TABLE

1, 512, 00 1.50 53, 50 95.02.18 3. 25 40.00 0.05 42.00 200.002 0.00 41.99 0.00 0.90 95, 02, 18 283.97 390.40 775.29 570.00 8.80 1,059.26 Qodsaya Α, Α. % % A 4 Ν. A. % % % % A . % 927.05 244.00 18.56 0.00 0.23 736.77 620.00 125.00 95.10.24 95, 10, 24 6.96 0.02 0.12 1.08 0.00 0. 60 1, 506, 20 56.00 1.049.05 347.90 Domair A N × N. A. 765.00 383.00 28, 75 96.00 95.03.13 1.40 2.75 36.48 42.60 85.00 665.35 8.80 95.03.18 0.01 0.00 366.00 0, 21 0.01 501.33 390.00 Negative Negative 64.02 Nabek N. A. A. A. 310.00 12.16 0.00 31.7, 20 Dier Atlya 718.00 8.10 360.00 0.13 0.50 04.00 0, 29 49.70 65.00 10.61 0.00 443.70 604.94 95.08.27 Segative Negative 95.08.28 Α. λ. Α. 390.00 0.06 0.49 95.08.27 822.00 7.90 412.00 100.00 0.04 0.60 42, 60 65, 00 0.00 7.07 0.00 586.19 95.08.28 5.98 34.05 329.40 Ruheibe × × × × × × × × × × WATER QUALITY OF EXISTING WELL 533.00 48.00 0.02 86, 30 0.00 244.00 0.00 287.07 95.08.27 95.08.28 90 7. 90 0. 01 9. 20 4. 75 24, 32 0, 20 14.20 19.89 220.00 373.37 266.00 Qara X A < > 3colonies 580.00 8.05 0.03 2.30 0.50 96.00 17.02 0.02 28. 40 7. 00 0. 00 305. 00 310.00 291.00 19.90 0.00 0.80 95.04.03 0.30 95.04.03 0.40 15.87 361.40 477.27 4.40 Yabroud Ν. Α. Α. ... 49, 70 0.00 460.00 952,00 477 00 128.00 30.00 0.00 53.04 0.38 36.00 95.03.07 7. 53 34.05 0.18 488.00 823.52 Layer of 95.03.07 0.01 colonies 202, 22 Urbin V. N. A. × 877.00 440.00 112.00 0.03 0.50 677.17 430.00 4.40 Layer of 0.00 300.40 30.94 513.71 24.00 colonies 1.80 0.00 3.00 36.48 0.14 49:70 42.00 95.03.19 95.03.19 0.02 Harasta ×. Α. Α. rable-1 0.10 7.20 7.00 0.00 7.07 7.07 1.26 409.90 230.00 7.80 Layer of 385.00 7.40 1.00 60.00 56.80 0.03 285.85 colonies 0.90 0.03 6.21 40.00 95.08.27 95, 08, 28 193.00 Jarajir N. A. Х. А. N. A. Standard 0.001 0.010 0.005 0.00 200 or 0.05 250.00 $6.5 \sim 8.5$ 40.00 2000colon 1,000.00 0. 70 500.00 E 2/6 Unit m g/1 1 / S II mg/] mg/l 1/80 1/80 1/20 **mg/**1 1/8m 18/ 1/80 **#8/**] (/SE :/8m m 2/1 mg/1 1/8# mg/] DLN 1/84 80 otal Dissolved Solids lectro Conductivity otal Positive Ion otal Negative lon Description olection Date 7 0 0 Colon Bacillus otal Bacillus ል u Ç H C O 3-N O 3otal Salt P 0 4---C 0 3--S O 4---2 O Z est Date urbidity F) e+++ + 7 X Z ardness C a++ M g++ <u>..</u> ‡ 2 ¥

7.15 72.00 17.02 0.18 0.36 15.20 15.20 317.20 8.80 0.06 470.17 250.00 ŝ 356. % % A A 9 \$ 94, 07, 09, 95, 02, 18, 93, 04, 13, 94, 07, 09, 95, 02, 18, 93, 04, 13 3.50 Qodsaya 36. 00 17. 07 0. 01 55. 38 0.30 3.55 5.00 0.00 16, 79 252.06 0.00006 170.80 160.00 8 4 5 0.00036 $\widehat{\Xi}$ 4 4 4 4 ၀ 1.00 667.00 8.02 334.00 28. 40 70. 00 0. 00 305. 00 0, 00 4, 00 6.60 0.00 41.34 0.04 123.82 350,00 534, 47 8 × × × 1.60 7.89 372.87 0.00 3.22 15.50 68.00 38.91 0.02 125.65 0.52 28.40 53.00 0.00 305.00 12.38 0.02 0.40 Domair 95. 08. 27 95. 08. 28 0. 60 691. 00 7. 20 349. 00 0. 33 35. 50 62. 00 0. 00 8. 40 0. 00 0. 00 0. 54 0.00 28.75 0.50 112.00 24.32 0.02 662. 76 360. 00 4.40 (5)نيز نيز 95. 03. 18 g 1. 40 765. 00 7. 90 383,00 366, 00 7, 51 0, 01 0, 21 501, 33 0.03 28.75 2.75 96.00 36, 48 0, 50 42, 60 85, 00 0, 00 665, 35 0.01 164.02 390,00 0,00060 Dier Atiya Alcoup × × × 95. 02. 20 k 1.00 660.00 8.02 330.00 28. 40 70. 00 0. 00 305. 00 6. 60 0. 65 410, 65 0.00 6.44 9.00 72.00 41.34 0.04 400.00 4.30 0.00089 539, 47 95. 03. 29 95. 03. 29 1, 00 518, 00 7, 90 260, 00 0. 50 72. 00 7. 30 0.01 399:03 210.00 Rubeibe 0.01 0.30 0.30 28.40 9.50 0.00 244.00 13.26 4, 40 % % A A WATER QUALITY OF PROPOSED WELL 1.00 8, 03 331, 00 70,00 6, 40 300.00 0.00 6.42 4.00 0.02 0.00 309, 00 0.00 4.00 0.00037 Qara ₹ ₹ 72 72 72 <u>&</u> 94. 06. 22 94. 06. 23 1, 90 265, 80 8, 58 0.00 9.89 3.00 52.00 7.30 0.02 3. 50 3. 50 183. 00 1.2. 82 0. 00 0. 38 215.80 160.00 0.00 Rasalain 288.01 0,00040 2 196. ₹ ₹ نيز نيز 16. 20 0. 00 366. 00 0.50 593.00 22. 10 0. 01 0. 30 412. 93 297,00 0,000 22,77 0,50 80,00 24,32 540.53 300.00 0.01 0, 32 N. A. N. A. Ž, 95.04.03 0. 30 7. 00 0. 00 305. 00 19. 90 0.40 17.02 0.02 15.87 95, 04, 03 8.05 0. 03 2. 30 0. 50 96. 00 310.00 800 291.00 361.40 Coraine 00 2.00 95.03.19 8. 22 Harasta 95. 03. 19 0.00 7.59 3.00 80.00 29, 18 0, 01 119.78 0.28 28.40 50.00 0.00 292.80 9.28 0.01 0.01 2. 20 0.00052 0,00043 TABLE-2 0.00 6.44 4.00 72.00 41.30 0.03 0.00 663.00 8.02 330.00 350.00 0.00087 Jarajir 28. 40 70. 00 0. 00 310. 00 6. 50 0. 00 0. 00 415. 50 4. 20 0.00012 539, 27 0.00023 % % % A 9 9 4 4 200 or 5~8.5 0.00 0.010 2000colon 5.00 1, 000, 00 0.05 0.70 250.00 250.00 40.00 8 0,001 Syrian 500. /100ML Unit 88/1 88/1 88/1 mg/1 1/80 18/ 18/1 1/20 mg/1 ng/1 ng/1 mg/1 ng/1 1/8m 18/1 1/30 1/2# NTU [/3] /20 Total Dissolved Solids ectro Conductivity Total Negative Ion Total Salt Total Positive Ion Description Collection Date CO2 HR Pb Cd Cd Colon Bacillus Bacillus H C.03-P 0 4---Test Date Turbidity S 04--C03-F e+++ Z 0 Z N 0 2-Ca‡ M 8++ Total

TABLE-3 GUIDELINES FOR DRINKING WATER QUALITY

(Syrian Standard No. 45 (Ameded) and WHO Guidline)

Description	Unit	Syrian Standard	WHO Guidline
Colour	TCU	Below 5	Below 15
Taste		Shuld be acceptable	Shuld be acceptable
0dour		Shuld be acceptable	Shuld be acceptable
Turbidity	NTU	2	Below 5
PH		$6.5 \sim 8.5$	<u>-</u>
Total Disolved Sold	s (IDS)		
•	ag∕l	1,000	1,000
Kardness	mg/l	500	
NO2-	ng/1	0.01	3
N03-	mg/1	N<10, N03-<40	50
P04	mg/i		
F-	mg/1	1.5	1.5
C1-	mg/l	250	250
\$04	mg/l	250	•
fe .	mg/i	0.3	0.3
Mn	mg/l	0.1	0.5
Cu	mg/i	1.0	1.0
Pb	mg/1	0.01	0.01
Zn	mg/1	2.0	3.0
Hg	mg/l	0.001	0.001
€r	mg/l	0.05	0.05
Cd	mg/l	0.005	0.003
NH4+	mg/l	0.05	
Nat	mg/i	200	200

NOTE; TEV : True Colour Unit

NTU: Nephelometric Turbidity Unit

WHO: Guidline: 1993

TABLE-4 YEARLY DESIGN POPULATION AND DESIGN DEMAND

DESCRIPTION	UNIT		HARASTA		AVERAGE DAILY	JARAJIR	YABROUD	QARA	RUHEIBE	DIER	NABEK	DOMAIR	QODSAYA	TOTAL OR
		HARASTA	URBIN	TOTAL	DEMAND					ATIYA				AVERAGE
DESIGN DAILY				:				:						
DEMAND	1/man-day	200	200	200	1	110~125	110~125	110~125	110~125	110~125	110~125	110~125	200	1
GROWTH RATE	%	4.00	4.00	4.00	1	3. 35	3. 35	3, 35	3. 35	3, 35	3, 35	3.35	4.00	
DESIGN POPULATION														
1994	Person	70, 192	40, 945	111, 137	ı	3, 928	51, 241	17, 500	25, 099	24, 201	43, 562	27, 598	X.A.	193, 129
2000	Person	88, 815	51, 808	140, 524	1	4, 787	62, 443	21, 326	30, 586	29, 491	53, 085	33, 631	N. A.	235, 348
2005	Person	108, 057	63, 033	171, 090	ì	5, 644	73, 626	25, 145	36, 064	34, 774	62, 593	39, 655	%. A	277, 500
2010	Person	131, 468	76, 689	208, 158		6, 655	86. 813	29, 649	42, 523	41,002	73, 803	46, 757	N. A.	327, 201
2015	Person	159, 951	93, 304	253, 255	1	7, 847	102, 362	34, 959	50, 139	48, 345	87.022	55, 131	%. A	385, 805
DESIGN DEMAND														
1994	0/8m	14, 038	8, 189	22, 227	110	432	5, 637	1, 925	2, 761	2, 662	4, 792	3, 036	N. A.	43, 472
2000	m3/D	17, 763	10, 362	28, 125	110	527	6, 869	2, 346	3, 364	3, 244	5, 839	3, 699	% A	54, 013
2005	#3/D	21, 611	12, 607	34, 218	115	649	8, 467	2, 892	4, 147	3, 999	7, 198	4, 560	%. A.	66, 131
2010	6/8m	26, 294	15, 338	41, 632	120	199	10, 418	3, 558	5, 103	4, 920	8,856	5, 611	%. A	80, 896
2015	m3/D	31, 990	18, 661	50, 651	125	981	12, 795	4, 370	6, 267	6, 043	10, 878	6, 891	N. A.	98, 877

TABLE-5 EXISTING CONSUMPTION AND ESTIMATED POPULATION

Project		Jarajir	Haras:a		Yabroud	Qara	Ruheibe	Dier Atiya	Nabek	Domair	Qodsaya	Total or
Description	Unit		Harasta	Urbin								Average
Population in 1994	p,	3.928	70, 192	40 945	51, 241	17, 500	25, 099	24, 201	43, 562	27, 598	(159, 000)	304, 266
Consumption in 1994	#3 /×	146,000	3, 000, 000	67	1, 300, 000	603, 000	796, 000	625, 000 11	, 392, 000	964, 000	N. A	10, 044, 000
Daily Consumption	#3/D	400	400 8, 219	3, 337	3, 562	1,652	2, 181	1, 712	3,814	2, 641	N.A	27, 518
M/D Consumption in 1994	1/N/D	102	117	81	70	94	87	12	88	96	N. A	80
Seasonal Consumption					-							
1st season (J. F. M)	eg eg	15,000	600,000	25, 000	250, 000	105, 000	125, 000	100,000	250,000	175, 000		1, 870, 000
Effectiveness	ક્લ	42	82	83	18	71	94	9	73	74		76
2nd season (A. M. J)	83	40,000	700,000	350,000	300,000	160,000	221, 000	150, 000	392, 000	250,000		2, 563, 000
Effectiveness	ક્લ	110	94	115	93	106	111	96	113	104		102
3rd season (J. A. S)	33	71, 000	1, 000, 000	368, 000	500,000	228, 000	300,000	250,000	450, 000	339, 000		3, 506, 000
Effectiveness	2-6	193	132	120	153	150	150	129	128	140		138
4th season (O. N. D)	음	20, 000	700, 000	250, 000	250,000	110, 000	150,000	125, 000	300,000	200, 000		2, 105, 000
Effectiveness	ક્રવ	54	93	81	92	72	75	19	86	82		83
Total	п3/У	146,000	146, 000 3, 000, 000	1, 218, 000 1	1, 300, 000	603, 000	796, 000	625, 000 11, 392, 000	. 392, 000	964, 000		10, 044, 000
Daily Average Consumption	M3/D	400	8, 219	3, 337	3, 562	1, 652	2, 181	1, 712	3, 814	2, 641		27, 518
Estimated Population												
1981	۵.	N. A	N. A	N. A	N. A	7, 484	N. A	N. A	N. A	N. A	N. A	W. A
1990	ρ.	3, 450	60, 000	35, 000	45, 000	10, 068	22, 000	N. A	N, A	N. A	N. A	N. A
1991	ρ,	3, 564	62, 400	36,400	46, 485	10, 405	22, 737	N. A	N. A	25, 000	N. A	N. A
1992	۵,	3, 681	64, 896	37, 856	48,019	10, 753	23, 499	N. A	N. A	25, 838	N A	N A
1993	ρ.,	3, 803	67, 492	39, 370	49 604	11, 114	24, 286	N. A	N. A	26, 703	N. A	N. A
1994	6 4	3, 928	70, 192	40, 945	51, 241	11, 486	25, 099	N. A	43, 562	27, 598	159, 000	457, 252

TABLE-6 DESIGN WATER VOLUME

					·		PROJECT: H	HARASTA
DESCRIPTION		> A A	700	2000	. 0005	9010	2015	0/2 20/2 20/2 20/2 20/2 20/2 20/2 20/2
	GROWTH RATE	1.	· 1	:	:	:	;	
DESIGN POPULATION	(A) R=4.00%	nan	111.137	140,624	171,090	208, 158	253, 255	
DESIGN MAN/DAY								
CONSUMPTION	(B)	1/M/D	200	200	200	200	200	
DESIGN AVERAGE								
DAILY CONSUMPTION	O= A x B	m3/D	22, 227	28, 125	34, 218	41.632	50,651	
DESIGN MAXIMUM								
DAILY CONSUMPTION	②=1.5x⊕	m3/D	33, 341	42, 187	51, 327	62, 447	75, 977	
	3 = ○ /16							
DESIGN TOTAL DEMAND	3 = 2 /24	m3/H	1,389	1, 758	2, 139	2,602	3, 166	
EXISTING WELL				Account of the second				
CAPACITY	⊕	ш3/Н	1.205	1,205	1, 205	1.205	1, 205	700 + 505
DESIGN DEMAND	S = S - C	ш3/Н	184	55 55	934	1.397	1,961	
DESIGN WELL								
CAPACITY	9	ш3/н	009	009	009	009	009	120 x 5
2	(• •	•	
Derenence	@-@ <u>-</u> @	E 3 / H	0.14	4.	-334	181-	-i.36I	
DESIGN SUPPLY								
WATER VOLUME	®=\$00r@	m3/H	184	553	009	600	009	
MAXIMUM YEAR	<u>_</u>	YEAR		2000, 62				
Note: MAXIMUM YEAR i	is the year t	to reach	maximum	demand by r	proposed fa	acilities.		

TABLE-7 DESIGN WATER VOLUME

						64	ROJECT: J	ARAJIR
DESCRIPTION		YEAR	1994	2000	2005	2010	2015	REMARKS
DESIGN POPULATION	GROWTH RATE (A) R=3.35%	man	3, 928	4, 787	5,644	6,655	7,847	
DESIGN MAN/DAY	(E)	1/W/D	110	110	115	120	125	
DESIGN DAILY CONSUMPTION	() = A x B	Q/8m	787	527	649	799	981	
DESIGN MAXIMUM DAILY CONSUMPTION	Dx.c	m3/D	648	790				
DESIGN TOTAL DEMAND	(3) = (1) / 16 (3) = (2) / 24	m3/H	2.2	3.3	4.1			
EXISTING WELL CAPACITY	(т3/н	0	0	0	0	0	
DESIGN DEMAND	(S) = (S) - (4) ·	m3/H	2.2	33	4 1	90	6 1	
DESIGN WELL CAPACITY		H/8m	50x1 Case 50	5.0	5.0	5.0	5.0	50 x 1
DEFERBNCE	Ø=@-@	п3/н	23	17	6	0	-11	
DESIGN SUPPLY WATER VOLUME	®=500F	m3/H	27	33	14	5.0	50	
MAXIMUM YEAR	<u> </u>	YEAR				2010		
DESIGN WELL CAPACITY	<u> </u>	m3/H	50x2 Case 100	100	100	100	100	50 x 2
DEFERENCE	©-@- <i>©</i>	п3/н	73	6.7	ტ ტ	20	<u>გ</u>	
DESIGN SUPPLY WATER VOLUME	<u>8=\$0r6</u>	m3/H	27	33	4.1	5.0	6.1	
MAXIMUM YEAR	6	YEAR		:			2015	
Note: MAXIMUM YEAR i	is the year	to reac	п пахішип	demand by	proposed fa	cilities.		

TABLE-8 DESIGN WATER VOLUME

		:				,	PROJECT: Y	YABROUD
					-			
DESCRIPTION		YEAR	1994	2000	2002	2010	2015	REMARKS
	GROWTH RATE							
DESIGN POPULATION	(A) R=3.35%	man	51, 241	62, 443	73, 626	86.813	102,362	
DESIGN MAN/DAY								
CONSUMPTION	(B)	1/W/D	110	110	5	120	125	
DESIGN AVERAGE								
DAILY CONSUMPTION	$\Theta = A \times B$	m3/D	5, 637	698'9	8,467	10.418	12, 795	
DESIGN MAXIMUM	,							
DAILY CONSUMPTION	②=1.5x①	п3/D	8.455	10,303	12.701	15,626	19, 193	
	@=@/16							
DESING TOTAL DEMAND	3 ≈ 2 /24	п3/н	352	429	529	651	800	
EXISTING WELL			120	120	120	120	120	60 x 2
CAPACITY	(m3/H	180	180	180	180	180	45 x 4
DESIGN DEMAND	@-@-9	ш3/Н	5.2	129	229	351	200	
DESIGN WELL					 -			Asalain
CAPACITY	9	п3/н	200	200	200	200	200	100 x 2
	<i>-</i>							
DEFERENCE	©-@= ©	m3/H	148	7.1	-29	-151	-300	
DESIGN SUPPLY								
WATER VOLUME	®=\$01@	m3/H	5.2	129	200	200	200	A design of the second
	· .							
MAXIMUM YEAR	⊚	YEAR		2004		de a standa da de		

Note: MAXIMUM YEAR is the year to reach maximum demand by proposed facilities.

TABLE-9 DESIGN WATER VOLUME

							PROJECT: Q	QARA
		6		C C		0.10	9 0 1 6	0 0 0 0 0
DESCRIPTION		IEAK	1884	0007	3	- >	3	U U V E 7
	GROWTH RATE							
DESIGN POPULATION	(A) R=3.35%	man	17,500	21, 326	25, 145	29,649	34, 959	
DESIGN MAN/DAY								
CONSUMPTION	(B)	1/W/D	110	. 1.10	115	120	125	
DESIGN AVERAGE								
DAILY CONSUMPTION	$\bigcirc = A \times B$	ш3/D	1,925	2,346	2.892	3, 558	4, 370	
DESIGN MAXIMUM								
DAILY CONSUMPTION	$\bigcirc = 1.5 \times \bigcirc$	m3/D	2.888	3, 519	4, 338	5, 337	6, 555	
	③=⊕/16							
DESIGN TOTAL DEMAND	3=2/24	ш3/н	120	147	181	222	273	The state of the s
EXISTING WELL								
CAPACITY	(4)	ш3/Н	16	16	16	16	16	7 x 1 + 9 x 1
		:				-		
DESIGN DEMAND	(D=(D-(E)	ш3/Н	104	131	165	206	257	
DESING WELL								
CAPACITY	©	п3/н	135	135	135	135	135	50 x 2 + 35 x 1
			•					
DEFERENCE	Q = Q - Q	m3/H	3.1	4	-30	-71	-122	
DESIGN SUPPLY	:		,	٠.				
WATER VOLUME	S=S0r6	m3/H	104	131	135	135	135	
		. A # 141						
MAXIMUM YEAR	<u>6</u>	YEAR		2000.47				
		:						

Note: MAXIMUM YEAR is the year to reach maximum demand by proposed facilities.

TABLE-10 DESIGN WATER VOLUME

		:					PROJECT: R	RUHEIBE
DESCRIPTION		YEAR	1994	2000	2005	2010	2015	REMARKS
	GROWTH RATE		:			•		
DESIGN POPULATION	(A)R=3.35%	man	25,099	30, 586	36.064	42, 523	50, 139	
DESIGN MAN/DAY			. :					
CONSUMPTION	(B)	1/א/1	110	110	115	120	125	
DESIGN AVERAGE	•			-				
DAILY CONSUMPTION	$\Omega = A \times B$	m3/D	2, 761	3, 364	4, 147	5, 103	6,267	
DESIGN MAXIMUM								
DAILY CONSUMPTION	② = 1. \$x○	m3/D	4, 141	5.047	6, 221	7,654	9,401	
	@=@/16							
DESIGN TOTAL DEMAND	(3) = (2) / 24	п3/Н	173	210	259	319	392	
EXISTING WELL						-		+ 21 + 2 + 05
CAPACITY	@	т3/Н	105	105	105	105	105	15 + 16
DESIGN DEMAND	(S = (3 - (4)	ш3/Н	.89	105	154	214	287	
DESIGN WELL		, also 84 - complement	·					
CAPACITY	9	т3/н	180	180	180	180	180	45 x 4
DEFERENCE	C = @ - S	m3/H	112	7.5	56	-34	-107	
DESIGN SUPPLY		***************************************						
WATER VOLUME	®=©or6	ш3/Н	8.9	105	154	180	180	
		· · · · · · · · · · · · · · · · · · ·			,			
MAAIMUM IEAK	D	и В В			2007.17			
			_ :					

Note: MAXIMUM YEAR is the year to reach maximum demand by proposed facilities.

TABLE-11 DESIGN WATER VOLUME

PROJECT: DIER ATIYA

NO THAT WOOD		YEAR	1994	2000	2005	2010	2015	REMARKS
	THE DATE		·					
DESIGN POPULATION		ដូនព	24, 201	29, 491	34, 774	41,002	48,345	
						The state of the s		
CONSUMPTION	(B)	Q/W/1	110	110	115	120	125	
DESING AVERAGE								
DAILY CONSUMPTION	(D= A x B	m3/D	2,662	3, 244	3 999	4,920	6.043	
DESIGN MAXIMUM			:					
DAILY CONSUMPTION	Ø≠1.5x0	m3/D	3,993	4,866	5,998	7,380	9,065	
	③ =⊕/16							
DESIGN TOTAL DEMAND	©=@/24	п3/н	166	203	250	308	378	
EXISTING WELL								35 x 1 + 15 x 1 +
CAPACITY	•	ш3/Н	147	147	147	147	147	$(35 + 20 + 42) \times 1$
DESIGN WATER VOLUME	@ = ® - €	п3/н	1.9	5.6	103	161	231	
DESIGN WELL						- 		
CAPACITY	@	п3/н	4.5	4.5	45	4.5	45	45 x 1
			• .					
DEFERENCE	(D = (B) - (B)	ш3/Н	26	-11	-58	-116	-186	
DESIGN SUPPLY				-				
WATER VOLUME	8=Sor6	н3/н	•		,	-	1	By existing pipe
	<u></u>							
MAXIMUM YEAR	<u> </u>	YEAR	1998					

Note: MAXIMUM YEAR is the year to reach maximum demand by proposed facilities.

TABLE-12 DESIGN WATER VOLUME

DESCRIPTION CROWTH RATE CROWTH RATE DESIGN POPULATION (A)R=8.38% A 4.83.562 83.085 62.593 73.803 87.022 DESIGN POPULATION (A)R=8.38% A 4.83.562 83.085 62.593 73.803 87.022 DESIGN WERACE DAILY CONSUMPTION © = Ø = Ø = Ø = Ø = Ø = Ø = Ø = Ø = Ø =	· ·						\$** } <u>-</u>	PROJECT: N	ABEK
(B) The state (C) No. 1 (A) R = 8.35 x	CRIPTION			ග	00	00	0 1	10	EMARK
(A) R= 8. 35 x A 48. 56 2 58.085 62.593 73.803 87.022 (B) 1/M/D 110 110 115 120 125 (D) = A x B m3/D 4.792 5.839 7.198 8.856 10.878 (D) = 1.5 x C m3/D 7.188 8.759 10.797 13.285 16.317 (D) = (D)/16 m3/H 299 865 450 554 680 (D) = (D)/24 m3/H 115 115 115 50 x 2 + 15 x (D) = (D)/26 - (D) m3/H 220 220 220 220 55 x 4 (D) = (D)/26 - (D) m3/H 220 220 220 220 55 x 4 (D) = (D)/26 - (D)/26 m3/H 38 -30 -115 -219 -345 (D) = (D)/26 - (D)/26 m3/H 38 -30 -115 -219 -345 (D) = (D)/26 - (D)/26 m3/H 1997									
(B) 1/M/D 110 110 115 120 125	POPULATION	(A) R=3.35%	~	3, 56	3,08	2 59	3, 80	7 02	
(8) 11/M/D 110 110 115 120 125 (8) (8) (9) (8) (10,878 (9) (10,878 (9) (10,797 (13,285 (10,878 (10,878 (10,797 (13,285 (10,317 (13,285 (10,317 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,17 (13,285 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13 (13,13,13,13 (13,13,13,13 (13,13,13,13 (13,13,13,13,13,13 (13,13,13,13,13,13,13 (13,13,13,13,13,13,13,13,13,13 (13,13,13,13,13,13,13,13,13,13,13,13,13,1	MAN/DAY								
∅ = A x B m3/D 4,792 5,839 7.198 8,856 10,878 № =1.5xФ m3/D 7.188 8,759 10,797 13,285 16,317 № © =0/16 m3/H 299 365 460 554 680 № © =0/16 m3/H 115 115 115 115 50 x 2 + 15 x © m3/H 184 250 335 439 565 © m3/H 184 250 220 220 220 55 x 4 © m3/H 220 220 220 220 55 x 4 ©=©-6 m3/H 184 250 220 220 55 x 4 ©=©-6 m3/H 220 220 220 220 55 x 4 ©=©-6 m3/H ©=©-6 m3/H ©=©-6 m3/H ©=	TION	(8)					€3	2	
№ = A x B m3/D 4.792 5.839 7.198 8.856 10.878 № =1.5x Ф m3/D 7.158 8.759 10.797 13.285 16.317 № Ф = Ф/16 m3/H 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 10.797 13.285 16.317 № Ф = Ф/16 m3/H 115 115 115 115 115 115 10.797 № Б = Ф - Ф m3/H 184 250 220 220 220 220 250 245 № Б = Ф - Ф m3/H 220 220 220 220 220 250	AVERAGE								
⊗=1.5x W m3/D 7.18S 8.759 10.797 13.285 16.317 ND ⊗=0/16 m3/H 299 365 450 554 680 ND № (20/24) m3/H 115 115 115 115 50 x 2 + 15 x © m3/H 184 250 335 439 563 © m3/H 220 220 220 220 220 55 x 4 © m3/H 220 220 220 220 55 x 4 ©= (50 - (5) m3/H - - - - - ©= (50 - (5) m3/H - - - - - - N= (50 - (5) m3/H - - - - - - - - ©= (50 - (5) m3/H -	CONSUMPTION	× ×		. 79	∞ ⇔	19	85	0,87	
Ø=0.1.5x m3/D 7.188 8.759 10.797 13.285 16.317 Ø=0.16 m3/H 299 365 450 554 680 Ø m3/H 115 115 115 115 50 x 2 + 15 x Ø m3/H 184 250 335 439 565 Ø m3/H 220 220 220 220 55 x 4 Ø=ØorØ m3/H - - - - 345 55 x 4	MAXIMUM			-					
③ = ② / 24 m 3/H 299 365 450 554 680 ④ m 3/H 115 115 115 115 50 x 2 + 15 x ④ m 3/H 184 250 335 439 565 ⑤ - 30 220 220 220 55 x 4 ⑥ m 3/H 220 220 220 55 x 4 ⑥ - 30 - 115 - 219 - 345 ⑥ - 30r - 115 - 219 - 345	CONSUMPTION	Ø=1.5x0		. 1.8	7.5	0.79	3, 28	6, 31	
③=②/24 m3/H 299 365 450 554 680 ④ m3/H 115 115 115 115 50 x 2 + 15 x ⑤=③-④ m3/H 184 250 335 439 565 ⑥ m3/H 220 220 220 220 55 x 4 ⑦=⑥-⑤ m3/H 36 -30 -115 -219 -345 ⑥ YEAR 1997 - - By existing pip		®=0/16			and the same the same through the state of the same transfer of the same		- % cod to		
L ⊕ m3/H 115 115 115 115 115 50 x 2 + 15 x D S= ③ - ④ m3/H 184 250 335 439 565 E ⑤ m3/H 220 220 220 220 55 x 4 T ○= ⑥ - ⑤ m3/H 36 -30 -115 -219 -345 Y ○= ⑤ or ⑥ m3/H -	TOTAL DEMAND	3 = 2 / 24	>	c)	9	ഹ	FL)	8	
⊕ m3/H 115 115 115 115 50 x 2 + 15 x D ⑤=⑥-④ m3/H 184 250 335 439 565 Ø m3/H 220 220 220 220 220 55 x 4 Y ⑥=⑥-⑥ m3/H 36 -30 -115 -219 -345 Y ⑥=⑥-⑥ m3/H - - - - By existing pip									
D (S=30-€) m3/H 184 250 335 439 565 (S) m3/H 220 220 220 220 55 x 4 (D)=(S-(S) m3/H 36 -30 -115 -219 -345 Y S=(S) or (S) m3/H By existing pip	ÁJ	☻	_		-			•	$0 \times 2 + 15 \times$
D S=30-€ m3/H 184 250 325 439 565 S = 30-€ m3/H 220 220 220 220 55 x 4 T S = 50 r S m3/H 36 -30 -115 -219 -345 T S = 50 r S m3/H By existing pip			·						
© m3/H 220 220 220 220 220 55 x 4 T <td>DEWAND</td> <td>(S) = (B) - (A)</td> <td>_</td> <td>÷∞</td> <td>113</td> <td>3</td> <td>3</td> <td>9</td> <td></td>	DEWAND	(S) = (B) - (A)	_	÷∞	113	3	3	9	
© m3/H 220 220 220 220 55 x 4 T	WELL			:	:				
Y ⊗=⊙or⊙ m3/H By existing pip ③ YEAR 1997	ľ Y Č	@	~	6.1	~1	63	64	C-3	×
Y	· 阅Ob	©=@-@	_		. 6.3		2.1	3.4	
	SUPPLY								
© YEAR 199	/OLUME	8=60r6	~	٠,		.,	1	•	y existing pip
	K YEAR			တ	TO THE RESIDENCE OF THE PERSON				
								•	

TABLE-13 DESIGN WATER VOLUME

							PROJECT: D	DOMAIR
DESCRIPTION		YEAR	1994	2000	2005	2010	2015	REMARKS
	GROWTH RATE				:			A A A STEP A STE
DESIGN POPULATION	(A) R=3.35%	E E	27, 598	33, 631	39,655	46,757	55, 131	
DESIGN MAN/DAY								
CONSUMPTION	(B)	1/W/D	110	110	115	120	125	
DESIGN AVERAGE								
DAILY CONSUMPTION	$\bigcirc = A \times B$	m3/D	3,036	3, 699	4,560	5, 511	6.891	
DESIGN MAXIMUM								
DAILY CONSUMPTION	Ø=1.5x0	m3/D	4.554	5,549	6,840	8,416	10,337	
	©=⊕/16							
DESIGN TOTAL DEMAND	© = ∅ /24·	m3/H	190	23.1	285	ເດ	431	
EXISTING WELL						-		
CAPACITY	•	ш3/н	30	30	30	30	30	15 x 2
DESIGN DEMAND	S=0-4	m3/H	160	201	255	321	401	
DESIGN WELL								
CAPACITY	0	п3/н	200	200	200	200	200	100 x 2
			•					
DEFERENCE	@-@-@	田3/田	40	T	-55	-121	-201	
DESIGN SUPPLY								And the state of t
WATER VOLUME	8=50r6	п3/н		1	•	-	•	By existing pipe.
MAXIMUM YEAR	6	(1 (2 (2	0 0 0					
)	4		_ 			-	

Note: MAXIMUM YBAR is the year to reach maximum demand by proposed facilities.

TABLE-14 TEST RECORD OF WELL

Description	ដូ	Jarajir	Harasta	Yabroud	Qara	Ruheibe	Dier Atiya	Nabek	Domair	Qodsaya
Date		93. 08. 10	93.09.05	92. 05. 12	93.10.02	95.09.20	92.	93. 08. 25	93. 10. 15	
Test capacity	m3/D	50.00	90.00	59.00	50.00	60.00	45.00	55.00	94.00	%. A.
Depth of well	E	370.00	ć	257.00	325.00	6 6 6	320.00	400.00	((
Pump Output	효수	60.00	120.00		270.00 90.00	100.00	50.00	364. 00 120. 00	70.00	
Olnitial WL	(II) -719	171.00	85.00	23.30	260.00	180.00	180.00	320.00	90.80	
DBalance WL	(E) - 75	172.00	85.91	25.95	263.01	240.10	220.00	340.00	104.37	
Drow down WL	E (O-O)	1.00	0.91	2,65	3.01	60, 10	40.00	20.00	13, 57	:
Dinitial Time	ti Hr	8.00	8.00			8.00	6.00	6.00	6.00	
SBalanced Time	tb Hr	52.00	58.00		46.00	44.00	30.00	60.00	72.00	
Drow down Time	(G-4)Hr	44.00	50.00		38.00	36.00	24.00	54.00	66.00	
ORecovery #L	GL-(E)	171.00	85.00		260.00	180.00	180.00	320.00	90.80	
SOperation Hour	tp Hr	70.00	70, 00		70.00	36.00	72.00	72.00	72.00	
9W. L Recovery Time	IT Hr	75.00	72.00		84.00	46.00	84.00	77.00	75.00	
WRecovery Time	(@-®)Hr	5.00	2.00		14.00	10.00	12.00	5.00	3.00	
Wunit Capacity	m2/hr	50.00	98.90	22.30	16.60	1.00	1.13	2, 75	6, 93	
.]										

TABLE-15 DESIGN DIAMETER OF PIPE, WELL CAPACITY AND PUMP UNIT

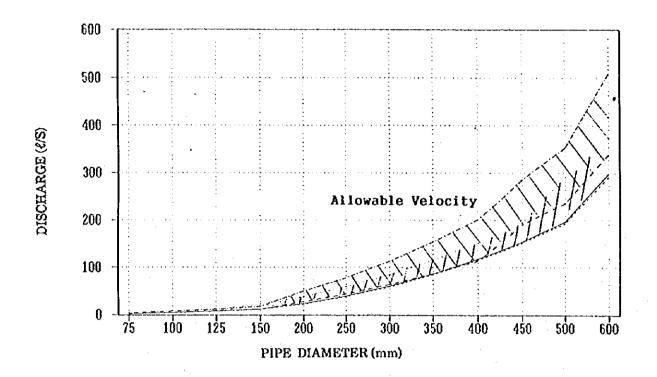

				Harasta							Domair	
Description	Cait	Jarajir	Upstream	Harasta	Urbin	Yabroud	Оага	Ruheibe	Dier Atiya	Nabek	Upstream	Downstream
Target Year	ы3/br	83	553	410	143	129	131	105	56 (45)	250 (220)	200	200
Discharge	l	9.5	=======================================	113.9	39. 7	35.8	36. 4	29. 2	1	ı	55.6	55. 6
Design Diameter	田田	125	400	350	200	200	200	200	ı	1	300	250
Velocity	m/s	0. 75	1. 22	1.18	1.26	1.14	1, 16	0.93	•	ı	0. 79	1. 13
Hydroulic Slope	m/Km	5.84	3, 73	4.10	8.92	7.38	7. 59	5.04	E .	1	2.30	5. 60
Lengh	Ä	7, 100	5, 475	1, 620	2, 839	2, 000	11, 350	2, 300		ı	19, 000	3, 480
Loss Head	Ħ	41.48	20.40	6, 65 27, 05	25. 34 45. 74	14, 75	86. 13	11. 59		9	43.78	19. 49
Dynamic Head	a	186	(77)	59	72	44	490	102		1	20	21-
Judgement		QK	%	ЖО	ΟK	ΟK	0K	0K	I	1	0%	1
Request Diameter		150	200	400	250	250	250	250	L	. 1	300	300
Design Capacity	m3/hr	33	553			(129 +)	131	105	56 (45)	250 (220)	200	Booster Pump 200
Requested Pump		20 x	(120 x)			45 x	50 x 2 +	45 x	45 x	53 ×	(x 001)	
Capacity X Set No.	m3/hrxS	6 2	(2)	-		7	35 x 1	4		4	S	•
Designed Pump		33 x	(110 x)			45 x	50 x 2 +	35 ×	45 x	55 x	(100 x)	
Capacity X Set No. m3/hrxS	m3/hrxS		(2)		•	4	31 x 1	8		7	(3)	1

TABLE-16 PUMP DIMENSION FOR PROPOSED WELL

Description	Uni t	Jarajir	Harasta	Yabroud	Qara		Ruheibe	Dier Atia	Nabek	Domair
Design Capacity	n3/码 n3/分	33	110	45	50	31	35 0.58	45	55 0.92	100
bump Size	E E	80	125	100	100	80	80	100	001	1
ength	Ħ	185.00	115.00	65, 00	270.00	270,00	265.00	245.00	355.00	1
/elocity	s/m	1.82	2. 49	1.59	1.77	1.71	1.93	1.59	1.95	ı
fydroulic Slope	m/m	0.05134	0.05418	0.03074	0.03735	0.04573	0.05724	0.03074	0.04456	1
oss Head	æ	9.50	6. 23	2.00	10.09	12.35	15. 17	7, 53	15, 82	ı
ipe Size	EE	125	200	150	150	125	150	150	150	-
ength	E	50.00	150.00	50.00	20.00	50.00	250,00	50.00	50.00	1
elocity	s/m	0.75	0.97	0.71	0.79	0.70	0.55	0.71	0.86	
lydroulic Slope	m/m	0.00584	0.00549	0.00427	0.00519	0.00520	0.00268	0.00427	0,00619	1
oss Head	2	0.29	0.82	0.21	0.26	0.26	0.67	0. 21	0.31	. 1
Potal Loss Head	E	9 79	7.05	2. 21	10.34	12.61	15.84	7.74	16.13	ı
Fell W. L	E	172	86	172	265	265	245	220	340	1
Jutlet W. L	E		20	5	S	ľ	ഗ	ເກ	·	•
ctual Depth	æ	177	136	177	270	270	250	225	345	,
Cotal Depth	E	187	143	179	280	283	266	233	361	. 1
fortor Capacity	ΚM	30	75	37	75	45	45	55	06	ı

FIGURE

FIGURE-1 DISCHARGE AND PIPE DIAMETER

PIPE DIAMETER - ALLOWABLE VELOCITY

PIPE	WA Crite	ria		MOA Crit	eria	WA Crite	ria		MOA Crit	eria
d	YJ	VIMin	VIMax	Y2Min_	V2Max	Ql	Q1Min	QlMax	Q2Min	Q2Max
(mm)	(m/s)	(m/s)	(n/s)	(m/s)	(m/s)	(1/s)	(!/s)	(1/s)	(I/s)	(1/s)
75	0. 570	1	0. 595	0.700	1.000	2. 52		4.67	3.00	4. 00
100	0. 620	0. 595	0.640	0. 700	1. 000	4. 88	4. 67	7.85	5. 00	8.00
125	0.660	0. 640	0.680	0. 700	1. 000	8. 14	7. 85	12.02	9. 00	12.00
150	0.700	0.680	0. 730	0.700	1.000	12. 37	12.02	22, 93	12.00	18.00
200	0. 760	0. 730	0. 785	0.900	1. 600	23. 94	22. 93	38. 53	28. 00	50.00
250	0.810	0. 785	0.835	0.900	1.600	39. 96	38. 53	59, 02	44.00	78.00
300	0.860	0. 835	0.880	0. 900	1.600	60. 79	59. 02	84. 67	<u>64. 00</u>	113.00
350	0. 900	0.880	0.920	0.900	1.600	86. 59	84. 67	115.61	87. 00	154.00
400	0.940	0. 920	0. 955	0.900	1, 600	117. 62	115. 61	151.89	113.00	201, 00
450	0. 970	0. 955	0. 985	1. 200	1.800	154.11	151, 89	193, 40	191.00	286.00
500	1.000	0. 985	1.030	1. 200	1.800	196, 35	193. 40	291. 23	235.00	353.00
600	1.060	1.030		1. 200	1.800	298. 29	291. 23	<u> </u>	339. 00	509.00

NOTE WA Criteria:

Alowable velocity by Water Facility Criteria in Japan Alowable velocity by Ministry of Agriculture in Japan

ESTABLISHMENTS OF DRINKING WATER AND SEWERAGE IN RURAL PROVINCE OF DAMASCUS ADMINISTRATION AND FINANCE DIVISION OF COOPERATIVE HOUSING DEPUTY MINISTER FOR DIVISION OF FINANCE DIVISION OF ADMINISTRATION DIRECTORATE OF RELATED PUBLIC ESTABLISHMENTS FIGURE-2 ORGANIZATION CHART OF THE MINISTRY OF HOUSING AND UTILITIES 13 RELATED ESTABLISHMENTS IN EACH GOVERNORATE DIVISION OF RECRUITMENT
AND PLANING AND
STATISTIC DIVISION OF LEGAL AFFAIR DEPUTY MINISTER FOR STATISTICAL AND LEGAL AFFAIR MINISTER DIRECTORATE OF INTERNAL INSPECTION DIVISION OF ARCHITECTURE AND PLANING DIVISION OF MECHANICAL AFFAIR DIVISION OF TOPOGRAPHY DEPUTY MINISTER FOR DIVISION OF DRINKING TECHNICAL AFFAIR DIVISION OF SANITARY SEWERACE WATER

F-2

FIGURE - 3 ORGANIZATION CHART OF THE ESTABLISHMENT OF DRINKING WATER AND SEWERAGE IN RURAL PROVINCE OF DAMASCUS

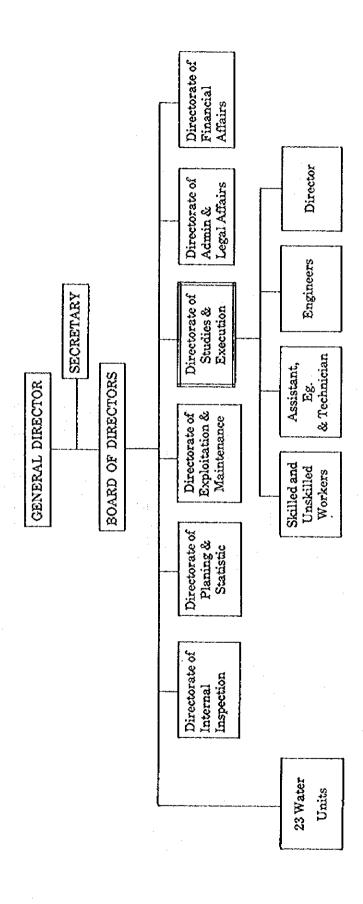


FIGURE - 4 PROJECT EXECUTING ORGANIZATION

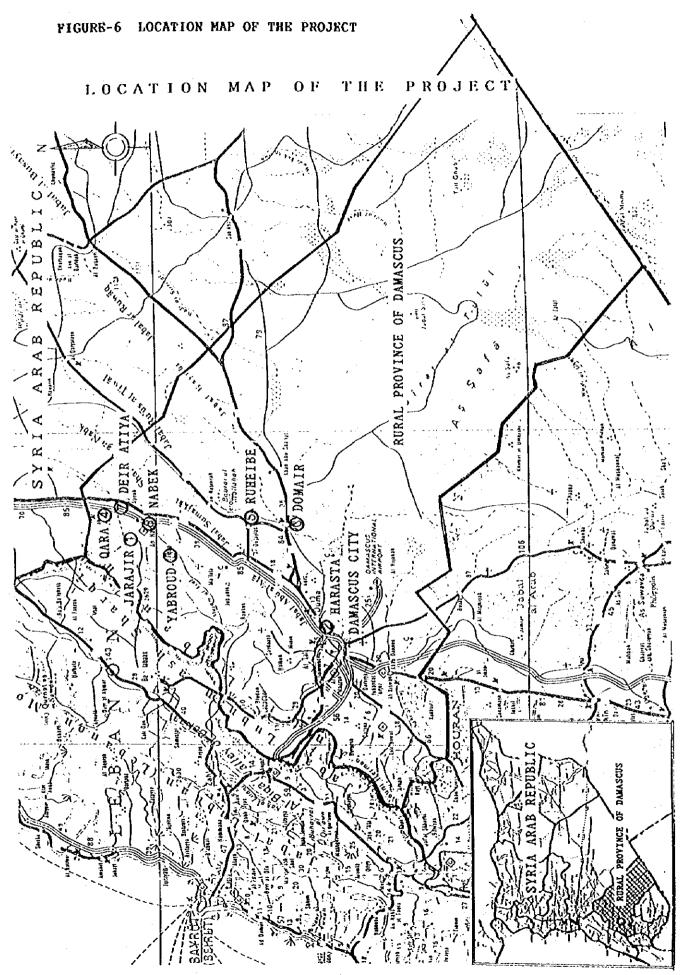
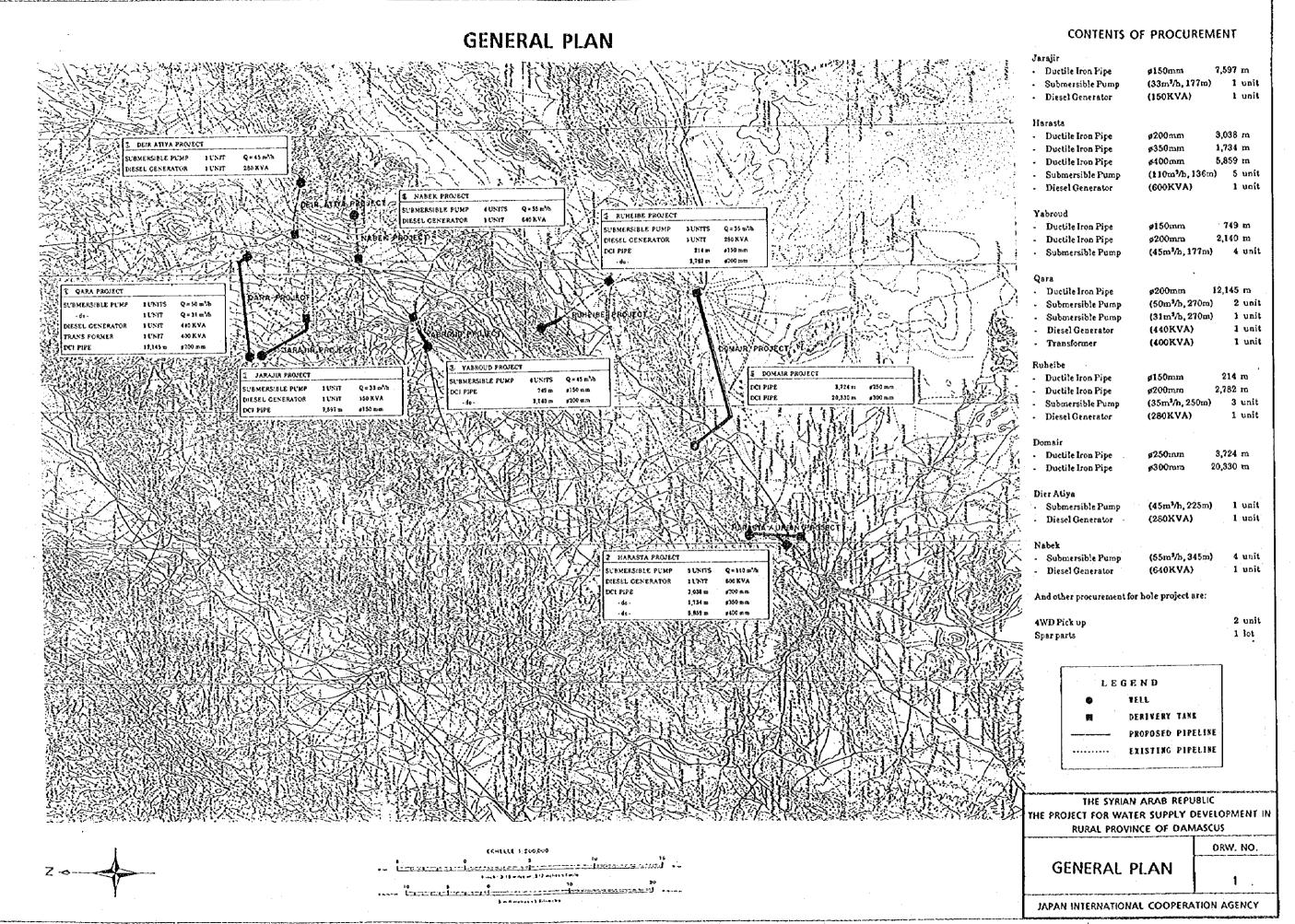
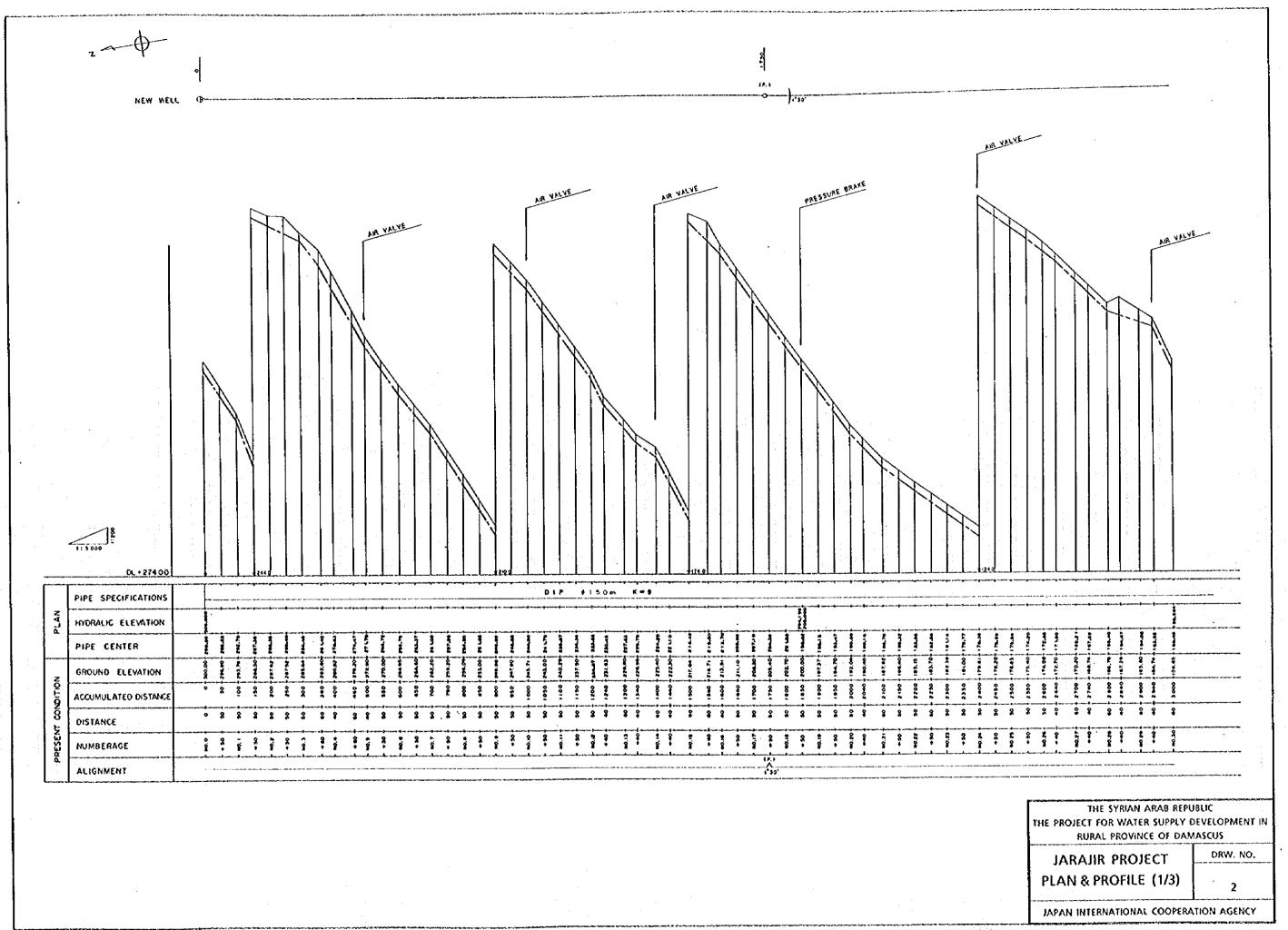
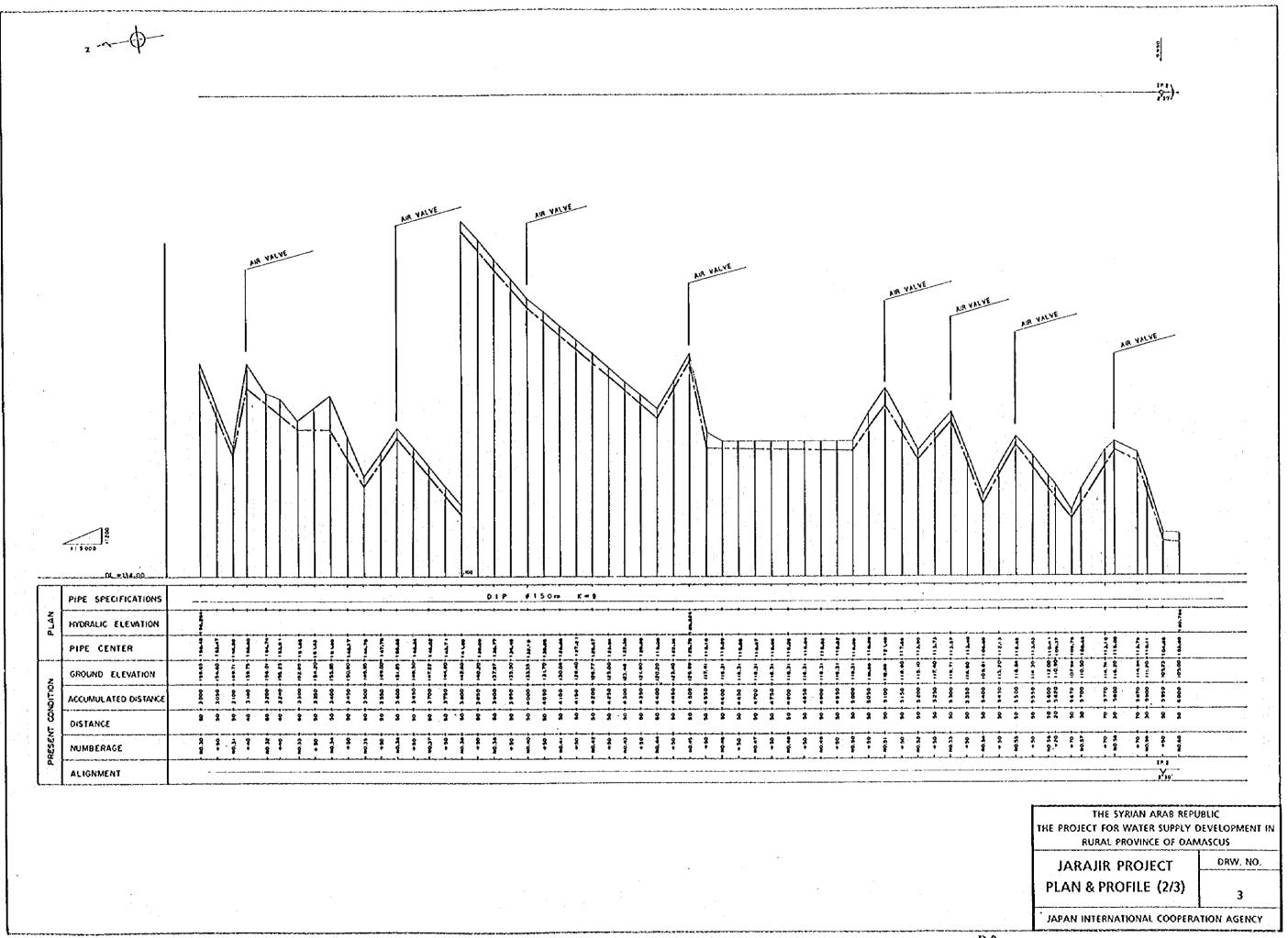
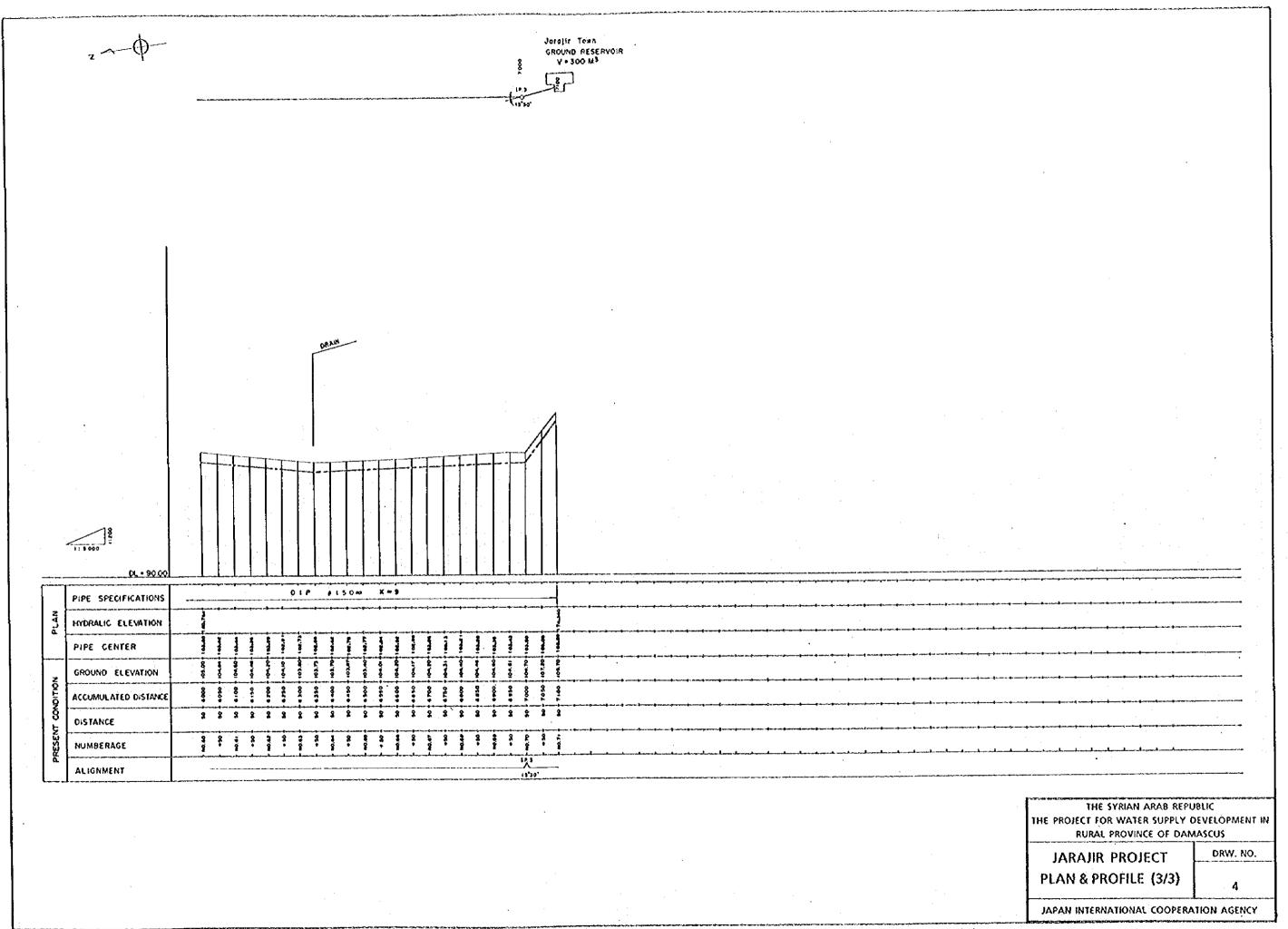


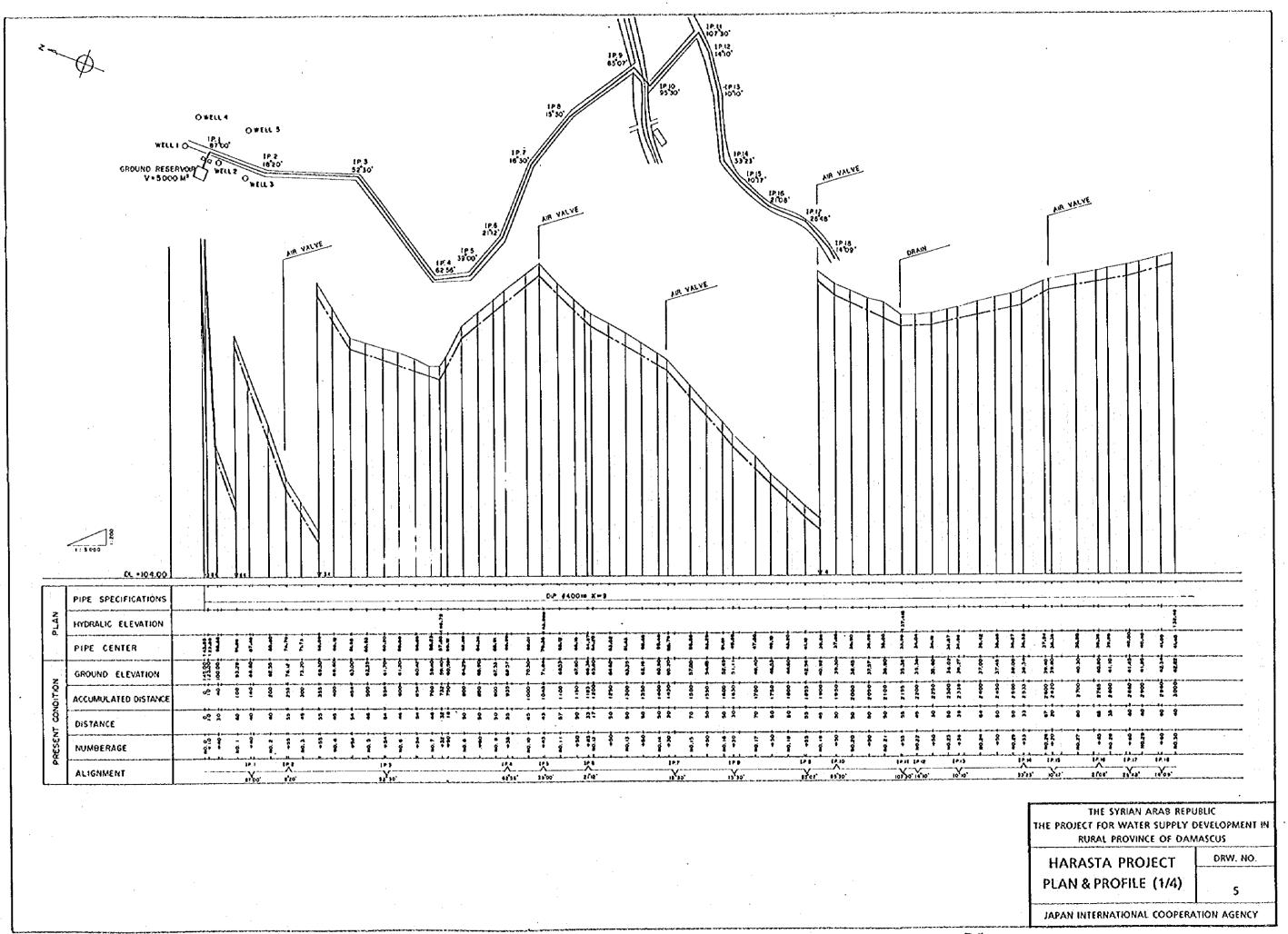
FIGURE - 5-1 Construction Schedule

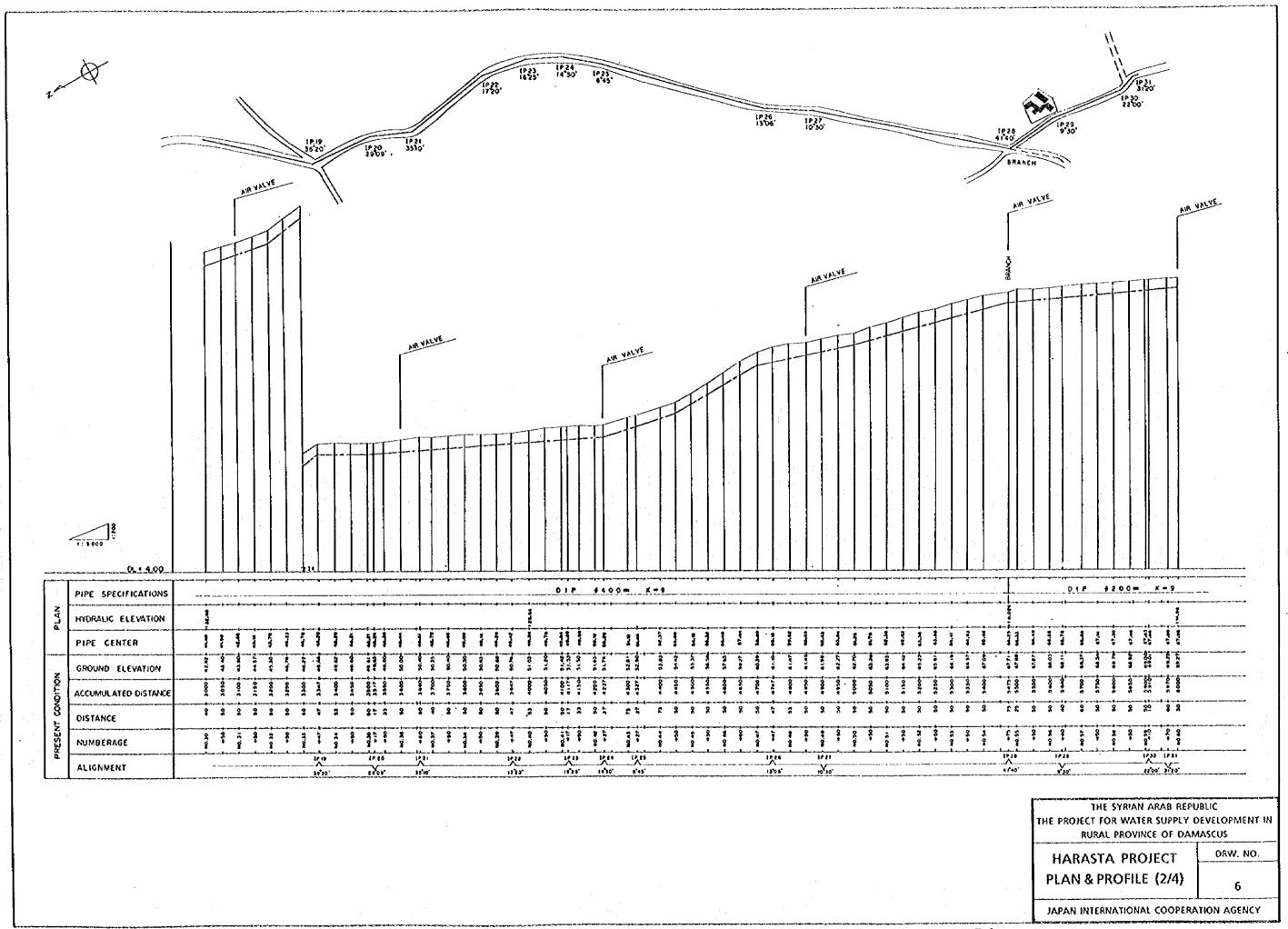

Description	Unit	Year	L					19	96											199						\Box					199	18			
Description	Unit	Q'ty	IJ	F	М	Δ	M	[4]	J	۸	S	0	N	D	1	F	М	Δ	ΜŢ	J	J	4	S	9	N I	ŌΪ	1	F	M	A.	М	J	3	Ā	S Q
Jarejir			L	<u>L</u> .						_							_	_			_		_	_ .		_	_	_		_	_			_	
Pumping House	lot	1 Achieve.	_	_	_						_				_	_			_			_		_	_ .	_	_	_	_				_		_ _
Reservoir		1 Achieve.	Ŀ	ļ		_	Ц													_	_	_				_	_		_		_		_		
Transformer Tower		1	ļ	ļ	_		,									_				_	_		_	_[_		_							_	
Pipe Installation		7.0	ļ_	_						L.									_							_	_								_ _
Generator Install	lot	1	<u> </u>	<u> </u>			_			L.	_										_		_	_	_	_	_								
Pump Install	lot	2	ļ	1.	_				_	<u>.</u>							_					_	_											_	
Fuel Tank	lot	1	ļ	_		_	_	_	_													_	_	_		_									
Digging Well No.1	lot	1	L	-	_				_	L						_			_	_		_	_			┇		_							
Gr Reservoir	lot	1	_	Ĺ	L			_	_	_		_		_			_					_			_	_									
Pump House	lot	1.	L	L	<u> </u>					_	L	_	_ '																						
				L	L	L			_	L	L		_				Ш										_]		_						
Harasta/Urbin .		· ·		_	<u> </u>	L						L		<u> </u>				Ĺ	٠	ì						┈	_								
Pumping House	lot	2 Achieve	L		L	L	L	Ĺ	Ĺ	_			L.		Ĺ						_					_[_			
Reservoir	lot	3 Achieve	L.	L	L		L		L					L.																					
Transformer Build	lot	1 Achieve	L		L			ľ						L									J	_[_		_]	\lceil								
Pipe Install	km	9.9								E	Ĺ			Ĺ		Ĺ		}					_			11									
Generator Install	lot	2			Ĺ						\prod					Ĺ	F																		
Pump Install	lot	5	Γ	Γ	Γ	Γ.	Γ	Γ		Γ	Γ						-															Γ			
Gr Reservolr	lot	1	F	1	F	-		-	Ī		Γ	Γ				-	-						,			_	-		-			İ_			
Fuel Tank	lot	1	F	-	-	L	F	F	[-		L			ļ		_				-	_					_		_			_				
Yobroud			╁	+-	\vdash	╂-	┝	-	╁	╁	\vdash	\vdash	-	┝	-	-	╢			-			-			-	-	-		-		-	-	-	- -
Pumping House	lot	2	Τ	Τ		1			Ī	╽	Ι	_	١.	T		l-		T	<u> </u>		Ī	-						Г	:			<u> </u>	T		
Reservoir	lot	1	F	-	-	-	F	‡=	F	1	1	1	F	_	 _		-	-	F		_	_							-			ĺ∼	T	_	\sqcap
Pipe Install	km	2.7	T	1		Τ	T		T	T	T		Г	Ī	T		F	Ι			<u> </u>						_		Ī	<u> </u>		ľ	İΤ	ļ	<u> </u>
Pump Install	lot	4																									_								
	-	<u> </u>	ļ.,	+-	ļ.,	╀	↓_	1	-	╀	┞	┞	<u> </u>	1	L	_	ļ_	_	_		_	_			_			L	ļ	L	ļ	ļ	1	L	_
Qara	 	ļ	1	1	1.	1	ļ.,	-	1	ļ	L	 _	! _	 	L,	<u> </u>	L	<u> </u>	L	<u>L</u>	ļ.,	_						_	<u> </u>	ļ.,	_	<u> </u>	_	_	Ш
Pumping House	lot	3 Achieve	- -	╀-	1	1	<u> </u>	ļ.	Ĺ	-	<u> </u>	ļ.,	1_	ļ_	ļ.	<u> </u> _	_	L		_	L.	_	_					ļ_	_	_	_	ļ	ļ	<u>.</u>	-
Reservoir	lot	 	1	- -	1	ļ	<u> </u> _	<u> </u>	<u> </u>	_	Ļ .	ļ	L	<u> </u>	_	L	<u> </u>	L	ļ			<u> </u>			_			_	ļ	_	<u> </u>	Ļ	ļ.,	L	
Transformer Build	lot	1	. _	1.	L	L	L	ļ	ŀ	+	 -	+	┨	<u> </u>		L	L	1_	<u> </u>		_	_				_		Ŀ	Ŀ	_	ļ_	ļ.,	Ļ.	_	_
Pipe Install	km	11.5	- -	1	.	L	L	L	L	<u>.</u>		<u> </u>	L	↓	ļ	L	-	┢	-	-	-	=					_	L	<u> </u>	ļ_	Ļ	<u> </u> _	<u> </u> _	L	Ш
Generator Install	lot	1	1	- _	1	L		L	-	1.	1	_	_	ļ.,	L	L	-	Ļ	L.	_	L						_	Ļ	_	<u> </u> _	L	ļ	<u>.</u>	L	\sqcup
Pump Install	lot	3		1.	Ļ	_	L	1	_	Ľ	1.	1.		L	L	<u> </u> _	<u> </u>	-	ļ	_	<u> </u> _	L				L_		<u> </u>	1	<u> </u>	L	L	_	Ŀ	
Transformer Inst.	lot	1	1	Ŀ		_	Ŀ	1	L	L	Ţ.	Ľ	<u> </u>	 _	ļ.	L	L	_	E		L.	_			_	_		<u> </u>	<u> </u>	<u> </u> _	<u> </u> _	L	ļ	L.	Ш
Puel Tank	lot	1		-	-	-	-	┪-	╁	-	ļ	ļ	<u> </u>	ļ			-		-			-			_			ļ		_	ļ	ļ	-	-	╂╌╂
Reheibeh	 	 	\dagger	+	\dagger	╁	╁	╁		\dagger	\dagger	╁	╁	H	╁		╁	-	ļ.	┢┈	-	-						┢		\vdash	-	-			╁┼
Pumping House	lot	3 Achieve		T	Γ	Τ΄	1	Τ	Τ	Ī	1	Γ	1		T	1	-	-	-	<u> </u>			ļ —					ľ	ŀ	1-	1	1	T	T	П
Reservois	lot	1 Achieve	T	1]_	1	1	T	1	Τ		1	Г	T	T	T	1-	Γ	-	-	1				Г		Γ	Γ	Г	Γ	T		T	Γ	
Transformer Build	lot	1 Achieve		-[1	1	T	1	1	1	1	Τ	Ī	T	Τ		١.	T	Γ	Γ	١.	T	Γ		Γ	·		Ī	Γ		1		Ī	Γ	\prod
Pipe Install	km	2.8	1	T	1	1	T	T	1	1	T	T	T	Τ	T	1	1	Γ		L	ţ_	1	[_	T	Γ	_	<u> </u>	T		T	T	Τ	T	T	
Generator Install	lot	1	†	1	1	T	T		T	T	1	1	T	T	1	T	T	F	T	T		†-	<u> </u>			-		ľ	T	T		1	T	T	\sqcap
Pump Install	lot	4	†	╁	†	1	T	1	T	T	T	1	1	T	1	T	1-	1	1	1	T	<u> </u>	1	_	1		-	T	T	t	1	T	1	T	\sqcap
Generator House	lot		+	+	1	十	†	t	\dagger	1	†	十	†	†	1	十	1	T	1-	1-	†	1	T	l	t	-	 	T	T	1-	1	T	1	t	
PuelTank	lot		+	1	\dagger	†	†-	ţ-	t	1-	†	1	†	t	†	†	T	1	1	†-	†	1	✝		1	 	-	1	T	1	十	†-	1	1	1-1
Pump House		1	┰	- -	╌╂╌	+-	- - -	+-	t	╁	+-	4~	+	-1	-1	╁	+	+-	+	+	+	-	!			 	-	1-	1-	 	+	∤ →	1	1	+

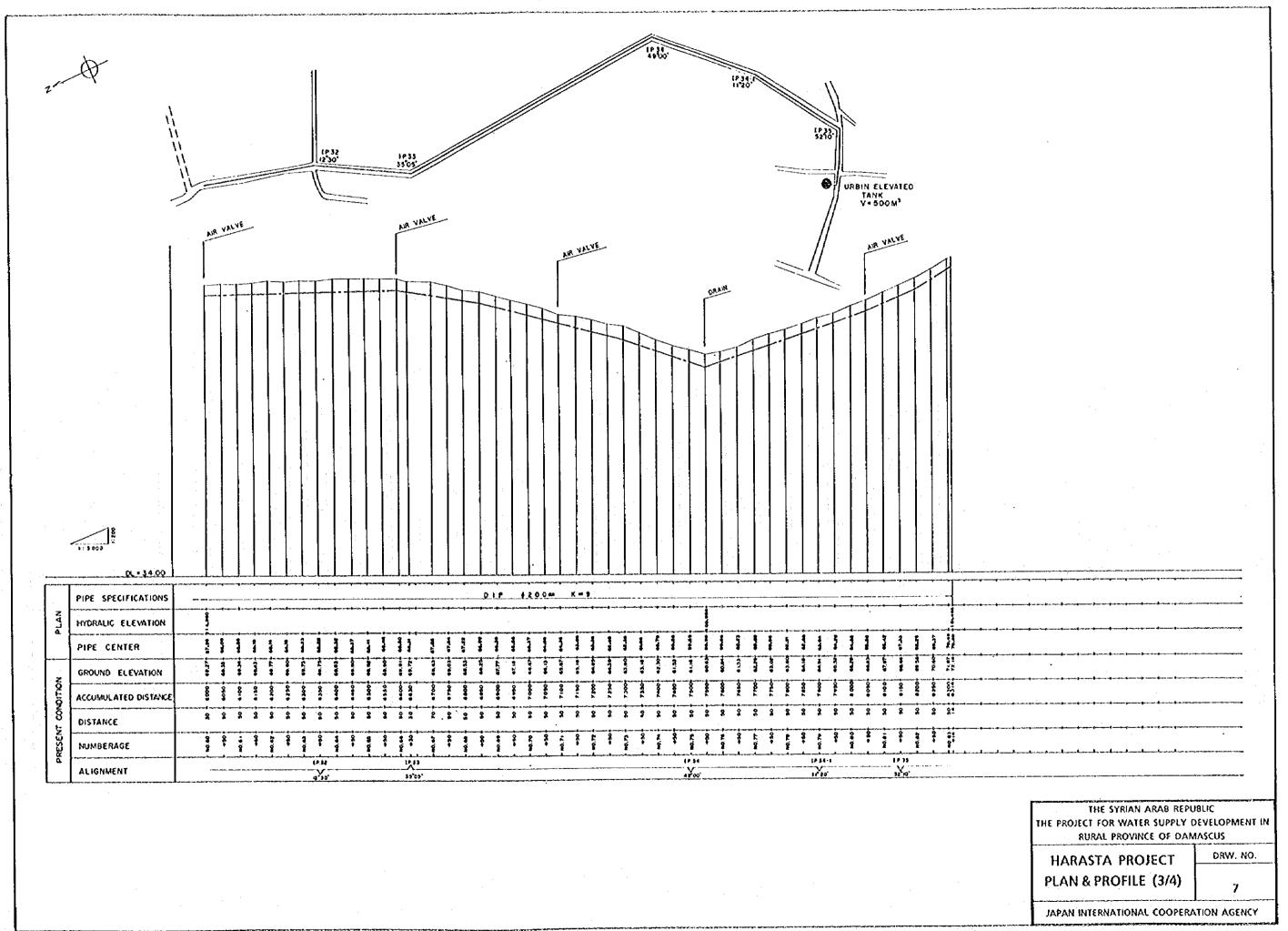

FIGURE - 5 - 2 Construction Schedule

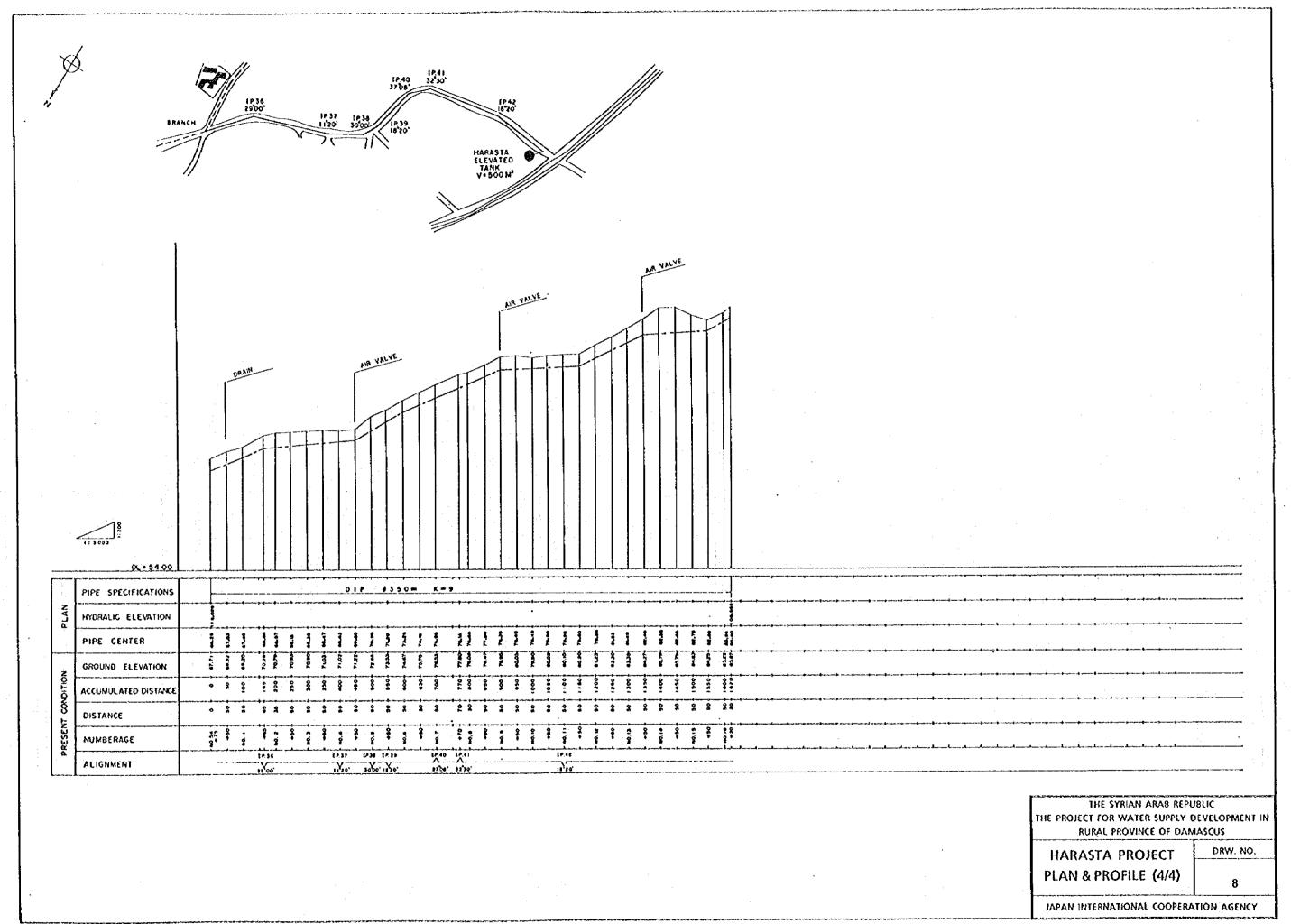

Description	Unit	Weat month	Ļ		1==	r 			96	·		,	,							19											19					_
Domair	-	Q'IY	IJ	F	М	Å	M	J	J	A	S	0	N	D	1	F	М	Α	M	J	J	A	S	ō	N	D	J	F	М	A	М	-	J	À	S	Į
	<u> </u>		ļ	ļ_	L	L	<u> </u>	L	_	ļ.,	L	L	_	<u>L</u>	_									L				L	١							۱
Pacifities Const.	lot	1 Achševe	<u> </u>			L	L.		<u>l</u>					l																						Ì
Pumping House	lot	1 Achieve			L								Γ	Γ	_		_							l	Ī			t-	T						Ι.	1
Reservoir	lot	1 Achieve				ļ		Γ	Ī		Γ	Γ	Γ	Γ	ľ								1			Γ	<u> </u>	广	<u> </u>	-					-	1
Pipe Install	km	23.3		Γ			Γ	Γ			Γ	Ī	Γ	<u> </u>			_				_		-			=						-		-	-	1
Generator Install	lot	1 Achieve	Ī	Γ	Γ	Ī	t-		r	Γ	†	T	١.	T		-							-	-		-	┢	╁╌	1	÷		┢				1
Pump Install	lot	2 Achleve		_		_						<u> </u>									-		_					_						_		l
Deir Atlya	1ot		_	-		-	-	-	_	<u>.</u> _	ļ	╀	ļ	-	L	-									_	_	_	L						_	-	ļ
Pumping House	lot	1 Achieve	-	t	-	-	├	-	\vdash	1-	 	╂	┢		-	-		\vdash	-			-	-	-	-	-	┞	-	<u> </u> -	├		-	\vdash	-	-	-
Reservoir	lot	1 Achieve	-	╁	\vdash	┢		[–	-	╁╴	┢	╂	†~	-	┞	-	\vdash	Н	\vdash								-		-	-	-		H	-	-	-
Pipe Install	km	6 Achieve	<u> </u>	Ė	-	-	 		1-	一	Ė	┢	 -	-	-		H			-		-		-		 		 	-	-			H		\vdash	4
Generator Install	1ot	1	-	┢╌	-		┢		-	╁╌	\vdash	H		\vdash	 -	H				-		-		-		_	-	 	-	<u></u>	-	-	-		١	_
Pump Install	lot	1	 	╁	<u> </u>	-	┝		Ι.	-	┢╌	╁	╀╌	├	-	-		-	·	-	-	٠.		├	l-i			 -	-		-		-		ļ	_
- i	 		H	-	-	<u> </u>		ļ	-	-	┢	╂	├	┢			-		Н				-	-	-	-		 	ļ				-	-	ļ	_
Nabek			┞	-	-	ļ			┢	-	ŀ	╁	├	╁╌			-							-		-	-	┞	Ŀ	-	-	ŀ	H		 	٦
Pumping House	lot	1 Achieve	-	T	†-			 	H	╁╌	┢	╁	╁	╁╌		-	-			-		-		┝	ŀ	ŀ	╁╌		├	-	ŀ÷	-			-	-
Reservoir	lot	1 Achieve	-	╁╌	卜	-	ļ-	-	┞╴	-	+	╁╌	1-	┝		-	\vdash			-		-	-	┝	-		┞	╁	┞	╀╌		-	⊢	<u> </u>	-	-
Pipe Install	km	7 Achieve	_	┢	H	 	┢	-	┢	╁╌	1	╁	-	1-	\vdash	-			-	-			-	H	-	⊦	╁╌	╁╌	╂	┝				ļ	-	-
Generator Install	lot	1		1-	-	-	┢	├-	-	H	┢╌	┨	╂╌	┝	 -	-	-			-		-	┞	 -	_		╂	╀	┞	├-	-	┝		-	L	4
Pump Install	lot	4	┞╴	╁	┢	-	<u> </u> -	-	-	-	╁	╁╌	 	┢	┢	-	-	-		F			-	-	-	 	-	┝	╀	-	-			-	Ļ.	-
	 		╂╌	╁	├	┝	 - -	┝	┝	 	1-	╂┈	╁╌	┢	 		<u> </u>	┞	F	F		}-	Ŀ	-	 	┞	-	├	ļ	┢	ļ	 	<u> </u>	-	ļ.,	_
Qodsaya	1	· · · · · · · · · · · · · · · · · · ·	-	十	 	├-	┝	╁	┢	-	-	╁	 	-	-	├	-	-	-	_	-	-	-	-	\vdash	├-	┼	-	<u> </u>	 	<u> </u>			-	ļ	-
Pumping House	lot	3	-	+-	╂─	╁	-	╂	 -	\mathbf{I}	ŀ÷	╁	┢╌	 -			 	┞		_	-			╄-	 	-	-	┨	ļ.		├-			-	L	-
Reservoir	lot	1	┝	╀	 		<u> </u> -		├	╁	 -	╀╌	╂╌	-	 	-	F		-	_				⊢	<u> </u>	-	-	╀	ļ	<u> </u>	\vdash		ļ	ļ	ļ.	
Pipe Install	km	17.7	┝	+	╁		-	-	 	╀╌	╀╌	╁	├-	╀	 	-			F	_		-	尸		-	-	1_	ļ.	 	 _	_		L	<u> </u>	L	-
Generator Install		3	\vdash	╁	╂	-	├		-	├	╂	╀┈	-	╀		-	-	=		-	=	==	 	<u> </u>	 	=	 -	1=	=	E	-	=		-	L	_
Pump Install	lot		\vdash	-	 	├		┞	-	-	╀	╂	 -	╀	<u> </u>	<u> </u>		-		-		=	<u> </u> _	ļ	L	<u> </u>	_	_	ļ	ļ	_	L_	 		L	_
Transformer Inst.	lot	1	-	╀	\vdash	 -	 -	 		-	╀	-	┞	 	<u> </u>	<u> </u>				=		 	F	-	_	<u>L</u> .	 	<u> </u> _	ļ		_	 _	L	_	L	
Transformer Inst.	Liot	l <u>'</u>	L	1		L	L		L	L		L	<u>L</u> .		L.		!	 	í			•]	1	1	ı	ļ	1	1		1	ı			1	

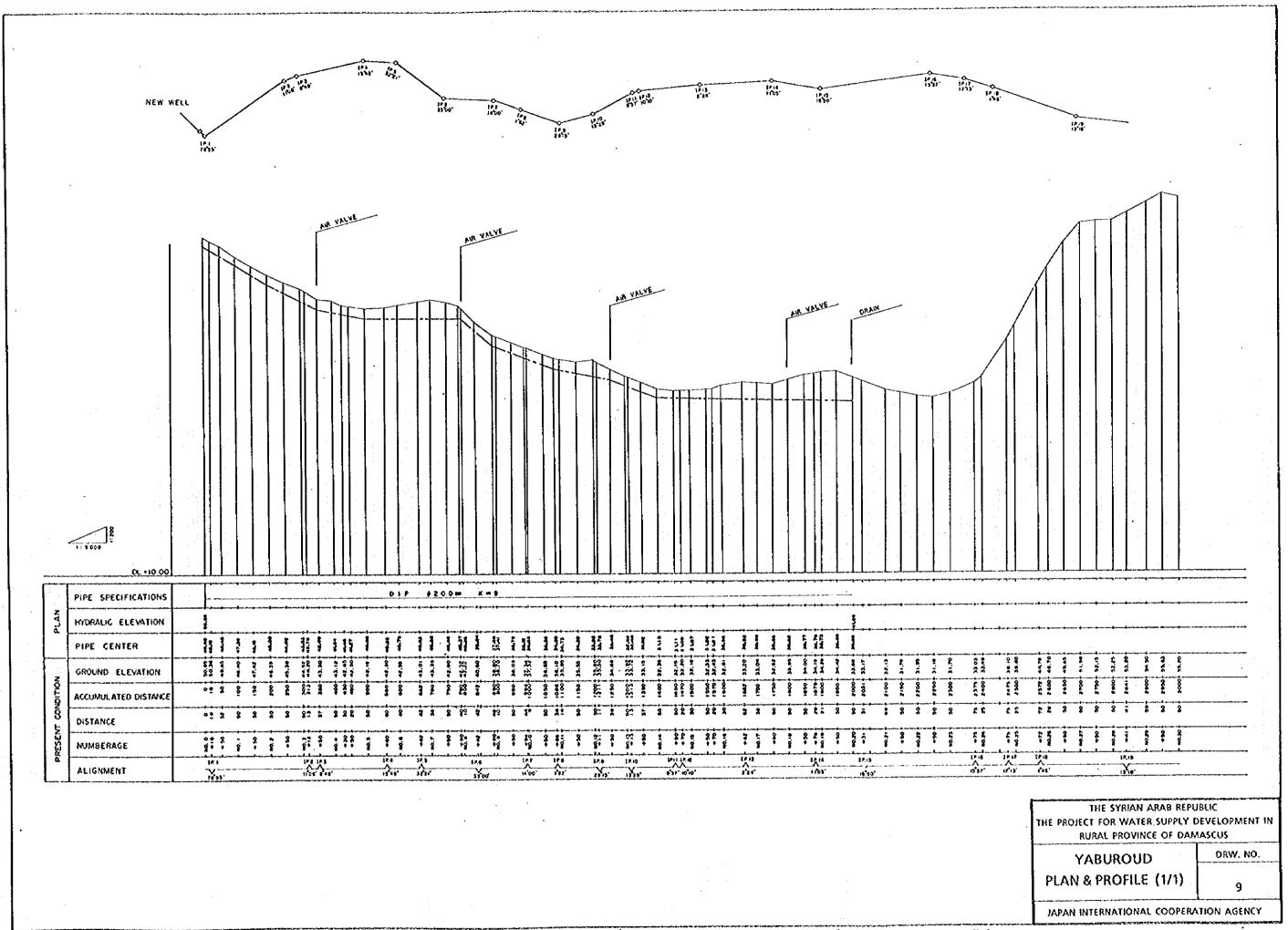


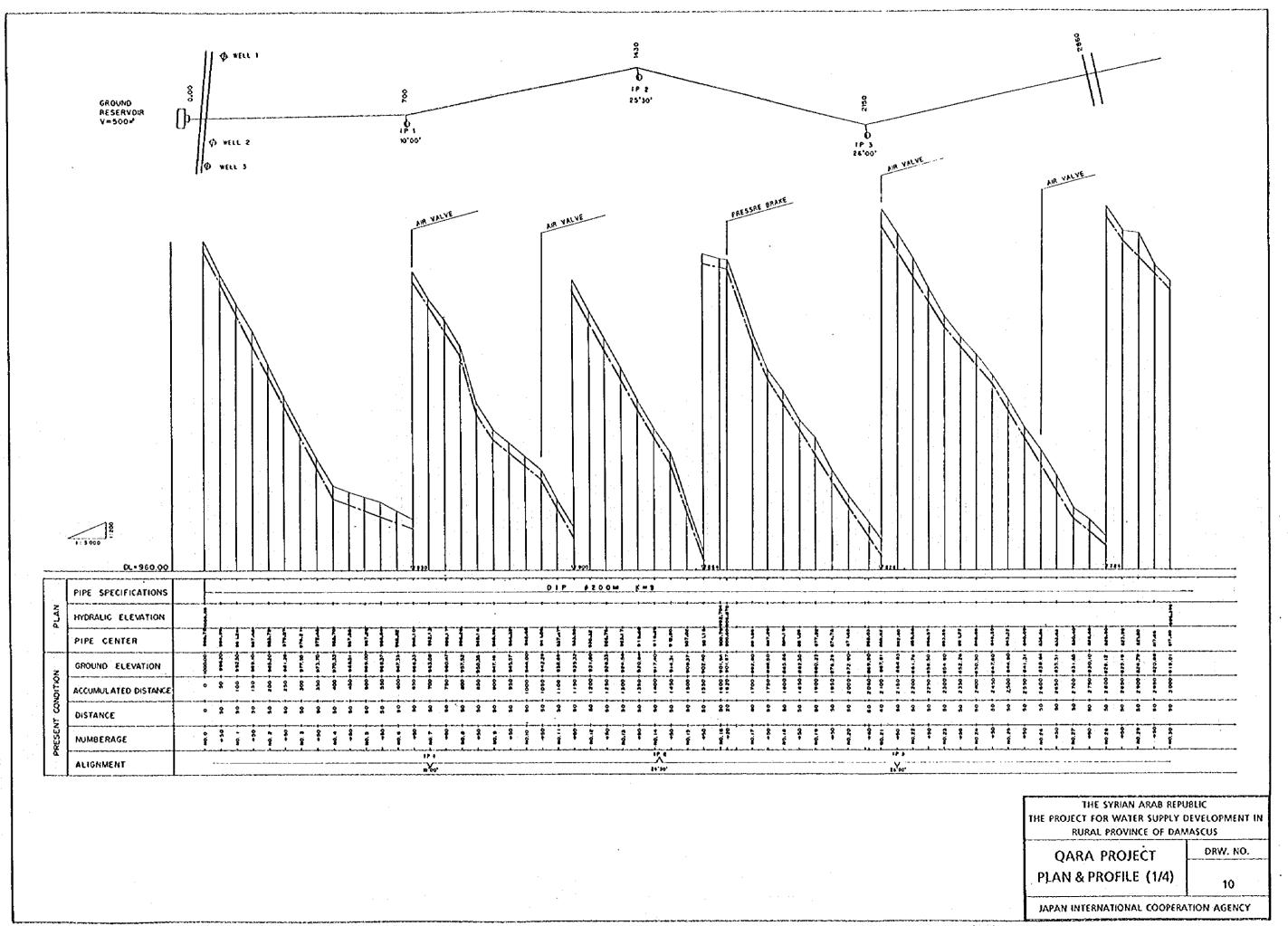

DRAWINGS

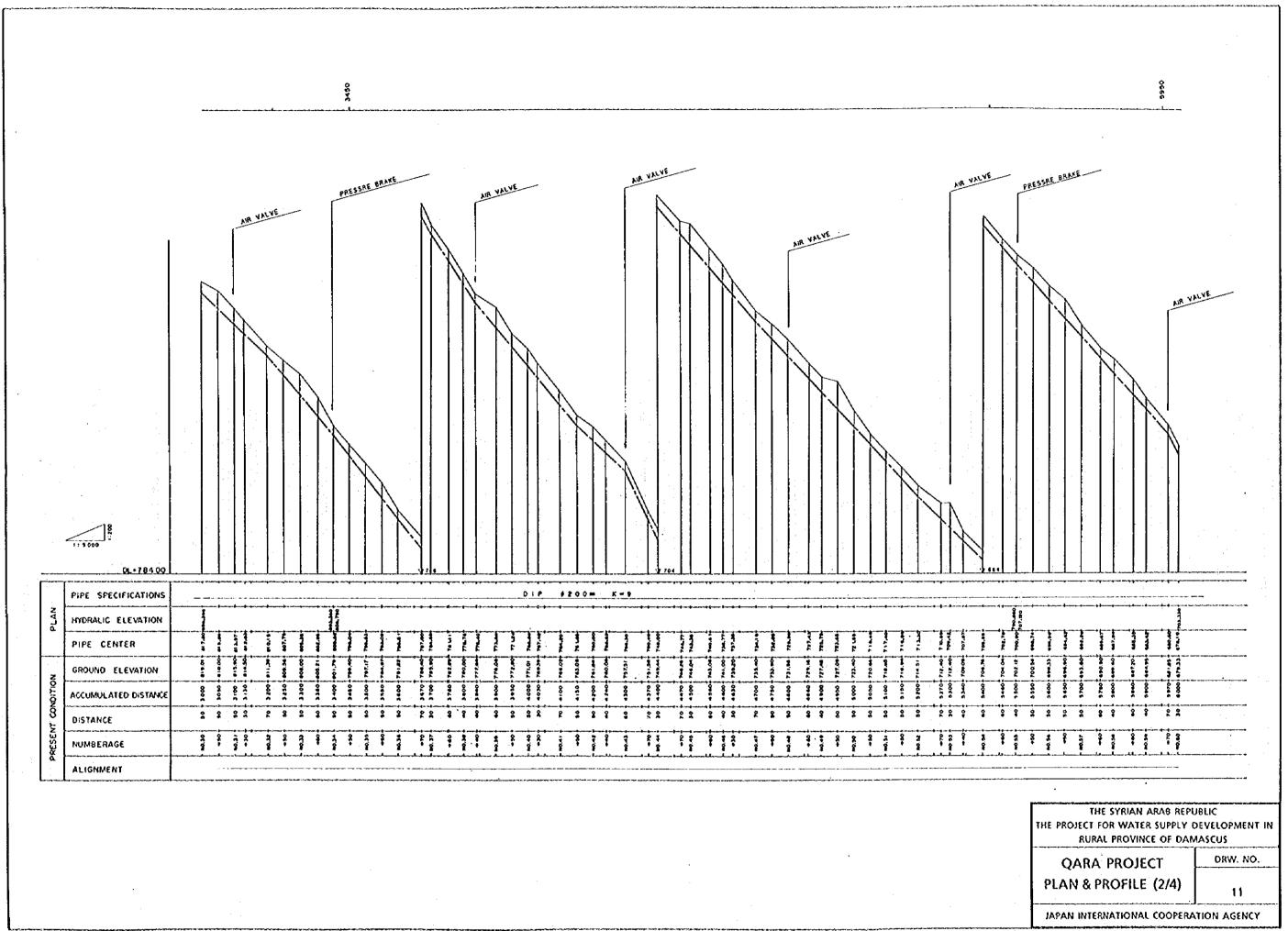


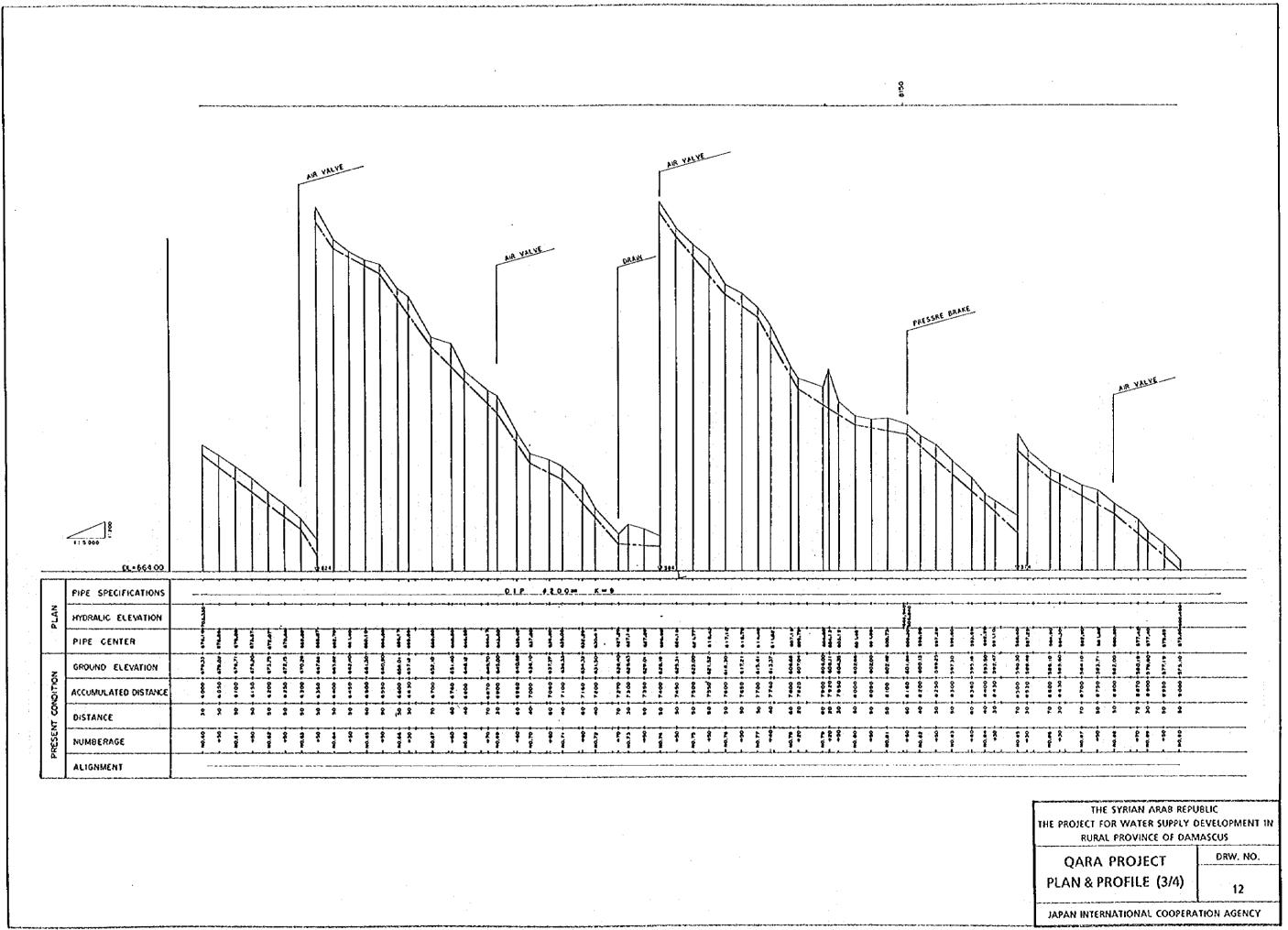


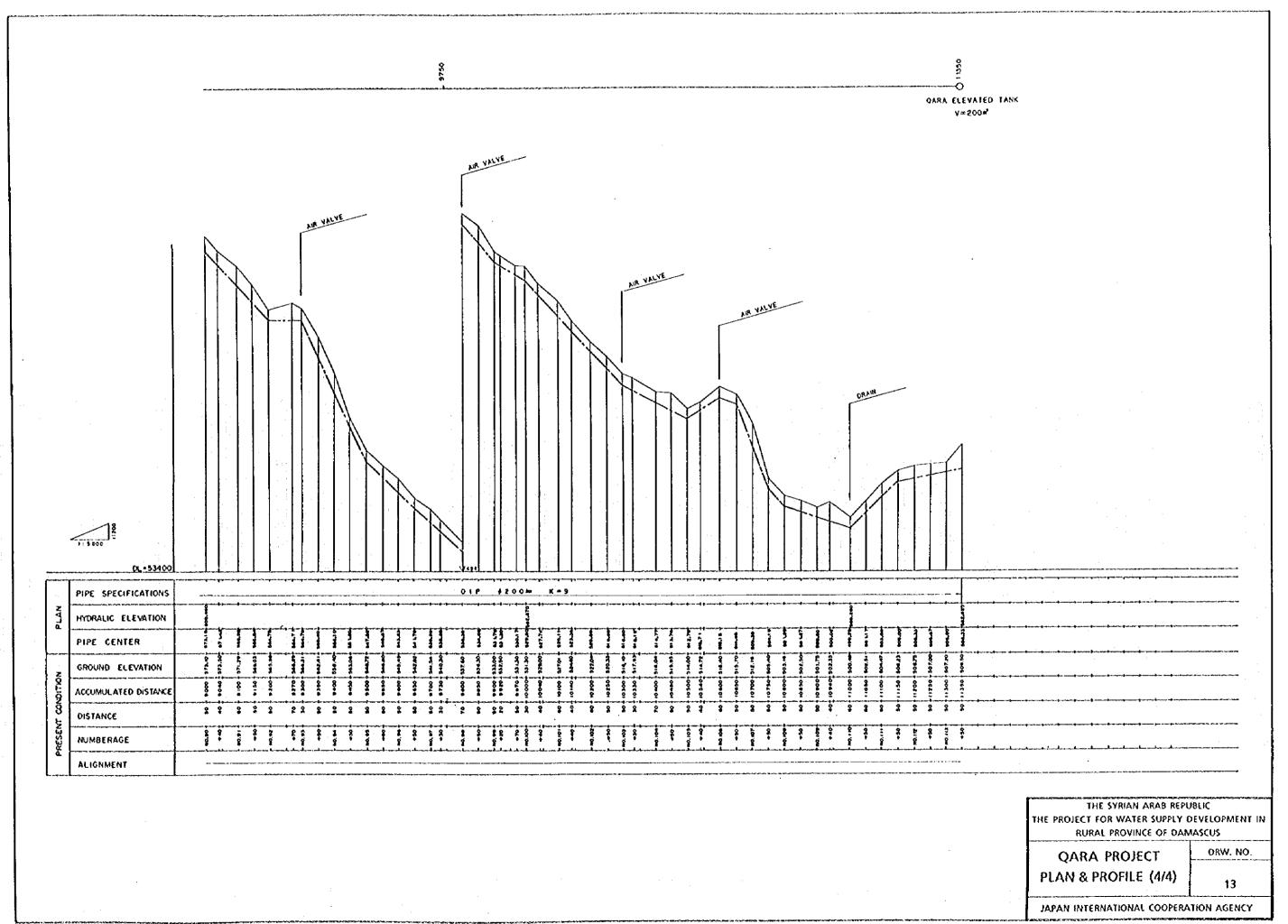


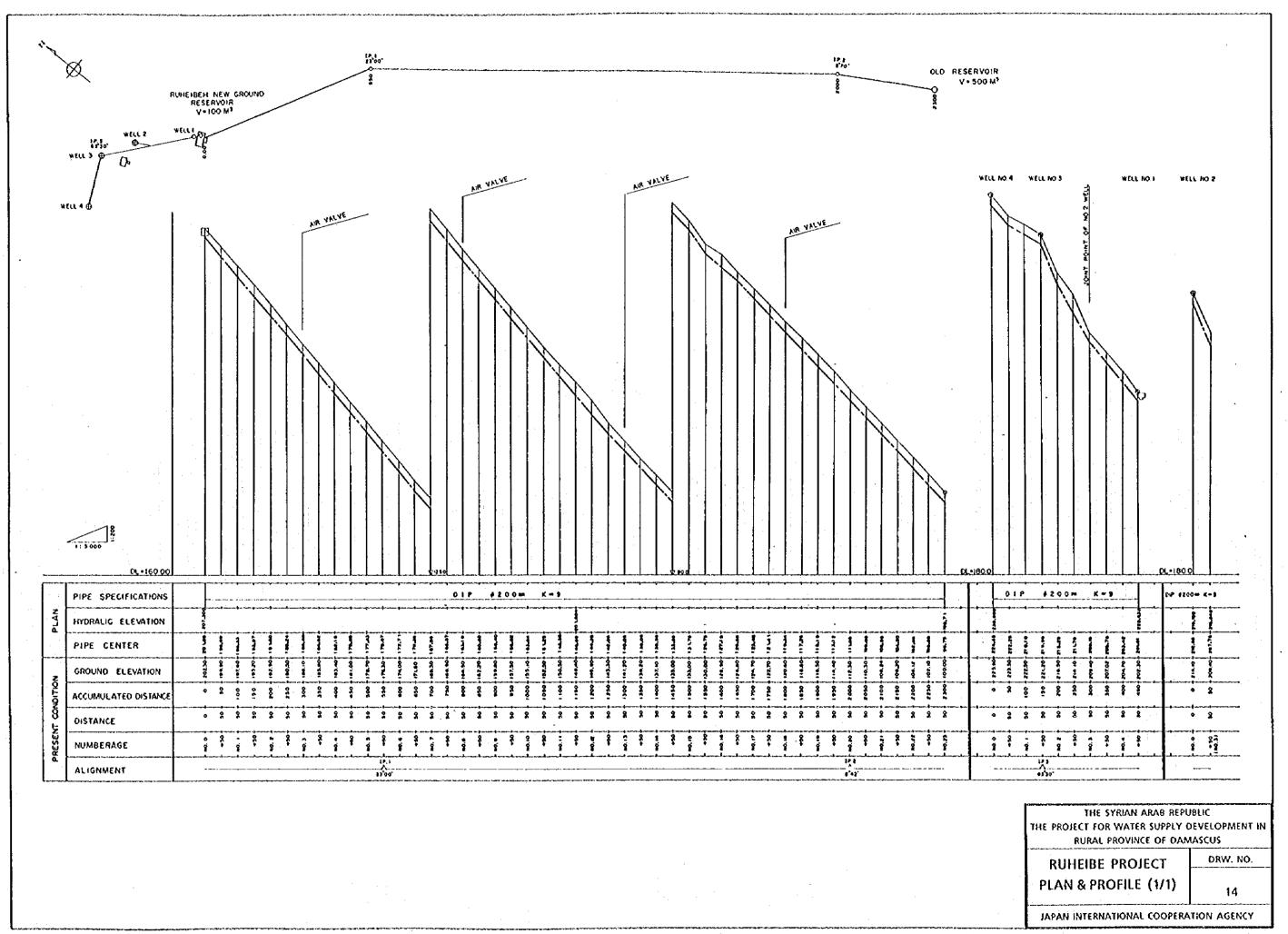


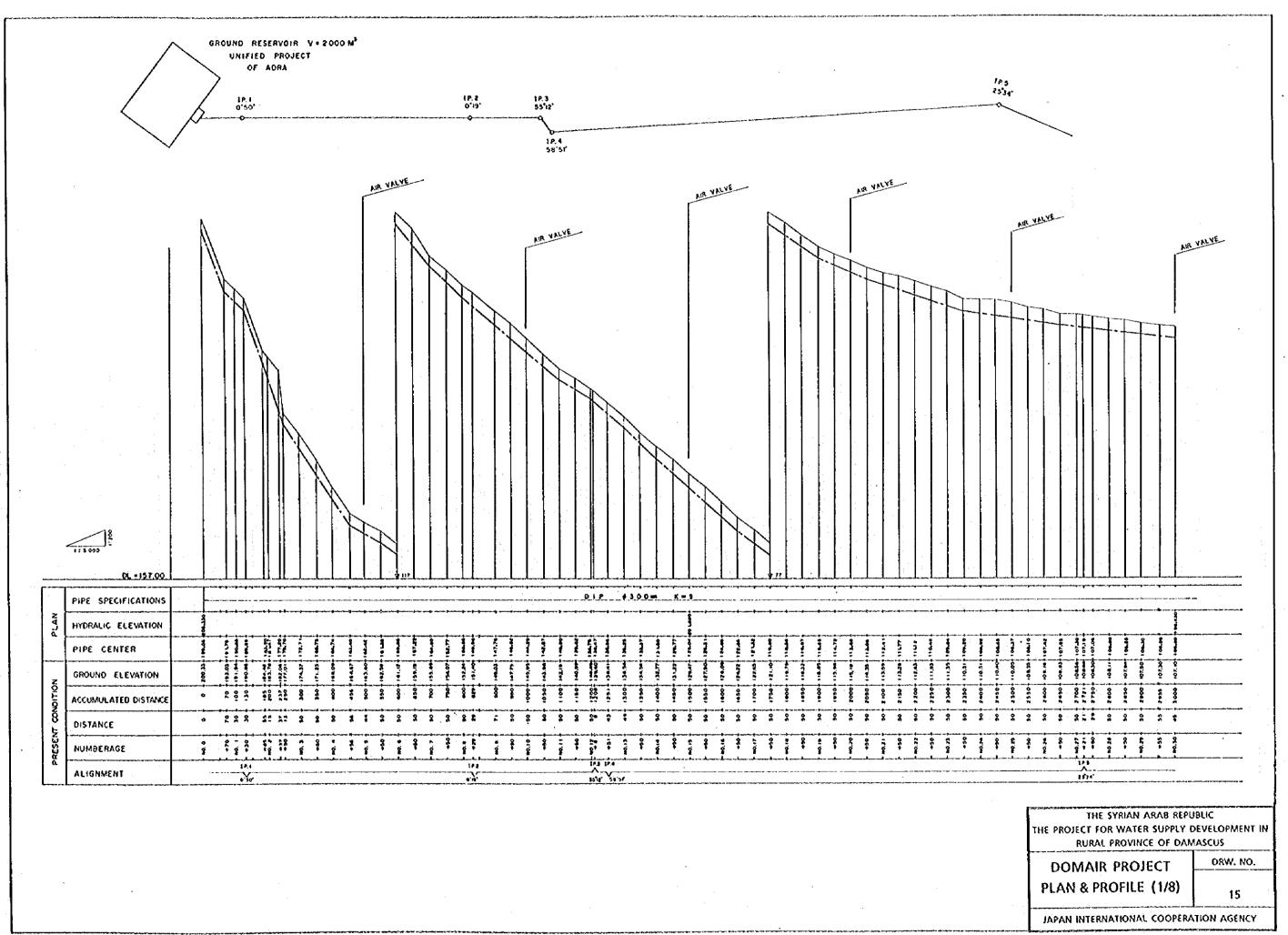


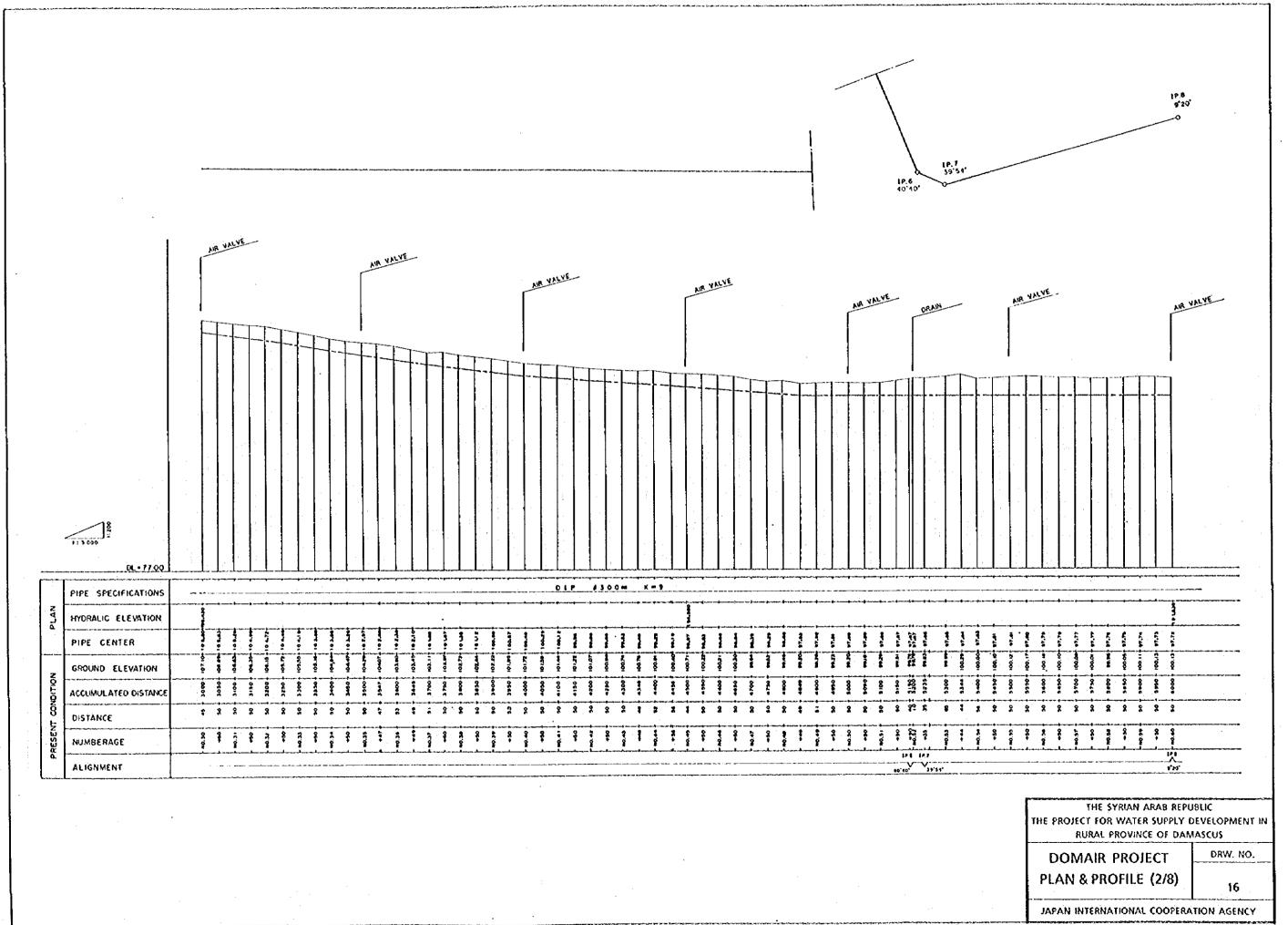


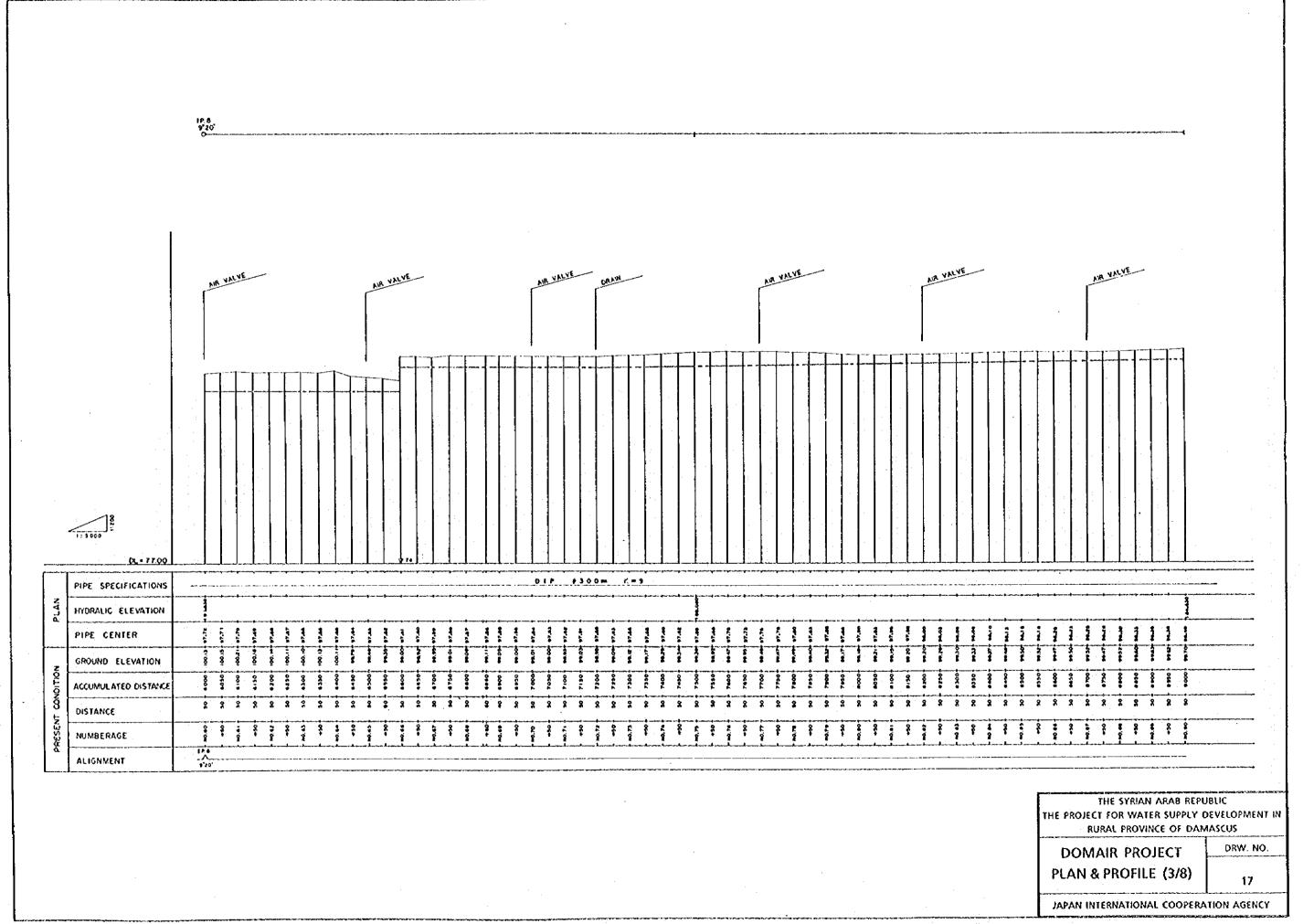


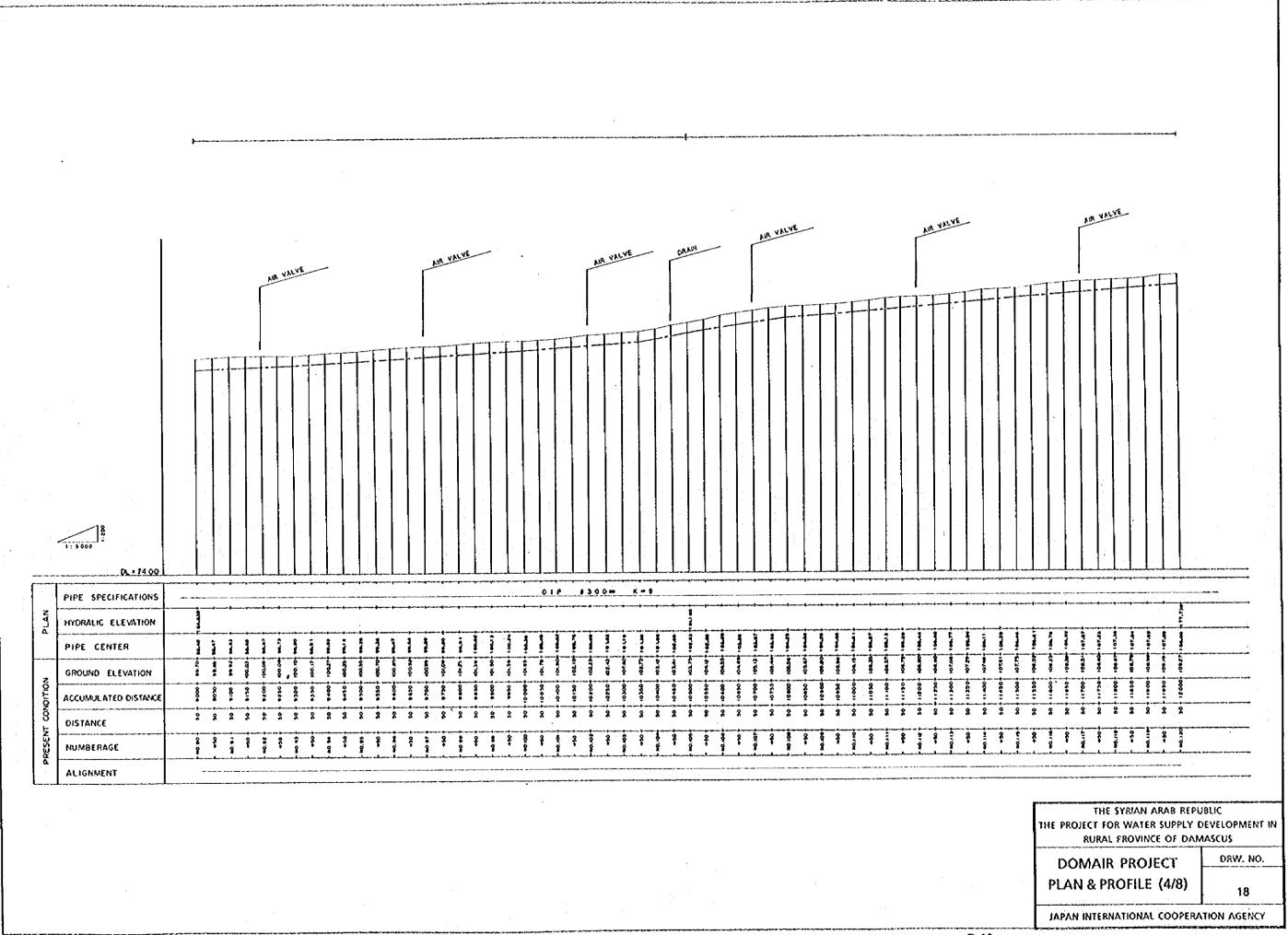


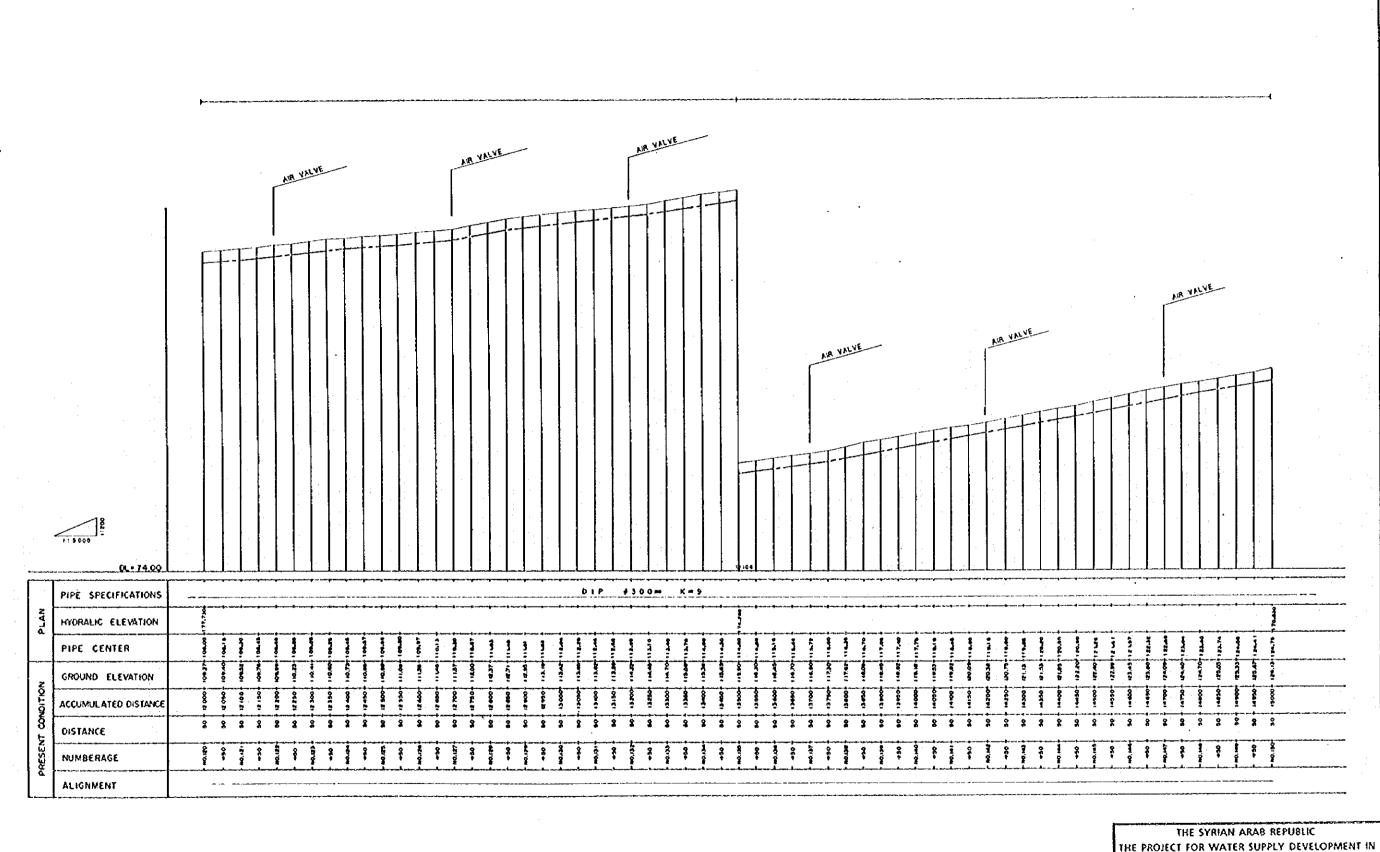


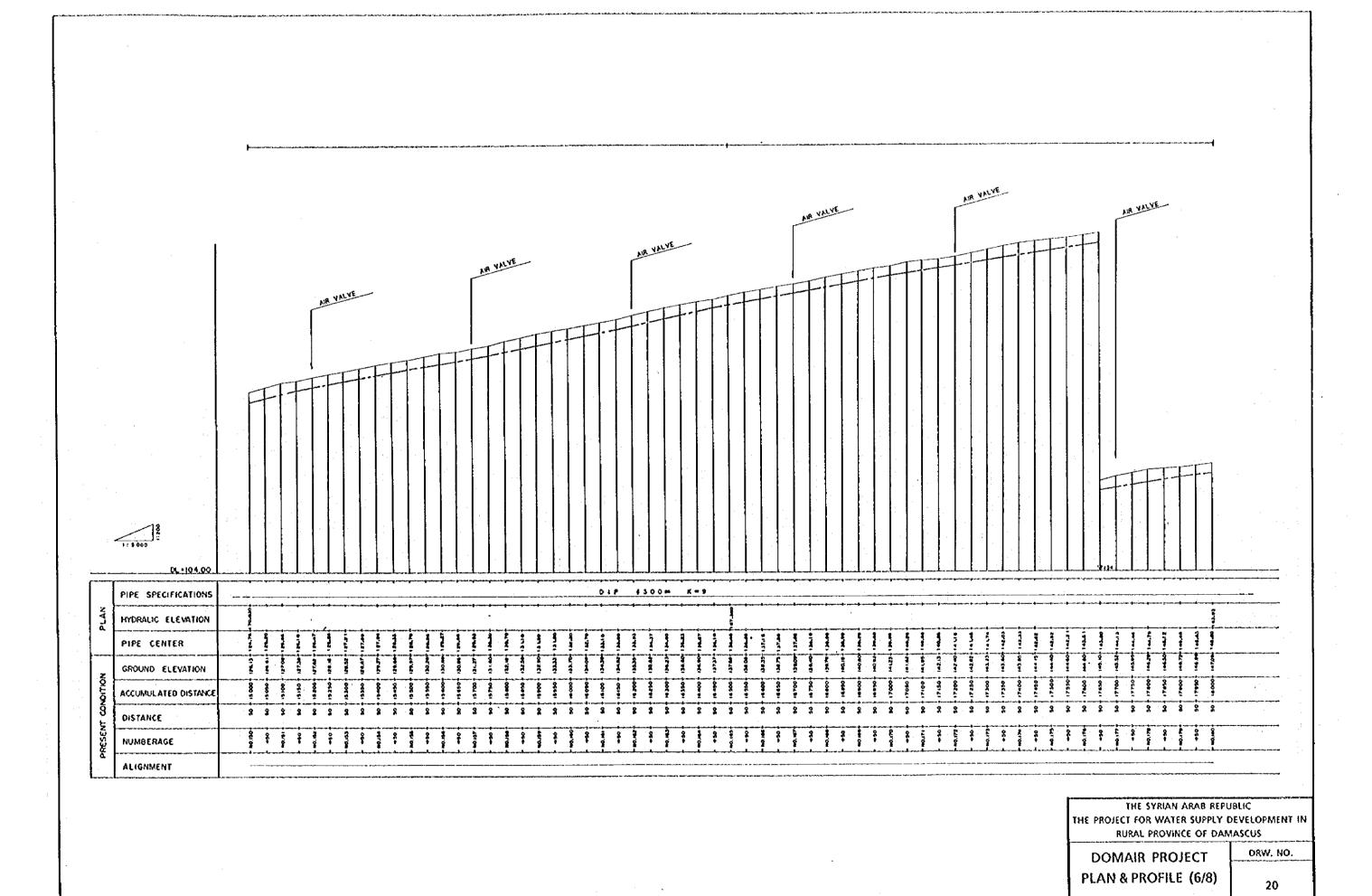


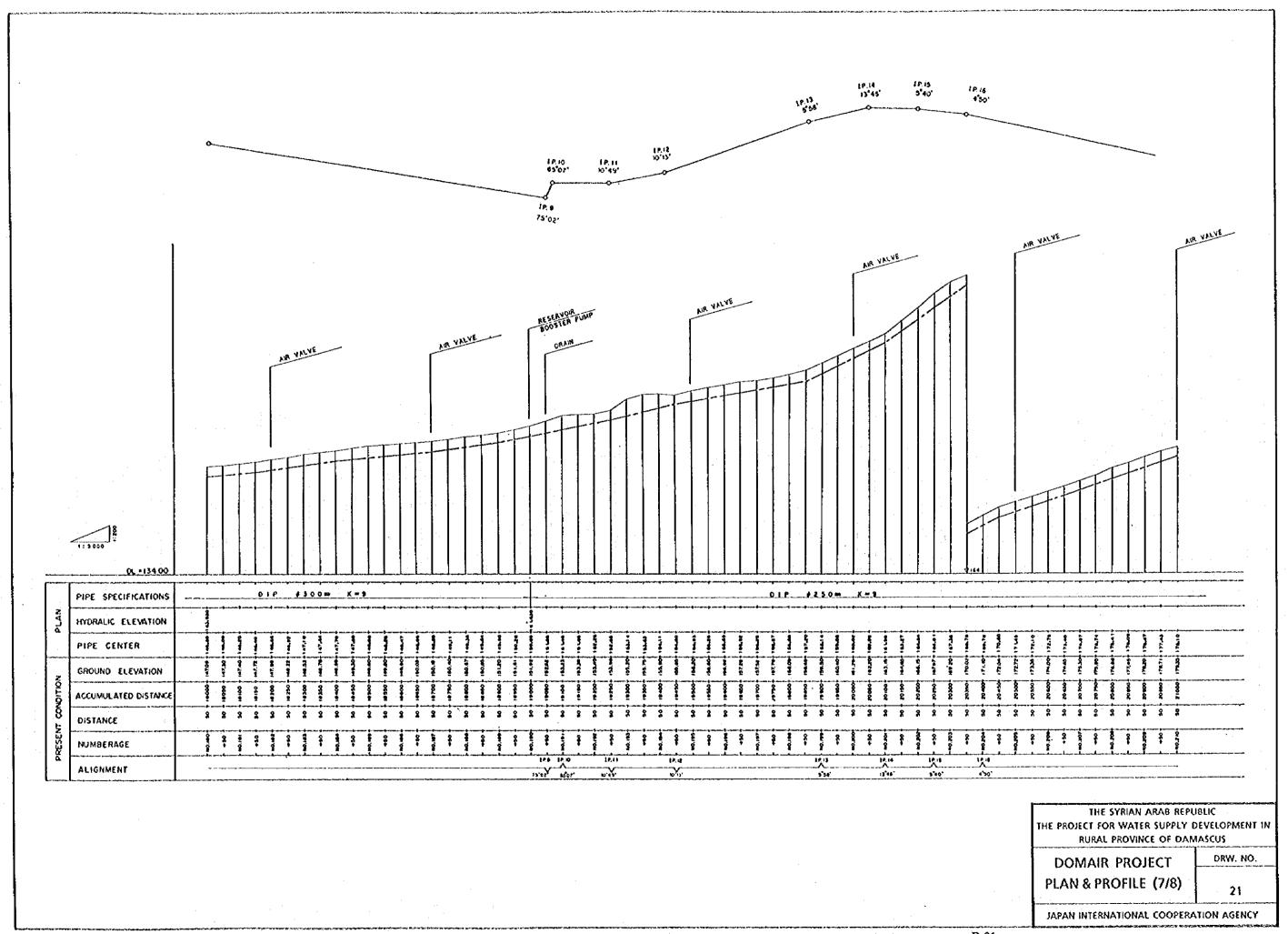


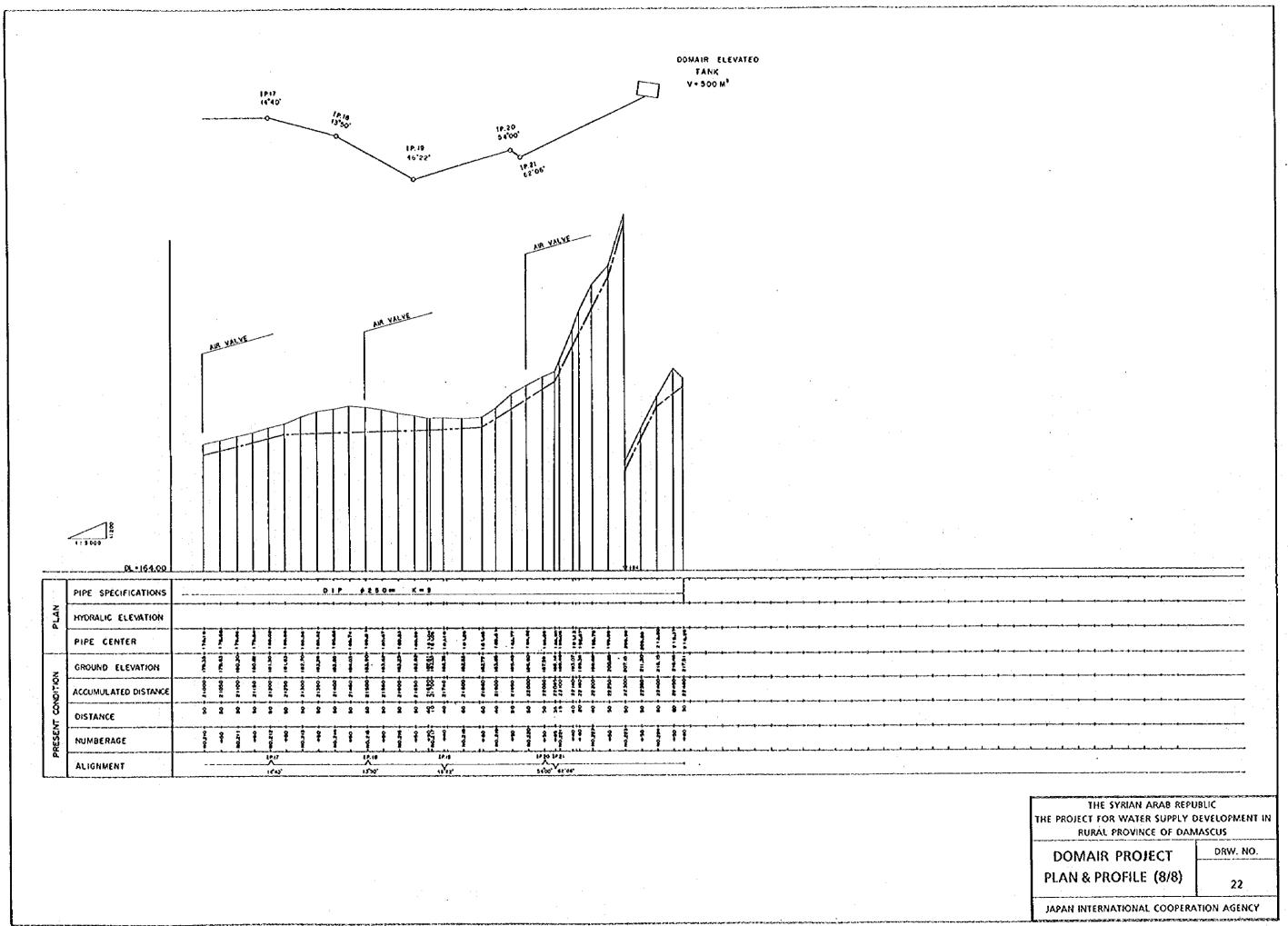




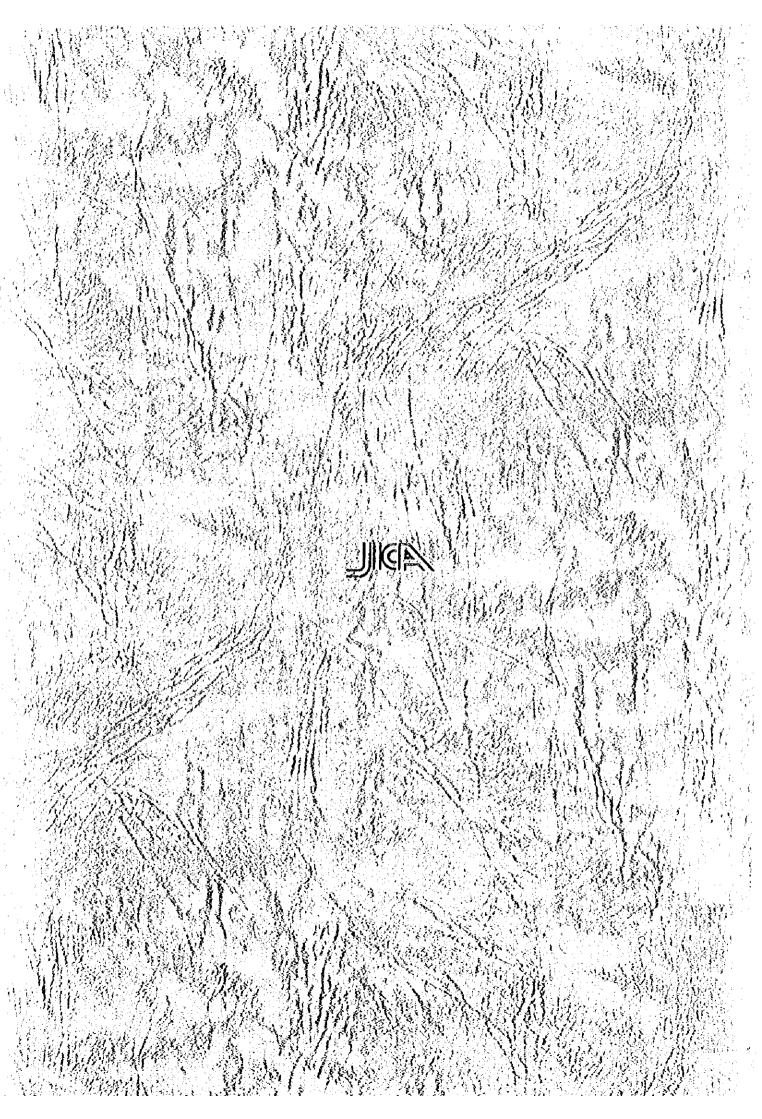








THE SYRIAN ARAB REPU	BLIC
THE PROJECT FOR WATER SUPPLY D	EVELOPMENT IN
RURAL PROVINCE OF DAM	ASCUS
DOMAIR PROJECT	DRW. NO.
PLAN & PROFILE (5/8)	19
JAPAN INTERNATIONAL COOPERA	TION AGENCY



JAPAN INTERNATIONAL COOPERATION AGENCY

•

