6.4.3 Suitable Bridge Types

The following bridge types are considered to be suitable for these spans of 350 m to 400 m mentioned above, based on our experience and knowledge of bridge engineering:

- a) Steel arch bridge
- b) Steel truss bridge
- c) Suspension bridge
- d) Cable-stayed bridge

In selecting the most applicable type of bridge for these proposed sites, not only should economics and engineering considerations be taken into account, but the following factors will also influence the selection:

- Construction site requirement e.g. navigation, topographic, geological, etc.
- Construction costs
- Structural stability for natural phenomena e.g. earthquakes, wind forces, etc.
- Material availability
- Safety and ease of construction
- Environmental requirements
- Effect on road users

The result of this review of the bridge types is as follows; and is summarized in Table 6.4.1.

a) Steel Arch Bridge

An arch bridge is the most attractive from an aesthetic aspect with it's well known pleasing structural appearance.

It is considered that a mid-level steel deck steel balanced arch bridge would be suitable for the proposed sites. However, employing this type of arch bridge will increase the construction cost, because the main span of the bridge will extend beyond the economic span length for this type, in order to comply with the navigation requirements of a rectangular clearance of 70 m x 384 m or 342 m respectively for the proposed sites. The bridge span will therefore exceed the economic span range.

b) Steel Truss Bridge

Ð,

(P)

A Cantilever steel truss bridge would be a suitable structure for crossing over the Canal.

An advantage of the steel truss bridge is that it employs the cantilever method for erection of the bridge. The merits of employing this type of bridge are as follows:

- The weight of each section of truss member or element forming the bridge is relatively low, thus permitting the use of smaller construction/ transportation equipment.
- Erecting by the cantilever method can be done using the balanced cantilever system, which eliminates the need for temporary stays and supports.
- The construction period will be relatively short, as a result of the prefabricated segmental construction and the lifting methods used for the suspended span.

Conversely, the construction cost may be equal to, or slightly higher than that of a cable-stayed bridge, as these costs are influenced by the live loads and design codes specified.

However, this type of bridge will also have some disadvantages, in particular from an environmental aspect due to the congested appearance of each bridge element, which is dependent upon the bridge designer's personal preference.

c) Suspension Bridge

Suspension bridges are usually used for a wide range of spans on account of their structural benefits, as well as the ease and safety of the construction works.

However, in recent years, there has been a trend to use suspension bridges where the span is in excess of some 500 m, or for light weight bridges or bridges for special use, such as a pedestrian bridge over a steep-sided valley.

The main feature of suspension bridges is that anchorages are required at both sides of the bridge to withstand the longitudinal forces from the main cables. The dimensions of the foundations of the anchorages are influenced by the seismic code specified, and also by the geotechnical and topographical conditions of the area.

These factors influencing the requirements for the anchorages will cause a considerable increase in the construction costs.

A suspension bridge is not considered to be economic for the medium span lengths of 200 m to 500 m.

d) Cable-Stayed Bridge

A Cable-Stayed Bridge has the advantages of structural efficiency and economy as well as aesthetics.

Many structures of this type have recently been built worldwide. Moreover, the economical span range for this type of bridge has been extended dramatically by the use of the multi-strand cable arrangements, as a result of the development of corrosion protective systems for the cable strands. In addition advanced construction technology, in combination with computer technology, has greatly increased the efficiency of design and construction of this bridge type.

The construction of a cable-stayed bridge employs the incremental launching system, and incorporates the balanced cantilever method, using the permanent structural cable stays in a temporary condition, but nevertheless aligned into their permanent locations. The costs for falsework are therefore considerably reduced.

Taking all the these factors into account, it was concluded that the cable-stayed bridge type is the most suitable type of bridge for this Canal crossing. The results of this review of the bridge types is summarized in Table 6.4.1 as follows:

Table 6.4.1 Comparison of Bridge Types

•

3

ી

Factors	a) Steel Arch Bridge	b) Steel Truss Bridge	c) Suspension Bridge	, a) Cable-Stayed Bridge
Construction Site Requirements	٥	٩	0	0
Construction Costs	\$	٩	0	0
Structural Stability	0	0	0	0
Material Availability	4	4	4	0
Safety and Ease of Construction	4	0	Ø	0
Environmental Requirements	0	٩	Ø	0
Effect on Road Users	4	٩	0	0
Comparison Summary	4	٩	0	0
Sources: Study Team			Kevs:	Kevs: © Excellent
	•		•	O Fair A Poor

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

6 - 51

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

6.5 Bridge Crossing

6.5.1 Alignment and Profile

(1) Number of Lanes

There are three options of number of lanes namely: 4 lanes, 2 lanes, and 2 lanes with an additional lane for slow traffic as shown in Fig. 6.1.1.

(2) Vertical Grade

There are two options of vertical grade namely: 4.0 % and 3.3 % were selected for comparison study.

Vertical grade of 4.0 % is the maximum vertical grade for a design speed of 80 km/hr based on the Japanese standard.

Vertical grade of 3.3 % (1/30) is the maximum vertical grade of the Egyptian private regulation. A lower vertical grade is preferable taking into consideration the Egyptian vehicle mechanical condition at present, and the long approach sections. (Refer to Chapter 8)

(3) Alternative Road Arrangements

The following four combinations of number of lanes and vertical grades were selected for comparison study.

- Option 1 Divided 4 lanes with vertical grade of 4.0 %
- Option 2 Divided 4 lanes with vertical grade of 3.3 %
- Option 3 2 lanes with vertical grade of 3.3 %
- Option 4 2 lanes and a climbing lane with vertical grade of 4.0 % (4 lanes for the main bridge: refer to the plan in Fig. A6.5.12)

The main bridge with 4 lanes in Option 4 is necessary to meet a structural requirement for stability of the main bridge and to provide the space for shift of climbing lanes on the main bridge.

The lengths of the bridge crossing for these four alternative road arrangements are shown in Table 6.5.1.

6 - 52

	Vertical				2]	ngth of Bridge	Length of Bridge and Embankment				
Location	- S C C C C	Main	×	Approach (East Bank)	6	Αp	Approach (West Bank)	\$		Total	
	(%)	Bridge	Viaduct	Embankment	Total	Viaduct	Embankment	Total	East Bank	West Bank	Grand Total
- Croco	4	730.0	1.170.0	427.5	1,597.5	1,380.0	205.0	1,585.0	1,962.5	1,950.0	3.912.5
	3.3	730.0	1,420.0	593.8	2,013.8	1,680.0	318.6	1.998.6	2.378.8	2.363.6	4,742.4
	0	650.0	1,040.0	422.5	1,462.5	1,370.0	180.0	1,550.0	1.787.5	1,875.0	3,662.5
	33	650.0	1.270.0	556.4	1.826.4	1.730.0	202.4	1,932.4	2,151.4	2,257.4	4,408.8
	4	650.0	840.0	435.0	1,275.0	1,240.0	197.5	1,437.5	1,600.0	1.762.5	3,362.5
PATTERNA	3.3	650.0	1,160.0	454.4	1,614.4	1.500.0	311.4	1,811.4	1,939.4	2.136.4	4,075.8
Sembolium	4	650.0	850.0	450.0	1,300.0	1,270.0	242.5	1,512.5	1,625.0	1.837.5	3,462.5
111110000100	3.3	650.0	1.120.0	524.7	1,644.7	1,540.0	262.3	1,802.3	1.969.7	2,127.3	4,097.0

Table 6.5.1 Length of Bridge Crossing

Þ

3

6 - 53

Source: Study Team

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

(4) Comparison of Alternative Road Arrangements

Outline description of these four options are given below and the results of the comparison of the alternative road arrangements are shown in Table 6.5.2.

- Option 1 will meet the future traffic demand crossing the Suez Canal, however, the vertical grade is considered to be too steep for Egyptian vehicles at present. The construction cost of this option is relatively high.
- Option 2 is the most preferable for traffic operation, however, the construction cost of this option will be highest.
- Option 3 is the cheapest alternative, however, this option has some problems in traffic operation (There is the a possibility that the traffic demand will exceed the traffic capacity of the road, and traffic congestion due to parking of broken down vehicles) and stability of the main bridge.
- Option 4 is relatively cheap alternative, however, this option has a problem with traffic capacity (There is possibility that the traffic demand will exceed the traffic capacity of the road). It is relatively difficult to expand to 4 lane viaducts in the future when traffic volume will increase.

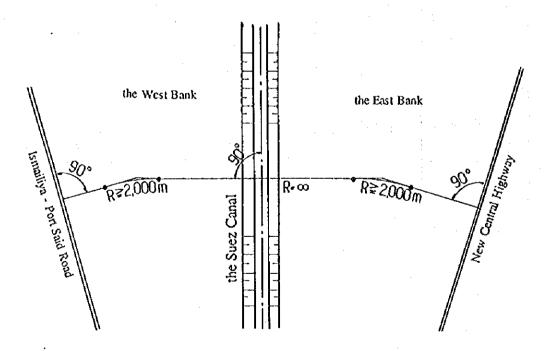
Although, the vertical grade of 4.0 % is too steep for some Egyptian vehicles at present, this problem will be solved by an operation rule of the outer-lane for faster traffic and inner-lane for slow traffic, and the performance of Egyptian vehicles should improve in the near future.

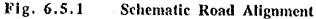
(5) Policy to Decide Alignment

The alignment of the road crossing the Suez Canal will be decided based on the following policy.

- The Bridge crossing the Suez Canal will span the channel at right angles as well as at a point where the alignment of the Suez Canal is straight.
- The road crossing the Suez Canal will connect to Ismailiya Port Said Road on the West Bank and New Central Highway on the East Bank. The Study Team assumed that the intersection between the road crossing the Canal and the existing arterial roads will be at the same level and the road crossing will meet at right angles with the existing roads.

Alternatives	Cross Section	Lane No. Width (m)	Vertical Grade (%)	(idge Area (Length : m Approach	· ·
Option 1 4 Lanes with vertical grade of 4.0%	19.80 050 18.80 050 075 8.15 100 8.15 0.75	4 Lanes 18,8	4.0	12,600 (670)	49,900 (2,655)	62,500 (3,325)
Option 2 4 Lanes with vertical grade of 3,3%	19.80 050 18.80 050 075 8.15 1.00 8.15 0.75	4 Lancs 18,8	3.3	12,600 (670)	62,000 (3,300)	74,600 (3,970)
Option 3 2 Lanes with vertical grade of 3.3%	12.30 050 11.30 0.50 075 9.80 0.75	2 Lanes 11.8	3.3	7,900 (670)	38,900 (3,300)	46,800 (3,970)
Option 4 2 Lanes and a climbing lane with vertical grade of 4.0%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 Lanes + climbing lane (M) 18.8 (A) 13.9	4.0	12,600 (670)	36,900 (2,655)	49,500 (3,325)


Table 6.5.2 Comparison of Alternative Plans


Source: Study Team

¢

6 - 55

- The Bridge crossing over the Channel should be straight.
- A larger radius not requiring a transition curve, a radius of 2,000 m or more for design speed of 80 km/hr, will be used for the road crossing the Canal where possible.
- Agricultural land is very valuable in Egypt, therefore, the road crossing the Canal will avoid areas of agricultural land. In addition, residential areas one where resident relocation is necessary or land acquisition is expected to be difficult, will be avoided.
- Approach spans should be located in areas of higher elevated and/or on areas with firm bearing stratum, to reduce the construction cost of the approach sections of the bridge.
- Swamp areas will be economize construction of approach viaducts and embankments in these area.

6.5.2 Main Bridge

- (1) Selection of Bridge Types
 - 1) Preliminary Design Results

The following three cable stayed bridge types of 360 m main span length have been examined for the main bridge construction;

- i) Prestressed concrete box girder,
- ii) Concrete-steel composite girder, and
- iii) Steel box girder

The approximate construction cost comparison for the three types of 360 m main span lengths are shown in Table 6.5.3

Table 6.5.3	Approximate Construction Cost Comparison
	of Three Alternative Types

Alternative	Bridge	Constru	uction Cost (million	US\$)
Alternative	Length (m)	Superstructure	Substructure	Total
PC Box Girder	650	12.1	10.9	23.0
Composite Girder	702	16.9	6.4	23.3
Steel Box Girder	650	15.8	8.2	24.0

Note: Construction costs of PC box girder and Steel box girder include additional approach viaduct construction length of 52 meters. The cost is for main structure construction only.

Source: Study Team Estimate.

The estimated construction costs of these three types is virtually the same taking into account the cost estimation accuracy. Therefore other factors such as ease of construction, durability and maintenance requirements are significant factors in deciding the selection of the main bridge type.

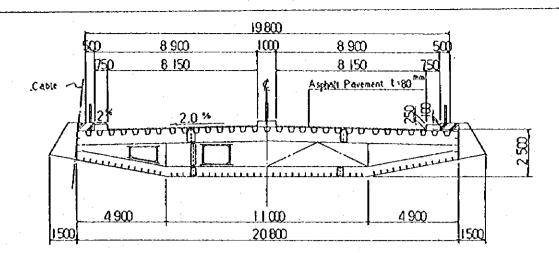
The construction of the prestressed concrete box girder option is the simplest and most efficient method, as it uses the balanced cantilever method incorporating precast units. It is not preferable to employ the cast-in-place balanced cantilever method which would take about one year longer to construct. The precast units, which are cast at the precasting yard will weigh approximately 100 tonnes each. They can be transported either by rail or barge and lifted into position some 70 meters above surface of the Canal. The same procedure can be used for the steel box girder option, but the box girder segment will weigh less than 50 tonnes and is hence much easier to transport and lift into position. The Feasibility Study on A Bridge over Northern Part of the Suez Canal

For the steel-concrete composite girder option, precast concrete deck slabs are assembled using high strength cast-in-place concrete prior to launching the balanced cantilever girder. These precast concrete slabs will weigh about 15 tonnes and be lifted up at the pylon sides. This work does not require any special skills.

As a result of the use of auxiliary piers at the side spans, the deflection under vehicle loading is relatively small for the prestressed concrete girder and steel box girder types (center span length-deflection ratios of 1/1,500 and 1/650 respectively). For the steel-concrete composite girder, the ratio is 1/530 which is less than 1/400 specified in this Project.

The durability the precast concrete deck slabs in the composite girder option presents a severe problem, as they are the elements directly subjected to the heavy vehicle loading. There are very few construction records of composite girder type cable stayed bridges in the world and no data relating to the deck slab durability. However, the records of simple composite girder bridges of 20-40 m span length show that severe problems of concrete deck slab damage by heavy vehicle traffic occurs. When it becomes necessary to replace the damaged concrete deck slabs, the problem of transferring the compressive forces taken by the concrete slabs to other temporary members will have to be faced.

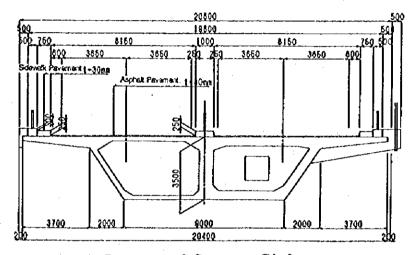
The maintenance requirement for steel box girder and composite girder types necessitates the repainting of the steel girder about once every 10 years. As the rainfall and humidity conditions are favorable at these bridge sites, only about 0.7 million US\$ will be needed for these maintenance works.

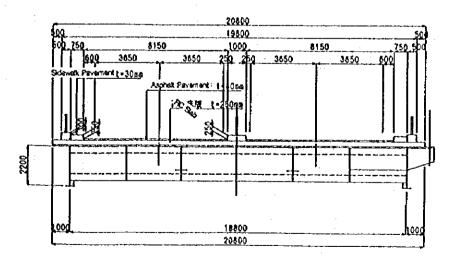

The construction will be as follows:

Steel box girder	:	3 years	9 months	
PC box girder	:	4 years	9 months	

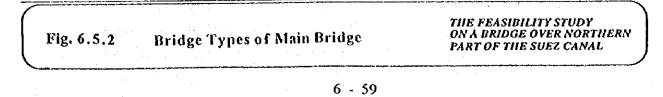
There will be a difference of one year between the steel box girder and the PC box girder.

In the implementation of the bridge construction, the safety of vessels plying the canal must be kept the prime consideration. In implementing the safety measures for the safe passage of vessels, the construction period over the canal must kept to a minimum.


Hence, for this project, from the viewpoint of keeping the construction period short in order to enforce the safety rules for the transitting vessels, the PC box girder cannot be recommended.


Steel Box Girder

<u>ا</u>


D

Prestressed Concrete Girder

Steel - Concrete Composite Girder

2) Conclusion

The steel box girder alternative has been selected for the main bridge type, mainly because of the ease of construction and good durability.

(2) Span Arrangement

The length of the main span is dictated by the conditions set by SCA, that canal side surface of the pylon shall be 1.5 meters beyond the canal crest. Assuming an 8 meters pylon size, the minimum main span lengths for Qantara and the other locations will be as follows;

Qantara : 384 + 8 + 3 = 395 meters Others : 342 + 8 + 3 = 353 meters

In addition to this requirement, the consideration of ship collision with the pylon foundation as well as the pylon column must be taken into account. There is a very low possibility of the pylon structure being affected by ship collision, based on the analysis of ship collision in the Appendix A6.2.7 and A9.1. Therefore the following main span lengths have been determined for preliminary design purposes;

Qantara	:	404 meters
Others	:	360 meters

For the two alternative types of steel box and prestressed concrete box girders, the auxiliary piers for the side spans have been positioned to improve the main girder stiffness and the reduce the construction costs. A side span length ratio of 0.4 (span length of 163 and 145 meters for Qantara and others, respectively) has been selected for the purpose reducing the construction cost.

For the steel-concrete composite girder alternative, a side span length (171 meters for Ferdan), somewhat longer than the other alternatives, has been selected in order to produce positive bending moment at the side spans under dead load and stay cable prestressing conditions. This will prevent the transfer of undesirable tensile stresses into the concrete deck slab. General elevations of the three alternatives are to be found in the Appendix (Fig. A6.6.1 to A 6.6.5).

(3) Foundations

Generally, cast-in-place concrete piles and concrete caissons are normally used for bridge foundations in Egypt. Based on the geological investigation, the soil conditions alongside the canal at the four locations are very similar from a foundation point of view. The strata for several meters below the surface indicates loose fine sands but beneath this layer there are dense sand layers with thin bands of stiff to hard clays.

Therefore, the elevation of the base of the foundations in dependent upon the future dredging elevation of the Canal (-27 meters), and minimum length of 10 times the pile diameter requirement, and not soil conditions.

For the cast-in-place type pile, a diameter of 2.5 meters has been selected based on the availability of piling machines in Egypt. The bearing capacity of each pile has been estimated based on the pile end soil bearing capacity (280 t/m^2). One pile cap has been designed for every two pylon columns.

For the concrete caisson type, one caisson has been designed for each pylon column. The two caissons for the one pylon structure are connected by a concrete slab.

The preliminary designs for the foundations using concrete piles and caissons for the steel box girder type are shown in Table 6.5.4.

Table 6.5. Foundation Type	Dimension per Pylon	Bearing Capacity, Ground Reaction	Construction Cost (million US\$) per Pylon
Concrete Pile	Pite: dia 2.5m, length 25 m Number: 30 Nos Pile Cap: 30×36.25 m t = 6 m	Pile head bearing capacity under vehicte loading: 1,770 tones	1.9, including pile cap cost.
Concrete Caisson	Caisson size: length: 18.5 m width: 12 m depth: 25 m Number: 2 Nos	Earthquake loading: Maximum vertical reaction at base: 187 t/m ² Horizontal reaction at side wall: 14 t/m2 5 m below caisson top	1.6, including the cost for caisson sinking equipment

Table 6.5.4 Comparison of Pile and Caisson Foundations

Source: Study Team Estimate

As shown in Table 6.5.4, caisson type foundation is more economical. However, the use of caisson sinking equipment such as hydraulic jacks with ground anchors will be required as the weight of the caisson concrete will be insufficient to overcome the soil bearing the frictional resistances. This is an uncertain factor in the selection of caisson foundations. But in this feasibility study stage, the caisson foundation type has been selected by reason of cost.

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

(4) Pylons

The pylon has been designed as a reinforced concrete structure. The pylon (column) height above the girder is governed by the effectiveness of the stay cables. Current data on large scale cable stayed bridges indicate that this dimension is normally between 0.17 and 0.20 of main span length. For this study, the value of 0.20 has been used. Total heights of pylons will be as follows;

Main span length 360 meters: height = 150 meters

Main span length 404 meters: height = 160 meters A twin pylon column has been selected for the following reasons;

- i) better torsional rigidity against wind action,
- ii) reduction in total bridge width due to narrower median width.

A distance of about 22 meters is required between the pylon columns at the girder elevation. The two inclined tapered pylon columns are rigidly connected together by transverse beams at three elevations to react as a rigid frame pylon against transverse force actions (refer to Fig. A6.6.1 to A6.6.5 in Appendix).

- (5) Superstructures
- 1) Stay Cable

The multi-stay fanned cable system is used for this long span cable stay bridge, because of the lower tension in each cable, which simplifies the anchorage structure, shortens the length of the cantilevered girder and simplifies the replacing of stay cables during the maintenance work. These cables are located at about 12 meter intervals and thus the tensile forces in them are less than 390 tons.

2) Girder

Single-box girders (girder depth 2.5 m) have been designed for the steel box types. The stay cables are anchored at the outerside of the girders. A steel deck plate of 12 mm thickness with ribs has been used and minimum thickness of a bottom plate of box girder should be 10 mm.

6.5.3 Approach Viaduets

D

(1) Selection of Bridge Types

The profile of the approach viaducts is largely dictated by the change in elevation of the road from about ± 10 m to ± 70 m. This requires that the span length and structure type be carefully studied. The type of structure to be studied has been selected from the following types;

- i) continuous bridge type, and
- ii) adoption of the span lengths of 20 to 60 meters.

Based on the above criteria, the following bridge types and span lengths have been chosen;

- i) steel box girder (span length of 50 to 60 m), and
- ii) steel plate girder (span length of 20 to 50 m).
- iii) prestressed concrete box girder (span length of 40 to 60 m),
- iv) prestressed concrete I girder (span length of 20 to 40 m),

The construction costs of these bridge types using various pier heights are summarized in Table 6.5.5 (1) to (3).

These three Table give the following results;

- i) The bridge span length is dependent upon the pier height. The most economical span lengths are as follows;
 - H = 60 n: L = 40 m or 50 m using steel plate girder,
 - H = 40 m: L = 30 m or 40 m using steel plate girder,
 - H = 20 m: L = 20 m or 30 m using steel plate girder.

ii) The next most economical options are as follows;

H = 60 m: L = 50 m or 60 m using PC box girder,

- H = 40 m: L = 30 m or 40 m using PC I girder, and
- H = 20 m: L = 20 m or 30 m using PC l girder.

The cost differences of both options are marginal, within a few per cent. The steel plate girder type is the preferred option on account of ease of construction and cost. However, it will be necessary to add the maintenance cost (about 4 million US\$) for repainting and maintaining the girders every 10 years for the steel plate girder option. Taking these factors into account, the following bridge type and span lengths are recommended;

				U U	nit: thousand US
Type of Bridge	Span Length (m)	Cost of Superstructure	Cost of Substructure	Total	Unit cost per Span Length
Steel Box	60	700.5	303.3	1,003.8	16.7
Girder	50	574.5	283.0	857.5	17.1
Steel	60	580.5	303.3	883.8	14.7
Plate	50	425.5	283.0	708.5	14.2
Girder	40	292.0	247.1	539.1	13.5
Prestressed	60	490.8	360.1	850.9	14.2
Concrete Box	50	395.2	335.3	730.5	14.6
Girder	40	301.6	303.3	604.9	15.1

Table 6.5.5 (1) Construction Cost Summary (Pier Height 60 m)

Source: JICA Study Team

Construction Cost Summary (Pier Height 40 m) Table 6.5.5 (2)

				τ. τ. τ. τ. τ.	Init: thousand US\$
Type of Bridge	Span Length (m)	Cost of Superstructure	Cost of Substructure	Total	Unit Cost per Span Length
Steel	50	425.5	177.2	602.7	12.0
Plate	40	292.0	160.9	452.9	11.3
Girder	30	190.8	145.5	336.3	11.2
Prestressed	50	395.2	207.3	602.0	12.0
Concrete Box	40	301.6	184.0	485.5	12.1
Girder	30	217.5	163.0	380.5	12.7
Prestressed	40	283.6	177.2	460.8	11.5
Concrete I	30	187.4	157.9	345.3	11.5
Girder				· .	

Source: JICA Study Team

Construction Cost Summary (Pier Height 20 m) Table 6.5.5 (3)

				U	nit: thousand US
Type of Bridge	Span Length (m)	Cost of Superstructure	Cost of Substructure	Total	Unit Cost per Span Length
Steel Plate	30	190.8	67.3	258.1	8.6
Girder	20	108.4	54.9	163.3	8.2
Prestressed					
Concrete Box	30	217.5	78.0	295.5	9.9
Girder		•	. 1		
Prestressed	30	187.4	83.9	271.3	9.0
Concrete 1	20	111.4	64.2	175.6	8.8
Girder					- -

Source: JICA Study Team

6 - 64

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

H = 60 m: L = 60 m using PC box girder, H = 40 m: L = 40 m using PC I girder, and H = 20 m: L = 30 m using PC I girder.

(2) Span Arrangement

Using the method of selecting the bridge type and span length to the pier height decided above, the method of bridging for each route has been carried out taking into account the number of continuous spans, 200 to 250 meters of total length. The abutment height has been assumed to be about 10 m high for the West Bank and about 20 m high for East Bank, respectively.

(3) Foundations

(B)

1

Cast-in-place concrete pile foundation has been used for the foundation of the approach viaduct. According to the geological investigation, a cemented stiff to hard fine sand layer (SPT more than 50) is located 5 to 7 meters below the ground surface. A spread footing foundation could also be used in this area if the ground water is well below the bedding elevation.

On the West Bank, the bridge route runs through farm land criss-crossed by irrigation canals. On the East Bank, the route runs almost entirely through desert area, and the ground water level is well below the surface. Therefore the spread footing type foundation could be used on the East Bank. However as the development plans for the East Bank are not known at the present time, the spread footing type will not be used at this stage.

(4) Substructures

Twin columns of concrete pier have been selected, taking into account the possibility of staged construction (refer to Fig. 6.5.3). To simplify the construction, the width of the pier remains constant but the thickness varies with the height to resist the forces acting upon it.

(5) Superstructure

The width of the concrete girder has been selected to accommodate two traffic lanes in one direction. For a pier height in excess of 50 meters, a prestressed concrete box girder of 60 meters span length has been selected. Prestressed concrete I girder of 40 and 30 meters span lengths have been used for pier height of 50 to 30 meters and less than 30 meters, respectively. A continuous 4 to 8 span girder has been chosen for the superstructure as this will improve the vehicle ride and help resist earthquake action. At

the high pier sections, a rigid connection between the girder and the pier, omitting a bearing pad, would be a way to reduce the construction cost.

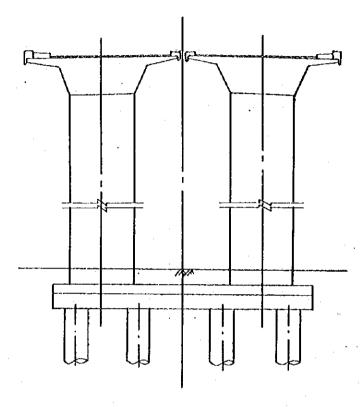
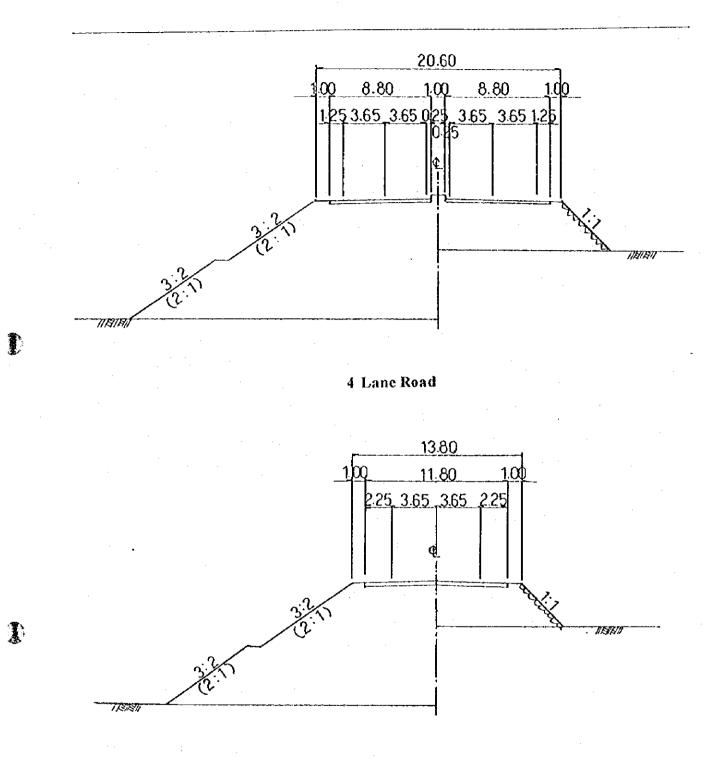


Fig. 6.5.3


Section of Viaduct

6.5.4 Approach Embankments

(1) General

The approach embankments are the structures connecting the approach viaducts to the access roads.

The height of the embankments depends upon the soil condition of the site and the economics of construction, taking into consideration the cost of the acquisition of the farm land. The farm land in the Project sites has been developed for many years and it is not economical to acquire such established farm land for the huge area required. (For example for a 10 to 15 m high embankment, between 60 m and 75 m width of farm land will be acquired). On the East Bank side (Sinai Side), a high embankment will be examined based solely on the geological conditions, whilst on the West Bank Side, a low embankment of about 5 m or less height will be examined, to minimize land use at the site (refer to Fig. 6.5.4).

2 Lane Road

The East Bank Side

The West Bank Side

Note: Numbers in parentheses indicate the slope inclination required by the stability calculation of the embankments.

Standard Cross Section of ApproachTHE FEASIBILITY STUDY
ON A BRIDGE OVER NORTHERN
PART OF THE SUEZ CANALFig. 6.5.4Embankment (Provisional Profile)PART OF THE SUEZ CANAL

(2) Material

As a principle, the approach embankments will be built using local sand from around the Canal road crossing site. However, using high quality materials from a quarry is considered to be required to maintain the stability of the approach embankments because the approach embankment will be high. (Refer to Paragraph 10.4.2)

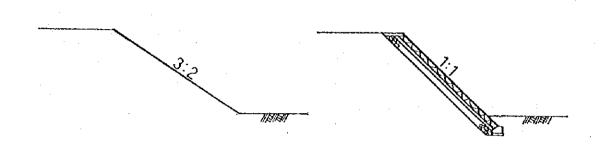
The sand to be used for the approach embankments will be selected at an early stage of construction.

(3) Maximum Height

The height of the approach embankments considerably affects the construction cost of the Canal crossing bridge. The higher the embankment is constructed, the lower the cost of the bridge structure will be. However, the height of embankments is limited as they can become unstable. In addition, high embankments will detract from the aesthetics of the Canal crossing bridge.

The maximum height of the embankments will be selected during the detailed design taking account of stability of the embankments and land acquisition area. The Study Team will assume a maximum height shown below for the time being.

- For the East Bank side and the West Bank side at Ferdan The maximum height will be 15 m to 20 m based on the stability of the embankments.
- For the West Bank side at Qantara, Ismailiya and Srabuiom
 The maximum height will be 5 m to 10 m to minimize land use.


(4) Side Slope

In accordance with the Egyptian standards, the maximum slope of an embankment whose height is more than 3.0 m is 3:2 (horizontal: vertical).

The slope of the approach embankment will be further studied and selected in the detailed design taking consideration of strength of soil used for the embankments. The Study Team is assuming a slope shown in order to maintain stability of the embankment for the time being (refer to Fig. 6.5.5).

- For the East Bank side and the West side at Ferdan : 3:2
- For the West side at Qantara, Ismailiya and Srabuiom :
 1:1 with the surface of the slope protected by stone masonry to minimize land use

The inclination of the approach embankment slopes will be studied in Chapter 10. The inclination of the approach embankment slopes will be determined based on the result of the stability calculation of the embankment. A slope protection of the approach embankments will be also studied in Chapter 10.

Slope 3:2

Slope 1:1

Fig. 6.5.5 Slope of Embankment

6.5.5 Access Roads

(1) General

The access roads are the roads which connect the Canal crossing bridge or tunnel to the existing road network. The access roads are expected to be on low embankments.

Access roads providing the connection between the crossing and the existing arterial road network are:

- West Bank (main land) : Ismailiya Port Said Road
- East Bank (Sinai Side) : New Central Road

However, at the Srabuiom site, the West Bank access road will have to be linked to the Suez - Ismailiya Road, because of the remote location of the Cairo - Port Said Road.

At the Qantara site, the East Bank access road is also considered to be linked to the local road between the Qantara Ferry Station and the new industrial area, due to the remote location of the New Central Road. This also creates a shorter connection to the northern part of Sinai.

(2) Material

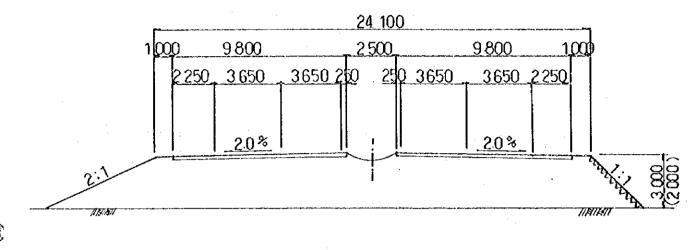
The embankment of the access roads will be built using local sand from around the Canal road crossing site. The sand to be used for the embankments will be selected at an early stage of construction.

(3) Height

The access road structure will be formed on low embankments about 1.5 m above the ground, except in low swampy areas where a more substantial embankment will be required. Concrete pipe or culvert structures will be required for crossing the irrigation canals in the cultivated areas and the height of the access road will be decided taking account of these crossing structures.

The height of the access roads above the surrounding land will be approximately 2.0 m to 3.0 m to match the height of the Flat Desert Road and to provide the space for the crossing structures.

(4) Side Slope


The Egyptian standards recommend and embankment slope of 2:1 (horizontal: vertical) where the height is 2.0 m to 3.0 m and 3:2 for the height more than 3.0 m.

The slope of the embankment of the access road will be determined after further study. The Study Team is assuming a slope shown in order to maintain stability of the embankment at present (refer to Fig. 6.5.6).

- For the East Bank side and the West side at Ferdan : 2:1 or 3:2
- For the West side at Qantara, Ismailiya and Srabuiom :
 1:1 with the surface of the slope protected by stone masonry to minimize land use

The inclination of the access road embankment slopes will be studied in Chapter 10. The inclination will be examined in detail and decided in the detailed design.

A slope protection of the access road embankments will be also studied in Chapter 10.

Note: The number in parentheses indicates the embankment height on the East Bank. Slope 2:1 Slope 1:1

Fig. 6.5.6	Standard Cross Section of Access Road
	for 4 Lanc Road (Provisional Profile)

6.5.6 Construction Methods and Schedule

(1) Main Bridge

 (\mathbf{I})

1) Foundation

Caisson cutting edge will be set at elevation of ± 2.0 m on the ground. It will be then sunk to a level of ± 25.0 m employing the method of caisson wall casting, dredging and sinking in a continuous sequence. When the base of the caisson attains foundation level, invert concrete base slab will be placed using tremie pipes. In order to overcome the resistance to sinking a system of hydraulic jacks attached to ground anchors will be employed.

2) Pylon

The pylon column will be constructed using climbing formwork. Each lift of 2 to 4 meters will be completed about every 3 days. A tower crane will be required for handling and lifting of all materials.

3) Main Girder

The steel box girder will be assembled in almost 6 m sections at the assembly yards, near the bridge site and transported to the Canal site by rail. It will then be

transported to the designated locations of center span or side span, using a barge in the Canal for the former and road transport for the latter respectively. The section will then be raised to the required level by jib cranes. It will be set in position using the balanced cantilever method of erection in conjunction with the staying cables.

4) Stay Cable

The stay cables will be transported to the bridge deck level in reels. Fitting of the cable onto pylon side position will be carried out using the tower crane. Prestressing will be done using a center hole jack.

(2) Approach Viaducts

1) Foundation

A boring rig equipped with a 1.0 to 1.5 meter diameter auger will be used for drilling the bores for the concrete piles. For some areas on the West Bank, steel sheet pile cofferdam may be required for the pile cap construction, due to the high water table or presence of surface water.

2) Piers

The concrete pier will be constructed using climbing formwork. A crane is incorporated into the climbing formwork for lifting up the materials. More than 30 piers will need to be constructed on each bank. 5 to 6 teams on each bank will enable the construction of the piers to be completed within one year.

3) Superstructure

Balanced cantilever launching out method from the pier head will be used for PC box girder bridge in conjunction with traveler cranes. The pier head section will be constructed upon the scaffolding fitted to the pier top.

The PC I girder bridge will be produced in the girder precast yards, transported the site and lifted up into position by mobile crane where the pier height is less than 30 meters. For the section where the pier height is more than 30 meters, an erection gantry will be used to launch the concrete girder. Then the cast-in-place concrete deck slab will be constructed.

(3) Approach Embankments and Access Roads

1) Approach Embankments

These will be constructed using local selected sand fill, spread and compacted in suitable layers at optimum moisture content using conventional earthworks equipment. The slope will be trimmed to the desired batter and protected with stone pitching laid in mortar.

2) Access Roads

The nominal 1 m high embankment will be formed as above, and then the road pavement constructed in the conventional manner.

(4) Construction Schedule

T.

Ð

Fig. 6.5.5 shows the preliminary construction schedule of the main bridge and approach structures. The total construction period, which will be dependent upon the condition of the bridge site, is anticipated to be between 40 and 45 months.

	Items	The First Year	The Second Year	The Third Year	The Fourth Year
4 L	Preparatory Work	óm			
	Sheet Piles	Ē			
	Foundations	8m			
	Main pylons	[10m		
Main	Auxiliary Piers		8m	r	
Bridge	Main Girder Fab.		18m	Ì	
	Main Girder Assem.			13m	
	Main Girder Erection		1	13m	
	Handrail, etc.			38-	- el
	Foundations	Śт			
	Sheet Piles	ĒI			
	Excavation	ξm			
Approach	Approach Pile Caps		10m		
Bridge	Piers		10m	1	
	Girder Fab.		12m		
-	Girder Erection		 	8m	· .
	Concrete Slab, etc.			óm	
	Embankment			бm	
Road	Sub-base			3m	· •{
	Pavement				3m
Site Meaning	10				3m

Fig. 6.5.6 Construction Schedule (Ferdan 4 %)

THE FEASIBILITY STUDY ON A BRIDGE OVER NORTHERN PART OF THE SUEZ CANAL

6.5.7 Cost Estimation

- (1) Basic Assumptions
 - 1) General

The cost estimation has been compiled using information on the material, labor and equipment costs collected in Egypt and Europe.

2) Labor Costs

For the specialist works, i.e., steel box girder assembly, girder lifting, cable fitting and prestressing, etc., the supervisory and key personnel have been allocated to expatriate staff. The general overheads have included key expatriate personnel supported by a full Egyptian team.

3) Materials

Where possible the local products have been used for costing, based on the local rates (reinforcing bar, cement, plywood, aggregates, asphalt, gasoline, diesel oil, etc.). For the steel girder products, stay cables and prestressing tendons which are not available in Egypt, imported prices in US currency have been used.

4) Equipment

All standard equipment used in road construction is generally available in Egypt. The specialist items used for bridge erection such as the traveler crane, jib crane, erection girder, are considered to be imported.

(2) Other Costs

 \mathbf{I}

1) Contingencies

A physical risk contingency of 10 % of the basic estimated construction cost has been assumed. A price escalation of 3 % inflation of US currency base per annum has been assumed.

2) Indirect Cost/overhead Cost

The indirect cost/overhead cost includes all costs necessary for preparatory works including a work camp, construction of contractor/consultant's office, laboratory and welfare facilities, transportation cost of materials and The Feasibility Study on A Bridge over Northern Part of the Suez Canal

equipment, site office management and maintenance cost, and contractor's general overhead costs. A figure of 20 % of the sum of the basic construction and contingency cost has been assumed for indirect/overhead cost.

3) Engineering Cost

A sum equal to 10 % of the basic construction and contingency cost has been estimated as the engineering costs for detailed design and construction supervision by the consultant.

4) Land Acquisition and Compensation Cost

A unit price for land acquisition of 15,000 LE per 0.4 ha has been used for the cultivated areas in West Bank. No land acquisition cost has been estimated for the area on East Bank as this land is empty desert at present.

In addition a resettlement cost has been included based on the assumption of the need to resettle 3 houses per kilometer along the access road.

(3) Project Cost Summary for the Alternative

Table 6.5.6 shows the summary of the project cost for the 4 lane bridge crossing for each alternative route. The cheapest option is the Ismailiya route and the Qantara route is the most expensive.

Table 6.5.7 also shows the summary of the project cost for the 2 lane bridge crossing option. The 4 % alternative includes the construction of additional climbing lanes for the approach viaducts.

6.5.8 Effect of the Bridge Construction on Navigation Safety

- (1) Influence on Radar and countermeasure
 - 1) Bridge Structure

A cable-stayed type bridge has been selected as the bridge crossing for the Suez Canal at the four (4) potential site locations. The concrete pylons with two rectangular columns will be constructed on both banks of the Canal. The steel box deck girder will span the canal and provide the required navigation height clearance of 70 m.

			Basic Cos	Basic Cost (million USS) = A					
Location	Gradient	Main Bridge	Approach	proach Bridge	Access Road	Sub Total	Sub Total Physical Contingency	Price Contingency	Subtotal
		J	East B	West B		(A)	(A x 10%)	(4 x 6 %)	ê
Qantara	4.0%	32.7	20.6	23.3	2.9	79.5	8.0	7.2	94.7
	3.3%	32.7,	25.1		3.1	89.5	9.0	8.1	106.6
Ferdan	4.0%	30.9	18.4	23.5	3.1	75.9	7.6	6.8	90.3
· .	3.3%	30.9	23.1	29.5	3.1	86.6	8.7	7.8	103.1
Ismailiya	4.0%	30.9	13.4	20.1	3.3	67.7	6.8	6.1	80.6
	3.3%	30.9	18.6	24.3	3.2	77.0	12.7	6.9	91.6
Srabuiom	4.0%	30.9	13.9	20.9	1.6	67.3	6.7	6.1	80.1
: :	3.3%	30.9	18.9	25.7	1.4	76.9	7.7	6.9	91.5
		Cheed (D) Is		(-	- - - -	8		
			34000mi (2) III all cu C. Overineau C. (B x 20 %)	Eugineering C. (B × 10 %)	Land Acquisition Compensation C.	luisition ation C.	Grand Lotal (million USS)		
Qantara	4.0%	94.7	18.9	9.5		0.3	123.4		
	3.3%	106.6	21.3	10.7)	0.3	138.9		
Ferdan	4.0%	90.3	18.1	0.9		0.4	117.8		
	3.3%	103.1	20.6	10.3		0.4	134.4		
Ismailiya	4.0%	80.6	16.1	8.1)	0.4	105.2		
	3.3%	91.6	18.3	9.2		0.4	119.5		

Project Cost Summary of 4 Lane Alternative Table 6.5.6

6 - 77

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

119.5 104.2 1.9.1

9.2

16.0

80.1 91.5

4.0%

Srabuiom

3.3%

Source: Study Team

0.1 0.1

of 2 Lane Alternative
~
Summary
oject Cost
r Pr
6.5.7
Table

Location Gradient Qantara 4.0% Ferdan 3.3%	nt Main Bridge							
		Approach Bridge		Access Road S	Sub Total	Physical Contingency	Price Contingency	Subtotal
		East B	West B		(¥)	(A x 10%)	(A X 9 %)	6
	% 25.1		17.8	2.0	60.7	9.1	5.5	72.3
	% 25.1	15.4	17.6	2.2	60.3	6.0	. 5.4	71.7
3.3%	22.5	14.1	18.0	2.2	56.8	5.7	5.1	67.6
	22.5	14.2	1.8.1	2.2	57.0	5.7	5.1	67.8
Ismailiya 4.0%	% 22.5	10.3	15.4	. 2.3	50.5	5.1	4.S	60.1
3:3%	% 22.5	11.4	14.9	2.2	51.0	5.1	4.6	60.7
Srabuiom 4.0%	6 22.5	10.6	16.0	1.1	50.2	5.0	4.5	59.7
3.3%	% 22.5	11.6	15.8	1.0	50.9	5.1	4.6	60.6
	Subtotal (B)	Subtotal (B) Indirect C/Overhead C.	Engineering C.	Land Acquisition	isition	Grand Total		
		(B x 20 %)	(B×10%)	Compensation C.	ion C.	(million US\$)		
Qantara 4.0%	6 72.3	14.5	7.2	0.2	5	94.2		
3.3%	6 71.7	14.3	7.2	0.2	2	93.4		
Ferdan 4.0%	6 67.6	13.5	6.8	0.3	3	88.2		
3.3%	67.8	13.6	6.8	0.3	3 .	88.5		
Ismailiya 4.0%	6 60.1	12.0	6.0	0.3		78.4		
3.3%	60.7	12.1	6.1	0.3	3	79.2		
Srabuiom 4.0%	\$ 59.7	11.9	6.0			77.6	·	
3.3%	60.6	12.1	6.1	*		78.8		

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

6 - 78

2) New Radar System and Bridge Locations

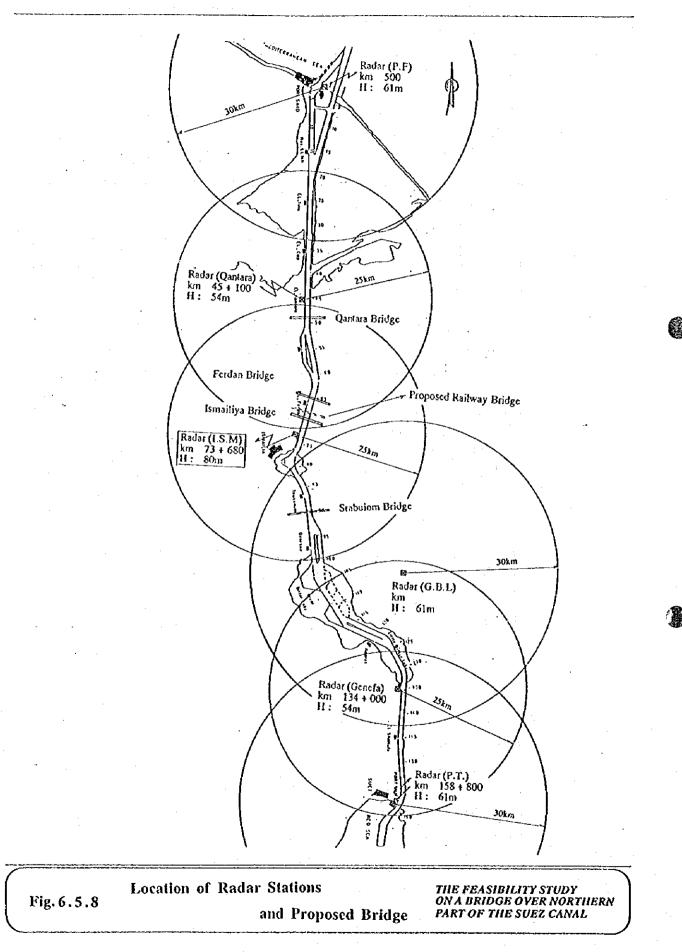
The installation of the new Suez Canal Vessel Traffic Management System (SCVTMS) has been completed by SCA, and vessel management using this system has been operated since early on 1996. There are six tracking radar stations at the locations shown in Fig. 6.5.8 which also shows the potential site of the proposed bridge.

Therefore, in the planning of the construction of the bridge, considerations should be given to the effects of the bridge on the SCVTMS from a navigation safety point of view.

The proposed bridge at Qantara, Ferdan and Ismailiya is located within the area covered by both the Qantara and Ismailiya Radar Stations, whilst the Srabuiom bridge site is covered by both the Ismailiya and Great Bitter Lake Radar Stations.

3) Radar Functioning

D


(I)

It is anticipated, but will require confirmation by SCA after selection of the bridge site location, that as a vessel leaves one radar area and passes under bridge into the next radar area, that the tracking information will be satisfactorily transmitted to the Operation Center.

However, it is quite possible that the tracking information may be interrupted by the bridge structure due to the shadow image created by the bridge. It will be difficult now to verify the effects of the bridge construction on the radar system by field trials at the proposed sites, because the new radar system is already operating.

4) Proposed Solution

In the mean time, due to the importance of navigation safety, some countermeasures will need to be considered to resolve the above issues. One solution would be to provide additional radar stations on both banks of the Canal in the vicinity of the proposed bridge. This would be the most suitable and practical solution for overcoming the potential problem created by the proposed bridge structure. The additional radar stations should be installed before commencement of the bridge construction works.

It should be added that as the shadow image induced by the proposed bridge must be fixed, improvement to the computer system of SCVTMS should be studied and implemented. This would help to reduce the costs of the countermeasures as well as improving the maintenance of the system to resolve the problems of continuous tracking of vessels.

- (2) Risk Management and Countermeasures
 - 1) Ship Collision

Þ

 (\mathbf{I})

The following cases of ship collision with the piers of main bridge have been reviewed.

- Possibility of ship collision incidents
- The type of possible ship collision
- Calculation of ship collision force
- Protection against ship collision

It is considered that the possibility of the ship collision incidents with the bank of the Canal will be very low. In addition, as caisson foundation have been proposed for the pylons of the cable-stayed bridge, and the distance between the edge of the navigable channel and face of the caisson in more than 15 m, a direct ship collision with the pylon can not occur.

According to the results of the case study, inspite of the low probability of ship collision, the effects of the collision force are not significant on the design of the pylon caisson foundation.

The collision force anticipated as a result of the case study is shown in Appendix, Chapter 6, 6.5.

2) Prevention of shipping accidents

From the risk forecast due to the construction of the proposed bridge, additional safety measures to ensure the safe navigation of vessels passing along the Canal may be required. It is considered that there are four types of risk relating to the navigation safety of vessels on the Canal, as a result of the bridge construction.

a) Accident Prevention During Construction:

At all times during construction, when there are water borne activities a guard boat will be in attendance in the channel. In addition lookouts will be posted on both of the Canal banks to give early warning of the approach of ships.

The underside of the bridge deck will be fully decked in with false work, and the sides fully enclosed with wire safety netting to prevent any small falling objects from dropping through, and to ensure safety for the construction work at all times. The constructed section of the deck will also have guard rails installed on both sides to maintain safety of the works during construction.

b) Vehicle Containment and Control

The following traffic safety devices will be installed on the deck;

- Suitable crash barriers and curbstones.
- Lane marking by use of highly reflective paint.
- Painting of the curbstones.
- Installing colored reflectors on curbstones or in the pavement.

In addition to these safety devices, the following measures should be taken or enforces;

- No vehicle overtaking on the bridge
- No vehicle parking on the bridge

However, it is impossible to fully prevent accidents caused by reckless drivers even with the best engineering traffic safety measures taken from an engineering aspect. The traffic safety will be further increased by implementing the necessary by temporary physical controls, combined with education of the drivers and rigid enforcement of the safety rules.

c) Protection from Falling Items in Normal Service

To prevent an accident due to fragments or articles falling from the bridge deck, the simplest solution will be to provide tall fences or barricades on both sides of the deck. However, the provision of this type of protection, even if it is made from wire netting is very difficult to successfully achieve when incorporated into cable stayed type of bridges.

It is also very difficult to prevent the arbitrary throwing of objects from vehicles on the bridge deck unless the traffic can be kept away from the bridge deck or the bridge deck is enveloped by wire netting or similar protection.

However, the installation of these physical type barriers can be detrimental to the aero dynamic profile of the bridge structure. To ensure stability against wind action, a static analysis of the bridge, as well as a study of the dynamic phenomena induced by wind action, on flexible structures like suspension bridges, cable-stayed bridges and tall towers should be made.

The quantitative evaluation, by analysis only, of the dynamic phenomena resulting from wind action is very complicated and difficult to achieve. Therefore, the verification of the aero-dynamic stability of the bridge will be made by wind tunnel tests for effects such as vortex oscillation, galloping, torsional flutter, etc.

For cable-stayed bridges, the aero-dynamic stability is the most important issues, and a large number of the aero-dynamic tests have been done to date. Based on these results, and on experience, a stable deck section will be selected for the cable-stayed bridge. Tests to confirm the sectional features of the deck structure will be necessary.

Therefore, based on the above, the provision of tall fences is not recommended, as it could be determined to the stability and security of the bridge structure against the wind forces.

A possible solution to this problem would be the installation of CCTV cameras along both sides of the bridge with appropriate monitoring and police control to forestall any such incidents occurring.

d) Navigation Lighting

To ensure the safe navigation for vessels using the Canal, navigation lights will be installed along the under side of the deck girder of the bridge, indicating the navigation width of 270 m for Qantara or 250 m for the other three locations respectively. The lighting will also be installed at the deck level and at the pylons bases if required.

6.6 Tunnel Crossing

(1) General

Regardless of whether two or four lanes are selected as the recommended solution, or if the gradients are 4 % or 3.3 %, the total tunnel structure arrangements will be similar.

Thus in the following description, unless stated otherwise the commentary applies to all the options.

The four preferred route alignment options at each crossing location are briefly identified in 5.6.1 below at the selected SCA kilometer chainages.

6.6.1 Alignment and Profile

(1) Qantara Km.48 + 650

The route alignment is effectively perpendicular to the Canal and the portal and approach cuttings will be located in the low lying are. (ground level less than 2.5 m)

To avoid potential flooding problems the ground will be built up to + 2.5 m above datum in these areas.

(2) Ferdan Km.65 + 020

The route alignment is effectively perpendicular to the Canal and the portal and approach cuttings will be located in the low lying areas (ground level less than 2.5 m). The ground will be built up to +2.5 m above datum in these areas.

(3) Ismailiya Km.69 + 775

This route alignment is also perpendicular to the Canal, but the portal and approach cuttings will be located in the higher level ground areas (ground level greater than 5.0 m). To avoid unnecessary additional tunnel length being constructed the ground will be reduced to + 5.0 m above datum in these areas.

(4) Srabuiom Km.89 + 850

This route alignment is also perpendicular to the Canal, and the portal and approach cuttings will be located in the higher level ground areas (ground level greater than 5.0 m).

The ground level on the West Bank will require relatively minor grading to reduce it to the required level, but on the East bank, more extensive ground reduction will be required. The same situation prevails for the tunnel crossing beneath either the single (existing) channel or the dual (future bypass) channels.

(5) Summary

 (\mathbf{I})

In general at all of the selected locations, the tunnel and access road will have the same horizontal alignment as the bridge routes. The length of the tunnel will depend on the ground levels surrounding the portal structure, which have been discussed above in this Section.

The shorter tunnel routes (ground level at ± 2.5 m) will be around 1,800 m long between the portal headwall faces, and the longer routes (ground level at ± 5.0 m) about 1,910 m. See Fig. A6.2.33 in the Appendix).

The access road at Qantara on the West Bank, connecting to the Post Said - Ismailiya divided highway will differ from the bridge solution here, as it will junction directly with this highway at the rotary, without the need for the elevated spiral connection proposed for the bridge.

In the case of a 3.3 % gradient at this location however, the access route would have to swing to the south of the military area and junction with a rotary on the Port Said - Ismailiya road to Suez.

6.6.2 Tunnel Structure

(1) Tunnelling Methods

1) Option Selected

As described in Section 6.2.2 the geology has been confirmed as being predominantly saturated sands and gravel with occasional silt/clay layers.

Therefore the selection of a slurry type TBM is the recommended method for excavating and constructing this tunnel. This type of TBM has already been well demonstrated in the recent successful tunnelling of the EI Salaam Siphon and the Greater Cairo Metro tunnels. In both of these projects very similar ground conditions exist and the TBMs, have performed very well, with high advance rates (GCMC achieved 565 m advance in December 1995, of an 8.35 m i.d concrete segmental tunnel.)

6 - 85

(2) Tunnel Lining

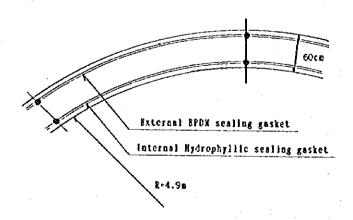
1) Alternative Solutions

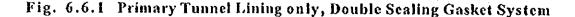
Two options were discussed here:

- a) Primary Segmental Lining, and
- b) Primary Segmental plus in-situ Secondary Lining

The benefits of each are further discussed below:

2) Primary Segmental Lining


This option would result in a slightly smaller diameter tunnel, and would also achieve a shorter and more economic construction time. This will be demonstrated below.


The lining will consist of 9 segments plus a key stone produced from high quality very dense concrete ($fc = 480 \text{ kg/cm}^{"}$ cylinder) to very precise dimension tolerances.

The segments will each include a continuous EPDM gasket, designed to withstand the full water pressure, and allow for construction errors, located in the outer area of the segment section.

As a backup to this, in the event of tunnel lining deflection during Canal deepening an inner hydrophilic (expands in contact with water) type continuous gasket will also be fitted.

The proposed detail is shown in Fig. 6.6.1.

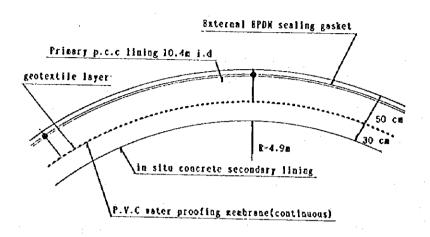
The segments will have an internal diameter of 9.8 m and be a nominal 1.2 m wide (along tunnel axis) and 60 cm, thick. The reinforcement will be epoxy coated to prevent corrosion by exposure to the saline water, should any damage be sustained to the concrete during handling and erection.

A complete ring will weigh approximately 56.5 Tonnes and each segment 6.1 Tonnes maximum. This will be well within the normal handling capacities of large diameter TBMs.

3) Primary Lining plus Secondary Lining

3

1

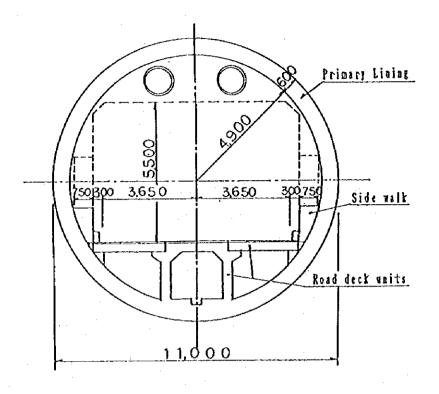

This option will require a larger diameter primary lining to maintain the roadway clearances. The primary lining will be similar to that described in Section 6.6.2 (2) above but will include only the external EPDM gasket and will be a nominal 50 cm thick with an internal diameter of 10.4 m.

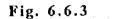
The primary lining ring will weigh approximately 47.0 Tonnes and each segment a maximum of 5.1 Tonnes.

The secondary lining will be cast in-situ reinforced and unreinforced concrete using steel forms, but will be fully enveloped with a continuous PVC membrane in conjunction with a layer of geotextile (fleece) material fixed to the primary lining.

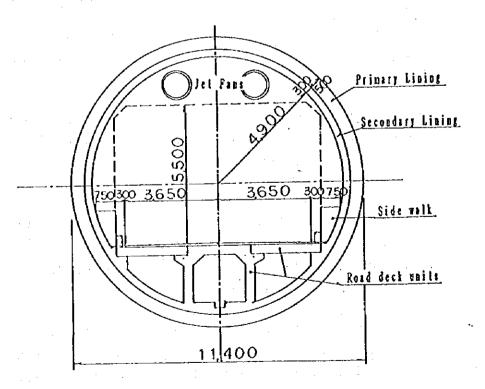
The concrete will be 30 cm thick and reinforced, where required to resist any deformation of the tunnel lining which may be induced by the future deepening of the Canal.

This is the preferred technical solution for long term durability of the structure, but the additional costs and time for construction will require consideration when selecting the best solution for the Tunnel Crossing. The proposed detail is shown in Fig. 6.6.2.


Fig. 6.6.2 Primary and Secondary Lining, Single Sealing Gasket System Plus Continuous P.V.C Membrane


The general tunnel section arrangements for these options are shown in Fig. 6.6.3 and 6.6.4, respectively.

6.6.3 Portal Structures


(1) General Requirements

The Portal Structure is the ground support structure at the interface between the tunnel and the approach cutting. It provides ground support to the vertical faces required to facilitate the commencement of the tunnel construction, and provides a suitable structure within which the facilities control building, drainage sump and electrical and mechanical rooms can be constructed. The Feasibility Study on A Bridge over Northern Part of the Suez Canal

Tunnel Section Showing Primary Lining only

1

Tunnel Section Showing Primary and Secondary Lining

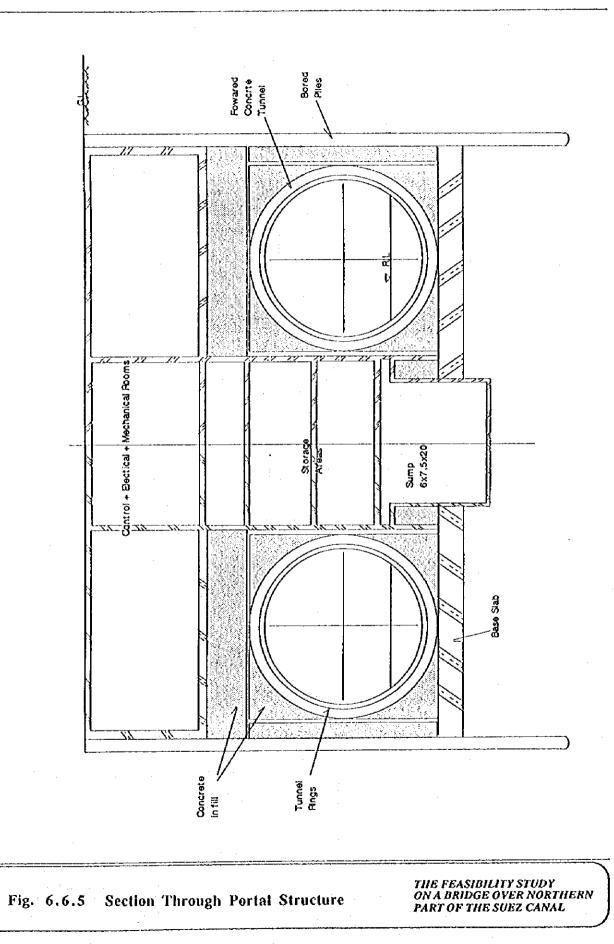
(2) Portal Structure

1) Temporary Structure

To provide adequate clearances for assembly and dismantling of the TBM (one such activity for each tunnel) the internal free width required will be approximately 37 metres.

The maximum clear standing height at the tunnel face during construction will be approximately 23 metres. The structure will be formed using interlocking low strength bored piles, as this method is considered the most economic in this situation.

The side walls will be restrained using steel walings in conjunction with ground anchors and H shape steel sections within the alternate piles.


The headwall will require a more complex restraint arrangement to facilitate the TBM entry and exit i.e. two 11.9 m circular areas of unreinforced weak concrete will be required. Within these areas long fibreglass dowel ground anchors will be placed to provide restraint, whilst not impeding the TBM's ability to excavate through the headwall face.

The remaining head wall areas will be restrained in the same manner as the side walls.

Adequate toe-in will be provided to ensure stability of the structure during excavation to full depth, prior to construction of the heavy duty base slab upon which the TBM will be assembled and launched.


This slab will be designed to accommodate the full weight of the TBM, and also to resist any uplift from the ground. It is anticipated that dewatering will be required prior to excavation of the approaches and portal area, and in addition full ground treatment will be undertaken for a distance of about 20 m from the headwall to facilitate TBM launch and reception.

A suitable thrust block comprising tunnel rings encased in reinforced concrete, to enable the TBM thrust rams to propel the machine forward into the ground through the headwall will also be installed within the portal structure. This arrangement is shown in Fig. 6.6.6.

6 - 91

8

6 - 92

The remaining space within the potal structure, above the tunnel lining can be used to accommodate the main control room and associated equipment and welfare rooms.

The main collector sump for rainwater run off and any seepage water from the approaches will be located beneath the tunnel invert level between the two roadways as shown in Fig. 6.6.5.

6.6.4 Approach Cuttings

(1) General

The cutting provides the means of access for the roads to the tunnel portal.

(2) Principal Features

It is anticipated that dewatering will be required to permit the excavation to the appropriate depths. The side slopes will be constructed with a batter of 1:1.5 (V:H) and incorporate horizontal berms at 7 m vertical height intervals.

6.6.5 Construction Methods and Schedule

(1) Early Ordering Key Materials and Equipment

Early ordering of the TBM and tunnel lining segments will be essential to ensure that the construction sequence is not disrupted or delayed. This should be done immediately upon award of the construction contract.

A description of the construction sequence and construction method can be found in Appendix A 6.5.2.

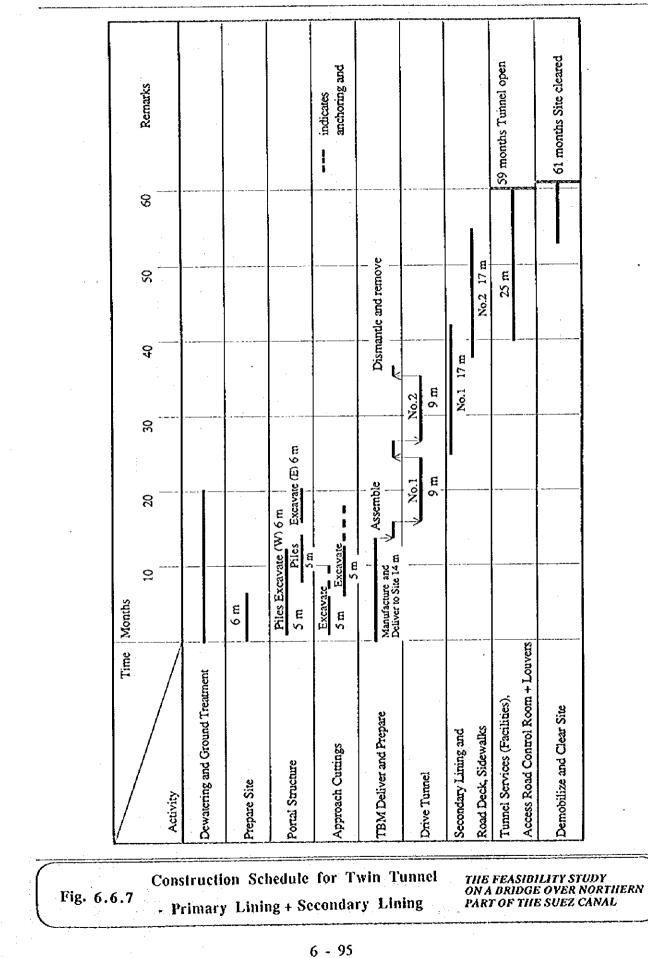
- (2) Schedule
 - 1) General

The schedules for constructing the Tunnel crossing have been prepared for the following alternatives using the twin tunnel with secondary lining as the base case:

- Twin Tunnels Primary and Secondary Lining
- Twin Tunnels Primary Lining only
- Single Tunnel Primary and Secondary Lining

The schedules for the Twin Tunnels solution are shown below in Fig. 6.6.7 to 6.6.9. The times for completion of the principal tunnelling activities are as follows.

- 2) Twin Tunnels Primary and Secondary Lining
 - TBM Preparation and Assembly 16 months
 - Completion of Primary Tunnel Lining 36 months
 - Completion of Secondary Lining and Road and Deck 53 months
 - Completion of construction 59 months
- 3) Twin Tunnels Primary Lining only


(Road deck constructed during tunnel construction)

- TBM Preparation and Assembly 16 months
- Completion of Tunnel Lining plus Road Deck 36 months
- Completion of Construction 42 months

These two alternatives show that the crossing will be completed after approximately 5 years and 3.5 years respectively.

- 4) Single Tunnel Primary Lining and Secondary lining
 - TBM Preparation and Assembly 16 months
 - Completion of Primary Tunnel Lining 25 months
 - Completion of Secondary Tunnel Lining and Road Deck 42 months.
 - Completion of Construction 48 months

This shows that a single road crossing can be completed in 4 years.

J

indicates anchoring and phased excavation Remarks ŧ ł 1 44 months Site open 42 months Tunnel open 8 Dismantle and remove 50 4 16 m No.2 8 6 33 l 5 m Piles Excavate (E) 6 m 5 m Excavate (Portal) (W) No.1 8 8 5 m Excavate (Portal) (E) Assemble Piles Excavate (W) 6 m ន្ល Manufacture and Deliver to Site 14 m ы Б С 2 Months é m Time Sidewalk and Service Access Road Dewatering and Ground Treatment Control Room and Louvers Demobilize and Clear Site TBM Deliver and Prepare Approach Cuttings Portal Structure Drive Tunnel Prepare Site Activity Construction Schedule for Twin Tunnel THE FEASIBILITY STUDY ON A BRIDGE OVER NORTHERN PART OF THE SUEZ CANAL Fig. 6.6.8 - Primary Lining Only 6 - 96

A

indicates anchoring and phased excavation Remarks 1 1 1 8 50 months 48 months ŝ months 4 17 m ង - 5 m-Piles Excavate (E) Dismantle 8 6 E Ð ន Excavate (Portal) Excavate (Portal) (W) Piles Excavate (W) Deliver to Site 14 m ≥ ្អ Manufacture and 3 m/ Time | Months B V Tunnel Services (Facilities), Access Dewatering and Ground Treatment Secondary Lining and Road Deck. Sidewalks Road Control Room + Louvers Demobilize and Clear Site **TBM Deliver and Prepare** Approach Cuttings Portal Structure Drive Tunnel Prepare Site Activity THE FEASIBILITY STUDY ON A BRIDGE OVER NORTHERN Construction Schedule for Single Tunnel Fig. 6.6.9 - Primary + Secondary Linig PART OF THE SUEZ CANAL

6 - 97

ľ

6.6.6 Temporary Facilities

(1) General

For the tunnel construction option two job sites will be required. The main one would be located on the West Bank whilst the secondary site would be on the East Bank.

1) West Bank Facility

This would be established at the very start of the construction contract. The future tunnel access road, connecting the crossing to the existing highway, should be set out and a temporary site access route prepared. The site facility should be located adjacent to the top of the approach cutting ramp with the access route forming one boundary. The site area can be divided into three distinct areas:

- Segment Storage
- Work and Storage area
- Welfare area

The whole area should be enclosed within a security fence with full time security guards in attendance.

The principal features of the work site will include the following facilities:

- Segment storage area with access ways
- Equipment Yard
- Slurry separation plant
- Concrete and Mortar Batching Plant + Aggregate Bins
- General Materials storage area
- Generators and Compressor Sheds
- Workshops, Stores and Fuel Tanks
- Canteen, Changing and Medical Rooms
- Offices and Car Parking Areas
- Motor Launch for Cross Canal usage

It is estimated that:	Segment Storage	=	1	Hectare
	Main Site	1	2	Hectares
	Total	=	3	Hectares

2) East Bank Facility

ſ

The establishment of this facility will be required early in the construction contract, prior to the portal piling and approach cutting excavation work commencing on the East Bank. The preparation of the future tunnel access road will only be required at this stage if no existing roads exist. The main access to the site, apart from the segment supply will be across the Canal using the nearest SCA ferry service.

It is envisaged that the segments would be delivered via the AH Tunnel route. The site should again be similarly located to the West Band Site and will have a similar but smaller area layout.

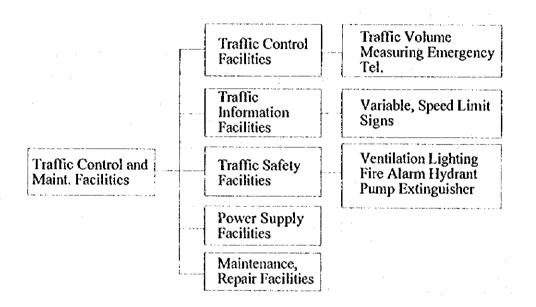
The facilities will be similar to those on the West Bank except that the generators and compressors will not be required, apart from mobile types, as the supply for tunnel driving can be routed through the previously constructed No. 1 Tunnel. The Batching Plant facility will only be required for the Portal piling works and the tunnel lining grouting mortar, and will have much less capacity than the West Bank.

It is estimated that:	Segment Storage	=	1	Hectare
	Main Site	=	I,	Hectare
	Total	=	2	Hectares

(1) Principal Temporary Facility Items

The main items and their capacities are listed below in Table 6.6.1.

Item	Capacity	Remarks
Generators	5,000 KW and 11 KV	Total Project Demand
Slurry Separation Plant	2,000 m³/hr	West Bank-move to East Bank
Concrete Batcher	50 m³/hr 25 m³/hr	West Bank East Bank
Tunnel Ventilation	2,400 m³/hr	Minimum Capacity
Water Supply		Pump from Sweet Water Canal


Source: Study Team

6.6.7 Tunnel Facilities

(1) General

In order to provide a safe and smooth traffic flow, various supplementary tunnel facilities are to be provided. These include such facilities as buildings and mechanical, electrical and communication equipment.

These tunnel facilities are generally classified as shown in Fig. 6.6.10.

Fig. 6.6.10 Traffic Control and Management Facilities

(2) Facilities Installation

The provision and installation of the tunnel facilities requires specialist input, and this is normally provided in the form of sub-contractors to the main contractor.

The installation of the facilities would commence after installation of the basic tunnel structure, ie, the secondary lining, road deck and walkway.

Where possible the activities within the tunnel should progress from one portal to the other, to avoid conflict with the other activities, and follow in sequence from one tunnel to the other.

In some cases these works will precede the tunnel finishes, whilst in others they will work in parallel with or follow on. Finally all the system will be connected to the control room area, tested and commissioned. Further information on the type of the facilities proposed can be found in Appendix A.6.2.8.

6.6.8 Cost Estimation

(1) General

The cost estimation has been compiles using information gained from the current tunneling activities in Egypt (Cairo Metro and El Salaam Siphon Tunnels) in conjunction with experience of the requirements for this type of work.

1) Labor Costs

For the specialist works, i.e., the tunnel driving, portal structures and secondary lining activities, the supervisory and key personnel have been allocated to expatriate staff. It has been assumed that during the course of the work Egyptian personnel will benefit from the experience and Technology transfer, and for the construction of the No. 2 tunnel the expatriate involvement has been reduced.

2) Materials

Where possible the local products have been used for costing, based on local rates. However for specialist products, in particular tunnel waterproofing materials, tunnel facilities equipment and TBM special oils and lubricants which are not obtainable in Egypt, imported prices in US currency have been used.

3) Equipment

All standard equipment used in construction is generally available in Egypt, and local currency prices have been used. The specialist items manufactured abroad, i,e, the TBM and associated equipment, plus the secondary lining special formwork comprise the majority of foreign currency costs.

(2) Costing Philosophy

Quotations were requested from specialist manufacturers both in Europe and Egypt for specific items and services, and these were incorporated into the costing build up. The associated works and activities were calculated using the normal procedures of quantities and durations.

(3) Other Costs

1) Contingencies

A physical risk contingency of 10 % of the basic estimated construction cost has been allowed to cover unforeseen construction events. This is normal procedure in the industry.

A price escalation contingency of 3 % per annum has been assumed based on the US currency inflation rate.

2) Indirect/Overhead Costs

The indirect cost/overhead cost includes all costs necessary for preparatory works including a work camp, construction of contractor/consultant's office, laboratory and welfare facilities, transportation cost of materials and equipment, site office management and maintenance cost, and contractor's general overhead costs. A figure of 20 % of the sum of the basic construction and contingency cost has been assumed for these costs.

3) Engineering Cost

A sum of 8.4 % has been added to the total cost, including the above contingencies and indirects, to allow for consultants design and site supervision costs. This value has been selected to reflect the higher degree of site supervision required or those types of large diameter TBM.

4) Land Acquisition and Compensation Cost

A unit price of 15,000 LE per 0.4 ha has been used for the cultivated areas on the West Bank only, with no cost being allowed forth East bank desert areas.

A resettlement allowance has been included based on resettlement of 3 houses per one kilometer of access road.

(4) Summary

The costs were calculated for a "base case" condition using the primary and secondary lining proposal and primary lining only.

The costs for each location using a 4 % and 3.3 % road gradient were then developed, and the additional costs due to the future Canal development at Srabuiom projected. A

single tunnel "base case" option was also costed. The summary of all these options is shown in Table 6.6.2.

The cost savings envisaged using the double gasketted preliminary tunnel lining only solution were less significant than anticipated, and whilst there is a considerable saving in time for constuction, the overall long term benefits to the Canal crossing structure do not merit the use of this option. Therefore the cost detail for this option have not been included Table 6.6.2 Summary of Tunnel Costs.

The cheapest twin tunnel which provide 4 traffic lanes option is at Qantara with Ferdan marginally more expensive. Therefore Qantara Canal crossing is the recommended solution for the tunnel option on the basic of price only.

٢

1

Location	Gradient		Basic Cost (million USS) = A	lion US\$) = A		Physical Contingency	Price Contingency
		Tunnel	Approach Road	Access Road	Sub Total	(A x 10 %)	(A x 13 %)
Qantara	4.0%	124.0	6.2	2.6	132.8	13.3	17.3
	3.3%	135.0		2.4	144.0	14.4	18.7
Ferdan	4.0%	124.0	6.3	2.8	133.1	13.3	17.3
	3.3%	135.0	6.8	2.6	144.4	14.4	18.8
Ismailiya	4.0%	128.4	8.5	2.9	139.8	14.0	18.2
	3.3%		9.3.	2.6	153.71	15.4	20.0
Srabuiom	4.0%	128.4	9.1	0.8	138.31	13.8	18.0
	3.3%		10.1	0.4	152.3	15.2	19.8
Ferdan *	4.0%	506	7.3	6.1	9.66	10.0	12.9
Srabuiom (widening)	4.0%	151.9	10.8	0.5	163.2	16.3	21.2
		(a) monone		Engineering C.		Land Acquisition	ISTOL DURID
			(B x 20 %)	(B x 8.4 %)	Comp	Compensation C.	
Qantara	4.0%	163.4	32.7	13.7		0.3	210.1
	3.3%	177.1	· 35.4	14.9		0.3	227.7
Ferdan	4.0%	163.7	32.7	13.8		0.4	210.6
	3.3%	177.6	35.5	14.9		0.4	228.4
Ismailiya	4.0%	172.0	34.4	14.4		0.4	221.2
	3.3%	189.1	37.8	15.9		0.4	245.2
Srabuiom	4.0%	170.1	34.0	14.3		0.1	218.5
	3.3%	187.3	37.5	15.7		0.1	240.6
Ferdan *	4.0%	122.5	24.5	10.3		0.1	157.4
Srabuiom (widening)	4.0%	200.7	40.1	16.9		0.1	257.8

Table 6.6.2 Summary of Tunnel Costs

6 - 104

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

۲

Source: Study Team

CHAPTER 7

EVALUATION OF ALTERNATIVES

CHAPTER 7 EVALUATION OF ALTERNATIVES

7.1 Evaluation of Crossing System Alternatives

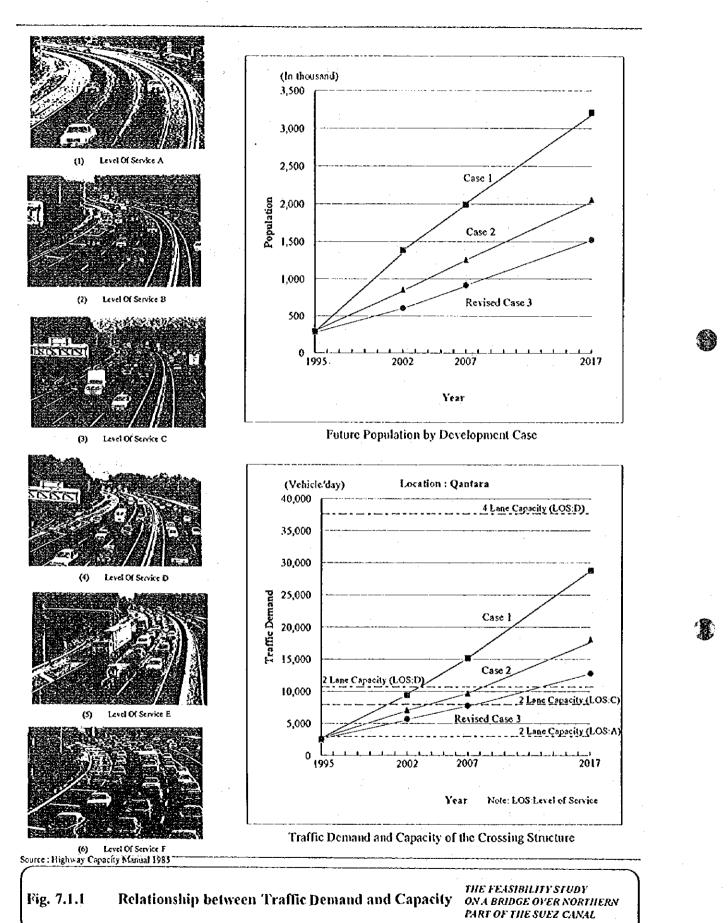
- (1) Crossing System Alternatives
 - 1) Traffic Demand and Capacity

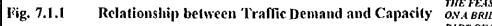
In accordance with the results of the analyses presented in Chapters 4 and 5, the relationship between future traffic demand and road capacity is summarized as shown in Fig. 7.1.1.

2) Crossing System

This results of the analysis which has been undertaken in Chapter 5, Sction 5,1 are as follows;

a. Limitation of Ferry Transport


There are major limitations to the ferry boat system in meeting future traffic demand in any of the socio-economic cases.


- b. Construction Method
- A Four Lane Capacity Structure is required. This can be provided either by constructing a single four lane crossing structure or a double two lane crossing structure.

It would be necessary to construct a double two lane crossing structure in adjacent locations and operate one way traffic flow on each two lane crossing. This makes the capacity of the double two lane structures equivalent to a single structure.

c. Ferry Transport

Regardless of the location or type of the crossing structures constructed, the ferry facilities will have to remain at the current ferry locations, although the ferry service may change due to fluctuations of traffic at the ferry stations, in particular at the station where the crossing structure has not been constructed.

7-2

3) Alternatives for Evaluation

Taking the above results into consideration, two alternatives crossing structures have been selected for evaluation.

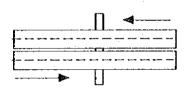

- Construction of a four lane crossing structure or
- Construction of a two lane crossing structure initially and then a later stage, another two lane crossing structure is added when the traffic demand exceeds the first two lane capacity (so called staged construction). After completion of both, each two lane crossing structure will be used for one way operations. This approach will make it possible to provide full four lane capacity :required.

Fig. 7.1.2 shows the schematic of the alternative crossing systems evaluated.

Four Lane Crossing Structure

T)

Ľ

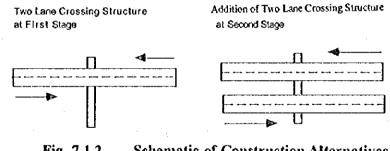


Fig. 7.1.2 Schematic of Construction Alternatives

(2) Evaluation

The following conditions have been used for evaluating the alternatives.

- The traffic demand of case 2 and the revised case 3 at Qantara have been used for comparison of the alternatives, because the staged construction alternative cannot be considered for case of 1. This is due to the fact that the future traffic demand under case 1 will exceed the two lane capacity in 2002 under the condition of Level of Service C.

- It is assumed that the crossing structure will be opened to the public in the year 2002.

- For the double two lane crossing structure alternative, the second two lane structure is assumed to be constructed in the year 2001 for case 2, and in the year 2009 for the revised case 3, as indicated by the projected future traffic demand under the condition of Level of Service C. (refer to Fig. 7.1.1)
- Only a vertical grade 3.3% has been used for cost comparison. Likewise, only construction and maintenance costs have been discounted at a 12% rate.
- Only the bridge alternative is subject to this evaluation.

Discounted costs for each case are tabulated in Table 7.1.1.

Case	Construction Stage	Cost (M. USD)	Remarks
Case 2	Four Lanes	99,5	2002 opened
Case 2	Double Two Lanes	114.7	2002 and 2005 opened
Revised Case 3	Double Two Lanes	<u>95.6</u>	2002 and 2009 opened

Table 7.1.1 N	Net	Present '	Value
---------------	-----	-----------	-------

Note : Discount rate of 12% is used

The results of the discounted value indicate that the double two lane crossing structure for the revised case 3 shows the lowest value in the comparison followed by the four lane crossing structure. This means that if the initial volume and growth in traffic demand is small, the staged construction becomes the most attractive investment alternative. Also, under given assumptions, this investment alternative is the most preferable, when the second two lane bridge is constructed after the year 2008 (this critical year is obtained by calculation using the proportional method).

However, a major factor to be considered in this conclusion on the staged construction is that it depends mainly on a small future traffic volume and low growth rate. Another point is that the second two lane bridge has to be constructed at an adjacent location ,which will enable the required one way operations to use double two lane crossings. Otherwise this alternative would not make any sense at all. This is also assumed as indicated by the results of the four lane crossing structure for case 2 with a higher traffic demand. For this alternative the staged construction approach has no merit due to the high traffic volume and its growth rate. This is attributable to the higher construction cost for the double two lane crossing structure in comparison to that for the four lane crossing structure.

7.2 Evaluation of Structure Alternatives

7.2.1 Financial Cost Comparison

(1) Result of Construction Costs Comparison

As shown in Table 7.2.1 the lowest construction cost in market price is US\$ 104.2 million for Srabuiom bridge (4% vertical grade), and the highest cost is US\$ 242.4 million for Ismailiya tunnel (3.3% vertical grade). The bridge construction period is estimated to be 5 years between 1997 and 2001. The tunnel construction period is estimated to be 6 years between 1997 and year 2002.

Alternatives	Approxi	mate Cost	Priority
	4% V.Grade	3.3% V.Grade	Rating
Qantra Bridge	123,400	138,900	4
Ferdan Bridge	\$17,800	134,400	3
Ismailiya Bridge	105,200	119,500	2
Srabuiom Bridge	104,200	118,500	1
Qantara Tunnel	209,200	227,000	5
Ferdan Tunnel	209,800	227,700	6
Ismailiya Tunnel	220,600	242,400	8
Srabuiom Tunnel	217,800	239,800	2

Table 7.2.1 Comparison of Financial Cost and Prioritiy Rating

Note: Maintenance cost is not included

Ref.: Appendix Table 7.2.1 Yearly allocation of construction cost

(2) Result of Discounted Cost for Project Life to Market Price

1

Table 7.2.2 shows cost comparison of the different alternatives. Cost comparison was conducted up till year 2027. The average long term interest rate of 14% was used for the discount rate to obtain the present value. The left half of the table shows the market price composition, and right half the discounted present value composition.

Table 7.2.3 shows the summary of the discounted the present value of Table 7.2.2 for comparison. The least cost was found to be US\$ 61.58 million for Srabuiom Bridge (4% vertical grade) and the highest cost US\$ 133.40 million for Ismailiya Tunnel (3.3% vertical grade).

10 Nore: --- 7.

(A. Janes,, & Vertical Grado) (a) (a) (b) (a) (a) </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>																	_																					
K. Vertical Grado. Construction and Marcance Cores. Discounted Construction and Marcance Cores. Discounted Construction and Marcance Cores. 0.001110 0.				EO CO	°								452	397	348	305	268	235	206	181	158	139	122	107	94	82	72	33	59	4	43	37	R	29	33	52	902	
Af Vertical Grado International function and functionand funct	8	s		Srabi		က်	26.	25.	33	20	5																										611	
Af Vertical Grado International function and functionand funct		Cost		<u>, 1 ; 1</u>	õ	395	802	3	060	106	869	568	498	437	383	336	295	259	227	199	175	153	134	118	103	6	8	2	61	4	47	41	36	32	28	24	03	
(M. Vertical Grade) (Init: Construction and Maintenance Costs) Discounted Construction and Maintenance (Init: Service) Discountenance (Init: Service) Discountenance (Initi: Service) Discountenancenance (Init: Service)	US1	1		Sma									•					•••	•••																			
Aff Vertical Grado Instruction Discounted Construction and Main tennere Costs Discount of Tentruction Discounted Construction and Main tennere Costs Discounted Construction and Main tennere Costs Discount of tentral formation Discount of Costs Discount of Construction and Main tennere Costs Discount of tentral formation Discount of Costs Discount of Construction and Main tennere Costs Discount of tentral formation Discount of Costs Discount of Construction and Main tennere Costs Discount of tentral formation Discount of Costs Discount of Construction and Main tennere Costs Costs <thcosts< th=""> Costs Costs</thcosts<>		enan	Ē	Ę	ō	29	6	44	82	72	62	53	64	01	23	13	75	4	21	86	63	43	25	2	96	85	74	65	57	S	44	39	<u>84</u>	30	26	33	561	
4k Vertical Grade) Discounted Construction and Maintemance Costs Discounted Construction and Maintemance Costs 0	nit	inte		erda		3	25, 4	24.8	53 53	30,0		4)	Ţ.	s.	63	(r) :	CN.	11	N	F-4		-1	-1	***							•							
& Vartical Grade) Discounted Construction Discount of Con	5		Ì	raiF	0							28	61	05	55	П	73	Q.	្អ	2	62	42	24	60	96	87	74	ŝ	24	ß	44	38	34	59	26	n	100	
df Vertical Grade Discounted Construction 0.mitre Function Discounted Construction Discounted Construction 0.mitre Function Ender Discounted Construction 0.mitre Function Ender Discounted Construction 0.mitre Function Ender Discounted Construction 0.mitde Discounted Construction Discounted Construction 0.mitde Discounted Discounted <thdiscounted< th=""></thdiscounted<>		an		uant								S	4	~ !"	c,	ę	~	(4	2	-	÷.	÷		Ā	-			-	-	-							•	
4% Vartical Grade) 1% Vartical Grade) Discontration and Maintenance Costs Discontration and Maintenance Costs 0mtrat Fordan Temail 15;rabuin opartar 0 877 0 100 <td< td=""><td></td><td>tion</td><td> </td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>57</td><td>54</td><td>51</td><td>18</td><td>16</td><td>5</td><td>2</td><td></td><td>32</td><td>Ø</td><td>2</td><td>õ</td><td>10</td><td>ŝ</td><td>4</td><td>Ŧ</td><td><u></u></td><td><u>е</u></td><td>6</td><td>8</td><td>2</td><td>2</td><td>2</td><td>- 4</td><td>-</td><td>2</td></td<>		tion		0	0							57	54	51	18	16	5	2		32	Ø	2	õ	10	ŝ	4	Ŧ	<u></u>	<u>е</u>	6	8	2	2	2	- 4	-	2	
4% Vertical Grade) 0		ruci		abu		1,6	.6, <u>8</u>	35 	3	് പ്		•••		••			È.			Ň				~,						• -	••						1.5	
4% Vertical Grade) 0		onst		1 Sr	ō							ō,	2	9	22	6	б.	ى رى	9	~	0	5	ŝ		00	9	4	2	H	<u>o</u>	6	7	9	9	S.	4		
4% Vertical Grade) ($\frac{1}{10}$ Vertical Grade) Construction and Maintenance Costs Construction and Maintenance Costs Discount Discount Construction and Maintenance Costs Construction and Maintenance Costs Construction and Maintenance Costs Discount Discount Discount Discount Construction and Maintenance Costs Const			18.	1 1211							1	0,	ŝ		Ű	ц,	-	v	Ś	ŝ		1.4	•4	(~	-	-	-4	-1	F-4	ω	C1						2. 81	
4f. Vartical Grade) Discont Discont 0anstruction and Maintenance Costs 0 0.877 0.877 0 0		inte	Brie								ō,	9	4	4	4	2	~	4	ŝ	0	6	ø	3	÷-4	~	S S	<u>റ</u>	2	0	5	00	5	9	S	<u>م</u>			
4% Vartical Grade) 4% Vartical Grade) Construction and Maintenance Costs	Ī	SCOL		rdan		1.81	9,08	4,41	0, 19	3, 22	2	თ	ŝ	r-	မ	ŝ		4	с) ()	31 S	2	0	61	~	H	-1	,	rei	rin .	Ø	0						13	
4% Vertical Grade) (a) V_{ert} (c) and Maintenance Costs Omstruction and Maintenance Costs Construction and Maintenance Costs 0 <th cols<="" td=""><td></td><td>á</td><td></td><td><u> </u></td><td>ō</td><td></td><td></td><td></td><td></td><td>··</td><td>~</td><td>ന</td><td><u> </u></td><td>"</td><td>ö</td><td>8</td><td>***</td><td></td><td></td><td></td><td>~</td><td></td><td></td><td>•</td><td></td><td></td><td>~</td><td></td><td>~</td><td>10</td><td></td><td>~</td><td></td><td>10</td><td></td><td></td><td>1 1</td></th>	<td></td> <td>á</td> <td></td> <td><u> </u></td> <td>ō</td> <td></td> <td></td> <td></td> <td></td> <td>··</td> <td>~</td> <td>ന</td> <td><u> </u></td> <td>"</td> <td>ö</td> <td>8</td> <td>***</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>~</td> <td></td> <td>~</td> <td>10</td> <td></td> <td>~</td> <td></td> <td>10</td> <td></td> <td></td> <td>1 1</td>		á		<u> </u>	ō					··	~	ന	<u> </u>	"	ö	8	***				~			•			~		~	10		~		10			1 1
4% Vertical Grade) 4% Vertical Grade) 0 <				antr		. 89	. 99	5.27	ŝ	. 37	ä	õý	ř	Ö	õ	ທີ	 1-	4	õ	ä	έN	പ്	ŝ	ö	7	Ä	H	i i	Ä	õ	ត	• -	Ť		7	7		
4% Vertical Grade) (Construction and Maintemance Costs Construction and Maintemance Costs Discretion and Maintemance Costs Construction and Maintemance Costs Discretion and Maintemance Costs Construction and Maintemance Costs Discretion and Maintemance Costs Construction and Maintemance Co			L,) S	-						~			~		~	01	~	~	~							<u>_</u>		<u> </u>		~			-			13	
4% Vertical Grade) 4% Vertical Grade) Construction and Maintemance Costs Cost of and Cost of an anol of a cost of a cost of			coun		. 87	. 76	. 675	. 59	51	1.456	.40	. 35]	. 30	.27(23	200	18	16	140	12	õ.	60	. 08															
4% Vertical Grade) 4% Vertical Grade) Bridge Tunnel Tunnel Bridge Bridge Tunnel 0antra Ferdan ImmailiStabuio 0antra Ferdan Ismaili 0antra Ferdan Ismail 1 1 2 0 0 0 0 0 0 0 2 2 1 5 2 1 4 3 3 3 2 6 2 3 3 5 5 3<			Dis	<u>ج</u> ما			<u> </u>		<u>.</u>	<u>_</u> ;; .			21	.:	<u></u>	<u>i</u>		بر 1		<u>ii</u>	- A							-11		÷.						<u> (</u>		
4% Vartical Grade) Amiltomatic Costs Bridge Tunnel Bridge Tunnel Bridge Tunnel Bridge Tunnel Bridge Tunnel Construction and Maintemance Costs Tunnel Bridge Tunnel Bridge Tunnel Construction and Maintemance Costs Tunnel Bridge Tunnel Construction Tunnel Construction Total Cost Total Cost Total Cost Total Cost				buid	ľ	. 356	, 20	, 560	, 738	, 739	202	, 470	. 470	.470	, 470	, 470	, 470	.470	,470	.470	. 470	, 470	, 470	, 470	, 470	, 470	.470	, 470	.470	,470	. 470	, 470	,470	470	. 470	470		
4% Vertical Grade) Amount Amount Amount Amount Construction and Maintemance Costs Construction and Maintemance Costs Construction Bridge Tunnel Bridge Tunnel Cantra Ferdan Ismaili Srabuio Gantra Ferdan Ismaili Stabuio A 196 2,468 2,356 2104 2,470 41,340 4,196 4,33 2,468 2,355 2,104 2,3470 41,340 4,196 4,33 2,464 7,068 6,312 6,522 43,932 44,058 46,1 2,555 273 283 78 1,500 1,510 1,1 2555 273 283 78 1,500 1,510 1,1 2555 273 283 78 1,500 1,510 1,1 2555 273 283 78 1,500 1,510 1,1 2555 273 283 78 1,500 1,510 1,1 2555 273 283 <				Sr	~																н 	•										*** 	·		r-t	• :	254	
4% Vertical Grade) A Vertical Grade) Bridge Construction and Maintemance Costs Bridge Construction and Maintemance Costs Bridge Construction and Maintemance Costs Construction and Maintemance Costs 2 468 2 413 2 2 468 2 104 2 104 2 104 2 104 2 2008 37,764 255 2.104 2.116 37,764 255 2.116 2.116 37,764 255 2.273 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 2.213 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspa="2" td=""><td></td><td></td><td></td><td>ail</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>. 620</td><td>. 620</td><td>. 620</td><td>, 620</td><td>. 620</td><td>. 620</td><td>, 620</td><td>. 620</td><td>, 620</td><td>, 620</td><td>. 620</td><td>. 620</td><td>. 620</td><td>, 620</td><td>. 620</td><td>. 620</td><td>620</td><td>, 620</td><td>, 620</td><td>620</td><td>, 620</td><td>. 620</td><td>. 620</td><td>. 620</td><td>2</td></th>	<td></td> <td></td> <td></td> <td>ail</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 620</td> <td>. 620</td> <td>. 620</td> <td>, 620</td> <td>. 620</td> <td>. 620</td> <td>, 620</td> <td>. 620</td> <td>, 620</td> <td>, 620</td> <td>. 620</td> <td>. 620</td> <td>. 620</td> <td>, 620</td> <td>. 620</td> <td>. 620</td> <td>620</td> <td>, 620</td> <td>, 620</td> <td>620</td> <td>, 620</td> <td>. 620</td> <td>. 620</td> <td>. 620</td> <td>2</td>				ail									. 620	. 620	. 620	, 620	. 620	. 620	, 620	. 620	, 620	, 620	. 620	. 620	. 620	, 620	. 620	. 620	620	, 620	, 620	620	, 620	. 620	. 620	. 620	2
4% Vertical Grade) Construction and Maintemance (Construction and Maintemance (Construction and Maintemance (Second 2, 266 37, 656 37, 555 273 255 273 283 78 1, 500 1, 255 273 283 78 1, 500 1, 255 273 283 78 1, 500 1, 255 273 283 78 1, 500 1, 255 273 283 78 1, 500 1, 255 273 283 778 1, 500 1, 255 273 283 2, 378 1, 500 1, 255 273 273 283 2, 378 1, 500 1, 255 273 273 283 2, 378 1, 500 1, 255 273 273 283 2, 378 1, 500 1, 255 273 273 283 2, 378 1, 500 1, 200 1, 255 273 273 283 2, 378 1, 500 1, 255 273 273 283 2, 378 1, 500 1, 200 1, 205 255 273 283 2, 378 1, 500 1, 200 1, 200 1, 205 255 273 283 2, 378 1, 500 1, 200 1, 205 255 273 283 2, 378 1, 500 1, 200 1, 205 255 273 283 2, 378 1, 500 1, 200 1, 205 255 273 283 2, 78 1, 500 1, 200 1, 205 255 273 273 283 2, 78 1, 500 1, 2		S.	nel	I.S.I									•••		•••	₽ -4					++		•t					~ ,	- ∢	, .				،			261	
4% Vertical Grade) Construction and Maintemat Bridge Aintemat Construction and Maintemat Bridge 0 <th0< th=""> 0<</th0<>		Cost	Tun	dan	°								510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	510	550	
4% Vertical Grade) Construction and Maintema Bridge Construction and Maintema 0 <th0< th=""> 0 <th0< th=""> <t< td=""><td></td><td>tce</td><td></td><td>Fer</td><td></td><td>4</td><td>37</td><td>41</td><td>44</td><td>44,</td><td>5</td><td>нÎ Г</td><td>ц,</td><td>нĨ</td><td></td><td>÷,</td><td>-i</td><td>i</td><td></td><td></td><td>r.</td><td></td><td>٦,</td><td>H</td><td></td><td>-i</td><td>بہ</td><td>Ļ</td><td>-î</td><td></td><td>4</td><td>i</td><td>ri.</td><td>г.î</td><td></td><td>цц.</td><td>247,</td></t<></th0<></th0<>		tce		Fer		4	37	41	44	44,	5	нÎ Г	ц,	нĨ		÷,	-i	i			r.		٦,	H		-i	ب ہ	Ļ	-î		4	i	ri.	г.î		цц.	247,	
4% Vertical Grade) Construction and Maint Bridge Bridge 0 0 0 0 2,468 2,356 2,104 2,084 4,1 2,468 2,356 2,104 2,084 4,1 2,468 2,356 2,104 2,084 4,1 2,468 2,356 2,104 2,084 4,1 2,55 272 25,248 25,008 37,6 40,722 38,874 34,716 34,36 43,7 255 2773 255,243 57,6 1,1 255 2773 283 78 1,1 255 2773 283 78 1,1 255 2773 283 78 1,1 255 2773 283 78 1,1 2555 2773 283 78 1,1 2555 2773 283 78 1,1 2555 2773 283 78 1,2		emai		29	õ	50	56	340	32	32	556	Ş	S	8 S	S	00	8	00	00	8	8	00	ö	00	8	8	8	8	8	8	Ş	8	8	8	8	8		
4% Vertical Grade) Eridge 0 0 0 0 0 0 2,468 2,356 2,104 2,084 25,084 43,190 41,230 36,820 36,470 0 </td <td>ĺ</td> <td>aint</td> <td></td> <td>Qant</td> <td></td> <td>ᆆ</td> <td>с г</td> <td>ය - 7</td> <td></td> <td>5</td>	ĺ	aint		Qant																ᆆ	с г	ය - 7															5	
4% Vertical Grad 4% Vertical Grad Constr Bridd Bridd <				k	0	184	08	10	86	523	18	78	78	78	78	78	78	78	78	130	78	78	30	18	20	28	00 1	<u>3</u>	<u>0</u>	23	18	78	78	78	78	78	182	
4% Vertical Grad 4% Vertical Grad Constr Bridd Bridd <				tabl		ં	25.0	36, 4	34, 3	6										ર્લ				~													12.9	
4% Vertical Grad 4% Vertical Grad Constr Bridd Bridd <		ctic		11	õ	24	48	8	16	2	8	83	83	S	8	83	8	ŝ	8	8	83	89	83	83	ŝ	8	8	ŝ	ន្ល	8	S	83	83	8	3	ន	481	
4% Vertical 9antra Ferdar 0 0 1 0 1 404 1 404 255 21 255 21 255 21 255 21 255 21 255 27 255 27 255 27 255 27 255 27 255 27 255 27 255 27 255 27 255 27 255 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 2555 27 <	ade)	stru	idgo	sma i		с; Г	25, 2	36, 8	34. 7		~	~	ര	0	63	01	თ	2	~1	2. 2	0	0	0	ය	2	0	2	01	∾ :	ດ ເຈົ	g	64	୍ୟ	2	¢,	0	19, 2	
4% Vertic 0 0 1 0 1 190 1 404 7 464 7 404 7 404 7 404 7 404 7 255 255 255 255 255 255 255 255 255 255 255 255 255 2555 255 2555 255 2555 255 2555 255 2555 255 2555 255 2555 255 2555 255 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 255	ບ ມ	S	Br	1	- 1 84 1 44					68	2	2	33	33	3	2	23	ę	ទ	ñ	ŝ	23	3	33	13	3	3	ŝ	2	2	2	3	33	23	ñ	r K	1.88	
4 4 4 4 4 4 4 4 4 4 4 4 4 4	ica			erda		2,3	28, 2	1.2	8,85	40	2	61	0	0	Ċ1	¢1	σ,	2	ί)	in N	~3	61	61	ġ.	č¥ ·	č1	64	ČN	č4	10 10	ò	Ċ2	Ċ1	Ś	Ċ1	è,	1.5	
4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vert										ŝ	ភ្ល	S	52	22	5	22	ŝ	5	ເກຼ	5 S	Ŋ	ñ	ŝ	ŝ	N N	ι <u>ς</u>	يم م	n N	ι <u>ς</u>	ເດ	S	S	ŝ	5	ي ي	21	
				antr		2.4	9.6	5 1 1	0.7	7, 4(Ň	ស៊	~	ಸ	~	ດ່	<u>б</u>	~	ដ	2° 2	સં	Ċį.	Ň	ö	~	~	~	2			6	4	3	5	2	3	6.7	
(+ 1.an 7 7 22 2 195 20 2 195 20 3 195 20 1 120 20 1 120 20 1 120 20 1 120 20 1 1200 100 1 1200 100 1 1200 100 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 1000 200 1 200 200 1 200 200 1 200 200 1 200 <t< td=""><td>y.</td><td></td><td>닖</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2</td><td>ž</td><td>5 N</td><td>œ</td><td>-</td><td>õ</td><td><u>ö</u></td><td>0</td><td></td><td>10</td><td>n</td><td>4</td><td>n i</td><td>9</td><td>N. 1</td><td><u>00</u> ·</td><td></td><td></td><td></td><td><u>6</u>3</td><td><u>6</u></td><td>4</td><td>in.</td><td>9</td><td><u>.</u></td><td>113</td></t<>	y.		닖								2	2	ž	5 N	œ	-	õ	<u>ö</u>	0		10	n	4	n i	9	N. 1	<u>00</u> ·				<u>6</u> 3	<u>6</u>	4	in.	9	<u>.</u>	113	
4	Lane		Yes								200	3200	200	200	200	200	200	<u>20</u>	1201	<u>120</u>	201	201	201	201	201	201	120 120	201	202	202	202	202	202	202	202	202	ota	
	- 1					• •	~)	4	(D	φ 	.~			3	H	4	<u></u>	2	ង	92 	드 	27 	5	N N	3	8	<u>8</u>	či,	12 12 12	%	5	²⁸	23	8	8	8		

7-6

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

		Unit:	1,000US\$
Alternatives	Approxi	mate Cost	Priorities
	4% V.Grade	3.3% V.Grade	
Qantra Bridge	73,344	82,386	4
Ferdan Bridge	70,132	79,816	3
Ismailiya Bridge	62,814	71,155	2
Srabuiom Bridge	61,585	69,927	1
Qantara Tunnel	115,409	124,878	5
Ferdan Tunnel	115,756	125,278	6
Ismailiya Tunnel	121,803	133,401	8
Srabuiom Tunnel	119,902	131,605	7

Table 7.2.3	Comparison of Total Discounted Construction & Maintenance Costs
	for Project Life and Priority Rating in Market Price

Ref.: Appendix Table 7.2.2 maintenace and repairing unit cost of canal crossing facilities

Ref.: Appendix Table 7.3.3 Comparison of Discounted Present Value of Financial Cost of 3.3% V. Grade

(3) Conclusion

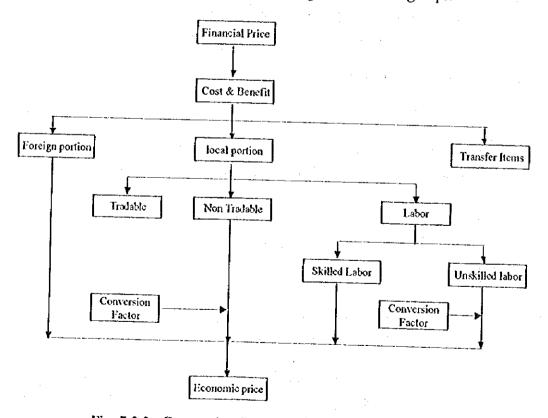
The least cost crossing facility over the Suez canal is Srabuiom Bridge. However the cost estimated reflects the market price, which is reasonable in the case when a private enterprise implements the project. When a government undertakes the project, it should be compared by the economic cost in which the affects on users (benefit) is considered. Thus low financial cost does not necessarily indicate the best priority rating.

7.2.2 Economic Cost Comparison

(1) Introduction

Comparison is made after an accurate evaluation of resources for different alternatives is expressed in economic values. Thus the financial cost arrived at in paragraph of 7.2.1 needs to be corrected to economic cost. The reason why correction need be made is summarized in Table 7.2.4. It makes comparison possible of the optimum use of national resources for the different alternatives.

Financial Evaluation		Economic Evaluation
Market Price	·····>	Economic Price
(1996 Price)	(Conversion)	(Shadow Price)
Ļ		Ļ
Financial Cost	·	Economic Cost
Financial Revenue		Economic Benefit


Fig. 7.2.1 Relationship Between Financial Cost and Economic Cost

7-7

Items	Price	Contents
1) Deletion of cost no	Market Price Distortion:	Miscellancous costs are not related to the project
related to projec	•	If COULDED COULD DISTOR SUCH AS IS A SUCH AS IN THE
	Correction by Economic	To be deleted because not related to competitive
D) Faralan Mate 1.1	Price:	Hillafkel concomic activities
2) Foreign Materials	Market Price Distortion:	Official foreign exchange rate and tariffs are distorted
	Correction by Economic	To use US\$ of international price determined by
210	Price:	International connectitive market
3) Domestic materials	Market Price Distortion:	Price is distorted by regional difference, monopoly
		and by partial competition
	Correction by Economic	To remove influence of tax imposed on export to
() ah a	rnce:	IDake noce closer to international free services
4) Labors	Market Price Distortion:	Wage is distorted by minimum wage low, number of
		100less, and labor union
	Correction by Economic	To apply shadow wage rate to unskilled labors to
5) Right of Way		IBake the wage closer to real mature of most in
oy night of way	warket Frice Distortion:	Land price is distorted by speculation, social
		dignifies and by long torm tone
	Confection by Economic	To calculate marginal productivity in order to make
6) Capital Market	Phice:	IBC DEICE CLOSEE IN Frag compatition
of copilar market	marker Price Distortion:	Unsuitability of interest rate and financing a certain
		enterprise with good condition limits selection of
	Correction by Francis	optimum capital investment.
	Concentration by Economic	To allocate optimum investment resources by
	rnce:	applying cost - benefit analysis to the capital
<u> </u>	<u>[</u>	opportunity cost.

Table 7.2.4 Items and Contents for Conversion to Economic Value of Market Price

Actual work for conversion is conduct according to the following steps.

E

7.8

In general, all the costs and benefits are divided into three categories; tradable goods, non-tradable goods and labor. Labor is further divided into skilled and unskilled labor. The cost of skilled labor is obtained by multiplying its market price by the Conversion Factor for Consumption (CFC), and the cost of unskilled labor is calculated by multiplying its market price by a rate of the Shadow Wage Rate and the CFC. Tradable goods are expressed by the CIF value for imports and by the FOB forexports. Asfornon-tradable goods, the economic price is obtained by multiplying their market price by the Standard Conversion Factor (SCF).

(2) Correction to Economic Price

Table 7.2.5 shows the corrected economic price of the financial cost. For each alternative the construction cost is divided into five cost items. Then each item is divided into the following six categories. 1) Foreign portion, 2) local tradable goods, 3) non tradable goods, 4) skilled labor, 5) unskilled labor, and 6) tax composition ratio. The financial costs are converted by adopting the following assumptions:

- 1) The tax portion is 5%, which is deducted from the financial cost to give the correct to economic price.
- For the foreign and local tradable goods portions, the financial and economic cost is the same.
- 3) For the local non tradable goods, financial cost is corrected to economic cost by deducting 3 %, ie the market price SCF= 0.97.
- 4) For the skilled labor the market price is multiplied by the CFC=0.98 to correct to international price.
- 5) For the unskilled labor the market price is multiplied by the SWR=0.27 to obtain the international value.

Alternatives	4% Verti	cal Grade	3.3%Vertical Grade					
	Financial	Economic	Financial	Economic				
Qantra Bridge	123.4	105.6	138.9	118.9				
Ferdan Bridge	117.8	100.8	134.4	115.0				
Ismailiya Bridge	105.2	89. 9	119.5	102.2				
Srabuiom Bridge	104.2	89.3	118.5	101.6				
Qantara Tunnel	209.2	166.3	227.0	180.5				
Ferdan Tunnel	209.8	166.8	227.9	181.0				
Ismailiya Tunnel	220.6	175.1	242.4	192.5				
Srabuiom Tunnel	217.8	173.0	239.8	190.5				

Table 7.2.6	Comparison between	Financial and Economic Cost of Construction	
		Unit: million LISS	

Ref. Appendix Table 7 2.4 Conversion to Economic Cost from Financial Cost (3.3 % Vertical Grade)

Table 7.2.5	Conversion to Economic Cost from Financial Cost

<u>4 lanes;</u>		cal Grad	e <u>, Tunnel</u>					Unit: U	
	nvestment		Tree deb la		Portion		T		Investmen
ternativ		Portion				Unskilled			
&	n Market		Goods	Goods	Labor	Labor	<u>(Tax)</u>	Factor	in Economi
Work	Prices	1.000	1.000	0.97	0, 98	0, 27	0		Prices
lantara									
funsel &		48%	4%					78%	
Access Re	10, 680	16%						69%	
Indirect	32, 600	80%	3%	3%	5%	4%	5%		28, 32
Engineer	13,100	87%			8%		5%	90%	11,769
Land Acqu	300			100%				97%	29
Total	209, 200								166, 298
Ferdan T									
Tunnel &	152, 520	48%	4%	3%	24%	16%	5%	78%	118, 58
Access Re								69%	
								87%	
Indirect			370	رد ال					
Engineeri		87%		1.000	8%		5%	90%	
Land Acqu				100%				97%	
Total	209,800				·····				166, 750
Ismailiy									1
Tonnel &			4%					78%	
Access Re	14,068					28%	5%	69%	
Indirect,	34,400			3%				87%	
Engineer	13,800	87%			8%		5%	90%	
Land Acqu				100%			**	97%	
Total	220, 600								175, 120
Srabuion				1	······				1101121
Tunnel &		48%	4%	3%	9.42	16%	r ov	2.06	100 70
	157,932								1
Access Re							5%		1 · · · ·
Indirect				3%					L .
Engineer	13, 600	87%			8%		5%		
Land Acqu	100			100%	·			97%	
Total	217,800								172,998
Qantara	Bridge								
Main&Acc		73%	5%	3%	8%	6%	5%	85%	77,81
Access R									
Indirect									
Engineer	9, 500		10/0		8% 8%		5%		
Land Acqu				100%			070 070	97%	
				100%		48) +4 (gada a +) = 244) 74 (27 () -			
Total	123, 400	·		 				· · · 86%	105, 57
Ferdan B						·	نبرس		
Main&Acco								85%	
Access R								73%	
Indirect,	18, 100		40%	18%	5%	4%		86%	
Engineeri		87%			8%		5%		
Land Acqu	400			100%				97%	38
Total	117,800			I				86%	
Ismailly									[
Main&Acc		73%	5%	3%	8%	6%	5%	85%	65, 42
Access Re	•								
Indirect/								86%	
Engineer	8,100			10/0	8%		5% 5%		
	400	013	ł	100%			5 %		
Land Acg				100%				97%	
Total	105, 200		ļ					86%	89,90
Srabuion									
Main&Acc							5%	85%	
Access Ro	1,917	26%	9%	4%	34%	22%	5%	73%	
Indirect,	16,000								
Engineer	8,000				8%		5%		
Land Acqu				100%			- 14	97%	9
Total	104, 200		*******	t				86%	

7-10

٠.

. . . .

The economic cost is lower than the financial cost in all alternatives. The maintenance and repair cost is multiplied by a shadow rate of 0.84 to correct to economic cost. Economic costs for Qantara Tunnel and Ferdan Tunnel are found to be about the same.

(3) Results of Discounted Cost Comparison for Project Life in terms of Economic Price

Table 7.2.7 shows comparison of construction and maintenance costs for the project life of the alternatives after correcting to economic price in the case of 4% vertical grade. The left hand culumns indicate the total economic cost for 31 years. The right, the total of discounted present value discounted at 12% of capital opportunity cost.

Table 7.2.8 shows priority ratings of each alternative. The alternatives which uses the least national resources are Ismailiya and Srabuiom bridges. Financial and economic costs analyses give the same priority rating. Therefore, the next step is to compare the economic costs and benefits.

		Unit:	million US <mark>\$</mark>
Alternatives	Cost in Ec	onomic Price	Priority
	4% V.Grade	3.3% V.Grade	Rating
Qantra Bridge	67.7	76.0	4
Ferdan Bridge	64.7	73.6	3
Ismailiya Bridge	57.9	65.7	2
Srabuiom Bridge	56.8	64.6	1
Qantara Tunnel	100.6	108.8	5
Ferdan Tunnel	100.9	109.2	6
Ismailiya Tunnel	106.1	116.1	8
Srabuiom Tunnel	104.4	114.5	7

Table 7.2.8Comparison of Total Construction & Maintenance Costsfor Project Life and Priority Rating in Economic Price

Ľ

Ref. Appendix Table 7.2.5 Yearly Allocation of construction Cost Ref. Appendix Table 7.2.6 Comparison of Discounted Value of Economic Costs (3.3% vertical Grade)

	ſ		–	Ę	C	00		30	22	14	00	86	66	43	<u> 86</u>	10	~	8	6	26	10	80	5	£3	ŝ	114	8	91	5	3	<u> </u>	88	33	9	4	1-	8	
	8			Srabui		0	i ç	- C 5 C	5 4 1 7 1 7	20, 6	18,4	14,0	4	1	ເຕີ	64	- eg	0	101	N N	6	ji		μ.	F.	-4	ň	•		•	•							
	U001 \$SU	Costs	le l	mailie	Ö	2. 792	100 100 100 100		200	0, 867	18, 631	4, 259	550	491	438	391	349	312	278	249	222	198	177	158	141	126	112	100	06	80	11	64	12	5	43	4	36	
			Tunn	dan Is	ö								512	457	408	365	326	291	260	232	207	185	165	147	131	117	105	56	84	102	67	59	53	47	42	38	34	
	Unit	Maintenance		aiFer		ہے۔ 	i	i .		ກົ		<u>ස</u> ්																					•					
	- [and Ma		Cantar		2.65	21 30		41, 10	12° 51	17, 69	13, 54	ວິ ເດ	40	4 04	99 99	32:	28č 7	25	23(20	3	16	14(51	117	ò	6	တ်	-	ъ В	53	ទី	4	42	Ř	с З	
	ļ	S		abui.om(1.422	15, 238		140.0	0. (02)	2, 712	29	26	23	21	19	17	150	53	12	326	6	00	00	68	9	5 I	ີດ	4	4	105	31	ŝ	2	8	07	61	
St		nstructi		i li Sra	;;; 0							107	96	86	76	68	61	[89]	84	43	354	35	31	28	S6	22	20	17	91	14	14	39	10	6	ŝ	~	ç	016 EC
nc Cost	- [-	cd Con:	Bridge	i I sma		ب	2	ç o	ก็จ	<u>ۇ</u> (⊳ î																											1 1
rconomic		Ulscounte		erdan)		17.21:					10	5	ర	2	ð	ដ	181	4	17	352	8	g	5	83	51	6	17	15	[] []	113	38	01	თ	ŝ	~	Q	61 717
WILL E	d	ĩ		ntaraf	0	. 683	035	283	1001	202	, 209 20	197	63	17	69	62	53	184	44	66	350	31	28	52 72	83	50	20	9	4	2	113	8000	<u></u> б	ŝ	1	0	Ģ	6781 I
A ante A			ount	00% Qan	893		712 18.					152	404	361	322	287	257	229	205	83	63	146	[30	16	64	083	22	410	90	0.0	53	147	142	37	33	30	27	E7
		-	* 3	00 12.	0	0	0	C		,	\sim	⊃. ∕	Ö	O,	0	0	0	0	Ö	o	o	0	0	0	0	୍	;	5	5 (•	ਂ	ਂ	ਂ	0	Ö	Ö	o	
TISCOULE L'ESCIL				Srabui			31, 140				50, 33U	51, 14 	1, 23	1. 23	1, 23	1, 23	1, 23,	1, 23	1, 23	1, 23	1, 23	1, 23	1, 23	1, 23	- 23	1, 235	1, 23	1, 23		1, 23;	1, 239	1, 23;	1, 235	1, 235	1, 236	1, 235	1, 235	203 869
מזוכר				maili			1, 522		8 77 N		50, 10) 102 - 10 102 - 10	1, 522	1,361	1, 361	1, 361	1, 361	1, 361	1, 361	1, 361	l, 361	1, 361	l, 361	1, 361	L, 361	1, 361	1,361 201	l l l l l l l l l l l l l l l l l l l	102	102	102	, 361	. 361	, 361	, 361	. 361	, 361	, 361	140
		COSTS	unne	dan i I s	ö	335	016 3	351 3	610		יים 1 איי 1 איי	0 0	202	268	208	268	268	268	208	268	268	268	268	808	So	2020	000	007	000		202	88		68	[88]	268	89	466:209
5	18	a DCe		Ъ							- - - - - - - - - - - - - - - - - - -	, ,	-		÷.	÷	Ĥ			- -		î	- 1 -	, -	- î .		÷.	- î -	-î -	-î -	- -	-î -	- ì	Ļ.	÷	Ĥ	-f	ő
UCAN DAMA	i unnel /	Naintena		Qantar		3, 32	29, 93	33.26	34,92	20 20 20 20 20 20 20 20 20 20 20 20 20 2	04, 46 00 00	22, 30	07 ·	1, 260	1, 26	1, 20	1, 26	1, 260	1, 26	1, 26	I, 26	1, 26(1, 26(1, 26(1, 26(1, 250	70 V V	1, 20V	1, 200	1, 207	1, 20(1, 26(1, 260	1, 260	1, 260	1, 260	1, 260	97 7981
	and and	ana w		i IsmailiSrabuidQantara	0	1, 784	21, 408	1.221	9.437	202	0, 000	B	00	3	n D	ဂို	62	653	63	65	l, 997	ŝ	651	020	00 00 00 00	0 0	00	3 4	2 U		1, 527	653	20	60	65	65	20	521 197.
	bridge stige	CONSETUCTION	, , ,	ailiSr	0	798	577	467	669	202	1000		107	237	231	127	237	825	237	237	169	237	237	237	000	237		100				072	22	237	237	237	2	697: 96.
	Grade.		102	: I sm	0	ີ. ເຄ	2,12	ų	29.	ริเก เ	5									•	ณ์									ç	\$ 					516		343101.6
٩Ľ	-			erdan		0	24, 16	35, 26	33. 25	80.90	5	1 6	72	677	28	677		8	27	77	2, 16	77		ZZ Z	7 6 0	222	10	3 6	36	9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	0 7 7	218		77	229	22	22	112.34
Lasterian MA	1224			<u>Qantara;Ferdan</u>	ö	112	, 338 ,	3, 951	L. 340	335	216	1		512	412	714	212	802	214	214	2, 146	2.14	714	412	200	614 014	717 717	1 1 0	110		051	202	214	214	2 4	714	412	768
	\mathbf{F}	1		-			98 25,					200	2.0	410	200		20	200	190		2 1102		2	÷ 1	0 4	1	e e		200	200		76	3	42	0.0	01		1116.
2000 7)	1 1916	~	Icar	- 1																						0112 17 012 17										9202 1		Total
- 2	1_		·	1																					46		• •	- C			ч с 			1 0	20	~~ (•	

Table 7.2.7 Comparison of Discounted Present Value with Economic Cost

.

7-12

潘

. The Feasibility Study on A Bridge over Northern Part of the Suez Canal

7.2.3. Benefits

(P)

 \mathbf{I}

(1) Introduction

Table 7.2.9	Construction	Effects of	Canal	Crossing Facility
-------------	--------------	------------	-------	-------------------

Items	Contents
Forward effects	Increase of demand for construction materials and equipment, progress of engineering, profits of project-related contractors.
Saving effects of direct users	
Capital saving effects	Saving of ferries, and saving of number of trucks and buses for effective turnovers.
Avoiding loss effects	Decrease of traffic accidents, and decrease of spoiling vegetables and fruits
Development enhancement effects	Development of neighboring areas, enhancement of sightsceing development, enhancement of mining development, effective use of natural resources, and expansion of local and international economic market zones.
Socio-economic effects	Enhancement of immigrants, increase of employment opportunitics, uniting local regions, correction of regional differences, promoting international fellowship, and expansion of peace and safety.
Minus effects	(In the case of a bridge) Falling of dangerous things, and limitation on large size vessels for pass.
Note: 1)	Not included here because of the lack of Imput/Ooutput table.
2)	Included 100 % in the comparison.
3)	Benefits of Saving cost of ferries is included 100%. Increase effects of turnover of buses and trucks is included as the driving time cost saving.

- Not included here because the amount is small. It will be considered in the Feasibility Study.
- 5) Included in the calculation for traffic volume calculation.
- 6) Included in step 7, evaluation and comparison
- Falling of dangerous goods is not included. Limitation of large sized vessels is included 100%.

(2) Summary of Benefits Calculation

The benefits, from the effects of the project, can be calculated using the following three factors:

Saving of running costs

- Running costs per vehicle per kilometer without the project, minus running costs with the project, equals to amount saved per vehicle per kilometer. Running cost per vehicle per kilometer is calculated in "Traffic Assignment " of Chapter 4, Traffic Demand Projection.

- Saving of running costs per vehicle per kilometer multiplied by thevehicle operating cost per kilometer equals the saving of running costs.

Saving of running time

- Running time without the project, minus running time with the project, equals the saving of running time. This is also calculated in "Traffic Assignment " of Chapter 4.
- Saving of running time, multiplied by the time value of vehicles, equals the benefits of time saving of vehicles. Saving of running time, multiplied by the time value of passengers, equals the benefits of time saving of passengers.

Saving benefits of capital costs of ferries

- Traffic volume of ferry users, multiplied by the waiting time without the project, minus traffic volume of ferry users, multiplied by the waiting time with the project, equals the saving in time of waiting for ferries.
- Saving of waiting time, multiplied by the time value of vehicles, equals the time saving of vehicles, and is equal to the capital cost saving of the ferries. Saving of waiting time, multiplied by the time value of passengers, equals the time saving of passengers, and is equal to the capital saving cost of the ferries.
- (3) Unit Cost Estimation

For estimation the unit cost benefit of the following three items were calculated; 1) unit cost of operating vehicle, 2) the value of vehicle unit cost, and 3) unit cost of passengers time value.

1) Estimation of Vehicle Operating Unit Cost

The Table 7.2.10 shows unit vehicle operating cost per km of base speed. These figures are calculated based upon Appendix 7.2.7. These tables are estimated using Egyptian national economic conditions in 1991.

Base speed is taken as: 70k/h for passenger cars, 60k/h for taxis, 50k/h for small buses, 45k/h for large buses, 50k/h for mini trucks, and 40k/h for heavy trucks.

Buses and trucks are calculated at weighted average according to vehicle types based upon the OD survey of the Canal crossing traffic.

The following unit cost is used for cost benefits calculation.

1	Passenger Car Peugeot		Pick-up-car	Medium Bus	Large Bus	Super Dx. Bus	Medi. Truck	Hvy. Truck	Semitrailer	T-Trailer	T-Trailer (30 Ton)	(25 Ton)
				C Segues/	least 1	WILCONDICION/			1 X X X X			والمتراكية والتركية والمراجعة
Basic Minancial Running Costs			¢	0000	c	-	Ċ	c	Ċ	0.1564	o	ö
Fuel Costs	0.000	0.000	5 c		i c		i d		Ö	0.0291	ġ	ö
Lubricant Costs	0.0450		d c		ć		.0	6	ó	0.1470	o	0
Tyre Costs	1000	0.00	; c	0.00.0	ð d	_	ō	Ö	o	0.0017	ö	Ċ
Maintenance opares costs Maintenance labor Costs	0.0073		0.0110	0.0548	0.0548		0.0438	0.0548	0.0548	0.0548	0.0548	0.0545
Denree ation Costs	0.0833			0.1870	ő		ŏ	0	ö	0.1512		ò
Total Costs/vehicle-km	0. 1913		Ö	0.3550	ó		ð	ö	ö	0 5402	0, 7225	0.3843
Rasic linancial Fixed Costs			-		c	.01	•	4.		ที่	4	1.
Capita, Costs Uebreciation Inter retain	0000		÷ 0		ię		i ei	6		16.	ន	с. С
Long THTE INTETOSE COSES	1.0000		n -		i r	5	1	ম		18	36	10
Chernese Lost	0000		ie		11.		8	č		ទ	25.	0
Posisterion Roal innerent)	0.1100		0		ö	0	0	o		്	o	ö
Revistration Fee (Insurance)	0.0400				0		00 1200	0.2200			0.1700	o' :
Fixed Costs, All	10.7760		ដ		ផ	5	20.	Ęį.		0	2	ġ
Factor	0, 3000		0		ö	°	0	0		ð	0	ō
Toral Costs/Vahicla-baur	3, 2328		12			66	35.	51.		42		11.4158
Contest Vahio Jarka	0,0462			0. 4571	Ö		8 ¹ 0. 5487	_	1. 1455		1. 3485	0.253
				4			0 6314	1 7005		1 5068	0.00	0.6420
Total Finencial Cost/Vehicle-Km	0. 2375	0.3530	0.4617	0.3121	1, 292	Ś	5					
										• •		
Fiel Costs	0.0774		ö	Ó	Ö	ö	ö	ö	ਂ	ð	0	0
Lubricant Costs	0.0086		Ó	0	Ċ	ö	ċ	0	0 (00	o' d	5 c
Tyre Costs	0. 0176		0	o'	oi i	٥.		6	50	5 c	5 c	3 c
Maintenance Spares Costs	0.0015		°.	0	ð	Ö	5.	50	ə c		Ś	s c
Maintenance Labor Costs	0, 0073	0.0091	0.0110	0.0548	0.0545	2 0, 0545	0,050	0 1797 1 0 1797	0, 1654	0, 1260	0. 1617	2420.0
Deprec at ion (2515					5 C		Ċ	c	C	0	°	0 :: :
1018 (0313/V8710, 1018)	1001 'A	. I		A								
Rasie Economic Fixed Costs												•
Capita_ Cost (Depreciation-time related)	•••	3.6777			2, 3325	5 7. 5000	1.8494	4 3.8500	3, 5462	2000	3.2498	0.9540
Opportunity Cost of Capital	0060 12			i.				ផ្ទ	ġe		j ri	
Overhend Cost	200		i⊊	3 o			5	5	121		25.	•
(Tew LOSES (Pauletvarion i licentes)	0000 0		0	. 0			o	0	¢		°	•
Nevistration 'Insurance'	0,000		o	o o			6	ó	ċ		o i	•••
Fixed Costs, All	12.3624	16.5165	1967	55			er. S	6¥ °	41.		4	~~~
Factor	0.3000			0								
[Total Costs/Yehicle-hour	3, 7087	1 2016						9 34 9488	8 33.475.		33. 2081	
Cost/Vehicle-km	0, 0530		0.		2 0.495		ie 0.496	9 0.873	7 0. 4365	0. 723		
							- 200			1 1300	0 I 640	C:X2 C
Total Economic Costs/Vehicle-km	0.2411	0.3761	0.4594	0.7056	6 1. 0244	4 2. 4421	0.8125	5	1.5407			1, 15X4

7.2.10 Unit Vehicle Operating Cost per Km by Base Sp

200

7-15

.

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

Table 7.2.11 Vehicle Running Cost by Vehicle Types (Economic price)

Passenger Car	Taxi	Bus	Truck
0.1881LE/km	0,1982LE/km	0.3677LE/km	0.600LE/km

Ref. Appendix Table 7.2.7 Data Sheet for V.O.C. Calculation.

2) Unit Cost of Running Time of Vehicles

This is shown in the Table 7.2.12, along with VOC estimation. Time value of vehicles is determined by costs which are not related to running distance; (1) depreciation, (2) interests, (3) overhead cost, and (4) crew cost.

Time cost by vehicles used for benefits and costs calculation is as follows.

 Table 7.2.12
 Time Unit Cost by Vehicle Types

Passenger Car	Taxi	Bus	Truck	
3.71LE/hr	11.56LE/hr	19.35LE/hr	30,52LE/hr	•

Waiting time of ferries is not calculated by vehicle types. Therefore, average time value per vehicle was calculated according to OD survey of the vehicle type composition at the point of river-crossing. Time value of a vehicle at crossing points is as Table 7.2.13.

Table 7.2.13 Unit Time Cost of Vehicles at Crossing Points

<u>,</u>					Unit: L	E / Vehicle /h
R.E. Esh	Qantara	Ferdan	No.6	Srabuiom	Shatt	A.H. Tunnet
18.308	13.808	30.026	11.962	17.7	31.049	20.387

Ref.: Appendix Table 7.2.8 Average Time Value by Vehicle Types by Crossing Points

(3) Unit Time Cost of Passengers

Time value of a person is calculated from income of labor. (Estimated at the growth rate of the past 5 years.)

The total wage of laborers in 1996 The total labor population in 1996 Average wage per laborer 39,418 LE million /year 14,317,000 2,753 LE/year

7-16

Vehicle Type	Unit	Average In	come (LE)	Remark
	[per year	per hour	
Bus	a passenger	2,753	1.45	
Car	a person	12,388	6.52	4.5 times
Taxi	a passenger	7,571	3.98	in-between

Time value of passengers of bus, car, and taxi.

Time value of a vehicle by vehicle types.

Bus	1.45 LE/h - x	18.01 person =	26.11 LE/Vehicle
Passenger Car	6.52 LE/h x	2.74 person =	17.86 LE/Vehicle
Taxi	3.98 LE/h x	3.77 person =	15.00 LE/Vehicle

Time Value of car, bus and taxi Traffic.

When the trip purpose is in relation to production, the saved time of leisure trips as such, is not considered as a benefit. Therefore the ratio of that portion is detracted. Trip purposes differ according to crossing points.

Table 7.2.14 Unit Time Cost of Passengers by Crossing points and Types of Vehicles

						Ui	nit: LE/Vehicle
Location and Ef	fliciency	Qantara	Ferdan	No.6	Srabuiom	Shatt	A.H. Tunnel
of tir	ne Saved	62%	71%	60%	66%	59%	70%
Bus	26.11	16.84	18.41	15.67	17.21	15.41	18.38
Passenger Car	17.86	11.52	12.60	10.72	11.77	10.54	12.58
Taxi	15.00	9.68	10,58	9.00	9.89	8.85	10.56
Average per vel	nicle	13.64	16,31	13.09	15,90	13.43	15.29

Note: Average per vehicle is calculated at weighted average, according to vehicle types composition. Ref. Appendix 7.2.9 Composition of Vehicle Type & Trip Purpose by Crossing Points

7.2.4 Estimation of Benefits

Ð

(1) Saving of Capital Costs of Ferries

Table 7.2.15 shows the traffic volume and number of ferry boats needed at the crossing points in order to compare the benefits with costs at Ferdan, both with and without the project. In the year 2017 with project for instance, 4,612 vehicles will still use the ferry at El Esh, and 38 vehicles at Qantara.

Thus the waiting time saving at Ferdan will be calculated as detracting the total waiting time of 4,650 vehicles (4,612 + 38 = 4,650) in the case of with project, from the total waiting time of 36,206 vehicles (4,819 + 18,940 + 4,952 + 4,190 + 3,305 = 36,206) in the

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

case of without the project. The figures for Qantara,, Ismiliya and Srabuiom were calculated in the same method.

			Unit	venicies/day
Crossing	Without P	roject	With Fere	lan Project
Points	Traffic	No. of Boats	Traffic	No. of Boats
Port Said	0	0	0	0
El Esh	4,819	10	4,612	10
Qantara	18,940	27	38	2
Ferdan	4,952	21	(33,282)	Project
No.6	4,190	11	0	0
Srabuiom	3,305	11	0	0
Total	36,206	80	4,650	12

Table 7.2.15Traffic Volume and Ferry Number at Crossing pointsto Compare the Benefits(Case 1:Year 2017, Ferdan Example)

1) Waiting Time for Ferries in the Case Without project

Table 7.2.16 assumes that no canal crossing facility is constructed (Without the project). In this case the ferryies will be used up till year 2027. The first column shows the traffic volume conveyed by ferry by year, according to Chapter 5.

The second column shows the total waiting time of ferries at each point. Waiting time is assumed to be the same as at present up till the year 2027. Unless the ferry system transport is improved, the waiting time will be huge. However, This is not realistic. If the ferry system transport is to be improved to meet the demand, it has been assumed present waiting time will not increase up till year 2027.

Thus the present waiting time is multiplied by the traffic volume to calculate the future waiting time, assuming that ferries are to be increased in the future. Thus the cost to increase ferries equals the increased waiting time cost. The third column is the waiting time cost of vehicles at each ferry point. The fourth column is the waiting time cost of people at each ferry point.

In Table 7.2.17 (with project at Ferdan), the first column "Traffic Volume with Project" shows 0, in several culumns because the ferry users will use the new crossing facility.

Without Project
nd Passengers
of Vehicles a
: Cost Waiting Ferry
Ĕ
Table 7.2.16 Th

P

ļ	Case -																								Unit. 1	3 1000 1	ſ
	Traff	ic Volu	Volume Wi	Without	Projec	+	Ferry	ίς Ν	ting Ti	Time	_		/ehicl	e Wait	Waiting C	Cost				Ľ.	assenger		Waiting	g Cost			1
Year	R. E. Eshio	аптага Бегдал	Ferda	п No. 6	S Srabulon	iu) ن	EshoantareFe	- C i	rdani No.	6 97	AbutoR.	E. EshC	Qantara	a Ferdan		No. 6	5rabui o	Total	æ	E. Esh	Qantara	a Ferdan		No. 6. S	Srabulor	Total	
						0.37	7 0.339	Ö	536 0. 3	331 0. 2	234 18.	308	13.808	30.	026 11	1.962	17, 700		r 12. 6	. 644	13.642	16.	307113.	1:060	5. 897	Year	
2002	1,910	7, 900	-	0 3, 765		40 697	7 2.678	2	0 1, 2	246	9 12.		36, 979	6	1 0	4, 907	166	23.6	02	815			0 16	6, 313	149	22, 561	31
2003	2.046	8.477	3	0 3.791	1 120	:0] 747	ર્ભ			255	28 13.	670	39, 679			ls. 012	497	25.	250 9	. 441	39, 202		175 16.	, 427	446		226
2004	2, 191	9, 095	80			800	0 3, 08	3	32 1. 2	264	84 14.	. 640	42, 575				1.491	27	298 10.		42.063		524 16.	, 542	1. 339	25.7(762
2005	2.346	9, 759	130	0 3, 845	5 1,080	0 856	••-•••••			273 2	253 15.	, 680	45, 633	¢,	897 15	5. 222	473		644 10.	, 829	45.134	ئ ے۔	573 16,	658	4.017		547
2006		10.472			2 2.592	2 917	7 3, 55(~	289 1.2		607 16.	6, 793	49,018	တ်	691	5.329	10, 736	36	707 11,	, 598		4	720 16.	775	9,642		274
2007	2.686	11, 248	986	6 3.839	1, 690	086 00	0 3, 813		528 1, 2		395 17,	, 949	52, 651	5	869	15, 398	7,000	33	736 12,	, 396	52, 018	တ်	618 16,	, 850	6. 287		102
2008	2,847	11, 844	1, 159	9 4, 161	1 1, 807	11, 039	9 4,015		<i></i> i	377 4	423 19.	0.026	55, 441	<u>8</u>	646	16, 476	7,483	\$	73I 13,	, 140	54, 775	10.	126 18.	c. 030	6. 720	37, 5.	519
2009	3.018	12, 472	1, 36	1 4, 45	3 1.931	11 1. 10.	2 4, 228				452 20.	0, 167	58, 380	ي. ي	606	17, 629	7, 999	46,	021 13,	, 928	57, 678	É	898 19.	0. 292	7.184	40, 1	143
2010	3, 199	13, 133	*****	0 4.76	4 2.065	5511, 168	8 4, 452		857 1.5	-		. 378	61,474	<u>ડ</u> ુ	743		8, 551	49,	643 14	, 764		Ľ	981 20,	, 642	7. 680		998
2011	3, 391 13,	13, 829		9 5,09	8 2.207)7 1, 238		- i	007 1.6	1.687 5		. 660	64, 73;	30,	248	20, 184	9.141	53,		. 650	63, 954	۲ <u>و</u>		1, 087	8, 210	46.1	110
2012		14, 562		8 5.45	5 2, 359	1, 31.	2 4, 936	÷				1, 020	68, 163	33.	541		9.772	58,		, 589	67, 343	19,	302 23.	3, 633	8, 776		510
2013	63	15, 334		5 5, 83	16 2, 522	<u>11</u>	າລົ	-	гł		-	. 461		41,	761	109	10, 446	62	11 186	, 584	70, 913	23 .	680 25,	288		53, 2	234
2014	4	<u>ب</u> و	******	9 6. 24	5 2.696	- <u>1</u> 9	ທີ	μ. Ι,	ณ์	_	631 26.	5, 989		49,	690	726	11.167	- 89		. 639	74, 671	26.	649	058	10, 029	57.3	322
2015	4	17,002		2 6, 68	2 2, 882	<u></u>			e i	212 6	_	3, 608		57.	656	457	11, 937	74		. 757	78, 629	ы. Б	313	952	0, 721	61, 3	5
2016	Ċ,	538 17.903		9 7.15	4.209 7.150 3.081	31 1.656	6 6. 069	ন	256 2.		721 30.	, 324	83, 803	67.	745 28.	309	12, 761	81	374 20.		32, 796	36,	792 30.	0, 978]1	1.461	66. 7	84
2017	4, 819 18, 940	18, 940		2 4, 19	4. 952 4, 190 3. 305	51, 759	ဖ်	പ് 	,,;			203		79.	697	16, 590 13,	13, 689	84	255 22.		87, 591	43,		154	12. 294	67,000	8
2018	5, 103	19, 944		9 4.48	13 3, 533			ۍ ۲	4		827 34,	Ł, 135	93, 355		644	7, 751	14, 633	32.			92, 233	£0,		425		72, 7	20
2019	5, 415	21,001		7 4, 79	77 3, 777	17	-	ന്		588		3, 183		110,	032	18, 994	15, 643	101.			97, 121	89 .		785		79, 0	96
2020	5, 740	22, 114		3 5, 13	3 4, 037	r-		4	÷		945 38,	354]]		129.	287	0. 323	16, 722	1.12.	493 26	, 483	02,269	ų	216 22.	240	5.019	86. 2 8	ž
2021	6,084	ន្ល	******	9 5.49	2 4, 316	<u>6</u>	1 7, 894	ഹ്	-:	8181.0	-	655])	108, 999	151,	913	21.746 17.	17.876	124.	534 28,	8, 077]1	07, 689	Sj	110.04	797	16, 055		214
2022	6,449	27	520 11, 09	1 5, 87	7 4,614	4		12 5, 9	÷	н,		60		6178,	498	23, 268 19.	19, 109	138		762		96		6.462	7. 162		95
2023	6, 836	2	13.03	2 6.28	38 4, 932	2	5 8.7	53 6.5	e,	081 1.1	154 45.	680	120, 859	9 209.	735	24, 897	20, 428	153.	884 31.	548	119,406	113,	906 27,	, 2451	8, 347	113, 3	315
2024	7,246	27, 188 15,	15, 31	2 6, 72	3 5.27	50		17 8 2		÷	-	421		5 246,	438		21, 338	171	770 33.	441	25.	133,	840 29,	0, 15219 (9 613		750
2025	7, 631	28, 629	17, 992	2 7,199	95, 636	<u>6</u> ;	ര്	705 9,6	ູ	H.	_	326	134, 010	0 289.	565	505	23, 344	192		447	32	157.	262	. 1932	0, 966		702
2026	8, 142	8. 142 30, 146 21,			3 6, 025	25 2, 972	2 10 2	20/11, 3		550 I. 4		406	141, 113	3,340,	239			215	792 37,	, 574 j139.		181.	782 33,	376	22, 413	152, 4	410
2027	8, 630 31.	31.7442	24, 840	0 8, 24	2 6, 441	13, 150	010, 7	61 13, 3	3.4 2.	728]1, 5	507 57.	670	148, 592	2 399,	780 33	2, 635	26, 677	242	854 39	a. 828]1	146,805	5217,	119 38	5, 7122	3.960	169, 1	150
	11-			14.						•••••	-					**			3	• • •		** 1 *-					7

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

7-19

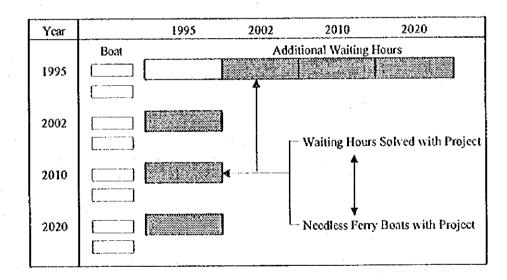
•.

Table 7.2.17 Time Cost Waiting Ferry of Vehicles and Passengers With Project	
Time Cost Waiting Ferry of Vehicles and Passenger	t Project
Time Cost Waiting Ferry of Vehicles and Passenger	With
Table 7.2.17 Time Cost Waiting Ferry of Vehicles and	l Passengers
Table 7.2.17 Time Cost Waiting Ferry of Vehicle	s and
Table 7.2.17 Time Cost Waiting Ferry o	f Vehicle
Table 7.2.17 Time Cost Waiting Fer	ъy о́
Table 7.2.17 Time Cost Waiting	Fer
Table 7.2.17 Time Cost	Waiting
Table 7.2.17 Time (Cost
Table 7.2.17	Time (
	Table 7.2.17

Cost
Passenger Waiting Cos
Passe
Venicle Waiting
rerry watung
Traffic Volume with Project
Volume

7-20

. The Feasibility Study on A Bridge over Northern Part of the Suez Canal


2) Benefits from saving time of waiting ferries

1)

Table 7.2.18 is the total cost of time saved waiting time for ferries at crossing points subtracting Table 7.2.16 and Table 7.2.17. In the case of Qantara the time saving cost will be 27,800,000 LE (14,202 vehicles + 13,635 passengers) in the year 2002. In the case of Srabuiom, many will continue to use ferries, and the benefits will not be large. Saving time of vehicles and of passengers are about the same.

3) Relationship between Saving Benefits of Waiting Time and Ferry Saving Cost

With the project, the time saving benefits are expected to be generated as shown above, however these are the benefits of the crossing facility assuming strengthening ferry transport. That is, it presupposes the costs for increasing the number of ferries, necessary to maintain the present waiting time, ferry operating costs and the facility costs. Fig. 7.2.3 shows the relationship between additional waiting time and additional ferry investment.

Fig. 7.2.3 Relationship between Additional Waiting Time and Additional Ferry Investment

Therefore, it is necessary to prove that the saving time benefits of waiting for ferries equals the above ferry costs. That means that the total discounted present value of waiting time saving benefits, equals the total discounted present value of additional costs of these ferries. This is the benefit and cost analysis of ferries.

Ferries will be gradually increased in stages, in accordance with traffic demand. Thus additional investment in ferries can be considered to be very close to realistic amount of ferry investment to match the time saving benefits. Time saving benefits with project, should thus be considered as ferry investment saving benefits.

Table 7.2.18 Time Cost Waiting Ferry Saving of Vehicles and Passengers by Crossing Point

	· .
000LE 2,219 12,849 12,849 12,849 13,235 13,235 14,576 15,069 15,069 13,235 13,235 13,235 14,576 15,069 13,235 13,235 14,576 15,069 13,235 13,235 14,576 15,069 15,069 16,069 17,224 16,069 17,224 16,065 16,065 17,724 16,065 16,065 17,724 16,055	
	749 136 387 993 1
19 13 19 111 19 111 19 111 19 111 19 111 19 111 19 111 19 111 20 157 21 651 32 174 32 174 32 174 32 124 23 32 32 124 23 33 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 33 124 125 124 125 124 125 124	1124
Year Ismailiya Vehicle P 18, 710 19, 923 21, 561 24, 561 23, 253 35, 253 35, 253 35, 253 35, 253 35, 253 35, 136 41, 330 41, 330 41, 330 53, 714 53, 714 53, 714 53, 717 58, 717 58, 717 58, 725 58, 717 72, 177 58, 328 58, 328 56, 10 56,	154, 243 173, 778 196, 294 222, 288
	281 592 622 646
B C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	
Say 99 88 87 7 9 8 8 9 9 1 1 2 1 2 1 9 1 9 1 9 1 1 2 1 2 1 9 1 9	155, 174, 197, 223,
228, 550 238, 550 11, 751 11, 751 11, 751 11, 751 11, 751 11, 751 11, 73 11, 73 11, 120 12, 12	95, 989 05, 120 15, 070 25, 847
Qantara 14, 202 14, 202 15, 392 16, 997 16, 997 16, 997 16, 997 16, 997 16, 997 16, 997 16, 202 25, 385 33, 933 33, 533 557, 052 66, 23, 238 66, 233 99, 0417 66, 233 93, 043 110, 231 122, 840	7, 042 8, 023 1 9, 977 1 1, 103 1
Om Qantara Passen Vehicle Passen Vehicle Passen Vehicle 15, 392 16, 430 15, 392 17, 702 16, 997 17, 702 16, 997 17, 702 16, 997 19, 015 19, 353 20, 425 25, 385 20, 425 26, 333 21, 865 27, 805 22, 943 33, 0, 175 22, 943 33, 0, 175 22, 943 33, 0, 175 22, 943 33, 0, 175 22, 943 33, 0, 175 22, 144 57, 052 22, 144 57, 052 23, 144 57, 052 33, 733 62, 828 33, 733 65, 826 33, 751 99, 0437 41, 504 99, 0437 45, 616 122, 840 46, 119 110, 231	
Ycar Ssen Vehi 5550 18, 1 1111 19, 5550 18, 1 1111 19, 550 18, 1 1111 19, 550 18, 1 1111 19, 550 18, 1 1111 19, 550 18, 1 1111 19, 520 53 2032 555 33 2033 20, 3 2033 20, 3 2034 20, 3 2035	53. 63.
Project/Year 6 bicl 5 328 5,737 4,111 5,737 4,111 5,737 4,111 6,554 4,760 6,554 4,760 7,433 5,033 7,435 5,345 7,448 5,532 8,764 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,241 6,533 9,245 6,533 9,345 7,713 9,345 7,713 9,345 7,713 9,355 9,541 6,617 11,74 6,617 11,76	ភ្នំព <u>័</u> ត្ត ភ្នំ
	20,19,13, 20,19,18,
Date Part Mith 05,1 11 11 11 3,3108 3,347 3,347 3,5605 3,5605 3,509 3,509 3,5605 5,950 112 5,589 5,589 5,589 5,589 5,589 5,589 5,332 7,339 11 7,339 7,339 11 2,583 9,233 1 10,283 10,285 10,285 10,285	11, 469 12, 110 12, 788 13, 504
	566 493 473 507
Asseeng Asseeng <t< td=""><td>761 382 340 303</td></t<>	761 382 340 303
tara 111	
51 52 6000000000000000000000000000000000000	
Clase I) Time C Without Project Qantara Fordan Vehicle Passenze Vehicle Passenze Vehicle Passenze Vehicle Passenze 22,555 23,977 9,855 8,9216 4,847 22,255 23,977 9,858 9,216 4,847 20,25,255 23,577 9,858 9,216 4,847 20,756 25,762 10,301 9,534 5,226 20,756 35,102 11,931 10,263 6,057 21,201 23,547 10,727 10,263 6,057 23,541 46,021 11,322 10,263 6,057 23,542 46,110 14,374 13,028 8,545 46,021 47,123 13,028 8,545 6,052 23,642 46,110 14,724 13,028 8,545 66,784 57,220 14,924 10,063 8,545 66,784 57,220 17,907 10,658	124, 750 137, 702 152, 410 169, 150
(Case I Without Vehicle Vehicle 25,555 25,555 25,555 25,555 58,642 58,448 68,448 68,448 68,448 68,448 68,448 68,448 53,9642 53,9652 53,9642 54,9642 54	1, 770 2, 264 5, 792 2, 854
(Case I Year Vehicle 2002 23, 658 2003 25, 558 2004 27, 236 2005 36, 707 2005 36, 707 2007 39, 736 2008 42, 731 2009 46, 021 2003 65, 969 2013 65, 969 2013 65, 969 2013 65, 969 2013 65, 969 2013 65, 969 2013 55, 534 2015 74, 549 2015 549 2015 74, 549 2015 740 740 740 2005 740 7	2024171, 770 2025192, 264 2026215, 792 2027242, 854

7-22

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

(2) Saving of Operating Costs

1) Vehicle km and vehicle hour

1

 $\langle \mathbf{I} \rangle$

With the project the running cost of vehicles will be saved. However, the result of calculation shows at every crossing point the vehicle running distance with the project is more than in the case of without the project as shown in Table 7.2.19. With the crossing Qantara for instance, the road users must travel further than without the project.

But, vehicle hour is shortened at every crossing point with project than without project. Therefore, vehicle km is a minus benefit, while vehicle hour is a plus benefit.

Items	Ve	hicte - kiromete	er		Vehicle - ho	uf
	2002	2007	2017	2002	2007	2017
Without project of whole area	24,964,404	34,523,266	65,940,664	364,538	510,985	963,670
With project						
Qantara	24,999,184	34,583,196	66,058,378	363,818	510,015	961,887
Fordan	25,014,064	34,593,106	66,057,604	363,633	509,636	961,198
Ismailiya	25,012,324	34,590,646	66,051,764	363,615	509,605	962,240
Srabuiom	24,957,594	34,515,586	65,929,364	364,149	510,309	962,240
Saving						
Qantara	-34,780	-59,930	-117,714	720	970	1,783
Ferdan	-49,660	-69,840	-116,940	905	1,349	2,472
Ismailiya	-47,920	-67,380	-111,100	923	1,380	1,430
Srabuiom	6,810	7,680	11,300	389	676	1,430

Table 7.2.19 Saving of V	/ehicle-km and [Vehicle-Hour b	y Crossing Points
--------------------------	------------------	----------------	-------------------

2) Saving of Vehicle-km Cost

Table 7.2.20 shows the total cost saving with the case of the crossing at Qantara. The left half of the table shows the difference of vehicle km with and without project by vehicle types. Vehicle km is based on the results of the calculation of traffic distribution in chapter 5. The right half of the table shows the saving of running costs by vehicle types. In the case of the crossing at Qantara, running costs increase to LE14,189,000 per year in year 2002.

Vehicle operating costs by vehicle types includes costs due to running, and cost generated by owning vehicles. For calculating the savings of vehicle kms the former is used, and for that of vehicle hours the latter is used.

Table 7.2.20 Vehicle Running Cost Saving (Increase)

Case	 ⊷ -														ſ
	-	vehicles Gerating Cos	Jerating	Costs	ľ					<u>Vantara Ci</u>	Case as an	Example			
	Increase	<u>e by Crossing</u>		Points		Vehic	Vehicle-Kilometers	- 1	Increse		Vehicle	tle Operating	ting Costs	ts Increase	se
Year	Qantara	Ferdan	Ismailya	lvaSrabuiom	Year	Pass. Car	CarTaxi	Bus		Pass. Car	Taxi	Bus	Truck	Total/dav	otal/dayTotal/Year
		1000Le				(Kn)	(Kr	Km)		0.188Le	0.198Lc	0.367Le	0. 60	(ILE)	(1000LE)
2002	14.		21, 732	21,	2002	34, 780	16,	7, 201	44, 030	6, 539	3, 225	2,648	26,		14, 189
2003	9	22	23, 443	ສິ	2003	38, 780	ŝ	8, 152	51, 471	7, 291	3, 763	2, 997	ŝ		16, 420
2004	61	26, 771	25, 289	25, 259	2004	43, 239	22, 158	9, 228	60, 170	8, 129	4, 392	3, 393	36, 162	52, 076	19,008
2005	22.	ŝ	27, 282	27,	2005	48.212	<u></u> гу	10, 446	70, 338	9,064	5, 125	3, 841	42		22,011
2006	25.	31, 156	29, 434	23,	2006	53, 756	ŝ	11, 824	82, 226	10, 106	5, 981	4, 348	49		25, 496
2007	29, 535	33, 548		31,	2007	59, 930	35, 150	13, 387	96, 110	11.267	6, 967	4,922	57, 762	80, 918	29, 535
2008	31.			સં	2005	64, 125	38, 278	14, 043	103, 703	12, 056	7, 587	5, 164	62, 325	87, 131	31, 803
2009				ເຕີ	2009	68, 614	41.685	14, 731	111, 895	12, S99	8, 262	5, 417	67, 249	93, 827	34, 247
2010	36,			90	2010	73, 417	45, 395	15, 453	120, 735	13, 802	8, 997	5, 682	72, 562	101,043	36, 881
2011	<u>က်</u>			ૹ૽	2011	78, 556	49,435	16,210	130	14, 769	9, 798	5, 960	78, 294	108, 821	39, 720
2012				40,	2012	84, 055	53, 835	17,004	140,	15, 802	10, 670	6, 253	84, 479	117, 204	42, 780
2015				4 3,	2013	89, 939	58, 626	17, 838	151,	16, 908	11,620	6, 559	91, 153	126, 240	46, 078
2014				ιų.	2014	96, 234	63, 844	18, 712	163,	18, 092	12, 654	6, 880	98, 354	135, 980	49, 633
2016				47,	2015	102,971	69, 526	19, 629	176,	19, 359	13, 780	7.217	106, 124	146, 480	53, 465
2016				လို	2016		75, 714	20, 590	190,	20, 714	15, 007	7, 571	114, 508	157, 799	57, 597
2017	62, 207	56, 545	52, 723	52, 723	2017	117,710	82, 620	21, 590	206.	22, 129	16, 375	7, 939	123, 986	170, 430	62.207
2015	· · .	<u></u> б	55, 464	រភ្នំ ស្ត	2018	125, 950	89, 973	22, 648		23, 679	17, \$33	8, 328	133, 781	183, 620	67, 021
2019		5	58, 350	ૹ૽	2019	134, 766	97, 981	23, 758	240,	25, 336	19, 420	8, 736	144, 350	197, 841	72, 212
2020		86 	61, 388	61,	2020	144, 200	106, 701	24, 922	259,	27,110	21, 148	9, 164	155.754	213, 175	77, 809
2021	~ **		64, 587	64,	2021	154, 294	116, 197	26, 143	279	29,007	23, 030	9, 613	168, 058	229, 708	83, 844
2022		76	67, 956	67,	2022	165, 094	126, 539	27, 424	301,	31, 038	25, 080	10, 084	181, 335	247, 536	90; 351
2023		SI,	71, 504	71,	2023	176, 651	137, 801	28, 768	325.	33, 210	27, 312	10, 578	195, 660	266, 761	97, 368
2024	104,934	цу С	75, 240	ເຊັ	2024	189, 017	150, 065	30, 177	351, 277	35, 535	29, 743	11,096	211, 117	287, 492	104, 934
2025	Ц3,	5	79, 174	79,	2025	202, 248	163, 421	31, 656		38, 023	32, 390	11, 640	227, 796	309, 84S	113, 095
2026	121,	96, 561	83, 318		2026	216, 405	177, 966	33, 207	408, 971	40,684	35, 273	12, 210	245, 791	333, 959	121. 895
2027	131, 386	102, 410	87, 681	87.	2027	231, 553	193, 805	34, 834		43, 532	38, 412	12, S09	265, 209	359, 962	131, 386

, The Feasibility Study on A Bridge over Northern Part of the Suez Canal

3) Saving of Vehicle-hour Cost

Table 7.2.21 shows saving of vehicle-hour, s calculated by the same method as vehiclekms. There are two kinds of saving of vehicle-hour. One is saving of time related cost in vehicle operating costs, and the other is time saving of passengers.

In general Time saving composition by vehicle types of car, taxi, bus, and truck shows that time saving of trucks amounts to more than half of the total. In the same way, time saving of passengers of cars amounts to more than half of the total.

(3) Minus Benefits due to restriction on Pasage of Large Vessels

There were two proposed of bridge heights; one is 65m and the other is 70m. Here we adopted 70m. In the case of 70m, impassable vessels per year may be as follows. (Ref. Chapter 3)

- Large Tanker : 4 vessels, 3 round trips every year (when fully laden, they take the detour of the cape of Good Hope)
- Oil rigs : 2 vessels

 \mathbf{I}

- Large carrier of vehicles Almost none

Without the project, they are all passable. With the project they cannot pass. Thus the difference is considered as the minus benefits.

Large size tankers mainly start from Restanura in Saudi Arabia, and terminate at Rotterdam. With the project these vessels will inevitably increase fuel cost, sailing time, the capital cost, and operating costs, which are considered to be minus benefits.

Operating costs of general vessels have certain standard (WS100) which take account of the sea route, region, type of vessel, fuel, crews and others. It remains the same whether fully loaded or unfoaded. It is expressed per Net Weight Ton (NWT).

-	By way of Suez Canal:	US\$ 11.55/ton
---	-----------------------	----------------

- By way of Cape of Hope: US\$ 17.84/ton
- The difference is US\$ 3.15/ton

In the case of a large sized tanker, scale merit of a large size makes the cost 45.1% less (1993). Accordingly the operating costs of a 500,000 ton tanker are as follows.

500,000 ton (Deadweight Ton) \times 0.5 = 250,000 ton(NWT) 250,000 \times 3.15 \times 0.451 = \$355,162

Thus the cost of minus benefits with the bridge project is calculated as below. $355,162 \times 12 = $4,261,000/year$

Oil Rigs will be unable to pass and the production areas will also move from Europe to Asia. This financially will decrease Canal revenue, but it does not increase operating costs of the Cape of Hope route. Cost factors of the change of production area will be affected by other factors as well, and are not included in the minus benefits.

Vehicle and Passenger	
of	
Cost Saving o	
Time	
Driving	
Table 7.2.21	

			•	1											Unit: 10	1000LE
;			Line Cost Saving	οl	t Vehicle			1	_	Time	Cost	Saving of	Pasenger			-
Year		Case 1				Revised (Case 3			Case 1				evised	Case 3	
	Qantara		Ism	Srabuic	quantar	Qantara Ferdan	iIsmaili	Srabuion	Qantar:	aiFerdan	[[smaili	Srabuio	Oantara	Ferdan!		Srahuion
2002	15, 248	8 17, 021			ക്	2	2	\$		(~	ۍ س	3	5	3. 826		
2003					റ്	H	11	က် 		တံ	• • • • • •	്ന്	3. 878	4.084	2.170	470
2004		8. 20			•	ដ	2	<u>м</u>		<u></u>	` - -	്ന്		4, 360	2, 355	504
2005		ដ			Ц,	ц Ц		റ്	6, 526					4.655	2, 557	540
2006	21, 376				_		ເຊິ			្តី	6	ഗ്		4.972	2. 777	580
2007		4 35,018	3 35, 994	18, 116	12,	*****	5	4 478	7 47	11.	10	L.	4 723	5 241	2 886	696
2008			7 38, 139	19, 262		16	9	4, 757	7,926	6 12, 468	្ត	်းလံ			940 1040	667
2009	26, 215	5 39, 41		20, 482	14,	12	5	5,017	8,408	Ц	ÌÌ	്ശ്	5, 313		3. 222	669
2010		3 41, 81		21, 783	ហ្ន័		ģ	5, 293	8, 922	14,	ц.	ŕ			3,405	733
1102		9 44,31		23, 171	ព្រំ	6	<u>6</u>	5, 534	9,46	4	12	~			3, 600	768
2102		0 47,08		24, 650	ģ	ŝ	ຂໍ	5, 892	10,049	ີ່ມີ	ີ. ເຊິ	ထိ			3. 808	805
2013		2: 49, 96.		26, 227	17,	21	ដ	6, 218	10,666	16.	4	တ်			4, 028	844
2014		3 53, 02.		27,910	ត្ត	3	ន	6, 563	11, 323	5	្រុំ	്റ്			4. 263	885
2015	37, 410	0 56, 273		29, 705	20, 235	ž	24,468	6, 927	12, 023				7, 585	8, 327	4.512	929
9102		L 59, 72,		5	i.		3	7, 313	12, 76(20 ,	17	Т.			4.777	974
2017	42, 133	3 63, 546	64, 429	<u>3</u> 8,	21,	~		8, 556	13, 639	21,	ရှိ	i I	8,009	S. 924	4, 900	1 144
2012		7 67, 44			ส์วิ	27,	8	9,021	14, 487	7 22, 590	19, 402	12, 619	S, 507	9,464	5, 198	1, 196
AT 07	41, 40	200 11 28		÷,	5	្តាំ	នុ	9,516		25	ຊູ່	13, 610	9, 037	10,041	0, 515	1, 251
1202		20, 00, 10, 10, 10, 10, 10, 10, 10, 10, 1		ç 4	5.2	ភូន	53	10, 039	16, 349	ŝ	2,	14, 683	9, 601	10, 656	5, 852	1,310
1202		00,00,021		ភ្នំ (S.			10, 592.		27,		15, 843	10, 201	11, 310	6, 210	1, 372
22020	10' '0C'	0 20,0/			ર્સ ક	4, 1		11,177	18,460			17, 100	10, 839	12,006	6, 592	1.437
2020	102 00	1 90, 90, 90,	91, 560	ŝ	ອີ ເ		37, 596	11, 796	19, 618	ဗ္ဂိ		18,460	11, 520	12, 748	6, 997	1, 505
5025	00, 8/4: 80,	4: VO, UX		ດີ ດີ	N.	e S	39, 872	12,450	20, 85,	2 32, 612			12, 244		7, 429	1, 577
0707	16.10	910Z, 558	ຮູ້	63, 554	5 .		42, 287	13, 142	22, 16:		29,461	21, 528	13, 015	14, 378	7, 888	1, 653
4707			ຄິງ		s. S	44	44, 851	ω,	23, 564	36,	31, 288	23, 256	13, 835	15, 274	8, 377	1, 733
1202	10, 201	202:112, 020:	115. 597	72, 148		2:47,058	47, 573	14, 649	25.054	1:39,247	33, 233	25, 128	14, 710	16. 228	8, 896	1.818

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

4

L.

7-27

7.2.5 Benefits and Costs Comparison

(1) Indicators Used for Comparison of Alternatives

By comparing economic costs and benefits of each alternative, the optimum location and facilities will be selected. As this is a comparison analysis of many alternatives, and not an investment feasibility analysis of a particular project, a sensitivity analysis has been not carried out.

There are three indicators as shown in Table 7.2.22:(a) Internal Rate of Return (IRR), (b) Net Present Value (NPV), and (c) Benefit Cost Ratio (B/C).

Indicators	Contents
IRR	IRR is an indicator of benefit ratio to investment capital (cost). Higher the ratio is the better. That is to lead to the discounted rate of costs and benefits that makes total discounted present benefit become equal. However no matter the investment amount is greatly different, the rate may result in the same figure.
	For example, a project of 10 billion US\$ scale and a project of 0.5 million US\$ project scale could all show the same IRR of 15%.
NPV	NPV indicator is usually used to analyze how much the benefit exceeds the investment cost. Differences is calculated by discounting costs and benefits with certain rate (capital opportunity cost). Higher the discounted present benefits is the better used.
B/C	On the other hand, even if NPV is small and project scale is small, some projects show high efficiency. It is expressed in benefit and cost ratio discounted at a certain rate (capital opportunity cost).
	That is, high B/C ratio means high benefit in relation to small investment cost. This is similar to IRR indicator.

Table 7.2.22 Indicator of Benefits and C	osts Analysis
--	---------------

NPV indicator and B/C indicator show different results depending upon which discount rate (= opportunity cost of capital) is to be used. In Egypt some say the opportunity cost of capital is 10% or others say 12%. IRR which can get the indicator (%) automatically by the calculation is used as project selection and priority indicator. Higher the IRR, the priority is higher, and any alternatives between 10 - 12% rate were considered feasible.

(2) Cost Benefit Comparison

Table 7.2.23 shows B/C analysis of the case of Ismailiya(Ferdan B) Bridge, Case 1, at 4% vertical grade. Table 7.2.24 is the summary of the result of Internal Economic Rate of Return calculation for each alternative.

I Project
Ismailiya
with
Analysis
Cost Benefit
le 7.2.23
Table

H

٢

<u>ъ</u>	í
- 7	í
<u>ل</u>	
• • •	
1	
- 22	1
<u>р</u>	
Temailiva Bridge	
2	•
	1
	ļ
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· • •	'
n,	į
ë	1
- 5	
	1
- H-	
•	
i Grado	Î
	2
्र	2
	1
- 1	1
- C	
~	
Vorrinal	•
6	
	1
•••	•
	1
- 1	
۰. H	
- C	1
-	
100	
<u> </u>	ì
-	I
	ł
- C	1
	1
. <u>1</u>	
0	ς
1 2000	
5	1

	USS	Present Worth	Benefit						с v	റ്	ຕ໌	ຕ໌	ຕ໌	ີ ຕົ	ຕ໌ 			с і	~	~	°.	2	ŗ.	4	8 1,642		<u>, , , , , , , , , , , , , , , , , , , </u>		16 1, 351	4 1, 293	3 1, 239	3 I. 190	3 1, 146	2 1, 105	6 57, 279
	1000 US\$	Presen	Cost		ទាំ	19,	ີ່ງດໍ	ં				•				33						46							<u>, , , , , , , , , , , , , , , , , , , </u>	•		01		0	6 57,21
	%	Discount	Factor	0, 859	0. 739	0.635	0.545	<u>.</u>	o	Ċ	o ,	o	0	0	റ	ö	Ö	ð	ं	ö	o'	ਂ	Ö	0			°	0	0.01	0.017	0.014	0.012	0.01	0.00	16.369
		TuncerCost	1000us\$						4, 261	4.261		4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4, 261	4,261					4, 261	4, 261	
		Total 7	1000us\$						12, 513			16, 748	20, 081	21, 783	23, 462	25, 298	27, 309	29, 804	32, 233	34, 913	37, 875	41, 157	44, 803	45, 949	50, 278	55, 133	60, 591		73, 687	81, 553	90, 479	100, 632	112, 205	125, 424	
		Total I	щ						43, 732	47, 242			70, 179	76, 126	81,995	88, 412	95, 441	104, 159	112,651	122, 016	132, 368	143, 838	156, 578	160, 584	175, 715	192, 682	211, 755	233, 247	257, 525	285,014	316, 210	351, 693	392, 138	438, 336	
		Saving	assenger						6, 658	7,257		S, 626	9,406	10, 259	10, 865	11, 509	12, 193	12, 919	13, 691	14, 512	15, 384	16, 311	17, 297	18, 289	19,402	20, 587	21, 847	23, 187	24, 613			29, 461	31, 288	33, 233	
Bridge)	it	le Cost	sle P	· · · · · · · · ·				· · · · · · ·	22, 085		26, S45	29, 600	32, 640	35, 994	38, 139	40,415	42, 828	45, 389	48, 105	50, 986	54, 043	57, 286	60, 727	64, 429	68, 310	72, 429	76, 800	81, 438	86, 361	91, 586	97, 132	103, 018	109, 265	115, 897	
Ismailiya Bı	Bsnefi	V.O.C.T	ŝ							24, 443			30, 434	32.798	34, 436	36, 159	37, 973	38, 883	40, S93	43, 009	45.237	47, 582	50, 051	52, 723	55, 464	58, 350	61, 388	64, 587	67.956	71,504	75, 240	79, 174	S3, 31S		
Grade. Isr	1	Ferry	sencer	c	<u>.</u>	<u></u>	i		19.011	20, 157	21, 651	24, 124	28, 514	30, 028	32.174	34,511	37, 063	39, 857	42, 921	46, 290	50,004	54, 108	58, 656	58, 413	63, 669	69, 356	ര്	83, 614	പ	. 	പ	124, 611	138,608	154.599	
4% Vertical (Time Waiting	c	,		•••••			18.710	19, 923	21, 561	24.465	30, 053	32.643	35, 253	38, 136	41.330	44. 878	48, 827	53, 237	58, 174	63.714	69, 949	72.177	79, 798	88, 460	98, 328	109.595	122.487	137, 266	154. 243	173.778	196, 294	222, 288	
4 Lanes, 4% /	1čá	st.		1, 798	21, 577	31, 467	29, 669	5, 394	237	237	237	237	237	237	825	237	237	2.169	237	237	237	825	237	237	237	237	237	2.169	825	237	237	237	237	237	
		Voar		1997	1998	1999	2000	2001	2002	2003	2004	2005	2006									2015			2018					2023				2027	
(Case					103	(C)	4	· 10	9	-1	00	σ	Ö				14	2	19		18	6	20	21	22	23	24	25	26	27	28	29	30	31	

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

7-29

Alternatives	4 Lane, 4% Vertical Grade			4 Lane, 3.3%Vertical Grade		
	Case 1	Case 2	R. Case3	Case 1	Case 2	R. Case3
Qantra Bridge	12.13%	6.00%	1.59%	11.24%	5.22%	Not
Ferdan Bridge	15.32%	8.12%	3.90%	14.21%	7.07%	Estimated
Ismailiya Bridge	16.36%	8.60%	4.25%	15.26%	7.59%	1
Srabuiom Bridge	8.15%	4.09%	<1.00%	7.52%	3.32%	-
Qantara Tunnel	10.25%	5.81%	<1.00%	9.64%	5.24%	-
Ferdan Tunnel	12.62%	7.25%	<1.00%	11.99%	6.66%	1
Ismailiya Tunnel	12.21%	6.02%	2.85%	11.46%	5.92%	1
Srabulom Tunnel	6.41%	3.27%	<1.00%	5.88%	2.09%	1 .

Table 7.2.24 Internal Rate of Return and Priority of Each Alternative

Note: For economic cost priorities, see Table 7.2.8

The prioritiy rating of alternatives was changed considerably, by adding benefits to economic costs. Benefits of each alternative are influenced by the following factors.

- Increase or decrease of traffic volume without project,
- Change of traffic volume with project by crossing points,
- Difference of vehicle type compositions by crossing points,
- Difference of running costs and time related fixed costs by type of vehicles,
- Time saving value of passengers by vehicles,
- Waiting time saving of ferries, and
- Non-passage of large sized vessels.

For internal rate of return, when 12% is applied, Ismailiya bridge has 16.36%, Ferdan bridge 15.32%, and Ferdan tunnel 12.62%. Reasons for high IRR of Ismailiya bridge are;

- The total discounted present value of economic cost is US\$ 118.24 million which is 6% lower than average economic cost of bridges.
- Estimated traffic volume is high.

Reasons for high IRR at Ferdan are;

- Truck is estimated to amount to 72.14% of the total traffic which means large time saving benefits,
- Time saving benefits of passengers is a high estimate, because business trip amounts to 52.3% of the total trip purposes,
- Traffic volume estimation is high, and
- Waiting time for ferry is high and the resulting time saving benefits of vehicles and passengers is also high.

(3) Conclusion

1) Comparison by Construction Costs

Table 7.2.25 lists priority order of the total amount of construction and maintenance costs for 31 years discounted at present value of 12% of opportunity cost of capital.

The lowest cost is US\$ 56.8 million for Srabuiom bridge (4% V. grade) and the highest cost is US\$ 116.1 million for Ismailiya tunnel (3.3% V. grade). This shows that there is a difference of twice the cost in the use of national resources such as the land, imported materials, domestic resources and labor for a canal crossing project at different crossing points. When discounted at 10% of capital opportunity cost, the conclusion was the same.

Table 7.2.25Comparison of Total Construction & Maintenance Costsfor Project Life using Ecomnomic Price and Priority Rating

		Unit: m	illion US\$	
Alternatives	Cost in Eco	Priority		
	4% V.Grade	3.3% V.Grade		
Srabuiom Bridge	56.8	64.6	1	
Ismailiya Bridge	57.9	65.7	2	
Ferdan Bridge	64.7	73.6	3	
Qantra Bridge	67.7	76.0	4	
Qantara Tunnel	100.6	108.8	5	
Ferdan Tunnel	100.9	109.2	6	
Srabuiom Tunnel	104.4	114.5	7	
Ismailiya Tunnel	106.1	116.1	8	

2) Comparison between Costs and Benefits

In the case of capital opportunity cost at 10%, 11 alternatives were found feasible out of 16 alternatives for canal crossing facilities. The project should be implemented as soon as possible as delay of implementation will incur greater loss of national resources.

According to the priority rating in the Table 7.2.26, Ismailiya bridge (4% V. grade) has the highest economic IRR of 16.36%, and this alternative should be given the top priority.

It should be remembered, however, this calculation asumes Case 1 of development case for Sinai (The population is assumed to grow to 3.2 million in year 2017). For Case 2 (2 million population) and Revised Case 3 (1.5 million), IRR of all alternatives shows less than 10%, and thus they are considered unfeasible.

Alternatives	V. Grade	IRR	Priority
Ismailiya Bridge	4.00%	16.36%	1
Ferdan Bridge	4.00%	15.32%	2
Ismailiya Bridge	3.30%	15.26%	3
Ferdan Bridge	3.30%	14.21%	4
Ferdan Tunnet	4.00%	12.62%	5
Ismailiya Tunnel	4.00%	12.21%	6
Qantara Bridge	4.00%	12.13%	7
Ferdan Tunnel	3.30%	11.99%	8
Ismailiya Tuonel	3.30%	11.46%	9
Qantara Bridge	3.30%	11.24%	10
Qantara Tunnel	4.00%	10.25%	11

Table 7.2.26 Priority Order of the Investment Feasibility Project

3) Final Economic Conclusion

Above 11 investment feasible alternatives of low economic costs and high IRR achieved by adding all benefits, can be considered in three distinct groups (Table 7.2.27).

The first group with low construction costs and high IRR has the highest priority rating. The first and second groups are based on the construction of a bridge, while the third group is a tunnel. On this basis a bridge is clearly preferable to a tunnel as the choice for the canal crossing facility.

The financial cost analysis using market price has been based on 1996 prices, and not use d for the priority rating comparison.

The final decision of the feasibility priority rating will be made taking into account the above economic analysis together with the engineering and other factors.

I.

Table 7.2.27 Result of Combination of Construction Costs and IRR

······		Unit: million US\$	
Canal Crossing Facility	V. Grade	Economic Cost	IRR
(1) Low construction cost w	ith high IRR		
Ismailiya Bridge	4.00%	57.9	16.36%
Ferdan Bridge	4.00%	64.7	15.32%
Ismailiya Bridge	3.30%	65.7	15.26%
(2) Low construction cost w	ith relatively	high IRR	
Ferdan Bridge	3.30%	73.6	14.21%
Qantara Bridge	4.00%	67.7	12.13%
Qantara Bridge	3.30% 76.0		11.24%
(3) High construction cost w	with relatively	low IRR	
Ferdan Turmel	4.00%	100.9	12.62%
Ismailiya Tunnel	1,00%	106.1	12 21%
Qantara Tunnel	4.00%	100.6	10.25%
Fordan Tuanet	3 30%	109.2	11.99%
Ismailiya Tunnel	3.30%	116.4	11.46%

CHAPTER 8

THE BEST ALTERNATIVE

D

CHAPTER 8 THE BEST ALTERNATIVE

(1) Crossing System

1) Future Traffic Demand

Three scenarios of socio-economic development have been considered in this study in order to analyze an appropriate crossing structure for the Suez Canal. Case 1 has been taken as the basic case and the Revised Case 3 indicates the minimum socio-economic framework even under the worst case condition.

Future traffic demand can therefore be estimated as ranging from 6,000 to 33,000 vehicles per day at the crossing locations, in 2017, excluding Port Said and Ras El Esh, depending on the socio-economic framework cases.

2) Number of Lanes

ĝ.

1

A two lane crossing structure would only meet the future traffic demand in 2017, but only at Srabuiom in the socio-economic framework of Case 2 and Revised Case 3, under the condition of Level of Service C of the Highway Capacity Manual. Conversely, a four lane crossing structure will have to be provided at Srabuiom in 2017 using Case 1, the basic socio-economic framework case.

It will be necessary to provide a four lane crossing structure at either Qantara, Ferdan or Ismailiya in 2017 under each socio-economic framework case, even under the condition of Level of Service D which has a higher two lane traffic capacity than that of Level of Service C.

3) How to Provide the Four Lane Crossing Structure

There are two possible methods available of providing a four lane capacity crossing structure. One is to construct a four lane crossing and the other is to construct one two-lane crossing initially, and at a later stage to construct another two-lane crossing at an adjacent location, in order to meet the traffic increase. This is the so- called staged construction method. Using the stage construction method, it should be noted that after completion of the second structure, it will be necessary to revert to a one way flow system on each structure. The Feasibility Study on A Bridge over Northern Part of the Suez Canal

This is necessitated by the need to rationalize the crossing approach or access road layout, and to ensure a safe efficient and uninterrupted traffic flow pattern.

From the results of the evaluation presented in Paragraph 7.1, Evaluation of Crossing System Alternatives, it is preferable to construct one four lane crossing structure. If two two-lane structures are selected, the second two lane crossing structure has to be opened up in 2009 even under the condition in the Revised Case 3.

(2) Structural Alternatives

Structural alternatives (bridge/tunnel, location and physical configuration) have been compared and the best alternative (cable-stayed bridge with four lanes and 3.3% vertical grade) has been selected for the following reasons.

1) Bridge or Tunnel

From the viewpoint of economic viability, a bridge at the locations of Qantara, Ferdan or Ismailiya, or a tunnel at the locations of Ferdan and Ismailiya can be demonstrated to be viable with respected to the Economic Internal Rate of Return of these alternatives.

The estimated costs of the tunnels are much higher than the costs of the bridge alternatives, but the EIRRs of the former are only 1-2 % higher than the latter. Taking account of the massive anticipated financial expenditures for the Sinai Development in the coming two decades, it is essential to minimise expenditure on the infrastructures as much as possible.

Comparing the results of economic and financial factors between these two alternatives, it can be said that the bridge alternatives are more favorable than the tunnel alternatives.

2) Crossing Location

The four possible bridge location alternatives has been compared: Qantara, Ferdan, Ismailiya and Srabuiom, and the results of these comparisons are as follows;

a. Traffic Flow and Sinai Development

Comparing the projected future traffic flows of these four locations, Qantara, Ferdan and Ismailiya are expected to have the greatest traffic volumes and to become the most important components of the arterial road network connecting Sinai to the rest of Egypt. Expected traffic volumes at Qantara, Ferdan and Ismailiya in the year 2017 are 28,800, 33,300 and 32,900 vehicles respectively.

b. Engineering Aspect

From the engineering aspect, no significant difference in engineering difficulties can be observed between these four alternative locations.

c. Financial Cost / Economic Evaluation

From the results of the EIRR, they rank in the following order of preference,

- 1. Ismailiya
- 2. Ferdan,

- 3. Qantara, and
- 4. Serabuiom.

d. Navigational Safety

Egyptian National Railways have decided that the new railway swing bridge is to be constructed at Ismailiya, and consequently SCA has required that the road bridge be constructed at a different location. The new crossing bridge must be located at least 3 km away from the end of the curve of the channel and the new railway bridge, to ensure that there is sufficient stopping distance for the maximum sized vessels in transit on the Canal to avoid the risk of colliding with the bridges. This distance of 3 km, which is six to seven times the length of the maximum sized vessel (about 450 m length), has been confirmed as reasonable by the Study Team.

Taking this constraint into consideration, only Qantara and Serabuiom will satisfy this navigational safety requirement.

e. Future Development of the Canal

SCA has a plan to construct second channel to by-pass the channel at Srabuiom in the near future, and this will cause a considerable increase in the construction cost of the bridge at Srabuiom.

As a results of all these comparisons, Qantara has been selected as the best crossing location due to the navigational safety being the main factor dictating the selection of the crossing location.

3) Vertical Grade

When considering the forecast traffic volume for the target year of the plan, a vertical grade of 4 % for the bridge would appear to suffice with reference to the international design standards. It should be noted, however, that many of the vehicles currently used in Egypt are overloaded and aged trucks, and these vehicles will make up a large percentage of the vehicles crossing the bridge. These factors indicate that it is desirable to design vertical grade of 3.3 % for the bridge. In addition, as the heavy vehicle ratio is about 20% of the road crossing traffic, the effect on the environment around the crossing including noise and air pollution especially by heavy vehicles will be considerable and hence providing a vertical grade of 3.3% for the bridge should be considered.

(3) Best Alternative

Based on the above discussion, the following option will be recommended.

Crossing location	:	Qantara
Type of crossing structure	:	Bridge
Number of lanes	:	4 lanes
Vertical grade	:	3.3 %

CHAPTER 9

DESIGN CRITERIA FOR PRELIMINARY DESIGN

1

CHAPTER 9 DESIGN CRITERIA FOR PRELIMINARY DESIGN

9.1 General

The design criteria for the preliminary design will be determined based on the results of the study for the design requirements in Chapter 6 in this report.

9.2 Design Criteria

9.2.1 Gcometric Design Criteria

- (1) Road Classification and Design Speed
- 1) Road Classification

The road crossing the Canal should be classified as a Primary Rolling Desert Road.

2) Design Speed

1

The design speeds of the road crossing the Canal will be 80 km/hr.

(2) Design Geometry

1) General

As a rule, the Egyptian standards will be used for the geometric design of the road crossing. However, the geometric design criteria in this standards of other countries, such as America, Britain and Japan will be used for some of the design to complement the Egyptian standards.

2) Vertical Grade

The Study Team has examined the vertical grade for the road crossing the Suez Canal in this phase. A vertical grade of 3.3% has been selected based on the results of the studies and discussions with the Egyptian counterparts.

(Refer to Paragraph A10.14 in Appendix)

3) Other Design Criteria

Other criteria proposed for the geometric design of the road crossing the Canal are summarized in Table 9.2.1.

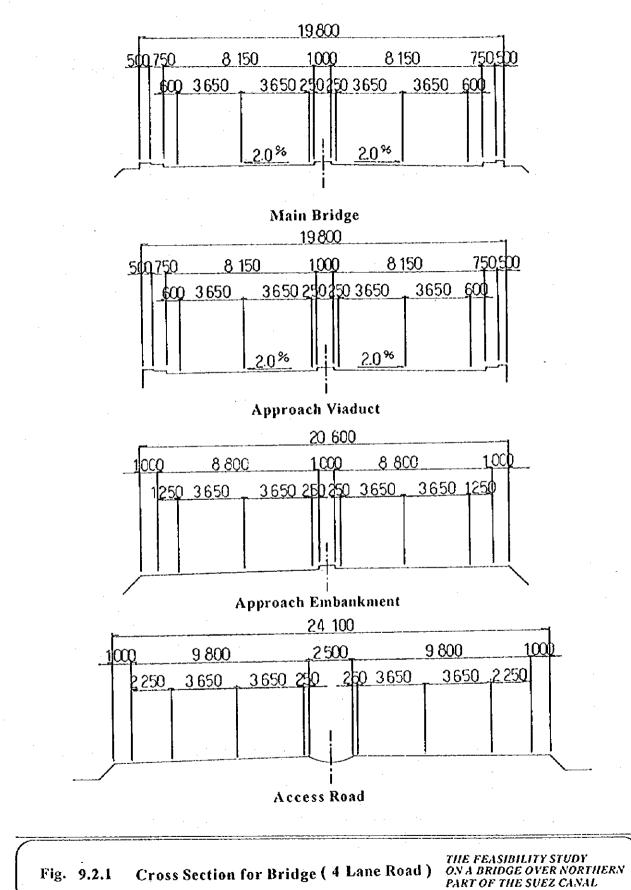
Item	Unit	Figure	Remarks
Design Speed	knv/hr	80	Primary Rolling Desert Road
Lane Width	m	3.65	
Shoulder Widths for ;			······································
1) Bridge or Tunnel Section : 4 Lanes	m	0.60	
2) Earthwork Section : Elevated	m	1.25	Approach Section
3) Earthwork Section : Level	m	2.25	Access Road
Hard Strip Width	m	0.25	h v∰L hann an ann ann an an an 2014. B' a deann an Ann ann ann an 2014 bha dalainn an ann ann an Salainn an Sa
Median Width	m	1.50	
Crossfall	%	2.0	
Maximum Superclevation	%	6.0	
Maximum Vertical Grade	%	3.3	Rolling Desert Road
Minimum Stopping Sight Distance	m	105	
Minimum Passing Sight Distance	m	140	· · · · · · · · · · · · · · · · · · ·
Minimum Horizontal Curve Radius	m	250	
Minimum Horizontal Curve Radius			
without Transition Curve	m	2,000	
Minimum Vertical Curve Radius for;			
1) Crest Curve	m	3,000	
2) Sag Curve	m	2,000	
Nose Taper	m	12.3	
Taper Length	m	150	

Table 9.2.1 Geometric Design Criteria

Source : Study Team

(3) Cross Section

1) Number of Lanes


4 lanes as shown in Fig. 9.2.1 will be provided for the road crossing the Canal.

2) Lane Width

A lane width of 3.65 m will be provided for the road crossing the Canal.

3) Shoulder

A shoulder width of 0.60 m for a 4 lane bridge and approach viaducts, 1.25 m for the approach embankment sections and 2.25 m for the access roads will be provided.

Ť

D

The Feasibility Study on A Bridge over Northern Part of the Suez Canal

4) Median

A median width of 1.5 m, including hard strips of 0.5 m, should be provided to the bridges and approach embankments and 3.0 m for the access roads.

(4) Navigation Clearance

Based on the results of the study done by the Study Team (Refer to Paragraph 3.2.3) and in the discussions with SCA, a horizontal clearance of 384 m at Qantara and a vertical clearance of 70 m above H.H.W.L are required. This arrangement is shown in Fig. 9.2.2 below.

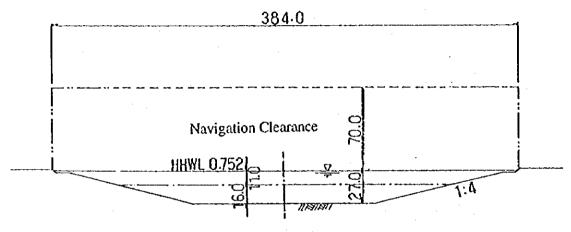


Fig. 9.2.2 Navigation Clearance at Qantara

- (5) Structural Clearance
 - 1) Road Clearance

A vertical structural clearance (headroom) of 5.5m and a horizontal structural clearance of the carriageway width based on the Egyptian standards will be provided for this study.

2) Construction Gauge of Railways

The railway construction gauge together with the proposed Canal railway crossing of the Ismailiya - Port Said Railway, will be allowed for in the design of the road crossing.

The headroom of the railway appears to be 5.5m based on the Egyptian standards as shown in Fig. 6.1.7.