study made in this section, of those steps, we carry out the simulation of the setup of the WWTP fee-calculation formula and the pretreatment.

The effect of a fee system on factories is indicated by judging whether or not it would be advantageous, under the specified fee system, for factories to lower the WWTP discharge fee by pretreating their wastewater at their own cost. For this purpose, as a tentative plan, we studied setting up a trial fee system based on information of the actual state of affairs prevailing in Maribor City and Japan. We then studied what sort of actions (pretreatment) each factory could be expected to take when that fee system was applied. Also, based on those results, we obtained information such as the number of factories that would carry out pretreatment, the total investment amount, and the amount of pollutant load that would be reduced.

We used the data (Table 1.2.2) on pretreatment for reducing pollutant load in Part II as the pretreatment process to be used by each factory, and as the cost of construction of the equipment (investment amount), treatment costs, etc.

At present, in Maribor City, the sewage fee for factory wastewater after construction of the WWTP is tentatively set at an average of 160 SIT/m³. This is because it is the current outlook of Maribor City that the management and operation of the WWTP is possible with an average sewage fee of 160 SIT/m³. It is also said that a pollution index for wastewater will be established and that a fee system increasing in proportion to that index is scheduled to be adopted. In other words, if the fee is Y and the pollution index is X, it can be expressed by the following equation.

 $Y = A \cdot X$ (where A is a constant and the gradient of the pollutant index)

In this report, we generalized the above equation even further and employed the following equation.

 $Y = A \cdot X + B$ (where B is a constant and the basic fee)

If the wastewater flowing into the WWTP is to meet the inflow standard, it is logical for the pollutant index X to consist of pollutant compositions that the WWTP can treat; that is, COD, BOD, and SS (phosphor and nitrogen that is be treated in the second phase are omitted). In this report, we established the pollutant index by the following equation. This type of equation was adopted because COD is usually a bigger figure than BOD and SS, and because the pollutant index now being considered by Maribor City places a weight on BOD that is double that of COD.

 $X = (COD + 2 \cdot BOD + 2 \cdot SS)/5$

We estimated, by computer calculations, the actions that would be taken by factories against various fee systems under the above sort of conditions. The result was that we made it a condition that the sewage fee after pretreatment should become 160 SIT/m³ by weighted average of the 20 factories that were studied. Of course, the above conditions, for example, the average fee of 160 SIT/m³ or the pollutant index factors, can be changed. The flowchart of the program is shown if in Fig.3.2.1(2), but the actual calculations are shown in the program itself (attached).

1) Establishing of cases

 $\langle \mathbf{I} \rangle$

As the following paragraph demonstrates, various approaches can be taken in deciding on the sewage fee system. In this report, we use a system which charges a high fee for wastewater with a high pollutant index. As mentioned before, this is done to urge factories that generate wastewater with high pollutant loads to make efforts to improve the quality of their wastewater. Also, since the fee for domestic effluent is assumed to be a uniform 80 SIT/m³, we studied a fee system for factory wastewater that would be in balance with that domestic effluent fee, as follows. Whenever the factory wastewater fee by the tentative fee system becomes less than 80 SIT/m³, it will be made a uniform 80 SIT/m³, and whenever the fee is higher than that, it will be charged at the calculated figure. In addition, we also studied plans for establishing tentative controls on COD, BOD and SS, in the event that a policy for actively reducing the pollutant load to the WWTP was to be taken, because the implementation of such controls was regarded as the most effective means of reducing pollution load. To sum up the above, the cases were set as follows.

Case 1: System for determining the sewage fee for each factory by the equation

 $Y = A \cdot X + B$

Case 2: The sewage fee would be determined by the same method as above,

but there would also be a minimum fee of 80 SIT/m³.

Case 3: Control figures would be set for COD, BOD, and SS, and the sewage fee would be determined by the equation $Y = A \cdot X + B$

2) Results of studies

The fee-computing equation was as per the following, and a total of 96 calculations were respectively made and studied for each case.

Fee computing equation	$\mathbf{Y} = \mathbf{A} \cdot \mathbf{X} + \mathbf{B}$, where,
	$X = (COD + 2 \cdot BOD + 2 \cdot SS)/5$
	$\mathbf{A} = 0.3$ to 1.0 (in increments of 0.1)
	B = 0 to 110 (in increments of 10)

With regard to Case 1 and Case 2, we checked the economical viability of the pretreatment (that is, whether or not the reduction of sewage fees as a result of pretreatment would exceed the pretreatment cost) of each factory against each computing equation. When doing this, if there was a plural number of pretreatment proposals for one factory, we made it a point to select the proposal which provided the largest sewage fee saving. However, the program has been set up so that the proposal which provides the lowest investment can also be selected.

Note that of variables A and B, variable A is the deciding factor that governs the economical viability of the pretreatment of each factory, and variable B is the factor that decides the sewage fee level.

(1) Results of studies of case 1

Ninety-six calculations were studied for Case 1. We extracted the cases for each gradient (A) where the calculation formulas resulted in average sewage fees of about 160 SIT/m³ as a result of each factory carrying out pretreatment that was economically practical (shown in Tables 3.2.1(1) and (2)). In these tables, we indicate the actions the factories could be expected to take when the respective calculation formulas were applied, their effects, and the resultant sewage fees.

Table 3.2.1(1)	Factories f	for Which	Pretreatment i	is Econon	nically Practical
----------------	--------------------	-----------	-----------------------	-----------	-------------------

	Calculation Formula	Factories for whi Economically Prac		Total Investment Amount(1,000 SIT)
		No. of Factories	Names of Factories	
Case-la	0. 3X+100	3	М-6, 7, А-5	1, 38, 300
Casè-1b	0. 4X+ 90	4	M-4, 6, 7, A-5	195, 260
Case-Ic	0. 5X+ 70	4	X-4, 6, 7, A-5	195, 260
Case-1d	0.6X+ 50	4	X-4, 6, 7, A-5	195, 260
Case-le	0. 7X+ 30	4	K-4, 6, 7, A-5	195, 260
Case-If	0. 8X+ 30	5	K-1, 4, 6, 7, A-5	238, 460
Case-1g	0.9X+ 10	5	X-1, 4, 6, 7, X-5	238, 460
Case-1h	1. 0X	6	M-1, 4, 5, 6, 7, A-5	263, 090

	Pollutar	it Load Redu (kg/d)	ction	Treatment Cost Original Unit		rage Fei (\$1∕∎³)	23
	COD	BOD	SS	See Note	Kax.	Ave.	Xin.
Case-la	1, 258	695	579	182	241	162	102
Case-1b	1, 963	944	548	197	246	164	93
Case-1c	1, 963	944	548	197	265	162	74
Case-1d	1,963	944	548	197	284	160	54
Case-le	1, 963	944	548	197	303	159	35
Case-lf	2, 413	1, 244	458	205	342	163	36
Case-1g	2, 413	1, 244	458	205	381	160	17
Case-1h	2, 461	1, 281	450	222	260	164	7

Table 3.2.1(2) Effect of Pretreatment and Resultant Sewage Fees

Note: Total Investment Amount (1,000 SIT)/Pollutant Load Reduction Index {(COD+2BOD+2SS)kg/d/5]

Figure 3.2.2 shows a graph of the relationship between total investment and pollutant load reduction based on the above tables. The effectiveness of reduction versus investment amount is low for SS and high for COD, but the tendency is for a leveling off from around 240 million SIT.

In the above eight calculation formulas, when the gradient (A) is gradual, there is the demerit that the number of factories for which pretreatment is economically practical is small. When the gradient (A) is steep, the number of factories for which pretreatment is economically practical increases, but there is the demerit that the minimum sewage fee becomes too small. Therefore, Cases 1b, 1c, 1d, and le are believed to be appropriate. However, the case believed to be the most representative with the lowest gradient (A) (so the sewage fee before pretreatment does not become excessive) and the most appropriate minimum sewage fee is Case 1b.

(2) Results of studies of case 2

 (\mathbf{I})

Case 2 covers those cases in Case 1 in which factories with sewage fees of less than 80 SlT/m³ appear but are calculated as being 80 SlT/m³. The calculation formulas that apply to this were the five that are shown in the Tables 3.2.2(1) and (2) below. In these tables, we show the actions that the factory could be expected to take when the respective calculation formulas were applied, their effects, and the resultant sewage fees.

Table	3.2.2(1)	Factories for	Which	Pretreatment	is	Economically	Practical

•	Calculation Formula	Factories for whi Economically Prac	Total Investment Amount(1,000 SIT)	
		No. of Factories	Names of Factories	
Case-2a	0. 5X+ 70	4	N-4, 6, 7, A-5	195, 260
Case-2b	0.6X+ 50	4	N-4, 6, 7, A-5	195, 260
Case-2¢	0.7X+ 30	4	K-4, 6, 7, A-5	195, 260
Case-2d	0. 8X+ 20	5	X-1, 4, 6, 7, A-5	238, 460
Čase-2e	0. 9X	5	M-1, 4, 6, 7, A-5	238, 460

	Polluta	nt Load Redi (kg/d)	action	Treatment Cost Original Unit		rage Fee (S1/m³)	es
	600	BOD	SS	See Note	Max.	۸ve.	Xia.
Case-2a	1,963	944	548	197	265	162	80
Case-2b	1,963	944	548	197	284	163	80
Case-2c	1,963	944	548	197	303	164	80
Case-2d	2, 413	1, 244	457	205	332	160	80
Case-2e	2, 413	1, 244	457	205	351	160	80

 Table 3.2.2(2)
 Effect of Pretreatment and Resultant Sewage Fees

Note: Total Investment Amount (1,000 SIT)/Pollutant Load Reduction Index [(COD+2B0D+2SS)kg/d/5]

In the above, Cases 2d and 2e have the higher pollutant load reductions. Of these, Case 2d has the more gradual gradient, so we will consider it as representative of Case 2.

(3) Results of studies of case 3

We studied Case 3 by assuming that control figures of $COD \leq 600$, $BOD \leq 300$ and $SS \leq 300$ would be set. These control figures are in accordance with the standard figures of the Sewerage Law of Japan. Also, they are values that somewhat exceed the water quality levels of the current sewage of Maribor City and are believed to be appropriate levels when imposing controls.

Of the 20 factories that were the subject of the current survey, there are seven whose wastewater pollution concentration exceeds this standard. Of these seven factories, two (S-1 and S-3) had only very slight excess pollutant concentration, and were therefore omitted from the factories needing pretreatment. In this Case 3, since it is a condition that the factories act to meet the controls, they all become uniform and only their sewage fees vary by the calculation formula. Of these, the representative calculation formulas are shown in Tables 3.2.3.

Table 3.2.3(1) Factories for Which Pretreatment is Economically Practi	Table -	3.2.3(1)	Factories	for	Which	Pretreatment i	S 🤇	Economically	/ Pra	actic	al
--	---------	----------	-----------	-----	-------	----------------	-----	--------------	-------	-------	----

· .	Calculation Formula	Factories for thi Economically Prac	ch Pretreatment Is tical	Total Investment Asount(1,000 SIT)
····		No. of Factories	Names of Factories	
Case-3a	0. 3X+110	5	X-4, 5, 6, 7, A-5	219, 890
Case-3b	0. 5X+ 80	5	N-4.5.6.7.A-5	219, 890
Case-3c	0.6X+ 60	5	M-4, 5, 6, 7, A-5	219, 890

IV-48

	Pollutar	nt Load Red (kg/d)	uction	Treatment Cost Original Unit		rage Fe (SI/a³)	es
	COD	80D	SS	See Note	Max.	Ave.	Min.
Case-3a	2, 011	931	541	217	188	160	112
Case-3b	2, 011	931	541	217	210	163	84
Case-3c	2, 011	981	541	217	216	160	64

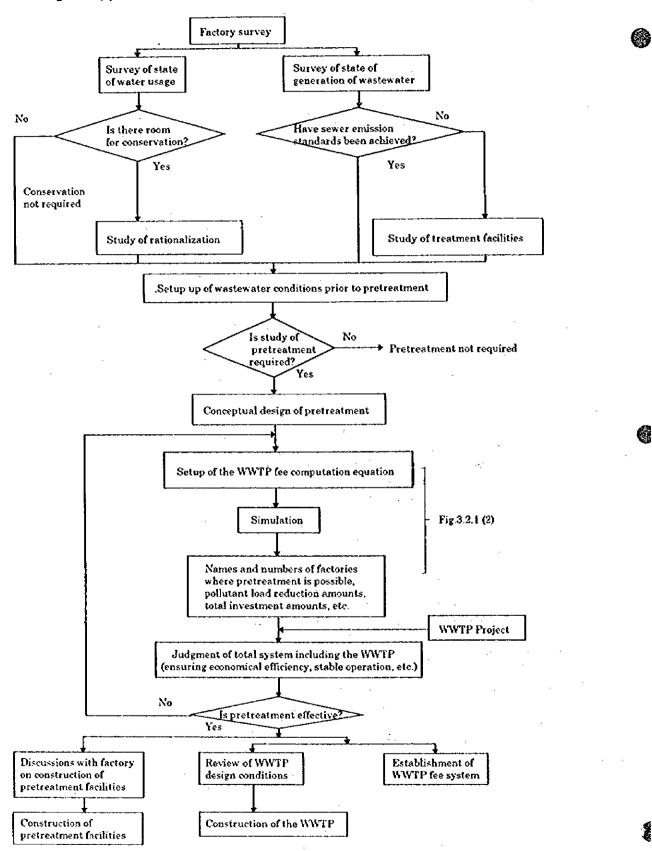
Table 3.2.3(2) Effect of Pretreatment and Resultant Sewage Fees

Note: Total Investment Amount (1,000 SiT)/Pollutant Load Reduction Index [(COD+2BOD+2SS)kg/d/5]

Of the above, Case-3b has a minimum sewage fee of about 80 SIT/m³, so we will consider it as representative of Case-3.

(3) Summary of results of studies

A comparison of the representative calculation formulas, Case-1b, Case-2d, and Case-3b, obtained from the above case studies is shown in Table 3.2.4. Also, the actions (pretreatment) taken by each factory for Case-1b, Case-2d, and Case-3b, respectively, are shown in Table 3.2.5, and the pollution load reduction and details of sewage fees are shown in Tables 3.2.6 and 3.2.7, respectively.

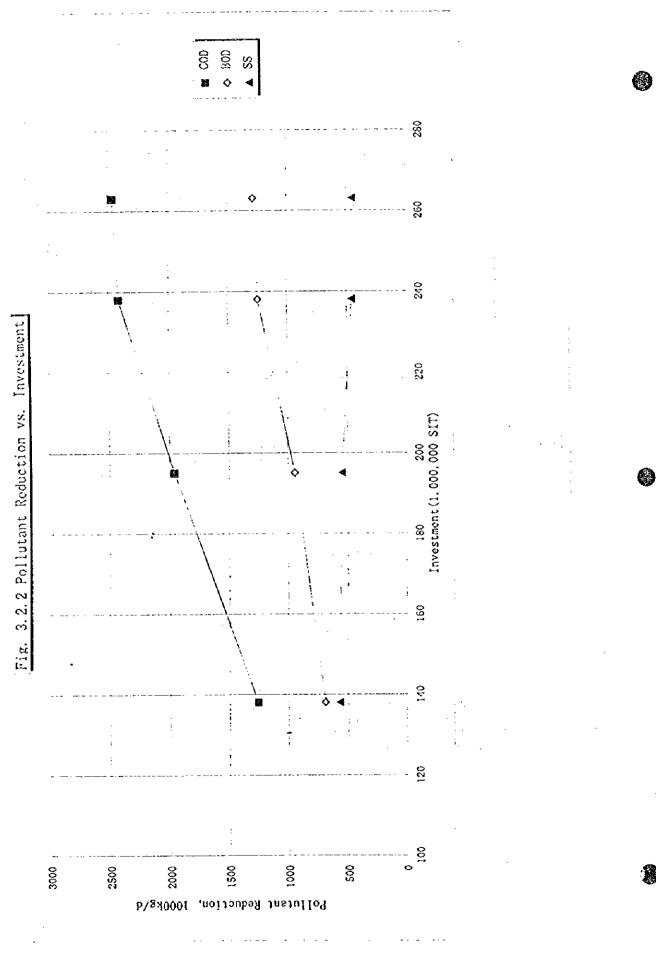

Of these, first, in the comparison of Case-1b and Case-2d, the latter has a big pretreatment promotion effect on the factories but has the demerit of having excessive sewage fees (especially before pretreatment). The maximum/minimum ratio of the sewage fees of the 20 factories before pretreatment is 5.7 times in Case-1b, but 11 times in Case-2d. In both cases, the fairness of the fee system will require explanation.

Case-3b does not differ too greatly from Cases-1b and Case-2d in terms of the effectiveness of pollution load reduction. This system promotes the active reduction of pollutant load and is being implemented in Japan.

3) Future issues

 (\mathbf{I})

Studies were carried out on the precondition of promoting the reduction of pollutant loads by factories through pretreatment of their wastewater. From these studies, we were able to clarify the types of pretreatment factories would adopt under different fee calculation systems, as well as the levels of pollutant load reduction that would result from different levels of investment. In order to judge the effect of these results on the total system, including the WWTP, studies must be made in accordance with the steps shown in the previously-mentioned Fig.3.2.1(1), on how much impact they would have on the reduction of the construction and running costs of the WWTP. Also, forecasts must be made of the increase on pollutant loads that could be brought about by the future industrial growth and changes in the industrial structure of Maribor City. Careful studies will have to be conducted to determine whether or not the fee systems resulting from our studies will be effective as advance measures.


Fig.3.2.1(1) Flow Chart for Studying Pretreatment and Water Conservation

Setting up of Fee **Calculation Formula** Factory wastewater data Sewage fee without pretreatment Pretreatment data Calculation of Sewage fee pretreatment cost after pretreatment Pretreatment cost + Sewage fee after pretreatment Is pretreatment No advantageous? Yes Loss, etc., Investment amount, pollution reduction, profit due to pretreatment, etc. due to pretreatment No ls this the last factory? Yes Is average No Delete sewage fee 160 SIT/m³2 Yes Names and number of factories to carry out pretreatment, total investment amount, amount of pollutant load reduction, investment efficiency, etc.

Fig.3.2.1 (2) Program Flowchart for Simulation of Pretreatment

 $\langle \mathbf{J} \rangle$

C.

₩-52

	Case-1	Case-2	Case-3
(1) Control figures	Not established	Not established	COD ≤ 600 800 ≤ 300 SS ≤ 300
(2) Niniaun fee	Not established	80 SIT/@ ³	Not established
(3) Representative case	Case-1b	Case-2d	Case-3b
Calculation formula	0.4X + 90	0.8X + 20	0.5 <u>X</u> + 70
No. of factories installing pretreatment facilities	4	5	5
Nos. of above factories	X-4, 6. 7, A-5	X-1, 4, 6, 7 A-5	N-4, 5, 6, 7 A-5
Total investment amount (1,000 SIT)	195, 260	238, 460	219, 890
Serage fee: Kax. (After pretreatment) Ave. (S17/m ³) Nin.	246 164 93	332 160 80	210 163 84
COD reduction (kg/d) BOD reduction (kg/d) SS reduction (Kg/d)	1, 963 944 548	2, 413 1, 244 458	2, 011 931 541
Treatment Cost Original Unit (1,000 SIT/kg/d) Total Investment Amount (SIT) Pollutant Load Reduction Index [(COD+280D+2SS)kg/d/5]	197	205	217
(4) Characteristics and Problem Points	The maximum serage fee before pretreatment is 530 SiT/m ³ and the ratio between maximum and minimum is 5.7 times. This is believed to be a relatively realistic system, but an explanation as to the fairness of the fee system is required.	As gradient (A) is steep, sevage fees become excessive. The maximum before pretreatment is 900 SIT/m ³ and the ratio between maximum and minimum is as large as 11 times. Explanation of the fairness is required.	This system promote factories to be self-responsible fo the active reductio of pollutant loads, and is being implemented in Japan.

Table 3.2.4	Summary of	Results	of S	Studies
-------------	------------	---------	------	---------

۲

3

•

6

.

.

.

.

Table 3.2.5 Feasibility Study Result for Pretreatment in Case-1b [Serage charge(SIT) = 0.4X190]

Bate Reducting Case Process Data Cost (scal. Cost) (real. Cost) (real	NO	Factor				t Equipmen			Sevage c	harge	Daily 8	xpease		Pretreat	ment	Sewage			Reducti			Reducti			eductio	
L1_NULA Cast - & ercobic 151, 620 143 151, 277 147 176 165 164 160 164 160 164 160 164 160 164 160 164 160 164 160 164 160 164 160 164 161 160 164 161		Name	Industry	Case	Process					after		alter	Balance	Feasible	Invest.			lefore	After	Reduct.	Before	After				
L-1. WILA Cext. IF Const. LS. 400 L47 L500 H34 L51 L72 L47 L70 Ko L500 H34 L53 L60 H4 L53 L60 H4 L53 L60 H4 L53 L60 H4 L53 L72 L33 L77 L33 L33 L77 L33 L33 L77 L33 L33 <thl33< th=""> L33 <thl33< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td>1000SIT</td><td>SIT/#3</td><td></td><td>SIT/#3</td><td>SIT/w3</td><td>1000511/0</td><td>1000SIT/</td><td>1000SIT/d</td><td>or not</td><td>SIT</td><td>#3/1</td><td>SIT/#3</td><td></td><td>kg/d</td><td>kg/d</td><td>kg/d</td><td>8.2/4</td><td>ks/d</td><td>kg/d</td><td>kg/d</td><td>kg/d</td></thl33<></thl33<>						1000SIT	SIT/#3		SIT/#3	SIT/w3	1000511/0	1000SIT/	1000SIT/d	or not	SIT	#3/1	SIT/#3		kg/d	kg/d	kg/d	8.2/4	ks/d	kg/d	kg/d	kg/d
Image: Sec: 3 Case: 3 Control Add Ad	X-1	<u>SYLLA</u>	Textile				147		184		277	447		No		1500	184	750	750	0	450	450	0	60	60	0
14 - 2 Akk155 Vertical Case - 1							103		184	138	277	362	85													1
Hate Cold Lisz Harco Harcolic Hi 203 35 30 35 30		· · · · · · · · · · · · · · · · · · ·							184	138	217	330	53													
4-3 RetAL Accil	<u>X-2</u>	MARLES	Furniture									52	17	No	-	2) 8	117	42	42	Q	18	18	0	<u> </u>	1	0
14-4 1/1004ARM2002 Case: 1 Ascenbric 39.300 117 515 215 152 19			l	Case-2	Haero.	44.000	174	293		93	35	80	45											.		
1-4 TYTOTARAX God Case - Inacchic 33, 300 117 515 215 152 132 43 34 111 127 14 34 34 34 111 127 132 135 215 152 111 111 14 14 155 152 152 152 155 152 155 15						`	-		93				0	Xo	-	372	93	1	7	0	3	3	0	0	0	0
KKS VIRAG Code Case 1 Percohic 24.3, 500 71 515 215 111 115 24 No 90 246 65 63 .0 .46 .06 .0 <td><u>X-4</u></td> <td>PEVOYARNA</td> <td>Food</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>215</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>X-4</u>	PEVOYARNA	Food						215								•									
KKS VIRAG Code Case 1 Percohic 24.3, 500 71 515 215 111 115 24 No 90 246 65 63 .0 .46 .06 .0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61</td> <td></td> <td>215</td> <td></td> <td></td> <td>1 10</td> <td></td> <td>Yes</td> <td>35.960</td> <td>515</td> <td>152</td> <td>458</td> <td>200</td> <td>252</td> <td>134</td> <td>38</td> <td>96</td> <td>39</td> <td>58</td> <td>- (9</td>							61		215			1 10		Yes	35.960	515	152	458	200	252	134	38	96	39	58	- (9
L+6, KOSAKI Pood Case-2 to k Fio 5, 000 100 530 233 121 145 67 335 337							71_		215		111		4													
L + C USAL Pood Case-2 Dot A Pio Solo 131 212 114 -338						24.630	226	90_	246		22	34	12	No	-	90	246	68	68	0	46	46	0	8		0
Case - A Str Cont, 0.3, 80,000 138 400 530 131 212 128 -84 Yes 80,000 300 131 200 500 600 400 40 320 400 12 35 K-7 K1EXEANA Code Case - 2 Coas - A Field 100 55 476 400 218 233 163 700 -0	<u> </u>	KOSAKI	rood					400	530	134		174	-38]												
k-7 VLETARNA Code Case 2 Cost A Fourthant 13 Cost A Cost A Fourthant	·							400	530	223	212	145	-67													[]
- Case 2 Cos 4 Field 19 000 55 476 490 278 233 163 70 Tes 40.000 476 154 1163 212 551 412 64 345 197 18 11 - Case 2 Sa Sed1 43.800 152 1200 172 136 200 172 136 200 172 180 730 6 180 130 6 41 44							188		530	131		128	-84	Yes	80.000	400	131	600	100	500	400	40	360	400	12	388
Case-3 Anacrobic 40,000 158 416 90 54 233 142 55 Yes 40,000 776 154 1163 212 951 412 67 345 197 18 17 S:1 Case-4 Social Case-4 Social Case-4 Social So	<u> </u>	<u>MLEKARNA</u>	rood					476	490	490		247	13			l										
Case-3 functorbic 40,000 158 476 490 154 233 149 35. Yes 40,000 476 154 1172 56 40,000 476 154 1172 56 40,000 476 154 1172 56 40,000 476 154 1172 56 40,000 476 154 157 162 151 1172 56 160 160 160 160 172 280 780			[278		163	-70													
S-1 KERINKA Castile Casc-1 Coa Sedi 140 152 1200 172 136 206 143 141 141 S-2 LARGR featile Casc-1 Coa Sedi 180 0 141 141 S-2 LARGR featile Casc-2 Coa Sedi 18,000 255 1200 107 128 143 211 140 130 0 141 141 S-3 Cast-1 Coa Sedi 18,000 255 1200 107 128 143 216 172 180 180 0 112 120 40 0300 141 413 122 120 117 120 40 050 0 40 1020 1020 0 40 400 00 40 400 40 40 400 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020							158	476	<u> </u>				-85	Yes	40.000	476	154	1163	212	951	412	67	345	197	18	179
S-2 RAROR Crass-1 Coa A Secial 50.000 255 1200 107 107 128 65 65 63 (Yes) (18000) (140) 107 120 40 (300) 30 10 (20) 36 12 (24) S-3 NTT fcase-1 Coa K Sedi 50.000 18 3000 194 192 582 fc23 47 No 200 1020 0 420 40 0 8 8 S-4 ISP ccase-1 Coa K Sedi 10.000 \$55 200 160 128 32 67 34 No 200 160 40 0 8 8 S-5 KETALNA Cease-1 Coa & Scoti 10.000 55 200 160 144 26 13 32 61 30 0 44 40 0 7 7 7 63 130 10 100 13 100 100 100 100 100 100 100 100							106	476	490	254		172	-62													
		MERINKA							112	136		345	139	<u>No</u>		200	172	780	780	0	180	180	0	11		0
S-3 VIT fcztlie Case-1 Coa Sedi 50.000 18 3000 194 192 582 7629 47 No 3000 194 1020 0 420 420 0 1920 1020 0 420 420 0 1920 1020 1020 1020 1020 0 420 420 0 1020 1020 0 420 420 0 1020 1020 1020 0 420 420 0 1020 1020 0 420 420 0 1020	5-2	TABUR	fextile						107							···· ···- ····										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1200	107			65	-63	(Yes)	(18000)			120		(80)			(20)			(21)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.3											629	47	<u>No</u>		3000	194	1020		0		420		1050		0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5-1	ISP	fextile					200	160	128	32	67		<u> </u>		200	160	80	80	0	40	40				0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ļ, - <u></u>									<u> 41</u>		{									- · · · · - <u>-</u> ·	· · · · · · · · · · · ·		
$ \frac{S-7}{11} \frac{ N ES}{Nod} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} 1$									117		26	17	21	<u> </u>				32	32	<u> </u>			0	.. 7		Q
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Vase-i	Anaerobic	12.000	140				26	19	6		·						49		9.			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							·····	126			16		0	No.				27	27		10	<u> </u>	0	8		Q
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														<u> </u>			99	16	16	·9	ļ	6	0		21	⁰ .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						10 000		<u> </u>		<u> </u>	13	13				130	101		1	<u>V</u> -	[! -		1	····-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Lasc-I	Loagu.	10.000	01					1	1		·	109		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u> </u>	0	<u>-</u>			2	·2	
A-6 STATYChemical149116117170No-14911619190770				Case-1		20 200									-00-000	155.					- : à c o	·····	· · ·	3		
$\frac{101a1}{101a1}$ Note: S-2(TABOR) and S-G(SLOSAD) arc not included in the simulation. Pretreatment for SLOSAD is not feasible because of short period(1-2K/Yr) for high concentration effluent. $\frac{101a1}{105.260}$ $\frac{10.213}{105.260}$ $\frac{10.213}{105.260}$ $\frac{164}{246}$ $\frac{164}{34}$ $\frac{105}{34}$ $\frac{102}{34}$ $\frac{102}{34}$ $\frac{102}{34}$				Lase-1	Anacio	33.300		<u> </u>							24.340	1 231						<u>!</u>	1 <u>13</u> .		1	1
Note: S-2(TABOR) and S-6(SLOSAD) are not included in the simulation. Pretreatment for SLOSAD is not feasible because of short period(1-2%/Yr) for high concentration effluent.		<u></u>	Gittar		<u>-</u>			<u>149</u> _	<u>170</u> _		. !. [[]	1	-			149	110	<u>13</u> _	<u>13</u> .	<u></u>		<u>(</u>	<u>9</u>	f.	ť	· · · · · · · · · ·
Note: S-2(TABOR) and S-6(SLOSAD) are not included in the simulation. Pretreatment for SLOSAD is not feasible because of short period(1-2%/Yr) for high concentration effluent.		Total					<u>_</u>				· [Total	195.260	10 213		5698	3655	1963	2487	1522	944	2005	1433	548
Note: S-2(TABOR) and S-G(SLOSAD) are not included in the simulation. Pretreatment for SLOSAD is not feasible because of short period(1-2K/Yr) for high concentration effluent. $\frac{Nax}{Nax}$	•	•	,		•	L		r	·		J		- I		. <u></u>	19.019	164	. <u></u>					•			1
Pretreatment for SLOSAD is not feasible because of short period(1-2%/Yr) $\frac{\text{Xin.}}{\text{Rate(V)}} = \frac{93}{34}$			Note:	S-2(TABO)R) and S-G	(SLOSAD) a	re not inc	luded in	the signal	ation.				1 · · · · · · · · · · · · · · · · · · ·	*											
for high concentration effluent. $\boxed{Ratc(1)}$			/	Pretreat	lacat for S	LOSAD is n	ot feasibl	e because	of short	period()	1-2¥/Yr)			THE R. LEWIS CO., NAMES IN CO., NAMES INTERNO., NAMES IN CO., NAMES IN CO., NAMES IN CO., NAMES IN CO., NAMES INTERNO., NA												
Pretreatment for TABOR aims at vater conservation for dilution.														RateCV			* *-			34	[38			27
								onservati	on for di	lution.			-	1.0000000	L		1		L		ı .	1	1. 07	I	ł	L

.

-

•

a

Table 3.2.6	Feasibility Study Result for Pretreatment in Case-2d
	[Sevage charge(SIT) = $0.83+20$. Xin. 80 SIT/m3]

.

. . . .

NO	Factory	r I	P	retreatmen	t Equipaen	t		Sevage cl	harge	Paily E	xpease		Pretreat		Sewage	Charge	COD	Reducti	on		Reducti			eductio	
	Name	Industry	Case	Process	Const. Cost	freat. Cost	luantity	before	after	before	after	Balance	leasible	Invest.	Quant.	Charge	lefore	After	Reduct.	lefore	After	Reduct.	Refore	After	Reduct.
					1000SIT	SIT/m3	n3/d	SIT/m3	SIT/m3	1000S1T/d			or not	SIT		SIT/n3	kg/d					kg/d	kg/d		kg/d
X-L	SVILA	Textile	Case-1	Aerobic	154.400	147	1500	209	142	313	433	120													
		-	Case-2	CoakSedi.	55.000	103	1500	209	116	313	329	15				·]
			Case-3	Neutra.	43.200	82	1500	209	116	313	297	120 15 -16	Yes	43.200	1500	110	750	300	450	450	150	300	60	150	-90
X-2 >	NARLES	Purniture	Case-1	CoalSedi.	23.955	63	298	80	80	24	43	19	No	-	298	110 80	42	42	- 0	18	18	0	ĪĪ	11	0
			Case-2	ŧλero.	44.000	174	298	80	<u> </u>	24	76	52				1		:]
X-3 Y		letal	-	-	-	-	372	80	80	30	30	¥	Ko	-	372	80	1	7	0	3	.3	0	0	0	0
X-4	YOYARNA	rood	Case-1	Anaerobic	39.300	117	515	270	108	139	116	- 23													
			Case-2	lerobic	35.960	<u>61</u>	515	270	111	139	105	- 34	Yes	35.960	515	144	458	206	252	134	38	96	39	58	-19
			Case-3	Acrobic	13, 500	71	515	270	144	139	111									1		. .			
		lood	Case-1	Aerobic	24.630	226	90	332	142	30	33	3	No	-	90	332	68	68	0	46	46	0			01
<u> 1 - 6)</u>	KÓSAKI			Dil Sepa.	0	0	400	900	708	360	283	-77													
				Cqa & Flo	50.000	140	<u> </u>	900	286	360	170	- 190													
·				K Cont. Oxi	\$0.000	188	400	900	102	360	116	-244	Ĭcs	80.000	400	102	600	100	500	400	10	360	400	12	388
X-7)	ILEKARNA	ood		Neutra.	13.605	<u>28</u> 65	476	820	820	391	404	13													
				Coa & Flot	19.000		476	\$20	396	391	220	-171						····							
	·			Anaerobic	40.000	158	476	820	149	391	146	-245	Yes	10.000	476	149	1163	212	951	412	67	345	197	18	179
			- · · · · · · · · · · · · · · · · · · ·	Case2IAcro	36.000	106	476	820	349	391	217	-174	·												···· ··· .
				<u>Coa k Scdi</u>	143.800	152	1200	184	111	221	316	95	No		1200	184	780	780	<u> </u>	130	180	·	44	11	<u> </u>
5-2	TABOR			<u>Coa & Sedi</u>	50.000	265	1200	80	80	36	138	12									· ·· - · ··				
				Coa & Sedi	18.000	55	1200	80	80	96	51	-12	(Yes)	(18090)	(100)	80	120	40	(80)	30	10	(20)	36	12	(24)
<u> </u>				<u>Coa k Sedi</u>	50.000	18	3000	228	223	684	124	40	No No		3000	228	1020	1020	<u>0</u>	420	420	····· ··· ···	1020	1020	······
<u> </u>	1.51	a march a more a		Coa & Sedi	40.000	205	200	101	95	32	03	28	<u>No</u>		200	161	80	80	*	40	. 10	<u>V</u>	8	*	
	UNT II MI			<u>Coa & Sedi</u>	10.000	55	200	<u> </u>	138	32	39	<u>_</u>							<u>,</u> .	·····	· ·	· · · · · ·	,		
		letal Pood		<u>Coagulat.</u> Anacrobic	<u>24.000</u> 12.000	95	<u>222</u> 35	<u> </u>	<u>80</u> 668	18	39	21	No Ko		(35)	<u>80</u> (870)	32	32	!'-	49		<u>v</u> .		- -	
		Food	case-1	nilaeroore	16.000	110	120	102	102	<u> </u>	<u> </u>		1		126	102	27	21	<u>-</u>	10	10	·			
λ-1		Vetal					620	80	80	50	50		<u>No</u> No		620	80	10			3	<u> </u>	······	21		
	SVETILKE						130	80		10	10	~~»	Ko	I	130			<u> </u>			¥	<u>`</u>			
		letal	Case-1	Coagu.	10.000		109	80	<u>\$0</u>						103		18			ς-	··· -··	n			0
λ-1		letal				······································	155	80		12	16	<u>^</u>	<u>No</u>		155	<u>80</u> 80 80	7	····''i		'ř-	(··· ·· '	6		ă	i ni
1-1-5		Chemical	Case-1	Anacro.	39.300	50	651	330	196	215	100	-55		39.300	651	196	432	221	260	260	117	143	130	130	0
	STATY	Chemical	-	-	-		149	80	80	12	12	0	Yes No	-	149	80	19	19	0	1	1	Ó	1	1	0
							I <u></u>			ا ۴_		·	<u></u>		- <u></u> *	·	·····		⁻		· · · · · · · · ·	*-			
	fotal		_ -	1							·		Total	238.460	10.213		5698	3205	2413	2487	1222	1244	2005	1523	458
••							•		• <u> </u>		·	•	Average		·	100	···· [*] -								
		Note: 3	5-2(TABO	DR) and S-G	(SLOSAD) a	re not inc	luded in	the simul-	ation.				Nax.	[332	·								
		1	Pretreat	lwent for S	LOSAD is n	ot feasibl	e because	of short	period()	1-2X/Yr)			Xin.			- 80									
			for high	h concentra	tion efflu	ent.			-				Rate(1)						42	1		50			23

Pretreatment for TABOR aims at water conservation for dilution.

•

.

· · · ·

.

.

.

·

. .

· · ·

·

	y's Behavier and Sewage Charge with Regulation for COD, BOD, SS in Case-3
Ţ	Charge
	Expected Factory's Behavier and Sewage Charge with Regulation
8	Table 3.2.7

1101011		Quantity	Yasteva	water Q	n li Ly		Protroatmon	at Equipme	01	Condi Lic	Lions after	Preticitaco	Lacht	Sewage	charge(S	1T/s3)
Name Industry	dustry		con	uQi I	7	Koni i rođ	Process	Const. Cost	Frent, Cust	Quant i ty	gg	100%1	2	Cise-3a	Crise 3b	Cisc 3C
		#3/d	nk/L	ag/1,	ng/1.	1 =		1000817	Sir/a3	m3/d	ag/1.		V.M	5. 3X1110	0. 5X 80	0.6X160
	text i le	1500	500	300	90 20	Nci		-		1. 500	500		92	181	1.03	- '
MANLES Pure	urni turc	208	111	60	36			,		298		;- 9	36	1.30	=	100
ARMAL NC	clal	372	20	~	0					372	20	05	0	112	2	ē
YOVAKNAP Coxed	rd M	515	890	260	76	Cuse-2	Acrobic	35, 960	10	515	100	2	113	156	122	153
VINAG POCK	cxf.	90	750	510	96	Case-	Actubic	24.630	226		220	1001	172	156	156	152
N 6 KONANI POXA	ckl	100	1500	0001	1000	Cise-4	Conta. Oxi.	80,000	138	9 <u>0</u>	250	100	ŝ	E I	131	121
MLEXAKNA POXA	cxt	176	2443	998	414	Case-3	Anacorobi c	10.000	158	1	146	ΞE	38	158	160	150
	cxtile	1200	650	150	37	NCI NCI		; ·		1.200	650	150	37	171	182	18:
NIXOR TC:	l'extile	1200	100	25	30	NG.	•			1.200	1001	52 ⁻	30	123	101	<u>.</u>
2	cutile	3000	340	140	340	Nci	•			3.000	340	140	340	138	210	210
	l'extile	200 200	40	200	10	Nu	•	•		200	400	200	9	10	168	166
ا_	Vic ta I	222	146	62	32	Nc)	•		L	222	i i	50	33 32	130	11	ŏ
	,XXI	S	1300	1400	500	No	•	-	ŧ	(<u>3</u>	4.300	1.400	500	(200)	(063)	C1032)
INTES TO	licod	22	212		67	9N N	•			126	212	82	13	121	131	121
N N	[2]	(20	2 2 2		33	No	•			620	26	0	33	211		-
LXI: No LA	[u]	30	70	S	30	ΩN,	4	-		130	101	2		S11	32	
FRINT NC	Kcta 1	601	101	46	- 21	Ŵ	•	•		601	191	9	121	127	601	6
<u>اي</u> ا	Metal	S.1	47	S	18	NO	•	,		155	17	s,	18	911	68	12
	Chenicut	5	740	400	200	Case-1	Anacro.	39.300	50	651	340	180	200	176	130	132
NYATY CH	Chemicul	671	021	50	47	Nci	•	,		61	130	50	17	129	112	E.
Total		11448						219, 890		11413					•	-
Average														160	163	160
Nuk	ĺ													188	210	216
VIN.	-		-				_	_						•		-

0 N	. <u>e</u>	ic tony	COD Redu	ction		NOD Keep	uction		SS Redu	ction	
	Nanc	Industry	Refore "	After	Newfuelin	16 fore	After	Reduction	licture	Arter'	keduetien
			kg/d	ke/d	kg/d	kg/d	kg/d	kv/d	17X1	kr/d	kg/d
	SV11.A	Textile	750	750	<u> </u>	150	150	0	60	.09	'a
2-7 7	MARLIS	'urniture	42	12		18	01			=	0
с Х	ARXAL.	<u>Vctal</u>	7				'~ 	0	ļ	i E	0
7	P I YOVAIN	CKNJ	458	206	252	131	38	96	1		<u>6</u> -
-S -S	V I NAG	¹ COM	68	20	18	19	6	11	~	15	1
-	NOSAK 1	LKN .	600	001	: ;	100	40	i		• •	338
7	MLEXANNA	t'cod	1163	212	•	1.2	19				179
~	MI:RINKA	Textite	780	780	0	180	180				
2-2	ă	Textile	120	120	0	30			36	:	• •
S-3		fextile	1020	1020	0	120	120	0	1020	1020	
2-2	151	Textile	80	30	0	40			60	; - [Ċ
رد ۲۰	METALNA	Retail	32	32	0	Ξ	i	Ì	-	7	
10-S	(IVSO IX	icord	121	151		10	64	0	**		0
S-3	SHLN1)'oxi	27	27		121	<u>e</u>		8		• • •
÷	TY	Metal	91	16		9	2		21	3	
< - 2	SVIET I. VI	Melal	5	6	0			0	~		
	1.1 X X 1	Vela1	8	18		- - -	5	.0	2	2	. C
Υ-Υ	ELKO	Peter]	-							i	
۲-5	THANHIT.	Chemicul	182	221	260	260	111	133	20	130	. e : !
9 7	SXATY	Chemicul	<u></u>	61	0			0	-	-	
		Total	5849	3838	2011	2487	1506	186	2023	1483	-2
		kater(x)			22			26			56

•

-7

- - - -

Mole:(1) : required Pretreatment. (2)S-G(SLOSAD) is nut included in the study because of low quantity.

r

IV-- 5 9

3.2.2 Basic Thinking in Japan on Sewage Fee Calculations

According to the results of the fourth study, one of the systems that Maribor City is thinking of establishing is a WWTP fee system on the basis of the fee structure of the existing Domzale sewage-treatment plant. The fee structure of this sewagetreatment plant is a system in which the treatment fee is made higher as the degree of pollution of the wastewater increases. Also, COD/600+BOD/300 is included in a part of the pollution index to give BOD twice the weight of COD.

On the other hand, there was a request from Maribor City for an introduction of the Japanese system, so we would like to clarify its relation to the fee structures given in the previous section.

Summaries of the standard thinking in Japan regarding the fees for the use of the sewage system for factory wastewater are given below.

(1) Classification into normal wastewater and special wastewater

Effluent above a certain quantity that is discharged into sewers by factories and enterprises in the course of business activities is classified as special wastewater. The system charges a high fee for such effluent on the "polluter pays" principle. This system has been adopted by some municipalities. The standard for a certain quantity above which the effluent is classified as special wastewater is often 500 to 1,000m³/month.

(2) Basic fee and progressive fee

This system has a basic fee and a progressive fee jointly set up so that the unit fee rate becomes higher as the amount of use increases. This acts as an incentive to control demand. The degree of progression (maximum unit rate/basic unit rate) is often in the range of 1 to 3. Many municipalities have adopted this system. An example of its implementation is shown below.

Classification	Fee Rate		
Om ³ · 10m ³	Basic fee: 600 yen		
11 - 50	80 yen/m ³ *		
51 - 200	100 yen/m ^{3*}		
201 - 500	125 yen/m ^{3*}		
501 or more	150 yen/m ^{3*}		
	* Progressive fe		

(per one month)

(3) Water quality fee

This system tries to be fair to ordinary users by imposing fees in accordance with the degree of pollution of the effluent over a certain standard. It acts as an incentive to improve the wastewater quality. It is set together with a progressive fee as shown above. A water quality fee should be charged against items that can be treated by the sewage-treatment plant, and is usually applied to COD, BOD, and SS. There are two ways of setting the water quality fee rate. One is against each water quality item, and the other is to charge against each pollution concentration index as calculated from the total concentration of the various water quality items. Also, the water quality to be applied the fee should be that exceeds the concentration of ordinary household effluent. This means that usually the applicable effluent is one with BOD of 200 mg/L or more and with SS of 200 mg/L or more. This system is employed by several municipalities which have large amounts of factory effluent.

These points summarize the standard thinking on the calculation of sewage fees. Their combinations can be largely divided, as shown below. Specific examples are given in the Supplement.

- (1) Basic fee + progressive fee system:
 - Refer to 8.3 of Relative information ; Ariake Treatment Plant
- (2) Basic fee + progressive fee + water quality fee system:
 - Refer to 8.1 of Relative information ; Wakayama Treatment Plant
- (3) Basic fee + water quality fee system:

Refer to 8.2 of Relative information ; Kashima Treatment Plant

Of the above, system (1) has an incentive to reduce water volume, system (3) has an incentive to improve water quality, and system (2) has a combination of the two. The calculation formula proposed in 3.2.1 belongs to system (3). Note that in Japan, a sewage emission standard is stipulated by the Sewerage Law, which includes BOD and SS as items of control. In the standard, 300 mg/L is the limitation on BOD and SS concentrations, respectively, for manufacturers who have effluent volumes of $50m^3/day$ or more. However, since municipalities can set rules making this standard the lower limit, in actuality there are cases which permit COD_{Ma} and BOD levels up to 600mg/L and which BOD and SS levels are each 300mg/L. Therefore, naturally it is a precondition that there are controls on BOD and SS in the thinking on the calculation of usage fees mentioned above. Note that, as a rule, there are no restrictions on COD when the effluent of sewage-treatment plants is discharged into rivers.

3.3 Removal of Nitrogen and Phosphor

The standard for the discharge into rivers of factory effluent T-P is generally 2mg/L and, in the case of the textile industry, an extremely severe 1mg/L. Of the factories subjected to this survey, there were many whose effluent exceeded this standard. However, most exceeded the standard by single digit figures and only a small number exceeded it by double digits. The phosphor concentration of the entire wastewater of Maribor City is believed to be even lower than that.

Conceptual designs for discharge into rivers were prepared for the installation of pretreatment facilities for the removal of phosphor in each of the model factories that exceeded the emission standard. It is clear from the results that such installations will be extremely expensive. Therefore, it will more advisable for the treatment to be carried out collectively by the WWTP (the current WWTP plan includes a process for removing phosphor).

For the method of treatment, please refer to "1. Nitrogen-Phosphorus-Removal Technology," a supplement attached to Relative Information.

V. Recommendations

.

(],

V. Recommendations

躗

Ľ

In this Chapter, we submit our proposals to the Government and to the factories based on the results of the preceding chapters. The contents of our proposals are divided into (1) industrial wastewater and pretreatment, (2) water conservation, (3) the WWTP, and (4) measures that should be taken by government.

In industrial wastewater and pretreatment, first we advise the factories to grasp the actual state of their industrial wastewater. To do so, each factory we recommend the appointment of person exclusively for that purpose, the installation of flowmeters in the factory facilities, the simplification of wastewater sampling procedures, and the regular measurement of water quality and volume. We also point out a few technical issues that should be tackled by the factories in the future. In addition, we give advice on injurious substances that the WWTP should be careful about when in operation.

In water conservation, first we mention that water conservation not only reduces the amount of water consumed but also indirectly reduces the amount of pollution flowing into rivers, lowers the volume of pollution to be treated by the WWTP, and improves the operational situation of the factory. Next, as suggestions to the Government, we take up (1) technical and financial assistance to enterprises, and (2) the setting up of a WWTP fee structure that will not hinder improvements and upgrading by enterprises. In addition, as recommendations to enterprises, we advise that they should (1) accurately grasp their water consumption and wastewater volume to work towards a perfect water balance, (2) grasp the minimum volume and quality required for each purpose, (3) review the water balance to cope with any changes in the operating state of their factories, (4) study specific improvement methods, and, after checking the economic efficiency of those methods, start carrying out those that can be implemented.

With regard to the WWTP, we make recommendations on the establishment of a fee structure for industrial wastewater. As the basic policy for establishing WWTP fee structure, we lay down the following principles: (1) WWTP's cost shall be covered by the fees paid by users, (2) the average treatment cost shall be 160 SIT/m^3 , and this shall be raised or lowered depending on the degree of pollution of the industrial wastewater, (3) the index for expressing the degree of pollution shall be COD, BOD, and SS. Based on the above principles, the fee calculation formula was made a primary function of the pollution index. Based on this calculation formula, we propose the following three recommendable cases and describe their characteristics, whereby: (1) industrial wastewater is handled under a separate fee structure from household effluent, (2) the minimum fee for industrial wastewater is made the household effluent fee, and (3) pollutant load limits are set on industrial wastewater. Also, we describe what should be done by the administrative authorities based on the comments. In addition, we state that consideration should be given to high COD concentrations when the WWTP is in operation.

Finally, we give the measures that should be taken by the Government. First, we emphasize the need for a special agency for fostering human resources. We also give the position the special agency should hold, its main functions, and its operating method. In addition, we propose the establishment of a specialist qualification system, and the institution of a tax reduction and exemption system and low interest financial loans for environmental equipment investments as incentives for the implementation of environmental protection measures. We further mention the need for environmental engineering companies, and describe ways to foster them.

1. Treatment of Industrial Wastewater and Pretreatment

1.1 Necessity of Studying the Actual Condition of Iudustrial Wastewater

Through this survey, we learned that, with the exception of a few enterprises, general factories are not aware of the actual condition of the effluents they discharge. Nor are they aware of the volumes of water they consume other than tap water; i.e. water from their own wells and rivers. Even in large-sized factories, they do not measure water consumption by the building, much less by the process. Following are our recommendations regarding the treatment of industrial wastewater in each factory:

(1) Establish in each factory an environmental-preservation section exclusively devoted to the management of industrial wastewater, and appoint a full-time person in charge.

a. Have the Chief Executive appoint the person directly, and invest the person with authority.

b. Benchmark model enterprises (like Henkel-Zlatrog).

(2) Install flowmeters.

c. Install flowmeters in each factory to measure the quantity of water taken from rivers and the factory's own wells.

d. Install flowmeters to measure the water consumption of each major process.

(Water consumption management like rationalization of water use starts with the installation of the flowmeters.)

(3) Secure the capability to collect proper effluent samples.

e. Install effluent pits if possible.

f. Prepare effluent ports of circular sections so that flowmeters can be installed on drainage canals.

(When flow proportional composite samples are collected, average water quality of a day can be obtained.)

(4) Regular measurement of water quantity and water quality

g. Enterprises and the Government must jointly determine a set of analysis items for voluntary management.

(Analysis of all items is not necessary every time.)

h. The WWTP will bear the cost of water quality analysis required for the assessment of sewage rates, and the cost of checking for observing the standards.

(Spot inspection by an inspector or NIGRAD must in principle be conducted.)

i. Accelerate the integration of discharge ports.

(With the integration, total drainage volume and water quality can be checked economically. Make the integration obligatory by providing subsidies.)

(5) Notify relevant agencies of changes made in major processes which affect effluent

greatly, changes in product items, and the raw material.

j. Items regarding hazardous substances and those which affect the calculation of sewage rates must be notified in advance.

1.2 Continuous Study of Technology

This survey has shown that even factories in the same industry are affected by different types of problems. The report given here covers only general surveys and conceptual study and design.

For the actual planning of the installation of wastewater-treatment facilities and pretreatment facilities, We advise you to refer to this report in detail when checking the circumstances of the plan, and to continuously confirm the effects obtained through small-scale experiments as the plan is carried forward.

We also suggest that you conduct ongoing research on potentially fruitful subjects whose results many factories can hold in common. If foreign countries offer technical assistance, make use of it.

Following are several research subjects which we deem highly recommendable: (Not listed in any particular order)

(1) The effect of the charcoal-filtration equipment installed in S-2 TABOR was confirmed even under a low-concentration condition by the fourth on-site survey. Observe the performance of the equipment over a long period.

(2) It seems that S-2 TABOR uses more water than standard in order to lower the pollutant concentration of effluent. With the introduction of proper wastewater treatment, the volume of water used can be decreased sharply. Based on the result, the economy of direct discharge to rivers and discharge to the sewer must be compared minutely.

(3) The design of M-1 SVILA's model wastewater-treatment system, a design based on the information obtained from the second on-site survey, places too much of an emphasis on the removal of color. Judging from the result of the fourth on-site survey (coagulation tests etc.), when biological treatment is employed after coagulatingsedimentation treatment, the size of the biological treatment facilities can be reduced greatly, and ozonization and activated-carbon treatment introduced as a measure against coloring will possibly become unnecessary. Wastewater treatment facilities which discharge directly to rivers need to be reexamined.

(4) pH of the total effluent of S-3 MTT is very high and the pollutant concentration is higher than that of dyeing effluent. Bleaching and scouring may have a great influence. Check the matter and take necessary measures.

(5) The wastewater of A-5 Henkel-Zlatrog has high concentrations of COD, BOD, and oil, but these pollutants can be treated biologically. Aerobic biological treatment will cause foaming, but anacrobic biological treatment may be applicable. Small-sized experiments of anaerobic biological treatment must be conducted. This technology can be applied to the treatment of other high-concentration wastewater.

1.3 Education on Substances Hazardous to the WWTP

We recommend that the factories which send effluent for treatment at the WWTP be educated on the substances that hinder its operation. Refer to "Relative Information", Item 4 for a list of substances which hinder WWTP operations and the volumes required to cause hindrance; and "Relative Information", Item 3 for a description of the technologies used to remove these substances.

V-3

2. Water Conservation

2.1 Effects of Water Conservation

2.1.1 Outline

The following beneficial effects can be obtained from the water conservation.

- ① Reduction in the volume of pollutants discharged into rivers
- 2 Reduction in the pollution load requiring treatment by the WWTP
- ③ Improvement in the management of enterprises

Below is a simple description of these effects.

2.1.2 Reduction in the Volume of Pollutants Discharged into Rivers

① Reduction in the volume of pollutants generated in factories

It is rare that water conservation directly reduces the volume of pollutants. For water saving, however, working conditions and production processes must be improved. As a result, it is expected that the amount of pollutants discharged may be reduced.

6

2 Reduction in the volume of pollutants in treated wastewater

After the industrial effluent is treated by the WWTP or by treatment equipment on-site at the factories in order to bring the water quality up to the emission standards, the treated water is discharged into rivers. When water is saved and the drainage volume is decreased, the volume of pollutants discharged into rivers will be decreased to a comparable degree since the water quality of treated water is constant.

2.1.3 Reduction in the Pollution Load Requiring Treatment by the WWTP

For the reasons described above in 2.1.2.(1), water saving not only reduces the volume of pollutants requiring treatment by the WWTP, but also the pollution load.

Even if the volume of industrial effluent is increased and exceeds the WWTP's treatment capacity due to increased industrial production in the future, the circumstances can be improved by promoting water saving.

2.1.4 Improvement in the Management of Enterprises

This survey clearly showed that, for each of the factories surveyed, the ratio of the cost of industrial water and effluent to the shipping price is much higher than the corresponding ratios for factories in the same industry in Japan.

Promotion of water conservation is an effective way of decreasing the ratio and improving the management of enterprises for the time being.

It was also clarified that, with the present rates on industrial water and effluent, economical use of industrial water can be reduced by about 20%. This indicates that the management of enterprises can be improved by the promotion of water saving.

The ratio of the cost of industrial water and effluent in the shipping price must be compared with the corresponding ratios in countries other than Japan, particularly those of the countries in Europe. However, as the ratios are exclusive materials of enterprises, they are not published in Japan or any other foreign countries. The ratios used here for comparison are exclusive data possessed by the Water Reuse Promotion Center.

2.2 Recommendations on Water Conservation

2.2.1 Recommendations to the National Government and Cities

As mentioned above, the water conservation is expected to bring about much effect. Therefore, the water conservation must be propelled as a policy, and the national government and cities are requested to indirectly assist enterprises which are obliged to implement conservation.

Specifically, We recommend that the national government and cities take the following measures:

(1) Technical assistance to enterprises

Experts in water conservation must be positioned in the national government or cities to energetically advise and instruct enterprises.

② Financial assistance to enterprises

In principle, enterprises must implement water conservation with their own funds, but great benefit can be gained by providing a financing system with low interest rates such as that implemented in Japan in order to reduce the burden on enterprises.

③ Establishing a sewage rating system which does not hinder water conservation

As almost all industrial effluent is discharged to the WWTP, a sewage rating system which makes it disadvantageous to implement water conservation from an economic viewpoint (for example, a system under which the rate for unit waste volume increases with decreases of drainage volume) would not be favorable.

In relation to the above @, several types of financial assistance given to enterprises in Japan are described below.

① Low-interest rate financing system for equipment for water conservation.

This is a system under which the national or local governments finance a certain percentage of the cost of equipment installed in enterprises at a rate lower than that of open market, with several limits set according to the plant site and facilities installed.

② Incentive taxation system for energy-conserving equipment

When an enterprise installs equipment which are certified by the national government as energy conserving equipment, a certain percentage of the installation cost is deducted from the taxes.

2.2.2 Recommendations to Enterprises

 $\langle \mathbf{I} \rangle$

As all of our concrete recommendations and general technical guidance are presented in the report and attachments, only a few very fundamental recommendations will be given here.

① Enterprises must understand that the cost of industrial water and effluent have a substantial effect on their finances.

As mentioned previously, the ratio of the cost of industrial water and effluent in the shipping price is comparatively high. It is important to fully recognize this point and aggressively propel the water conservation.

2 Correctly determine the volume of industrial water used and the volume of

effluent, and make a complete balance of water.

As indicated in 1.1, the factories surveyed did not adequately manage the volume of industrial water used. Of the 9 factories which use well water and river water, water meters were installed in only 3. Of the factories to which tap water is supplied through the common water meter, 2 factories had not installed water meters of their own.

This recommendation was already made in 1.1, but as it is the most fundamental item for water

conservation, we repeat it here.

(3) Whenever possible, try to accurately ascertain the minimum volume of water and lowest limit of water quality required for a certain purpose.

The simplest way to save water is not to use it, supplying only the minimum volume of water required for a certain purpose. To reclaim the water used, it is imperative that the quality of the reclaimed water is above the lowest required level.

It is technically very difficult to ascertain the above-mentioned values. Execution of the above requires close cooperation of water-treatment engineers and production engineers. Even in Japan, execution is extremely rare, and limited to cases when there is an urgent need for water saving, for example, at times of drought.

(4) Study concrete methods of water conservation, determine the most applicable method, confirm its economy, and begin execution.

One must be careful in confirming economy. It is essential to obtain a correct written estimate from the manufacturer of the equipment.

(5) Water balance must be remade in accordance with the change in the operation of factories.

As water balance changes constantly, establish a certain remaking method and remake the balance periodically and regularly.

As water balance indicates a factory's production processes and production states, normally it is not presented to outsiders. It is not known, therefore, how water balance is actually remade. In the factories located in the areas which often suffer from droughts, water balance is remade even in normal times to promote water saving in preparation for future water shortages.

If the assistance of external experts can be obtained for executing the above (2) to (5), we expect that it will be possible to compensate for the shortage of technical knowledge on the factory side and transfer the technology.

3. The WWTP

 \mathbf{I}

3.1 Setting of Rates

Before making any recommendations to the WWTP, let us rearrange the results of the simulation on the system to set sewage rates indicated in the preceding Chapter 3.2.1. First of all, the following principles are established as a fundamental policy in setting the system of WWTP rates.

(1) The total treatment cost of the WWTP must be covered by the rates paid by users.

(2) Average total treatment cost shall be 160 SIT/m³, and this rate shall be increased or decreased depending on the degree of pollution and the volume of industrial effluent.

(3) The indexes expressing the degree of pollution shall be COD, BOD, and SS (pollutants which the WWTP cannot treat, and phosphorus and nitrogen, which the WWTP plans to remove in the future, will not be taken into consideration). Based on the above principles, the calculation equation of the rate per $1m^3$ is decided as follows.

Rate $(SIT/m^3) = A \cdot (COD + 2 \cdot BOD + 2 \cdot SS)/5 + B$

Having decided the rate calculation equation as above, it is now necessary to select one of two policies in setting a charging system. One policy is to set only a charging system and leave everything else to the principle of free economy. The other policy is to set a certain limit on the pollutant load of effluent, and let factories remove compulsorily the pollutant load which exceeds the limit. In Japanese sewage systems, a limit is set on the pollutant load and this limit is considered an effective measure for the reduction of pollutants. As every country has its own circumstances, however, judgment must be made accordingly.

Following are charging systems considered recommendable from the results of the surveys mentioned in the preceding chapters:

(1) To leave the actions of enterprises to the principle of free economy, two methods can be applied. One is managing household effluent and industrial effluent with separate charging systems. In this case, the rate calculation equation will be:

Rate $(SIT/m^3) = 0.4$ (COD + 2·BOD + 2·SS)/5 + 90

The average rate of 20 factories surveyed will be 164 SIT/m³, with 4 of the factories out of the 20 applying preliminary treatment. Total amount invested by factories will be 195 million SIT, and as for the reduction of pollutant load implemented by this investment. COD will be reduced by 1,963kg/d, BOD by 944kg/d, and SS by 548kg/d.

(2) It is said that Maribor City will charge 80 SIT on 1m³ of household effluent uniformly. When this is taken into consideration, the above-mentioned method may be perceived as unfair since, in this case, the charge on the industrial effluent of low-pollutant load could potentially be less than 80 SIT/m³. The other method is to apply the charging system used for household effluent to industrial effluent of low-pollutant load, and to charge the industrial effluent with high-pollutant load according to the amount of the load. The rate calculation equation will be:

Rate $(SIT/m^3) = 0.8$ (COD + 2·BOD + 2·SS)/5 + 20

The number of factories which apply preliminary treatment is 5 including SVILA, whose industrial effluent is large in volume, and the average rate will be $160/m^3$. The total amount invested will be 238 million SIT, and as for the reduction of pollutant load implemented by this investment, COD will be reduced by 2,413kg/d, BOD by 1,244kg/d, and SS by 458kg/d.

(3) To set a limit (COD:600mg/l, BOD:300mg/l,SS:300mg/l) on the pollutant load of the industrial effluent discharged to the WWTP, the following rate calculation equation can be applied:

Rate $(SIT/m^3) = 0.5 \cdot (COD + 2 \cdot BOD + 2 \cdot SS) + 70$

In this case, the average rate will be $163/m^3$, with 5 factories applying preliminary treatment. A total of 220 million SIT will be invested by the factories, with the reduction of the pollutant load implemented by the investment totaling 2,011kg/d for COD, 981kg/d for BOD, and 541kg/d for SS.

Three representative cases have been outlined above, and the characteristics of each case have been outlined in the preceding 3.2.1. There is another conception focusing in the reduction of load on the WWTP. The relation between load reduction and the investment amount required for the reduction is indicated in Fig. 3.2.1. According to the figures, SS reduction efficiency is almost constant regardless of the amount invested. Investment is very effective in the reduction of COD, with the reduction staying proportional to the amount invested until it reaches 240 million SIT, where the COD begins to show saturation. BOD has the same tendency as COD, but investment has less of an effect. Since there are more than one charging system equations for the same investment amount and reduction efficiency, both the investment effect and the characteristics of the calculation equations need to be taken into account in setting a calculation equation. Before any concept is applied, many cases, as well as their administrative, economic, and political implications, must be studied, and a sound judgment must be made. As a diskette with the calculation program (FORTRAN) is attached, please make use of it in the actual implementation.

It should be noted here that a calculation equation of rates concretely reflects the policies of the administration authorities, and that the method of estimating the result of the policies was established by this survey.

We present below the measures which, based on the results of the above study, the city authorities will have to take.

To begin with, the system to be adopted by the WWTP will have to be decided. As mentioned in the preceding Chapter 3.2.1, the total system to treat all of the effluent of Maribor City comprises both the WWTP and factories. Thus, the total system cannot be optimized unless the WWTP's system is determined beforehand.

6

Secondly, discussion will have to be held on how to allot the treatment of factories' pollutant load (COD, BOD, SS) to the WWTP and factories. As a result of this survey, it is estimated that almost all the factories will discharge their effluent to the WWTP under the current emission standards. If the city authorities are to request factories to reduce pollutant load of the effluent led to WWTP, they will have establish some regulations or set a charging system which necessitate the preliminary treatment of the effluent at the factories. In such a case, they will be able to make use of the relation of the pollutant reduction volume, the amount invested, and the charging system clarified by this survey.

Thirdly, note that the above-mentioned estimation of preliminary treatment is based on the economic calculation by the computer program, and not on the judgment of factories. Therefore, it will be necessary to discuss the estimation result with factories and confirm or amend the estimation.

When the above three items are cleared, it becomes possible to decide how to configure the total system. Please note that this recommendation is given based on the present condition. It is not possible to decide on a future system unless estimations on the industrial effluent of Maribor City in future are prepared. Incidentally, in Japan, a sharp increase in the demand for industrial water was estimated at the time of high growth, but in reality, the increase in substantial demand for industrial water was relatively slight due to the promotion of water reuse. Further, although in principle a factory's pollutant load is proportional to the production amount, change might be brought about to the industrial structure, so estimation will have to be made prudently.

the total system. Please note that this recommendation is given based on the present condition. It is not possible to decide on a future system unless estimations on the industrial effluent of Maribor City in future are prepared. Incidentally, in Japan, a sharp increase in the demand for industrial water was estimated at the time of high growth, but in reality, the increase in substantial demand for industrial water was relatively slight due to the promotion of water reuse. Further, although in principle a factory's pollutant load is proportional to the production amount, change might be brought about to the industrial structure, so estimation will have to be made prudently.

3.2 Removal of CODcr

 \mathbf{I}

The effluent of textile-dyeing factories accounts for about 20% of the total effluent led to the WWTP. As the effluent of textile-dyeing factories contains a large quantity of refractory COD component, there is a possibility that the WWTP's emission standard 100mg/L cannot be attained. That is why the removal of CODcr must be studied. For your reference, some recommendations based on actual examples in Japan are given below.

1) Characteristics of wastewater

The effluent from 5 textile dyeing factories (M-1, S-1, S-2, S-3, S-4) accounts for a high percentage of the wastewater for the whole of Maribor city, all of which will be led to the WWTP. The industrial effluent from these companies accounts for 20% in water volume, and 11% in the amount of CODcr. On the other hand, the industrial effluent of the 5 food and chemical factories (M-4, M-6, M-7, S-6, A-5), whose CODcr concentration is high, accounts for 5.3% in water volume and 11% in the amount of CODcr in the total wastewater.

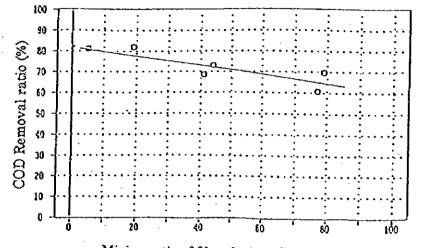
The ratio of the above two types of industrial effluent put together accounts for 25% in water volume and 22% in the amount of CODcr (Table 3.2.1).

		CODer	
	m³/d	nıg/l	kg/d
(1) Total Water Volume (to be treated at the WWTP)	36,600	691	25,517
2) Effluent of 20 Factories Surveyed	11,558	500	5,784
(3) Effluent of Textile Dyeing Factories (5 factories)	7,342	387	2,838
Textile Dyeing/Fotal x 100, %	20		11
(4) Effluent of Food and Chemical Factories with High CODcr	1,938	1,400	2,710
Concentration (5 factories) Food and Chemical/Total x 100, %	5.3		11
(5) (3) + (4)/Total x 100, %	25		22

Table 3.2.1 Comparison of Total Wastewater, Textile Dyeing Industrial Effluent, and Other Effluent

Notes: (1) Total water volume is quoted from the proposal made by Maribor City.

(2) The effluent of 20 factories surveyed was calculated from Table 1.1.2 of Chapter IV.


(3) The values of the effluent of 5 textile dyeing factories (M-1, S-1, S-2, S-3, S-4)

(5) BOD/COD is low.

As refractory COD is contained in the effluent, the COD removal ratio in biological treatment will be low. In selecting the treatment system of the WWTP, this point must be taken into account.

(2) Matters demanding special attention in the removal of CODcr

When aerobic treatment is applied to the general household effluent mixed with textile dyeing effluent, the COD removal ratio decreases with the increase of the mixing ratio. This is confirmed by the records in Japan. The data are indicated in Fig. 3.2.1.

Mixing ratio of fiber dyeing effluent (%)

Source : Nippon Jogesuido Sekkei Co., Ltd.

Fig. 3.2.1 Relation of the Ratios of Water Volume Received and the COD_{Mo} Removal

From the above data, which covers exclusively the COD_{Mn} removal ratio, the removal ratio for CODcr is estimated to be a little lower. We are afraid, therefore, that it would be very difficult to reduce the 691mg/l CODcr contained in the raw effluent indicated in the proposal of the WWTP project to 100mg/l by treatment. When A2O system is applied and coagulant is added, the removal ratio will increase a little. Even in that case, the best result will be reduction from 500mg/l to 100mg/l COD. Consequently, textile dyeing factories may be obliged to install pretreatment equipment to remove some CODcr in advance. This point must be taken into account in studying the treatment processes of the WWTP.

3) Effluent of food and chemical factories of high CODcr concentration

As the effluent of food factories contains components which can be decomposed easily by biological treatment, it is estimated that its CODcr removal ratio will be higher than that of textile dyeing effluent. Its CODcr concentration is, however, very high, and the absolute volume is equal to that of textile dyeing effluent. This point must also be taken into account in studying the treatment processes of the WWTP.

Depending on the circumstances, it might be necessary to let the factories whose effluent contains a large quantity of CODcr apply preliminary treatment to reduce the volume of CODcr.

When the conceptual design of preliminary treatment equipment to reduce pollutant load was worked out for each factory, reduction in the volume of CODcr was estimated. Please make use of our data as references.

4. Measures Required of the Government

4.1 Fundamental Policy

Observation of regulatory standards is the first and minimum step we must take for the prevention of pollution, preservation of the environment, and minimization of the influence of business activities on the environment. For this purpose, four main pillars -framework, talent, technology, and funds--must be set into balance.

Although standards for discharging industrial effluent to rivers and WWTP emission standards were both established in 1996, environmental pollution will keep progressing if enterprises fail to observe these standards and the government does not exercise proper management and instruction.

To propel preservation of the environment efficiently, it is essential not only to carry out personnel development on both the administration side and the factory side, but also to build up a financial incentive system in order to accelerate investment in environmental measures, and to encourage engineering companies to acquire the abilities to work as consultants to factories and design and install treatment equipment.

4.2 Personnel Development

To implement the measures to prevent water pollution, it is necessary to acquire a wide range of technologies and knowledge related to the mechanism of the generation of pollution, dispersion of pollutants, health damage, pollution-preventing measures, measuring methods, etc.

When experts with these technologies and knowledge are posted in the central government, local cities, and enterprises, environmental measures can be propelled efficiently.

To foster environmental experts as quickly as possible, it is important to establish an organization which handles the issues of the environment and personnel development exclusively under the leadership of the central government. Ideally, such an organization should have the following features:

1) Positioning

An organization under the direct control of the central government must take part in the organization, and the participation of persons from the private sector must be solicited in order to obtain widerange cooperation.

2) Main function

(1) Promotion of environmental technology:

Offer training courses to disseminate knowledge of the mechanism of the generation of pollution, dispersion of pollutants, health damage, pollution-prevention measures, measuring methods, etc.

② Establishment of an expert qualification system:

Test those who have finished the above courses and qualify those who have passed the test as experts.

③ Production of texts on environmental technology:

Produce texts which contain all the knowledge required for experts, both for use in training courses and for distribution.

(d) Propagation of the measures the government takes for the preservation of the environment

3) Funds for the establishment of the organization

Funds must be raised from far and wide; from the central government, local cities, industrial groups,

enterprises, etc.

4) Management

In principle, the organization must be on a self-paying basis, but appropriation of national subsidies and membership fees from industrial groups for management must also be studied.

ŝ

Ĩ

4.3 Incentive Systems for Investment in Environmental Measures

Enterprises regard the burden of the cost for environmental measures as negative investment which does not contribute to production.

The investment is, however, indispensable for the coexistence of the enterprises with society. Establishment of a taxation system and a financial incentive system which will accelerate the investment of enterprises in environmental measures is now required. The following systems are recommendable:

1) Tax reduction and exemption system for the installation of environment-preserving equipment

Establish and apply a cost depreciation period reduction system, and a fixed property taxes reduction and exemption system to the enterprises which have installed environment-preservation equipment in connection with wastewater treatment and rationalization of water use.

2) Low-interest rate financing system for investments in environment-preservation equipment

As environment-preservation equipment related with wastewater treatment exerts pressure on the finance of enterprises, governmental financial agencies are requested to establish a low-interest rate financing system or a system of grants-in-aid for paying interest to ease the pressure.

One possible option is the use of environmental taxes (for example, carbon taxes or taxation on the use of tap water and rivers, excess charges on sewage pollution, etc.) as the financial source for the above systems.

Appropriation of fines imposed on exceeding the standards for discharging effluent to public water bodies to finance the systems is inevitable for a certain period, but it must be noted that if such appropriation is continued as a permanent system, enterprises will feel unfairly treated and their will to invest in environmental measures may decrease.

4.4 Promotion of Engineering Companies

Slovenia appears to have a shortage of water-treatment engineering companies and the capacity of the existing companies has not been sufficiently developed due to the absence of any demand for wastewater-treatment technology in previous years.

Engineering companies earn money by offering professional knowledge to enterprises, and the enterprises can promote efficiency by acquiring technologies they presently lack. Engineering companies and enterprises are, so to speak, related like two wheels of a car.

Independent promotion of engineering companies requires much time and labor. To bring about an early promotion, it is advisable to pursue cooperation with foreign countries in the acquisition and propagation of technology.

VI. Conclusion

齺

VI. Conclusion

æ

 $\langle \mathbf{I} \rangle$

The nature, society, economy, and environmental administration of Slovenia and Maribor City surveyed have been outlined. The condition of industrial water and effluent of 20 factories in the Matibor City was also surveyed. The industrial water and effluent of these 20 factories which occupy for more than 80% of the industrial watewater of Maribor City, have been investigated. The survey results have clarified the following items:

(1) The ratio of the cost of industrial water and effluent to the shipping price is comparatively high.

(2) It is estimated that the volume of industrial water can be saved by an average of 20%.

(3) Under the current emission standards, it is more advantageous for almost all factories to discharge to the WWTP than to discharge directly to the rivers.

(4) The volume of pollutants can be reduced by applying pretreatment, but the level of reduction is closely related with the system of the rates on the discharge to the WWTP.

(5) The relation between the volume of pollutant load reduced and the discharge charging system can be obtained by setting a calculation equation of discharge rates based on pollutant load and by estimating what each factory will do about pretreatment.

(6) Administrative authorities can reflect their policies on the calculation equation of discharge rates and estimate the result. That is, it is possible to estimate the volume of pollutant load on the WWTP, rates income, total amount invested by factories, and consequently, the costs borne by administrative authorities and factories.

Morcover, recommendations were given on 1) Treatment of industrial waste water and pretreatment 2) Rationalization of water use 3) Setting of WWTP rates, and 4) Measures the administrative authorities must take. Although a number of recommendations were made to factories concerning the rationalization of water use and wastewater treatment methods in this survey, due to limitations in time, these recommendations were only very general. Detailed studies must be carried out at each factory to effectively implement our recommendations.

Throughout the course of this survey, the JICA Study Team was quite impressed by the earnest attitude and efforts taken by those concerned in Slovenia and Maribor City for the preservation of the environment. We felt everywhere an uncompromising determination to preserve the nation and its natural environment at any cost, irrespective of financially difficult circumstances. Slovenia is going to steadily carry forward its environment-preservation plan, taking the long view, backed by the long history and cultural traditions of Europe. It will be a great reward for us if our survey proves instrumental in not only preserving the environment in Slovenia, but also in imparting to other countries of Europe an understanding of the Japanese way of thinking, and Japanese techniques.

In conclusion, we would like to heartily thank all those concerned for their cooperation in this survey.

PART 2

đ.

C

TABLE OF CONTENTS

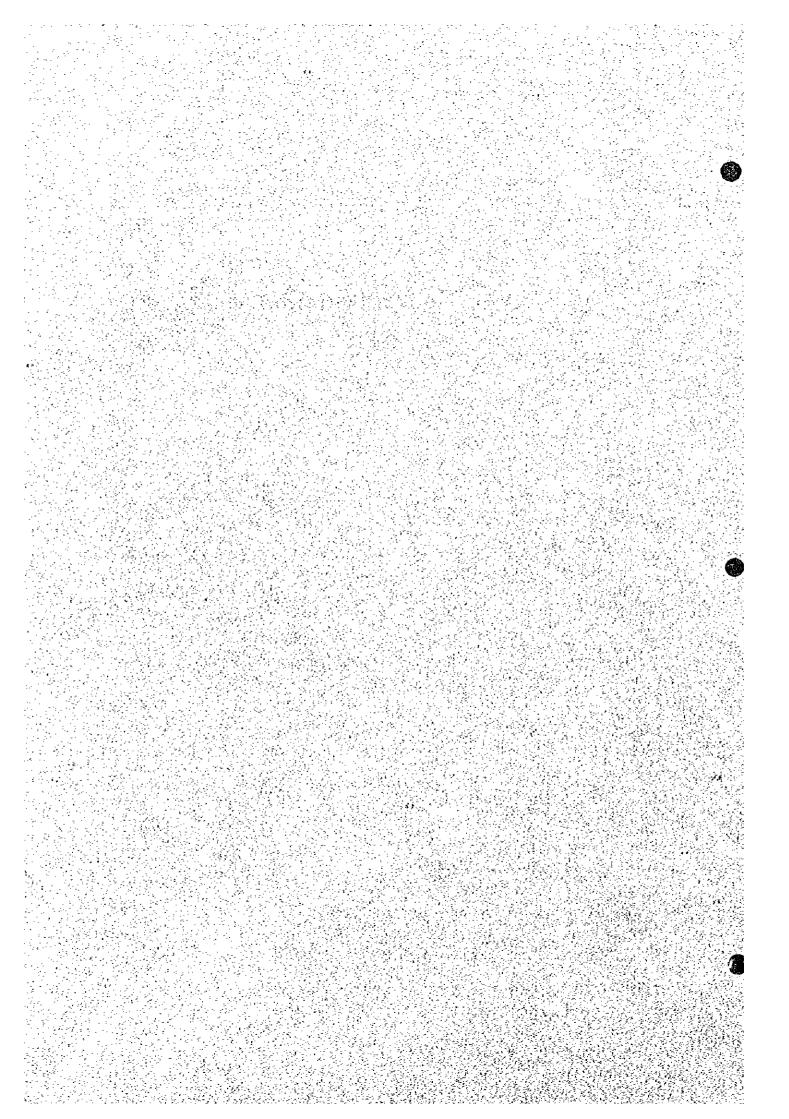
	P/	ART 2	Curren	t Conditions and Model Systems of Factories and Economic	
8			Evalua	tion	
	1.	Gene	ral Sumr	пагу	1
		1.1	Outline		1
		1.2	Water C	Conservation	11
		1.3	Pretreat	Iment and Waste Water Treatment	12
			1.3.1	Pretreatment	
			1.3.2 W	Vaste Water Treatment	13
	2.	Assu 2.1		for Financial Analysis and Design conditions ption for Financial Analysis	
			2.1.1	Capital Requirement	15
			2.1.2	Financing Plan	
			2.1.3	Waste Water Treatment Cost	
			2.1.4	Waste Water Treatment Fee	-
			2.1.5	Method of Financial Analysis	
			2.1.6	Preconditions for Economic Evaluation	
3		2.2	Design	Conditions (Common for All Model Factories)	9 9
			2.2.1	Treatment System	
			2.2.2	Treatment Plant Site	
			2.2.3	Plant Installation Conditions	
			2.2.4	Scope of Estimation	
			2.2.5	Utility Costs	
			2.2.6	Waste Disposal Cost	
			2.2.7	Control System	
			2.2.8	Operation Staff	
			2.2.9	Materials and Symbols	
			2.2.10	Miscellaneous	
	3.	Mode	el Factori	es	27
		3.1		ILA, TEKSTILNA TOVARNA, d.d. MAROBOR	
			3.1.1	Factory Outline	
			3.1.2	Water Conservation	
_			3.1.3	Pretreatment and Waste Water Treatment	
1			3.1.4	Financial Analysis	
			3.1.5	Pretreatment for Reduction of the Pollution Load	
		3.2	M-2 M/	ARLES HOLDING, d.d. MARLES POHISTVO d, o.o	99

• .

	3.2.1	Factory Outline
	3.2.2	Water Conservation 115
	3.2.3	Pretreatment that Satisfies WWTP Discharge Standards, and Waste
		Water Treatment
	3.2.4	Financial Analysis 162
	3.2.5	Pretreatment System for Reduction of the Pollution Load 176
3.3	M-3 LI	VARNA Maribor ARMAL 181
	3.3.1	Factory Profile
	3.3.2	Water Conservation
	3.3.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste
		Water Treatment
	3.3.4	Pretreatment for Reduction of the Pollution Load 240
3.4	M-4 S	TAJERSKA PIVOVARNA d.d
	3.4.1	Factory Outline
	3.4.2	Water Conservation
	3.4.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste
		Water Treatment
	3.4.4	Pretreatment for Reduction of the Pollution Load 274
3.5	M-5 V	INAG VI NARSSTVO-SADJARTVO 280
	3.5.1	Factory Outline
	3.5.2	Water Conservation
	3.5.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste
		Water Treatment
	3.5.4	Pretreatment for Reduction of the Pollution Load
3.6	M-6 K	OSAKI TOVARNA MESNIH IZDELKOV
	3.6.1	Factory profile
	3.6.2	Water conservation
	3.6.3	Waste water treatment
	3.6.4	Financial Analysis
	3.6.5	Pretreatment for Reduction of the Pollution Load
3.7		ARIBORSKA MLEKARNA, d.o.o.
	M	M. MARIBORSKA MLEKARNA, d.o.o
	3.7.1	Factory Outline
	3.7.2	Water Conservation
	3.7.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste
		Water Treatment
	3.7.4	Pretreatment for Reduction of the Pollution Load

a a second a

econdary B	Beneficiary Factories	405
1 S-1 To	ovarna volenih tkanin, MERINKA, P.O. (TVT MERINKA)	405
4.1.1	Factory Profile	405
4.1.2	Water Conservation	409
4.1.3	Pretreatment and Waste Water Treatment	4 1 1
4.1.4	Pretreatment for Reduction of the Pollution Load	4 1 1
.2 S-2 Te	ekstilna tovarna TABOR, d.o.o.	417
4.2.1	Factory Profile	417
4.2.2	Water Conservation	417
4.2.3	Waste Water Treatment	421
4.2.4	Pretreatment for Reduction of the Pollution Load	422
.3 S-3 Mar	riborska tekstilna tovarna Melje, d.d,(MTT MELJE),d.d.,	
Точ	varna tkanin MELJE,d.o.o.	428
4.3.1	Factory Profile	428
4.3.2	Water Conservation	428
4.3.3	Pretreatment and Waste Water Treatment	
4.3.4	Pretreatment for Reduction of the Pollution Load	439
.4 · S-4 Te		
4.4.1		
4.4.2	Water Conservation	446
4.4.3	Pretreatment and Waste Water Treatment	454
4.4.4		
.5 S-5 ME		
		460
4.5.1		
4.5.2		466
4.5.3		
	Water Treatment	468
4.5.4	Pretreatment for Reduction of the Pollution Load	475
.6 S-6 M		
4.6.1	Factory Outline	
4.6.2		
4.6.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste	
	Water Treatment	488
4.6.4		
.7 S-7 IN		
4.7.1	Factory Outline	498
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 4.1.1 Factory Profile 4.1.2 Water Conservation 4.1.3 Pretreatment and Waste Water Treatment 4.1.4 Pretreatment for Reduction of the Pollution Load 2 S-2 Tekstilna tovarna TABOR, d.o.o. 4.2.1 Factory Profile 4.2.2 Water Conservation 4.2.3 Waste Water Treatment 4.2.4 Pretreatment for Reduction of the Pollution Load 3 S-3 Mariborska tekstilna tovarna Melje, d.d,(MTT MELJE),d.d, Tovarna tkanin MELJE,d.o.o. 4.3.1 Factory Profile 4.3.2 Water Conservation 4.3.3 Pretreatment and Waste Water Treatment 4.3.4 Pretreatment for Reduction of the Pollution Load 3 S-4 Tovarna sukanecev in trakov TSP.p.o. 4.1 Factory Profile 4.2 Water Conservation 4.3 Pretreatment and Waste Water Treatment 4.4 Pretreatment for Reduction of the Pollution Load 5 S-5 METALNA, STROJE-GRANDNJA, KONSTRUKCI-JE, MONTAZA IN STORITVE,d.d 4.5.1 Factory Outline 4.5.2 Water Conservation 4.5.3 Pretreatment for Reduction of the Pollution Load 5.4 Pretreatment for Reduction of the Pollution Load 5 S-5 METALNA, STROJE-GRANDNJA, KONSTRUKCI-JE, MONTAZA IN STORITVE,d.d 4.5.1 Factory Outline 4.5.2 Water Conservation 4.5.3 Pretreatment for Reduction of the Pollution Load 6 S-6 MERKATOR-SLOSAD, d.d. 4.6.1 Factory Outline 4.6.2 Water Conservation 4.6.3 Pretreatment for Reduction of the Pollution Load 6 S-6 MERKATOR-SLOSAD, d.d. 4.6.1 Factory Outline 4.6.2 Water Conservation 4.6.3 Pretreatment for Reduction of the Pollution Load 6 S-6 MERKATOR-SLOSAD, d.d. 4.6.4 Pretreatment for Reduction of the Pollution Load 7 S-7 INTES MLIN TESTENINE


• .

		4.7.2	Water Conservation 504	
		4.7.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste	
			Water Treatment	0
		4.7.4	Pretreatment for Reduction of the Pollution Load 509	
5.	. Terti	ary Fact	ories	
	5.1	A-1 TV	VT-Tovarna vozil in toplotne tehnike-Boris kidric-TIRNA VOZILA 511	
		5.1.1	Factory Outline	
		5.1.2	Water Conservation 516	
		5.1.3	Pretreatment that Satisfy WWTP Discharge Standards, and Waste	
			Water Treatment	
	5.2	A-2 EI	LEKTROKOVINA-SVETILLA	
		5.2.1	Factory Outline	
		5.2.2	Water Conservation	
		5.2.3	Pretreatment and Waste Water Treatment 5 2 4	-
	5,3	A-3 PI	RIMAT-Tovarna kovinske opreme 5 2 5	
		5,3.1	Factory Outline	
		5.3.2	Water Conservation 533	
		5.3.3	Pretreatment for Reduction of the Pollution Load 534	0
	5.4	A-4 E	LEKTROKOVINA Elektromotorji	W
		5.4.1	Factory Outline	
		5.4.2	Water Conservation 545	
		5.4.3	Pretreatment and Waste Water Treatment 546	
	5.5	A-5 H	ENKEL ZLATOROG	
		5,5.1	Factory Outline	
		5.5.2		
		5.5.3	Pretreatment	
	5.6	A-6 S	WATY Tovarna umetnih brusov	
		5.6.1	Factory Outline	
		5.6.2	Water Conservation	
		5.6.3	Pretreatment 572	
				1
				1
			·	

1. General Summary

..

Ĵ

PART 2 CURRENT CONDITIONS AND MODEL SYSTEMS OF FACTORIES AND ECONOMIC EVALUATION

1. General Summary

1.1 Outline

æ

D

In Chapter I, the following items are described with regard to the model factory group (seven factories), the secondary beneficiary factory group (seven factories) and the tertiary beneficiary factory group (six factories).

- ① Analysis (including water quality analysis) of and comment on the current condition of water supply and waste water
- ② Model system for water conservation and economic evaluation of model system
- ③ Model systems for waste water treatment and pretreatment and economic evaluation of model systems
- ④ Financial analysis on selected model factories

Financial analysis shall be carried out on three factories: M-1 (Svila), M-2 (Marles) and M-6 (Kosaki). These factories were selected because they are situated close to the river and the factories themselves requested selection.

In 1.-General Summary, the common items in water conservation, waste water treatment, pretreatment and the financial analysis are indicated.

In 2.-Design Conditions, design conditions that are common to each factory are indicated for especially important waste water treatment and pretreatment model systems.

In 3., 4. and 5., the above items (analysis of current condition of water supply and waste water; economic evaluation of water conservation model systems; economic evaluation of waste water treatment and pretreatment model systems, etc.) are indicated for all factories in the model factory group, the secondary beneficiary factory group and the tertiary beneficiary factory group.

Tables 1.1.1, 1.1.2 and 1.1.3 show lists of each of the factories in the model factory group, the secondary beneficiary factory group and the tertiary beneficiary factory group respectively.

Fig. 1.1.1 shows the locations of each of the factories.

· Reasoning behind the selection of the target factories

As is shown in Table 1.1.4, seven target factories have been selected: one in the textile and dyeing sector, one in the furniture manufacturing sector, one in the machine sector and four in the foodstuff sector. In consideration of the fact that the main industries in Maribor are textile and dyeing, foodstuff and machines, factories possessing large water consumption volumes and waste water pollution loads were selected to represent these sectors.

The four factories in the foodstuff sector were selected to represent the different areas of alcohol (beer, wine), meat products and dairy products. Thus, the seven selected factories can be said to be representative of industry in Maribor today.

The 13 factories in the secondary factory group and tertiary factory group break down into four in the textile and dyeing sector, five in the machine sector, two in the foodstuff sector and two in the chemicals sector. These factories were selected for their large pollution loads, second only to the pollution loads of the model factories. Four factories were selected from the textile and dyeing sector because this is an industry with a high level of water consumption and is representative of Maribor.

The tertiary factory group was added during the survey stage in order to gain a better understanding of industrial waste water volumes and pollution loads over a wider range of factories. Factories (not included among the model factories and secondary factory group) with large pollution loads or water consumption levels were selected as tertiary factories.

The total of 20 selected target factories are, as described later, responsible for discharging approximately 80% of all the industrial waste water that is generated in Maribor.

-2-

	-										
No.	Nane	Industry	Main Products		Capital 1	1000SIT.	Water	Source &		Waste Water i	8
	(Abbreviation)	-	Products	Quantîty	Area m 8	& Employee	Consu	mption m	/d	discharded to	
M-1	SVILA TEKSTILNA	Textile	Viscose	1000m/y	Capital	2.142.875	Well	Water 1.5	587	Drava River	
	TOVARNA. d. d.	(Knittng)	Кауол	5.687	Area	15,611					
	(SVILA)	-	Polyester	33.0	Employee	490					
M-2	MARLES HOLDING.	Furniture	Kitchien	96.552	Capital	1.509.109	Well	Water 2	80 60	Drava Riyer	
	d. d.		Element	Pieces/y	Area	20,000					
_ *	MARLES POHISTVO.				Employce	482					
-	d.o.o. (MARLES)		-	-	-					******	
S-W	LIVARNA Maribor	Machine &	Pipe Fittings	184t/y	Capital	182.287	City	Water 3	172	Public	
	ARMAL	Metal	Sanetary Fitt	is.719t/y	Area	12,015				Sewerage	
	(ARMAL)	Processing	Heating Fitti	ings 88t/y	Employee	380					
7-W	STAJERSKA	Food	Зеег б	x1/x	Capital	130.000	Well	Water 4	111	Public	
	PIVOVARNA. d. d.	(Brewery)	Soft Drinks 5	.000 k1/y	Area	40,000				Sewerage	
	(PIVOVARNA)	-	Juce 8	.000 k1/y	Employee	170					
M-5	VINAG VINARSTOV-	Food	Wine 5	5.000 k1/y	Capital		City	Water	71	Public	
	SADJARTVO	(Wine			Area					Sewerage	
	(VINAG)	Cellar)		-	Employee	400					
M-6	KOSAKI TOVARNA	Food	Cows 11.5	100 head/y	Capital		City	Water 3	365	Public	
	MESNIH IZDELKOV	(Slaughter	Pigs 43.0	COD head/y	Area	22,534				Sewerage	
	(KOSAKI)	Hause)			Employee	100					
N-7	MARIBORSKA	Food	Milk 16.	393 Ton/y	Capital	808, 790	City	Water 4	476	Public	
	MLEKARNA, d. o. o.	(Dairy)	Cheese 3,	153 Ton/y	Area	14.000				Sewerage	
	MM MARIBORSKA		Yogurt 1.	508 Ton/y	Employee	286		-			
	MLEKARNA, d. o. o.										
	(MLEKARNA)										

Table 1.1.1 Outline of the Model Factories

- 3 -

1

3

Table 1.1.2 Outline of the Secondary Beneficiary Factories

Waste Water is 2 Drava River Discharged Sewerage Sewerage Sewerage Sewerage Sewerage Public Public Public Public Public River m'/d 212 731 538 900 ŝ 162 760 425 1.185 Well Water 1.158 ი ი 0 0 278 5 20 1.251 River Water 1707 Water Source & Consumption City Water City Water City Water Well Water City Water River Wate **Well Water** Well Water City Water City Water Well Water City Water Total Total Total 9.038 613 33.430 1,005.895 400 1.369.568 750 198 2,100 23,000 06 180 & Employee 637.538 300,000 1000SIT. Employee Capital Employee Employee Employee Employee Employee Employee Capital Capital Area m Capital Capital Capital Capital Capital Area Area Area Area Агеа Area Area Pieces/y 3.140.216 m²/y 1,800 Ton/y 650.000m/y 7.140.000 m²/y Wheat Flour 26,399 Ton/y Quantity 3.060.000 m²/y 182.3 Ton/y Cherries in Alcohole 400 3.565 Ton/y Power Plant. Cranes, Pro-20,000,000 Steel Handled 1.000t/m cess Equipments. etc. Concentrated Fruit Mixture Fabric Mixture Fabric Main Products Sewing Thread Wool Fabric Products Stoking Cotton Pasta Juice Industry (Dyeing) (Miller) (Dyeing) Textile Textilc (Dyeing) Textile (Dyeing) Textile Machine & Metal Procss. (Drink) Food Food IE-MONTAZA IN STORI-Mariborska tekstilna INTES MLIN TESTENINE MERKATOR-SLOSAD d.d. GRADNJA, KONSTRUKCI-(MTT) tkanin MERINKA. p. o. TVE. d. d. (METALNA) tovarna Melje, d. d. in trakov TSP. p.o. Tekstilna Tovarna Tovarna Volnenih (MTT MELJE) d.d. Tovarna sukancev METALNA, STROJE-Tovarna tkanin (Abbreviation) (TVT MERINKA) MELJE. d. o. o. TABOR, d. o. o. (MERINKA) (GA-SO-JS) (TABOR) (INTES) (TSP) Nane 110 S-2 S-3 S-5 S-6 2-1 2-7 No.

6

8

- 4 ---

No.	Name	Industry	Main Products	Capital	1000SIT,	Water Source &	Waste Water is
	(Abbreviation)		Products Quantity	Area m &	Employee	Consumption m ¹ /d	Discharged to
A-1	TVT-Tovarna Vozil	Machine	Rolling Stocks Reparing	Capital	448,000	Well	Sewerage
	in toplotne	& Metal	Diesel Locomotives 5	Area	37.000	City 517	
	tehnike-Boris	Proces-	Diesel Ccach 20-30 Unit	Employee	553	River 103	
	Kidric-TIRNA	sing	Electric Coach 10 Unit		_	Total 620	
	VOZILA (TVT)				-		
A-2	ELEKTROKOVINA-	Machine	Lighting Tool Units	Capital	1.000.000	Well	Sewerage
	SVETILA	& Metal	Interal Use 643, 145	Area		City 150	
	(SVETILKE)	Proces-	Industrial Use 282.316	Employee	266	River	
		sing	Outdoor Use 9.450			Total	
A-3	PRIMAT-Tovarna	Machine	Safty Safe 1.220 t	Capital		Well	Sewerage
	kovinske opreme	& Metal	Metal Wardrobe 727 t	Area	17,366	City 109	
	(PRIMAT)	Proces-	Annual Shipment	Employee	220	Ríver	
		sing	884, 567 1, 000 SIT			Total	
4-4	ELEKTROKOVINA	Machine	Pumps 10.484	Capital	882.795	Well	Sewerage
	Elektromotorji	& Metal	Sigle Phase Motor 8,246	Area	49.421	City 155	
	(ELKO)	Proces-	Three Phase Motor 38, 583	Employee	252	River	-
	-	sing	Annual Shipment 920 MSIT			Total	

Table 1.1.3 Outline of the Tertiary Beneficiary Factories (1/2)

- 5 -

Ŀ

Table 1.1.3 Outline of the Tertiary Beneficiary Factorics (2/2)

No.	Nane	Industry	Main Products		Capital	1000SIT.	Water Source {	ಷ	Waste Water is
	(Abbreviation)		Products	Quantity	Area m' 8	Area m' & Employee	Consumption m^2/d Discharged	1 / q	Discharged to
A-5	HENKEL ZLATOROG	Chemical	Washing Powder 16,000 t	16,000 t	Capital	Capital 5.817.130	¥el1		Sewerage
	(HENKEL)	Industry	Cosmetics	6.640 t	Area	28, 200	City 3:	6 8 8 8	
			Annual Shipment		Employee	575	River 3.	312	
			8, 317, 517 1, 000 SIT	L. 000 SIT			Total 6	65î	
A-6	SWATY TOVALNA	Chemical	Grinding Wheels,	Υίτι΄	Capital	2,124,000	Well		Sewerage
	umetnih brusov	Industry	fied Bond 667t.	Resin B.	Area	39,779	City 1.	149	
	(SWATY)		465t, Reinforced R. B. 1 Kt	R.B.1 Kt	Епріоуее	451	River		
			Diamond & CBN 44 %Carats	KCarats			Total		

- 6 -

	Machine & Metal Pro- cessing	Food	Textile	Furni- ture	Chemical Industry	Total
Model Factories	1	4	1	1		7
Secondary Beneficiary Factories	1	2	4		_	7
Tertiary Beneficiary Factories	4	-			2	6
Total	6	6	5	1	2	20

Table 1.1.4 Each Factories VS Classified Industry

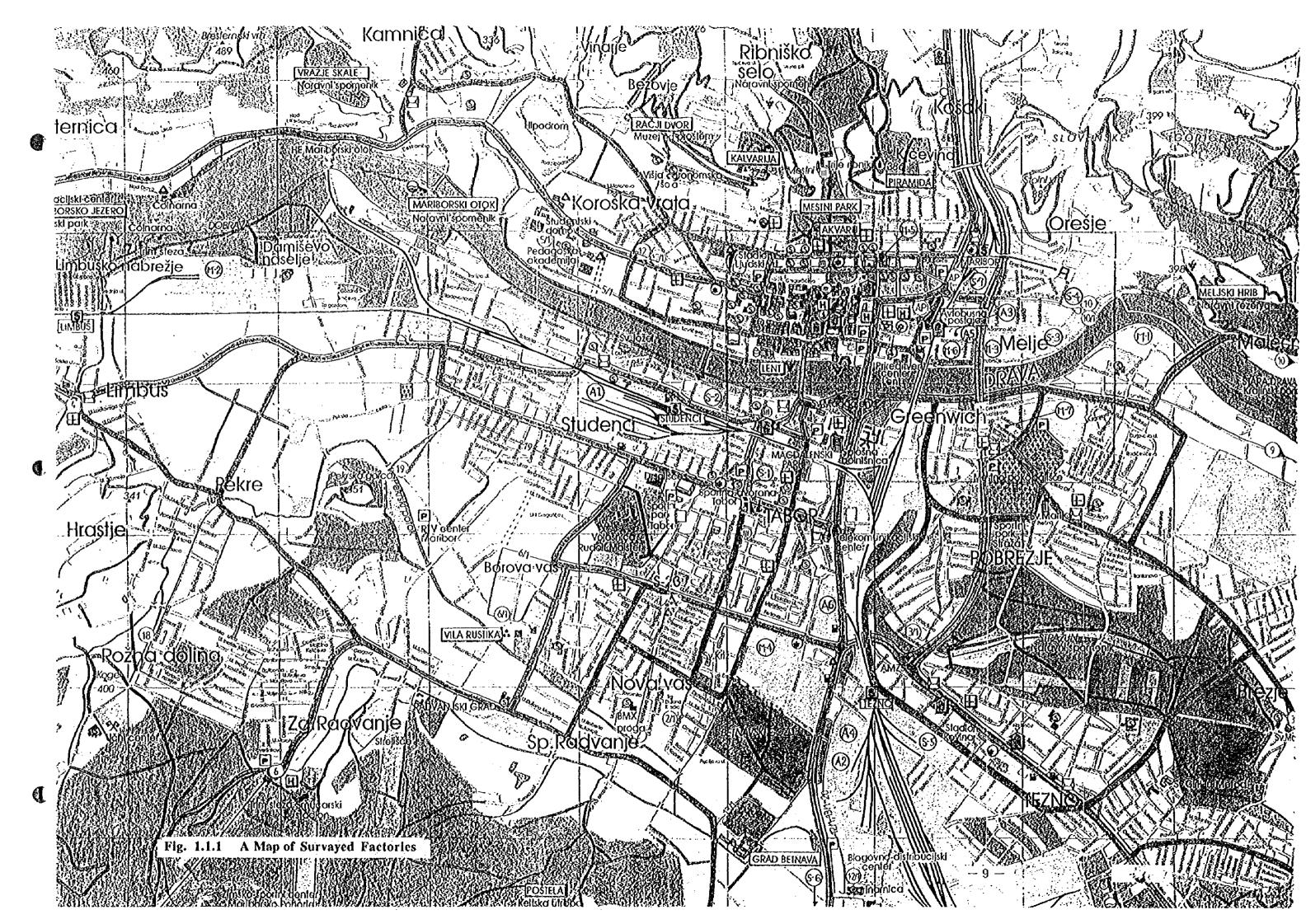
.

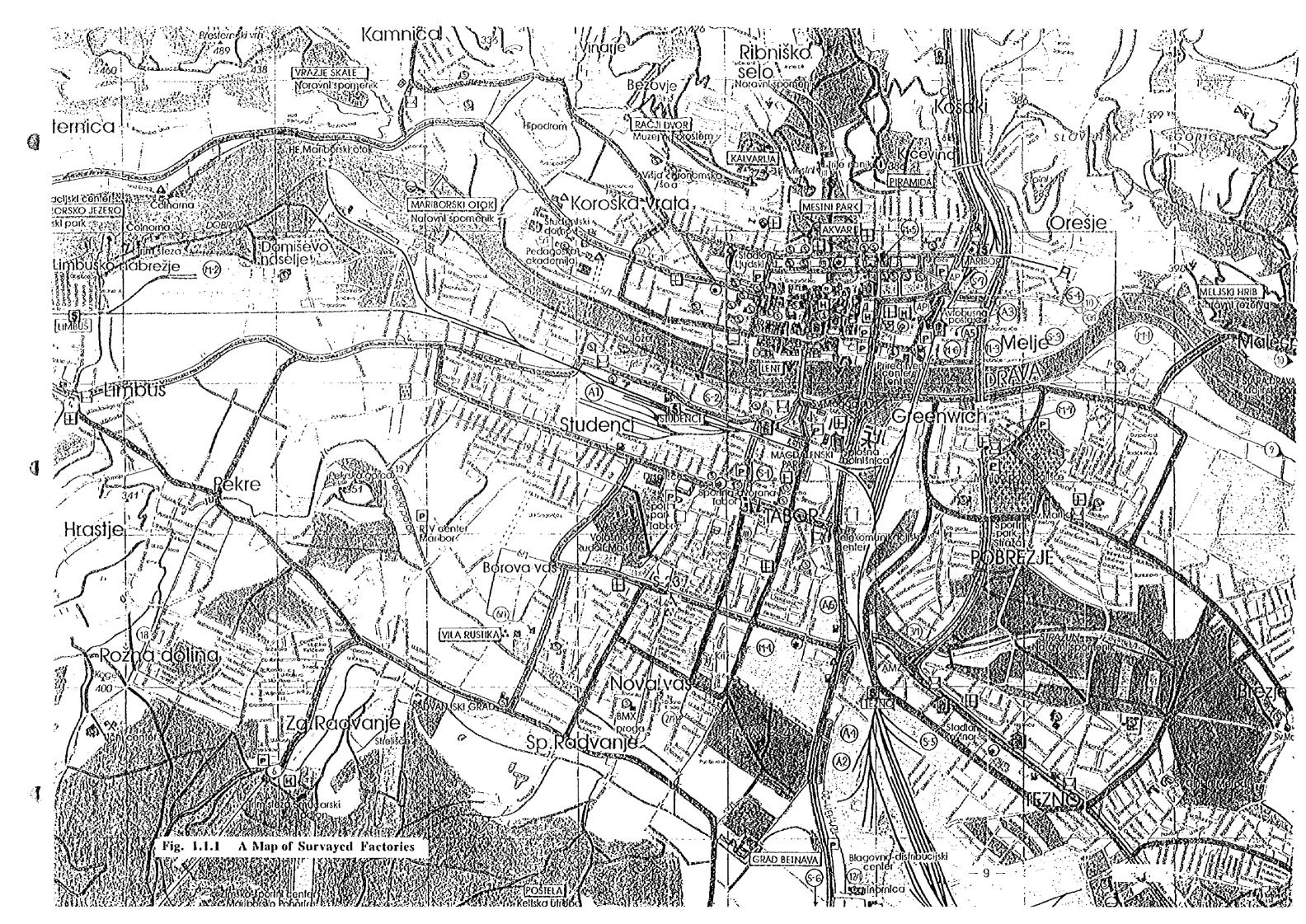
- 7 -

. .

.

.


.


. . .

.

.

.

