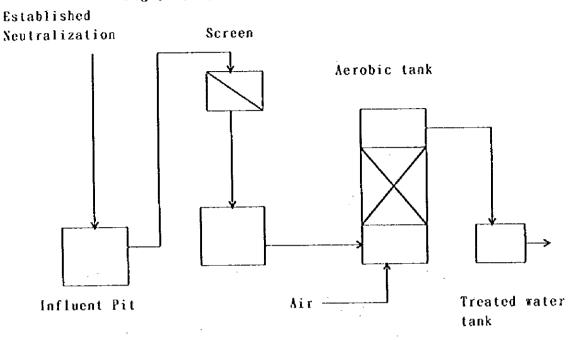
3. 5. 4 汚濁負荷量削減のための予備処理

1)予備処理システムの選定

本工場は、WWTP放流前に既に中和処理がなされており、これ以上予備処理装置を設置する場所が、工場内には見当たらないが、一応、参考のため検討を行った。

したがって、好気性処理システムを選定した。処理対象廃水は中和後の総合廃水とすする。なお、設計水量については、1996年6月の調査時点では71m³/dであったが生産量の多い季節を考慮に入れ90m³/dとした。


2) 予備処理システムの概要(Fig 3.5.7)

あらかじめ、比較的粒径の大きい浮遊物をスクリーンにより除去し、好 気性処理システムにて処理する。

Acrobicシステムは標準活性汚泥、回転円盤方式、生物膜ろ過方式(Bio film Filter)などがあるが、その中でも、高負荷をかけることが可能で、バルキングが生じない、予備処理として適切な、且つ価格面で有利な生物膜ろ過方式を選定した。

生物膜ろ過にて発生した余剰汚泥 (Excess Sludge)は量的にも少ないので、極力設備費を安くするために、汚泥処理設備は設けず、処理水中に混合させ、WWTPに放流することとする(その分だけ処理水中のSSは増加する)。

Fig 3. 5. 7 Flow Diagram of Pretreatment

3) 検討結果

(1)技術的検討

廃水及び処理水の水質ならびに汚濁負荷量をTable 3.5.6に示す。 BOD除去率を80%、COD除去率を70%に各々設定した。T-Pの処理後の 値については、推定したものである。処理後のSS値が原廃水より多くなっているが、好気性処理で発生した余剰汚泥は量も少ないので、そのまま処理水と一緒にWWTPに放流することとしたためである。

Table 3.5.6 廃水及び処理水の水質ならびに汚濁負荷量

Kind of waste	Quntity m³/d (kg/d)	CODer mg/L (kg/d)	BOD mg/L (kg/d)	PH	SS mg/L (kg/d)	T-P mg/L (kg/d)
Total Raw waste water (After neu- tralization)	90	750 (68)	510 (46)	Ave 7. 8	90 (8)	17 (1.5)
Pretreated water (Discharge to WWTP)	90	220 (20)	100	7	172	(0.9)
Treated water (Discharge to River)	- 90	120 (11)	25 (2.3)	7	80 (7)	2 (0.2)

(2)経済性評価 .

処理装置の設備費と処理費をTable 3.5.7に示す。河川放流の場合についても比較するために付記した。

Table 3.5.7 処理装置の設備費と処理費

_	Equipment cost SIT	Depreciation & Interest SIT/m³ ①	Running cost SIT/n³ ②	Total Treatment cost SIT/m³①+②
Pretreatment	24, 630, 000	112	114	226
Discharge to River	81,214,000	358	353	711

4)まとめ

河川放流の場合と比較して、大幅に処理コストが安くなったが、これは、 TーP処理のための凝集沈殿装置がないこと、また、薬品を使用する必要 がないこと及び予備処理の考え方から、BOD、CODcrの除去率を低 く押さえて、極力設備費を安くしたことが要因である。 3.6 M-6 KOSAKI TOVARNA MESNIH IZDELKOV (Slaughter House)
3.6.1 工場概要

1) 概要

Kosaki は、Maribor 地区唯一の屠場であり、ほぼ毎日牛豚の生鮮食肉を出荷している。作業は昼間だけで、牛豚の切替えは、時間を区切って行っている。
立地は Drava 河に近いが、工場敷地と河の間に公道が通っている。
なお、ソーセージなどの加工品は別立地の工場で生産している。

工場敷地面積:

22,534 m2

従業員数:

100人

操業条件:

5 hr/day,

250 days/year

生產品目:

牛

ДX

年間生産量(1995):

11,500頭

43,000頭

年間売上高:

2) 水源・用途別の水使用量

Table 3.6.1に一覧を示す。用水は全量市水を使用している。

- 3) 水供給および廃水排出フローダイヤグラム 概要を fig. 3.6.2 と Fig. 3.6.3 に示す。
- 4) 補給水および廃水の水質

Table 3.6.2 に補給水即ち市水の水質を示す。

Table 3.6.3に製品の洗浄排水、Table 3.6.4 に器具などの洗浄排水と自動車の洗車排水の水質を示す。グラフは排水量の時間変化を示す。

製品の洗浄排水が排水全体の大半を占めており作業中随時排出される。使用器具などの洗浄排水は作業終了後に排出されるが、その水量は少ない。この2つの排水の汚濁負荷が大きい。既設の油水分離装置の出口における水質は、今回測定しなかったが、従来のデータによれば下水放流に問題ない水質である。

なお、洗車排水については、そのままで下水放流に問題ない水質である。

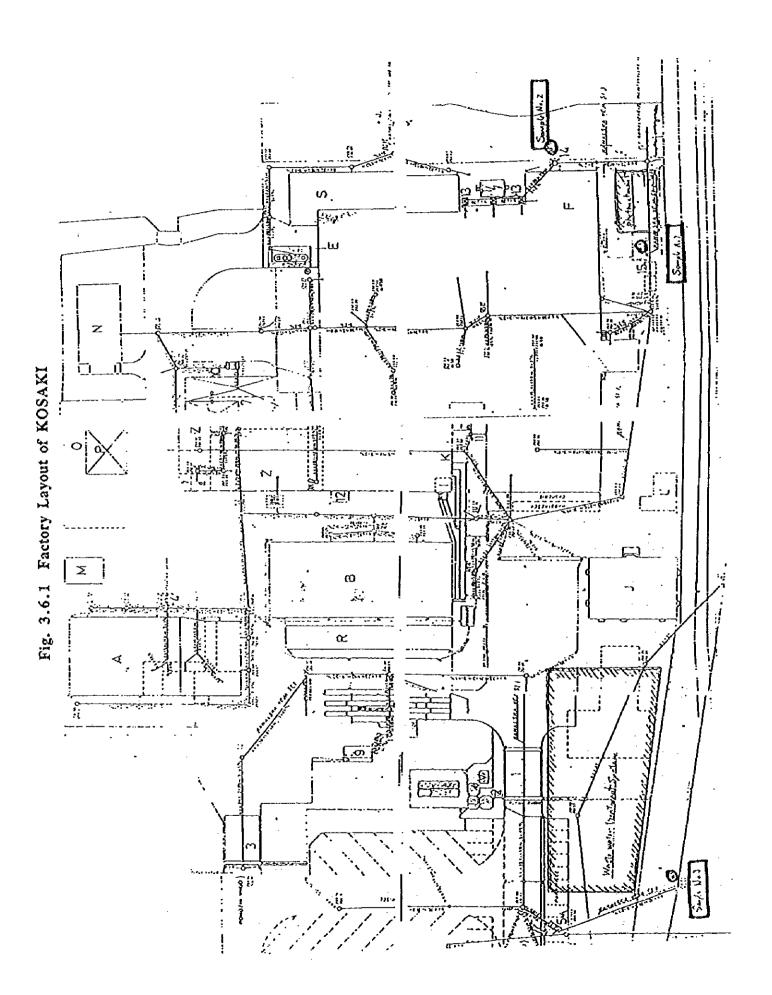


Fig. 3.6.2 Process Diagram of Production Line

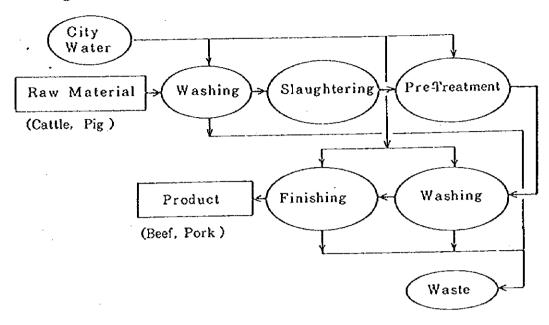
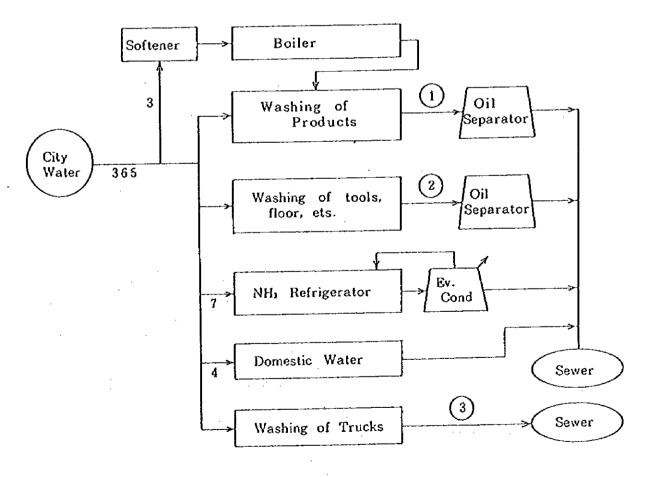



Fig. 3.6.3 Water Balance Diagram (m/day)

: Sampling points of waste water.

Table 3.6.1 Quntity of Consumed Water Classified by Source and Use

Industry: Food(Slaughter)

Unit; nd/day

Source	Well	City	River	Sub-	Recoverd	Total
Use	Water	Water	Water	Total	Water	
Boiler Feed		3		3		3
Raw Material						
Washing		351		351		351
Cooling		7		1	(60)	(67)
Air Conditioning						
Miscellaneous		4		4		4
Total		365		365	(60)	(425)
				Recoverd	Water/Tota	1 (14.1)%

Note: A value in () shows estimated one

Table 3.6.2

city water

Characterization	City water		
of the sample			a. p
Lab. No.	5721		
Parameter	ехрг.аѕ	Unit	
Temperature		·c	20
рН		<u> </u>	7,4
Iron	Fe	mg∕l	< 0,05
Manganese	Mn	mg/I	< 0,05
Total hardness		'dII	15,4
Alkalinity		mmol/I	4,4
Chloride	CI	mg/l	12
Evaporated residue		mg/i	310
Electric conductivity		μS/cm	460

Table 3.6.3
No. 1, slaughtery water

		Lab. No.	5867	5868	5869	5870	5871	5872
Date of sampling			12.06.	12.06.	12.06.	12.06.	12.06.	1213.06.
Hour of sampling			09-11	11-12	12-14	14-16	16-18	18-10
Parameter	expr.as	Unit						
ρH			6,8	6,3	6,1	6,7	6,9	7.2
Suspended solids	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	urā\J	570	1000	2000	430	240	150
Colour		m ^{.1}	48	82	36	16	27	6,8
α (436 nm) α (525 nm)		m"	32	59	25	9,8	25	4,5
α (620 nm)		m'	23	41	22	7,2	25	3.7
	N	mg/l	131	348	221	75	47	33
Total nitrogen	И	mgA	72	150	180	47	35	19
- ammonium nitrogen:	N	mg/l	115	290	190	66	39	2
- Kjeldahl nitrogen - nitrite nitrogen	N	mg/l	< 0,1	< 0.1	< 0,1	< 0,1	< 0,1	< 0.
	N	mg/l	16	58	31	9,4	7,7	5,
- nitrate nitrogén	P	mg/l	7,8	42	5,8	30	26	l
Total phosphorus	0,	Ngm	900	3100	3100	790	640	39
COD	0,	mg/l	< 5	640	< 5	150	180	10
BOD,	<u></u>	mg/l	17	100	130	30	. 28	1
Total fat Anionic surfactants	DBS	mg/l	1,5	0,9	2.1	1.9	7,5	3.

Lab. No.	·.		6718
Date of sampling	. 3-4 70-0	- 54544 54-5 Year 14-54-54-54-54-54-54-54-54-54-54-54-54-54	03.07.1996
Time of sampling	*		09:00
Type of the sampling			spot
Parameter	expr.as	Unit	
Senable solids		mVI	. 0,1
Free chlorine	Ci,	mg∕l	< 0,05
Total chlorine	Ci.	mg/l	< 0,05
AOX	СІ	me\J	0.48

Table 3.6.4

washing waste water

		Sample	2 washing room	3 car-washing
		Lab. No.	5873	5720
Parameter	expr.as	Unit		·
Temperature		'C		13
рН			8,0	. 7,5
Suspended solids		mg/l	290	< 30
Colour				
α (436 nm)		m'	42	0,1
α (525 nm)		m ⁻¹	30	< 0,1
α (620 nm)		m ⁻¹	22	< 0.1
Total nitrogen	N	mg/l	102	5,2
- ammonium nitrogen:	N	mg/l	68	0,4
· Kjeldahl nitrogen	N	mg/l	78	2,4
- nitrite nitrogen	N	Dig/l	0,1	< 0.1
- nitrate nitrogen	N	mg/l	24	2,8
Total phosphorus	Р	mg/l	56	6,4
COD	О,	mg/l	1000	< 15
BOD,	О.	mg/l	540	< 5
Total fat		nig/l	50	< 5
Anionic surfactants	DBS	mg/l	< 0.05	< 0.05

Fig. 3.6.4 Graphic Representation of Temperature Measurements of the Slaughtery Waste Water (10 min average values)

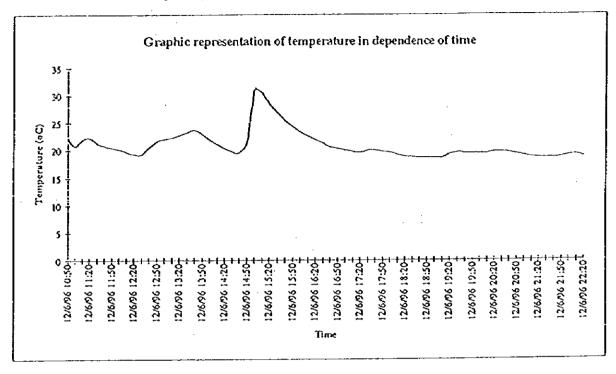


Fig. 3.6.5 Graphic Representation of pH Measurements of the Slaughtery Waste Water (10 min average values)

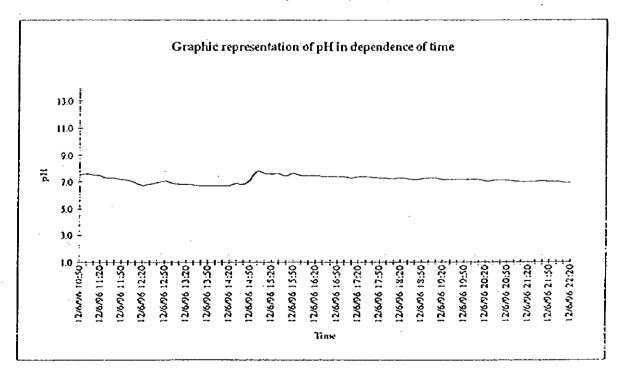


Fig. 3.6.6 Graphic Representation of Flow Measurement of the Waste Water from Slaughtery in Kosaki (10 min average flow)

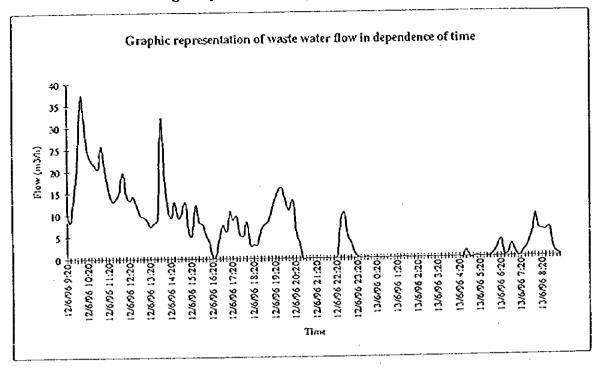
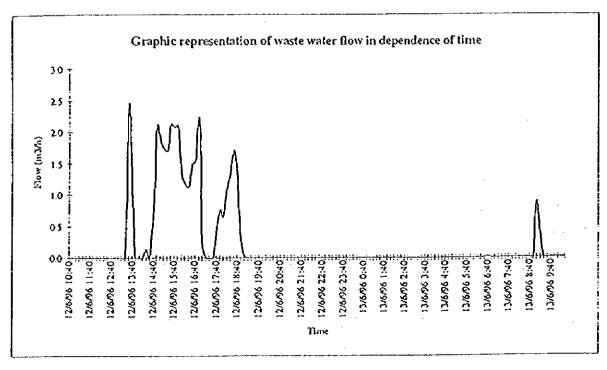



Fig. 3.6.7 Graphic Representation of Flow Measurement of the Waste Water from Washing Room in Kosaki (10 min average flow)

- 3.6.2 水使用合理化
- 1) 水使用および合理化の現状
 - (1) 水使用の特徴
 - ①水源は市水のみであり、流量計で計量されている。
 - ②用水使用量の殆ど(約 96%)は洗浄・製品処理用水であり、残りは冷却水、ボイラ用水、雑用水である。
 - ③洗浄・製品処理用水の用途は、屠殺・解体時の洗浄及び床・解体用器具等の 洗浄用である。
 - (2) 合理化の現状
 - ①アンモニア冷凍機(3台)の冷却水は蒸発凝縮器(3台)の採用により節水 されている。
 - ②ボイラ用水は蒸気の直接吹込みによる温水の製造に使用されている。
 - ③放血後の製品は温水槽(1槽)を移動する間に洗浄される。
 - ④床・解体用器具等は水による洗浄で高圧噴射式洗浄機および手元制御弁付き のホースが使用されている。然し、手元制御弁のついていないホースも散見 された。

2)検討および評価

- (1) 技術的検討
 - ①用水使用量の約 96%を占める洗浄・製品処理用水量について、日本における平均的な洗浄・製品処理用水量と比べてみると約2倍となっている。ただし、日本とは製品処理方法が異なるので単純に断定することは出来ない。
 - ②洗浄・製品処理水を再生利用することは衛生上の観点を考慮すれば、不可能 と言えよう。また、再生水を冷却水や雑用水等に使用することも考えられる が、使用量が少ないので経済的に成り立たないことは明白である。
 - ③洗浄·製品処理作業は殆ど手作業であるので、作業者の節水意識の向上によって使用水量の削減が可能と考えられる。
- (2) 経済的評価
 - ①管理者及び作業者の節水意識の向上によって使用水量の削減を図ることが肝要であるので、特に経済的評価はできない。

3.6.3 WWTP放流基準を満足する予備処理及び廃水処理

1) 現状

全排水が3ケ所の排水ピットから下水へ放流されている。 食肉工場の排水は2ケ所の油水分離装置を通して放流している。

2) WWTP放流基準を満足する予備処理

下水放流の場合の前処理としては、何もしなければ油分が規制を超過する恐れがあるが、既存の油水分離装置が好適に機能しており、追加する必要はない。

3) 廃水処理

河川直接放流の場合は、P の規制が厳しいので注意を要する。 なお、廃水処理設備の設置スペースは、十分にある。

(1) システムの設計条件

排水量:	400 m3/day
排水流入時間	10 hr/day

排水処理時間 24 hr/day 脱水機は 8 hr/day

水質		流入	放流	排水基準。
Temp	°C	15	20	30
Нg		6 - 8	6.5 - 8	6.5 - 9
COD	ag/l	1,500	26	120
800	mg/1	1,000	5	25
Fat	ng/l	100	4	20
SS	mg/l	1,000	14	80
NH4- N	mg/l	100	5	10
Total N	l mg/1	200	7.5	
Total P	mg/1	40	0.5	2

(2) システムの概略フロー

(waste water)

- → Collecting pit → Screen → Stabilization tank(anaerobic)
- → Oil separator → Wixing Tank → 1st. Aeration tank
- → 2nd. Aeration tank → 1st. Sedimentation tank
- → Contact Aeration tank → Contact Anaerobic tank
- → Coagulation tanks → 2nd. Sedimentation tank
- → Ireated water tank → Discharge to the river

(coagulated sludge)

- → Sludge storage tank → Sludge dehydrator → Cake hopper
- → Truck

4) 廃水処理システム選定の理由

- ①屠場は、排水基準では一般に属する。屠場の排水の汚濁物質は基本的に生物 系なので、処理システムとしては公共中央処理場で採用される活性汚泥処理 法が適している。
- ②河川へ直接放流する場合は、Nと Pの規制値が厳しく、これをクリアするよう に排水処理システムを設計すれば、BOD、COD、SS、油分などは自ずと規制を クリアする。
- ③NH4-Nは活性汚泥処理で容易に低下する。NH4-NがNO3-Nに変換している。 これを除去するためには、嫌気性の脱窒処理が必要となる。
- ④ Pの除去は凝集沈殿法で行う。
- ⑤SS、CODの規制値から見て、砂ろ過、活性炭吸着は必要ない。
- ⑥屠場の排水は、時間変動・濃度変動が大きいので、処理を安定に行うために 1日分に相当する容量の調整槽を設ける。集水ピットに既存の油水分離装置 は、活用すれば油分負荷の軽減に貢献するが、スカムの除去作業を軽減する ためにこれを短縮して直接調整槽に送液してもよい。それに対応するために、 加圧浮上設備を設ける

5) 機器仕様および図面

以下の表と図面にまとめる。

lable 3.6.5	機器リスト
-------------	-------

Fig. 3.6.8 マテリアルバランスシート

Fig. 3.6.9 フローシート

Fis. 3.6.10 レイアウト

Fis. 3.6.11 主要機器構造図

6) 設備コスト

(1) 機器類	7-817
(a) ポンプ・ブロワ、攪拌機、減速機、	脱水機 43,575
(b) 計測機器類	4,775
(c) その他機器類	74,275
(2) 現地工事類	
(e) 機器据付·配管工事	25.793
(f) 電気工事	20,431
(g) 塗装工事	1,437
(b) 土木工事	61,031
(i) 建築工事	50,359
(j) 现場管理費	6, 188
(k) 試運転費	3, 150
(3) 設計費	5,062
合計	296,076
(4) 年間当たり償却・金利コスト	
(a) 土木建築関連 40年償却	111.390/40 = 2.785 T-S1T/y
(b) 土木建築以外 15年償却	184,686/15 = 12,312
(c) 設備金利 10% 平均 5%	296,076x0.05=14,804
合計	29, 901

(5) 水量当たり賃却・金利コスト

年間処理水量 100,000 m3 で割ると

299 S1T/m3

7) 運転コスト

(1) 薬品代

(a) P A C (11%) : 160kg/day x 74.7SIT/kg x 250d= 2,988 T-SIT/y

(b) MeOH(%): 16kg/day x 70. x 250 = 280

(c) NaO H (100%) : $32 \text{kg/day} \times 83.2 \times 250 = 665.6$

(d) A # 3 7 - (powder) : 2.8kg/day x 990 x 250 = 693

(e) K ポリマー (powder): 2kg/day x 2,000 x 250 = 1,000

小計 5,626.6

(2)電気代 0.8 x 2,179 kwH/day x 15 SIT/kwH x 250 = 6,537

(3) 汚泥処分費 2.7m3/day x 1,423SIT/m3 x 250 = 960.5

(4) 用水代 $10m3/day \times 200 \text{ SIT/m3} \times 250 = 500$

(5)灯油代 164 L/day x 60 SIT/L x 90 = 885.6

(6)維持費 (土木建築以外の5%) 198,303T-SIT x 0.05 = 9,234.3

(7) 人件費 2人 x 16,280 DM/y x 87.5 S1T/DM = 2,849

合計 26,592

(8)水量当たり運転コスト

年間処理水量 100,000m3 で割ると

265.9 SIT/m3

8)経済性評価 正規の経済性評価は3.6.4に述べられる。 ここでは、正規の経済性評価がなされない他のモデル工場との対比のために、他と同様 の簡易経済性評価を行う。

(a) 条件

①原価償却年数:

機器類

15年

土木・建築

40年

②金利:

10%/年

③償却方法:

均等償却

④WWTP放流料金:160SIT/ m³

⑤河川放流:

⑥年間廃水処理量: 100、000 m³/年

(b) 廃水 1 m 3 当りの処理費

(0) //2/11	II I JV/XXXX			- 1- · · · · · · · · · · · · · ·
項目		内 容	SIT/年	金額 SIT/ m³
原価償却	機械類	184,004,000 ÷	15 = 12,312,000	123
	土木・建築	111,390,000 ÷	40 = 2,785,000	28
金利		506,117,000 × 0.	06 = 30,367,000	: 148
ランニング	コスト		26,592,000	266
습計				565

9) まとめ

河川放流の場合はの放流基準が厳しいため、設備コスト・ランニングコスト共に高いも のになる。自社の廃水処理設備を設置するよりも、料金を払って下水放流する方が有利 である。

Table 3.6.5 Equipment List of Watse Water Treatment System

No.	ltem	Q'ty	Material	Specification	Remark
1	Influent pit	1	RC	Capacity 30 m ³	Existing
-	Pump (submersion)	3+1	FC		
	Level switch	1	PVC		
2	Stabilization tank	1	RC	Capacity 400 m ³ (1 day)	
				9.6a×11a×4.5a(4.0a)D	
	pumps (submersion)	1+1	FC	80A×0.5m³/min×8m×2.2kw	
	blower (roots)	1	FC	125A×8.8%m³/min×0.5kg/cm2×15kw	
	air difuser pipe	1	SUS		<u> </u>
	level switch	1	PVC	Float type	
· ·	flow meter	1	PVC	V-notch Box type 5 - 30m³/hr	
3	Pressure flóation tank	1	SS	Capacity 16.7 m ³ (30 min)	
				Surface load 3m/h,circulation 100%	
				ōm×2.ōm×2.ōm(actual 2m)D	
	skinner	1	SS	chain drive 0.4kw	
	compréssor	1	SS	200N1/min, 7kg/cm2, 1.5kw	
	pressure tank	1	SS	2m3, 1.2m → ×2.4mH	
	slurry pump	1	FC	80/50A×0.3m3/min×40m 1.5kw	
	water flowmeter	1	FC	80A area type	
	air flowmeter	1	FC	40A orifice type	
			·		
4	Mixing tank	1	RC	78m3 (4hr)	
				7.5m×2.6m×4.5m(actual 4m)D	
	circulator	1	FC	8 direct 50A 2.2kw	

No.	Item	Q'ty	Material	Specification	Remark
<u>.</u>	#1 Aeration tank	1	RC	Capacity 249 m ³ (14hr)	
			-	8.3m×7.5m×4.5m(4.0u)D	
	air difuser	1	SUS		
	air flow meter	1	FC	1004	<u> </u>
	blower				
6	# Thickner tank	1	RC	Capacity 30m³ Surface 20 m²	
			·	4.5m×4.5m×4.5m(1.5m)D	
 -	return sludge pump	1	FC	airlift type 80A	:
	sludge meter	1	PVC	V notch type	
7	#2 aeration tank	1	RC	Capacity 77 m³ (4.5hr)	<u> </u>
				4.5m×4.5m×4.5m(3.8m)D	
	air difuser	1	SUS		
	air flow meter	1	FC	·	
8	#2 Thickner tank	1	RC	Capacity 30 m³ Surface 10 m²	
				4.5m×4.5m×4.5m(1.5m)D	
	return sludge pump	1	FE	airlift type	
	sludge meter	1	PVC	V notch type	·
		1			
		1			

No.	item	Q' ty	Matérial	Specification	Remark
9	#1 Sedimentation tank	1	RC	Capacity 84m³ (4.5hr)	
				7.5m×7.5m×4.5m(1.5m)D	
	sludge collector	1	22	rake type torque 120kgm 0.4kw	
	return sludge pump	1	FC	airlift type 80A	-
	sludge meter	1	PVC	V notch type	
10	Contact aeration tank	1	RC	Capacity 129m³ (7.5hr)	
				2.7m×14.1m×4.5m(3.4m)D	
<u></u> .	contact bed	1	PE	40m³	
	air flow meter	1	FC	orifice 80A	
	pli meter/controler	1			
11	#2 Sedimentation tank	1	RC	Capacity 84 m ³ Surface 56 m ²	
				7.5m×7.5m×4.5m(1.5m)D	
	sludge collector	1	SS	rake type torque 120kgm 0.4kw	
	return sludge pump	1	FC	airlift type	
	sludge meter	1	PVC	V notch type	
		<u> </u>			

ŀό.	ltem	Q' ty	Material	Specification	Remark
2	De-N pump tank	1	ŘC	Capacity 19 m ³ (1hr)	·
			•	3.3m×1.8m×4.5m(3.2m)D	
•	pump	1	FC	80A×0.5m³/min×8m×2.2kw	
	level switch	1	PVC	float type	
13	De-N tank	ì	RC	Capacity 130 m ³ (7.5hr)	
				3.3m×9.9m×4.5m(4m)D	
	contact media	1	PE	12a³	
				:	·
14	Oxidation tank	1	RC .	Capacity 36 m ³ (3 hr)	·
				1.8a×5.7a×4.5n(3.8a)D	
	blower	1	FC	1504×6.1%m³/min×0.5kg/cm2×15kw	
	air flow meter	1	FC		
	difuser	1	SS		
15	Reaction tank	1	RC	Capacity 5.8 m ³ (20min)	
			acid coating	1.8e×1.8e×2.5a(1.8e)D	
	Agitator	1	ss sus	Vertical 295rpm 2.2 kw	:
16	pH control tank	 1	RC	Capacity 5.8 m ³ (20min)	
			acid coating	1.8a×1.8a×2.5a(1.8a)D	
	Agitator	1	SS SUS	Vertical 295rpm 2.2 kw	
	pH meter	1		Dip type pH 0~14	
					-
		,			

No.	l tena	Q'ty	Material	Specification	Remark
17	Coagulation tank	1	RC	Capacity 5.8 m ³ (20min)	
			•	1.8m×1.8m×2.5m(1.8m)D	
	agitator	1	sus	Vertical puddle 88rpm 3.7 km	
18	#3 Sedimentation tank		RC	Capacity 54 m ³ Surface 36 m ²	
	25 Sediscitation tank			6m×6m×4.5m(1.5m)D	·
	sludge collector	1	SS .	rake type 0.4 kw	
	sludge pump	1	FC	airlift type 80A	-
	sludge meter	1	PVC	V notch type	
19	Treated water tank	1	RC	Capacity 40 m ³	
				1.8m×7.5m×4.5m(3m)D	
	pump (submersion)	1+1	FC	80A×0.5m³/min×8m×2.2kw	
	level switch	2	PVC .	float type	
	water flow meter	1	FC	tefron coated	
	pH meter	1 .			
20	Sludge storage tank	1	RC .	Capacity 40 m ³	
				5.7m×3.9m×4.5m(3.6m)D	
	sludgė pump		FC	80A×0.5m³/min×8m×2.2kw	
	blower (roots)	1	FC	80A×1.8Nm³/min×5m×5.5kw	
	level switch	1	SUS	float type	
	air flow meter	i	SS		

No.	ltem	Q'ty	Material	Specification	Remark
21	Dehydrator	1	SS	Belt press type, 55kg/hr, 6.7km	
				0.4t/day(99%) cake(85%)	
	sludge coagulation tank	1	SS	0.64m ³ with agitator 88rpm	
	belt convayer	1	SS NBR	0.4m width 8m length	
	cake hopper	1	SS	10m³ O. 2kW	
22	Methanol tank	1	PE/FRP	lm³ 1.065mφ×1.4mH	
	feed pump	i	sus	diaphram 6 - 60cc/min 0.1kw	
	level switch	1	PVC	float type	:
23	PAC tank	1	PE FRP	Capacity 10 m ³	-
				2.35a ø ×2.9aH	:
	pump (diaphram)	1	PVC	100 - 1,000cc/min×3kg/cm ² ×0.4kw	
	level switch	1	PVC	float type	:
24	NaOH tank	1	PE FRP	Capacity 4 m ³	-
				1.85mφ×2.055mH	
	Pump (diaphram)	1	PVC	14 140cc/min×13kg/cm²×0.1kw	
	Level switch	1	SUS	Electrode type	
25	Polymer(A) solving tank		PE FRP	Capacity 10 m ³	
				2.35a φ × 2.9aH	
••	powder solver	1	PVC	3 - 9 kg/hr 0.06kw	
	Agitator	1	sus	Vertical 88rpm 5.5kw	
	Pump (roots)	1	FC	65/50A×0.31m³/min×10m×2.2kw	

No.	ltem	Q'ty	Material	Spécification	Remark
26	Polymer(A) solving tank	1	PE FRP	Capacity 10 m ³	
			-	2.35 m ≠ ×2.9πH	
	powder solver	ı	PVC	3 - 9 kg/hr 0.06kw	
	Agitator	1	sus	Vertical 88rpm 5.5km	
	Pump (diaphram)	2	PVC	500 - 5,000cc/min×3kg/cm²×0.4kw	
	Level switch	1	SUS	Electrode type	
27	Polymer(K) solving tank	1	PE FRP	Capacity 10 m ³	
				2.35 m ♦ × 2.9mH	
	powder solver	1	PVC	3 - 9 kg/hr 0.06kw	
	Agitator	i	SUS	Vertical 88rpm 5.5kw	
	Pump (roots)	1	FC	65/50A×0.31m³/min×10m×2.2kw	
28	Control panel	ı		Indoor Self-standing enclosed type	
				1.6a×0.6a×2aH	
				AC 400V×50Hz	
				Push button switches	
.				Alarm lamps	
				pH indicators	
				Do indicator	
		-			

73.20 No. 2 THI CKCNCR ACRATICA SCOINCHTATION TANK ne. I Tulckinin CONTACT ACRATION TACATMENT TANK 16. 1 ACHAT I CH TARR SEDIMENTATION TANK SEDIMENTATION TANK 2 o 2 o 2 o MIXING SLUGGE DCHYDAATOR 7 LOAYATION TAIIK 7 DENITRIFICATION TANK \$14014124710N 7AM per CONTAGE TAME STORAGE STORAGE TANK OXIDATION TANK REACT 1ON TANK SCRECH כסגונפו ואה זיאול

Fig. 3.6.8 Material Balance Sheet of Waste Water Treatment

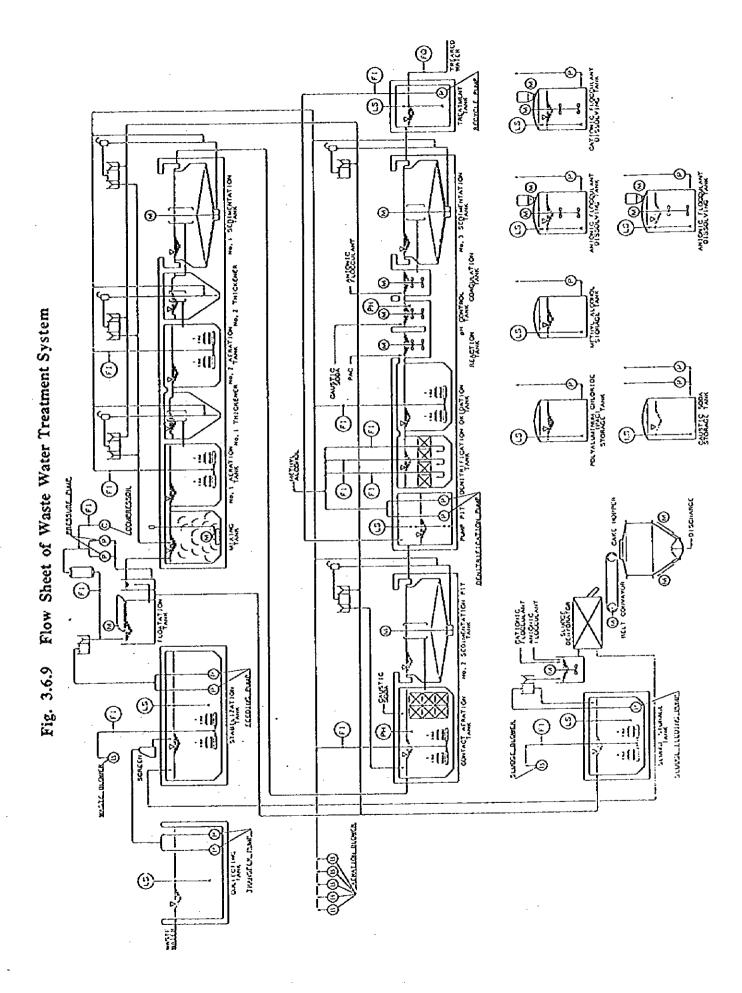


Fig. 3.6.10 Layout of Waste Water Treatment System

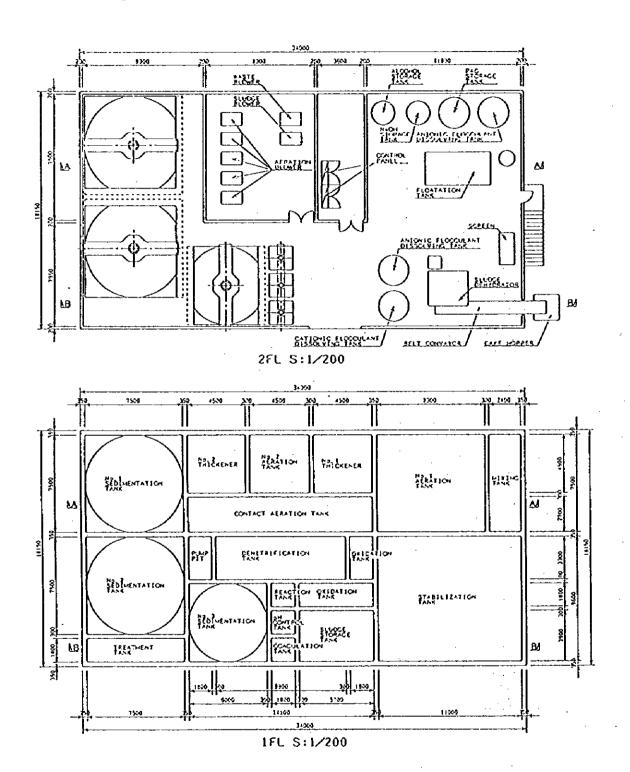
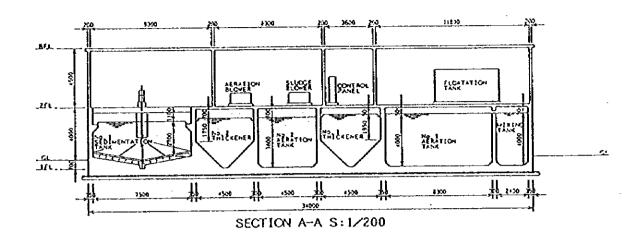
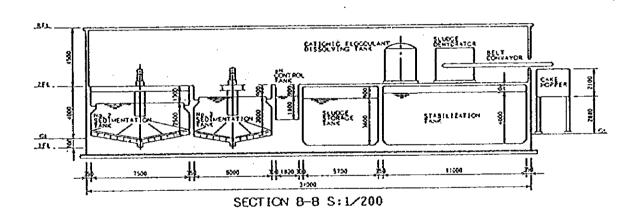




Fig. 3.6.11 Section of Waste Water Treatment System

3.6.4 财務分析

1) 前提条件

(1) プロジェクトケース

前述した技術的検討の結果から、下水放流するケース(Case 2)については既存の油水分離装置が機能し、前処理なしで放流できるので、廃水処理のための追加費用が生じないことがわかった。したがって、河川放流するケース(Case 1)について主として財務分析を行う。

(2) 廃水処理能力

廃水処理能力:100,000 m³/年□

操業日数 : 250日/年

(3) 所要資金

前項で見積られたプラント建設費に加えて、1.4.1項で述べた前提条件に基づく 所要資金は次の通りである。建設中金利計算のため、Case 1の建設期間は1年と する。

所要資金の内訳

		(単位:DEM, 1,000)
я н	Case 1	Case 2
プラント建設費	3, 458	0
一設備・機器	2, 157	0
- 土木・建築	1,301	0
建設中金利	207	0
台 計	3, 665	0

(4) 資金調達

Kosakiについては、所要資金の全額は長期借入金により融資されるものとし、 金利は12%とする。

以上の項目を含むCase 1の基本ケースにおける前提条件は表3.6.6に示す。

2) 財務分析

上述した前提条件に基づき、Case 1における廃水処理費用明細表は表3.6.7に、資金繰り表は表3.6.8に示す。

財務分析の結果について以下に概要する。

2010年における廃水処理費用の内訳は、次の通りである。

廃水処理費用の内訳

(単位:DEX/m³)

M II	Case 1	Case 2
変動費	1.62	0.00
直接固定費	1.91	2.29*
償却・金利を除く処理費	(3.53)	(2.29)
償却及び金利	4.10	0.00
償却・金利を含む処理費	7.63	2. 29
(総費用)		

· (注) * 下水道料金(1.780 DEM/m³) + 市の汚染税(0.453 DEM/m³) + 水利用税(0.053 DEM/m³)

下水放流するケース (Case 2) は廃水処理のための追加費用は生じないが、しかしながら、下水道料金及び汚染税として、2.29 DEM/m³を支払うことになる。

- 一方、河川放流するケース (Case 1) における負却・金利を含む廃水処理費用

(総費用) は7.63 DEN/m³となり、Case 2の費用と比べて、5.34 DEN/m³高くなることがわかる。

Case 1の最大費用要素として、償却及び金利の項目が総費用の54%を占めている。これは、高価な投資額が費用増加の要因になることを意味する。

Case 1の資金繰りに関して、2010年における長期借入金返済能力(DSR)は、次の通りである。

長期借入金返済能力

ケース	(A)	(B)	(C)
	現金	债 務	DSR
	DEM 1,000	DEN 1,000	(A)/(B)
Case 1	410.0	586.4	0.70

(注)(A): 1.4.5項に示した公式の分子、(B): 同じ公式の分母

上表の通り、DSRは0.70となり、債務の返済に対して現金が不足している状況を示している。

以上の基本ケースの結果から、プラント建設費及び楽品のような主要要素が変動した場合の感度分析を、FIRR及びDSRを用いて行うこととする。

感度分析表

(单位: FIRR, %(DSR, 割合))

項 目	プラント建設費	薬 品
Case 1		
20% ダウン	13.83%(0.92)	9.77%(0.72)
0%(基本ケース)	9.32%(0.70)	9.32%(0.70)
20%アップ	6.10%(0.55)	8.86%(0.68)
		<u></u>

上表から薬品よりプラント建設費が感度が高いことを示している。

更に、低利の融資が利用できると想定した場合のケーススタディを行う。ここでは、金利は12%から6%になると仮定した。

2010年における長期借入金返済能力(DSR)は、次表の通りとなる。

長期借入金返済能力

ケース	(A)	(B)	(C)
	現金	債 務	DSR
	DEN 1,000	DEM 1,000	(A)/(B)
Case 1	410.0	463. 1	0.89

(注)(A): 1.4.5項に示した公式の分子、(B):同じ公式の分母

DSRの結果は、低利の資金が利用できるとすれば、プラント建設費が20%削減した場合と同じ効果が期待できることを意味する。

以上述べてきた分析から、当工場にとっては前処理を必要としない下水放流するケースが、直接河川放流するケースより経済的に有利であることが示された。

Table 3.6.6 Project Profile and Assumptions for Financial Projection (1/3)

1 Project

Title : Wastewater Treatment Project

Factory: Kosaki Tovama Mesnih Izdelkov p.o. (M-6)

Location : Maribor, Slovenia

Project Case : Base Case 1: Discharge to River
Annual Production : Food/Butchery: 54,500 heads/y

Maximum Operable Days : $(365.25 - 115.25) \times 100\% = 250.00 \text{ DPY}$ Treatment Capacity (100%) : $250.00 \text{ DPY} \times 400 \text{ m}^3/\text{d} = 100,000 \text{ m}^3/\text{y}$

Operation Start Year : 2005

Monetary Unit : DEM in Terms of Fixed Price in 1996 Exchange Rates : 1.0 DEM = 89.89 SIT as of June, 1996

2 Schedule

Start of Project Implementation : January 01, 2004
Project Completion : December 31, 2004
Commercial Operation : January 01, 2005
Project Phase Out : December 31, 2019

Project Life : 15.0 Years from Start of Commercial Operation

Project Year : From January 01 to December 31

Construction and Commissioning : 1.0 Year from Start of Project Implementation

3 Financing Required and Financing Plan - 1996

Financing Required	DEM, '000	Financing P	DEM, '000	
Land/Site Development	-	Equity	: 0.00 %	0.00
Plant Construction Cost*	3,458.00	Long Term Loan	:100.00 %	3,665.00
- Equipment & Machinery	2,157.00	- Interest	: 12.00 %	
- Civil & Building	1,301.00	Short Term Loan	:	• •
Interest during Construction	207.00	Total Praisat Dinam	olas Cast	3,665.00
Fixed Capital Cost	3,665.00	Total Project Finan		3,003.00
Initial Working Capital	0.00	* Including Sales Ta		
Total Capital Requirement	3,665.00			

Table 3.6.6 Project Profile and Assumptions for Financial Projection (2/3)

4 Inputs and Costing (CIF at the Plant with Full Capacity Utilization in 1996)

	Unit		Per Sewage		Annual		
Inputs	Unit	Price	Consumption		Consumption		
		(DEM/Unit)	(Unit/m³)	(DEM/m³)	('000, Unit)	DEM, '000	
Chemicals			-	0.626	-	62.598	
- PAC (11%)	kg	0.831	0.4000	0.332	40.0000	33.240	
- MeOH	kg	0.779	0.0400	0.031	4.0000	3.116	
- NaOH (100%)	kg	0.926	0.0800	0.074	8.0000	7.4 08	
- A Polymer (powder)	kg	11.013	0.0070	0.077	0.7000	7.709	
- K Polymer (powder)	kg	22.249	0.0050	0.111	0.5000	11.125	
Utility Cost			_	0.989	•	98.871	
- Electricity	kWH	0.167	4.3580	0.728	435.8000	72.779	
- Sludge Disposal	m ³	15.830	0.0068	0.107	0.6750	10.685	
- Water	m ³	2.225	0.0250	0.056	2.5000	5.563	
- Fuel	Ltr.	0.667	0.1476	0.098	14.7600	9.845	
Variable Cost	<u>-</u>		-	1.615	100.0000	161.469	
Personnel	Man-Yea	ır 16,280		0.326	2.0000	32.560	
Maintenance		nt & Machine	erv x 5.0%	1.079	•	107.850	
Gövernment Charge	m ³	0.053	1,000	0.053	100.0000	5.300	
Local Pollution Tax	m ³	0.453	1.000	0.453	100.0000	45.300	
Direct Fixed Cost		<u>.</u>		1.910	•	191.010	
Cash Treatment Cost		•	-	3.525	100,0000	352.479	

5 Outputs and Pricing

(FOB at the Plant with Full Capacity Utilization in 1996)

·	Unit		Per Sewage		Annual	
Outputs	Unit	Price (DEM/Unit)	Treatment (Unit/m³)	Price (DEM/m³)	Treatment ('000, Unit)	Sales DEM, '000
Treatment Fee	m³	7.625	1,0000	7.625	100.0000	762.504

Table 3.6.6 Project Profile and Assumptions for Financial Projection (3/3)

(-)1 04 100 15 Years 40 Years 15 Years	100 Straig	ht Line ht Line ht Line Maxir	100 e Methe Methe Meth	100 and and and area of area o		Total/ Average 100 1,500 nnual	
100 15 Years 40 Years 15 Years	100 Straig Straig	100 ht Line ht Line ht Line	100 e Meth e Meth e Meth	100 nod nod nod	2019 100	100 1,500 nnual	
15 Years 40 Years 15 Years	100 Straig Straig	ht Line ht Line ht Line Maxir	e Meth Meth Meth	iod iod iod	A	1,500 nnual	
40 Years 15 Years	Straig Straig	ht Line ht Line ht Line Maxir	e Meth Meth Meth	iod iod iod	A	nnual	
40 Years 15 Years	Straig	ht Line ht Line Maxir	e Meth e Meth num C	od od Grace			
40 Years 15 Years	Straig	ht Line ht Line Maxir	e Meth e Meth num C	od od Grace			
15 Years	•	ht Line	e Meth	od Grace			
		+]	Maturi	ity	Interes	st Rate %	
			+ Maturity			Interest Rate, %	
	(1 + 10) Years		12.00				
Not conside	red.						
Zero							
5.00%					.79		
						2 1 2	
					-	. • .	
7.63	- 2005		7.63	2010		7.63 - 201	
9.82	- 2005		7.63	- 2010		5.87 - 201	
	-		•	•		(+20%)	
						6.10	
	9.77		9.	.32		8.86	
•	•		•	•		(+20%)	
		-				0.55	
().72		. (),7		0.68	
-		_		.		100 44	
						1.00 · 20: 1.09 · 20	
	7.63 9.82 (-1 0 (-2 0.51	7.63 - 2005 9.82 - 2005 (-20%) 13.83 9.77 0 (-20%) 0.92 0.72 0.51 - 2005	5.00% 7.63 - 2005 9.82 - 2005 (-20%) 13.83 9.77 0 (-20%) 0.92	5.00% 7.63 - 2005 7.63 9.82 - 2005 7.63 (-20%) 13.83 9.77 9 0 (-20%) 0.92 0.72 0.51 - 2005 0.70	5.00% 7.63 - 2005 7.63 - 2010 9.82 - 2005 7.63 - 2010 (-20%) 13.83 9.32 9.77 9.32 0 (-20%) 0.92 0.7 0.72 0.51 - 2005 0.70 - 2010	5.00% 7.63 - 2005 7.63 - 2010 9.82 - 2005 7.63 - 2010 (-20%) (0%) 13.83 9.32 9.77 9.32 0 (-20%) (0%) 0.92 0.7 0.72 0.71 0.51 - 2005 0.70 - 2010	

Table 3.6.7 Wastewater Treatment Cost Statements

*** WASTEWATER TREATMENT	PROJECT IN KOSAS	(1 (K-8) ***
WASTERATER TREATME	(T COST STATEMEN)	

					-	-				
YEAR	2004	1005	2006	2001	2008	2003	2010	2011	2012	2013
WASTEGATER TREATMENT (1000H3/Y)	0.0	100.00	100,00	100,00	180.00	100.00	100.00	100,60	100.00	(00.00
CHEMICAL COST PÁG	0.0 0.0	62.60 33,24	62, E0 33, 24	62.60 33.24	42, 40 33, 24	62, 60 33, 24	\$2,40 33,24	62,60 33,24	\$2.60 - 33,24	67, 69 33, 24
MEGH	0.0	3.12 7.41	3, 12 7, 41	3, 12	3. 12 7. 45	3.12 3.41	3, 12 3, 41	9.12 9.41	3, 12	3, 12 7, 45
N POLYMER	0.0	7, 71	7, 71	7.71	7.71	7.71	7. 71	7, 71	1.71	7. 71
K POLYMER Utilities cost	0.0	11.12 98.47	11.12 31.87	11.12 98.47	11.12	11.12 98.47	11.12 91.17	11, 12 98, 87	11, 12 19, 47	11,12 48,83
ELECTRICITY	ŏ. ŏ	72.71	12, 34	72,78	72.70	32.78	12.71	72. 11	72.71	72.38 10.69
SLUDGE DISPOSAL Water	0.0	10, 63 5, 56	10.69 5.56	10.49 5.56	10.49	10.69 5.56	10.69 5.58	10, 69 5, 56	10,69 5.56	5,56
FUEL	- 0.6	1,14	3, 24	9, 84	9.14	7-1.14	1,10	9.14	3.14	9, 14 161, 47
PAC MECH WAON A POLYMER & POLYMER UFILITIES COST ELECTRICITY SLUDEE DISPOSAL DITER FUEL YARIABLE GOST	0.0	161.47	161,47	161.47	161.47	161.43	161.43	161,47	161.47	
		32,58	32,56	32.54	32.56	32.56	32.56	32,56	32,56	32.56
MAINTÉNANCE COST	0.0	107.85	107. 15	107, 85	107.05	107.45	107, 45	(97. 85	107.45	107.45
GOYERNENT CHARGE	0.0	5.30 45.30	5.30 45.30	5.30 45.30	5.30 45.30	\$.30 45,30	\$.10 45.30	5.30 45.30	5.30 45.30	5. 10 . 45, 39
EMPLOYMENT COST MAINTENANCE COST GOVERNMENT CHARGE LOCAL POLLUTION TAX DIRECT FIXED COST	0.0	191.01	191,01	191.01	191.01	191.01	191.01	191.01	191.01	191,01
CASH TREATMENT COST	0.0	352.44	351.48	352.48	352,40	352.41	352.40	352.41	- 352,48	352,48
EQUIPMENT & WACKINERY	0.0	143.10	143, 80	143, 60	143.40	143,40		143.80	1(), 10	143.10
CIVIL & BUILDING	0.0	32.52 13.60	32, 52 13, 80	32. 52 13. 60	\$2,52 13,80	32.52 13.80	32.52 13.10	32,52 13,40	32.52 13.10	32,52 11,10
EQUIPMENT & MACHINERY CIVIL & BUILDING INTEREST DRG. CONSTRUCTION DEPRECIATION AND ANORELZATION	0.0	190.12	199. 12	190.12	190, 12	190, 12	190,12	150.12	190.12	190.12
TOTAL TREATMENT COST	0.0	\$42.60	542.60	542,60	542.60	542.60	542.60	542, 60		547.60
UNIT TREATMENT COST	0.0	5.4260	5,4260	5.4240	5.4260	5.4260	5_4260	5.4250	5.4240	5.4260
INTEREST ON LONG TERM DEBT	0.0	439,80	395.12	351,44	307.#6	263, 81	211.50	175, 52	131,90	\$7, 55
INTEREST ON SHORT TERM DEST .	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
INICACO, VR STURI IÇAR VEGI .	v. v	·····							• • • • • • • • • • • • • • • • • • • •	
TOTAL TREATMENT COST	0. 0 0. 0	912,40 9.4240	931, 42 9, 3442	894.44 8.9444	#50,48 #,5046	806,48 1,054 \$	762,50 7.6250	711.57 7.1152	\$74,54 6,7456	630.55 6.3055

YEAR	2014	2015	2016	2017	2018	2019
WASTERATER TREATMENT (1000H3/Y)	100.00	100.00	100.00	100.00	100.60	100.00
CHERICAL COST PAC PAC BEOK MAOR A POLYMER K POLYMER UTILITIES COST ELECTRICITY SLUBGE DISPOSAL MATER FUEL YARIABLE COST	62.60	62, 60	62, 60	62,60	62.60	62.60
MEOR	33.24	3.12	3. 12	3, 12	3.12	3.12
MACH	7.45	1. (!	7.41	7. (1	7.41	7.41
K POLYKER	11.12	11.12	51.12	16.58	11,12	11. 12
UTILITIES COST	91.07	93. 47	98.87	98.87	91.87	\$1.47
ELECTRICITY SINDEF DISPOSAL	12,78 10 69	10 61	10.69	10.61	10.69	10.69
MATER	5.56	5.56	5. 56	5.54	. 5.56	5.56
FUEL FACT	1, 14	9.46	9. #4	9.44	3,84	9.84
EXPLOYMENT COST	32.56	32.56	32, 54	32,56	32,56	32,56
MAINTENANCE COST	107.05	107.45	107.45	107.45	107, 05	107.45
GOVERNAEME CHANGE -	5.30 45.10	5.30 45.30	5.30 45.10	5.30 45.30	3, JO 45, 30	3, 30 45, 30
EMPLOYMENT COST MAINTENANCE COST GOYERNENT CHARGE LOCAL POLLUTION TAX DIRECT FIXED COST	. 191.01	191.01	191.01	111.01	111.01	191.01
CASK TREATMENT COST	352,44	351,44	352.48	352,40	352.48	352,40
CIVIL & BUILDING	12,52	32,52	32.52	12,52	11,52	31.52
NIEREST DRG, CONSTRUCTION	13, 60	13,60	13,40	195 12	110 12	13, 69
######################################						
TOTAL TREATMENT COST	542,60	\$12.60	542.60	\$41.60	\$12,40	\$42.40
EQUIPMENT & MACHINERY GIVIL & BUILDING INTEREST DRS. CONSTRUCTION DEPRECIATION AND AMORTIZATION TOTAL IREATMENT COST UNIT TREATMENT COST	3,4780	3.4260	3,4240	3.4710		
INTEREST ON LONG TERN DEST.	0.0	0.0	ó, ó	0.0	0.0	0.0
TOTAL THEATMENT COST UNIT TREATMENT COST						

Table 3.6.8 Funds Flow Statements

*** TASTETATER TREATMENT PROJECT IN KOSAKI (4-8) ***
FUNDS FLOW STATEMENTS
- CASE 1: DISCHARGE TO RIVER - (OEM. 3 {0EE, 1000} 2013 2012 2010 2011 2006 2003 2005 2004 YEAR 410.02 410.02 410.02 410.02 410.02 410.02 410.02 3665.00 SOURCE OF FUNDS 0.0 410.02 CASH GENERATED FROM OPERATION 410.02 410.02 410.02 410.02 410.02 410.07 410.02 410 02 PROFIT AFT. TAX, OFR INT.
DEPRECIATION AND ANORTIZATION
FINANCIAL RESOURCES 219.10 150.12 0.9 213,39 190,12 0,0 219.90 180.12 0.0 219.10 110.12 0.0 0.0 0.0 1665.00 219.90 219.90 150.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SHARE CAPITAL LONG TEAM LOAN SHORT TERM DEDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3665.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \$42,42 498,44 454.46 586.40 106.30 762, 32 318.34 674.36 630.38 3465, CO USES OF FURDS 0.0 0 0 0.0 0,0 0.0 0.0 0.0 0.0 3665.00 0 0 FIRED CAPITAL EXPENDITURE 0.0 0.0 0.0 0.0 NON-DEPRECIABLE ASSETS 0.0 3458.00 207.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEPRECIABLE FIXED ASSETS INTEREST DURING CONSTRUCTION 0.0 Q_ 0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0 0 CHARGE IN MORKING CAPITAL 454.45 491, 44 105.30 762.32 718.34 674.36 630.38 546.40 542.42 0.0 DEBT SERVICES REPAYMENT OF LONG TEAM DEBT REPAYMENT OF SHORT TERM DEBT INTEREST ON LONG TEAM DEBT INTEREST ON SHORT TERM DEBT 366.50 0.0 35).44 0.0 0.0 366,50 0.0 439,40 0.0 366.50 0.0 395.42 0.0 316.50 366.50 341.50 366.50 366.50 366.50 0.0 307.86 0.0 0.0 175.52 0.0 0.0 131.94 0.0 0.0. 17.96 219.90 243,88 ...:0.0 Ó. 0 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0.0 SCRBGIFEC -395.28 -352.30 -308.32 -264.34 -220.35 -136.38 -132.40 -11.42 CASH INCREASE OR (DECREASE) -0.0 0.0 -396.28 -248.58 -1056.10 -1321.23 -1541.59 -1317.97 -1850.37 -1338.78 -336.28 -741.58 -1056.10 -1321.23 -1541.59 -1717.97 -1850.37 -1938.79 -1983.23 BEGINNING CASH BALANCE ENDING CASH BALANCE 2015 2016 YFAR 1014 2013 2018 2019 SOURCE OF FUNDS 410.02 410.02 410,02 CASH GENERATED FROM OPERATION 410.62 410.02 410.02 410.02 410 62 410 02 PROFIT AFT. TAX. BFR 1917. DEPRECIATION AND ANORTHZAILOX FINANCIAL RESOURCES 219, 10 150, 12 0, 0 119,90 130,32 0,0 219.90 190,12 0,0 219,90 199,12 0.0 0.0 0.0 SHARE CAPITAL LONG TEAM LOAN SHORT TERM DEBT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ROKUR RO 2328 410.48 0.0 0.0 0,0 FIXED CAPITAL EXPENDITURE 0.0 0.0 0.0 0.0 0.0 NON-DEPRECIABLE ASSETS
DEPRECIABLE FIXED ASSETS
INTEREST DURING CONSTRUCTION 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CHARGE IN TORKING CAPITAL 0.0 0.0 0.0 0.0 0, 0 0.0 DEBT SERVICES 410.48 6.0 0.0 0.0 0.0 0.0 REPATMENT OF LONG TERM CEST REPATMENT OF SHORT TERM CEST INTEREST ON LOKE TERM DEST INTEREST OR SKORT TERM DEST 366.50 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 43.91 0.0 PIVIDENOS 0.0 0.0 0.0 0.0 0.0 0.0 CASH INGREASE OR (DECREASE) . -0.46 410.02 410.02 410.02 410.62 410 62 BEGINATING CASH BALANCE ENDING CASH BALANCE -1983, 23 -1983, 68 -1573, 67 -1163, 65 -753, 62 -1983, 69 -1573, 67 -1163, 65 -753, 62 -343, 60 WASTEWATER TREATMENT PROJECT IN ROSARI (M-6) ***
RETURN ON INVESTMENT (IN 1886 FAXED PRICE)
- CASE 1: DISCHARGE TO RIVER - (OEM, 1800) 2004 2005 2005 200) 2009 2010 2011 2012 2013 (1) GROSS CAPITAL EXPENDITURE (2) GROSS CASH IN-FLOR OPERATING PROFIL DEPRECIATION & ANORTIZATION (4) SFR-TAX MET IN-FLOR (2)-(1) 0,0 410,01 211,80 130,12 410,62 0,0 410,02 219,90 190,12 410,02 0.0 410.02 219.90 190.12 410.02 - 0.0 410.02 219.90 190.12 410.02 3458.00 0.0 0.0 0.0 0. G 410. G2 219. 90 190, 12 0.0 410.02 219.10 110.12 0.0 410.02 219.90 190.12 -3458.00 410.02 410.02 2014 2015 2016 2017 2018 2019 (1) GROSS CAPITAL EJPENDITURE (2) GROSS CASK IN-FLOR OPERATING PROFIT DEPRECIATION & AUGITIZATION (4) BFR-TAX MET IM-FLOY (2)-(1) 0,0 410,02 214,90 190,12 410,02 0.0 610.02 214.90 190.12 410.02 0.0 410,02 215,50 190,12 410,02 0,0 410.02 219.90 190,12 410.02

-354-

INICANAL RATE OF RETURN

ON (4) BER-TAX HET IN-FLOT (2)-(1) \$.32 PER CERT

3.6.5 汚濁負荷量削減のための予備処理

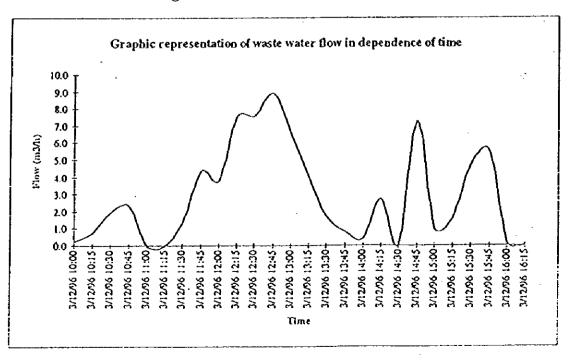
1) 経緯

前節までの報告は、1996年 6月時点の調査に基づき、河川直接放流の場合を重点に設備は全面新設を想定したため、水質分析も既設の油水分離設備を通す前についてなされた。 今回は下水放流の前処理設備の検討が主題であるので、既設の油水分離設備を活用する前提で、油水分離設備の後の水質分析を追加した。

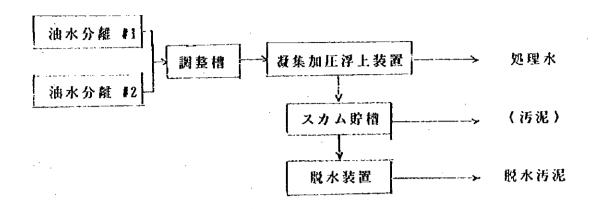
限設の油水分離設備の後の水質は、従来の水質分析データによれば、油分の放流基準 100 mg/l を満足していたが、今回の分析によっても確認された。即ち、下水放流の場合の排出基準は、既設の油水分離設備で充分である。

2) 予備処理システムの選定

更に負荷削減を図ることが要請される場合には、凝集加圧浮上を導入する。 生物処理法が適用される下水処理場に対して、過大な負荷が掛からないようにす るための前処理設備であるから、生物処理ではなく物理的な処理方法を適用する。 凝集沈殿でなく凝集加圧浮上を適用する理由は、元々浮上性向のある油分の除去 を配慮するからである。


3) 凝集処理テスト

凝集処理がどの程度効果があるかを確認するため、実廃水サンプルで実験した。 結果を Table 3.6.11 に示す。実験は理想的なバッチ処理に相当するが、COD が約 1/3 に、油分が約 1/4 にと、負荷の低減が大きなものであることが判る。 実際の廃水処理は連続処理でなされるので、水質はやや悪くなると見込まれる。


Table 3.6.9 Result of Coagulation Test

Effluent of the Slav	ighter Factory	Sampling	Coagulation Test
Note		03.12.1996	PAC 100 ppm
		11:00 - 16:15	Anion P 200
		Flow-proportional	Cation P 0
			Floc size Large
			Settling time 30sec
Parameter			
рН		7,7	6.6
SS	mg/l	520	< 30
Color		red	light red
α (436nm)	1/m	82	26
α (525nm)		. 72	12
α (620nm)		60	5
t-N	mg/l		69
t - P	mg/l	11	< 0.5
CODcr	mg/l	2,400	930
CODMa	mg/l	770	250
BOD ₅	mg/l	1,200	
t · Fat	mg/l	80	22

Fig. 3.6.12 Flow of Waste Water

4)予備処理システムの概要

Case 1 油水分離装置のみ

油水分離については、既設の設備を活用することでよい。浮上油の処理については、現在専門業者が毎週1回程度回収し、石鹸工場へ原料として納入している。 現状の処理コスト(或いは収入)としてはゼロである。

Case 2/3 凝集加圧浮上装置を追加

運転時間を12時間以下になるようにし、夜間の人件費負担をなくする。 次のチョイスは、脱水機を使用するか・しないかである。脱水機がなければ、そ の分設備費が安くなり、運転の手間も、脱水用の凝集剤のコストも不要となる。

なお、脱水されたスラッジの処理については、6月の調査に際してSNAGAによって安価に処分できることが判明していた。脱水機の設備費・運転の手間を掛けずにスカムをそのまま処分する場合については、それが可能か、その料金は、などNIGRADがどのように判断するかに掛かっている。現時点ではまだ確定していない。

Case 3 固定床接触酸化生物処理を追加

更にCOD、BODを削減しなければならない場合は、生物処理を行う。 活濁負荷が高い場合に、よく嫌気性生物処理が採用されるが、油分が多いとうま くいかない。凝集加圧浮上処理をした後では、負荷が下がっているので、好気性 生物処理の方が有利になる。SSが少なくなっているので、固定床接触酸化生物 処理が好適に適用できる。

Table 3.6.12 廃水および処理水の水質ならびに汚濁負荷量

Kind of wastewater	Quan- tity m3/d	CODer mg/L (kg/d)	BOD mg/l (kg/d)	Fat mg/L	SS mg/L (kg/d)	T-N mg/L (kg/d)	T-P mg/L (kg/d)
* Case-! Oil separator	400	1,500 (600)	800 (320)	60 (24)	600 (240)		20 (8)
*2 CASE-2/3 + Coasulation & floatation	400	800 (320)	400 (160)	20 (8)	< 30 (12)		< 2
*3 CASE-4 + Contact Oxidation	400	250 (80)	100	10	< 30 (12)		< 2

注)*| CASE-1: 油水分離の予備処理をした場合

*2 CASE-2: 更に凝集加圧浮上処理をした場合 脱水機あり

CASE-3:

脱水機なし

*3 CASE-4: CASE-2 に接触酸化処理を追加した場合

Table 3.6.13 処理装置の設備費と処理費

	Equipment cost	Depreciation & Interest SIT/m³	Running Cost SIT/m ³	Total treat- ment cost S1T/m ³
CASE-1	exsited	0	0	0
CASE-2	50,000,000	55	85	140
CASE-3	43,000,000	48	72	120
CASE-4	80,000,000	88	100	188
to River	296,076,000	299	266	565

5) 負荷削減を目的とする予備処理の経済性

Table 3.6.12 に、予備処理で得られる水質とそのコストの推定値をまとめた。 参考として、河川に直接放流する場合の排水処理設備の場合も併記した。河川へ 直接放流する場合は、排出基準が厳しいため廃水処理のコストが非常に高くなり、 下水に放流する場合の料金と比較すると、全く勝負にならない程である。

凝集加圧浮上処理によって、汚濁負荷が大幅に低減するが、処理コストがほぼ 標準の下水料金と同程度になる。汚濁負荷による累進料金が標準の2倍程度高い、 という事態にでもならないと、負荷削減を目的とする予備処理の経済性はない。 言い換えると、少々の追加料金ならば、高い下水料金を支払う方が経済的である。

3.1.5 汚濁負荷量削減のための予備処理

1) 経緯

前節までの報告は、1996年 6月時点の調査に基づき、河川直接放流の場合を重点に検討したものである。今回は下水放流の予備処理設備の検討が主題である。

2) 予備検討

総論で述べた通り、河川へ放流する場合の排出基準には色の項目があり、将来WWTPが河川への排出基準を満足させるために、着色排水を放流する繊維工場に対して、然るべき予備処理設備の設置を要請してくる可能性がありうる。もし予備処理設備を設置しない場合は、割増料金が課せられるかも知れない。

3. 7 M-7 MARIBORSKA MLEKARNA, d.o.o.

MM MARIBORSKA MLEKARNA, d.o.o. (Dairy Products)

3. 7. 1 工場概要

1) 概要

MARIBORSKA MLEKARNA p.o.は、紙容器詰め市乳、紙容器詰め発酵乳及び各種 チーズ等を一貫して製造している会社である。使用する原乳量は毎年、約 3.5 %の増加がみられ、近代的、衛生的な生産設備によって少量多品種の製品が生 産されており、その一部はクロアチア等に輸出されている。

MARIBORSKA MLEKARNA p.o.の工場の配置をFig. 3.7.1に示す。

2) 水源、用途別の水使用量

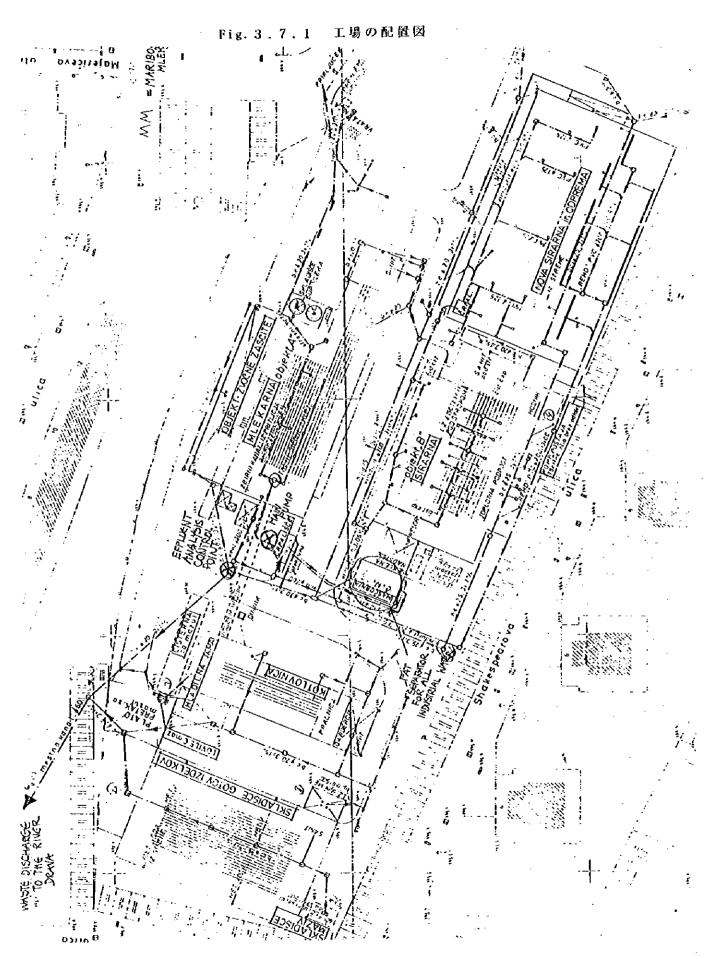

水源、用途別水使用量をTable 3.7.1に示す。

Table 3.7.1 水源、用途別水使用量

(d/day)

Source	Well Water	City Water	River Water	Sub- Total	Recovered Vater	Total
Boiler Feed		20		20	30	50
Raw Material						
Washing		210		210		
Cooling		15		15	(250)	(265)
Air Conditioning						
Miscellaneous		231		231		231
Total	-	476		476	(280)	(756)
				Recovere	d Water/Tota	1 (37.0)%

注)()の数値は推測値である。

3) 木供給及び廃水排出フローダイヤグラム

工場の水バランスをFig. 3.7.2に示す。

(1) 用水供給設備

生産用水のうち、ボイラ供給水には軟化設備で処理された水が使用されている。軟化設備の再生には、薬剤として4%HC Q + 12%Na C Q が用いられ、過2回の再生が行われている。

(2) 製造工程と廃水の発生源

主要な製造工程をFig. 3.7.3に示す。

乳製品製造の主要な設備は、原乳の貯乳タンク、製造装置及び貯蔵タンクである。製造装置には、ホモゲナイザー、発酵タンク、調合タンク、プレート殺菌器、充填器、ミルクポンプ等がある。

これらの主要設備と各設備をつなぐ配管は、CIP (Cleaning In Place) と呼ばれる自動制御の洗浄設備によって洗浄される。 CIPの洗浄サイクル は次のとおりである。

(水洗)→(アルカリ洗浄)→(湯洗)→(酸洗)→(水洗)→(Ⅱ202殺菌)

各水洗水、湯洗水、アルカリ洗浄液の約1/4 量及び酸洗浄液の約1/4 量が CIP廃水として発生する。

これらの設備の冷却は冷水による間接冷却方式である。冷水製造用冷凍機 の冷却水が排出されるが、少量で廃水の汚染はない。

製造時には製造装置からの漏洩原乳が、また、チーズ製造時ではホエーの 一部が廃水として排出される。

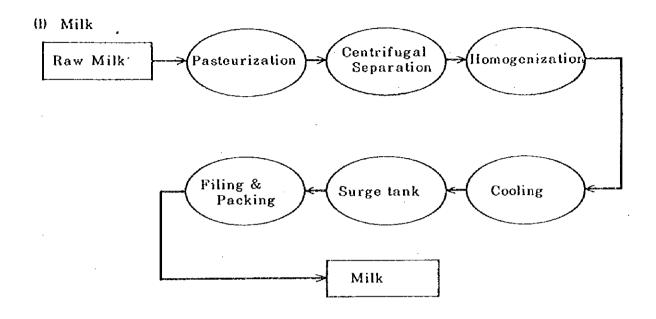
作業終了時には、タンク類、コンベア、機械器具等の各洗浄廃水及び床洗 浄廃水が発生する。

a. 原乳受入れ工程

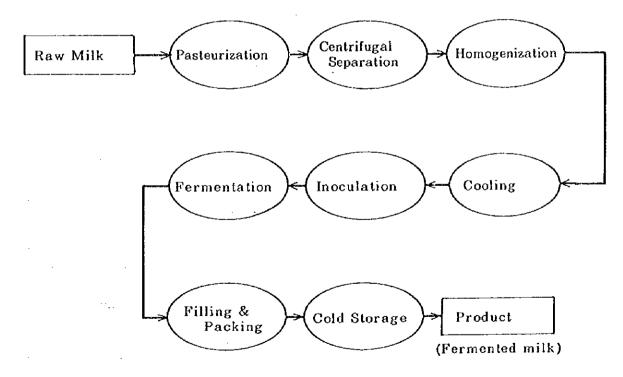
原乳はタンクローリーで工場に搬入されると、いったん貯乳タンクで原料 乳として保冷される。原料乳の受け入れは次のとおりである。

原乳→ (検査) → (ろ過) → (秤量) → (貯乳) →原料乳

① 原乳の煅入


原乳がタンクローリーで搬入されると、工場内の検査室で各種の検査が行われる。検査に合格した原乳は、ろ過され、秤量されて、貯乳タンクに貯蔵

30 Softener Boiler 20 Rinse & Cleaning of batchwise equip. (Milk & yogurt) City Water 476 Rinse & cleaning of half continuous equip. by C.I.P. (Milk & yogurt) 112 : Sampling points of waste water Rinse & cleaning of batch wise equip. 63(cheese) 1 2 Rinse & cleaning of half continuous equip. by C.I.P. [3] (4)(cheese) Washing of truck (Raw Milk) 35 5 Sewer Domestic water 231 476 Refrigerator for NH, Refrigerator for Air cooling chilled water & cold storage Ev. Cond.

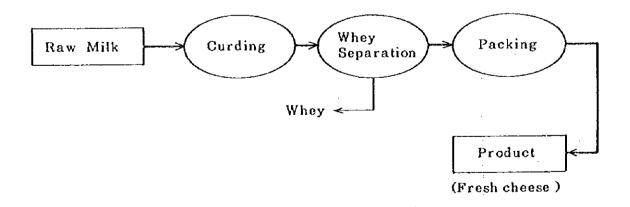

Fig. 3.7.2 WATER BALANCE DIAGRAM (m/day)

Note: a) Ev. Cond. is Evaporated Condenser.

Fig. 3.7.3 PROCESS DIAGRAM of PRODUCTON LINE (1/2)



(2) Fermented Milk



Note: a) Chilled water system is applied for the cooling process.

(3) Natural cheese

(4) Fresh cheese

Note: a) The whey is sold for making food of livestock.

される。ここでは、空になったタンクローリーのタンク部のCIP廃水と、 洗車廃水が発生する。

② ろ過及び貯乳タンク

る過は原乳に混入している夾雑物を除去するものである。このろ過設備と 貯乳タンクのCIP廃水が発生する。

b. 市乳の製造工程

市乳の基本的な製造工程は次のとおりである。

原料乳→(低温殺菌)→(遠心分離)→(均質化)→(冷却)→(一時貯留)→(充填) → 市乳

① 低温殺菌

原料乳を約60℃で短時間加熱冷却して、殺菌する工程である。ここでは、 低温殺菌設備のCIP廃水が発生する。

② 遠心分離

原料乳を遠心分離器によって、微細な夾雑物を分離する工程である。ここでは、遠心分離設備のCIP廃水が発生する。

③ 均質化

脱脂乳を調整して、成分の均質化を図る工程である。ここでは、ホモゲナ ・イザーのCIP廃水が発生する。

③ 冷却

調整が完了した市乳を冷却する工程である。ここでは、冷却設備のCIP 原木が発生する。

⑤ 一時貯留

冷却された市乳を紙容器に充填するために、クンクに一時貯留する工程である。ここでは、貯留タンクのCIP廃水が発生する。

⑥ 充填

市乳を紙容器に充填する工程である。ここでは、充填設備のCIP廃水が 発生する。

c. 発酵乳の製造工程

発酵乳の基本的な製造工程は次のとおりである。

原料乳→(低温殺菌)→(遠心分離)→(均質化)→(冷却)→(植菌)→(発酵)→

(充填) -> 発酵乳

- ①~① 市乳の製造工程と同様に廃水が発生する。
- ⑤ 植菌

乳酸菌を植菌する工程である。

⑥ 発酵

原乳を乳酸菌により発酵させる。ここでは、発酵タンクの水洗廃水が発生する。

⑦ 充填

発酵乳を紙容器に充填する工程である。ここでは、充填設備のCIP廃水が発生する。

d. ナチュラルチーズの製造工程

ナチュラルチーズの基本的な製造工程は次のとおりである。

原料乳→(発酵)→(脱水)→(切断)→(加圧成型)→(梱包)→(熟成)→チーズ

① 発酵

殺菌後の原乳にレンネットを添加して発酵させ、凝固させる工程である。 ここでは、発酵タンクの水洗廃水が発生する。

② 切断

凝固物を型に入れてホエーをろ過し、一定の大きさに切断する工程である。 脱水工程でホエーの漏洩があり、チーズの破片を含む廃水が発生する。

③ 加压成型

一定の大きさに切断されたチーズを食塩水に浸漬した後、圧力をかけて成型する工程である。食塩水は1回/年 に更新される。このとき、浸漬廃水が発生する。

④ 梱包

形の整ったチーズをラップする工程である。水を使用しないので、廃水の 発生はない。

⑤ 熟成

ラップされたチーズを長時間かけて熟成する工程である。水を使用しない ので、廃水の発生はない。

d. フレッシュチーズの製造工程

フレッシュチーズの基本的な製造工程は次のとおりである。

原料乳→(発酵)→(脱水)→(梱包)→チーズ

ナチュラルチーズの製造工程の①~①と同様である。

(3) 廃水処理装置

浮上分離装置が設置されたが、現在では使用されていない。

4) 補給水及び廃水の水質

(1) 補給水の水質

捕給水は市水及び軟化設備の処理水である。

補給水の水質をTable 3.7.2に示す。

2 (1) No. City Water Outlet of Name of Sample Softener Items 15 F e (mg/Q)15 7.5 (mg/Q) 7.5 Мg 0.02 (, 9H) T-Hardness* 12.4 (mmo1/ Q) M-Alkalinity (mg/Q)8 CQ 0 (mg/Q)< 0.05TDS

Table 3.7.2 補給水の水質

(NOTE) * : mmol/Q as CaO

(2) 廃水の水質

a. 廃水の排出特性

① 原乳搬入廃水 (35 ㎡/日)

原乳を貯乳タンクに原料乳として貯蔵する工程の廃水で、原乳を搬入したタンクローリーのタンク部のCIP廃水、漏洩原乳廃水、ろ過設備及び貯乳タンクのCIP廃水がある。

② 市乳製造廃水 (58㎡/日)

貯乳タンクの原料乳から市乳を製造する工程で発生する廃水で、CIP廃水及び床洗浄廃水がある。

③ 発酵乳製造廃水 (54㎡/日)

貯乳タンクの原料乳から発酵乳を製造する工程で発生する廃水で、CIP 廃水、洗浄廃水及び床洗浄廃水がある。

(4) ナチュラルチーズ製造廃水(40㎡/日)

貯乳タンクの原料乳からナチュラルチーズを製造する工程で発生する廃水で、CIP廃水、洗浄廃水及び床洗浄廃水がある。

⑤ フレッシュチーズ製造廃水 (23㎡/日)

貯乳タンクの原料乳からフレッシュチーズを製造する工程で発生する廃水で、CIP廃水、洗浄廃水及び床洗浄廃水がある。

⑥ 生活排水等 (231 ㎡/日)

従業員数286 人の生活排水が発生する。軟化設備の再生廃水及び洗車廃水 等が含まれる。

⑦ ボイラーブロー水 (20㎡/日)廃水はほとんど汚染されていない。

- b. 総合廃水の排出水量
- ① サンプリングを行った当時の総合廃水のうち、洗車系廃水(補給水の軟化 設備の再生廃水を含む。)の水量測定結果をFig. 3.7.4に示す。
- ② 資料の提供を受けた、製造工程別、月別廃水量(1995)をFig. 3.7.5 に示す。
- c. 廃水の水質

各廃水及び総合廃水の水質をTable 3.7.3に示す。サンプルNoとサンプリング場所は以下のとおりである。

(Na 1):市乳製造廃水

(No. 2) : プロセスチーズ製造廃水

(No.3):フレッシュチーズ製造廃水

(No.4):製造系の廃水(コンポジットサンプル)

(N.5): 洗車系廃水 (コンポジットサンプル)

また、提供資料による総合廃水水質例(27~28.3.1996)をTable 3.7.4に示す。

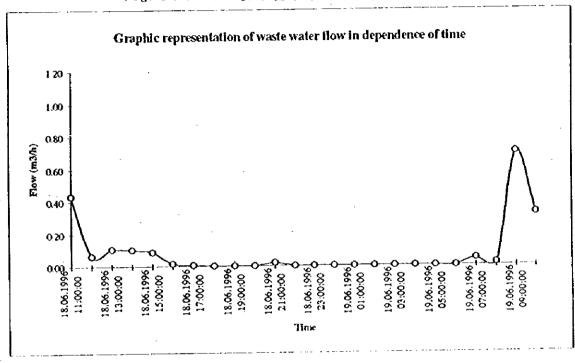
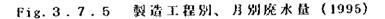



Fig. 3.7.4 洗車廃水系の水量測定結果

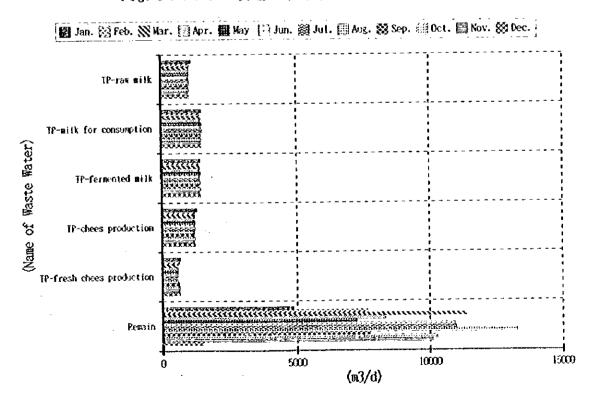


Table 3. 7. 3 各廃水及び総合廃水の水質

-	No	1	2	3	4	5
Name o	f Sample	TP-milk for consumption	TP-chees production	TP-fresh chees production	Effluent from production	Effluent from car washing
remp.	(°C)	29	29	27	22*	22*
pН	(-)	9. 5	7.1	8. 1	4. 2	8.6
S S	(mg/Q)	< 30	2,000	70	930	630
Settable solids	(mg/Q)	_			< 0.1	
TOC*	(mg/Q)				500	
C Q 2*	(mg/ ()	< 0.05	< 0.05	< 0.05	1.4	< 0.05
T-N	(mg/Q)	14. 3	165	23. 5	255	46
N-NH ₃	(mg/Q)	0. 06	2.3	1.9	3.6	4.4
N-Kjeldahl	(mg/ ()	7.8	150	14	230	28
N-NO2	(mg/ Q)	< 0.1	4.2	0. 1	15	1.4
N-NO3	(mg/Q)	6. 5	11	9.4	10	17
T-P	(mg/Q)	20	48	10	- 11	130
CODer	(mg/Q)	50	14,000	200	5, 700	2, 100
BOD	(mg/Q)	20	3, 500	100	2,000	450
T-fat	(mg/ Q)	< 5	<5	< 5	300	500
Anionic surfactan	ts (mg/Q)	< 0.05	< 0.05	< 0.05	1. 2	< 0.05

(Note) * : Measured in spot sample

Table 3. 7. 4 提供資料による総合廃水の水質(27~28.2.1995)

	No.	0	2	3	(1)	5
Name -	of Sample	composite 24 h	spot	composite 6:30~14:30	composite 15:30∼22:30	composite 22:30~ 5:30
Temp.	(°C)	4 ~ 22		_	_	
рН	(-)	_		5. 1	9, 3	9. 3
SS	(mg/Q)	_	_	1, 158	528	34
Settable solids	(mg/l)			30	8	<1
TDS	(mg/Q)	_	-	_	2, 691	353
N-NH3	(mg/Q)	160	_	10	2	17
N-NO2	(mg/♀)	4	_	4. 4	1	5. 1
N-NO3	(mg/ Q)	4	_	-		
CODer	(mg/ Q)	8, 624	5, 500	14, 520	3, 256	261
ВОО	(mg/Q)	4, 650	3, 350	5, 140	2, 760	63
TOC .	(mg/Q)	3, 700	_	17		< 5

- 3. 7. 2 水使用の合理化
- 1) 水使用及び合理化の現状

(1) 水使用の特徴

- ① 水源は上水のみであり、計量されている。
- ② 用途別の水使用量についての信頼性は低いが、洗浄・製品処理用水が約44 %雑用水が約49%を占めていて、残りはボイラ用水と冷却用水である。
- ③ 特に雑用水の占める割合及び雑用水量そのものが大きいことが特徴である が、これは従業員数(286人)から判断しても大きすぎる。
- ④ 洗浄・製品処理用水は、主に各種製造設備と原料輸送車の冼浄用として使 用されており、全自動のCIP設備も採用されている。ボイラ用水は約60% が回収使用されている。
- ⑤ 最近の水使用原単位はTable 3.7.5のとおりである。

Table 3.7.5 水使用原单位 (水使用量/原料牛乳)

年	1990	1991	1992	1993	1994	1995
原単位 (2/2)	4.6	4. 0	3.6	4.4	4. 1	3.5

原単位変化の主要因は、生産品目の変化によるものであろうとのことであ る。

(2) 合理化の現状

- ① ボイラ用水の回収使用、冷凍機用エバコンの採用、全自動CIPの採用等 部分的な節水は実施されている。
- ② しかし用水管理は十分とはいえず、例えば、床・装置等の洗浄用ホースの 殆どに手元制御弁が付いていない、細かな水漏れ、水の流し放しなどが目に ついた。
- ③ 雑用水の使用量は 231(m³/D)、 約 800(ℓ/人・日)と多いが、このこと は用水管理が十分ではなく節水努力によって使用水量の削減が可能であるこ とを示している。
- ④ 全使用水量と各設備の水使用量の差を雑用水量としているので、各設備の 水使用量があまり正確に把握されていないためではないかとも考えられる。」

従って、各設備の水バランスを出来るだけ詳細に把握することが節水の重要 な第一ステップであろう。

2)検討及び評価

(1) 技術的検討

① 上記の合理化現状を考慮すれば、各設備の水使用量を出来るだけ正確に把握し、それらの使用量が適正であるか否かを調べることが必要である。

この調査結果を基に現状の設備に若干の費用を投じて、各設備の使用水量の 適正化を図ることにより、約 10~15% (約 50 m³/D 程度) の節水は可能で あろう。

② 水使用合理化のために投ずる人員、設備費及び予想される効果を次のように想定する。

技 街 者;2人

期 間;1年(現在の業務と兼任し、従事率を50%とする)

設 備 费; 1,000 千SIT (手元制御弁、配管部品、計器類等)

爺水効果;50 (m³/D)

③ なお、投入する技術者(2人)と期間(1年)は限定し、任務終了後は運転マニュアル等により日常業務に移管して節水を実施するものとする。

(2) 経済性評価

- ① 上記の条件を基に経済試算をする。
 - (a) 1年間の投資額

人件费 3,000,000 SIT x 2人 x 50% = 3,000 (千SIT/Y)

設備費

1,000

승 計

4,000 (千SIT/Y)

(b) 予想される節水効果

 $50 \text{ m}^3/\text{D} \times 200 \text{ SIT/m}^3 \times 365 \text{ D/Y} = 3,650 \text{ (£SIT/Y)}$

以上のように約1年で回収できる結果となり、経済的に十分成り立つこと が予想される。 3. 7. 3 WWTP放流基準を満足する予備処理及び廃水処理

1) 廃水の現状

現状の廃水の排出特性から、廃水を次のように分類する。

- a. 廃水処理を必要とする廃水
- ① 製造工程廃水

The second secon

製造工程から排出される廃水は有機性廃水で、製造装置の洗浄廃水と床洗 浄廃水に大別される。製造装置の洗浄はCIP廃水と手作業による洗浄廃水 に分けられる。タンクローリーのCIP廃水とこれらの廃水をまとめて、製 造工程廃水とする。

なお、廃水処理装置への汚濁負荷量を削減して装置の規模を小さくするために、製造工程内でチーズ破片及びホエー等の廃水への混入は、出来るだけ 控えるようにすることが必要である。

③ 洗車廃水

CIP洗浄を終えたタンクローリーの洗車廃水である。洗車廃水を含めた その他の廃水量を削減することは、①で述べた同じ理由から、合理化を図る ことが必要である。

① 生活排水

従業員数286 人の生活排水が発生する。

- b. 廃水処理を必要としない廃水
- ① 冷却水

ボイラブロー水であり、ほとんど汚染されていない。

2) 予備処理装置

(1) システム選定理由

廃水処理を必要とする廃水は、製造工程廃水、軟化設備の再生廃水、洗車 廃水及び生活排水である。これらの廃水はWWTPにおける処理に阻害性を 持つ物質を含有していないが、廃水の排出状況によってはpH値が基準から 逸脱する場合がある。すなわち、製造工程廃水のなかのCIP廃水及び軟化 設備の再生廃水には、酸またはアルカリが含まれている。また、主原料の牛乳を含む廃水が腐敗すると有機酸を生成してpHを低下させる。したがって、これらの廃水は中和処理を行ってWWTPに放流する必要がある。

(2) 予備処理システムの概要

① 製造工程廃水

廃水がスクリーンに導かれて廃水中の夾雑物質が除去された後に、廃水貯留槽に貯留される。貯留槽から揚水ポンプで廃水の定量が中和槽に導かれる。中和槽では、中和槽に設置されているpH計と連動してNaOHが添加され、中和が行われる。中和が完了すると廃水はWWTPに放流される。

② 軟化設備の再生廃水

再生廃水は、いったん廃水貯留槽に貯留される。貯留槽から揚水ポンプで 廃水の定量が中和槽に導かれ、①の廃水とともに中和処理が行われて、WW TPに放流される。

③ その他の廃水

その他の廃水は、直接WWTPに放流される。

(3) 設計条件

a. 廃水の水質

各廃水の主な水質をTable 3.7.6に示す。

廃水名 治 却 水 生活排水 洗車廃水 再生廃水 製造廃水 項目 $7 \sim 9$ $2\sim3$ $6 \sim 8$ $6\sim8$ $6\sim 8$ рK 2,100 COD (mg/Q)5,700 400 450 200 BOD (mg/Q)2,000 130 T-P (mg/Q)11 500 T-fat (mg/Q) 300 50 650 (ng/Q)930 SS

Table 3.7.6 廃水の水質

b. 処理水量

総合廃水量: 474 ㎡/日

① 廃水処理を必要とする廃水

製造廃水: 175 司/日

再生廃水: 13 ㎡/日 (32 ㎡/回 ÷ 2.5 日/回 = 12.8 ㎡/h)

② 廃水処理を必要としない廃水

生活排水: 231 面/日

洗車廃水: 35 ㎡/日

冷却水: 20 d/日

c. 廃水流入時間

8 時間/日

d. 運転時間

8 時間/日

e. 処理水の水質

WWTP放流の場合の水質基準をTable 3.7.7に示す。

(3) 機器仕様

a. フローシート

予備処理装置のフローシートをFig. 3.7.6に示す。

b. レイアウト

予備処理装置のレイアウトをFig. 3.7.7に示す。

c. 機器リスト

廃水予備処理装置の機器リストをTable 3.7.8に示す。

Table 3.7.7 放流水の水質基準

項目	単位	河川	下水
1温度	£ 12.	3 0	4 0
2 p H		$6.5 \sim 9.0$	$6.5 \sim 9.5$
3 S S	mg/Q	8 0	(a)
	m Q / Q	0.5	1 0
	" X / X	0.5	1 0
,	m - 1	7 0	
436 nm	" - 1	7.0	(ь)
525 nm	1 "' 1	5.0	(0)
620 nm		3.0	
6 毒性試験 (SD) 7 生分解性	mg/Q %	ა 	(c)
8 B	mg/Q	1.0	10.0
9 A Q	mg/Q	3.0	(d)
0 A s	mg/Q	0.1	0.1
1 C u	mg/Q	0.5	0.5
2 B a	mg/Q	5.0	5.0
3 Z n	mg/Q	2.0	2.0
4 C d	mg/Q	0.1	0.1
5 C o	mg/Q	1.0	1.0
6 S n	mg/Q	2.0	2.0
7 7 - C r	mg/ X	0.5	0.5
8 C r 6+	mg/ Q	0.0	0.1
0 0 1	mg/ Q	0.5	0.5
9 N i	mg/ Q	0.5	0.1
0 A g		0.1	0.5
1 P b	mg/Q	2.0	(4)
2 F e	mg/₽		0.01
3 H g	mg/Q	0.01	
4 C (2 (遊離塩素)	mg/Q	0.2	0.5
15 C Q 2 (全有効塩素		0.5	1.0
26 N - N H 3	mg/Q	10	(e)
$27 N - NO_2$	mg/Q	1.0	1 0
$18 N - NO_3$	mg/Q	(f)	
29 T-C N	mg/Q	0.5	1 0
10 遊離 C N	mg/Q	0.1	0.1
31 F	mg/Q	1 0	2 0
32 C 🞗 -	mg/Q	(g)	_
33 T-P	mg/ C	2.0(1.0(h))	
4 S O .	mg/Q	(1)	3 0 0
35 S	mg/Q	0.1	1.0
36 S O 3	mg/Q	1.0	1 0
TOC	mg/Q	3 0	_
88 CODcr	mg/Q	120	
BODs	: ' mg/Q	2 5	_
0 全油分	mg/Q	2 0	1 0 0
THC	mg/Q	1 0	2 0
2 芳香族系有機塩素	mg/Q	0.1	1.0
3 吸着性有機塩素	mg/Q	0.5	0.5
4 揮発性有機塩素	mg/Q	0.1	0.1
5 水溶性有機塩素	mg/Q	(k)	(1)
6 フェノール	mg/Q	0.1	1 0
7 界面活性剂	mg/Q	1.0	_
注) (a)~(1);本3	に場の適用はか		<u></u>
LL / (0) (1)) / L	· • •/1 -> ACE 711 (04 '04	- 0	
•		-	
•			
		·	

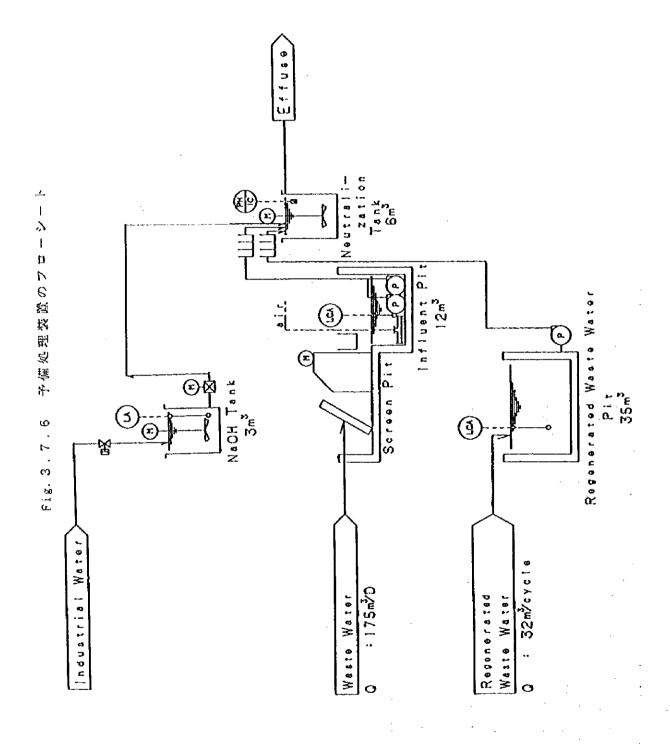
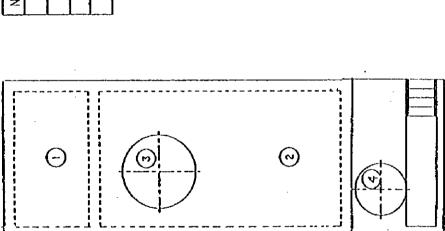



Fig. 3. 7. 7 - 予編処題校園のレイアウト

No.	Itea	Q' ty	Material	Specification	Remark
1	Screen Pit	1	RC		
	Bar Screen	1	SUS	Slit 20 mm	
	Auto Scree	1	sus	Slit 1.5mm×0.1kW	
2	Influent Pit	1	RC	Capacity: 12 m³	
				Shape : 3.7mW×2.0mL×2.5mD	
				with air diffuser	· · · · · · · · ·
	Ривр	2	FC	100 ¢ × 1m³/min×10m×3.7kW	
				Submersion type	
	Flow Meter	1	PVC	Box type	:
	Level Switch	1	PVC	Float type	·
3	Regenerated Waste Water	1	RC+FRP	Capacity: 35 m ³	
	Pit			Shape : 3.7m∀×6.5mL×2.5mD	
	Pump	1	PVC	40 \$ × 100 € /min×10m×1.5kW	
			<u> </u>	Centrifugal type	
	Flow Meter	1	PVC	Box type	
	Level Switch	1	PVC	Float type	
4	Neutralization Tank	1	FRP	Capacity: 6 m ³	
				Shape ∶ 2.0m ¢ × 2.4mH	
	Agitator	1	CS+RL	Vertical type 2.2 kW	
	pH Meter	1		Dip type, 0~14, 4~20mA	
5	NaOll Tank	l	FRP	Capacity: 3 m³	:
				Shape : 1.6m ♦ ×2.0mH	

Table 3.7.8 機器リスト

0.	Item	Q' ty	Material	Specification	Remark
	Agitator	1	SUS	Vertical type 0.75 kW	
	Pump	1		25 φ ×3 Q/min×5kg/cm ² ×0.2kWw	
				Diaphram type	
	Level Switch	1	SUS	Electrode type	
٠					
			<u> </u>		
					-
			-		
					<u> </u>
					-
-					
	· ·		-	<u> </u>	
			-		

d. 設計計算書

・製造工程廃水用スクリーン 租目スクリーン、微細スクリーンの各1基をつけるものとする。

決定値: 20mmバースクリーン1基

1.5m/m自動スクリーン1基

製造工程廃水貯留槽
 時間最大廃水量に対し、10分滞留とする。
 25m³/h × 2.5 × 10min/60min = 10.4m³

決定值:12m3

・再生廃水受槽 再生 1 回分を貯留出来るものとする。 32m³/回 × 1回 = 32m³

決定値: 35m3

・中和槽 時間最大廃水量に対し、 5 分滞留とする。 28.5m³/h × 2.5 × 5min/60min = 5.9m³

<u> 決定値:6m</u>

· N a O H 槽 (10% 濃度)

日間使用量に対し、7日貯留程度とする。

使用量:PAC相当分 18.9kg/H as DRY 中 和 用 28 kg/H as DRY

(合 計) 46.9kg/B as DRY

 $46.9 \text{kg/H} \div 10\% = 469 \text{ /H}$

容 量:4140/日 × 7日 = 3,2830

<u> 決定值:3m³</u>

(4) 設備コスト

設備コストは13,605,000 SITである。

設備コストをTable 3.7.9に示す。

Table 3.7.9 設備コスト

項目	内 容		金 額 (SII)
	スクリーン, ポンプ, 攪拌機等		5, 341, 000
表 器 類	計測機器類		429,000
	その他の機器類(タンク)		2, 163, 000
		(小 計)	7,933,000
	後器据付・配管工事		1,521,000
	電気工事		889,000
	塗装工事		7,000
現地工事	土木工事		1,616,000
	建築工事		1,031,000
	現場管理		134,000
	試運転		68,000
		(小 計)	5, 266, 000
設 計			406,000
	(合 計)		13,605,000

(5) 処理コスト

処理コストは3,394,000 SIT/年である。

処理コストをTable 3.7.10に示す。

Table 3.7.10 処理コスト

項	B	内容	金 額 (SIT/Y)
薬		NaOH 41.1 kg/D X 83.2 SIT/kg X 365 D/Y	1,248,125
電	気	128 kWh/D X 15 SIT/kWh X 365 D/Y	700,800
維	持	13,605,000 X 0.05	680,250
灯	油	36 Q/D X 60 SIT/Q X 90 D	194, 400
人名	- 費	1,425,000 SIT/Y·Preson X 2 Person/Y X 0.2	570,000
		(合 計)	3,393,575

(6) 経済性評価

a. 条件

① 原価償却年数:機 器 類 15年

建屋、土木 40年

② 金利:10%/年

③ 償却方法:均等償却

④ WWTP放流料金:176.56 SIT/引

⑤ 河川放流: 0 SII/d

⑥ 年間廃水処理量: 188 司/日 × 365 日/年 = 68,620 司/年

b. 廃水1 計当たりの処理費

1 直当たりの廃水処理費は71 SIT/直である。

1 **司**当たりの廃水処理費の内訳をTable 3.7.11に示す。

したがって、総合廃水1計当たりの処理費は次の値になる。

 $(①+②+③+④) \div (474 ㎡/日 × 365 日/年) + 176.56 SIT/㎡$

= 205 SIT/ d

Table 3.7.11 1 直当たりの廃水処理費の内訳

項目		内 容	金 額	
原価償却年	- 数	機 器 類 10,958,000 SIT ÷ 15年	① 730,533 SIT/年	
		建屋、土木 2,647,000 SIT ÷ 40年	② 66, 175 \$IT/年	
金	利	13,605,000 × 0.05	③ 680, 250 SIT/年	
ランニンク	/ :1	スト	④ 3,394,000 SIT/年	
((1) + (2) +	3 +	④) ÷ 68,620	71 SIT/m²	

3) 廃水処理装置

(1) 最適システムの選定理由

廃水処理を必要とする廃水はいずれも有機性廃水である。有機性廃水処理 の中心となるユニットプロセスは生物処理である。生物処理の対象廃水は中 性であることがひとつの条件となることから、先の予備処理装置をそのまま 必要とする。

生物処理には嫌気性処理と好気性処理があり、一般に、前者は中及び高濃度の有機性廃水の予備処理として、後者は中及び低濃度の有機性廃水の処理に用いられる。牛乳を含有する本廃水は、好気性処理の代表的な活性汚泥法で処理を行っていると、糸状性細菌が異常に発生するバルキング現象が起こり易い性質を持つことが知られている。バルキング現象は、活性汚泥中の糸状性細菌に沈降性がないことから、曝気処理後に活性汚泥の沈鍛分離が困難となり、その結果処理が不可能になることである。したがって、バルキングの発生が起こりにくいニュットプロセスを選定する必要がある。 これには、①嫌気/好気法、②回分式活性汚泥法及び③濃度勾配法がある。 更に、脱浆及び脱りんを期待できるユニットプロセスは①及び②である。しかし、廃水及び脱りんを期待できるユニットプロセスは①及び②である。しかし、廃水及び脱りんを期待できるユニットプロセスは①及び②である。しかし、廃水及の測定結果では、廃水の排出は比較的長時間にわたり見られたことから、廃水処理装置の運転の視点から、回分式活性汚泥法の選定は困難である。以上のことから、嫌気/好気法を採用する。また、処理槽は牛乳に含まれるラクトースを処理する十分なBOD容積負荷を採用する必要がある。

(2) 処理システムの概要

① 製造工程廃水

予備処理装置の中和が完了すると、廃水は調整槽に導かれる。調整槽から、 廃水の定量がポンプで嫌気/好気槽に導かれる。両槽で有機物が処理される とともに、嫌気槽では脱窒が、好気槽では脱りんが同時に行われる。処理さ れた廃水は次の沈殿槽に導かれ、汚泥が沈殿分離される。上澄水は残存する りんを除去する目的で凝集沈殿を行う。すなわち、反応槽では定量のPAC と、設置されているり日計と連動してNaOHがそれぞれ注入される。ここ で、廃水中に残存しているりん酸がりん酸アルミニウム(Ae₂(PO ℩) ェ) として生成される。次の凝集槽で高分子凝集剤が添加され、フロックが形成 される。フロックが形成された廃水は、次の沈殿槽で固液分離が行われる。 上澄水は減菌槽に導かれて減菌処理が施された後、自然流下により水質監視 槽に導かれ、pH値が自動記録、監視されてドラバ川に放流される。水質監 視槽で異常pH値が測定された場合は、警報が発せられる。また、沈殿槽で 分離された汚泥は、汚泥貯留槽に送られる。

② 軟化設備の再生廃水

廃水貯留槽に貯留されるた廃水は、揚水ポンプで廃水の定量が中和槽に導かれ、①の廃水とともに処理が行われる。

③ 生活排水

生活排水はスクリーンで夾雑物が除去されると、廃水貯留槽に導かれる。 廃水貯留槽から、廃水の定量がポンプで調整槽に送られ、①の廃水とともに 処理が行われる。

① 冼車廃水

洗車廃水は、直接調整槽に排出され、①の廃水とともに処理が行われる。

⑤ その他の廃水 ボイラブロー水及び冷却水廃水は、直接、減菌槽に排出される。

- (3) 設計条件
 - a. 廃水の水質 Table 3.7.6 に示す。
 - b. 処理水量

総合廃水量: 474 ㎡/日

① 廃水処理を必要とする廃水

製造廃水:175 面/日

再生廃水: 13 計/日 (32 計/回 ÷ 2.5 日/回 = 13 前/h)

生活排水:231 ㎡/日

洗車廃水: 35 面/日

② 廃水処理を必要としない廃水

治 却 水: 20 引/日

c. 廃水流入時間

8時間/日

d. 運転時間

24時間/日 (ただし、脱水機は8時間/日)

e. 処理水の水質

河川放流の場合の水質基準をTable 3、7.7に示す。

(3) 攙器仕様

a. フローシート

廃水処理装置のフローシートをFig. 3.7.8に示す。

b. レイアウト

廃水処理装置のレイアウトをFig. 3.7.9に示す。

c. マテリアルバランス

廃水処理装置のマテリアルバランスをFig. 3.7.10に示す。

d、機器リスト

廃水予備処理装置の機器リストをTable 3.7.12に示す。

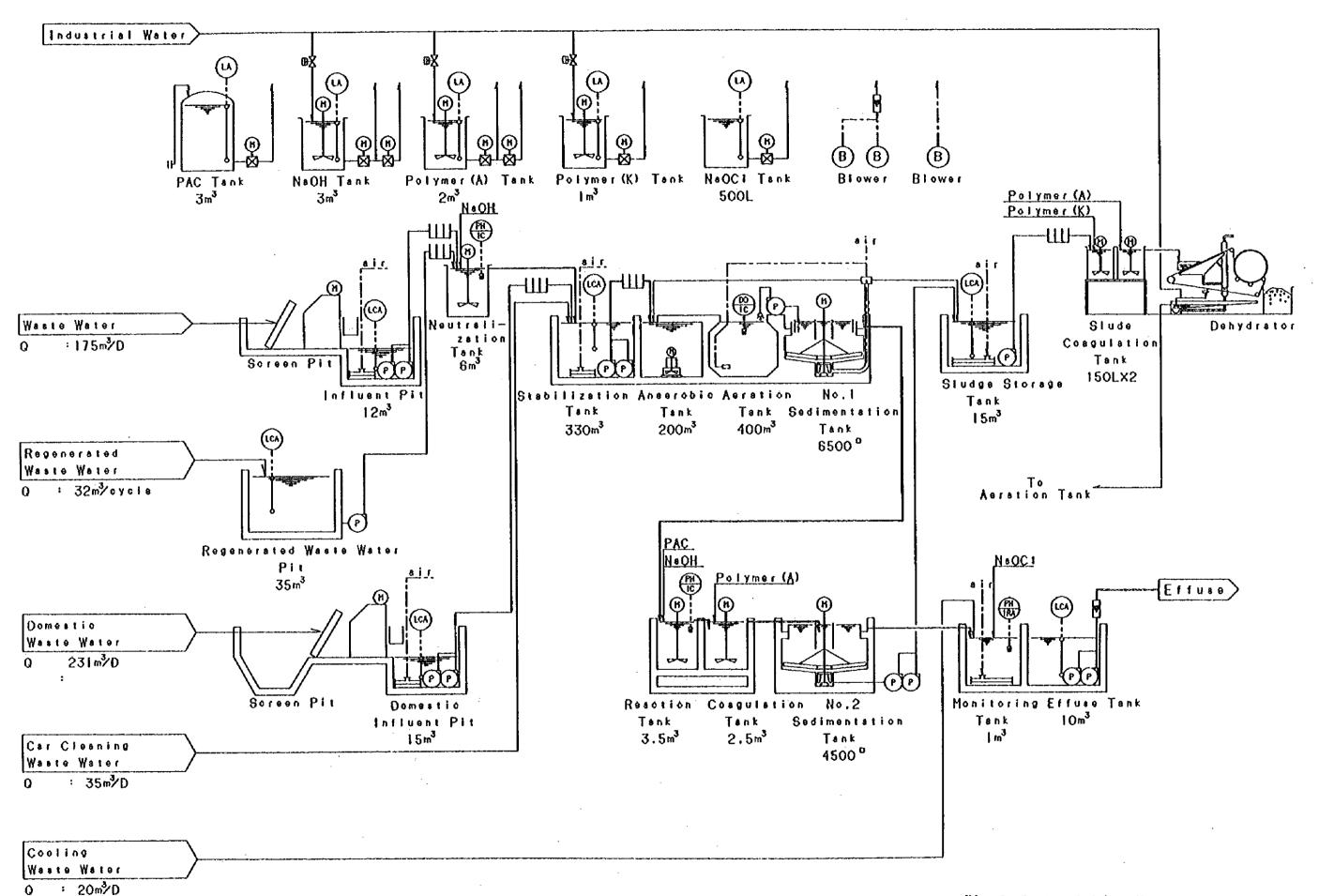
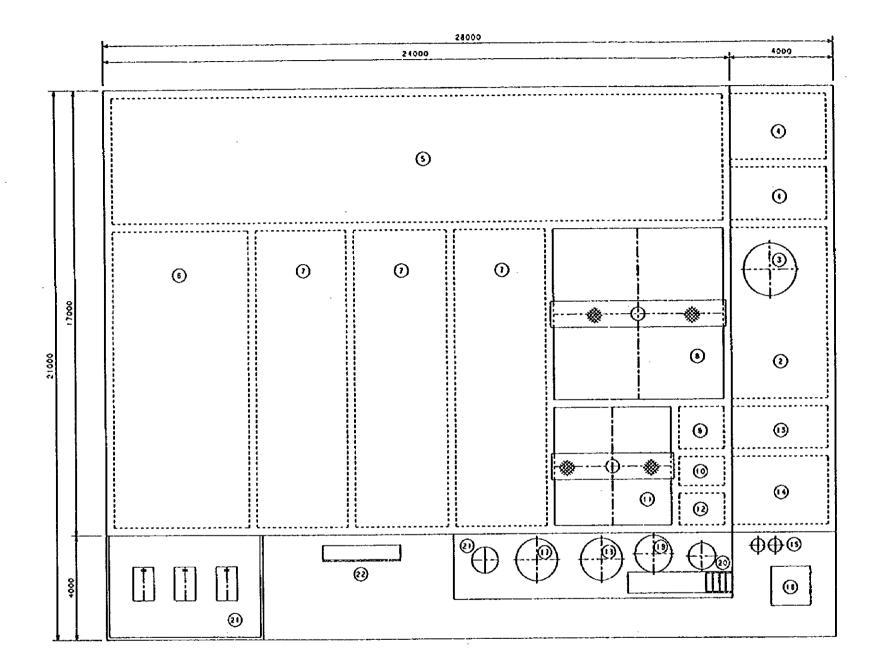



Fig. 3.7.8 廃水処理装置のフローシート

N٥	Descriptions	Remarks
1	Influent Pit	
2	Regenerated Weste Water Pit	
3	Neutralization Tank	
4	Domestic Influent Pit	<u> </u>
5	Stabilization Tank	
6	Anserobic Tank	
7	Assation Tank	
8	No.1 Sedimentation Tenk	
9	Reaction Tent	<u> </u>
10	Coagulation Tank	
11	No.2 Sedimentation Tenk	
12	Monitoring Tank	
13	Effusa Tank	
14	Studge Storage Tank	
15	Sludge Cassulation Tenk	
16	Dehydrater	<u> </u>
17	PAC Tent	
18	NaOH Taak	
19	Polymer (A) Tank	
20	Polymer (K) Tent	
21	NaOCI Tesk	<u> </u>
22	Blower Reom	
23	Control Panel	ļ

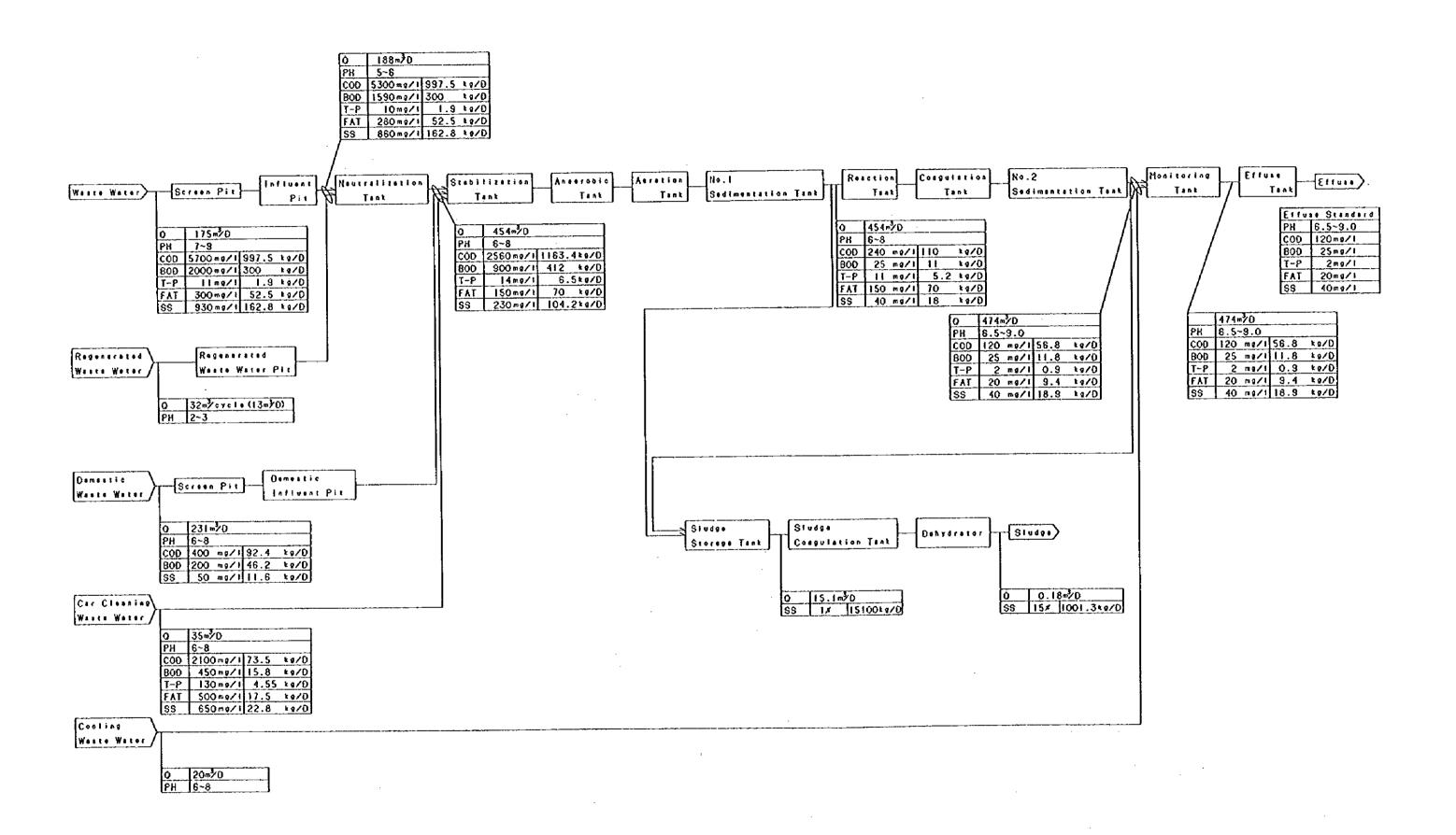


Fig. 3.7.10 廃水処理装置のマテリアルバランス -395-

			160.1.12				
o.	Item	Q' ty	Material	Specification	Remark		
1	Screen Pit	1	RC				
	Bar Screen	1	sus	Slit 20 mm	-		
-	Auto Scree	1	SUS	Slit 1.5mm × 0.1kW			
2	Influent Pit	1	RC	Capacity: 12 m ³			
				Shape: 3.7mW×2.0mL×2.5mD			
				with air diffuser			
	Pump	2	FC	100 \$ × 1m ³ /min×10m×3.7kW			
				Submersion type			
	Flow Meter	1	PVC	Box type			
	Level Switch	1	PYC	Float type			
3	Regenerated Waste Water	1	RC+FRP	Capacity: 35 m³			
	Pit			Shape : 3.7m¥×6.5mL×2.5mD			
	Pump	1	PVC	40 φ × 100 ℓ /min×10m×1.5k₩			
			·	Centrifugal type			
	Flow Meter	ı	PYC	Box type			
	Level Switch	1	PVC	Float type			
4	Neutralization Tank	1	FRP	Capacity : 6 m³			
				Shape : 2.0m ♦ × 2.4mH			
	Agitator	1	CS+RL	Vertical type 2.2 kW			
	pH Meter	1		Dip type, 0~14, 4~20mA			
5	Screen Pit	1	RC				
	Bar Screen	1	SUS	Slit 20 m/m			

to Screen mestic Influent Pit Imp low Meter evel Switch tabilization Tank	2	SUS RC RC PVC	Slit 1.5m/m×0.1kW Capacity 15 m³ Shape: 3.7mW×2.5mL×2.5mD with air diffuser 100 ¢ ×1.4m³/min×10m×5.5kW Submension type Box type Float type	
low Meter	2 1 1	RC PVC	Shape: 3.7mW×2.5mL×2.5mD with air diffuser 100 \$\phi\$ × 1.4m³/min×10m×5.5kW Submension type Box type	
low Meter evel Switch	1	PVC	with air diffuser 100 \$\phi \times 1.4m^3 / min \times 10m \times 5.5kW Submension type Box type	
low Meter evel Switch	1	PVC	100 \$\delta \tau 1.4m³/min \times 10m \times 5.5kW Submension type Box type	
low Meter evel Switch	1	PVC	Submension type Box type	
evel Switch	1		Box type	
evel Switch	1			
		PVC	Float type	
abilization Tank	1			
abilization Tank	1			-
	1 1	RC	Capacity: 330 m ³	
			Shape : 23.4mW × 4.8mL × 4.0mD	
			with air diffuser	
ınp	2	FC	80 & ×400 @ /min×10m×2.2kW	
			Submersion type	
low Meter	1	PVC	Box type	
evel Switch	1	PVC	Float type	
naerobic Tank	1	RC	Capacity: 200 m³	
			Shape : 5.2mW×11.3mL×4.0mD	
gitator	2	sus	Submersion type 3.7 kW	
eration Tapk	1	RC	Capacity: 400 m ³	· · · · ·
CIGION TUIN			Shape: 3.5mW×11.3mL×4.0mD×31ines	
	-		with air diffuser	
	1		Dip type, 0~20mg/Q, 4~20mA	
		eration Tank 1	gitator 2 SUS eration Tank 1 RC	Shape: 5.2mW×11.3mL×4.0mD 2 SUS Submersion type 3.7 kW eration Tank 1 RC Capacity: 400 m³ Shape:3.5mW×11.3mL×4.0mD×31ines with air diffuser

lo.	Item	Q' ty	Material	Specification	Remark
1 0	No. 1 Sedimentation Tank	1	RC	Surface area : 42 m²	
				Shape: 6.5m×6.5m×3mD	
	Sludge Collector	1	cs	Rake type 0.4 kw	
	Pump	1	cs	Airlift type Max 38m³/h	
	Римр	1	FC	50 φ × 250 Ø /min× 15π× 2. 2k₩	
				Centrifugal type	
-					
1 1	Reaction Tank	1	RC+FRP	Capacity: 3.5 m ³	
				Shape: 1.7mW×1.6mL×2.0mD	
	Agitator	1	CS+RL	Vertical type 1.5 kW	
	pH Meter	1		Dip type, 0∼14, 4∼20mA	
			-		
1 2	Coagulation Tank	1	RC	Capacity : 2.5 m³	
				Shape : 1.7m₩×1.1mL×2.0mD	
	Agitator	1	SUS	Vertical type 0.4 kW	
1 3	No. 2 Sedimentation Tank	1	RC	Surface area 20 m²	
_	-	1		Shape : 4.5m×4.5m×3mD	
	Sludge Collector	1	cs	Rake type 0.2 kW	
	Pump	2	FC	25/20 ¢ ×30 Q /min×10m×0.75kW	
-		-		Centrifugal type for slurry	
	-		·		
1 4	Monitoring Tank	1	RC	Capacity: 1 m³	
				Shape : 1.7m\x1.2mL\x4.0mD	
				with air diffuser	
-	pH Meter	1		Dip type, 0~14, 4~20mA	

No.	ltem '	Q' ty	Material	Specification	Remark
15	Effuse Tank	1	RC	Capacity 10 m ³	
-				Shape: 3.7mW×1.6mL×2.5mD	
	Pump	2	FC	80 ♦ × 420 ♀ /min× 12m× 2. 2kW	
				Submersion type	
	Flow Meter	1	cs	Area type	
	Level Switch	1	PVC	Float type	
1 6	Sludge Storage Tank	1	RC .	Capacity: 15 m³	
			-	Shape : 3.7mW×2.6mL×2.5mD	
				with air diffuser	
	Pump	1	FC	50 φ × 50 Q /min×12m×0.75kW	
·		Submersion type		Submersion type	
	Flow Meter	1	PYC	Box type	
	Level Switch	1	SUS	Electrode type	
1 7	Sludge Coagulation Tank	2	cs	Capacity : 200	
				Shape : 0.6m 4 × 0.9mH	
	Agitator	2	SUS	Portable type 0.1 kW	
18	Dehydrator	1		Belt press type	-
				Filter wide 500 m/m	:
				Sludge box 1 m ³	
1 9	PAC Tank	1	FRP	Capacity: 3 m'	
			-	Shape : 1.6m ¢ × 2.0mH	· · · · · · · · · · · · · · · · · · ·

Table 3. 7.12 機器リスト

No.	Item	Q' ty	Material	Specification	Remark		
	Pump	1	PVC	20 ♂ × 0. 2 Ø /min×10kg/cm²×0. 2k₩			
				Diaphram type			
	Level Switch	1	PVC	Float type			
2 0	NaOli Tank	1	FRP	Capacity: 3 m ³	·		
				Shape : 1.6m ¢ × 2.0mH			
	Agitator	tator 1 SUS Vertical type 0.					
	Pump	1	PVC	25 ¢ ×3 ₡ /min×5kg/cm² × 0. 2kW			
				Diaphram type			
	Pump	1	PVC	20 φ × 0. 5 Q /min×10kg/cm²×0. 2kW			
				Diaphram type			
	Level Switch	1	SUS	Electrode type			
2 1	Polymer(A) Tank	1	FRP	Capacity: 2 m ³			
				Shape : 1.5m ф × 1.6mН			
	Agitator	1	sus	Vertical type 0.75 kW			
	Pump	1	PVC	20 φ × 2 Ø /min×Skg/cm²×0.2kW			
				Diaphram type			
	Римр	1	PVC	25 ¢ ×7 ½ /min×3kg/cm²×0. 2k₩			
-				Diaphram type			
	Level Switch	1	SUS	Electrode type			
2 2	Polymer(K) Tank	1	FRP ·	Capacity : 1 m ³			
		· .		Shape : 1.2m ◊ × 1.3mH			
-	Agitator	. 1	SUS	Vertical type 0.4 kW			

So.	Item (Material	Specification	Remark
	Pump		PVC	25 φ × 7 Q /min×3kg/cm ² × 0. 2kW	
				Diaphram type	
	Level Switch	1	SUS	Electrode type	
2 3	NaOCl Tank	1	FRP	Capacity: 500	
				Shape: 1.0m & × 0.8mH	
	Pump	1	PVC	20 \$\dim \times 0.2 \mathbb{Q} /min \times 10kg/cm² \times 0.2kW	
				Diaphram type	
	Level Switch	1	sus	Electrode type	
2 4	Blower				
	for Aeration	2	FC	150 ¢ × 17m³/min×0. 45kg/cm² × 30kW	
	Flow Meter	1	cs	Area type	
	for Agitation	1	FC	$125 \phi \times 12 m^3 / min \times 0.45 kg/cm^2 \times 15 kW$	
2 5	Control Panel	1		Indoor self-standing enclosed type	
				2. 4m×0. 6m×2mH	-
				Push button switch	
				Alarm lamp	. :
				pH indicator	
				Do indicator	÷.
26	Pipe				
	Raw waste water line	,	VP		
	Treated water line	 	VP		<u> </u>
	Chemical dosing line		VP		

Table 3.7.12 機器リスト

No.	Item	Q' ty	Material	Specification	Remark
	Air line		SGP		
2 7	Bilding		steel frame &	588 nl X 7H	
			slate roof		
_					
	<u> </u>				
					<u> </u>
•					
	<u> </u>		ļ		
· · · · · -					
		-			
•					
			·		
			-		
			<u> </u>		
	-		1		

e、設計計算書

・製造工程廃水用スクリーン 租目スクリーン、微細スクリーンの各1基をつけるものとする。

決定値: 20mmバースクリーン1基

1.5mm自動スクリーン1基

· 製造工程廃水貯留槽

時間最大廃水量に対し、10分滞留とする。

 $25m^3/h \times 2.5 \times 10min/60min = 10.4m^3$

決定值:12m³

• 再生廃水受槽

再生1回分を貯留出来るものとする。

 $32m^3/[0] \times 1[0] = 32m^3$

決定值: 35m3

・中和槽

時間最大廃水量に対し、5分滞留とする。

 $28.5 \text{m}^3/\text{h} \times 2.5 \times 5 \text{min/60min} = 5.9 \text{m}^3$

<u> 決定値:6m³</u>

・生活排水用スクリーン

租目スクリーン、微細スクリーンの各1基をつけるものとする。

決定値: 20mmバースクリーン1基

1.5m/m自動スクリーン1基

· 生活排水貯留槽

時間最大廃水量に対し、10分滞留とする。

 $33m^3/h \times 2.5 \times 10min/60min = 13.75m^3$

次定值:15m3

・調整槽

廃水流入時間と廃水処理時間差を貯留出来るものとする。

 $(175 \text{m}^3/\text{B} \div 32 \text{m}^3/\text{回}/2.5 \text{H} + 231 \text{m}^3/\text{H} + 35 \text{m}^3/\text{H}) \div 24 \text{h}/\text{B} \times (24 \text{h} - 7 \text{h})$ = 321.6 m³

決定值: 330m3

・嫌気槽・曝気槽

流入BOD量に対し、処理BOD容積負荷0.8kg-BOD/m³・日程度とし、嫌気槽1/3、曝気槽2/3容量比とする。

 $412kg-BOD/H \div 0.8kg-BOD/m^3 \cdot H = 512m^3$

 $512m^3 \times 1/3 = 171.6m^3$

 $512m^3 \times 2/3 = 343.3m^3$

決定值:嫌気槽 200m3

曝気槽 400m³

(BOD容積負荷 0.687kg-BOD/m³·H) ·

· 第1 沈降槽

表面積負荷12m3/m2・Hとする。

表面積 454m³/B ÷ 12m³/m²·B = 37.8m²

決定值: 6.5m × 6.5m(42.2m²)

・反応槽

時間平均処理水量に対し、10分滞留とする。

 $18.9 \text{ m}^3/\text{h} \times 10 \text{min}/60 \text{min} = 3.2 \text{ m}^3$

決定值: 3.5m3

・凝集槽

時間平均処理水量に対し、5分滞留とする。

 $18.9 \text{ m}^3/\text{h} \times 5 \text{min}/60 \text{min} = 1.6 \text{ m}^3$

决定值: 2.5m3

· 第 2 沈降槽

表面積負荷24m3/m2·日とする。

表面積 $454 \text{m}^3/\text{H} \div 24 \text{m}^3/\text{m}^2 \cdot \text{H} = 18.9 \text{m}^2$

決定值: 4.5m × 4.5m(20.2m²)

・監視槽

時間平均処理水量に対し、2分滞留とする。

 $21.8m^3/h \times 2min/60min = 0.73m^3$

決定值: 1m3

・放流槽

時間平均処理水量に対し20分滞留とする。

 $21.8m^3/h \times 20min/60min = 7.3m^3$

決定值:10m3

• 汚泥貯槽

1日の汚泥量

余剰汚泥:BOD総量の30%とする。

 $412kg/H \times 0.3 = 123.6kg/H$

凝沈汚泥 (PAC添加量137kg/H, P = 6.5kg/日)

137kg/日 × 0.153 = 21.0kg/日 (PAC全量がA1(OH)aになった時)

6.5kg/日 × 122/31 = 25.6kg/日 (P全量がA1POxになった時)

21.0kg/日 × 27/78 = 25.6kg/日 × 27/22 = 1.6kg/日 (過剰のA1量)

- 1.6kg/日 × 78/27 = 46kg/日 (A1(OH)っとして生成するSS量)

合計 123.6kg/日 + 25.6kg/日 + 4.6kg/日 = 153.8kg/日 (Dry)

滞留を1日程度とする。

余剩汚泥量 12.4m3/日

凝集汚泥量 3m3/H

汚泥濃度 1%

 $(12.4 \text{m}^3/\text{H} + 3 \text{m}^3/\text{H}) \times 1 \text{H} = 15.4 \text{m}^3$

決定值: 15m3

・脱水設備

污泥凝集槽

処理量に対し5分滞留程度とする。

 $15.4 \text{m}^3/\text{H} \div 8 \text{h}/\text{H} \times 5 \text{min}/60 \text{min} = 0.16 \text{m}^3$

<u>決定値:0.2m³</u>

脱水機

汚泥処理量: 153.8kg/日 as DRY

脱水スラッジ:85%(含水率)

処理能力: 150. 2kg/日 ÷ 8h/日 = 19. 2kg/h as DRY

決定値:ベルトプレス型 20kg-Dry/h・日

脱水スラッジ量:153.8kg/日 ÷ 0.15 == 1,025kg/日

· PAC槽

日間使用量に対し、7日貯留程度とする。

使用量: 137kg/日 (300mg/Q添加)

容量 : 137kg/日 ÷ 1.2kg/ℓ× 7日 = 800

決定值:3m3

·NaOH槽 (10%濃度)

日間使用量に対し、7日貯留程度とする。

使用量: PAC相当分 18.9kg/日 as DRY

中和用28 kg/H as DRY

(合 計) 46.9kg/日 as DRY

46.9kg/H ÷ 10% = 469 Q /H

容 量:469 Q / 日 × 7日 = 3,283 Q

决定值:3m2

・ポリマー(A)槽 (0.1%濃度)

日間使用量に対し、1日貯留以上とする。

使用量: 廃水用 0.91kg/日 as Dry (2mg/ (添加)

脱水用 0.77kg/H as Dry (SS量の0.5%添加)

. (合計) 1.68kg/H as Dry

 $1.68 \text{kg/H} \div 0.1\% = 1,680 \text{ / } \text{ / } \text{ }$

容量:1,680 €/日×1日 = 1,680 €

決定值: 2m3

・ポリマー(K)槽 (0.1%濃度)

日間使用量に対し、1日貯留以上とする。

使用量: 0.77kg/日 as Dry (SS量の0.5%添加)

 $10.77 \,\mathrm{kg/H} \div 0.1\% = 770 \,\mathrm{g}$

容 量:770 Q/日× 1日 = 770 Q

<u>決定值: 1m³</u>

· Na C l O 槽

日間使用量に対し、7日貯留以上とする。

使用量: 48kg/日 (100mg/ (添加)

容 量:48kg/H-×7H = 336 Q

決定値:500 Q

・曝気用プロワ

BOD分解用酸素量: 484kg/日 × 1kg-02/kg = 484kg-02/日

MLSS分解用酸素量:600m³ × 5.38kg/m³ × 0.12kg-0₂/kg·日

 $= 387.4 \text{kg} - 0_2 / \text{H}$

N酸化用酸素量: 42kg/日 × 64/14 × 5 × 10 × 22.4 ÷ 32

 $= 6.720 \,\mathrm{m}^3 / \,\mathrm{H}$

エアーリフト用: $465 \text{m}^3/\text{H} \times 2 \times 3 = 2,790 \text{m}^3/\text{H}$

 $(484 \text{kg/H} + 387.4 \text{kg/H}) \div 32 \times 22.4 \div 0.21 \div 0.1 = 13,397 \text{m}^3/\text{H}$

 $(13,397m^3/H+6,720m^3/H+2,790m^3/H) \div 24h/H \div 60min/h = 15.9m^3/min$

決定値: 17m3/min × 0.45kg/cm2 × 30kW

・曝気用ブロワ

撹拌に必要な全槽容量に対し、201/m³·min以上とする。

 $373m^3 \times 20 \ \text{/m}^3 \cdot \text{min} = 7,460 \ \text{/min} = 7.4m^3 / \text{min}$

決定值: 8m³/min × 0.45kg/cm² × 15kW

(4) 設備コスト

設備コストは148,120,000 SITである。

設備コストをTable 3.7.13に示す。

(5) 処理コスト

処理コストは20,719,000 SIT/年である。

処理コストをTable 3.7.14に示す。

Table 3 . 7 . 13 設備コスト

項目	內容	金 額 (SIT)
	ポンプ, ブロワ, 攪拌機, 被速機, 脱水機等	26, 808, 000
機器類	計測機器類	4,050,000
	その他の機器類(タンク、塔類、レーキ等)	29, 275, 000
	(小 計)	60, 133, 000
	機器据付・配管工事	19, 749, 000
	電気工事	11,550,000
	塗装工事	125,000
現地工事	上木工事	29, 375, 000
	建築工事	18, 750, 000
	現場管理	1, 350, 000
		2,475,000
i	(小 計)	83, 374, 000
設 計		4,613,000
	(合 計)	148, 120, 000

Table 3.7.14 処理コスト

項	В	内 容	金 額 (SIT/Y)
		PAC(11%) 91 kg/D X 74.7 SIT/kg X 365 D/Y	2,481,161
薬	. pp	NaOH 41.4 kg/D X 83.2 SIT/kg X 365 D/Y	1, 257, 235
		Polymer(A) 1.681 kg/D X 990 SIT/kg X 365 D/Y	654,044
	÷	Polymer(K) 0.77 kg/D X 2000 SIT/kg X 365 D/Y	562, 100
	-	NaC Q O(12%) 48 kg/D X 54 SIT/kg X 365 D/Y	946,080
		(小 計)	5,900,620
電	気	998 kWh/D X 15 SIT/kWh X 365 D/Y	5,464,050
汚泥	処分	1.025 m/D X 1,423 SIT/m/ X 365 D/Y	532,380
灯	油	180 Q /D X 60 SIT/Q X 90 D	972,000
維	持	99,995,000 X 0.05	4,999,750
人	件費	1.425,000 SIT/Y·Person X 2 Person/Y	2,850,000
		(合 計)	20,718,800

(6)経済性評価

a. 条件

① 原価償却年数:機 器 類 15年

建屋、土木 40年

② 金利:10%/年

③ 償却方法:均等償却

④ WWTP放流料金:176.56 SIT/d

⑤ 河川放流: 0 SIT/ a

⑥ 年間廃水処理量: 454 d/日 × 365 日/年 = 165,710 d/年

b. 廃水1 11当たりの処理費

1 司当たりの廃水処理費は217 SIT/司である。

1 **計当たりの廃水処理費の内訳をTable 3.7.15**に示す。

したがって、総合廃水1回当たりの処理費は次の値になる。

 $(①+②+③+④) \div (474 前/日 × 365 日/年) = 208 SIT/前$

Table 3.7.15 1 計当たりの廃水処理費の内訳

項	П		内	容	• .		金 智	i
原価	貸却	機 器 類	99, 995, 00	0 SIT ÷	15年	0	6,666,333	SIT/年
		建屋、土木	48, 125, 00	o sit ÷	40年	2	1, 203, 125	SIT/年
金	金 利 148,120,000 × 0.05						7, 406, 000	SIT/年
ランニ	ングコ	スト				④	20, 718, 800	SIT/年
$(\textcircled{1} + \textcircled{2} + \textcircled{3} + \textcircled{4}) \div 165,710$					~		217	SIT/m²

3.7.4 汚濁負荷量削減のための予備処理

ここでは、WWTP放流における汚濁負荷量を削減するための予備処理装置を示す。

1)予備処理システムの選定

市乳及びチーズ製造廃水は、製造設備の洗浄廃水と床洗浄廃水に大別され、いずれの廃水にも原料乳、チーズ破片及びホエー等が含有されることから、比較的高い濃度のCODとBODを持つ有機性廃水であることが特徴である。また、CIPによる製造設備の洗浄には、酸、アルカリ及び界面活性剤が使用されることから、この廃水が排出されるときにはpHが変動する。しかし、廃水は、pHを除いてWWTPの処理に阻害性を持つ物質は含有していない。そのため、3.7.3に示す中和処理を予備処理として紹介したもので、これをケースー1とする。

次に、製造工程廃水を対象に、有機性物質による汚濁負荷量を削減する予備 処理システムを検討する。

WWTPの処理に生物処理法が採用されることが予想されるが、廃水が油分を 多く含有していると、この生物処理の運転を困難にする。このため、油分を除 去する予備処理装置が必要で、一般に加圧浮上法が用いられる。この加圧浮上 法をケースー2として採用し、以下に検討する生物処理の前処理とする。

高濃度の有機性廃水の前処理に嫌気性生物処理が採用されることが多い。この理由として、①嫌気性細菌は高濃度の有機性廃水処理に適していること、②高濃度廃水を好気性処理のみで処理を行うと、建設費、ランニングコストともに高価になること、③嫌気性生物処理はコンパクトな装置でエネルギーが回収できること、④嫌気性生物処理のみでは河川の放流基準を満たす水質が得られず、好気性生物処理の前処理として用いられること等が挙げられる。従って、嫌気性生物処理の前処理として用いられること等が挙げられる。従って、嫌気性生物処理のUASB法を予備処理装置のケースー3として採用することにする。

また、好気性生物処理の生物膜ろ過法には閉塞のない各種の充填剤が開発されている。本法を予備処理として用いると、①後段の活性汚泥処理でバルキングが生じないこと、②適切な充填剤を選定することにより、運転に支障を起こ

さず予備処理が容易に行われること等の利点が挙げられる。 従って、生物膜ろ 過処理を予備処理装置のケースー4として採用することにする。

また、りんを含有する界面活性剤の使用はWWTPへの負荷を配慮して他の ものに変更することが望ましい。このため、予備処理としてP除去の検討は行 わないことにする。

2)予備処理装置の概要

a. ケースー1

3.7.3に示すとおりである。

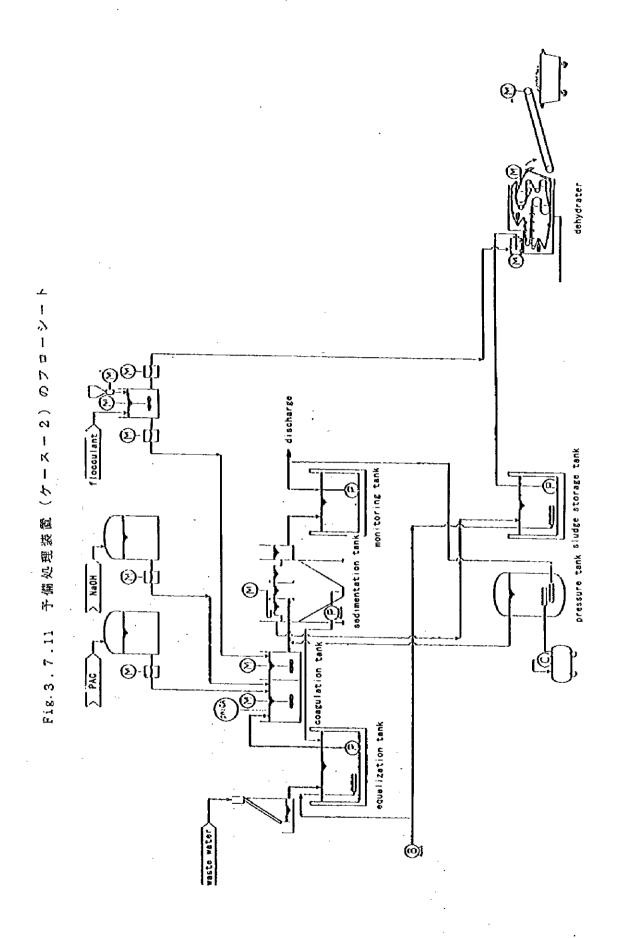
b. ケースー2

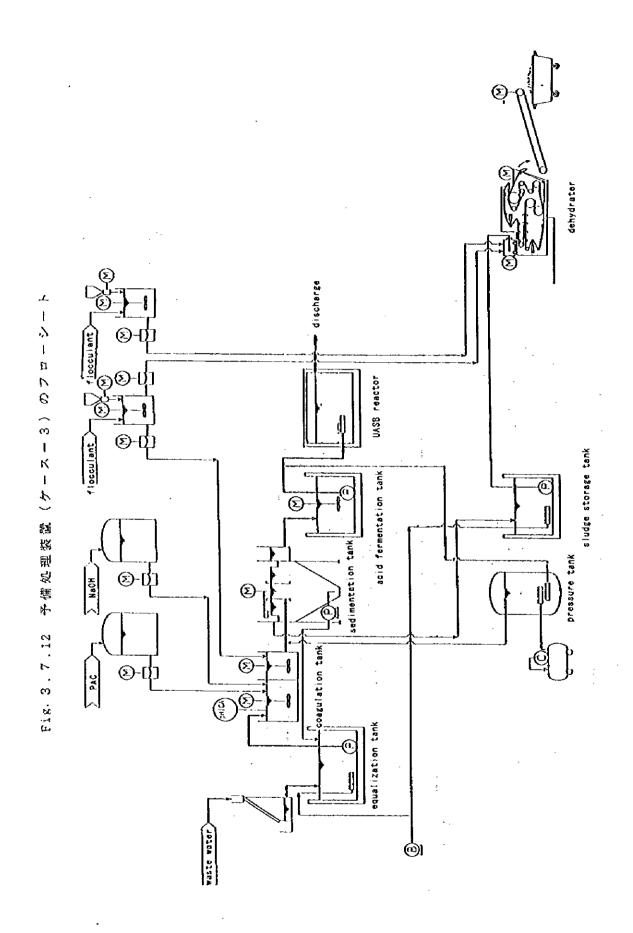
予備処理装置 (ケース-2) のフローシートをFig. 3.7.11に示す。

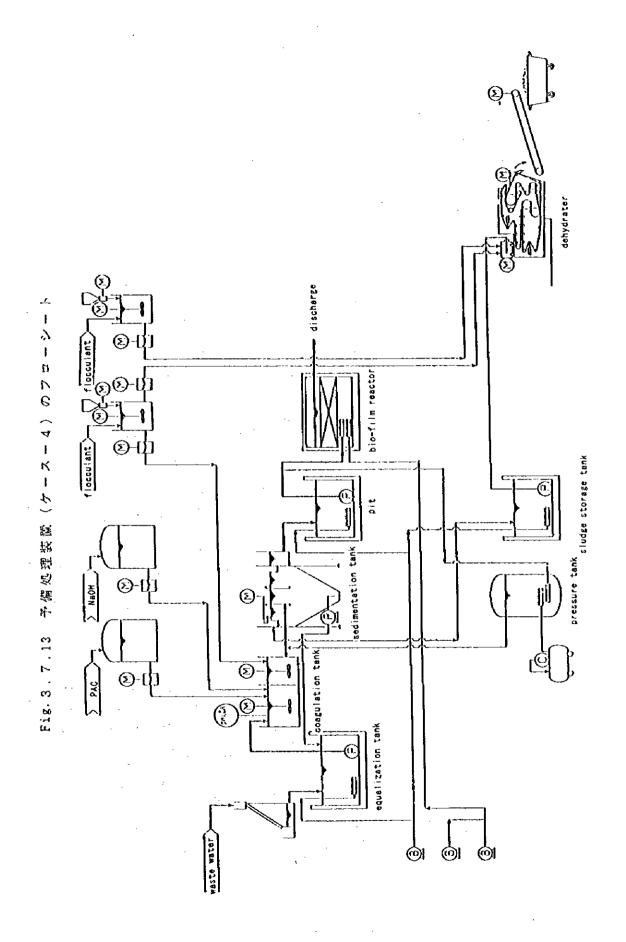
廃水が含有するたん白質、油分及びそれらの成分からなるSSを除去し、 併せて廃水のpHを申和するするものである。

廃水のpHを調整し、凝集処理を行って、生成する汚泥を次の加圧浮上槽で浮上分離する。この処理によって、SSと一部の溶解性汚濁物質が除去されて、処理水は水質監視槽に導かれてWWTPに放流される。水質監視槽で異常pHが測定された場合は、警報が発せられる。また、浮上分離された汚泥は、汚泥貯留槽に送られ、脱水機に導かれて脱水処理をさ、脱水ケーキは埋立て処分場に搬出される。

c. ケース - 3


予備処理装置 (ケース-3) のフローシートをFig. 3.7.12に示す。


ケースー2の処理水を更に嫌気性生物処理のUASB法による処理を行って、処理水のBOD及びCODを削減するもので、除去率を80%とした。


d. ケースー4

予備処理装置 (ケースー4) のフローシートをFig. 3.7.13に示す。

ケースー2の処理水を更に好気性生物処理の生物膜ろ過法による処理を行って、処理水のBOD及びCODを削減するもので、除去率を67%とした。

3) 検討結果

(1) 技術的検討

廃水及び処理水の水質・水量ならびに汚濁負荷量をTable 3.7.16に示す。

Table 3.7.16 廃水及び処理水の水量・水質ならびに汚濁負荷量

	Quantity	pH	CODel	вор	ss	FAT	L-6
Kind of Waste Water			mg/Q	mg/Q	mg/Q	mg/Q	mg/Q
Case			(kg/d)	(kg/d)	(kg/d)	(kg/d)	(kg/d)
Raw Waste	175	7	5,700	2,000	930	300	11
Water			(998)	(300)	(163)	(52.5)	(1.9)
Case-1		1	5,700	2,000	930	300	11
		1	(998)	(300)	(163)	(53.5)	(1.9)
Case-2		1	2,850	1,000	30	10	11
			(499)	(175)	(5.25)	(1.75)	(-1.93)
Case-3			570	100	30	10	- 10
			(100)	(17.5)	(5.25)	(1.75)	(1.75)
Case-4			1,900	100	30	10	10
			(333)	(17. 5)	(5.25)	(1.75)	(1.75)
Raw Waste	35	7	2,100	450	650	500	130
Water			(73.5)	(15.8)	(22.8)	(17.5)	(4.55)
Case-3		†	570	100	30	10	10
			(20)	(3, 50)	(1.05)	(0.35)	(0.35)
Case-4			1,900	100	30	10	10
				ŧ	(1.05)	(0.35)	(0.35)
Raw Waste	231	7	400	200	50		_
Water			(92.4)	(46. 2)	(11.6)	()	()
Raw Waste	476	5	2,443	866	414	147	14
Water				1	(197)	(70)	(6.45)
Case-1		7	2,443	866	414	147	13
			(1163)	(412)	(197)	(70)	(6.45)
Case-2		7	1,397	464	* · · · · · · · · · · · · · · · · · · ·		10
			(665)	(221)	(6.41)	(2.96)	(4.93)
Case-3		7	446	141	38	4.4	4.4
			(212)	(67.1)	(17.9)	(2.1)	(2.1)
Case-4		7			38	4.4	4.4
			_		(17.9)	(2.1)	(2.1)
Discharge		7					2.0
to River			l.	1	1	-	1
	Case Raw Waste Water Case-1 Case-3 Case-4 Raw Waste Water Case-3 Case-4 Raw Waste Water Case-1 Case-1 Case-2 Case-3	te Water Case Raw Waste 175 Water Case-1 Case-2 Case-3 Case-4 Raw Waste 35 Water Case-3 Case-4 Raw Waste 231 Water Raw Waste 476 Water Case-1 Case-2 Case-3	te Water m /d Case Raw Waste 175 7 Water Case-1 7 Case-2 Case-3 7 Case-4 35 7 Water Case-3 7 Case-4 231 7 Water Raw Waste 476 5 Water Case-1 7 Case-2 7 Case-3 7 Discharge 7	te Water m /d mg / Q Case (kg/d) Raw Waste 175 7 5,700 Water 5,700 (998) Case-1 5,700 (499) Case-3 570 (100) Case-4 1,900 (333) Raw Waste 35 7 2,100 Water (73.5) (20) Case-3 570 (20) Case-4 1,900 (66.5) Raw Waste 231 7 400 Water (92.4) Raw Waste 476 5 2,443 Water 7 2,443 Case-1 7 2,443 (1163) 7 2,443 (1163) 7 2,443 (1163) 7 2,443 (212) 7 1,397 (665) 7 446 (212) 7 1,032 (212) 7 1,032 (212) 7 1,032 (212) 7 1,032	te Water m/d mg/Q mg/Q	te Water Case m² / d mg/ Q (kg/d) mg/ Q (kg/d)	te Water Case mf/d mg/Q (kg/d) mg/Q (kg/d) <t< td=""></t<>

高濃度有機性廃水の予備処理として、嫌気性生物処理のUASB法と好気性生物処理の生物膜ろ過法を提案した。廃水の最適水温はいずれも36~38℃の中温にある。好気性生物処理の場合では、ブロワによる曝気が行われるため水温の低下は防止されるが、嫌気性生物処理の場合では、適温より低いと加温が施され、そのためのコストが割高かとなる。当工場のように、廃水の温度がそれほど高くない場合には、生物膜ろ過法の採用が望ましいと考える。

(2) 経済性評価

処理装置の設備費と処理費をTable 3.7.17に示す。

嫌気性生物処理は好気性生物処理より設備費及び処理費ともに安価である。 これは、廃水を加温する熱源費の比率が高くなるためである。

		Equipment Cost	Depreciation &	Running Cost	Total Treatment Cost
		SIT	Interest SIT/ d ①	sir/m² ②	S11/d ①+②
Pretreatment	Case-1	13,605,000	8	20	. 28
	Case-2	19,000,000	34	31	65
	Case-3	40,000,000	50	102	158
	Case-4	36, 000, 000	47	49	106
Dicharge to Rever (Design Base)		148, 120, 000	88	120	208

Table 3.7.17 処理装置の設備費と処理費

4) まとめ

廃水の河川放流を目指すと、全廃水を対象に処理を行うこととP除去に凝集 沈殿装置を設置する必要がある。そのため廃水処理装置は設備費及び処理費と もに高価となる。WWTP放流では、廃水が有害物質を含有していないことか ち、有機物の汚濁負荷量を削減する予備処理装置を検討することになろう。

WWTP放流基準の規制動向に応じて、油分除去の凝集浮上処理装置、汚濁 負荷量 (特にCOD) 削減のための生物処理装置の検討を段階的に進めること になろう。そのときを想定して、運転方法を変更することによって除去効率を 高めることが可能な生物処理法を採用しておくことが望ましいと考える。

