5-3 Progress of Drilling

()

The progress of each drill hole is described below. The summary of working time (Table 2-12), records of drilling operation (Tables 2-13 to 2-19), records of drilling performance (Tables 2-20 to 2-26), and charts of drilling progress (Figs. 2-36 to 2-42) are shown in tables and figures.

MIT-1: For surface soil, saprolite and strongly weathered bedrock zones, the conventional drilling method without any circulating mud was adopted aiming at the maximum core recovery. From 0 to 1.60 m, drilling was made by HW metal casing shoe, and HW casing pipes were inserted. From 1.60 to 3.50 m, drilling was made by NW diamond casing shoe, and NW casing pipes were inserted.

From 3.50 to 102.10 m, drilling was conducted by the wireline method using NQ-WL bit. BW casing pipes were inserted in this zone. Clay zones occurred in some part of this zone, especially in $50.10 \sim 52.75$ m, where pumice tuff was strongly altered. Bentonite mud with CMC was used as a circulating drilling mud for this zone. Rock cuttings sometimes became gel together with mud. Then rotating rods were stacked. Lubricant chemicals were mixed with mud and were sent in this case.

From 102.10 m down to the end of hole (200.50 m), drilling was made by the wireline method using BQ-WL bit. In some part of fine tuff, which was encountered in the middle part of this hole, incomplete wirelinings were made occasionally. The cores were stacked frequently in the inner tube. Because they were easily broken into wedges. Two zones of strong clayey alteration occurred: 105.80 ~ 114.70 m and 165.40 ~ 169.00 m. Bentonite mud with CMC and Seaclay was used as a circulating drilling mud for these zones. A small amount of water was escaped in two zones: 109.80 ~ 111.60 m and 145.00 ~ 148.00 m. Both corresponded to the mineralized zones where calcite veinlets of a few mm in width were developed. Tel Stop was mixed with mud in these zones for reducing the water loss. The recovery of cores was 100 % in total because of careful drilling operation.

MIT-2: HW casing pipes were inserted to 2.60 m. Drilling for the major part of saprolite was undertaken by the conventional drilling method with NW diamond casing shoe without using any mud water. NW casing pipes were inserted to 3.60 m.

From 3.60 to 83.80 m, drilling was carried out by the wireline method with NQ-WL diamond bit and NQ-WL core tube. A small to medium amount of water was lost at $56.00 \sim 57.00$ m, $69.90 \sim 71.40$ m and $83.00 \sim 84.50$ m where clayey zones and calcite network veins occur. Although Tel Stop and Seaclay were mixed with mud to prevent the water loss, it was not effective. BW casing pipes were inserted down to 83.80 m finally.

From 83.8 m down to the end of hole (200.50 m), drilling was made by the wireline method using BQ-WL diamond bit and BQ-WL core tube. Bentonite, CMC and Libonite were used as the major mud materials. Water was lost at 155.00 and 170.20 m where thin

-		Drilling		Shift		Men Working	king.			TOM	Working Time			
No.	Bit Size	Drilling	Core	Drilling Shift	Total	Engineer	Worker	Drilling	Other	Sub- Total	Assem- blage	Dismen- tlement	Transpor-	Grand
		(m)	(m)	(shift)	(Bhift)	(nem)	(men)	ê	6	5			4 others	
MXD-1	NW/NO/BQ	200.50	200.50	24.0	30.0	64.0	578.0	137.00	55.00	192.00	32.00	8.00	8.00	(II)
	NW/NO/80		197.30	23.0	27.0	52.0	453.0	138.15	45.45	184.00	12.00	8.00	12.00	216.00
	OR/ON/MN	250.50	245.00	29.0	34.0	0.09	522.0	159.25	72.35	232.00	16.00	8.00	16.00	272.00
,	DR/DN/MN	277.70	308.60	28.0	45.0	108.0	787.0	166.10	57.50	224.00	8.8	8.00	120-00	360.00
	NW/NO/BO	250.50	247.50	• •	37.0	26.0	894.0	167.40	64.20	232.00	9.00	8.00	700	206.00
e H	NW/NO/BO	250.50	275.70	22.0	27:0	52.0	566.0	130.10	45.50	176.00	8.00	90	00 00	20.00
(II-1	NW/NO/BO	240.50	232.40	26.0	31.0	60.0	574.0	149.50	58.10	208.00	00.7	00.8	28.00	248 00
Total		1,704.10	1,677.00	181.0	231.0	472.0	4,374.0	1,048.30	399.30	1,448.00	88.00	52.00	260.00	1,848.00
											1			

0

- 152 -

Table 2-13 Record of Orilling Operation (MIT-1)

Date	No.	Dr 11	ling Le	ngth		Drillic	g Total		Shi	(t	Man Wor	ckina
H D	NO.	(m)	Shift (m)	2 Shift 3	Orilli (m)	ng (Cum m)	Col	re (Cum m)	Drill	Total (shift)	Eng'er	Worke
20	HIT-1	Site Tr	ansp'n	ACCOUNTS OF THE PARTY OF T	Mirchael	and the second	no make na da na		district.	-	(man)	(man)
21	1 - 1 - 1	Assemb	• : :	1.3						:		
22		ditto	1	* * * 1					i			
23	:	ditto							i			
24		ditto							l		ĺ	
25		4.20							Í		,	
26		15.50			4.20	4.20	4.20	4.20				
27		18.00		- 1	15.50	19.70	15.50	19.70				
28					18.00	37.70	18.00	37.70			r	
		12.00	12.00	12.00	35.00	73.70	36.00	73.70				
29		12.00	11.00	5.40	28.40	102.10	28.40	102.10		· ·		
30	i i	6.60	6.20	7.10	19.90	122.00	19.90	122.00				
31	4.2	8,60	6.00	9 00	23.60	145.60	23.60	145.60		1		
9 1		9.10	9.00	5.60	23.70	169.30	23.70	169.30				
2	·	6.10	6.20	6.00	18.30	187.60	18.30	187.60		: :		1
3		6.00	6.90	CP out	12.90	200.50	12.90	200.50				
4	<u> </u>	Dismutl				200130	12170	200.50		- 1		100
Total						200.50		200.50	24.0	30.0	64.0	

Table 2-14 Record of Drilling Operation (MIT-2)

Dat	6	Roje	Drilling Lén	gth		Drilling	Total		Shi	í t	Man Wo	rkina
М	D	No.	Shift 1 Shift 2	Shift 3	Drilli		Cor		Drill	Total	Eng'er	•
	-		(m) (m)	(m)	(m)	(Cum m)	(m)	(Cum m)		(shift)		(man)
	5	MIT-2	Mobilz'n	٠.							teritoria de la composição de la composi	-
	. 6		Mob & Assem		l							
	·7		Assembl	1.1							· •	+ .
	8	:	10.70		10.70	10.70	7.50	7.50				
	- 9		12.00 12.00	12.00	36.00	46.70	36.00	43.50				
- 1	10		12.00 9.00	3.80	24.80	71.50	24.80	68.30				
	11	· ·	8.20 4.10	1.80	14.10	85.60	14.10	82.40				
	12		9.00 9.00	9.00	27.00	112.60	27.00	109.40				
	13		9.00 9.00	9.00	27.00	100	27.00	136.40				
	14		12.00 9.00	9.00	30.00	169.60	30.00	166.40		. [
	15		12.00 9.00	9.90	30.90	200.50	30.90	197.30				
	16		CP-out				300,70	171,34				
	17		Dismutl							I		
otal						200.50		197.30	23.0	27.0	52.0	163.0

Table 2-15 Record of Drilling Operation (MIT-3)

Date	Hole	Drill	ling Le	ngth		Drillin	g Total		Shi	ft	Man Wo	rkina
M D	No.		Shift;	Shift 3	Drilli	ng -	Cor	e	Drill	Total	Eng'er	-
	Children (charge)	(m)	(m)	(113)	(m)	(Cum m)	(m)	(Cum m)	(shift)	(shift)		(man)
18	MIT-3	Mobils'r	3						بلنديت مرحدا	Alleria propin		
19		ditto							i			
. 20		Assembl		100					į.			
21		ditto										
22		4.60	6.10		10.70	10.70	5.20	5.20		4		
23		12.00	12.00	12.00	36,00	46.70	36.00	41.20		1		
- 24	()	9.00	14.40	7.80	31.20	77.90	31.20	72.40	*			
25	. 1	13.80	8.20	2.10	24.10	102.00	24.10	96.50			:	
26	! f	3.60	9.50	8.50	21.60	123.60	21.60	118.10		1.5		
27		9.30	9.30	9.40	28.00	151.60	28.00					
28		9.00	7.70	9.30	26.00	177.60		146.10				
29	1000	9.30	9.30	9.30	27.90		26.00	172.10				
30		9.10	9.00	10.00		205.50	27.90	200.00		1		
10 I		9.20			28.10	233.60	28.10	228.10				
2		Dismoti	7.70	CP-out	16.90	250.50	16.90	245.00				
otal		Dismiti	:							<u>_</u>		
A C G T						250.50		245.00	29.0	34.0	60.0	522.0

(

Table 2-16 Record of Drilling Operation (MIT-4)

Da	ţe.	Hole	Drilli	ng Len	gth	i.	Drilling	Total		Shi		Man No	
M	Ð	No.	Shift 1 Sh			Drilli		Cor			Total		Worker
- TAX-20-73 No.			(n)	(m)	(n)	(m)	(Cum m)	(n)	(Cum m)	(shift)	[shift]	(man)	(ጠልክ)
	3	MIT-4	Mobila'n		•	1 .	•			ļ · ·	. 5		
	4	,	ditto							1			
	5		Assembl										
	-6			15.80	12.00	43.70		41.20					
	7			15.00	15.00	45.00	88.70	45.00	86.20				
	8			0.60	15.00	38.90	127.60	38,90	125.10		4.0		
	. 3			13.00	6.00	33.00	4 45	33.00	158.10				
	10	1		12.00	6.00	33.00	193,60		191.10				٠
•	11			6.00	15.00	33.00	226,60	33.00	224.10	· ·			
	12			1.40	8.50	34.90	261.50	34.90	259.00		1.		
	13		Road Repai	ir								4 5	
	14		ditto			12.00	4 4	100		4.0		:	
	15			5.00	12.00	31.10	292.60		290.10				
	16			7.90	1.60	18.50	311.10	18.50	308.60			: 1	
	17		CP-out			1		4					
	16		Dismntl										
	19		Oemobil						1.0				
	20		ditto										
	21		ditto						4.3				
	5.5		Maint'ce					* * "	1 .				
	23		ditto										
	24		ditto						100				
	25		ditto										
	26		ditto		100								à.
	27		ditto					•		i - ·			
	28		ditto										4
	29		ditto				311.10		308.60	28.0	15.0	108.0	787.0
ota	1			State of Colors	MATERIAL PROPERTY.	merus Barb Primir prim	311.10	80-22-80-00-00-00-00-00-00-00-00-00-00-00-00-	305.60	78.0	12.0	106.0	/ O / . U

Table 2-17 Record of Drilling Operation (MIT-5)

Dat	ė	Hole		ling Le			Drillin	g Total		Shi	ft	Man No.	cking
M	Ď	No.		Shift 2	shift 3	Drilli		Ćor		Drill	Total	Eng'er	Worker
		WEST WATER	(m)	(m)	(用).	(m)	(Cum m)	{m}	(Cum in)	(shift)	(shift)	(nan)	(man)
	30	MIT-5	Road Cor	nst	-								٠.
	31		ditto	1000		l						İ	•
11	1		ditto										
	2		ditto										100
	3		Road 6 1	tob		*							
	4		Mobile's	1			-			1			
	. 5		Assembl								100	,	
	6		4.90			4.90	4.90	1.90	1.90		- 7	1	
	7	7	11.80	4.70	10.30	26.80	31.70	26.80	28.70				
	8		11.90	5.80	8.60	26.30	58.00	26.30	55.00	1		100	
	9		12.70	12.00	7.30	32.00	90.00	32.00	87.00	l			1
	10		C.S.	10.60	11.30	21.90	111.90	21.90	108.90		100		
	11		6.20	3.40	14.50	21.10	136.00	24.10	133.00		·		•
	12		12.60	12.00	12.00	36.60	172.60	36.60	169.60				
	13		12.00	11.90	9.00	32.90	205.50	32.90	202.50	;			
	14	:	12.00	8.90	7.70	28.60	234.10	28.60	231.10	1			
	15		4.40	6.00	6.00	16.40	250.50	16.40	247.50				
	16		CP-out	1.1	1	0.00	250.50	0.00	247.50	l ;			
	17	:	Dismatl	1.0	16.1	V		. 1		· ·	1.4		1.1
otal					: -		250.50		247.50	29.0	37.0	76.0	894.0

Table 2-18 Record of Drilling Operation (MIT-6)

Date :	Hole	Drilling Length	Drilling 1	otal	Shift	***************************************	Man Wor	and a second
n y	No.	Shift 1 shift 2 shift 3 (m) (m) (m)	Drilling	Core	Drill	Total	Eng er	
18	MIT-6	Road Const		(m) (Cum m)	(shift) (shift	(man)	(man
19		Mobiliz'n	*			,		CONTRACTOR AND A
20 21	1 '	ditto						
21		Assembl				1		
22		4.50	4.50 4.50				100	* :
23		15.20 18.00 15.00	In a group of the second of	0.50	2		11 2 2	
24	1	18.00 19.30 2.70		1.20 48.70				
25		16.90 17.40 12.50		0.00 88.70		· I	:	
26		11.30 12.80 12.00	1	.80 135.50				
27		15.00 4.10 7.90		.50 171.00				
28		12.00 10.00 11.00		.80 197.80		- 1		
29		6.00 8.90 CP-out		.00 230.80				
30		Dismot)	14.90 250.50 14	.90 245.10		- 1		
tal			258.54			- :		
	OF STREET		250.50	245.70	22.0	27.0	52.0	566.0

Table 2-19 Record of Drilling Operation (MIT-7)

Date Hole M D No.	Orilling Length Shift 1 Shift 2 Shift 3 (m) (m) (m)		Shift Drill Total	Man Working Eng'er Worker
2 3 4 5 6 7 8 9 10 11 12 13 14	Mob & Assem 6.50 6.70 5.40 7.50 CP 3.70 4.90 7.20 17.70 13.80 4.20 17.60 8.20 18.70 18.50 9.00 11.50 14.50 13.90 8.20 14.00 11.00 CP-out Dismant1 Demobil ditto ditto	(m) (Cdm m) (m) (Cum m) 6.50 6.50 0.50 0.50 19.60 26.10 18.20 18.70 8.60 34.70 8.60 27.30 24.00 58.70 24.00 51.30 35.70 94.40 35.70 87.00 44.50 138.90 44.10 131.10 39.00 177.90 38.70 169.80 36.60 214.50 36.60 206.40 26.00 240.50 26.00 232.40 0.00 240.50 0.00 232.40	(shift) (shift)	(man) (man)
otal		240.50 232.40	26.0 31.0	60.0 574.0

Table 2-20 Record of Drilling Performance (MIT-1)

MIT-1		**************************************	The State of Constitution		The state of the s	
	Survey Period				Total	Manday
	Period	Day	Work Day	Off Day	Engineer	Worker
Operation	1 3 4 5 5 5		1	1 2:11		
Preparation	Aug20 - Aug24,1995	5.0	5.0	0.0	20.0	149.0
Drilling	Aug25 - Sep 3	10.0	10.0	0.0	10.0	391.0
Removing	Sep 4	1.0	1.0	0.0	4.0	38.0
Total	2 2 3 4 3 3 4	16.0	16.0	0.0	64.0	578.0
Drilling Length	m	Jn.	Core R	ecovery of	200 m Hc	
Length	Over-		Depth		Core	Cumulat
Planned	200 burden	0.00	of			Core
Increase/De-	Core		Role		Recovery	Recovery
crease in L'th	+0.50 Length	200.50	0 -	100.00 m	100.0	
Length	Core		100.00 - :	200.00 m	100.0	100.0
Drilled	200.50 Recovery	100.0	5.0	100	1 3 3 3	
Working Hours	h 1			Efficienc	y of Dril	lina
Drilling	137.00 71.4	57.1	Total	Length/		m/day
Other Work	55.00 28.6	22.9		ork Days	1	12.5
Recovering	0.00 0.0	0.0	Total 1	Length/		m/shift
Subtotal	192.00 100.0	80.0	Total	Shifts	1	6.7
Assemblage	32.00	13.4	Drill	ing Length	/Each Bit	(m)
Dismantlement	8.00	3.3	Bit Size		lled Lth	Core Lth
Water			AW		1.60	1.60
Transportation	0.00	0.0	NW	1.	1.90	1.90
Transportation	8.00	3.3	NO		98.60	98.60
Grand Total	240.00	100.0	BQ		98.40	98.40
asing Pipe Inserte						
	Meterage/				•	
Size Meterage	Drilling Length	Recovery	· .			
	× 100					• .
m		لهع	• • • '			
HW 1.60	0.8	100.0				
NW 3.50	1.7	100.0				
BW 102.10	50.9	100.0				

Table 2-21 Record of Drilling Performance (MIT-2)

HIT-2							
	Surv	ey Period				Total	Manday
	Peri	od	Day	Work Day	Off Day		
Operation	1 1	· .				[
Preparation	Sep 5 - 5		3.0	3.0	0.0	12.0	125.0
Drilling	Sep 8 - S	ep16	9.0	9.0	0.0	36.0	289.0
Removing	Sep17		1.0	1.0	0.0	4.0	39.0
Total		<u>,</u>	13.0	13.0	0.0	52.0	453.0
Drilling Length	+ DA		In In	Core R	ecovery of	200 m Ho	le (1)
Length	:	Over-		Depth		Core	Cumulat
Planned	200		3.20	of			Core
Increase/De-	* /	Core	1 1	Hole		Recovery	Recovery
crease in L'th	+0.50	Length	197.30	0 -	100.00 m	96.8	96.8
Length		Core	1 3	100.00 -	200.00 m	100.0	98.4
Drilled	200.50	Recovery	98.4				
Working Bours	h		3		Efficienc	y of Dril	iing
Drilling	136.15	75.1	64.0	Total	Length/		m/da
Other Work	45.45	. 24.9	21,2	Total W	ork Days	L	15.4
Recovering	0.00	0.0	0.0	Total 1	Length/		m/shif
Subtotal	184,00	100.0	85.2	Total	Shifts	LA LUMBER OF	7.4
Assemblage	12.00		5.5	Drill:	ing Length	/Each Bit	(m)
Dismantlement	8.00		3.7	Bit Size	Dri	lled Lth	Core Lt
Water			1	HW		2.60	0.00
Transportation	0.00		0.0	NW .		1.00	0.40
Transportation	12.00		5.6	NQ		80.20	80.20
Grand Total	216.00		100.0	BQ		116.70	116.70
asing Pipe Inserte			,	,			-
	Meter						
Size Meterage	Drilling		Recovery				
1	x 10	0 ;					
m			- 3				
BW 2.60		1.3	0.0		:		
NW 3.60		1.8	11.1				
BW 83.80		41.8	96.2				

Table 2-22 Record of Drilling Performance (MIT-3)

HIT-3		3.7:20:00:00:00:00:00:00:00:00:00:00:00:00:	CHARLES CO.	Carrier and Assessment	Company of the second	*****
Parameter (1997)	Survey Period				Total	Manday
	Period	Day	Work Day	Off Day	Engineer	Korker
Operation		1	*****	<u> </u>	cudincer	HOLKEL
Preparation	Sep18 - Sep21,1995	4.0	4.0	0.0	16.0	161.0
Drilling	Sep22 - Oct 1	10.0	10.0	0.0	40.0	321.0
Removing	Oct 2	1.0	1.0	0.0	4 0	40.0
Total		15.0	15.0	0.0	60.0	522.0
Drilling Length	n n	m	+		250 m Ro	
Leagth	Over-		Depth	33.71	Core	Cumulat
Planned	250 burden	0.80	of		1010	Core
Increase/De-	Core		Bole		Recovery	Recovery
crease in L'th	#0.50 Length	245.00		00.00 m	94.5	94.5
Length	Core	l i	100.00 - 2		100.0	97.8
Drilled	250.50 Recovery	97.8		30100 1	100.0	31.0
Working Hours	h			Efficience	y of Drill	
Drilling	159.25 68.7	58.6	Total L	enath/	V. 01114	m/day
Other Work	72.35 31.3	26.7	Total Wo	rk Davs		16.7
Recovering	0.00 0.0	0.0	Total L	ength/		m/shift
Subtotal	232.00 100.0	85.3	Total	Shifts		7.4
Assemblage	16.00	5,9			/Each Bit	(7)
Dismantlement	8.00	2.9	Bit Size	Ori	led Lth	Core Lth
Water	4 F		HW		1.60	0.30
Transportation	0.00	0.0	NW		5.40	1.20
Transportation	16.00	5.9	NO		95.00	95.00
Grand Total	272.00	100.0	BO	1.0	148.50	148.50
Casing Pipe Inserte						
	Meterage/					
Size Meterage	Drilling Length	Recovery		1.		:
	x 100		4			* 1
m				*		
BW 1.60	0.6	18.8				
NW 7.00	2.8	21.4		•	100	
BW 102.00	40.7	94.6				

Table 2-23 Record of Drilling Performance (MIT-4)

MIT-4					Carrier State Control	A STATE OF THE PERSON NAMED OF	
	Surv	ey Period				Total	Manday
	Peri	od	Day	Work Day	Off Day	Engineer	Worker
Operation]	100	T			1	1
Preparation	Oct 3 - 0	ct 5,1995	3.0	3 0	0.0	12.0	125.0
Drilling*	Oct 6 - 0		12.0	12.0	0.0	48.0	394.0
Removing	Oct 18 - 0	ct29	12.0	12.0	0.0	48.0	268.0
Total			27.0	27.0	0.0	108.0	787.0
Drilling Length	m,		13		ecovery of		
Length		Over-		Depth		Core	Cumulat
Élanned	250	burden	2.50	of	1	~~~	Core
Increase/De-	{	Core		Bole		Recovery	
crease in L'th	+61.10		308.60		100.00 м	97.5	
Length		Core	1	100.00 -		100.0	97.5
Drilled	311.10	Recovery	99.2	1.00.00 -	300.00 m	100.0	99.2
orking Hours	h				Efficienc	. of D=:31	14
Drilling	166.10	74.2	46.2	Total	ength/	y OF DELL	m/da
Other Work	57.50	25.8	16.0		ork Days		
Recovering	0.00	0.0	0.0	Total			9.3 m/shif
Subtotal	224.00	100.0	62.2		Shifts		m/snii 6.9
Assemblage	8.00		2.2		ng Length	/Fach Bit	
Dismantlement	8.00		2.2	Bit Size		led Lth	Core Lt
Water		: .		BM		1.50	0.00
Transportation	0.00		0.0	NW		1.50	0.50
Transportation**	120.00		33.4	NO		99.00	99.00
Grand Total	360.00	·	100.0	BO		209.10	1
asing Pipe Inserte			100.0			209.10	209.10
	Meter	age/			-	-	
Size Meterage	Drilling		Recovery				
· 1 1	x 10					:	,
m							•
HW 1.50		0.5	0.0	*Road	repair (anual C	and and and
NW 3.00		1.0	16.7	t t Dom	obilizati	o dolai li	oreged
BW 102.00		32.8	97.5		hours) in		revenue :

Table 2-24 Record of Drilling Performance (MIT-5)

M12-5		t policy i facility for the section of					
	Surv	ey Period				Total	Manday
	Peri	od	Day	Work Day	Off Day	Engineer	Worker
Operation Preparation Drilling Removing	Oct30 - N Nov 6 - N Nov17	ov 5,1995 ov16	7.0 11.0	7.0 11.0 1.0	0.0 0.0 0.0	28.0 44.0 4.0	269.0 561.0 61.0
Total			19.0		0.0	76.0	894.0
Orilling Length	m.		מו	Core R	ecovery of	250 m Ho	
Length Planned	250	Over- burden	3.00	Depth of		Core	Comulat Core
Incréase/De-		Core	2.4	Hole		Recovery	Recovery
crease in L'th	+0.50	Length Core	247.50	100.00 -	100.00 m 250.00 m	97.0	97.0 98.8
Drilled	250.5	Recovery	98.8		10 10 Jeffer		
Working Bours	h				Efficienc	y of Dril	ling
Drilling	167.40	72.2	56.7	Total	Length/	1	m/day
Other Work	62.10	26.8	21.0	Total W	ork Days	L	13.2
Recovering	2.10	1.0	0.1		Length/		m/shift
Subtotal	232.00	100.0	78.4		Shifts	<u> </u>	6.8
Assemblage	8.00		2.7			h/Each Bit	
Dismantlement	8.00		2.7	Bit Size	Dri	lled Lth	Core Ltl
Water		1	1	HW		1.00	0.00
Transportation	0.00		0.0	NW	1	2.00	0.00
Transportation*	48.00	L	16.2	NO		87.00	87.00
Grand Total	296.00	<u> </u>	100.0	BQ	L	160.50	160.50
Casing Pipa Inser	Led						4.1.3
		rage/					
Size Meterage		g Length	Recovery			-	
	m x 1	.00	ļ ,				
RW 1.00		0.4	0.0			ction (36	hours)
NW 3.00		1.2	0.0	1nc	luded		
ยพ 90.00	1	35.9	96.7	l			

Table 2-25 Record of Drilling Performance (MIT-6)

							 _	
	. 1	Sorv	ey Period					landay
		Peri	od	Day	Work Day	Off Day	Engineer	Worker
peration							1	
Preparatio	>n	Nov18 - N	ov21,1995	4.0	4.0	0.0	16.0	208.0
Drilling		Nov22 - N	ov29	8.0	8.0	0.0	32.0	317.0
Removing		Nov3D	1.4	1.0	1.0	0.0	4.0	41.0
Total				13.0	13.0	0.0	52.0	566.0
orilling Le	enath	Di.		[7]	Core R	ecovery of	E 250 m Ho.	
Length			Over-		Depth		Core	Cumulat
Planned		250	burden	4.00	of			Core
Increase/i)e -		Core		Hole	4 4 55	Recovery	Recover
crease in		+0.50	Length	245.70	0 -	100.00 m	96.0	96.0
Length			Core		100.00 -	250.00 m	99.5	98.1
Drilled		250.5	Recovery	98.1				1.11
Working Box						Efficienc	y of Drill	ing
Drilling	110	130.10	74.0	60.3	Total	Length/	1	m/da
Other Worl		45.50	26.0	21.2		ork Days		20.9
Recovering	- :	0.00	0.0	0.0		Length/	T	m/shii
Subtotal	\$	176.00	100.0	81.5		Shifts	1	9.1
Assemblage		8.00		3.7			h/Each Bit	(m)
Dismantle		4.00	:	1.8	Bit Size		lled Lth	Core L
Water	uent.	1.00			HM		1.00	0.00
**-		0.00		0.0	NW		3.50	0.50
Transport		28.00		13.0	NO		85.50	85.50
Transport		216.00	ļ	100.0	BO		160.50	159.70
Grand To				100.0		L		J
Casing Pip	e inserte		rage/		1			
			g Length	Recovery				
Size	Seterage	x 1		Veccheri	I .			
· •		1 × 1	vy.					
	1.00	 	0.4	0.0	1 1801	d constru	ction (8 h	oursi
HW		1	1.8	11.1		luded		
NW	4.50	I -	1.0	1 1111	7117			

Table 2-26 Record of Drilling Performance (MIT-7)

MIT-7							parameter and the second second
		ey Period				Total	Manday
	Peri	od	Day	Work Day	Off Day		
Operation	I a a i	A 1					1
Preparation	Dec 1,199		1.0	1.0	۰.۰	4.0	50.
Drilling	Dec 2 - D		10.0	10.0	0.0	40.0	344.
Removing	Dec12 - D	ec15	4.0	4.0	0.0	16.0	180.
Total	1		15.0	15.0	0.0	60.0	574.
Drilling Length	m		m	Core R		200 m 80	30 /31
Length		Over-		Depth		Core	Cumula
Planned	190	burden	6.45	of		,,,,,	Core
Increase/De-	1	Core		Hole		Recovery	
crease in L'th	+50.50	Length	232.40		100.00 m	92.4	92.
Length		Core	1	100.00 - 3		99.3	95.
Drilled	240.5	Recovery	96.6			33.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
orking Bours	h		1		Efficienc	y of Drill	
Drilling	149.50	72.0	60.4	Total 1	ength/	VI VIIII	m/d
Other Work	58.10	28.0	23.5	Total We			16.
Recovering	0.00	0.0	0.0	Total I			m/shi
Subtotal	208.q0	100.0	83.9		Shifts		
Assemblage	4.00		1.6			/Each Bit	7.
Dismantlement	8.00		3.2	Bit Size	h-il	lled Lth	1111
Water				HW		1.00	Core 1
Transportation	0.00		0.0	NW		25.10	
Transportation*	28.00		11.3	NO		64.10	18.7(64.10
Grand Total	248.00	·	100.0	во		150.30	
ssing Pipe Inserte	d	·		····-		130.30	149.60
[Meter	age/					
Size Meterage	Drilling		Recovery			•	1
	x 10					1 .	
					1		
BW 1.00		0.4	0.0	*Demo	bilization	1 (24 hour	e)
NW 26.10		10.9	71.6	included	~	: (24 HOUR	21
BW 90.20		37.5	91.8				

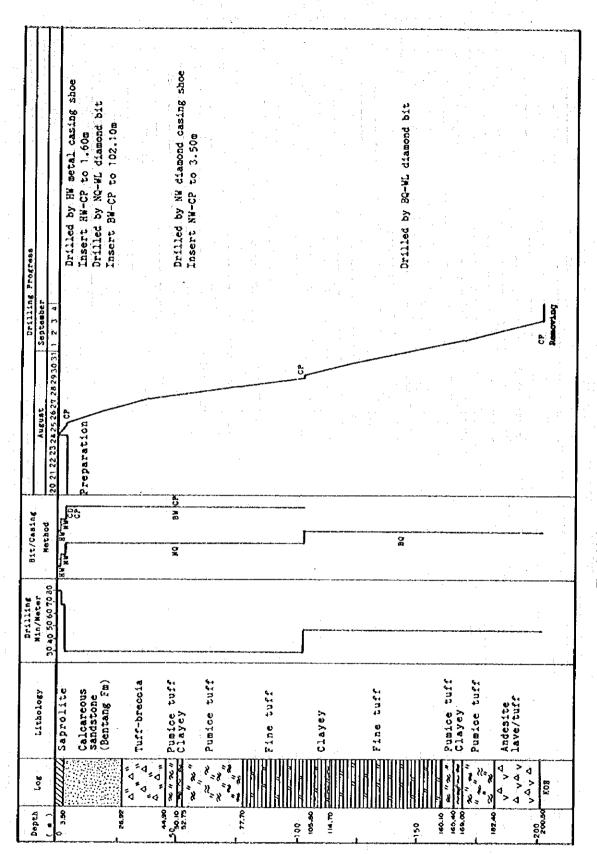
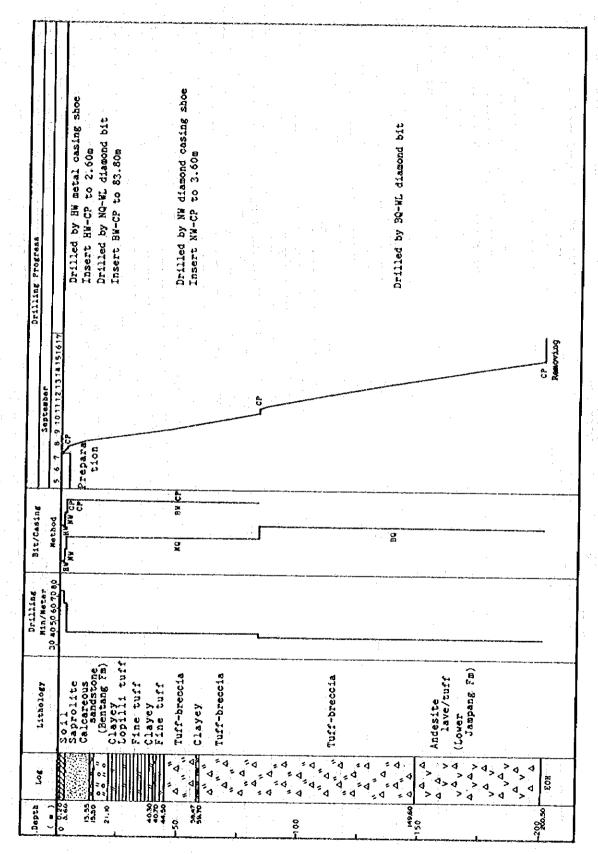



Fig. 2-36 Chart of Drilling Progress (MIT-1)

()

()

 $(\)$

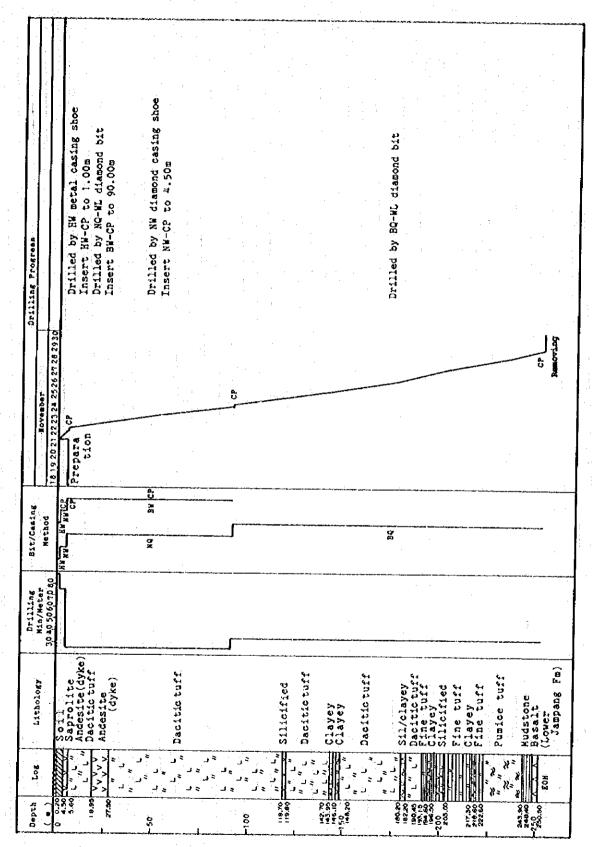
()

	TOTOL TOTAL	4	September	October	
	3040 5060 7060	Method	18 19 20 21	2930 1 2	
" Saprolite		JOAN AN ANGE			Drilled by BW metal casing shoe
. 22		5	tion		Insert HW-CP to 1.60m
* " Pusice tuff	,				Drilled by NG-WL diamond bit Insert 8%-CP to 102,108
10					
77					
Andesite		14.0 10.0			Drilled by NW diamond casing shoe
r					
7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0					
Andesite			-		
1					
A TOTAL TANKE					

Andenite > >			· · · · · · · · · · · · · · · · · · ·		
(0) (0) A A		<u>-</u>	85		
Sec Lapilli tuff					
2 Punice tuff					
Andesite					
1 >					
" Publice tuff		-			
1					
R					
7		90			
" o "					Urilled by Eq-Wi diamond bit
" o" Tuff-brecaia					
* 4;					
		_			
Fine tuff		<u> </u>	-	: :	
·					
- -				-	
_		. ·			
< < CLOWer >					
> >	~			8	
E03				Removing	

Fig. 2-38 Chart of Drilling Progress (MIT-3)

(_)


Fig. 2-39 Chart of Drilling Progress (MIT-4)

 $(\)$

2			e B	EK-CP to 1.00m	JA-DN AG	Lusert Barch to 90.00m			Drilled by NW diamond casing shoe	Insert NW-CP to 3.00m																	Drilled by 80-41 dismond bit													
Drilling Progress	Hovesber	3031 1.23.4 5 6 7 8 9 10 11 12 13 14 15 16 17	Preparation					· · · · · · · · · · · · · · · · · · ·				:			80			-		· · · · · · · · · · · · · · · · · · ·																		65	Outsomer:	
Bit/Cesing		2010	E &						30 36 08									4									O E				•									-~
Drilling	Hin/Meter	3040 50-60 70 80							~~.				Cene		٦			- Sa-Mar 1						•																
	Lithology	() 5 0	Saprolite	Calcareous	sandstone	Sudstone Clavev.	PV (CD, Sp.)	network	Dacitic tuff	C + B × G ×		Pumice tuff			The management of		Fine tuff		TOTAL OLGCOTS	99:14	במי מנו במוו	Sil/clayey		Coarse thing	•		Pumice tuff		Clayey	Clayey		Pumice tuff								
Ŀ	79 01			1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· "	:	-	۲ // ۲	" " "	=		P = 9)) = }*	* * * * = *	<u>ک</u> ۲		" ♥ " ◘			" " "	≥ 2 2 2	*	`;	~	" "	;; ;;	% = %	, E		%			" X " X "	R	= }} = }	: X : X	Eox	7	
1	n con	0 0.20		0.70	}				50.52	2			L_			8066	3 8	8	10.04		Ę	2 4	3	ş		04.68			6.6		-200		-				:	800		

Fig. 2-40 Chart of Drilling Progress (MIT-5)

()

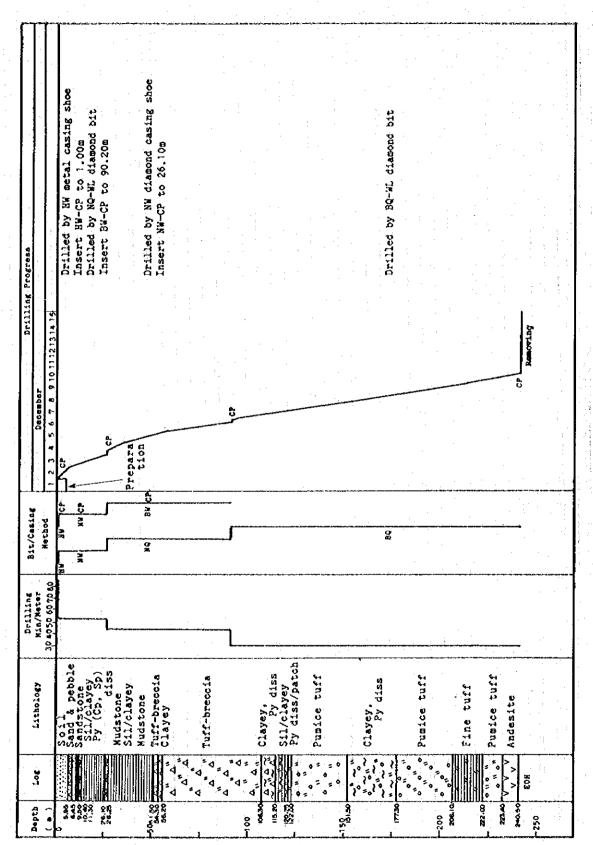


Fig. 2-42 Chart of Drilling Progress (MIT-7)

()

velnlets of calcite were developed in massive andesite. Telstop and Seaclay were injected to prevent the problem. Overall core recovery was 98.4 % in this hole.

MIT-3: From 0 to 1.60 m, drilling was done by HW metal casing shoe, and HW casing pipes were inserted. Drilling for the major part of saprolite and weathered bed rock (originally pumice tuff) was undertaken by the conventional drilling method with NW diamond casing shoe without using any mud water. NW casing pipes were inserted to 7.00 m.

From 7.00 to 102.00 m, drilling was conducted by the wireline method with NQ-WL diamond bit and NQ-WL core tube. BW casing pipes were inserted to 102.00 m. Water was lost at $77.00 \sim 85.00$, $93.00 \sim 99.00$ and $106.00 \sim 108.00$ m. These depths correspond to calcite network veins. Telstop and Seaclay were injected to prevent the water loss.

)

)

()

From 102.00 m down to the end of hole (250.50 m), drilling was made by the wireline method with BQ-WL diamond bit and BQ-WL core tube. Bentonite, CMC and Libonite were used as the major mud materials. Overall core recovery was 97.8 % in this hole.

MIT-4: From 0 to 1,50 m, drilling was done by HW metal casing shoe, and HW casing pipes were inserted. Drilling for the major part of saprolite was undertaken by the conventional drilling method using NW diamond shoe without using any circulating water. NW casing pipes were inserted to 3,00 m.

From 3.00 to 102.00 m, drilling was conducted by the wireline method with NQ-WL diamond bit and NQ-WL core tube. BW casing pipes were inserted to 102.00 m.

From 102.00 m down to the end of hole (311.10 m), drilling was made by the wireline method with 8Q-WL diamond bit and 8Q-WL core tube. Bentonite, Libonite and CMC were used as the major mud materials. Water was lost at 138.00 ~ 140.50 m. This depth corresponds to a silicified zone where numerous thin cracks were developed. Telstop and Seaclay were injected to prevent the water loss. At the originally planned depth of 250 m, a green tuff still continued; the basement rock has not been occurred until 305.30 m. This hole was drilled down to 311.10 m. During the supplementary drilling, a strong rain attacked to the site, causing a damage to the supply route. Because of this accident, the work stopped for a couple of days. Overall core recovery was 99.2 % in this hole. After finished this hole, the drilling machine, pump and other equipment were demobilized from the drilling site to the base camp for the maintenance work.

MIT-5: For surface soil, saprolite and strongly weathered bedrock zones, the conventional drilling method without using any circulating water was adopted aiming at the maximum core recovery. From 0 to 1.00 m, drilling was made by HW metal casing shoe, and HW casing pipes were inserted. From 1.00 to 3.00 m, drilling was made by NW diamond shoe, and NW casing pipes were inserted.

From 3.00 to 90.00 m, drilling was conducted by the wireline method using NQ-WL bit. BW casing pipes were inserted in this zone. Some part of this zone, especially in the

strongly altered pumice tuff, is clayey. Bentonite mud with CMC and Libonite was used as a circulating drilling mud for this zone. A small amount of water was lost around 18.00 m where limonite network veins occur. Telstop and Seaclay were injected to prevent the water loss. The weak vibration of drill rods occurred around 40 m. Lubricant chemicals were mixed with mud and were sent in this case.

From 90.00 m down to the end of hole (250.50 m), drilling was made by the wireline method using BQ-WL bit. The wirelining went fairly well in the green tuff sequence, despite a few water loss in quartz/calcite veinlet zones. Whereas in an alteration zone, which was encountered at the depth of 133.20 ~ 140.70 m, the collapse of borehole occurred. During the course of deeper drilling, this zone went to collapse again and again, causing bending of drilling rods. It was a reason why we had to stop drilling still in the green tuff sequence. The recovery of cores was 98.8 % in total.

4

MIT-6: For surface soil and saprolite, the conventional drilling method without using any circulating water was adopted. From 0 to 1.00 m, drilling was made by HW metal casing shoe, and HW casing pipes were inserted. From 1.00 to 4.50 m, drilling was made by NW diamond shoe, and NW casing pipes were inserted.

From 4.50 to 90.00 m, drilling was carried out by the wireline method with NQ-WL diamond bit and NQ-WL core tube. BW casing pipes were inserted to 90.00 m.

From 90.00 m down to the end of hole (250.50 m), drilling was made by the wireline method using BQ-WL diamond bit and BQ-WL core tube. Bentonite, CMC and Libonite were used as the major mud materials. Water was lost at several depths: 119.80, 180.00 ~ 182.00, 205.60, and 233.50 m, where the green tuff is silicified to a certain degree or carbonate veinlets are developed. Telstop and Seaclay were injected to prevent the problem. In an alteration zone, which was encountered at the depth of 142.70 ~ 148.20 m, a small collapse of borehole occurred. Overall core recovery was 98.1 % in this hole.

MIT-7: From 0 to 1.00 m, drilling was done by HW metal casing shoe, and HW casing pipes were inserted. Drilling for surface soil/sand, calcareous sandstone of the Bentang Formation and clayey mudstone of the upper Jampang Formation was undertaken by the conventional drilling method using NW diamond casing shoe without any circulating water. NW casing pipes were inserted to 26.10 m.

From 26.10 to 90.20 m, drilling was conducted by the wireline method with NQ-WL diamond bit and NQ-WL core tube. BW casing pipes were inserted to 90.20 m.

From 90.20 m down to the end of hole (240.50 m), drilling was made by the wireline method with BQ-WL diamond bit and BQ-WL core tube. Bentonite, CMC and Libonite were used as the major mud materials. In a clayey alteration zone, which was encountered at the depth of $151.50 \sim 167.60$ m, a small collapse of borehole wall occurred. Overall core recovery was 96.6% in this hole.

5-4 Geology of Drill Holes

5-4-1 Outline

The geology of the area where drilling exploration was carried out this year is composed of calcareous sandstone (Bentang Formation), tuff and dacite (Upper Member of Jampang Formation).

Saprolite of sandstone and tuff occurs below the surface soil (10 to 80 cm thick), and extends to nearly 10 m deep along the drill hole (every hole has drilled vertically). Fresh bedrock appears below a few to 10 m in depth. The results of laboratory works and assaying of drill cores are briefly listed in Tables 2-27 to 2-30.

5-4-2 Drill Hole Description

MIT-1: The geology around the drill hole MIT-1 is composed of calcareous sandstone of the Bentang Formation. It is located approximately 250 m south of a bridge of S. Cigoronggong, where green tuff is exposed at the riverbed. The purpose of this hole was to investigate the geologic structure of bedrock and ore horizon in the western part of the survey area. The geology of the drill hole is described as follows:

- $0\sim3.50$ m Saprolite. Light brownish grey to grey. Originally sandstone. This zone is covered by very thin surface soil.
- $3.50 \sim 26.92$ m Calcareous sandstone of the Bentang Formation. Grey to light grey. Three fossil-rich calcarenite beds are intercalated: $6.50 \sim 8.65$ m, $13.90 \sim 15.15$ m, and $22.90 \sim 23.20$ m. Thin layers of grey mudstone are interbedded within the upper part of sandstone.
- 26.92 ~ 44.90 m Tuff-breccia. Green. It is composed of green dacitic and grey andesitic breccias and green pumice. Fluidal structure was observed in the dacitic breccia. The pumice is commonly depressed and elongated horizontally, Green fine to coarse tuff layers are intercalated within tuff-breccia: 27.70 ~ 29.50 m and 36.70 ~ 39.35 m. Montmorillonitization and chloritization of weak to medium grade were recognized in this zone. The boundary of this zone and the overlying sandstone is broken and though to be unconformity. This zone is correlated to the Upper Member of the Jampang Formation.
- 44.90 ~ 77.70 m Pumice tuff. Green. Layered. The upper part of this zone is composed of fine to coarse tuff with small layered pumices. Whereas the lower part is composed of pumice tuff with larger layered pumices and occasional dacitic breccias. Pumice is depressed and elongated nearly horizontally (90 to 65 degrees to the drilling direction). Montmorillonitization and chloritization of medium grade were recognized commonly. A

Table 2-27 Results of Microscopic Observation of Thin Sections in the Cisasah-Cidadap-Cibuniasih Area (Drill Cores)

Tmbs Q2 KT P1 B1 Hb Px 10 15 Tmbs Pyc1 O O Tomj Pyc1 O		Calcare Pumice Lapilli Lapilli Lapilli					Č.	<u>_</u>	
1.50		Calcare Pumice Lapilli Lapilli					3	1	'VI
22.00 - 23.10m (Alcaremite Tube Class) 10.00 - 70.10m (Alcaremite Tube Class) 11.72 - 14.60m (applii) Tuff		Calcare Pumice Lapilli Lapilli Lapilli	7 4 4 7 7 4 4 7 7 4 4 4 4 4 4 4 4 4 4 4	, , , , , , , , , , , , , , , , , , , ,					A STATE OF
70.00-70.10m Pumice Tuff Toaj Pycl · O · O · D P P P P P P P P P P P P P P P P P P		Pumice Lapilli Lapilli Lapilli	Tabs	Clas					·Glauconite
10 10 10 10 10 10 10 10		Lapilli Lapilli Lapilli	Tomj	Pyc1	о		•	O	P1→Se-Ch
M.T2 14.60m Lapilli Tuff Toay Pyc .		Lapilli Lapilli	Tomj	Pycl	0			4	Pl-+Se-ch-Ca
14.50-14.60m Lapilli Tuff Tomi Pycl .		Lapilli Lapilli						4	
44.30-41.40a [asilli Tuff Tom Pycl D Pycl Pycl D Pycl Pycl Pycl D Pycl	Lapilli	Tom	Pycl	4		•			
93.20-104.20m Andesite Tomi Porp ● O O O P 73.20-103.40m Andesite Tomi Porp ● O O O P 73.20-103.40m Andesite Tan Porp ● O O O P 73.50-73.10m Andesite Tan Porp ● O O O P 74.51-245.05m Andesite Tomi Pycl O O O P 75.50-94.60m Basalt Tomi Pycl O O O P 76.50-94.60m Pumice Tuff Tomi Pycl O O O O P 76.50-94.60m Pumice Tuff Tomi Pycl O O O O P 76.50-94.60m Pycl Tomi Pycl O O O O O P 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Tomi Pycl O O O O O O O 76.50-94.60m Pycl Pycl Dych Pycl O O O O O O 76.50-94.60m Pycl Pycl Dych Pycl O O O O O O O 76.50-94.60m Pycl Pycl Dych Pycl O O O O O O O 76.50-94.60m Pycl Pycl Dych Pycl O O O O O O O 76.50-94.60m Pycl Pycl Pycl Dych Pycl O O O O O O O 76.50-94.60m Pycl Pycl Pycl Dych Pycl Dych Pycl Pyc			TOBIL	Pycl	4		•	•	P1→Ch-Se
93. 20-193.40m Andesite Toai Porp		Lapi II	Tomj	Pyc1	0		•	4	
M.T2 73.10m Andesite			Tonj	Porp	•	0	•		
73.00-73.10m Andesite					•	0			***************************************
84.50- 84.60m Lapilli Tuff Tomi Pyop			Tan	Porp	•	4		4	:
94. 50- 94. 60m Basalt Tan Porp		-	Ton	Pycl	4			4	
45. 15-245.35m Andesite Tomj Porp			Tan	Porp	•	4		٠.	1000
N. 17-4 Names Punice Tuff Tom Pyc O O O O O O O O O			Tonj	Porp	•	4		4	
78.70-78.80m Pumice Tuff Tomj Pycl O △ △ P P P P P P P P P P P P P P P P P									***************************************
52.00-152.20m Dacitic Tuff Tomj Pycl O △ · · · P 15.00-215.20m Pumice Tuff Tomj Pycl O ○ · · · P 10.00-310.20m Basalt Toff Tomj Pycl O ○ · · · P 10.00-310.20m Basalt Tuff Tomj Pycl O ○ · · · P 38.20-38.30m Dacitic Tuff Tomj Pycl ○ ○ · · · D △ P 10.00-110.20m Tuff-Breccia Tomj Pycl △ ○ ○ · · · P 24.35-24.45m Audesite Toff Tomj Pycl △ ○ ○ · · · P 24.35-24.45m Audesite Toff Tomj Pycl ○ ○ · · · P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ · · △ P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ · · △ P 38.50-38.60m Pymice Tuff Tomj Pycl ○ ○ · · △ P 38.50-38.60m Tuff-Breccia Tomj Pycl ○ ○ · △ △ P 38.50-38.60m Tuff-Breccia Tomj Pycl ○ ○ ○ · △ △ P 38.50-38.60m Tuff-Breccia Tomj Pycl ○ ○ ○ · △ △ P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ ○ ○ ○ · △ △ P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ ○ ○ ○ ○ · ○ P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ P 38.50-38.60m Dacitic Tuff Tomj Pycl ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○		m Pumice Tuff	TOBU	Pycl	0				2
15.00-215.20m Pumice Tuff Tomj Pyc O O O O O O 10.00-310.20m Basalt Tomj Pyc O O O O O O 28.235-62.45m Pumice Tuff Tomj Pyc O O O O O O 10.00-110.20m Tuff-Breccia Tomj Pyc O O O O O O 24.35-24.45m Andesite Tan Pyc O O O O O O 24.35-24.45m Andesite Tan Pyc O O O O O O 24.35-38.60m Dacitic Tuff Tomj Pyc O O O O O O 25.50-86.00m Tuff-Breccia Tomj Pyc O O O O O O 25.50-86.00m Tuff-Breccia Tomj Pyc O O O O O O 25.50-86.00m Tuff-Breccia Tomj Pyc O O O O O 25.50-86.00m Tuff-Breccia Tomj Pyc O O O O O O 26.00-130.20m Pumice Tuff Tomj Pyc O O O O O O 27.00-130.20m Pumice Tuff Tomj Pyc O O O O O O 28.50-86.00m Tuff-Breccia Tomj Pyc O O O O O O O 27.00-130.20m Pumice Tuff Tomj Pyc O O O O O O O 28.50-86.00m Tuff-Breccia Tomj Pyc O O O O O O O O O		m Dacitic Tuff	Ton	Pyci			•		:,4
10.00-310.20m Basalt Tomj Porp ○ ○ ○ · · · · P 88.20-38.30m Dacitic Tuff Tomj Pycl ● · ○ · · · ○ △ P 10.00-110.20m Tuff-Breccia Tomj Pycl △ ○ · · · ○ △ P MIT-6] 24.35-24.45m Andesite Tan Porp ● ○ ○ · · · △ △ P 88.50-38.60m Dacitic Tuff Tomj Pycl ● ○ ○ · · △ △ · P MIT-7] 85.90-86.00m Tuff-Breccia Tomj Pycl ● ○ · · △ △ P MIT-7] 85.90-86.00m Tuff-Breccia Tomj Pycl · · △ △ P 85.90-86.00m Tuff-Breccia Tomj Pycl · · △ △ P 85.90-86.00m Tuff-Breccia Tomj Pycl · · △ △ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · △ △ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · ○ ○ · · △ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · ○ ○ · · ○ ○ P 85.90-86.00m Tuff-Breccia Tomj Pycl · · ○ ○ · · ○ ○ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · ○ ○ ○ · · ○ ○ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · · ○ ○ ○ · · ○ ○ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · · ○ ○ ○ · · ○ ○ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · · ○ ○ ○ · · ○ ○ □ 85.90-86.00m Tuff-Breccia Tomj Pycl · · · ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○		m Pumice Tuff	Ton	Pycl	0		•		ā,
10.00-130.20m Dacitic Tuff		m Basalt	Tomj	Porp	0	O	•	4	<u>د</u>
38.20-38.30m Dacitic Tuff								b b b b b b b b b b b b b b b b b b b	
62.35-62.45m Pumice Tuff 10.00-110.20m Tuff-Breccia 10.00-110.20m Tuff-Breccia 10.01-10.20m Tuff-Breccia 10.00-110.20m Tuff-Breccia 10.00-130.20m Dacitic Tuff 10.00-130.20m Tuff-Breccia 10.00-130.20m Tuff-Brec			Podj	Pycl			•		
10.00-110.20m Tuff-Breccia Tomj Pycl \rightarrow \righ			Tomp	Pycl					P1.G1
MIT-6] 24.35- 24.45m Andesite 24.35- 24.45m Andesite 24.35- 24.45m Dacitic Tuff MIT-7] 85.90- 86.00m Tuff-Breccia 85.90- 86.00m Tuff-Breccia 70m3:-4mpang Formation, Pycl 85.90- 86.00m Tuff-Breccia 70m3:-4mpang Formation, Taklikalipucang Formation, Tmpa:Pamutuan Formation, Tmbs:Bentang Formation, Qvy;0ld Volcanic Rocks, Tgd:Granodionite, Tgarphoesite (dyke) 80.00-130.20m 80.00-130.20	: -	_	Tonj	Pycl			•		۵
24.35- 24.45m Andesite 38.50- 38.60m Dacitic Tuff MIT-7] MIT-7] MIT-73 MIT-74 MIT-75 MIT-77 MIT-75 MIT-75 MIT-75 MIT-75 MIT-75 MIT-75 MIT-75 MIT-77 MIT-75 MI		1		-					A
38.50-38.60m Dacitic Tuff MIT-7] 85.90-86.00m Tuff-Breccia 85.90-86.00m Tuff-Breccia 85.90-86.00m Tuff-Breccia 85.90-86.00m Tuff-Breccia 86.00-130.20m Pumice Tuff 10m3.40mpang Formation, Pycl 80.00-130.20m Pumice Tuff 10m3.40mpang Formation, Takl;Kalipucang Formation, Tmpa:Pamutuan Formation, Tmbs:Bentang For Formation, Qvv;0ld Volcanic Rocks, Tgd:Granodiorite, Tda:Dacite, Tan;Andesite (dyke) 80.00-130.20m Pycl:Pyclogravia, Ophitic, Int-grinter-granular, Follogystalline-porphyritic, Dacity Rangeline-porphyritic, Displaying Breathing Formation, Parishorite, Ab:Holocystalline-porphyritic, Displaying Breathing Formation, Parishorite, Breathing Formation, Parishorite, Parishorite	_		Tan	Porp	•		٥	٥	· P1+Cb·Se
NIT-7] 85.90-86.00m Tuff-Breccia 70m3.00-130.20m Pumice Tuff 70m3.00-130.20m Pumice Tuff 70m3.40mpant. O:Common. A:Rare. : Irace Names Tom3.40mpang Formation, Takl:Kalipucang Formation, Tmpa:Pamutuan Formation, Tmbs:Bentang For Formation, Qvv; Old Volcanic Rocks, Tgd:Grandicrite, Tas.Dacite, Tan.Andesise (dwke) Pycl:Pycl:Pyclastic Obai:Ophitic, Int-grinter-granular Hol-pp:Holocystalline-porphyric Discounties Research Ab:Rolocystalline-porphyric Discounties A:Pycl:Pycash feldspar. PiPsiariosiase, Si:Slotite, Ab:Holocystalline-porphyric Discounties A:Pycl:Pycash feldspar.	38.50		Tomi	Pycl			:	4	P1→Ch·Se-Ca
85.99-86.00m Tuff-Breccia Tomj Pycl C C C C C C C C C C C C C C C C C C C					-				***************************************
30.00-130.20m Pumice Tuff of Minerals:			Tonj	Pycl	4				△ Pl.Gl→ch·ca
of Minerals:	4		Tomj	Pycl	0		•	7	△ Pl.61→Ca.Ch.Sil
: Pycl;Pyroclastic, Clastic, Porp;Porphyritic, Lepb;Lepidoblastic, Glom-gr;Glomerophyric morphic-granular, Oph;Ophitic, Int-gr;Inter-granular, Hol-pp;Holocrystalline-porphyritic, Casebustic, Mr.Pyroxene, Di.Plazioclase, Bi.Biotite, Holmblende, Pyroxene, Ol:01	of Minerals: Names	0 g g	1. A Rare 1. Taklikalii Icanic Rocks	· Trace Sucang Forms Traceranoc	tion Tmp	Pamutuan F	ormation,	Tmbs:Bentan	g Formation, Tmph; Halang
morphic-granular, Ophitic, Int-gr.Inter-granular, Hol-pp:Holocrystalline-por : Or:Duartz XI:Potash feldspar, Pl:Plazioclase, Bi:Slotite, Ho:Hornblende, Px:Pyro		ಪ	stClastic, Po	rp; Porphyr;	tic, Lepb	Lepidoblast	ic, Glom-E	T; Glomeroph	yric granular, Hypd-gr:Hy
		ેં લે	Ophitic, Ir	Plagiociase	granular Sisiot	Hol-pp:Holo	talli Je.	e-porphyrit	01:01ivine, Ep.Epidote

()

- 170 -

Table 2-28 Results of X-Ray Diffraction Analysis in the Cisasah-Cidadap-Cibuniasih Area (Drill Cores)

Continues Fig. 1997 Cont	3	7.0	Xemerks	Pock	Locality		CLRY #1	Decade		r	ľ		l		:		ľ		l		İ	I	I	
	1	ٳ		Unit		Ę		ž		1	-				ا	Carbonata	1	200	14	T.	7	N SNO		
	1	I		THE STATE	Te1,25,00e25,10m		-	Į.		Ł	٠.					Š	- 8	ة د	, x	À	-	Mer		\$
	5	1		Too!	T-1,35,00-35,10m	1,2	1	ļ	1	-	1	-	1	1	1	•	-			-	1		-	L
Wild Colored The Colored	<u> </u>	1		i de	T-1, 52, 00-53, 10m	ŀ	- 	1	1	†	1	1		1				1	v					
Section Control Cont	-7	ı		TOR!	T-1,70,00-70,30m		*		1	1	1	1	 	1			1	ان	v				-	
Continue Continue	=			Town with	110 06-110,150] } }	1		1	1	1	-		-			-	•					L
	3			TOM : MOT	7-1, 167, 00-167, 13-		10			1	1	1	1	-	-	P	-	-	n.				-	L
	ã	٦		TOB	Tvl. 183, 59-183, 69s.		+	-	-	1	1	1	1	†		-	1	υ 	R ₁				L	
1. 15. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ä			Tom: Mar	7-1, 194, 00-196, 154	-	+	1	-	1	1	1	-	1	ļ			•	υ		۳		L	
1. 10 (1. 10.00) 1. 10	2			TOB. NO.	#-2.14. 10-14 ab-		-	Ť		1	-		1	1	1			•	U			Ĺ	<u> </u>	
	2			TOWN MES	1-3.70.40-20.70	Ī		1		1	1	1	1		_				×		L	Ĺ		
1.1. (20			100				1		1	1	1	-	1	-	-			2,				-	I
1, 10(f. Colory) 1, 10(206	ľ		1		1	1	1		1	-	-						٢	۵.		-]
The control The control	Š) arrew			I	1	*	-	ا د	-									ŀ	Ĺ			Ţ
Section Column		l				*	1	~	-	-						b			ļ,	-		ļ		
The color of the		T			- 1	Ţ 	-	j							-		 	•			+		ł	Ţ
The company The company		I								_	_			<u> </u> 	L			<u> </u>			1		+	I
Valid		۱	t	Ton I	F-3, 35, 30-35, 20m	æ				_	<u> </u>	ļ	l	I			†		1	1			-	
	e.	ŧ	- 1	Ton)		×				L	L	T		1	I			ال	. ,		-		-	
Market Colored Color	Š.		ı	TORY MIT	-3, 53, 00-53, 10					-	-	-			1			اه	ĸ	-	_		_	
Wild The property Will The property Wils The property	ž		í í	108	*1.86.90=80=	,	1	p		1		1		1	1	-		A.						
Color Colo	÷		T				4	× i		1	1		- - 			4		•	-	-	-	ļ		Ī
	3	ĺ	-	į		Ţ	1	-					إ			•	~		R.	-	-		ļ	Ī
Control Cont		Ī				Î	l	æ	1		4					D.	•	1		ľ	<u> </u>		1	Ţ
The content of the		Ĩ		Carre Carre		•					L							ļ.	1	+	1		-	Ţ
1.01(f. 6.1997) 1993 199		Ī		TOM) HIT						ŀ	<u> </u> -		 -		Ī	╀	-		,		-		-]
10 10 10 10 10 10 10 10	2	1		TORY MIT	-4,37,50-37.40		 		Ī			1	-	<u> </u>	ļ		-	1			1			
101/f_c_i_j_j_j_j_j_j_j_j_j_j_j_j_j_j_j_j_j_j		1		TOTAL MET	š		-	L		ļ.			I	1	Ţ	+	1	1	-	-	-			
Line Line	ŝ	1		Ton, larry	6					-	1		 -	-			+				-		1	
	3						ŀ			-	۰	-	•	-	I		1	1			-			
Land Colored C	ì						L			-	¦•	1	1			-			^					
Control Cont	9			TOR! MIT			1	-	-	ļ	1	1												
Company Comp	5.16	l.						ļ	-	ť	1	1			1			-	•				L	Γ
C Val C	-	Γ.			100 001100	1	1	1	1						1		- -				L		-	Γ
	ŝ	ļ			+	Í	1	1	1	-	ان اید		~						L		-		-	Ī
The content The content	Ċ	ì			111,00-107,000	1		1	1				v				-	Γ	•		ŀ			Ī
The content The content		ı		Carry Carry	-4,298.00-298,30m		-			2			Ĺ	-			Ĺ	T		1	+		+	
	:	ĺ		TOWN? MILE	"-5,10.00-10.10m					ׅׅׅׅׅׅׅ֡֝֡֟֝֟֝֝֝֝֝֟֝֡֡֟֝֝֡֡֟֝֡֡֝֡֡֝֟֝֡֡֡֝֡֡֡				_	Ī	<u> </u>			1	-	1	1	1	
	:	Į.		TEN (NO.	-5, 16, 00-16, 10				-	, E					Ī			1			-	1	-	
	è	١		100	-	•		-	2	, .					Ī		-		+		1	-	-	
######################################	÷	1		Zone J. MAY	-9,138.20-138.40m			ļ		- -	6			I	1	 	1		+		-			
Light Colored Colored	٥,				3	Ī				÷			1	1	1									
Section Total Section			ì		:	Ì		-		÷	1		1	+		×	1	J					-	
C. UNIT (TOTAL STATE OF THE STA	=				15.101.10.101.45p	<u> </u>	1	,	Î	1	1	1	1	-	1	•		J		~		L		<u> </u>
C. C. C. C. C. C. C. C. C. C. C. C. C.	ę.				-6.38.58-38.49			1	1	1	Ţ	1	Ī		1	-		4	B.					
C. S. C. C. S. C.	ş		-		1	1,	1	+	1	1	1	1		1				4	٠ ۲	-	-			Ī
	8			•	100000000000000000000000000000000000000	1	1	ļ	1	1	 -		1					7-	╀			1	-	Ĩ
		ĺ		•	D	1	 	-	1	æ			-						Ł		-	l	+	Ī
C. U.S. (1.5.1)	:		ì	ì		1	1	× i		_ <u> </u> 											-		 	Ī
Out State Control		Ī			-C, 100, 80-147, 90m	1	1	es i	j	-											-	t	1	I
Cutf Total Market 122,000,201,200 R R R R R R R R R	5	I	- Co			1	1	ا م		_											-	1	1	Ī
Fig. Color		Ì				\ 	 	-								-	-	,	,	-	ļ			
104_2 (2) 204 (2) 105		Ī		Comp.	-4,272,00-232,20m	æ	~	-										1	ļ.	-	+		+	Ī
100 (1 c) (1	ķ	Ī		in Comp			-	~		_				<u> </u>			_	Ì.			ľ	ļ	-	I
18	4				1	İ	1	-		P-1							-	•	,	1	+	Ì		Ī
1015 () 1 () () () () () () () () (100020-1101	Ī	474	7,90.45-98.45a	_		Æ		•	⊨		-	!				† -		-	-	1	Ŧ	Ī
Total inter, 164 and 64 and 18	Ċ	Tana au a			-7,119.70-119.40s						-			-			+	Ţ	1		1		1	Ī
	ا:	Pumico rutt			-7, 145, 40-165, 60m	: 	L	<u> </u>			1	l	<u> </u>	Ī	Ţ	-	4	1	1		-			~
		١.					۱			1		l	1	$\left\ \cdot \right\ $		- -		\ \	_		-	_	-	

Abundance of Minerals: A;Abundant, C;Common, F;Few, R;Rare
Abbreviations
Mo;Montmonillonite, Ch;Chlorite, Se;Sericite, Mu;Muscovite, Ka;Kaolin, Ha;Halloysite, Pr;Pyrophylite, Mc;Mixed Layer, Cp;Clinoptilolite, Md;Mordenite, Lm;Laumontite,
Hu;Heulandite, Fr;Ferrierite, Ai;Alunite, Gy;Gypsum, Ja;Jerosite, Ca;Celorite, Si;Siderite, Cr;Cristobalite, Tr;Tridymite, Cz;Cuartz, Pi;Plagioclase, Kf;Potash Feldspar,
Py;Pyrite, Go;Goethite, He;Hematite, Mg;Magnette, Ba;Barite, Sp;Sphalerite, Gn;Galena

Table 2-29 Results of Ore Microscopy in the Cisasah-Cidadap-Cibuniasih Area (Drill Cores)

Sample	Hole No.	0 4 4 4 C 5	
No.	92		Kemarks
	2	מה אם אם פער	
	1 + 1 + 1		
413P	6.45 - 136.65	400.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
416P	.00-165.20	1 7	THE CTOT TO STITCIENCY CULT
417P	8.40-16	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	That the Silicilied Dumice
4187	9.80-170.00	2 C C +	THE STRICTIFC DOBICE COL
	[MIT-5]	3	SSCHIMACLOH IN SIL/CIRVEY DUBICE TUTT
502P	10.00- 10.10m	+04 C)-C)-7C	
0	93.15- 93.30m		T. T.
	IT-6]		Frachice near lapresciention (variony) in publice turk
9	0.80-181.00	1	
617P)	n sil/clayey dacit
***************************************	17-7	7 2 2 7 7 7	ssemination in Sil/clayey fine tuff
7012	· c		
703P	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43-43-KA	dissemination in silicified rock
		Pyrite disse	ssemination in sil/clayey siltstone
1607	06.801-07.80	. Pyrite disse	SSemination in Sil/clavev tuff-brace;
7 O Y	17.50-117.7	Pyrite diss/	:
7112	19.70-119.90	Pyrite se	Sil/clavev fine tuff
715P	161-10-161.30m	4	4 2020 4 4 4 4 02
716P	66.40-166.60	4 2 2 2	THE CAGE THE CO
bundanc	e of Minerals: O	Common. A Rare Trace	מייי כית הייי הייי
ನ		V. Perito Ac. Arcanonesito	
		4 - C - C - C - C - C - C - C - C - C -	ر بر
		> > •	Joilron Oxide

Table 2-30 Assay Results of Core Samples in the Cisasah-Cidadap-Cibuniasih Area

Sample	Orill	Depth	Au	Ag	Cu	Pb	Zn	Fe	Mn	Ba
No.	No	m	g١	pom	ppm :	ppm	ppm	%	porn	ppm
413M	MIT-4	136.45-136.65	<0.03	<1	45	20	100	0.70	90	40
416M		165.00-165.20	<0.03	<1	30	10	55	0.84	150	40
417M		168.40 168.60	<0.03	<1	20	<5	80	0.71	790	40
418M		169.80-170.00	<0.03	<1	10	10	. 70	2.05	420	60
501M	MIT-5	8 55-8.65	<0.06	<1	20	10	75	1.60	340	20
502M		10.00-10.10	<0.06	<1	15	5	30	2.12	180	160
503M		18.00-18.10	< 0.06	<1	10	10	20	1.48	70	140
510M		93.15-93,30	<0.06	<1	5	5	40	2.12	210	20
616M	MIT-6	180.80-181.00	<0.06	<1	5	10	35	1.70	240	<20
617M		196.70-196.90	<0.06	<1	35	<5	150	2.89	1,620	<20
701M	MIT-7	10,80-10.90	<0.03	1	1,065	30	2,920	2.06	160	20
703M		26.10-26.25	<0.03	<1	50	35	335	3.83	2,730	<20
709M		109.70-109.90	<0.03	<1	20	10	100	3,47	1,140	20
710M	<u> </u>	117.50-117.70	<0.03	<1	5	5	50	2.92	120	20
711M		119.70-119.90	<0.03	<1	5	5	60	1.64	390	<20
715M	1	161.10-161.30	< 0.03	<1	5	15	125	3.01	350	<50
716M		166.40-166.60	<0.03	<1	10	5	69	2 59	390	20

 $\langle \dot{} \rangle$

clayey alteration zone was caught in the depth of $50.10 \sim 52.75$ m. It is composed of sericitization and kaolinization of strong grade.

77.70 ~ 160.10 m Alternation of fine tuff and pumice tuff. Green to pale green. Many sedimentary units were counted in this zone. Fine tuff gradually changes into coarse tuff and pumice tuff at the bottom of each unit. Pumice is depressed and elongated. Green to grey dacitic fragments of lapilli to breccia size were observed in some part of the unit. Thin mudstone beds were found in two depths: 78.85 ~ 79.55 m and 141.35 ~ 141.45 m. Montmorillonitization and chloritization are of medium grade down to the depth of nearly 130 m. A clayey and silicified zone was caught within this depth: 105.80 ~ 114.70 m. It is composed of silicification, sericitization and carbonatization of strong grade. Several calcite veinlets of 1 to 2 cm in width occur in this alteration zone. Below 130 m, alteration becomes weaker. A couple of thin calcite veinlets were found in the depths around 127 m, 146 m and 151 m.

160.10 ~ 182.40 m Pumice tuff. Green to pale green. Pumice is generally small and elongated (0.5 to 3 cm in length). Chloritization again becomes stronger to medium grade in this depth. A clayey zone was caught: 165.40 ~ 169.00 m. Chloritization and sericitization are strong, and thin calcite veinlets of a few mm are developed. The sequence of these green tuffs from 77.70 m down to 182.40 m is correlated to the Upper Member of the Jampang Formation.

 $182.40 \sim 200.50$ m (EOH) Alternation of andesite lava and tuff. Greenish grey to grey with purple tint. Two flow units of andesite were distinguished: $182.40 \sim 184.40$ m and $186.20 \sim 188.15$ m. Andesite is mostly massive, and partly brecciated.

()

Propylitization was observed. The lower part of this zone is composed of accidental tuffbreccia. Breccias, whose size range from lapilli to breccia, consist of dacite, andesite and some lithic fragments. Alteration in the lower part of this zone, mostly chloritization, becomes weaker.

MIT-2: The drill hole MIT-2 is situated at the flank of small hill which is composed of calcareous sandstone of the Bentang Formation. The purpose of this hole was to investigate the geologic structure of bedrock and ore horizon in the western part of the survey area together with MIT-1. It also aimed at the extension of a silicified zone found approximately 500 m southwest of the drilling site. The geology of the drill hole is described as follows:

- 0 ~ 0.20 m Soil. Light brown.
- 0.20 ~ 3.60 m Saprolite. Grey.
- 3.60 ~ 13.55 m Sandstone, siltstone and conglomerate of Bentang Formation. Calcareous. Grey to light grey. Partly weathered.
- $13.55 \sim 21.10$ m Lapilli tuff. Pale green to green. Two pumice tuff layers are intercalated: $13.55 \sim 15.50$ m and $20.10 \sim 21.10$ m. In pumice tuff layers, the pumice is flattened and

elongated. Montmorittonitization, sericitization and chloritization of moderate grade were recognized. This green tuff occurs unconformably below the Bentang Formation.

 $21.10 \sim 44.50$ m Fine tuff. Pale green. Mostly massive, partly stratified. Several layers of pumice tuff and lapilli tuff are intercalated: $22.40 \sim 22.55$ m (pumice tuff), $27.15 \sim 27.55$ m (pumice tuff), $32.40 \sim 33.55$ m (lapilli tuff), $34.20 \sim 34.60$ m (lapilli tuff), and $40.30 \sim 40.70$ m (lapilli tuff). Some part of these zones show montmorillonitization and chloritization of moderate grade.

44.50 ~ 149.60 m Tuff-breccia. Greenish grey. This unit is characterized by the occurrence of accidental fragments such as grey andesite and yellow, brown or dark grey shale. These fragments are generally angular of lapilli to breccia size. Weak chloritization and sericitization were observed. Layers of pumice tuff and coarse tuff are intercalated: 58.47 ~ 59.70 m (pumice tuff), 60.70 ~ 62.30 m (pumice tuff), 118.00 ~ 121.30 m (coarse tuff), and 121.80 ~ 125.00 m (coarse tuff). Alteration is weak; generally composed of chloritization. The sequence of these green tuffs from 13.55 m down to 149.60 m was interpreted to be correlated to the Upper Member of the Jampang Formation.

149.60 ~ 200.50 m (EOH) Andesite lava and tulf-breccia. Grey to greenish grey. Massive zone and brecciated zone were distinguished in the lava part. Chloritization and epidotization were observed. Accidental tuff-breccia occurs between lava units. Breccias, whose size range from lapilli to breccia, consist of dacite, andesite and some lithic fragments.

MIT-3: The drill hole MIT-3 is located approximately 1,500 m southwest of the Cisasah gypsum mine. The green tuff exposes at the drilling site where is situated on the flank of small hill at the eastern side of Ciwulan river. The top of the hill is covered by calcareous sandstone of the Bentang Formation. The purpose of this hole was to test the southwestern extension of the Cisasah mineralized horizon. It is also aimed at one of the significant siticified zones found near Kp. Cipari. The geology of the drill hole is described as follows:

0 ~ 0.80 m Soil. Brown.

}

0.80 ~ 7.95 m Saprolite. Reddish brown. Mottled. Originally purple tuff.

7.95 \sim 53.55 m Pumice tuff of the Upper Member of the Jampang Formation. Pale green to green. Pumice is elongated. Thin layers of fine tuff, lapilli-tuff and tuff-breccia are intercalated: 25.70 \sim 28.75 m (fine tuff), 28.75 \sim 33.60 m (tuff-breccia), 38.00 \sim 38.25 m (tuff-breccia), 39.50 \sim 40.90 m (fine tuff), 43.70 \sim 44.00 m (tuff-breccia), 47.00 \sim 49.70 m (lapilli tuff), 49.70 \sim 53.55 m (fine tuff). In general, this zone is moderately altered comprising montmorillonitization and chloritization. The following two zones are significantly decolorized and silicified: 39.50 \sim 45.40 m (silicified and chlorite-mixed layer alteration), and 49.70 \sim 53.55 m (silicified and montmorillonite-chlorite-carbonate alteration). One of these zones could be correlated to the Cisasah mineralized horizon.

Grey massive andesite dyke occurs at 45.40 ~ 47.00 m.

53.55 ~ 115.25 m Lapilli tuff and tuff-breccia. Pale green to green. Accidental lapillis or breccias are recognized in dacitic matrix. This zone is weakly to moderately altered comprising montmorillonitization and chloritization. The following zone is significantly decolorized: 76.80 ~ 88.10 m (chlorite-kaolin-carbonate alteration). Grey to dark grey andesite dyke occurs at 72.00 ~ 74.70 m and 90.65 ~ 110.25 m. The latter one, dark color and brittle, shows a basaltic feature. Calcite network veins are developed in this body.

115.25 \sim 170.80 m Pumice tuff. Pale green. Pumice is elongated. A fine tuff layer is intercalated: 142.10 \sim 145.20 m. This zone is moderately altered (montmorillonit-chlorite-sericite). Dark grey andesite dyke occurs at 120.70 \sim 124.30 m.

170.80 ~ 193.55 m Tuff-breccia. Green to pale green. Accidental (andesitic) breccias are contained. The alteration becomes weaker down to this depth.

 $193.55 \sim 212.18$ m Alternation of fine tuff and coarse tuff (sandy). Green to greenish grey. Small pumices were observed at the bottom of this zone.

212.18 ~ 250.50 m (EOH) Andesite, Light greenish grey. Mostly massive (lava dome?).

MIT-4: MIT-4 was drilled at the northern slope of Cisasah river where decolorized green tuff was extensively exposed. It is located approximately 1,000 m due east of the Cisasah gypsum deposit. A small stratabound manganese deposit occurs 750 m north of the drill hole. The purpose of this hole was to test the eastern extension of the Cisasah gypsum mineralization. The geology of the drill hole is described as follows:

0 ~ 2.60 m Soil and saprolite. Brown to grey. Originally fine tuff.

2.60 ~ 33.95 m Fine tuff of the Upper Member of the Jampang Formation. Light grey. Generally soapy; montmorillonitization is moderate. A strongly decolorized zone occurs at 13.85 ~ 27.70 m. Thin layers of coarse (sandy) tuff and pumice tuff are intercalated.

1 - 1

33.95 ~ 134.95 m Pumice tuff. Light greenish grey to light grey. Dark grey ill-defined fragments, pumice or glass, were observed in greenish soapy matrix. Moderately montmorillonitized and chloritized in common. Five strongly altered (decolorized) zones were caught in this rock: 33.95 ~ 39.70 m (silicified & quartz network), 39.70 ~ 48.90 m (decolorized, montmorillonite-chlorite-mixed tayer), 53.75 ~ 60.80 m (decolorized), 113.00 ~ 115.20 m (decolorized), and 134.15 ~ 134.95 m (decolorized).

134.95 ~ 183.40 m Dacitic tuff. Pale green. This rock is composed of pale green dacitic matrix with occasional light grey siliceous breccias. Generally soapy: Strongly altered zones were caught at the following depths: 135.75 ~ 141.40 m (decolorized, partly pyrite-disseminated), 163.35 ~ 165.75 m (pyrite disseminated), 168.40 ~ 168.50 m (pyrite disseminated), 169.80 ~ 170.90 m (montmorillonite-chlorite-mixed layer, pyrite disseminated), and 175.70 ~ 183.40 m (decolorized, montmorillonite-chlorite-mixed layer). Within these alteration zones, pyrite was slightly disseminated. These zones were interpreted to be correlated to the mineralized horizon of the Cisasah gypsum deposit.

183.40 ~ 261.47 m Pumice tuff. Light greenish grey to light grey. Dark grey fragments (ill-defined), pumice or glass, were observed in greenish soapy matrix same as the upper pumice tuff zone. Moderately montmorillonitized and chloritized in common.

261.47 \sim 305.30 m An alternating bed of fine tuff, coarse (sandy) tuff and pumice tuff. Pale green to light greenish grey. Weakly to moderately montmorillonitized and chloritized. Carbonate network veins occur occasionally. A couple of alteration zones (montmorillonite-chlorite-carbonate) of moderate to strong grade was caught at the depths of 292.40 \sim 295.35 and 298.00 \sim 298.40 m.

305.30 ~ 311.10 m (EOH) Basalt. Dark greenish grey, massive. This basalt lava was interpreted to be correlated to the Lower Member of the Jampang Formation.

MIT-5: MIT-5 was drilled at approximately 400 m due south of the Cibuniasih barite bed. The drill hole location is situated structurally in a trough of basement rock which was inferred from the 1-st order trend surface residual map of the Bouguer anomaly. The surface of the hole is just along the boundary of green tuff of the Upper Member of the Jampang Formation and the Kalipucang limestone. The sericite-chlorite alteration zone was detected on the surface near the drill hole by X-ray analysis. The strong alteration zone expressed by the alteration index (A.I.≥ 79 %) was also recognized on the surface in the drill hole location. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed. The geology of the drill hole is described as follows:

0 ~ 0.20 m Soil. Yellow brown.

()

- 0.20 ~ 4.90 m Saprolite. Creamy grey. Originally limestone. Partly hard.
- 4.90 ~ 5.20 m Limestone. White to creamy white. Fossil (shell) rich. This limestone is correlated to the Kalipucang Formation.
 - 5.20 ~ 7.70 m Calcareous sandstone. Light grey.
- 7.70 ~ 8.70 m Mudstone. Black. The lower part of this unit changes to an alternation of mudstone lens and coarse tuff.
- 8.70 ~ 52.70 m Dacitic tuff. White to pale green. This rock is further divided into two subunits. The upper part (8.70 ~ 34.20 m) is composed of moya-moya tuff in which plagioclase phenocrysts was observed. Whereas the lower part (34.20 ~ 52.70 m) is characterized by massive dacitic tuff in which quartz phenocryst is distinctive. Several thin layers of green fine tuff occur mainly in the upper unit. This rock is moderately altered into montmorillonite-chlorite alteration assemblage. Two strong alteration zones were found in the upper unit of this rock: 8.70 ~ 13.70 m (decolorized with pyrite network vein/dissemination), and 13.70 ~ 19.70 m (montmorillonite-chlorite-mixed layer with limonite network vein). These zones were interpreted to be correlated to the extension of footwall mineralized zone of the Cibuniasih barite bed.
- $52.70 \sim 99.00$ m Pumice tuff. Pale green to green. Green to dark grey elongated glass/pumice is contained. Several fine/coarse tuff layers are intercalated: $52.70 \sim 61.65$ m,

 $84.40 \sim 84.55$ m, $84.90 \sim 85.00$ m, and $85.70 \sim 86.30$ m. This rock is commonly altered into montmorillonite-chlorite of moderate grade. A strong alteration zone occurs in the depth of $52.70 \sim 54.20$ m (montmorillonite-chlorite-mixed layer). Greenish brown patches of limonite and hematite with a small amount of pyrite were found in two places: $86.40 \sim 86.43$ m, and $93.20 \sim 93.24$ m.

99.00 ~ 106.50 m Fine tuff. Green. This rock is composed of an alternating bed of fine tuff and coarse (sandy) tuff with thin layers of mudstone.

106.50 ~ 119.45 m Tuff-breccia. Greenish grey. Pumice and breccias (dacitic and andesitic) were observed. Two coarse tuff layers are intercalated.

()

119.45 ~ 165.40 m Coarse tuff. Light grey. Mostly sandy, partly fine. Generally massive, partly laminated. Very small (0.5 cm in diameter) green glass/pumice was occasionally found. A strong silicified and clayey (montmorillonite-chlorite-mixed layer) alteration zone was caught at a depth of 133.20 ~ 140.70 m. The other part of the coarse tuff is moderately montmorillonitized and chloritized.

165.40 ~ 250.50 m (EOH) Pumice tuff. Pale green to light grey. Lapilli, mostly essential, partly accidental, was occasionally found. This rock is commonly altered into chlorite-montmorillonite of moderate grade. Two thin sificified and clayey (kaolin-montmorillonite-chlorite-mixed layer) zones occur: 185.70 ~ 186.25 and 191.30 ~ 191.55 m.

MIT-6: The drilling MIT-6 was carried out at the IP electric survey point A-36 where is located approximately 500 m west-northwest of the Cibuniasih barite bed. The drill hote location is situated structurally on the western flank of the Pasir Gintung basement uplift sloping down to the Cikalong basin. The surface of the hole is just along the boundary of green tuff of the Upper Member of the Jampang Formation and the Kalipucang limestone. The sericite-chlorite alteration zone is developed on the surface near the drill hole. A small chargeability anomaly (chargeability ≥ 4.0 mV•S/V) was detected in a depth (N=5) of this location through the IP survey. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed. It also almed at testing one of the significant IP anomalies detected in the southwestern part of the Cibuniasih area. The geology of the drill hole is described as follows:

- 0 ~ 0.20 m Soil, Brown.
- 0.20 ~ 4.50 m Saprolite. Brown. Originally tuff.
- 4.50 ~ 5.60 m Andesite dyke. Brownish grey. Weathered. Quartz veinlets with limonite dissemination occur in this rock.
- 5.60 ~ 18.95 m Dacitic tuff. Pale green. This tuff is characterized by the abundant occurrence of quartz crystals ranging 5 mm to 1 cm in diameter. Green pumice/glass is also contained. It is moderately sericitized and chloritized in general.
 - 18.95 ~ 27.50 m Andesite dyke. Dark grey. Massive.

27.50 ~ 190.45 m Dacitic tuff. Pale green. This tuff is characterized by the abundant occurrence of quartz crystals ranging 5 mm to 1 cm in diameter same as in 5.60 ~ 18.95 m. Green pumice/glass is also contained. Several thin beds comprising fine tuff, pumice tuff and patch tuff are intercalated: 41.80 ~ 45.70 m (fine tuff/pumice tuff), 84.65 ~ 87.70 m (fine tuff), 143.95 ~ 146.10 m (fine tuff), and 148.20 ~ 150.80 m (fine tuff/patch tuff). This rock is moderately sericitized and chloritized in general, and weakly silicified in part. Significantly silicified and/or clayey zones were caught in the following depths: 118.70 ~ 119.80 m (silicified, kaolin-sericite-chlorite), 142.70 ~ 143.95 m (silicified, kaolin-sericite-chlorite), 146.10 ~ 148.20 m (silicified, kaolin-sericite-chlorite), and 180.00 ~ 182.00 m (silicified, kaolin-sericite-chlorite).

190.45 \sim 222.60 m Fine tuff. White to light green. Very thin pumice tuff layers are intercalated. Two clayey zones (sericite-chlorite-carbonate) and one silicified zone occur in this rock: 193.15 \sim 194.60 m (sericite-chlorite), 196.50 \sim 203.00 m (silicified, chlorite-sericite, and pyrite weakly disseminated), and 217.30 \sim 218.60 m (sericite-carbonate).

222.60 ~ 248.40 m Alternating bed of pumice tuff and fine tuff. Pale green to grey. Small pumice/glass and lapilli were observed. The bottom of this zone gradually changes to muddy and basic fine tuff characters.

248.40 ~ 250.50 m (EOH) Basalt lava, Dark grey.

MIT-7: The drill hole MIT-7 was dug at the IP electric survey point I-17 where is located approximately 1,200 m southeast of the Cibuniasih barite bed. The drill hole location is situated structurally on the southern flank of the Pasir Gintung basement uplift sloping down to the Cikalong basin. The surface of the hole is composed of the green tuff member of the Upper Member of the Jampang Formation. The sericite-chlorite alteration zone is developed on the surface near the drill hole. A small chargeability anomaly (chargeability ≥ 4.0 mV·S/V) was detected in the shallow part (N=1) of this location through the IP survey. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed and Pasir Gintung stratabound manganese deposit. It also aimed at testing one of the significant IP anomalies detected in the southern part of the Cibuniasih area. The geology of the drill hole is described as follows:

- 0 ~ 5.95 m Surface soil. Yellow brown.
- 5.95 ~ 6.45 m Sand with limestone pebble, Light grey.
- $6.45 \sim 9.50$ m Calcareous sandstone of the Bentang Formation. Reddish to brownish grey, mottled.
- $9.50\sim51.50$ m Mudstone. Dark grey to black. Some part sitty, another part tuffaceous. Generally brecciated indicating it was formed as turbidite. The upper part of this zone is clayey -- $9.50\sim26.25$ m. Two siticified zones were caught in this clayey mudstone: $10.60\sim11.30$ m, and $26.10\sim26.25$ m. Sulfide minerals such as pyrite, chalcopyrite and sphalerite are disseminated in the former silicified zone.

 $51.50 \sim 115.20$ m Tuff-breccia. Greenish grey. The matrix of this rock is muddy in some part. A few bed of mudstone is intercalated: $56.70 \sim 63.80$ m, and $68.80 \sim 69.00$ m. Two clayey alteration zones were caught: $54.30 \sim 56.20$ m, and $106.30 \sim 115.20$ m. The latter is silicified and clayey (sericitized) zone with weak pyrite dissemination.

115.20 ~ 206.10 m Pumice tuff. White to light greenish grey. Pumice/glass is generally small and elongated. This rock is commonly decolorized and moderately altered (sericite-chlorite). Significantly silicified and clayey zone continues from the hanging wall mudstone into this pumice tuff: 115.20 ~ 120.25 m. This alteration zone is subdivided into three: 115.20 ~ 115.90 m (silicified, sericitized and pyrite weakly disseminated), 115.90 ~ 117.70 (silicified and pyrite networking), and 117.70 ~ 120.25 m (silicified, montmorillonite-chlorite-mixed layer, and patches/seams of pyrite contained). Another significantly silicified and clayey zone was caught in the depth of 151.50 ~ 177.30 m. This zone is weakly pyritized in common. A strongly clayey and pyritized zone occurs amidst this alteration zone: 165.50 ~ 167.60 m. Because of strong sericitization and pyritization, it shows grey color.

 $206.10 \sim 222.00$ m Fine tuff. Pale green. Massive. Weakly silicified and sericitized zones with carbonate network veins occur: $206.10 \sim 207.30$, and $208.80 \sim 209.10$ m.

222.00 ~ 233.40 m Pumice tuff. Pale green. Moderately chloritized.

233.40 ~ 240.50 m (EOH) Andesite lava. Grey, massive.

5-5 Mineralization and Hydrothermal Alteration

(1) Western Area (MIT-1~4)

Four holes totaling 962.60 m were drilled in the western part of the Cisasah-Cidadap-Cibuniasih area in the second phase. Although no intersection of massive sulfide ore has been caught in these reconnaissance drill holes, a significant amount of information regarding the volcano-stratigraphy and hydrothermal alteration associated with massive sulfide mineralization was obtained in the Cisasah-Cidadap area.

MIT-1 is located approximately 5 km northeast of Cidadap. The purpose of this hole was to investigate the geologic structure of bedrock and ore horizon in the western part of the survey area, especially at an area between the Cidadap gypsum deposit and Cikalong green tuff basin. Three clayey-silicified alteration zones were caught in the green tuff succession: 50.10 ~ 52.75 m (sericite-kaolin), 105.80 ~ 114.70 m (sericite-carbonate-quartz), and 165.40 ~ 169.00 m (sericite-chlorite). One of them, probably the middle zone, was thought to be correlated to the Cidadap gypsum ore horizon.

MIT-2 is located about 500 m northeast of the Panyairan sulfide mineral showing. The purpose of this hole was to investigate the geologic structure of bedrock and ore horizon in the western part of the survey area together with MIT-1. It also aimed at the extension of

the Panyairan sulfide zone. Two clayey and slitcified zones were caught: $13.55 \sim 15.50$ m (sericite-quartz), and $58.47 \sim 59.70$ m (chlorite-kaolin-mixed layer-carbonate-quartz).

MIT-3 is located approximately 1,500 m southwest of the Cisasah gypsum mine. The purpose of this hole was to test the southwestern extension of the Cisasah mineralized horizon. It also aimed at one of the significant silicified zones found near Kp. Cipari. Three decolorized and /or silicified zones were caught in the green tuff succession: 39.50 × 45.40 m (silicified, chlorite-mixed layer), 49.70 × 53.55 m (silicified, montmorillonite-chlorite-carbonate), and 76.80 × 88.10 m (chlorite-kaolin-carbonate). One of them, probably the lower zone, was thought to be correlated to the Cisasah gypsum ore horizon.

MIT-4 was drilled approximately 1,000 m due east of the Cisasah gypsum deposit. The purpose of this hole was to test the eastern extension of the Cisasah gypsum mineralization. Several decolorized and clayey zones were caught. These were categorized into three alteration zones as follows: (1) upper zone -- 13.85 ~ 27.70 m, 33.95 ~ 48.90 m, 53.75 ~ 60.80 m -- (montmorillonite-chlorite-mixed layer, and partly silicified). (2) middle zone -- 134.15 ~ 134.95 m, 135.75 ~ 141.40 m, 163.35 ~ 165.75 m, 168.40 ~ 168.50 m, 169.80 ~ 170.90 m, 175.70 ~ 183.40 m -- (montmorillonite-chlorite-mixed layer, locally pyrite disseminated), and (3) lower zone -- 292.40 ~ 295.35 m, 298.00 ~ 298.40 m -- (montmorillonite-chlorite-mixed layer-carbonate). One of them, probably the middle zone, was interpreted to be correlated to the Cisasah gypsum ore horizon.

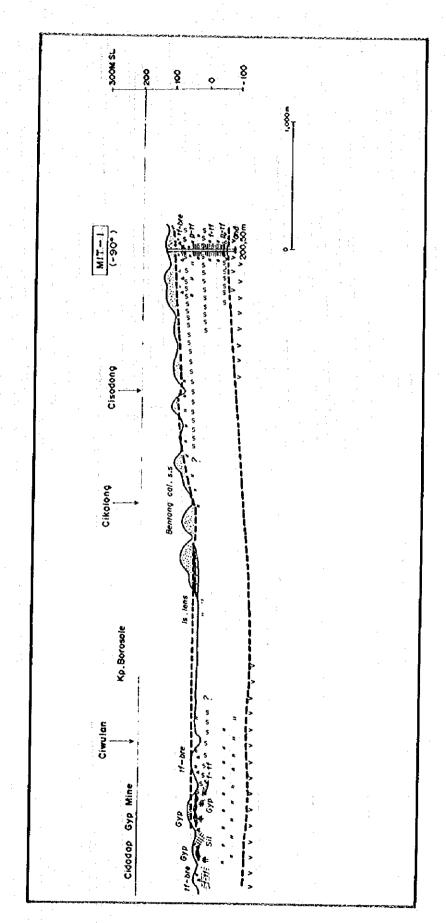
Among four holes, the most intense hydrothermal alteration was caught in MIT-4. It suggests that the potential of massive sulfide ore deposit may exist in the eastern part of the Cisasah gypsum deposit.

(2) Eastern Area (MIT-5~7)

Three holes totaling 741.50 m were drilled in the eastern part of the Cisasah-Cidadap-Cibuniasih area in the second phase. The result of these holes provided a significant amount of information regarding the volcano-stratigraphy and hydrothermal alteration associated with massive sulfide mineralization. It also contributed to check the relationship between the IP anomaly and mineralization/alteration figures in the study area.

MIT-5 was drilled at approximately 400 m due south of the Cibuniasih barite bed. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed. Several silicified and/or clayey zones were caught in the green tuff succession: 8.70 ~ 19.70 m (montmorillonite-chlorite-mixed layer, pyrite/limonite networking), 52.70 ~ 54.20 m (montmorillonite-chlorite-mixed layer), 133.20 ~ 140.70 m (silicified), 185.70 ~ 186.25 m (kaolin-montmorillonite-chlorite-mixed layer-carbonate), and 191.30 ~ 191.55 m (silicified, kaolin-montmorillonite-chlorite-mixed layer). The uppermost

zone was interpreted to be correlated to the footwall sulfide network of the Cibuniasih barite ore.


MIT-6 was carried out at the IP electric survey point A-36 where is located approximately 500 m west-northwest of the Cibuniasih barite bed. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed. It also aimed at testing one of the significant IP anomalies detected in the southwestern part of the Cibuniasih area. Several silicified and/or clayey zones were caught in the green tuff succession: 142.70 ~ 143.95 m (silicified, kaolin-chlorite-sericite), 146.10 ~ 148.20 m (silicified, kaolin-chlorite-sericite), 180.00 ~ 182.00 m (silicified, kaolin-sericite-chlorite), 193.15 ~ 194.60 m (chlorite-sericite), 196.60 ~ 203.00 m (silicified, chlorite-sericite, partly pyrite disseminated), and 217.30 ~ 218.60 m (sericite-carbonate).

MIT-7 was dug at the IP electric survey point 1-17 where is located approximately 1,200 m southeast of the Cibuniasih barite bed. The target of this hole was the lower extension of massive sulfide mineralization represented by the Cibuniasih barite bed and Pasir Gintung stratabound manganese deposit. It also almed at testing one of the significant IP anomalies detected in the southern part of the Cibuniasin area. Several silicified and/or clayey zones were caught in the green tuff succession: 9.50 ~ 26.25 m (clayey zone, two silicified zones were caught in this clayey mudstone -- 10.60 ~ 11.30 m, and 26.10 ~ 26.25 m, sulfide minerals such as pyrite, chalcopyrite and sphalerite are disseminated in the former silicified zone), 54.30 ~ 56.20 m (clayey zone), 106.30 ~ 115.20 m (silicified and clayey (sericitized) zone with weak pyrite dissemination), and 115.20 ~ 120.25 m (this zone is subdivided into three -- 115.20 ~ 115.90 m (silicified, montmorillonite-chlorite-mixed layer, and pyrite weakly disseminated), 115.90 ~ 117.70 (silicified and pyrite networking), and 117.70 ~ 120.25 m (silicified, montmorillonite-chlorite-mixed layer, and patches/seams of pyrite contained). Another significantly silicified and clayey zone was caught in the depth of 151.50 ~ 177.30 m. This zone is weakly pyritized in common; a strongly pyritized zone occurs at 165,50 ~ 167,60 m. Either the middle alteration zone (106,30 ~ 120,25 m) or the lower (151.50 ~ 177.30 m) is thought to be correlated to the mineralized horizon of the Pasir Gintung manganese deposit.

()

()

Among three holes, the most intense hydrothermal alteration was caught in MIT-7. It suggests that the potential of massive sulfide ore deposit may exist to the southern part of the Cibuniasih barite bed.

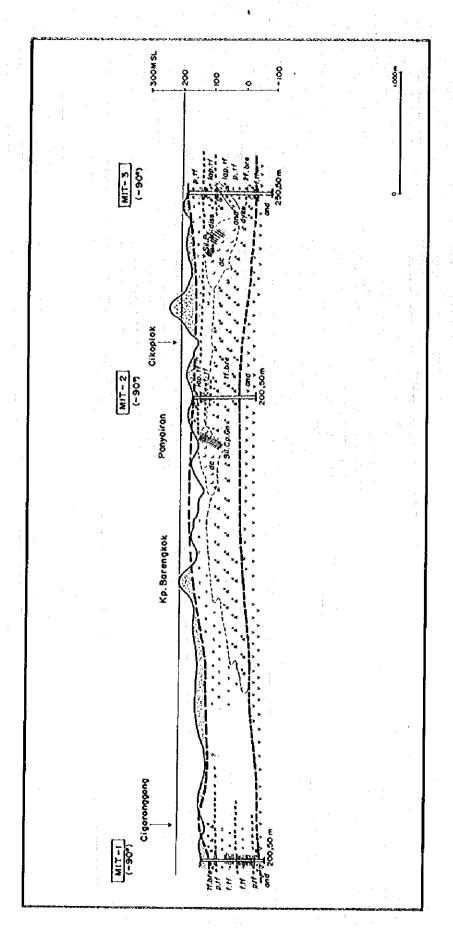


Fig. 2-44 Geologic Section along the Drill Holes (MIT-1, 2 and 3)

(_)

-- 184 --

Fig. 2-45 Geologic Section along the Drill Holes (MIT-3 and 4)

i_)

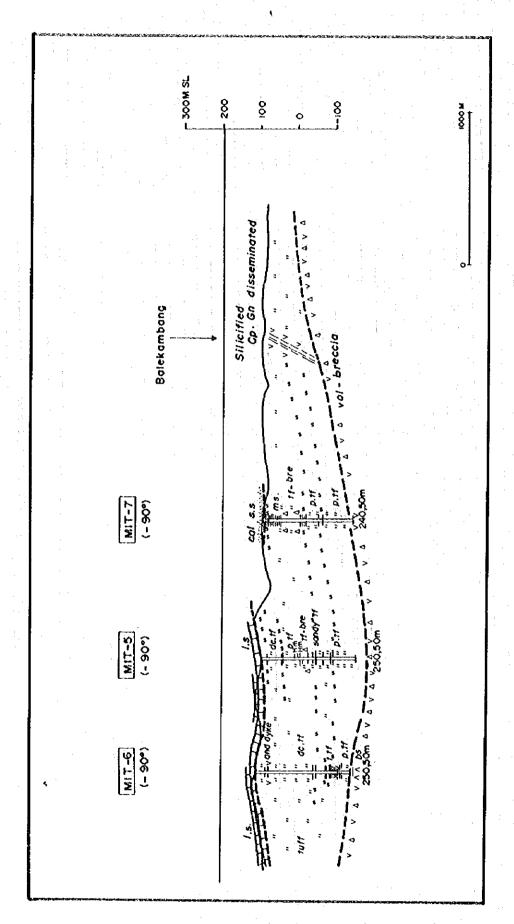


Fig. 2-46 Geologic Section along the Drill Holes (MIT-5, 6 and 7)

Fig. 2-47 Summary of Drill Log and Analytical Results of Core Samples (MIT-1)

Sapera Lang	<u>.</u>	-					i										
Calcateous Cal	epth	807	Lithology		:			ATT	ytical R	Sults		:					
Cantadig Feb Cacobemistry Summe Duefin Au Au Co Ph 2n Au Sh Fa Un Sh Co Ph Cat C	27 oc. 0		Saprolite														
			Calcareous								:						
Comparison			(Bentang Em)							-							
No.				Geochemistry	Sample	Depth	Ψ	Ą	3	8	ភ	*	ag.	5	Æ	8	¥
					No.	E	qdd	wdd	шdd	mdd	mdd	mod	mqq	ž	Endd	mdd	8
A					112	87.00-87.10	Ţ.	0.02	1.8	3.0	28	<2	27	2.4	520		
### 200-1215 0.14 274 40 100 28 4.2 4.5 700 90	4	, Q			113	97.30-97.40	-	0.24	78.8	2.0	110	2.2	22	4,0	1,200	1	1
11 12 12 12 12 12 12 12	<u>لا</u> 9		Pumice tuff		117	122.00-122.15	-	0.14	27.4	4.0	100	2.8	3	1.7	770		
Pumice tuff	L	1	Y 0 Y 0 Y 0		118	128.90-129.03	4	0.0	4.0	3.	\$	4.4	7	4.5	8		<u> </u>
	T :	} . }			9	129.75-129.90	⊽	0.02	0.1.	1.0	129	4.	<.2	4.9	720		
We will be considered to the construction We will be considere	- 1	 } }			127	163.15-183.30	⊽	0.12	3.0	5.0	120	4,	<2	5.3	910		
No. No.	, 4 	. y			8	199,85-200,00	V	90.0	35.6	2.0	120	2.2	0.2	5.5	800		
	1 8	8		Ray	Sample	Depth	After	ation Mine	rais	1	L			-			
102X 25.00.25.10 G 103X 35.00.25.10 G 103X 35		ļ			No.	ε	(A:Abunda	lant, C;Com	mon, F'Few	, R.Rare)	-						
103X 35.00.35.10 108X 52.00-52.10 108X 103X 35.00.35.10 108X 103X	Ш	7 77	Fine tuff		102X	_	Ca(A), Ak(F	77), Oz(R)			-	-	-				
106X 52.00-52.10 110X 70.00-70.10 110X 70.00-70.10 110X 70.00-70.10 110X 70.00-70.10 120X 120X 130.00-130.15 120X 130X 120X		,			103X		Ch(F), Sa(F	R7), Oz(A)	(j)		-	-				1	
Clayey 115X 1124X	Ш •				108X		Se(F), Ka(F	3) OZ(C).	(<u>)</u>		-	-	-	-		7	
Clayey 124X 124X 124X 124X 126X 126X 126X 126X 126X 126X 126X 126	Ĭ				110X		Se(R), Ka(F	3). QZ(F).	(E)		-	-	-	-			
Fine tuff """" """" """" """" """" """" """"			Clayey	-	115X	110.00-110.15	30(F), AK(F	-), Oz(A).	P(F)		-	-	:				100000000000000000000000000000000000000
Fine tuff """" """" """" """" """" """" """"	 - -				124X	167.00-167.15	Ch(R), Se(F	R), QZ(C).	P!(F)	-	-		1				27, 27, 27
Fine tuff """" """" """" """" """" """" """"	Ш	11 11				183.50-183.65	Ch(R), Qz(F	P) PI(C) :	-(F)		-		- }			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Pine ti						198.00-198.15	Ch(F), Oz(F	9. P(C)		-		-	-				
o www. Clayey Clayey www.ce www.ce clayey www.ce www. www. Clayey www.ce www.ce www.ce www.ce www.ce www.ce www.ce www.ce www.cow.cow.cow.cow.cow.cow.cow.cow.cow.	Ш	1	Fine tuff			:	-										
o www. Pumice composition of the	Ш											:		٠			
o www. www. Clayey www. ce www. www. clayey www. clayey www. clayey www. clayey www. clayey www. clayey www. clayey www. cow. cow. cow. cow. cow. cow. cow.	Ш																
constraint Pumice constraint P			,							-							
Clayey	ш								:								
Clayey Clayey Clayey Control Contro	ш.	* 2.								•	-						
m m m m m m m m m m m m m m m m m m m	` - -	~ ~						٠	-						1		
Andesit Andesit Avavavavavavavavavavavavavavavavavavava	3	2 **						٠.									
2	-	??							-							. • * • •	
4		ķ						.1									
Λ	>		Andesite	-			•						:				
8	4		lave/tuff								:					:	1
<u> </u>		۵ >														:	
	Ž	10%														:	
	- 1											:					

()

3	Lithology					*	•								
					1	Ž	Analytical Results	esults							
	5011														
, r.c.	Caprolite Caloniate	,													
	Sandstone Bentana Fa)						-								
ı.	Clayer	Geochemistry	Sample	Depth	₹	8	ā	t				ŀ			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: -	No	ε	줊	mga a	waa	. E	5 8	2 2	9	E S	Ā	å	₹
	Clayer		202	17.75-17.85	6	L	0.0	0,5	Y.	E C	E	ę	Edd	₩ Q Q	¥
	Fine tuff		203	20.60-20.70	2		26.6	0.5	7	3 6	7 5	<u>.</u>	8	8	88.46
~~	Ting Carbons		207	48.00-48.10	٧		38.2	Š	. 6	;	3 9	7	8	8	2.2
- 0	#[000 TO - T T T		211	72.30-72.40	-	0,12	35.2	3 5	2 8	1	7	*	758	8	% %
	Clayey		212	83,60-83,80	₹	8	65.2	2	2 2	3 8		6.5	8	86	93.50
4	Tutterbreak		213	94,95-96.15	-	0.12	o		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 ;	1	9,4	055	40	47.43
۵ ,	0		254	104.00-104.20	⊽	0.02	2.4	15	8	1 8	? (?	0 C	1.250	Š.	888
4			276	125.00-125.20	V	0.04	6.2	2.0	8	1.6	, ,	0 4 0 4	000,	Q+	35.27
۵ ۵ ۳			217	136.20-136.50		<05	2.8	0.5	8	2.4	3	, K	3 5	8 \$	9 8
4			210	165.00-165.20		<.02	1.4	0.5	136	9.0	3	v	3 2		
4			230	193,20-193.40	2	703	35.4	0.	4	-6-	1	, ,	3 8	ş	8
4		X-Ray	Sample	Depth	Arre	Afteration Minerals	1115	-			-	-	3	3	44.23
٥.			ģ	£	(A:Abun	(A:Abundant, C:Common, F;Few, R;Rare)	Imon, F.Fev	K. R. Rame)			-	-			
•	The family and the		201X	14,50-14,60	Se(R), Oz(A), Kt(R)	(A) X (B)			-	+		1			
*d *d			203X	20.60-20.70		Se(R), MX(R), QZ(C), PI(F)	6)2	-	-		- 	-			Ī
. 0			205X			(R), OZ(A)	<u>P</u> (i)		-	+	-	-	1		1
4			206X	41.30-41.40 Ka(R), MX(F), OZ(A), PI(F)	Ka(R) MX	(F) OZ(A)	(F)(F)			-	-	\dagger	+		Ī
 			209X	59.00-59.10	Q. (3)	(B) Aby(B)	(0)	0/0 1//	+		-	+			
<			214X	104.00-104.20 Cn(F), Ca(F), Oz(F), Pl(F)	Ch(F), Ca((F), Oz(F)	P(F)	<u> </u>				-			
1			220X	193.20-193.40 Ch(F), Qz(F), PI(F)	Ch(F), Oz((F) PI(F)	-	-	+	1		+			
] <										-		-	-{		
 -	Andesite	•											:	• .	
	lave/tuff					-									
4 >			٠												Ż
	Jagosha Fa						-			:					- 3
> <									٠.	:					
7 >				1											
 >			-										٠		
٥,											:				:
4							v.	:	:		: :		:		
Ţ	- 							:		:			:		
															

Fig. 2-48 Summary of Drill Log and Analytical Results of Core Samples (MIT-2)

()

- 188 -

Depth (•)	Log	Lithology		2			Analy	Analytical Results	ılts	: :			:			
0 38 20 20 20 20 20 20 20 20 20 20 20 20 20		So 11 Saprolite														
		. 5.								• .						: .
<u> </u>	= }}	יייי מיייייייייייייייייייייייייייייייי	Geochemistry	ry Sample	tideo	₹	8	3	8	5	-	e e	ı	£	a	Į
8 8	X X	S11/clavey		l!	m.	-	-	\vdash	 -	╁╴	-	w d	-	€åå	wdd	*
11		Andesite		305	41.90-42.00	1>	喪	0.0	2.0	2	4	27	9.	470	110	83.13
25.28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(dyke)		303	48.50-48.60	- 1 - 1 - 1 - 1 - 1 - 1	0.02	1.8	2.0	8	1.0	7	4.5	900	140	56.71
	3 4 0 7	Lapilli turr		98	53.00-53.10	₽	0.02	9.4	1.5	16	0.8	ŋ	0.45	4,100	240	3.37
8 22	1000	Andesite		306	60.00-60.10	4	0.02	24.0	2.0	105	9.0	3	5.9	1,450	110	43.48
28	> > > >	(dyke)		8	70.00-70.10	12	0.52	17.4	3.5	87	22.2	1.0	4.7	1,600	460	76.09
	2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *	clayey		307	73.00-73.10	8	0.20	4.0	1,5	8	9.0	<.2	3.3	1,300	120	20.98
\$ 8 5 8 U	₹ ** **	Lapilli tuff		808	75.00-75.10	5.14	0,24	5,	1.5	105	5.6	<.2	4.1	1,600	300	52.52
	> ; > ;	Andesite		310	94,50-94,60	2	0.02	32.6	0.5	7.	0.6	<.2	5.2	1,300	100	55.27
3	>	(dyke)		317	181.90-182.10	₹	0.16	5,8	2.0	8	4.2	د2	4.2	1,400	310	48.72
. 1	All amount agency	Labilli tuff		318	202.50-202.70	8	0.18	3.2	1.5	130	3.4	3	6.9	2,050	580	71.28
8	2 % " X	Publice tuff		319	207.20-207.40	ca	0.12	11.2	0.5	26	9.0	7	6.1	1,850	420	8
	\ \ \ \ \ \ \	Andesite	X-Ray	Sample	Depth	Atterat	Atteration Minerals		1							
	8:			No.	u	(A.Abundan	(A.Abundam, C.Common, F;Few,	on, Fifew, F	R:Rare)		-					
	x =			301X	35.10-35.20	Ch(R), Mx(R),), Oz(C), P(F)	(F)	<u> </u>	-				-	-	
): }:	Pumice tuff		302X	41.90-42.00	41:90-42.00 Mo(R), MX(F)	OZ(C)	, PI(R)			-					
S.	g =			304X	53.00-53.10	Ca(A), Qz(F)	e de la de de de									8
	R = 1			X600	34,50-64,60	34.50-64.60 Ch(R), Ka(R), Ca(A), Qz(F)), Ca(A), C)z(F)	_				- 27			
2				312X	130.35-130.55 Ch(R), Se(R), Ca(F), Oz(F), PI(F)	Ch(R), Se(R)), Ca(F), C	z(F), PI(F)								
	= 4			315X	156:20-156.40 Ch(R),	Ch(R), Ka(R)), Ca(F), C	Ka(R), Ca(F), Oz(C), PI(C), Py(R)	. Py(R)		_					
	²∢. •4.	Tuff-brecala		310X	207.20-207.40	Ch(F), Ca(R),	(F)	<u>ال</u>				-				
7 95 561	" d"															
, , , , ,	" "													1		
ш	7 7	Fine tuff	-													
212.18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															:
	> >	٠				:								:		*
	>					: **			-	:	: - - -					
	> : > : > :	(Out a									:			-	.•	
	> ;	Caspang FB								:	:		٠.			
9	>														:	
20.00	X03										:			1	-	
				:			: :			33				* · · · · · · · · · · · · · · · · · · ·	\$: : :	

		<u> </u>															
Depth (.)	3	Lithology		2			Anal	Analytical Results	esults								· .
2.50		Soil and															T
5 8 7 III	ľ	G					-			:	:						
ull		Clayey					:				;						
2 :		Fine tutt									•						
<u>.</u>	- X	Publice tuff	Assay	Sample	Depth	AL	\$4	3	Pb	នុ	я 2	Ç.	8				
1	\$ - 8 - 5 × 5 × 5	Clayey		No.	E	76	mqq	mdd	mad	mdd	32	wdd	HG4				·
25 E	* 2	Pusice tuff		413M	136.45-136.65	€0.03	\$	45	20	100	0.70	8	å				<u> </u>
60.80	2 2			416M	165,00-165,20	<0.03	∇.	30	10	52	0.84	35	9				1
	. 1			417M	168.40-168.60	€0.03	▽	8	Ŷ	80	0.71	790	04				
	,			418M	169.80-170.00	<0.03	₹	10	10	70	2.05	420	8	ĺ			1
	×	Pumice tuff	Geochemistry	/ Sample	Depth	Αu	₽¢	3	Q	5.	Α×	Sb	F.	Mn	8	Ϋ́	_
8				No.	E	qdd	mdd	mdd	mgd	шdd	wdd	udd	%	wdd	wdd	×	
	1 2			411	125.90-126.10	14	<.02	6.8	0.1	35.0	8.0	<2	1.2	370	130	44.99	8
2£	SE 2 S/F	Clayey		412	134.50-134.70	9	Z0'>	9.0	9.0	30.0	9.0	<.2	0.35	8	320	37.94	ð
	χ.	Punice turr		414	140.20-140.40	11	0.02	11.2	10.0	0.60	3.8	<2	0.4	85	061	67.20	8
58	X X	Clayey		415	152,00-152,20	23	<.02	8.0	6.5	29.0	75	<.2	1.2	094	120		58
24		Charte		418	169,80-170,00	₹	707	4.0	3.0	53.0	90	7	2.1	470	\$		इ
	ا <u>ه</u> د د	Py diss		419	181,80-182.00	6	C02	3.0	3.0	47.0	4.2	<.2	0.7	110	986	48.35	K
	ر د د د	Decitioner		422	241.30-241.50	26	<.02	4,0	4.0	28.0	5.2	0.4	1.1	240			85
11.1		77 6155	, ,	423	269.50-269.70	7	9.0	7.4	8.0	80.0	1.0	. <2	1.5	8	180	51.99	8
5		ختني		425	310.00-310.20	8	0.06	36.2	1.5	79.0	1.0	4.2	4.7	1,100	120	35.76	8
08,881	, , , , , , , , , , , , , , , , , , ,	Daciticiure		426	296.00-298.20	9	<.02	16.8	3.5	50.0	9.0	<2	2.0	460	200	36.85	; \$6
	<i>1</i> 2	Clayey	X-Ray	Sample	Depth	Alte	Afferation Minerals	rale					-	1			
200	, , ,	Pumice tuff		No.	ε	(A:Abunc	(A:Abundant, C:Common, F:Few; R:Rare)	mon. F:Fe	w. R. Rare)							1 6.	
	, j			402X	22.00-22.10	AK(R), PI(F)	(+				
	, k			403X	37,50-37.60	Mx(R), Cp(F), Md(R)	(F). Md(R)									4-	
				404X	44.00-44.10 MX(R), Cp(R), Md(R)	MX(R), Cp((R) Md(R)								V 127	::	
	 K	Pumice tuff	:	405X	58.90-59.00	Cp(F), Md(R)	(<u>R</u>)				-						
	, k			410X	114.00-114.20 Md(F),	Md(F), Fr(Fr(F), KY(R)								. :		
.520	= 1			412X	134.50-134.70 (Md(F), Fr(F)	Md(F), Fr()	6					_					
261.47	11 11			413X	138.45-136.65 [Md(F), Kf(F)	Md(F), KK		- -				-	-				Γ.
ш				416X	165.00-165.20 Cp(R), Md(F),	Cp(R), MG	(F), Fr(F)						5				<u> </u>
	7			418X	169.80-170.00 MX(F),		Cp(R), Md(C), Fr(R)	Fr(R)									
1,111,1	" "	175		419X	181.80-182.00 Cp(F), Md(F), Fr(C), KY(R)		(F), Fr(C),	Kf(R)		-					1		
238.40	$n \times u \times$	Clayey	-	426X	298.00-298.20	Mx(R), Cp(R)	(R). Md(F).	. Fr(F)			-	-	_				
55 54 56 111		Sasait Sasait		:	:					:					: '		
9	EOK	Lower Lampang								: : :	; ·	i i				: '	
																	1

Fig. 2-50 Summary of Drill Log and Analytical Results of Core Samples (MIT-4)

()

	Saprolite Lisearcone Calcarcone Calcarcone Calcarcone Calcarcone Clayey, Py (Cp. Sp) L.W. Dacitic tuff Clayey Clayey Clayey The tuff Fine tuff Tuff-breccia "" Coarse tuff "" Coarse tuff	Assay Geochemistry X-Ray	Semple Sample Solv No. 501.0 No. 500.0 No. 510.0 No. 510.0 No. 512.0 Sample Solv No. 512.0 Solv No. 512.0 Solv No. 500.0 No. 500.0 No. 513.0 No. 5	Depth m 8.55-8.65 10.00-10.10 0.00 0.00 0.00 0.00 0.00 0.	Au Ag Cu Pb 20.06 40.06 40.06 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 Alteration Minerale (A-Moundant, C:Common, F:Few, R:Rare) Cp(R), Md(F) Mo(R), Cp(R), Md(F) Mo(R), Pr(R7), Mx(R), Q2(F), Pl(C), K5(R) Cp(F), Md(F)	Ag C C C C C C C C C	Cu Cu Spem 38.4 38.4 5 Few.	Pb Pb 100 100 100 100 100 100 100 100 100 10	20 20 20 20 40 417 4117	7.00 1.00 1.48 15.0	Mn ppm 340 340 70 70 70 210 250 250 250 250 250 250 250 250 250 25	88 89 89 89 89 89 89 89 89 89 89 89 89 8	Mn ppm 170		
	Saprolite Limestons Limestons Limestons Clayey. Py (Cp. Sp) Lime Dacitic tuff Clayey Lime The tuff Lime Hem imp) Lime The tuff Lime The tuff Lime The tuff Lime The tuff Lime Lime Luff Li	Assay Geochemistry X-Ray	Semple Semple Solv No. 501.0M Semple Solv No. 512.0 No. 512.0 Solv No. 512.0 Solv No. 512.0 Solv No. 500.0 Solv Solv No. 513.0	Depth m 8.55.8.65 10.00-0.10 10.00-10.10 00.15-03.30 00.15-03.30 Depth m m Depth m Depth m 10.00-10.10 Cp 18.00-18.10 M 53.00-53.10 M 53.00-53.10 M	AM Attendary (P. P.	Ppm classification of the polymera of the poly	C. C. 20 20 20 20 20 20 20 20 20 20 20 20 20	Po Po 100 100 100 100 100 100 100 100 100 10	20 20 20 417 417 417 417 417 417 417 417 417 417		2 d 0 0 d	Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba B	M dd		╏ <u>╵┸┼╌╄┈╀┈┞┈┡┈╇╌┞╼</u> ┫╌╏ <u>╴╂</u> ┈│
	Calcareous " Mudstone " Clayer, " Py (Cp. Sp) " Py (Cp. Sp) " Dacitio tuff " Clayer " Pumice tuff " Tuff-breecia " Coarse tuff " Coarse tuff	Assay Geochemistry X-Ray	Somple Sample Solv No. 501 M Sample Solv No. 551 O. No. 551 O. No. 551 O. No. 551 O. No. 551 O. Solv Solv Solv Solv Solv Solv Solv Solv	Depth m 8.55-8.65 10.00-10.10 10.00-10.10 10.00 93.15-30.30 23.5-30.30 Depth m m 10.00-10.10 Cp 18.00-18.10 M 53.00-53.10 M 53.00-53.10 M 53.00-53.10 M	AM 60.06 60.00 60.	Ag committee by Mag com	CO 200 10 10 10 10 10 10 10 10 10 10 10 10 1	Pb	20 75 75 20 20 20 20 40 40 417 417		2 8 0 0 0	Banta Per	M bdd		
88 88 88 88 88 88 88 88 88 88 88 88 88	Mudstone Clayey. Clayey. Py (Cp, Sp) Clayey	Assay Geochemistry X-Ray	Sample	Depth m 8.55.8.65 10.00-10.10 Depth m m 10.00-10.10 Depth m 10.00-10.10 CP 16.00-10.10 CP 16.00-10.10 CP 16.00-10.10 CP 16.00-10.10 MC 53.00-53.10 MC 53.00-53.10 MC	Au co.06 co.	Ag common	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Pb Pb 5 5 100 100 100 100 100 100 100 100 100	25 20 30 30 40 40 40 417 417	- - - - - - - - - -	2 d	egg and and and and and and and and and and	W dd		
SS SS SS SS SS SS SS SS SS SS SS SS SS	Clayer Ling Py (Cp. Sp) Ling Dactucturf Clayer Pumice tuff Limo-Hem imp) Ling Tuff-brecola "" Coarse tuff "" Coarse tuff	Geochemistry X-Ray	Semple Semple Semple Semple Semple Semple Semple No. S12 No. S12 Semple No. S12 Semple	Depth m 8.55-8.65 10.00-10.10 Depth m m m m Depth m Depth m m Depth m m 10.00-10.10 Cp 18.00-18.10 Cp 18.00-18.10 M S3.00-53.10 M S3.00-53.10 M	Au cooc cooc cooc cooc cooc cooc cooc co	Ppm cd cd cd cd cd cd cd cd cd cd cd cd cd	20 20 15 15 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	90m 10 10 10 10 10 10 10 10 10 10 10 10 10	25 20 20 20 40 40 417 417		2 a 0 0 a	and Fe	M pq		
000 88 88 88 88 88 88 88 88 88 88 88 88	The tuff Tuff-breeda "" Tuff-breeda "" Coarse tuff Tuff-breeda	Geochemistry X-Ray	501M 502M 503M 510M 510M 510M 510M 510 800 800 800 800 800 800 800 800 800 8	8.55-8-65 10.00-10.10 18.00-18.10 93.15-00.30 Depth m Copth m 10.00-10.10 18.00-18.10 18.00-18.10 S3.00-53.10 MC	9.006 -0.	Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag A	20 20 15 10 5 8 4 8 8 4 20 20 20 20 20 20 20 20 20 20 20 20 20	99m 10 5 10 10 10 10 10.0 10.0 10.0 10.0 10	75 75 30 20 20 20 40 417 417		B Ø &	F 80	W dd		
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Pumice tuff Pumice tuff (Limo-Hem imp) Tuff-brecoia " Coarse tuff " Coarse tuff	Geochemistry X-Ray	501M 502M 510M 510M 510M 510M 512 502M 502X 503X 513X	8,55-8,65 10,00-10,10 18,00-18,10 93,15-03,30 Depth m Coppth m 10,00-10,10 18,00-18,10 18,00-18,10	40.06 40.06	Ag Ag Ag O.14 Uson Minere A. C. Comm. (C. C. Comm.), Md(F)	20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	10 Ppm 10 C C C C C C C C C C C C C C C C C C	75 30 20 20 40 20 417 417			F %	M dd		
8 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tunce tuff "" "" "" "" "" "" "" "" ""	Geochemistry X-Ray	503M 510M 510M 510M 510 No. 512 502X 503X 503X 513X	10.00-10.10 18.00-18.10 93.15-03.30 Depth m Coppth m Too-10.10 10.00-10.10 18.00-18.10 M S3.00-53.10 M S3.00-53.10 M S3.00-53.10	40.06 40.06 40.06 Au Ppb c1 Atterati (A-Abundan OR), Md(F) OR), Md(F)	49 49 614 1900 Minera 11. C:Comm 1.	15 Cu S S S S S S S S S S S S S S S S S S	10.0 Pb 5 5 10.0 10.0 10.0 10.0 10.0 10.0 10.0	30 20 20 20 40 40 40 417] ²		8 %	M dd		
000 000 000 000 000 000 000 000 000 00	Pumice tuff (Limo-Hem imp) Tuff-brecoia "" Coarse tuff ""	Geochemistry X-Ray	503M 510M Semple No. 512 Sample No. 502X 503X 513X	18.00-18.10 93.15-03.30 Depth m Coppth	40.06 40.06 40.06 40.06 40.06 41 41 414 414 414 414 414 414 414 414	49 ct A9 ct	20 Cu S S S S S S S S S S S S S S S S S S	10 Pb Pb 10.0	20 20 40 Pppm Pppm 4417		Ø 8	E * 0	M dd		1 1 1 1 1 1 1 1
8 8 2 2	Pumice tuff "" (Limo-Hem imp) "" Fine tuff Tuff-brecoia "" Coarse tuff	Geochemistry X-Ray	510M No. No. No. No. No. No. No. No. No. No.	93.15-93.30 Depth m	Au Ppb ppb c1 c1 c1 c2 c2 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3 c3	Ag Fpm g 0.14 gon Minera v. C.Comm	Cu Pppm 38.4 38.4 Non, P.Few	2 ppm 10.0	25 20 Ppm Ppm 417		S 8	6 % °	W dd		
8 8 2 2	" (Limo-Hem imp) " Fine tuff " Tuff-brecoia " Coarse tuff	Geochemistry X-Ray	Semple No. No. No. No. No. No. No. No. No. No.	Depth m 25.40-125.60 Depth m m m m 10.00-10.10 Cp 18.00-18.10 Mb 53.00-53.10 Mc	Ppb p c1 Atterati (A-Abundan (P), Md(F) X(R), Cp(R) X(R), Md(F) X(R), Md(F)	Ag ppm f 0.14 lbon Minera rt. C:Comm) Md(F)	28.4 38.4 200, F.Few	ppm 10.0	ez maga 71.4	A4.	ω g	g % 0	od		4 % 8
8 8 2 2	" (Limo-Hem imp) " Fine tuff " Tuff-brecoia " Coarse tuff	X-Ray		m 25.40-125.60 Depth m m 10.00-10.10 50.00-53.10 Mx	Attention PPD Attention PPD Attention PPD Attention PPD Attention PPD PPD PPD PPD PPD PPD PPD PPD PPD PP	opm p 0.14 jon Minera nt. C.Comm), Md(F)	38.4 38.4 von, F. Few.	10.0	717	15.0	&		å	ā	
8 8 2 2	(Limo-Hem imp) Fine tuff Tuff-brecoia "" Coarse tuff	×Ray		25.40-125.60 Depth m 10.00-10.10 18.00-18.10 MX 53.00-53.10 MG	Atteration (A:Abundary (A:Abun	0.14 ion Minera 1t. C:Comm), Md(F)), Mx(R),	38.4	10.0	717	15.0					
8 8 2 2	Fine tuff fuff-brecoia "" Coarse tuff	X-Ray	8 3	Depth m m 10,00-10,10 Cp 18,00-18,10 Mx 53,00-53,10 Mc	Atteration (A.Abundan (A.Abundan (A.Abundan (A.Abundan (A.A.Abundan (A.A.A), Mc(F), Mc(F), Mc(F)	** C:Comm ** Md(F) ** MX(F)	ble Non, P. Few.	r. R:Rave)			ļ				
8 2 2	Fine tu Tuff-bre Coarse			10.00-10.10 Cp 18.00-18.10 MX 53.00-53.10 Mc	(A.Abundan) (R), Md(F) (R), Pr(R? O(R), Pr(R?	"L. C.Comm,), Md(F)	on, F.Few.	/ R'Rave)							
	Tuff-bre Coarse			10.00-10.10 Cp 18.00-18.10 Mx 53.00-53.10 Mc	x(R), Co(R) o(R), Pr(R? x(F), Md(F)), Md(F)	i j			-					1 1
	Coarse			18.00-18.10 MX 53.00-53.10 MC	o(R), Co(R)), Md(F)	j j								-
	Coarse		11	\$3.00-53.10 Mc	(R), Pr(R?	7. Mx(R).	G G					1		-	
	Coarse		\dagger	30.00 30.10 IMC	O(F), MG(F)	O. MX(F)	Ĉ								
				4 4 4 4 4 4 4 4	X(F), X(A(F)		: }	Ö Ş	£			-			
	. Sil/clavev		†	138.20-138.40 Cp(F), Md(F)		 				-					
20.00	_:_			148.20-148.40 [MX(F), Cp(R), Md(F), Ca(R), Oz(C)	(F) CD(R)	Md(F), C	A(F), Ozı	Ç							F
			517X	185.70-185.90 Ka(R), Mx(F), Ca(F), Q2(C), PI(F), Pv(R)	(R), MX(F).	Ca(F), O	Z(C). PI(F	F) PV(P)							1
-	. Coarse tuff		518X 1	191.35-191.55 (Ka(R), MX(F), O2(A) PI(F)	(R) MX(F)	(A)/O	Ć.		T						1
•	*														١
45.40							:	1		f	1			;	
¥ —	, E. G					. !									
* N				-					:		:				
# 3.70 3c "												:			
00.25															
36	Clayey														
200	15						- 1	٠			1				
* * :	*														
# **			٠				,						٠.	:	
· .) 1 3 					:									
* * *	*				٠	-									
, K	3									:	٠.				
,	, and the second														
= }									-					•	
<i>t</i> ?	: ;														
X	a													:	
250.30	1														
· ·							:								

()

<u> </u>															
Tor (a)	Lithology				- 3 - 3	Ana	Analytical Results	esults							
	1108												,		
٦″, ٦															
200	ŧΤ					:		ē							
>				2.											
	(מאני)	Assay	Semple	Depth	₹	₹	3	Pp	ស្	ů	E.	8			
*			Ş	ε	V 0	mdd	mdd	mod	mdd	*	wdd	4			
			0 SM	180.80-181.00	8	V	5	10	36	1.70	978	8			
			<u>-,</u>	196.70-196.90	8	V	35	Ą	150	2.89	1,620	8			
ر ان ان	Dactic tuff	Geogramsty	ñ	Depth	₹	\$	3	đ	គ	₹	8	.	ş	ā	Į₹
د د			ž	E	á	e d	E E	E	₩ da	e d	wdd	8	E G	Hod	*
			8	10.20-10.30	-	8	0	3.5	28	<2	<.2	8.0	180	500	67.03
#	-		ğ	85.65-85.75	₹	705	1.2	3.0	8	9.0	¢.2	3.7	050	8	70.5
J ≥		X-Kay	Sample	Depth	Affe	Attention Minerals	Yala		-	ŀ	-				
100 L			Ş	E	-(A:Abune	-(A:Abundant, C:Common, F:Few, R:Rare)	MON, F.Fe	*, R.Rare)			-				
ر.			603X	38.50-38.60	Ka(R), MX(F), Oz(A), PI(R)	F). Qz(A).	Pi(R)		-	-	-	-			
اً: ا			X909	61.20-61.30 Ch(R), MX(R), Cp(R), Md(F), Cz(A), Kf(R)	Ch(R), MX	(R), Cp(R)	Md(F)	Z(A). KY(F	-		-	-			
22.00	Silicified		X609	95.00-95.20 [Mo(R), Ch(R), Mx(R), Ca(F), Clz(A), PI(A)	Mo(R) Ch((F), Mx(F)	Q.(F).Q	Z(A) PI(A			\parallel	-			
: - . ر.	-		611X	119.20-119.40 Ka(R), Oz(A), PI(F)	Ka(R), Oz(,	A. PI(F)	-		-	-	-	1			
ج لـ	Dacitictuff		913X	146.80-147.00 Ka(R), QZ(A), PI(F)	Ka(R), Qz(,	& PI(F)			-		-	-1-			
14.2.70			9.6%	180.80-181.00 Ka(R), Qz(A), PI(F)	Ka(R), Oz(A, PI(F)	-	:	-	-	-	-			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		M7X	198.70-196.90 Ch(F), Qz(C), PI(F)	Ch(F), QZ(C). Pi(F)				-	-				
, ozes,	2		X6:9	232.00-232.20' Ch(P),	Ch(R), Se(1	Se(R), Oz(C), PI(F)	PI(F)		-	-		-			
	Dacitic tuff														
و د ځ			٠							:					
" " " "	÷														
	~~~		i				- :	: . -							
190,45 190,45	" Decitio tuff	-													
	Clayer						1								
203.00	Silioified												:		
	Ti za						÷							. :	,
20.00	× × × × × × × × × × × × × × × × × × ×														-
å	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											•		. :	٠
	Pumice tuff		ż							1					
¥ ¥			:			:	: :	:							
25.9	Sudstone Sassit	•	`.		:					•					
HO3				•											:
	(BE SUDGER)		:			1								٠	
										.		:			

Fig. 2-52 Summary of Drill Log and Analytical Results of Core Samples (MIT-6)

()

- 192 -

Fig. 2-53 Summary of Drill Log and Analytical Results of Core Samples (MIT-7)

ſ		1		-																				~	63.1	· · ·				·	· · · ·			 1		:			Ī
															¥	ď	77.45	55,92	44.71	38.45	43.39	24.47	73.49	71.58	95.05	72.67				1									
ŀ	111. As	1.4			:			.:				5÷		-	8	шее	. 80	20	3	8	8	20	S	8	8	8	-		,-	-								:	
						_	_				- 1-					<u> </u>	880	430	240	200	270	770	430	300	420	570		1.6	•	1. 1.			ļ.			-			
	ju ŝ	7				_		_	-	)		<u></u>		_	Mn	wdd						400	-1	-		7	~							. :					
	_. :					8	#dd	20	20	20	20	80	20	20	F¢	*	4.5	5.3	4.6	4.6	5.7	4.5	1.7	1.4	2.5	2.7							,						
						Ę	wdd	9	2,730	1,140	120	300	350	300	Sb	wdd	22	<22	<2	<22	<2	<2	<.2	<2	<2	<.2		:											
-						e e	*	2.00	3.83	3.47	2:32	1.64	301	2.59	8	wdd	5.4	2.0	4.8	1,4	0.8	9.0	د2	1.2	2.2	4.8												:	
						ភ	Egg	2,920	335	. 001	8	8	125	99	ųz.	mdd	710	901	94	6	83	8	36	41	77	55	-		<u></u> -	4			$\vdash$						
	S					-	-	8		10	s	. 2	15	. 2		-	73.5	3.0	3.0	3.5	2.5	2.0	4.0	3.0	5.0	5.5	-	Rare)	-	_		_	-						
	Result				: : : : :	8	#dd	١.	25	20	22	5	5	10	æ	Edd		v	¥	8	2	8	60	6.2	6.8	7.2		F;Few, R;Rare)	-		3, Oz(R)								
	Analytical Results		:		::	5	Ega	500.	5				7.1		3	wdd.	52.0	37.6	L	21.8		19.8	10.8				nerals	mmon.	, He(R)	QZ(F), PI(F)	Ka(R), Mx(R), Cp(R), Md(R)	F QZ(F)	R) OZ(A)			-			
	Amo			٠.	: "	8	E	-	٧	<b>∇</b>	⊽	٧	V	Ç	₹	Edd	0.12	0.02	0.02	0,02	¢,02	<.02	0.05	0.0	9.0	0.06	Atteration Minerals	(A:Abundant, C:Common.	OZ(A), PI(F), He(R)		₽. Q	P) C (F)	(F)						
	( ) ( )					Į	¥	8.03	60.03	50.03	8.8	<0.03	<0.03	£0.03	Ą	add	0	V	⊽	V	V	V	⊽	٧	⊽	V	Affer	(A:Abund	Ka(R), Oz(	Mo(R), MX(F).	F) XX	119.70-119.90 MX(F), Md(R),	Ka(R) MX(R)						
					:	+			25	98.0	04.4	8	8	5.50	_	_	<u> </u>	8	0	୍ଷ ଷ୍ଟ	8	92	5.50	88	ଥ	0.55	-  -	7	7			08.6 W	8		٠				
					٠.	2 ge	E	10,80-10,90	26:10-26:25	109.70-109.90	117.50-117.70	119,70-119.90	161,10-151.30	156.40-166.60	Dept.	£	19.80-19.90	42.50-42.60	55.00-55.10	64,10-64,20	95,90-86,00	98,45-98.65	145,30-145,50	155,45-155.65	183.30-183.50	200,35-200,55	Depth	ε	19.80-19.90	55.00-55.10	98.45-98.65	19,70-11	166.40-166.60			÷			
		İ			. :	Samole	  - 	-					7		Sample	· o	╁┷				~	_			Γ		98	Š		-		,	T	1					
•					• :	S	S	701M	703M	709M	710M	711M	715M	716M	-	1	702	Š	705	8	707	708	713	714	7.8	27	93		702X	78.57 X205	708X	711X	716X						
						) Personal									homistry	2							:	:			(-Ray								. '				
					: .	ľ		L				L			3												_	<u> </u>						]					
	<u> </u>	-	e e			'n						_ <u>.</u> .		<u> </u>	¥ .		<u> </u>		-		•			•										٤.					
	Lithology		pebble	0116	S S S	413	y ce v		ecc19				ecc1a					V d155	/clayey dask/parch		tutt							4 6 7 4				もしまず		1 tuff	, n				
	4217	,	and a	A SOCIAL	900	- 4	Augstone Sil/clavev	Xucatone	Tuff-breecia	Clayey	: .		Tuff-brecola				layey		10/11/0		Pustoe		:		Veyer Veyer	•	٠	1	リンで回った。			Fine		Pumice	Andesite				
		0	S	Ì				×	1	1_	1 2		* d	= <	3 <b>4</b>	=		٦,			a. 	i	, ],	· . }	; { .	0 }	=	ء و	50	5.	.			***	* > >				1
	3					Ň			ă X	<b>]</b>	**************************************	<b>,</b> 4	* d	4	.*⊲	* <		₹	irn.	2 0		s '	1	`.`. }°`,		\ }	0	٠,	-0	0	4			9	) > }	X0X			-
	Depth	0	\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9	2	9 R			\$65.50	8					:	8 Ī	3	02.01	38.83				<u>ر</u> مَرِّ				ŗ		. 1	-200	20.50		8.23	l		}	Ş. 		
																-	:		:																				
							٠		٠.						:			193					:																
																	-	183	,										:		٠								

i, )

#### 5-6 Discussion

In the western survey area, four holes totaling 962.60 m were drilled in the second phase. Although no intersection of massive sulfide ore has been caught in these reconnaissance drill holes, a significant amount of information regarding the volcano-stratigraphy and hydrothermal alteration associated with massive sulfide mineralization was obtained in the Cisasah-Cidadap area.

In MIT-1, three clayey-silicified alteration zones were caught in the green tuff succession:  $50.10 \sim 52.75$  m (sericite-kaolin),  $105.80 \sim 114.70$  m (sericite-carbonate-quartz), and  $165.40 \sim 169.00$  m (sericite-chlorite). One of them, probably the middle zone, was thought to be correlated to the Cidadap gypsum ore horizon.

( )

In MIT-2, two clayey and silicified zones were caught:  $13.55 \sim 15.50$  m (sericite-quartz), and  $58.47 \sim 59.70$  m (chlorite-kaolin-mixed layer-carbonate-quartz).

In MIT-3, three decolorized and /or silicified zones were caught in the green tuff succession: 39.50 ~ 45.40 m (silicified, chlorite-mixed layer), 49.70 ~ 53.55 m (silicified, montmorillonite-chlorite-carbonate), and 76.80 ~ 88.10 m (chlorite-kaolin-carbonate). One of them, probably the lower zone, was thought to be correlated to the Cisasah gypsum ore horizon.

In MIT-4, several decolorized and clayey zones were caught. These were categorized into three alteration zones as follows: (1) upper zone -- 13.85  $\sim$  27.70 m, 33.95  $\sim$  48.90 m, 53.75  $\sim$  60.80 m -- (montmorillonite-chlorite-mixed layer, and partly silicified), (2) middle zone -- 134.15  $\sim$  134.95 m, 135.75  $\sim$  141.40 m, 163.35  $\sim$  165.75 m, 168.40  $\sim$  168.50 m, 169.80  $\sim$  170.90 m, 175.70  $\sim$  183.40 m -- (montmorillonite-chlorite-mixed layer, locally pyrite disseminated), and (3) lower zone -- 292.40  $\sim$  295.35 m, 298.00  $\sim$  298.40 m -- (montmorillonite-chlorite-mixed layer-carbonate). One of them, probably the middle zone, was interpreted to be correlated to the Cisasah gypsum ore horizon.

Among these four holes, the most intense hydrothermal alteration was caught in MIT-4. It suggests that the potential of massive sulfide ore deposit may exist in the eastern part of the Cisasah gypsum deposit. The area in the vicinity of Cisasah, especially from the Cisasah gypsum mine to Panyosogan, is a significant potential prospect of massive sulfide deposit. Because it is situated geologically on a favorable structural location: at the margin of the Cibongas basin where is facing to the Middle Ciwulan basement uplift, and also because pervasive sericite-chlorite alteration is distributed both on the surface and below the surface. The southeastern part of the area is covered by the Bentang calcareous sandstone. Several alteration horizons were caught in the drill holes.

Three holes totaling 741.50 m were drilled in the eastern part of the Cisasah-Cidadap-Cibuniasih area in the second phase. The result of these holes provided a significant amount of information regarding the volcano-stratigraphy and hydrothermal

alteration associated with massive sulfide mineralization. It also contributed to check the relationship between the IP anomaly and mineralization/alteration figures in the study area.

In MIT-5, several silicified and/or clayey zones were caught in the green tuff succession:  $8.70 \sim 19.70$  m (montmorillonite-chlorite-mixed layer, pyrite/limonite networking),  $52.70 \sim 54.20$  m (montmorillonite-chlorite-mixed layer),  $133.20 \sim 140.70$  m (silicified),  $185.70 \sim 186.25$  m (kaolin-montmorillonite-chlorite-mixed layer-carbonate), and  $191.30 \sim 191.55$  m (silicified, kaolin-montmorillonite-chlorite-mixed layer). The uppermost zone was interpreted to be correlated to the footwalf sulfide network of the Cibuniasih barite ore.

In MIT-6, several silicified and/or clayey zones were caught in the green tuff succession:  $142.70 \sim 143.95$  m (silicified, kaolin-chlorite-sericite),  $146.10 \sim 148.20$  m (silicified, kaolin-chlorite-sericite),  $180.00 \sim 182.00$  m (silicified, kaolin-sericite-chlorite),  $193.15 \sim 194.60$  m (chlorite-sericite),  $196.60 \sim 203.00$  m (silicified, chlorite-sericite, partly pyrite disseminated), and  $217.30 \sim 218.60$  m (sericite-carbonate).

In MIT-7, several silicified and/or clayey zones were caught in the green tuff succession: 9.50 ~ 26.25 m (clayey zone, two silicified zones were caught in this clayey mudstone ~ 10.60 ~ 11.30 m, and 26.10 ~ 26.25 m, sulfide minerals such as pyrite, chalcopyrite and sphalerite are disseminated in the former silicified zone), 54.30 ~ 56.20 m (clayey zone), 106.30 ~ 115.20 m (silicified and clayey (sericitized) zone with weak pyrite dissemination), and 115.20 ~ 120.25 m (this zone is subdivided into three ~ 115.20 ~ 115.90 m (silicified, montmorillonite-chlorite-mixed layer, and pyrite weakly disseminated), 115.90 ~ 117.70 (silicified and pyrite networking), and 117.70 ~ 120.25 m (silicified, montmorillonite-chlorite-mixed layer, and patches/seams of pyrite contained). Another significantly silicified and clayey zone was caught in the depth of 151.50 ~ 177.30 m. This zone is weakly pyritized in common; a strongly pyritized zone occurs at 165.50 ~ 167.60 m. Either the middle alteration zone (106.30 ~ 120.25 m) or the lower (151.50 ~ 177.30 m) is thought to be correlated to the mineralized horizon of the Pasir Gintung manganese deposit.

Among these three holes, the most intense hydrothermal alteration was caught in MIT-7. It suggests that the potential of massive sulfide ore deposit may exist to the southern part of the Cibuniasih barite bed. The area in the vicinity of Cibuniasih, especially to the south of the Cibuniasih barite bed, is thought to be another significant potential prospect of massive sulfide deposit; it is situated structurally at the marginal part of the Cikalong basin facing to the Pasir Gintung basement uplift; an extensive sericite chlorite alteration zone occurs on the surface and in the depth; and a series of distinctive IP chargeability anomalies was detected at several places. The prospective locations are Sukasari and Bihbul. Sukasari is located 1,200 m southwest of the Cibuniasih barite bed. The surface of the location is widely covered by the Kalipucang limestone. Some of the chargeability anomalies caught in Sukasari are still open both to the northwest and to the southeast. The other alteration zones occur to the southwest of Sukasari as well. Bihbul is located 1,200 m southeast of Cibuniasih barite bed. Remarkable IP chargeability anomalies were detected

below the rice-field where some quartz floats with limonite dissemination were found in green tuff outcrops.

Drill holes MIT-6 and 7 were dug for testing chargeability anomalies detected trough the IP survey. In both cases, several significant silicified and clayey alteration zones with some sulfide dissemination were caught. Although these alteration zones occur in somewhat different depths from the estimation by the IP result, the chargeability anomaly, which is characterized by the low apparent resistivity, has been confirmed to represent the hydrothermal alteration zone associated by the massive sulfide mineralization.

## PART III CONCLUSIONS AND RECOMMENDATIONS

#### PART III CONCLUSIONS AND RECOMMENDATIONS

#### **Chapter 1 Conclusions**

On the basis of the results of the second phase works comprising geological survey, rock-chip geochemical survey, gravity geophysical survey, IP electric survey and drilling exploration, the following conclusions are obtained.

(1) Miocene dacitic volcanic and pyroclastic rocks (called green tuff) are widespread in the Cisasah-Cidadap-Cibuniasih area. Two massive anhydrite gypsum ore deposits and a barite bed were found within the green tuff. Stratabound manganese ores, ferruginous chert layers and silicified zones are developed near these gypsum and barite occurrences. Details of the volcano-stratigraphy and hydrothermal alteration of these mineral occurrences were studied this phase. These stratabound deposits occur at a couple of horizons within the green tuff succession. The structure of the green tuff is characterized by a regional gentle synclinorium with axes of N-S to NE-SW and local basin structures. A couple of basin structures, about 10 km in diameter was recognized in the central northern and central southern parts of the area. The total thickness of the green tuff was estimated to exceed to 300 m amidst the basin. The Bentang calcareous sandstone, and Kalipucang limestone in some cases, occur above the green tuff.

j

- (2) On the basis of the result of the X-ray diffraction analysis, six hydrothermal alteration zones -- silicified zone, sericite-chlorite-mixed layer zone, montmorillonite-kaolin zone, zeolite zone, pyrophyllite-kaolin zone, and carbonitized zone -- were distinguished regionally in this area. Among these alteration zones, three zones were recognized to be closely related to the massive sulfide mineralization arranging in the order of -- central sericite-chlorite zone, intermediate montmorillonite-kaolin zone, and peripheral zeolite zone. The alteration survey revealed several intense sericite-chlorite alteration zones within the survey area. The stratigraphic succession of the massive sulfide mineralization was categorized into several zones together with the host green tuff members. The assemblage of alteration minerals in each zone was defined in details this phase. The mode of occurrence and distribution of geochemical anomalies for metallic elements and alkali components (and alteration index A.I. calculated from alkali components) were examined through the rock-chip geochemical survey, and several significant anomalous zones such as Cisasah and Cibuniasih were outlined in the survey area.
- (3) As a result of the gravity survey in conjunction with the geologic structure of this area, three important structural components -- basin and basement uplift, fault, and local trough -- were defined. Two basins and two uplifts were distinguished in the survey area: Cikalong

basin, Cibongas basin, Middle Ciwulan uplift, Pasir Gintung uplift, and Pasir Garu uplift. The known stratabound mineral showings lie on the flank of the gravity structure from an uplift to a basin, which was interpreted to be situated at the margin of a basin facing to a basement uplift. The Cibunlasih barite bed occurs on the flank of the Pasir Gintung uplift to the Cikalong basin. The Cisasah gypsum deposit is situated on the flank of the Middle Ciwulan uplift to the Cibongas basin. The Cidadap gypsum deposit, which is not so distinctive as the former two cases, looks to be located at the middle of the Middle Ciwulan basin down to a gravity low near the coast of Indian Ocean. Several steep gravity gradients were observed and considered geologically as faults of N-S and E-W systems. A local trough structure of the basement was found in the vicinity of Cibuniasih barite bed on the gravity residuals map. It is located at the flank of the gravity structure between the Pasir Gintung uplift and Cikalong basin, stretching to the southwest. Another trough structure was recognized at the south of Cisasah gypsum mine stretching to the northeast.

(4) Time-Domain IP (Induced Polarization) electric survey was carried out in the Cibuniasih area. Anomalies of the chargeability (more than 4.0 mV•S/V) were mainly detected at: (a) south-western part of lines C, D, (b) south-western part of line A ((a) and (b) are located in Sukasari), and (c) middle part of lines J, K, L (Bihbul). These anomalies occur from shallow into deep zones (about 150 m below the surface) in distinct expanse. These anomalies were interpreted to be related to the mineralization with clay alteration. Smaller scale anomalies were detected at: (d) in the vicinity of Nos. 11 and 16 on line I, (e) in the vicinity of No. 8 on line H, (f) in the vicinity of No. 5 on line E, and (g) in the vicinity of No. 36 on line A.

( )

1

- (5) A drilling program comprising 7 holes totaling 1,704.10 m was conducted in the Cisasah-Cidadap-Cibuniasih area this phase. Four holes (MIT-1~4) totaling 962.60 m were drilled in the western part, and another 3 holes (MIT-5~7) totaling 741.50 m in the eastern part. The results of these holes provided a significant amount of information regarding the volcano-stratigraphy and hydrothermal alteration associated with massive sulfide mineralization, although no intersection of massive sulfide ore has been caught in these holes. It also contributed to check the relationship between the IP anomaly and mineralization/alteration figures in the survey area. Among these holes, relatively intense hydrothermal alteration was caught in MIT-4 in the western area, and MIT-7 in the eastern area respectively.
- (6) The area in the vicinity of Cisasah, especially from the Cisasah gypsum mine to Panyosogan, is a significant potential prospect of massive sulfide deposit. Because it is situated geologically on a favorable structural location: at the margin of the Cibongas basin where is facing to the Middle Ciwulan basement uplift, and also because pervasive sericite-chlorite alteration is distributed both on the surface and below the surface. The southeastern part of the area is covered by the Bentang calcareous sandstone. Several alteration horizons were caught in the drill hole MiT-4. One of them, probably the middle one in which

significant pyrite dissemination was accompanied, was interpreted to be correlated to the Cisasah gypsum ore horizon. Due to the existence of a mining concession (KP 912), the drilling activity was limited this year. After the expiration of this concession in the next phase, an exploration program comprising IP survey and follow-up drilling can evaluate the potential of this area.

(7) The area in the vicinity of Cibuniasih, especially to the south of the Cibuniasih barite bed, is thought to be another significant potential prospect of massive sulfide deposit; it is situated structurally at the marginal part of the Cikalong basin facing to the Pasir Gintung basement uplift; an extensive sericite-chlorite alteration zone occurs on the surface and in the depth; and a series of distinctive IP chargeability anomalies was detected at several places. The prospective locations are Sukasari and Bihbul. Sukasari is located 1,200 m southwest of the Cibuniasih barite bed. The surface of the location is widely covered by the Kalipucang limestone. Some of the chargeability anomalies caught in Sukasari are still open both to the northwest and to the southeast. The other alteration zones occur to the southwest of Sukasari as well. Bihbul is located 1,200 m southeast of Cibuniasih barite bed. Remarkable IP chargeability anomalies were detected below the rice-field where some quartz floats with limonite dissemination were found in green tuff outcrops. Two drill holes (MIT-6 and 7) were dug in these IP anomalies, and three intensive alteration zones (upper, middle and lower horizon) consisting mainly of silicification and sericitization-chloritization with significant dissemination of pyrite were caught in these drill holes. The drilling activity this phase was limited because it was done in the rainy season. The follow-up drilling for targeting some IP anomalies which were caught this phase and will be detected by the additional IP survey next phase is necessary in the dry season next year.

( -)

#### Chapter 2 Recommendations for the Third Phase Survey

#### East of Cisasah Prospect

It is recommended that the detailed IP survey shall be made within an area of 4 to 5 km² which covers the Cisasah gypsum deposit and its eastern area. After the IP survey, a reconnaissance drilling for testing the IP anomalies shall be made. The target depths should be set slightly deeper to the east because it is going to approach the green tuff basin.

#### South of Cibunias h Prospect

An exploration program comprising the additional IP survey and reconnaissance drilling for the area of about 20 km² is recommended in the next phase. The additional IP survey must be made in Sukasari where IP chargeability anomalies caught this phase are still open to three directions: to NW, SW and SE. After defining IP anomalies, the drilling shall be carried out in Sukasari and Bihbul for the purpose of evaluating the potential for the massive sulfide ore deposit.

### **REFERENCES**

#### REFERENCES

- Adkins, J. et al., 1978, A regional gravity base station network for Indonesia: Publikasi Teknik-Seri Geofisika, n.6, Geological Survey of Indonesia.
- Basuki,A., Sumanagara,D.A., and Sinambela,D., 1994. The Gunung Pongkor gold-silver deposit, West Java, Indonesia: J. Geochem. Expl. 50, p.371-391.
- Chrille, J.C., and Mitchell, A.H.G., 1994, Magmatic arcs and associated gold and copper mineralization in Indonesia: J. Geochem. Expl. 50, p.91-142.
- Colley, H., and Rice, C. M., 1975, A Kuroko-type ore deposit in Fiji: Econ. Geol., v.70, p. 1373-1386.
- Date, J., Watanabe, Y., and Saeki, Y., 1983, Zonal alteration around the Fukazawa Kuroko deposits, Akita Prefecture, Northern Japan: Econ. Geol., Monograph 5, p.365-386.
- Elston, W. E., 1994, Siliceous volcanic centers as guides to mineral exploration; review and summary: Econ. Geol., v.89, p.1662-1686.
- Hamilton, W., 1979, Tectonics of the Indonesian region: U.S.Geol. Surv., Prof. Paper, n.1078, 345p.
- Hayba, D.O., Bethke, P.M., Heald, P., and Foley, N.K., 1985, Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal preceous-metal deposits: Reviews in Econ. Geol., v.2, p.129-167.
- Henley, R.W., 1985, The geothermal framework of epithermal deposits: Review in Econ. Geol., v.2, p.1-24.
- Hoffman, S.J., 1986, Geochemical exploration--The soil survey: in Exploration Geochemistry: Design and Interpretation of soil surveys, Fletcher, W.K., et al. (ed.), Reviews in Econ. Geol., v.3, p.19-38.
- Ishikawa, Y., Sawaguchi, T., Iwaya, S., and Horiouchi, M., 1976, Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes: Mining Geology, v.26, p.105-117 (in Japanese).
- La Porte, M., 1962, Elaboration rapide de cartes gravimetriques deduites de l'anomalie de Bouguer a l'aide d'une calculatrice electronique: Geophys. Prosp., v.10, p.238-257.
- McKinstry,H.E., 1955, Structure of hydrothermal ore deposits: Econ. Geol. 50th Anniv. Vol., p.170-225.

- Milesi, J.P., Sunarya, Y., etc., 1994, Cirotan, West Java, Indonesia: A 1.7 Ma hybrid epithermal Au-Ag-Sn-W deposit: Econ. Geol., v.89, p.227-245.
- Nakajima, T., 1993, Reconstruction of the depositional circumstances of the kuroko deposits in the Hokuroku basin: Bull. Geol. Surv. Japan, v.44, n.2/3/4, p.251-282 (in Japanese).
- Ohtagaki, T., Tsukada, Y., Osada, T., and Fujioka, Y., 1969, Geology and ore deposits of the Shakanai mine (2), alteration of the country rocks: Mining Geology, v.19, p.285-298 (in Japanese).
- Sato, T., Tanimura, S., and Ohtagaki, T., 1974, Geology and ore deposits of the Hekuroku district, Akita Prefecture: Mining Geology Special Issue, n.6, p.11-18.
- Sillitoe,R.H., 1989, Gold deposits in Western Pacific Island Arcs; The magmatic connection: Econ. Geol., Monograph 5, p.274-291.
- Shirozu, H., 1974, Clay minerals in altered wall rocks of the Kuroko type deposits: Mining Geology Special Issue, n.6, p.303-310.
- Talwani, M., Worzel, J.L. and Landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zones: Jour. Geophys. Res., v.64, p.49-59.
- Tytuba, J. J., 1994, Evolution of volcanic and tectonic features in caldera settings and their importance in the localization of ore deposits: Econ. Geol., v.89, p.1687-1696.
- Urabe, T., 1987, Kuroko deposit modeling based on magmatic hydrothermal theory: Mining Geol., v.37, n.3, p.159-176.
- Van Bemmelen, R.W., 1949: The Geology of Indonesia, Government Printing Office, The Hague, 3 volumes.

# APPENDICES

App. 1 Assay Results of Ore Samples

[Surface Samples]

	SAMPLE	λu	Ag	Qu	Pb	Zn	Fe	<b>k</b> n	Ba
	No.	g/t	ppn	ppn	pon	opn	X	роп	ppn
Į	A1002	<0.03	2	20	551	130	0.69	220	20
1	¥1003	<0.03	<1	10	<5	40	0.53	100	<20
١.	A1006	<0.03	1	310	35	780	3.24	290	60
١	A1009	<0.03	<u> </u>	240	15	60	2.77	680	280
١	A1010	<0.03	95	9650	4600	>50000	6.66	780	20
•	A1026	<0.03	(1)	30	5	185	4.46	>50000	1140
١	A1040	₹0. 03	17	6420	590	>50000	11.50	900	<20
١	A1058	<0.03		60	5	765	13.65	210	20
	AROO9	0.51	>200	730	12420	8290	0.76	70	10720
1	VH038	<0.03	<1	15	20	30	0.88	60	520
į	AH048	<0.03	1	15	30	400	25.00	2860	540
.	AH056	0.06	34	34600	1160	>50000	7.90	740	20
1	AH057	<0.03	2	4910	5	7370	6.43	740	20
١	AH059	<0.03	1	2180	5	990	5. 91	1080	20
1	AH068	<0.03	8	580	2130	2600	0.58	>50000	16540
	AH076	<0.03	(1)	20	10	55	1.90	1060	40
	AH077	<0.03	<u> </u>	10	⟨5	105	5.01	320	20
1	AR079	<0.03	<u> </u>	10	₹5	<5	4.46	50	20
Į	AH081	<0.03		10	<5	5	4.78	90	<20
ı	AH094	<0.03	64	14060	480	11080	10. 25	3850	80
١	AH095	<0.03	8	100	15	20	9.04	40	<20
1	AH096	<0.03	5	75	20	5	9.69	20	20
ļ	AR144	₹0.03	<1	65	55	65	7.37	8620	360
ļ	AH148	<0.03	(1)	45	<5	70	4.32	>500001	16020
1	AK003	<0.03	(1	10	<5	5	0.32	1640	33600
1	AD010	<0.03		80	45	210	>30.00	11280	1300
1	AD013	(0.03	<u> </u>	75	30	20	3. 35	90	120
١	VD035	<0.03	( )	550	10	495	4.17	5380	820
1	AD034	⟨0.03	(]	110	⟨5	160	>24.00	8610	400
L	AD083	(0.03	(1)	20	<u> </u>	20	3. 34	220	20

[Core Samples]

SAMPLE	Au	Ag	Çυ	Pb	Žn	Ге	Mn	Ba
No.	g/t	ppn	ppn	ppn	ppn	<b>%</b>	opm	ppn
4131	<0.03	(1)	45	20	100	0.70	90	40
416¥	<0.03	<1	30	10	55	0.84	150	40
417M	<0.03	(1)	20	<5	80	0.71	790	40
418¥	<0.03	(1)	20 10	10	70		420	60
501 M	<0.06		20	10	75	1.60	340	20
502N ·	<0.06	(1)	15	5	30	2.12	180	160
503M	<0.06	<1	10	10	20		70	140
510M	<0.06	(1)	5	5	40	2. 12	210	20
616N	<0.06	: (1[	5	10	35	1.70	240	₹20
617M	<0.06	<1	35	<5	150	2.89	1620	<20
701N	<0.03	1	1065	30	2920	2.06	160	20
703N	<0.03	<1	50	35	335	3.83	2730	<20
709¥	<0.03	<1	20	10	100	3. 47	1140	20
710X	<0.03	<b>(1</b> )	5	5	50	2. 92	120	20
711M	<0.03	<11	5	5	60	i. 64	390	<20
715¥	<0.03	<11	. 5	15	125	3.01	350	<20
716W	<0.03	<b>&lt;1</b>	10	5	60	2. 59	390	20

App. 2 Analytical Results of Rock-Chip Samples

Aid19 (1 0.10 18.0 8.5 106 0.8 (0.2 6.4 1560 300 2.22 1.69 5.22 2.66 61.99 Aid20 (1 0.04 11.0 17.0 27 0.8 (0.2 1.7 70 560 0.57 0.47 1.21 0.11 71.79 Aid24 (1 0.02 9.4 6.0 31 0.8 (0.2 1.7 70 1200 2.30 1.8 0.73 0.84 45.30 Aid25 (1 0.08 3.0 2.0 1.7 0.8 0.8 (0.2 1.0 45 660 1.44 0.68 2.24 0.50 50 60.8 Aid25 (1 0.08 3.0 2.0 1.7 0.8 0.8 0.2 1.0 45 660 1.44 0.68 2.24 0.50 50 60.8 Aid25 (1 0.08 3.0 2.0 1.7 0.8 0.8 0.2 1.0 45 660 1.44 0.68 2.24 0.50 50 60.8 Aid25 (1 0.08 3.0 2.0 1.7 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	[Sur	face	Sam	ples	}			sui ci	> <b>U</b> I	NUCR		J Sai	i bit				
A					17		1000	1 1		1	1	1.5			Na,0		1
A CO	AT001	20	1.20	13.0	0 31.	20	160. (	9.0	3. 6	80	410	0.45	6, 33	8.77		94.20	7
Alloy	A1003 A1004	1 32	0.34 0.42	209.	2. S 0 807.	39 0 1910	47.4 100.0	1.4 0.2	0. 5 2. 1	190	60	30, 08	0.15	2.13	0.09	7,03	1
According	A1006		0.02	127.	5. !	37		₹0.2 7.6	1. 7 2. 4	170 180	380 80	0. 46 0. 08	1. 09 0. 14	2.82 0.23	1.86	62.76 80.61	
All	8001A		1.82	813.(	25 5	125			2. 1	60	1660	3, 98	4.39	1. 21	0.21	57. 20	
Alloys   G. G. G. G. G. G. G. G. G. G. G. G. G.	A1011 A1012	<1	0. 18 <0. 02	22. 4 1.2	10.0	246	18. 4 1. 2	<0.2 <0.2	4. 8 1. 8	860 870	80	1, 15	1.52	3, 61	3, 29	53. 61	
Alloid   Ci	VI614	(1	0.02	12.0	3.0	43	3.6	⟨0.2	1.8	1500	200	1. 29	0.43	3. 56 1. 21	2. 49 3. 73	53, 59 24, 62	
Allege	A1016 A1017	ि रा	0.04	8.8	4.5	57	1.6	⟨0.2	2.4	590	240	J. 96	1. 76	1. 95	2. 43	45, 80	
A	A(019		<0.02 <0.02	51.2 3.4	₹0.5 2.0	69 111	0. 2 1. 4	(0, 2 (0, 2	5. 7	660 1800	40;	3, 36	0.28	8.58	1.96	62. 48	
Alogs	A1021		<0.02	1.6	2.0	44	1.0	(0.2	0, 9	95	120	0.46	3.41	2. 13 1. 59	0, 86 0, 17	69. <u>61</u> 88. 87	ŀ
A(656) C. (3, 60, 62) 1, 2, 4, 6, 6, 6, 6, 22, 1, 250, 160, 20, 10, 28, 6, 6, 7, 18, 17, 10, 18, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	A1023	2	<0.02	0. 4	4.0	94	0.8	<0.2	2. 0	780	940	3, 29	2.04	1.48	1.40	42. 87	
1009	AT026	4	₹0.02	16. 4	4.5	69	0.6 238.0	<0.2 2.4	2, 1 4. 7	250 >10000	1180	2.01	0, 82	4.47	0.15	71.01	
Alous	AI028	L (il	<0.02	2. 6	2.0	50	3. 2	(0. 2	2. 5	610	200	1.54	1, 29	2.33	3. 42	66, 87 42, 19	
A O33	A[030 A[03]		0. 06 0. 06	29. 4	13.5	112	2.4	₹0. 2	3. 5	1500	460	6.06	2, 25	5. 16	1.54	49. 37	
1035	A1033		0.90	2. 2	3. 0	162	1.6 4.8	⟨0, 2	4.5 2.9	310 1600	260 360	2.72	1. 20] 2. 43,	1.21 2.45	3. 15	29. 11	
Aloy   C.   C.   O.   O.   O.   O.   O.   O.	A1035	71	0, 02	22.0	4.5	1255	1.8	⟨0.2	2. 7	1600	160	2.90	1.67	2. 40	3. 42	58.42 39.17	
A	A[037 A[038	्र (1	(0.02 0.02	3. 8 3. 4	43.5	127	2. 6	<0,2	1.8	1000	350	0.73	4. 50	1.02	1.97	67.15	
Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloyson   Aloy	A[04]	. (1)	<0.02	2.8	3.0	21	0.6	(0.2	2. 0 1. 3	1400 330	320 200	1.30 4.97	1.76 5.39	1.85	3.10 2.05	45.07	
A 046	A1043	(1]	0.10	12.8	12.0	27	4.8	. (0.2	6, 0	55	30	0.08	0.17	0.13	<0.01	77, 12	
Allots	A[045 A[046	41	₹0.02 ₹0.02	9. 6 <b>6</b> 0. 6	15. 5 3. 5	43	16.0	<0.2	2. 5	1500 780	100	0.05	0.11	0. 12	<0.01	79. 58	1
Al0560	A1048	<1	⟨0, 02	26. 4	4. 5	123	0, 2	<0.2	6.4	1100	130	0, Q7 4, 51	0.55 1.44	1. 14 4. 51	0.08 2.73	91.85 45, 11	
Aloss (1 0.00 2 1.4 1.5 1.64 1.2 0.2 0.3 1.6 1.0 1.0 0.48 0.37 0.77 0.0 0.5 88.80 Aloss (1 0.00 2 2.4 1.5 1.64 1.2 0.2 1.5 3.30 360 0.11 6.59 1.10 0.74 90.05 Aloss (1 0.00 2 1.4 8 1.0 134 2.6 0.2 6.3 1700 70 1.95 2.4 1.5 20 3.01 60.54 Aloss (1 0.00 2 1.4 8 1.0 134 2.6 0.2 6.3 1700 70 1.95 2.4 1.5 20 3.01 60.54 Aloss (1 0.00 2 1.4 8 1.0 134 2.6 0.2 6.3 1700 70 1.95 2.4 1.5 20 3.01 60.54 Aloss (1 0.00 2 1.4 8 1.0 134 2.6 0.2 6.3 1700 70 1.95 2.4 1.5 20 3.01 60.54 Aloss (1 0.00 2 1.4 8 1.0 134 2.6 0.2 6.3 1700 70 1.95 2.4 1.5 20 3.01 60.54 Aloss (1 0.00 2 1.4 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0	A1050	<b>31</b>	0.02	19.4	2. 0	330	0. 2	⟨0.2	0.3	40	220	1. 63	3. 27	1.20	0.98	63, 14	
Align	A1053	(1)	⟨0, 02	8, 2 2, 4	9. 5 1. 5	44 164	6, 6 1, 2	<0. 2 <0. 2	5. 6 1. 6	140	360	0.48	0.37 6.59	0.71	₹0.01	68. 83	
Alosa   Cl.   O.   O.   O.   O.   O.   O.   O.	A1055	₹1	₹0.02	1.4	⟨0.5	13	0. 2	<0.2	0.3	40	150	0.09	4.18	0.63	3.01 0.01	60. 54 97. 96	
Aloso	A1057 A1058	₹1	0.02	2.8	7.5	14	1.0	(0.2	0.4	350	1760	1.42	3.91	0.39	0.54	68.69	
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	A1060	(1)	<0.02	1.6 1.6	4. 5 3. 5	9	1, 2 0, 4	(0.2 (0.2	0. 5 0. 4	2600 65	1000 360	2.41	2.90	0.63	0.86	51.91	
1064	A1062	<1	⟨0, 02	1.6	1.0	. 4	1.6	<0.2	0.5	>10000; 710	20	1. 73	0. 95 0. 37	2.01 3.04	0.79 0.31	53. 14 62. 57	
Alocs	A1064 A1065	(I)	<0.02 5.40	0.3 4.6	6.0	19	0.8	0.6	4. 5	110	60	0.18	1. 45	1.99	0.30	87.76	
Altoro CJ 0.02 2.2 6.5 21 1.4 0.4 1.0 20 60 1.70 0.12 2.70 0.39 57.43  Altoro CJ 0.02 2.2 6.5 21 1.4 0.4 1.0 20 60 1.50 1.82 2.13 1.37 1.62 55.21  Altoro CJ 0.02 2.2 6.5 21 1.4 0.4 1.0 75 760 1.20 0.63 2.85 1.41 0.63 77.88  Altoro CJ 0.02 1.4 18.0 15 0.6 (0.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	A1067	1	2.10	11.0 19.6	10.0 24.5	$-\frac{4}{7}$	25. 4 68. 2	8, 2 9, 0	1. 2 8. 2	70 190	80	0.09	7.87	0.21	0.03	98. 54	
ABOO1	AI069	240	6, 32	22. 2	198.0	277	36. 0	0.8	0.9	240	80	1.70	0. 12]	2.70	0, 39	#DIV/6! 57, 43	
ABO17 190 64 69 31.4 522.0 155 39.2 30.0 0.6 150 10000 0.29 0.55 0.88 0.20 75.71 ABO18 1 3.28 3.0 15.0 35 0.2 0.2 0.4 1.0 240 1300 0.80 1.47 1.02 0.27 65.94 ABO18 1 0.22 4.0 13.0 44 0.6 0.2 1.2 110 900 0.52 0.42 0.59 0.56 0.56 54 54 ABO14 1 0.6 0.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	AH004		0. 28 0. 02	7.4	26.5 18.0	45	5. 8 0. 6	0. 2	1.5	450	1240	0.68	2. 13 2. 85 2. 78	1.41	0.63	77.88	
Abold	AB010		3, 28	3. 0	15. 0	35	39. 2 <0. 2	30. 0 0. 4	0.6 1.0	150 240	>10000 1300	0. 29	0. \$5 1. 47	0.98	0. 20	75.74	
Stylio	A9014	₹1	0.06	10.0	3.5	42	1.0	⟨0, 2		170	2000	0. 52 2. 30	0. 42 1. 96	0. 54 0. 72	0, 16 0, 90	58, 51 45, 58	
AH018	AH016 AH017	<u>(1</u>	<0.02 0.50	12, 2	3. 5	184	<0.2	<0.2	5. 7	700	120	0. 16	1.01	2.95	0.28	90.00	
AH020 C1 0.04 11.0 17.0 27 0.8 0.2 1.7 70 500 0.57 0.47 1.21 0.11 71.19 M022 C1 0.02 9.4 6.0 31 0.8 0.2 1.2 670 1200 2.30 1.87 0.73 0.84 45.30 AH024 2 0.02 4.2 5.0 32 0.8 0.2 1.0 45 600 1.44 0.68 2.24 0.50 60 0.8 M025 C1 0.08 3.0 2.0 17 0.5 0.2 0.5 0.5 0.5 0.0 1.65 1.72 1.61 0.72 58.32	AH018 AH019	₹1	0. 04 0. 10	6, 8 18, 0	5.0 8.5	196 106	4. 0 0. 8	0.4 (0.2	3.9 6.4	3600 1500	200	1.05	0. 28	3. 15	3. 77	41.58	
AH025 (1 0.08) 3.0 2.0 17 0.6 (0.2 0.5 25 20 1.66 1.72 1.61 0.72 58.32	AH022	(1)	0.02	11.0 9.4	6. 0	31	0.8	(0.2 (0.2	1.7	70 670	600 1200	2. 30	0. 47 1. 87	1. 21 0. 73	0.11	71.19 45.30	
	AH025 AH028 AH030	(1 2		3.0 7.6	2.0 53.0				1.0 0.5 1.0			1.66	1. 72			60.08	

 $(\ )$ 

()

()

App. 2 Analytical Results of Rock-Chip Samples

### [Surface Samples]

	\$asole	Au	As	Qu	Pb	Zn.	As	T Sb	Fe	<b>B</b> n	Ba	C=0	K,0	Eg0	Na,0	T
	No. AH032	ppb	DOM:	pes	pr#	pç.	D) =	ppe	<b>S</b>	ps a	L), și	3	*	1		%
	AH033		0.02	2.8	3. 5. (		₹0.8			2 65 4 85	300 100			2.06 1.74	(0, 01 (0, 01	86.43
	AH034 AH037	<u>-</u>				22	⟨0. 2	<0.	0.	8 110	160	2.12	1. 20	0.28	1.53	82. 44 28. 85
Ġ.	AH044	[(	(0.02	3.4	4.5	39	<0.2 (0.2				280 200		1.59	0. 42 1. 32	2. 22	26. 41 45. 35
3 T	AH045 AH046	$   \frac{C}{10}$					not/ss 2.6				240	1.85	1.96	1. 23	1.01	53, 19
7.3	AH049	77	3.14	6.8	181.0	26	469.0	5. €	J.	100	2200 1200		0.83 9.93	1.09 0.72	0. 52 0. 71	38. 49 86. 73
	AH050	₹1	(0.02	12. 2	4. 5		4.8				1860 180	2 27	2.39 0.75	0. 98 1. 86	0.92 3.56	51, 37 25, 59
ı	A11052 A11055	-					⟨0. 2 0. 6	<0. 2	5.4	830	320	0.35	2.14	3. 22	0.70	83, 62
	AH056 AH060	(1	₹0.62	5.8	5.5	219	0.6	<0.2	5.	3 1300	80 100	0. 33 0. 23	0.69 0.66	2. 39 1. 66	3.01 1.93	47, 98 51, 79
ļ	AHG61	()	(0.02	2, 8			4. 2 0. 2				260 170	0.86 0.53	2.57 0.31	2, 79 3, 24	2.57 4.71	60.98
1	AH062 AH063	- {			9. 0 6. 5		0, 4	0.4	6	730	- 80	5.83	0.31	4.43	2.59	40. 39 36, 02
	AH064	(1	₹0.02	10, 4	8.0	21	2, 6 0, 6	₹0. 2			120 150	2.41 1.24	1.45 1.87	1.99 2.01	1.20 0.70	48, 79 66, 67
. [	AH065   AH065	- (1		6, 0 4, 6	3.0	12 14	23.8 <0.2			150	160 40	1.73	0. 69	0.74	0.88	<b>35, 4</b> 0
1	AH067 AH069	₹1 ₹1	⟨0.02 ⟨0.02	8,0	5, 5	65	88, 8	0.4	2. 5	>10000	920	0. 13	0.89 1.45	0.97 2.24	(0,01 0,28	93. 05 85. 81
-	A9071	<	(0.02	9.0	1.0	100	13. 2 3. 4	<b>₹0.2</b>			640 140	1.51 2.19	0. 14 2. 09	2. 58 1. 96	0.25 2.18	60, 71 48, 10
-	AH072 AH073	14	0.02	4.4	5.0 1.5	75 61	0. 2 1. 0	₹0, 2 ₹0, 2	2.0	580	840	2.76	1.89	1.09	1.44	41.50
Ì	AH074 AH075	<1	<0.02	2. 6	4.0	210	<0.2	<0.2	2.4	170	150 60	12, 40 0, 26	0.40	4. 15 1. 51	0,89	25, 50 88, 74
	AH077	(I	0.04 0.15	8. 2 1. 6	4.5 1.0	173 74	9.4	₹0. 2 ₹0. 2	5, 7 3, 3		160 120	1. 15 0. 15	0.96 2.64	4. 30 5. 25	3.26	51. 34
ŀ	AH078 AH081	- <u>(1</u>	0.02 (0.02	17. 2 1. 2	2. 0 3. 0	67	1.6	. (0. 2	4. 2	700	120	2.21	0.78	2. 32	0.85 3.55	88, 75 34, 99
•	AH083	<1	0.02	9.8	30.5	342	2.8 I.4	<0.2 <0.2	3, 6 6, 4		80 100	0.09 0.94	0.99	0, 30 5, 75	0, 29 3, 86	77, 25 55, 18
	AH085 AH086	(1	0.12 not/ss	34.4 not/ss	145, 0 hot/ss	257 not/ss	10.8 not/ss	(0.2 not/ss	3.8 1.7		1060 540	0. 11	5, 20	0.40,	0.07	96.89
	AH088 AH090	() ()	0.02 0.02	4. 4 2. 8	6,5	44	0.6	<0.2	1.4	500	380	2. 41	0.72	1.76	not/ss 1.53	#DIV/0] 38.63
ľ	AHO9 I	<.	0.50	2. 0	6.5	14	0.8	<0.2 <0.2	2.5	3100	360 200	0.07	3.84 2.24	1.45	0. 15 0. 04	96. 01 96. 23
-	AH092 AH094	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0. 02 (1. 00	13.0 10760.0	9.5 280.0	7220	75. 6	5.2	2. 4 8. 6	5700 3500	190	0.15	0.51	1.74	0.01	92, 98
	AH095 AH097	33	4.00 hot/ss	80.0 not/ss	7.0	17	68.6	0.2	8.2	60	120 40	0. 20 0. 03	0.70 1.42	3. 43 0. 24	0.95	78, 22 93, 26
	AH098	<u> </u>	0. 16	30, 0	not/ss 3.5	et/ss 86	_not/ss 	not/ss <0. 2	1.0 5.3	1200	380 150	1. 11 2. 66	5. 27 0. 45	0.91	2.07 3.07	66. 03 47. 72
.  -	AH102	- <u>(1</u>	0.02	38. 6 82. 0	3.5 2.0	257 48	1.4 2.2	(0.2 (0.2	6, 2 4, 0	2500 360	2500	0, 09	6.07	1. 28	0.07	97.87
	AH103 AH104	(1	(0.02 (0.02	49. 2 30. 0	1.5 3.5	61	15. 2	1.6	3.8	5500	120 640	9. 14 3. 95	0.45 0.36	2. 99 1. 16	2, 43 1, 69	22. 92 23. 17
. 2	AH105	[ ]	<0.02	18.2	9.0	886 174	1.6 7.2	(0.2	4. 4 5. 7	1100 970	100	0.30 0.52	1. 27 0. 23	3. 64 1. 91	0.81	81, 56 50, 23
1	AH105 AH108	500	0.12	14. 4	61.0	21 21	8. 2 2. 6	(0.2 (0.2	2 3 1 5	550 360	80 460	0. 11	0. 15.	0.09	<0.01	65, 85
-	AH109 AH111	<1 3	1.04	3.8	4.5	: 62	<. 2	(0. 2	1.6	140	260	1.99	2.26	1.34	0.70 1.08	52.64 54.71
· <u>]</u> :	AH112	(1	0.04	14.8	93 0 3 0	84	1. 6 0. 4	0.4	1.3 0.6	550 60	3400 120	1. 92	2. 23 0. 52	2.03	1. 22 0. 71	55. 15 52. 15
-	AH113 AH114	- <u>(1</u>	<0.02	3. 4 5. 0	2. 5 3. 5	15 28	<0. 2 <0. 2	<0.2 <0.2	0.7	140 520	640	1.80	1. 52	1.46	0.73	54.08
Г	AH115 AH116	【1 1100	(0.02 3.92	2.8	1.0	12	4.0	<0.2	1. 1	120	900	2. 56	1. SO 1. 65	0.80	0.67	41.59 54.19
	AH117	17	1.64	95. 2 4. 6	594.0 26.0	562	399.0 43.8	0.2	3.6 0.3	140 70	50 100	29.97	7. 41 0. 63	2.54 0.35	0. 12 0. 13	92. 64 3. 15
	AB118 AB119	28 12	0.06	3. 2 4. 6	15. 0 5. 0	56 20	3.0 <0.2	(0, 2 (0, 2	0.5	330	820	2. 33	2.96	0.76	0. 93	53.30
-	AH120 AH121	₹1	0.04	0.4	2.0	4	0.4	0.4	0.4	850 60	600 400	2.55	3, 80 3, 89	0.70	0. 35	58, 99 64, 74
	VB155	<u>(1</u>	(0.02 (0.02	3. 6 2. 0	2.0	25 21	0.6	(0.2	$-\frac{0.71}{0.7}$	<u>390</u> 270	1020	1. 43	2. 45 1. 32	1.90 1.36	1.02	64.02
}-	AH123 AH125	3	0.02	2.8 4.8	1. 0 5. 0	25 18	(0. 2 0. 4	(0. 2 0. 4	1.0	140	220	1.88	1. 77	2.05	0.89 1.19	52, 96 55, 44
1	AH128	(1	0.10	1.0	1.0	5	0.2	⟨0, 2	1 4 0 3	85 40	1000		0. 36 1. 75	1.42 0.41	0.09	64. 73 43. 20
	AR130 AR131	- 0	<0.02 <0.02	3.2	2.0	30 16	1.4	<0. 2 <0. 2	0.8	3100 1200	1680 1000	1.66	3. 59	0.94 0.65	0.66	66.13
ļ	AH132 AH133	- (1	0.04	not/ss 1.2	not/ss v		not/ss	not/ss	0.8	500	210	2, 06	2. 24	0. 62	0.84 1.07	55.76 47.75
-	AH134	<1	0.04	1.6	5.0	34	0.4	0.4	0.6	200 310	500 1060			0.45	0.38	76. 25 68. 29
1-	AH135 AH136	-{] -{i	<0.02 <0.02	0.8	2. 0 3. 0	10	0.8	⟨0. 2 ⟨0. 2	0.9	- 360 85	1660	2. 25	2. 52	0. 27	0, 53	50.09
1	AH137 AH138	() ()	(0.02 (0.02	1.0	1.5	10]	0.4	<0. 2	0.5	95	1300 520	1. 34	3, 26	0.32 0.61	0.64	55, 80 56, 44
	AB139	(1	₹0.02	1.6 2.4	3.0 4.5	22 27	(0.2	(0. 2)	0.7	90; 280	1780 2200	_1.471_	2, 18	1. 16 1. 47	0. 46	63.38 69.80
-	AH140 AH141	- <u>(1</u>	(0.02 (0.02	0.6 0.6	3.5	- 3	⟨0. 2 0 6	(0, 2 (0, 2 (0, 2	0.5	60 510	1800	1.32	2. 24	0.85	0. 58	61.92
[ -	AH142 AR144	<1	<0.02¦	1.2	1.5	8	8. 2	⟨0, 2	0.5	160	2000 100	0.15	4.32	0.60 0.78	0. 67 0. 12	54.60 94.97
	AH145		<0.02 <0.02	7. 8 10. 6	2, 5 5, 5	95	2.8	₹0.2	2. 5 2. 0	1600	300	0.19)	1. 24	2.51 1.07	0.01 3.93	94.91
14	AH146 AH147	-(1 (1	(0, 02 0, 06	5. 2 6. 0	2. 0 22. 5	37	<0.2	(0, 2	0.9	20	220	0.15	1. 93	0. 68	0.03	32. 26 93. 55
	AD001	(1	(0.02	1.8	1.0	4	0.6 1.8	(0, 2) (0, 2)	0.3	1000	320 220	52.99		0. 81	0.11	85. 11 0. 52
-	AD002 AD003	윙-	0.02	$-\frac{2.0}{3.2}$	3, 5	12	1.6	(0. 2 1. 4	0.3 0.2 1.0	100 450	160 180	55, 52	0.07	0. 39	0, 23 0, 13	0.82
L	AD004	₹}	0.04	84.0	55. 0	168	2 4	⟨0, 2	4.71	1100	60	0. 78	0. 23 0. 28	1. 39 2. 75	0.13 2.29	3.96 49.67

App. 2 Analytical Results of Rock-Chip Samples

Section   Max.   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section	[Su	rfac	e Sa	mples	]							i Živi				
The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The color   The		1 10 1		Qu	Pb	Zn	As	Sb	Fe	<b>a</b> n	84	CaO	Κo	Es0	N=.0	I AI ]
According			ბ   გე <u>ჟ</u>	DI PCG									*	4	à = <b>\$</b> °	133 \$ 24
According   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color	AD006		<1 <0.	02 30.	2 15.0	31	27. (	(0, 2	1.7	\$30	30	0.28	0.39			
April	AD008		(1 (0.)	02 95. (	13.0	75	19.	₹0.2	3. 2 12. 4		- 40 50					
April   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.									4.3	330	100	0.61	1.00	1. 21	0.4	7 67. 17
According   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color				02 2.	1.0	11	0.8	<0.2	0. 6	210	220	0.15	4. 53	0.75	0.6	86, 56
Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont	AD013		(1) 0.3	36 50, 6	27.0	13	73. 2	<0.2	2.8	30	100					
Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application	AD016		(1) (0, (	6, 6	1.5	41									<0.0	91.77
Access   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.								₹0. 2	1.3	120	20	0.41	0.91	0.77	0.5	62.69
ADDITION   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   C				2 43. 2	21.0		8.0	₹0.2	9.4	240	220	0.55	0.73	1.86	0.0	81.19
10052	AD023		(1) <0.0	2 5.6	5.0	34	<0.2	₹0.2	1.5	560						
1.663	A0025		0. 2		32.0								3.41		0, 4	67.02
A0033						11		<0.2	0.4	15	1000	2.49	0.87	1.01	1.2	33.69
Aboy	AD028		0.0	2 8.6	5.5	30	0.8	⟨0.2	1.0	65	140	3.09	1.26	0.40		
ADDITION   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   C	AD030		3 3.3	8 6.6	70.5	66		24.6	0,6	50]						
A033	AD032		2 0.0										1. 32	4. 44	0.0	80, 79
A038							1.4	(0, 2	3, 4	170	20	1 79	0.79	4, 60	<0.01	74. 98
\$\frac{\text{A0037}}{\text{A0038}} \times \begin{align*} \times \begin{align*} \text{A0038} & \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin{align*} \times \begin	AD035	7	1 <0.0	25.8	2.0	36	0.8	<0,2	2.5	420	30	2. 23	0.32	3. 52	<0.01	63. 17
Decision   1	AD037	~ <	1 <0.0	2 2.8	18.0	169	21.4	2.0	6.9	850						
Applies	AD039		1 <0.0	2. 2.2										6. 35	3.72	63, 60
AD044					3.0		(0.2	₹0. 2	2.1	340	160	2.11	2. 22	2. 95	1. 24	56.32
AD045	AD043	- 3	1 (0.0	2 12.0	1.0	105	1, 6	<0.2	3.9	920	300	1.30	1.81	2.10	5.47	49, 57 36, 61
ADS-10	AD045	~ ~	1 <0.0	2 7.4	1.5	74	4.8	<0.2		200						
AD956	ADC47		1 (0.0)	3.6	1.0			<u>₹0.2</u>						1. 39	1.08	68, 33
Ab05    O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0)   O  (0, 0					0.5 12.0	87	5. 8	<0.2	1. 1	1200	120	0.92	0.57	0.96	5. <u>1</u> i	20.24
Abb65	AD051	<	1 (0.02	5.6	4.0	24	3, 6	<0.2	1, 9	90	280	2.92	1.08	0.82	1.09	
ADOSS	AD053	<	1 (0.0%	18.0	6.0	55	1.6	₹0.2	2, 5	700					1.23 2.13	
Ab055	AD055	₹	0.04	13.2	3.5										2. 72	32. 97
ADOSS						3	3, 8		2.3	25	180	0, 35	2.54	0.15	0, 55	74. 93
ADOSCO	AD058	(	(0. 02	2.8	3.0	102	12.6	0.8	2.2	660	150	1.91	0.91	1.12	3.35	27.85
Abb65	AD060	<b>(</b> )	(0.02	16.6	33.0	76	2. 4	⟨0.2	1.0	240	60					
ADOS	4D062	₹1	⟨0, 02	2.2			(0, 2	<b>⟨0, 2</b> } <b>⟨0, 2</b>				1.42	1.79	1.11	3. 30	38.06
Abobe   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.   Col.									2.4	1200	120	0.57	0.62	1.63	0.02	79. 23
ADD67				5.2	2.0	117	11.8	<0. 2	4. 1	460	70	1.50	1.19	3. 39	2.35	<b>54. 3</b> 3
Abb69	AD067	रा	<0.02	10.8	4.5	63	6.8	(0.2	2.5							
ADD71	AD069	<)	<0.02	3.4	1.5	4		0.4								
ADD73								(0.2		50	1000	2.17	1. 58	0.69	1.49	38. 28
ADD74			0.06	14.2	6.0	33	4.6	(0. 2	0.4	60	60	1. 49	0.60	2.08	0, 65	55.60)
ADD76	AD074	7	(0.02	2.4	3.0	34	0.2	(0.2	0.4	95	210	1.83	4. 16 2. 70	0.52		
AD077	AD076	(1	⟨0.02	35.6	1.0	202			2.6			2.00]	1.08	1. 24	3. 40	30.05
Aborg							3.0	(0.2	2. 1	690	300	0.19	0. 34	1.92	⟨0.01	91.91
ADOB	AD079	<1	₹0.02	5.4	3, 5	20]	1.4	<0. 2	0.8	100	240	1.72	3. 13	1.43	0.93	63. 25
AD083	AD081	1 0	0.04	30.0	7.0		0, 4	0.4	4.0	120	20	0.16	0.20			
AD084   C  C  C  C  C  C  C  C  C  C  C  C  C	ADC83	(1	<0.02	3. 6 6. 4	3. 0	8	9.8		2.6		60	0.77	0. 39	1. 29	0. 52	56.57
AROOS   C  (0,02)   10.8   13.0   32   0.4   (0.2   1.3   190   50   1.77   0.17   5.42   0.04   75.54				4.6		22	<0.2	⟨0.2	0.8	130	240	1.97	1.88	), 39	1.60	38, 87
ALOCO (1 0.02 18.8 8.5 69 5.0 (0.2 3.0 280 180 111 2.52 1.55 21.55 ALOCO (1 0.02 29.6 5.0 66 1.2 (0.2 2.5 360 340 1.41 2.63 2.10 0.38 72.55 ALOCO (1 0.02 29.6 5.0 66 1.2 (0.2 2.5 360 340 1.41 2.63 2.10 0.38 72.55 ALOCO (1 0.02 29.6 1.2 4 4.0 30 22.2 (0.2 4.1 120 110 4.51 1.41 1.57 2.22 30.69 ALOCO (1 0.02 12.4 4.0 30 22.2 (0.2 4.6 85) 30 220 3.40 1.41 2.63 2.10 0.38 72.55 ALOCO (1 0.02 12.4 4.0 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0.2 4.6 85) 30 22.2 (0	AKO04	()	<0.02	10.8	13.0	32	0.4	(0.2	1.3	130	50	1.77	) 17	5. 42	0, 04	75.54
Mold   G    Q, Q2   25.6   9.0   44   3.4   Q, 2   1.5   140   140   9.60   0.62   2.61   1.93   21.88   Mold   G    Q, Q2   25.6   5.0   66   1.2   Q, 2   2.5   360   340   1.41   2.63   2.10   0.38   72.55   Mold   G    Q, Q2   28.4   0.5   61   2.0   Q, 2   2.4   120   110   4.51   1.41   1.57   2.22   30.69   Mold   G    Q, Q2   12.4   4.0   30   22.2   Q, 2   4.6   85   30   0.69   0.20   1.43   0.03   69.35   Mold   G    Q, Q2   C, 4   1.0   39   13.8   Q, 2   2.3   380   220   3.50   1.48   1.71   2.12   36.63   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50   3.50	AK006	· (1	0.02	18.8	8.5	69	5.0	(0, 2	3. 0]	280	180	11, 69				
AK011 (1 (0,02) 29.4 0.5 61 2.0 (0,2) 2.4 120 110 4.51 1.41 1.57 2.22 30.69 AK013 (1 (0,02) 12.4 4.0 30 22.2 (0.2 4.6 85 30 0.69 0.20 1.43 0.03 59.36 AK014 (1 (0,02) 6.4 1.0 39 13.8 (0.2 2.2 380 220 3.40 1.48 1.71 2.12 36.69	AKOJO	₹1	₹0.02	29.6				⟨0, 2	1.5	140	140	9.60	62 7	61	1.93	21.88
AVII 1 (1 (0.02) 6.4 1.0 39 13.8 (0.2 2.2 380 220 3.40 1.48 171 2.12 36.62				29. 4	0.5	61	2. 0	⟨0. 2	2. 4	120	110	4. 51	.41	. 57	2. 22	30.69
	AX014	্ব	⟨0.02	6.4	1.0	39	13.8	(0, 2	2 2	380	220	3.40	. 48 i	71	2. 12	36, 62

App. 2 Analytical Results of Rock-Chip Samples

### [Surface Samples]

. 1	C. al. I	1.		T		·		<b>.</b>	<del></del>	<del></del>						
	Sample	Au	Ag	Cu	Pb	Zn	As .	Sb	Fa	Man	8a	CaO	K,0	Eg0	No.O	A1
	AKO 6	499	P(***	po∎   16,0	ppa	PF.	PP#	DI/H	3	pon	ppe	8	3	*	± <b>%</b> }	2 / \$ 5
	AK017	1 7			21.5	- 51 2	2280, Q	29.	2.	8 600 3 70	100	2.01	0.60	3, 10	0,98	55, 31
	AKQ18	13	0.00	69.0	10.5	48	49.0		3.		160	1,22 2,20 2,18	2, 78 0, 39	0, 30 3, 63	2.46 0.11	45, 56 63, 51
	AK020			5. 2	3.5	19	14.6	<0.2	1	85	200	2. 18	1.90	1.46	1. 92	45. 04
	AK021	-  - <			1.5 3.5	23 59	0.6 2.6	<0. €			240	37, 97	0.49	1, 13	0.42	4.05
	AX024	7			2.5	27	₹0.2	- <0. 2		200 290	450 100		1.40	1.03	2.75	
. 1	AK025	<u> </u>	(0, 02	16.0	4.0	25	0.6		1		50		1. 22 0. 41	2.50 1.81	1, 38 0, 65	38, 11 35, 02
	AK026 AK027	{		2.8	4.5	25	0. 2	(0. 2	0.	110	200	1.94	0.36	2, 55	0.27	56.84
	AK029	}			1. 5 5. 0	25 26	0.4	_ (0. 2			100		1.85	2. 45	1.17	55. 84
	AX030	ी री			2.0	41	0, 4 (0, 2	⟨0, 2			280 100		0. 16 0. 96	2.79	0.37	55, 24
	AK031	1 (			1,5	34	<0.2	₹0. 2			180	3, 61	1.97	2. 09 2. 05	1.06 2.04	45, 28 41, 57
1	AK032 AK033	- 3		2. 4 2. 2	0.5	18	(0.2	<0. 2	0.8	1200	190	1.71	3, 12	0, 69	1.82	51, 91
	AK034	<del>                                     </del>		3.0	<0.5 <0.5	11 19	<0. 2 <0. 2	₹0.2			200	1.88	2.72 2.74	0, 65	2.47	43, 65
Ì	AK035	₹1	₹0,02	4.0	3.0	35	⟨0.2	- (0, 2 (0, 2			160 140		2.74 1.71	0,99	2.44	45, 05
-	AKQ35	्र		4.4	10.5	141	⟨0, 2	⟨0. 2	1.8		70	2.21	0.17	2.40 4.55	1.93 0.38	48.01 64.57
1	AK037 AK038	(1		11.2	3. 0 1. 5	95	⟨0. 2	⟨0, 2	2. 9	870	300	2.88	2. 26	2. 12	1.09	52.46 55.50
1	AK033	一清		10. 2	1.0	94 34	<0.2 <0.2	(0.2			50	2 96	0.58	4. 11	9.80	
1	AKO40	3	<0.02	5, 4	1.0	47	⟨0, 2	⟨0.2			80 180	3. 28 2. 90	1.41	2. 78 3. 18	1.59	46. 25
ı	AKO41	1 0		10.2	1.5	34	<0.2	₹0.2	2.2		100	2.46	1.73	2.86	1.30	49, 88 55, 91
ŀ	AK042 AK043	<u></u>		4.0	4.0	39	<0. 2	₹0.2	0.8	1900	780	23.34	0.86	1.63	1.03	9, 27
ł	AKO44	1 4		9. 2 3. 2	4.5 2.0	46 25	<b>(0. 2</b> <b>(0. 2</b>	<0.2	1.5	2900	860	24.05	1.96	1.98	0.11	14.02
Ì	AK045	रां		4.0	3.0	58	₹0. 2	<0.2	$-\frac{0.9}{1.2}$		200 100	1.96	2.70	1. 49	1.91	51, 79
Į.	AK046	< 1	0.02	3, 6	7.0	63	0.6	(0, 2	1.8		1360	1.82 2.41	1, 39 0, 66	2.54	0, <u>81</u> 0, 36	59, 91 52, 86
1	AK047 AK048	$\left[-\frac{\Omega}{\Omega}\right]$	0.02	4.0	4,0	64	7.0	<0.2	2, 2	190	120	2.58	1.55	0. 69	- Ť čš	34. 46
ŀ	AX049	−¿¦	0, 02 (0, 02	3. 4 1. 6	1.5	- 56 92	0. 6 1. 2	(0.2	1.7	800	220	3, 87	2.52	3.99	0.52	59. 72
Ĺ	AK050	<del>                                    </del>	₹0 03	0.6	1.5	55	₹0.2	₹0.2	5, 3 2, 5	910 540	160 220	1.86 0.95	1. 55	4.58	0.57	71.61
ŀ	AK051	. <)	⟨0, 02	5.0	1.0	86	<0.2	₹0.2	4.6	1100	- 60	0.95	3, 43 1, 87	3. 24 5. 61	2.25 1.54	67.58 74.95
ŀ	AK052 AK053	- <u>(1</u>	0.02	2.6	1.0	92	⟨0, 2	(0.2	4.7	1200	120	0.68	2.54	5. 13	1.48	78. 03
ŀ	AK054	रा	<0.02	3. 2 21. 8	1.0 5.0	82 88	<0.2 <0.2	<0.2 <0.2	4.3	1100	100	0.95	2.45	5. 29	1.69	74. 57
Ė	AKO55	<u> </u>	0.04	5.0	8.0	66	4.4	₹0.2	2. 3 2. 1	370 1600	140 170	0, 96 2, 83	3, 78 2, 38	3, 13	0.09	86.81
Į.	AK056	</td <td>(0.02</td> <td>13, 6</td> <td>15, 5</td> <td>45</td> <td>2.4</td> <td>⟨0. 2</td> <td>1.4</td> <td>170</td> <td>500</td> <td>1. 92</td> <td>1.05</td> <td>3, 23 2, 82</td> <td>2.75 0.39</td> <td>50. 13 62. <b>6</b>2</td>	(0.02	13, 6	15, 5	45	2.4	⟨0. 2	1.4	170	500	1. 92	1.05	3, 23 2, 82	2.75 0.39	50. 13 62. <b>6</b> 2
ŀ	AK058 AK059		(0.02 (0.02	11, 8	2.5	50	<0. 2	<0.2	1.6	310	240	2, 91	1.78	2.51	0.98	- 52. 44
-	AK060	ें रे	₹0.02	11.0	2.5	31	(0, 2	<b>₹0,2</b>	1.2	150	190	2. 15	1.87	2. 23	1.30	54.30
	AK062	₹1	0.02	13. 2	4.5	60	₹0. 2	₹0.2	1.3	90 850	360 170	2. 18 3. 13	2. 28 1. 77	2.23 1.92	0.51	62. 64
J:	AK063	(1	0.02	20.6	4.5	37	0.2	<0.2	1.6	200	160	2. 33	2.39	1.72	0. 37 1. 02	51. 32 55. 09
ŀ	AX064 AX065	(1 (1	<0.02 <0.02	7.0	3.5	31	(0. 2	₹0.2	1.3	310	340	2. 12	1.88	1.83	1.00	54.32
L	AK066	(i)	(0.02	7.6	3.5	29 95	0.4	(0. 2 (0. 2	1. 1 4. 0	100 850	200 360	2.60 3.14	1.07	1. 37	1.52	37. 20
	AKO67	रा	(0.02	0.6	3.5	80	₹0. 2	₹0.2	3.5	600	120	3. 62	2.99	1.83	1.69 2.27	49, 95
	AK069	<u>र</u> ो रा	<0.02	6, 8	2.5	39	<0.2	(0.2	1.8	170	90	1. 43	0. 89	3.18	0.70	40, 63 65, 65
	AKO70	급	<0.02 <0.02	15.8 14.0	1. 0 6. 0	32 29	(0.2	₹0.2	2. 1	370	80	4.10	1.26	2, 24	1.20	39.77
Ľ	AK071	रं।	₹0.02	9.6	2.0	28	2.8	₹0. 2 ₹0. 2	5. 5 2. 4	200 890	01	0. 21	0.08	1.10	<0.01	84. 35
1.	AK072	₹1	₹0.02	19.8	1.5	34	(0.2	₹0. 2	2.6	220	110 80	2.38 3.05	0.71 0.68	1.98 2.13	1. <u>19</u> 1. 28	42, 97
-	AK073 AK074	<1	<0.02	21.4	7. 0	. 26	2.0	₹0. 2 ₹0. 2	5. 1	360	30	0.67	0.09	0.53	(0.0)	39.36 47.73
-	AKO75	_ <u>Q</u>	<b>- &lt;0.02</b> <b>&lt;0.02</b>	12. 2 17. 4	4. 5 5. 0	19 63	<0.2	₹0. 2	1.1	55	160	2. 28	0.71	1.69	1 14	41, 24]
	AK076	<1	₹0.02	8.6	5 0	21	<0.2 0.6	<b>₹0.2</b>	8, 6 0, 6	300 100	140	2. 33	0.39	2.60	1. 11	46.50
Į.	AKO77	(1	<0.02	14.0	7.5	62	0.8	₹0 2	1.9	<u>150</u>	280	1.64	1.33 0.73	1. 18 1. 59	0,66 1 01	52.18
-	AK078 AK079	<u> </u>	0, 04	19.0	4.0	49	1.4	<0.2	2. 1	1400	100	17. 53	0.40	2.23	0.93	30.73 12.47
1-	AK080	<del>(1</del>	(0.02	14. 2	5. 0 0. 5	83	11.6	<0.2	5, 0	1600	220	3. 98	1. 25	1.57	1.62	33. 49
1	AK082	-71	⟨0, 02	1. 2	1.0	17	₹0. 2 1. 4	- <del>(0.2</del>	0.5	55	160	1.87	2. 15.	1.41	1.87	48, 77
Ĺ	AR083	(1)	(0. 02	2. 6	0, 5	18	0.4	₹0.2	0.5	40 25	220	1.78 2.31	2.36 1.88	0.79 0.77	2. 15	41.49
1	AKO84	- 31	(0.02	2.8	0, 5	10	0.4	(0. 2	0.6	40	140		2.31	1. 19	3. 45 2. 51	31.51 43.26
L	AK085	₹1	0.02	6.8	7.0	35	0.6	⟨0, 2	1.4	170	180		0.33	2.58	0. 29	47, 59

. ,

App. 2 Analytical Results of Rock-Chip Samples

### [Core Samples]

ſ	Sample	Au	As	ري	Pb	T <b>7</b> _	F 81		T -			17 282				,
	No.	ppb	PP®	bea	pp#	Zı	As	\$5	Fe	¥n	Ba	CaO	K,ô	RgO	Na,0	λl
-	102	m	<del></del>	4	+	P\$-	NA.	DS-00	<b>X</b>	₽₽₩	ppe	\$	3	<u> </u>	<u> </u>	*
3	103	(		1	+	51 50	7	(. 2 (. 2	1.9 1.5	3100 210	180		0.29		0.14	<u>8.40</u>
	105	(			0.5	75		(,2	2.1	750	60 100		1.31	t	4. 15	36. 94
. [_	105	(	< 02		1	69	0.2	۲.2	1.8	370	120		2.69 3.66	2. 24 3. 15	3. 82 1. 39	47.04
	108	(	< 02	2.8	1	59	٠. 2	۲. 2	1.2	490	80		3.43		3. 24	72.60 57.42
	109	(1				71	(, 2	۲. 2	1.5	580	50		3.13		3. 25	55. 52
-		9			1	39	۲, 2	<-2	0.8	580	150		2. 27	1.44	3. 83	35. 50
- 1-	112		1		3	81		<u> &lt;. 2</u>	2.4	520	110	F	2.27	3.85	1.2	77.40
-  -	113 114				2	119	2. 2	₹. 2	4.9	1200	60		0. 29	5.31	5. 12	42. 62
-	116		1	33. 4 9. 8	3. 5	111 132	1.6	0.4	4	1850	140	5.54	2.37	5 67	<u>2.69</u>	49.42
1	117	1	1	27.4	3.3	109	<. 2 2. 8	<u>∢. 2</u> ∢. 2	2.8 4.1	1200 770	540		1.71	3.79	4. 05	38.71
	118	4	I	4	1.5	164	4.4	₹.2	4.5	600	60 200	1. 27 1. 36	0.53	5.83	3.58	56-74
	119	()	0.02	11	1	129	1.4	₹.2	1.9	720	220		2.16 1.81	6. 82 6. 69	1. 89 2. 2	73.43
Ì	121	<u> </u>	0.04	5	1.5	75	0.6	<.2	1.8	1500	250	21.49	1.06	2. 43	2. 55	57.16 12.68
	122	_ (1	0.14	4.2	5	113	1.4	٠.2	3.2	940	240	2. 45	1.85	3.42	4. 35	43.66
┡	123		<.02	0.2	. (, 5	123	0.2	<. 2	3.1	1100	250	1. 34	3. 23	4.57	2.52	56.90
	125		< 02	1.2	1	104	<. 2	₹. 2	1.8	500	230	0.88	2.05	4. 92	2. 26	68. 94
	127		0.12	3	5	129	1.4	<. 2	5. 8	910	40	1.82	0. 17	7.42	5. 68	50.30
$\vdash$	201	<del>(1</del>	0.06 0.06	35. 6 5. 2	3.5	<u>120</u>	2. 2	0. 2	5.6	800	70	2. 77	0.53	5.2	3.36	48.31
1-	202	3		9		75	0.6		1.1	160	100	2.93	2.9	1 09	0.27	<u>55. 4</u> 9
1	203	5	0.32	28.6	0.5	71	0.4	₹.2	2.4	680	130 100	5. 7	2. 67	5 32	0.71	55.43
	204	1	0.16	16.4	1	50	0.4	<.2	1.5	450	140	1.65 0.93	4. 86 3. 87	2.83	2.05	71.73
	205	2	<.02	1.2	0.5	42	0.6	<.2	1.2	470	200	1. 25	4.16	1.5	2. 66	65. 33 59. 14
	206	- (1	<.02	6.6	₹.5	35	0.4	<.2	1.3	410	120	1.39	2.05	2.69	2.2	53.56
	207	0	0.04	38.2	4	70	1.4	<.2	4.8	1200	100	4.63	2.48	5. 53	2.01	54.68
	208	0	<.02	3.4	0.5	49	1.6	0.8	2.6	2600	160	22. 53	1.61	4. 23	1.1	19.75
1-	209	- <u>(1</u>	<.02	2	- (,5	44	0.8	<u>`.2</u>	1.4	950	80	8. 25	0.77	2.8	3.32	23.58
-	211		0. 12	1.2 35.2	}	71	1.4	<. 2	2.5	790	120	5. 51	1.16	3.89	4.31	33.96
	212	(1	0.3	85. 2		79	0. 8 2. 6	1.2	5.3	1500] 1350]	80	1.93	1.43	6.08	2.76	51.56
	213	1	0.12	9		80	2.4	( 2	5. 5	1250	140 150	7. 25 4. 02	0 81 1 39	5.54	3.14	41.43
	214	(1	0.02	2.4	1.5	95	3.6	۲.2	5. 3	1500	140	5 38	1, 33	4. 75	3.2 4.29	46.00 35.27
	215	- 4	<.02	1.4	0.5	68	0.6	< 2	3.4	1300	200	2.68	2.27	2.51	4. 12	41.28
	216		0.04	6 2	2]	62	1.6	₹.2	4.8	1350	150	4.11	1.73	3.71	3.59	41.40
- <del>-</del> -	217	!	< 02	2.8	0.5	62	2.4	_ <.2	5.3	1850	140	4.08	1.4	3.71	3.83	39. 25
	218	- 1	<. 02 <. 02	2.2	0.5	83	!	0.8	3. 1	1150	260	1.44	4. 27	2. 59	2. § 1	61.20
_	220	2	< 02	1. 4 35. 4		135 46	0.8	-(.2	5.1	1700	270	1.51	1.51	4. 26	4. 22	50.17
	301	त	<.02	3.8		54	1.2	<. 2	1.7	590 530	180	3.6	1.26	5.1	4.42	44. 23
	302	q	0.08	9	2	69	0.4	(2	1.6	470	140	1. 65 1. 04	1.68 3.55	2.11	4.1	39.73
	303	(]	0.02	1.8	2	90	1	(, 2	4.5	800	140	1. 84	1.77	4. 48 5. 54	0.59 3.74	83.15 56.71
	304	1	0.02	9.4	1.5	16	0.8	۲. 2	0.45	4100	240	36.88	0.62	0.67	0.13	3. 37
	305	4	0.02	24	2	105	0.6	۲. 2	5. 9	1450	110	3.83	0.7	5.2	3.84	43.48
	306	12]	0.52	11.4	3.5	87	22.2	1	4.7	1600	460	0.82	3.9	5. 58	2.19	76. 09
	307	- 6	0.2	6.4	-1-5!	98	9.8	<u> </u>	3.3	1300	120	1.78	0.7	1.65	7.07	20.98
	308	11	0. 24	1.2	_1.5	_105	5.6	<- 2	4.1	1600	300	2.78	1.64	5.04	3.26	<b>52</b> . 52
	309 310	2	0. 1 0. 02	0. 8 32. 6		93	1.4	· · · · · · · ·	31	1400	260	9. 44	2.01	3.57	2.8	31. 3i
	311	(1)	0.05	5.8	0.5	71 115	0.6	<.2	5.2	1300	160	4.87	0.68	7.76	1.96	55. 27
	312	g]	0.02	1.4	1.5	82	۲. 2	₹, 2	2.3	890 740	160 280	1. 23	1.97	2.7		16.79
	313	(1	0.02	2. 2	1.5	66	0.4		2.1	690	220	2. 52 2. 67	4.52 3.09	2.94		\$2.01 40.92
	314	(1)	0. 04	1.8	1.5	77	<. 2	(, 2	2.6	930	180	2. 18	3.48	2. 01 2. 48		49. 23 52. 93
	315	1	0.04	3.2		105	₹. 2	۲. 2	5	1650	240	3. 69	2.51	4. 65		50.56
	316	- 네	0.02	2.8	1	??	0. 2	1.2	2. 9	1300	390	1.88	3.54	2.91		56. 38
	317		0.16	_ <u>\$.</u> 8¦	2	93	4. 2	<u>. (. 2</u>	4. 2	1400	310	2. 95	2. 62	3.45		18. 72
L	318	2	0.16	3.2	1.5	130	3.4	(. 2	5. 9	2050	280	0. 73	2. 95	6. 77		71. 28

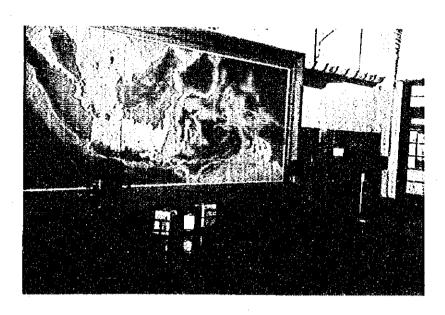
()

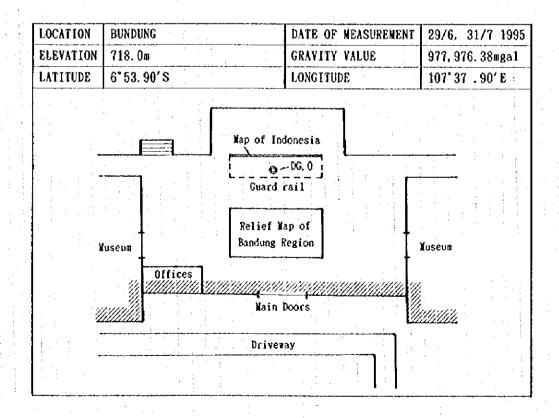
App. 2 Analytical Results of Rock-Chip Samples

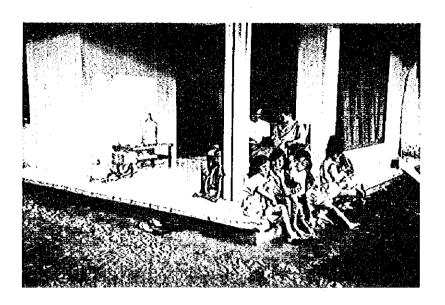
### [Core Samples]

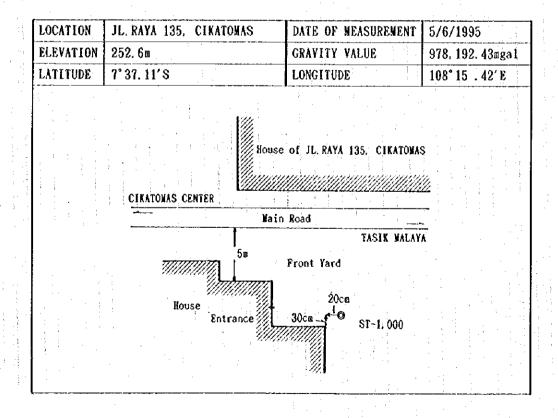
Lon		amp														
\$55010			8	Ø	Pb	Zn	ÅS	Sb	Fo	Ka	Ba	CaO	K,O	MgO	Na,0	Al
No.	190			tta	tte	CC-8	P) a	bte	5	ppm	DC@	*	e ( <b>%</b>	8	5	, <b>5</b>
319			. 12	_11.2 7.4	0.					1850	420	2.03	2. 35	6.54	3. 13	61.95
401	_  -		.02	<u></u> .s	3.	1 53 5 34		T	*	780	180	1.42	1.72	2.06		37.54
402			.02	20.4		1 26	1	1	1	210 120	140 140	2. 82 3. 03	1.57	3.45	1.85	51.75
103			06	34. 2		6 24			0.65	110	280	1.88	1.7	1.73 2.61	2.54	38.11
404			.02	10.8	3.	5 23	1.2		0.6	200	170	1.95	1. 99	2.17	1.34 2.56	54.00 47.98
405 406			04			4 37				240	340	1. 78	2.07	1.83	1.99	<b>5</b> 0. 85
407			02 04	7.8 8.4	3	4 41	0.4	<u> 2</u>	0.7	210	120	2. 17	2. 12	0.85	3. 1	36.04
408		70-	02	9		543 445		∢. 2 ∢. 2	Q. 55	240	180	1.88	3.74	1.16	2. <u>56</u>	52.46
409	,		02	8.4		3 36	. 2	۲. و	1.2	190 340	100 240	2. 2 2. 15	2. 89 8. 07	1.21	2.71	45.50
410			02	24. 2	1.5		0.2	۲. 2	1.3	150	110	5.09	2.97	1.28 0.73	2.67 3.07	47.44 41.76
		_1' _	02	6.8		35	0.8	۲. 2	1.2	370	130	2.48	3.67	0.78	2. 96	44.99
412			02 04	8	0. 5		0.8	<.2	0.35	60	320	1.87	2.3	0. 69	3.02	37.94
414			02	11.6	7. 9		2.5 3.8	<. 2	0.45		160	1.31	3.56	0.14	1. 75	54.73
415			02	8	6.5		(.2	<.2 < 2	0.4	85 460	190	1.03	5.1	0. 11	1.66	67.20
416		1	02	8	4.5		1.4	٠ 2	0.55	70	120 320	<u>1.77</u> 1.53	1.3 2.07	8. 47 0. 54	1.43	<u>59. 8</u> 5
417				14.6	6	97	2.6	(, 2	0.55	2200	220	3.58	1.58	0.33	2. 33 1. 33	40. 34 28. 01
4(8	-		02]	6.4	3	1	0.8	(. 2	2.1	470	100	2.06	1.5	3.46	1.63	57. 34
420		3 <u> </u>		3 2	3 3	1	<u>&lt; 2</u>	<u>&lt; 2</u> j	<u>0.1</u>	110	380	1.93	3.46	0.93	2. 76	48.35
421				3.4	3		·· 2	- <del>(. 2</del>	0.7	170 170	220	2	1.93	1.49	2. 26	44.53
422	2			4	. 4		_ ⟨. 2	0.4	1.1	240	240 200	2. 59 2. 45	2. Q5 1. 67	1. 14	2.87	36. <b>8</b> 8
423		7 0.		7.4	8	80	1	₹.2	1.5	190	180	2.69	4.92	1.61	2.5 2.97	39.85 51.99
424		<u>                                     </u>		5. 4	2	<del></del>	0.6	<. 2	1.7	170	240	2.3	2.95	1. 39	2. 96	45. 21
425 428		8 0.4 6 4.4		36. 2	1.5			(.2	4.7	1100	120	5. 63	1	₹ 11	3.55	35. 76
501	(	<del></del>	-	16. 8 17. 4	3. 5 5	50 18	0.6 6.6	(.2	- 2	460	200	3, 59	1.61	2. 16	2.87	<b>36.8</b> 5
502	. (			14.8	4.5	25	< 2	₹.2	1.7	250 140	190 180	2. 96 2. 61	1.78	1.79	1.06	47.04
503	<	1 (		8	4	19	۲. 2	۲, 2	1.3	60	140	3.48	1.61 1.6	1. 63 1. 47	1.09 2.25	46. 69 34. 89
504				6.6	4.5	44	_ c 2	۲.2	0.9	80	130	2. 55	1.56	1.08	2.5	34. 33
505 506	<u>C</u>			6.6	3.5	48	<u> 2</u>	- <, 2		80	130	3.54	1. 25	0.78	3.17	23. 23
507	· <del>\\</del>	7	7	8. B 12. 4	4. 5 4. 5	70 66	<u>⟨.2</u> ⟨.2		1.4	150	130	2. 65	1.47	1.2	2.73	33, 17
508	(1			5. 2	4	32	۲. 2	<.2	2.5	- <u>570</u> 140	130 240	3.65	1. 37	2.02	2.82	34.38
509	<u> </u>	٧. (		4. 8	4	33	۲. 2	۲, 2	1.5	260	50	2. 03 1. 54	1. 31 0. 81	1.55 3.38	2. §2 1. 32	38.08
510		1		2	5	37	_ ⟨. 2	<. 2	1.8	230	30	2. 17	0.54	3. 35	1.45	59. 43 51. 59
511 512	<u>(</u>			5.6	7.5	165	6.4	- (.2	2.4	250	70	3.21	1.45	2.64	2. 44	41.99
513	- (1	F		38. 4   2. 8	10' 3	417 51	0.2	(.2)	0.75	170	160'	1.6	3.69	1. 34	2. 2	56.96
514	()			0.8	3	53	<. 2	(. 2) (. 2)	2.6	340	60	2,02	1. 19	2. 78	1.64	<u>52. Q3</u>
515	4	۲. 0		9	2	53	<.2	۲. 2	2. I	390 530	40' 60	2.65 2.48	0. 96 1. 48	3.11		47.00
518	(1			7.2	4.5	76	<, 2	- (.2	2.4	640	170	2.04	1. 95	3. 15		54. 13 56. 60
517	0		-1	3.6	2.5	67	<.2	_ < <u>, 2</u>	2.4	640	120	2. 5	1.81	3. 33		53. 77
518 519	<u></u>	<. 01 <. 01		4. 6 9. 6	2.5	65	(, 2	<.2	2	650	110	1.87	2.27	3.31		59. 05
520	(]	<.07		6. 4	2	96 57	<. 2 <. 2	<. 2 <. 2	$-\frac{2.3}{1.0}$	620	90	1.75	2.62	3 52		52.17
601	ı	0. 02			3.5	28	<u></u> 2	(, 2	1. 9 0. 8	730 180	150 200	1.27	2.82	3. 15		<u>59. 82</u>
602	- (1	0.0		46	3	90,	1	۲, 2	3.5	670	90.	0. 59 1. 46	4. 92 1. 12	1. 92 4. 18		87. 03
603	- (1	<u> </u>	3	6. 6	0.5	45	<u>د. 2</u>	۲. 2	1.5	320	24)	2. 45	2. 64	1.98		67.43 47.14
604	<u>(1</u>	<. 02		4	1.5	33	_ < 2	<-2	1	230	190	1.7	2.38	1.53		46.00
605 606	(]	0.02		5 B 6 2	- 4	40	- (.2) -		1.3	240	190	1.71	<u>. [.41]</u>	1.55	3.99	34. 18
607	i	c. 02		6 6	0.5	52 57	0.4	2	1.7	280	140	2. 38	1,62	2.14	<b>2</b> . 29	44. 60
608	(1	<.02		1. 2	3	90	0.6	⟨. 2	3.7	390 650	130 160	2.48	1.73	2.15		40.76
609		0.02	. 17	. 8	3	50	₹.2	۲, 2	1.9	410	190	1.81 2.15	2.62	4.96 1.88		70. 51 40. 57
610	1	0. 02	<u>L</u> _	24	3	39	0.4	(, 2	1.7	370	190	2.11	1.54	1.74		99. 14

### App. 2 Analytical Results of Rock-Chip Samples


## [Core Samples]


Sample	Åυ	Ag	Çu	Pb	Zn	As	Sb	F.	Ma	Ва	CaO	K,6	MgO	Ka 0	ÀI
Жэ.	ppb	pça	Ppa	btæ	bt∎	Ĉ\$ <b>a</b>	ppe		pp#	DC III	5	•	, <u>, , , , , , , , , , , , , , , , , , </u>	3	<b>%</b>
611	()	0.02	18.8	. 4	76	۲.2	۲, 2	2.6	710	190	1.88	2.04	3.98	2.5	57.88
612	<1	< 02	16.8	2.5	45	0.2	₹. 2	1.6	340	140		2. 15	3.12	3.09	52.45
613	1	0.02	12.2	3.5	36	۲.2	€. 2	1.2	300	240		3.71	1.74	2.61	58.10
514	<1	0.08	33.6	20. 5	106	9. 1	۲. 2	1.7	500	190		2. 87	4.15	2.04	68.16
615	<1	<.02	7.8	1	34	₹. 2	1.2		320	220		1. 93	1.97	3.44	43.00
616	<u></u>	< 02	. 7	1.5	27	<.2	٠.2	1.3	190	120		0.67	1.43	3.54	27.89
617	- 0	0.02	20	1	112	1.4	<.2	2	1000	220	1	2.29	1.93	3.74	35.58
618	₹1	0.06	2. 2	1.5	85	0. 4	<.2	1.5	840	110	0.56	1.91	2. 55	2.88	56.46
619	-1-21	< 05	8.2	2	79	0.6	<.2	3.3	760	150	2. 29	2. 66	3.51	2.95	54.03
620		0.04	18.2	5	60	₹. 2	₹.2	3.2	1300	280	10.81	1.45	3.24	2.86	25.54
702	9	0.12	52	73.5	710	5.4	۲.2		880	80	0.43	1. 32	2.55	0.7	77. 45
704	<1	0.02	37.6	3	100	2	₹. 2	5.3	430	20	2.95	0.32	5. 68	1.77	55. 92
705	- 4	0.02	30_4	3	76	1.8	<.2	4. 5	540	40	3.89	0.57	4.2	2.02	14.71
706	(1	0.02	21.8	3.5	67	1.4	۲.2	4.6	500	50	4.19	0.66	3. 17	2. 9	38. 45
707	(1)	_ < 02	17.2	2.5	83	0.8	<. 2	5.7	570	60	3.54	0.93	4.32	3.31	43. 89
708	(1)	<.02	19.8	2	60	0.8	∢. 2	4.5	770	70	5. 44	1.01	1.52	2. 37	24. 47
712	. 2	<. 02	5.8	3.5	38	0.6	۲, 2	1.8	280	70	3.02	1.59	1. 39	2. 65	34. 45
713	- 0	0.02	10.8	- 4	38	<. 2	۲. 2	1.7	130	50	0.7	1.62	3.37	1.1	73. 49
714		0.04	8. 2	3	41	1.2	۲. 2	1.4	300	80	1.45	2. 68	3. 39	0.96	71.58
715	(1	0.14	4.2	5	84	5.6	<. 2	2	360	70	1.14	0.75	2.97	3 21	46.16
717		0.16	4.8	7.5	78	11.2	۲. 2	1.6	410	90	0.87	1. 35	2.99	2. 24	58. 31
718	(]	0.04	5.8	2	44	2.2	۲.2	2.5	120	60	0.67	2.5	4. 39	0.54	85.05
719	्य	0.06	10.6	3.5	58	7. 6	₹.2	2. 1	840	140	2.98	2.09	3.55	0.59	61.24
720	_ (1)	0.05	7. 2	5. 5	55	4. 8	۲. 2	2. 7	570	90	l. 43	2. 33	4.77	1.24	72.67
721	2	0.18	4.8	- 8	48	27.6	0. 2	2.2	850	130	3.9	0.99	2.51	8.09	33. 37
722	<u>(1</u>	0.02	4.6	2.5	55	6. 6	<.2	2. 1	420	80	0.71	1.43	4.48	2. 33	66.03


( )


( )

App. 3 Descriptions of Gravity Reference Station and Gravity Base Station









App. 4 Method of Data Processing for Gravity Survey

### **Data Processing**

Data processing for gravity survey largely consists of the following two parts.

- Calculation of gravity values from the dial readings (gravity calculation).
- Calculation of Bouguer anomalies (gravity reduction).

These are processed on the basis of the data files prepared for each station.

#### (1) Preparation of original data files

The original data file contains; station number, date and time of measurement, gravimeter dial reading, instrument height, latitude, longitude, elevation, terrain correction of "neighbor", code number of gravimeter, leveling method, terrain correction of "close" which are relevant for subsequent processing. These data are stored in a floppy disc by the format of 80 figures

#### (2) Calculation of gravity values

In order to calculate the gravity values from the dial readings, "milligal conversion", "tidal correction", "instrument height correction" and "drift correction" are carried out.

#### a. Milligal conversion

This process converts the dial readings to milligal value. In the case of LaCoste gravimeters, the scale constant slightly changes with the stretching of the spring. Therefore, this conversion is carried out using the milligal constant (K) and scale constant (k) designated for every 100 units of the reading value.

The basic equation for the conversion is as follows.

$$Vr = K + (R - R_o) \times \kappa \tag{1}$$

Vr : Measured value in milligal

R: Gravimeter readings

Ro: Under 100 omitted from R

For example, if R is 2,062.364, R $_0$  is 2,000, K is 2,093.73, scale constant(  $\kappa$  ) is 1.04780. Therefore, the equation will be,

#### b. Tidal correction

The observed gravity values vary periodically within the range of 0.2 mgal because of the following two factors. The correction for these variations is the tidal correction.

- i) Periodic variation by tidal force.
- ii) Very small deformation of the earth by the tidal force (earth tide).

This force is expressed by equation (3).

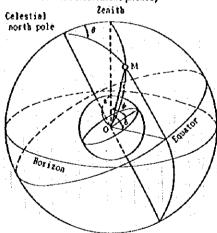
$$U = \frac{3}{2} \cdot G \cdot M + \frac{a}{r^3} \left\{ 3(\sin^2 \delta - \frac{1}{3}) \cdot (\sin^2 \phi - \frac{1}{3}) + \sin 2\delta \cdot \sin 2\phi \cdot \cos \theta + \cos^2 \delta \cdot \cos^2 \phi \cdot \cos 2\theta \right\}$$

$$(3)$$

U: Tidal force of celestial bodies

G: Gravitational constant

M : Mass of celestial bodies (sun, moon etc.)


a : Distance from the center of the earth to the station (earth's radius)

Latitude of the station

r : Distance between the earth and the celestial bodies

δ: Declination of the celestial bodies (angle from the equator)

 Hour angle of the celestial bodies (angle between terrestrial and celestial meridian plane)



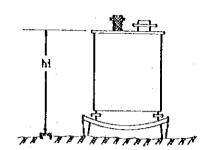
The tidal force of the sun and moon is overwhelmingly greater than that of other celestial bodies. Therefore, the correction for these two bodies will suffice for gravity prospecting.

The gravity variation caused by earth tide has the same sense as that by the tidal force and the rate of change differs somewhat by the elasticity of the rocks of the area, but it is in the order of 20 % of that caused by tidal force. Therefore, in normal tidal correction, the tidal force by the sun and moon is multiplied by 1.20 which is called the tidal constant.

#### c. Correction for instrument height

This correction is made in order to compensate for the difference of the height for leveling and gravity measurements.

The correction is done by using the vertical normal gravity gradient on the surface of the ellipsoid of revolution ( 0.3086 mgal/m ) on equation (4).


$$Vhi \approx \frac{2 \gamma_0}{B} \quad hi \approx 0.3086 \, hi \tag{4}$$

Vhi : Instrument height correction value

yo: Normal gravity

R: Distance from the earth's center to the station

hi: Height from the leveled point on the earth's surface to the top of the gravimeter



#### d. Drift correction

The drift is the variation of reading values of the gravimeter caused by the stretching of the spring. The value of the drift is roughly proportional to time. The correction for this drift is done by time proportional allotment of the closed error for each station. The variation of readings are caused not only by drift, but also by the changes of temperature, atmospheric pressure and mechanical shock during transportation. In practice, these changes are also corrected by this process.

#### e. Calculation of gravity values

All corrections for measured gravity values are expressed by equation (5).

$$Vc = Vr + Vt + Vhl + Vd$$
 (5)

Vc : Corrected gravity value
Vt : Tidal correction value
Vd : Drift correction value

The corrected gravity value Vc shows the relative value of gravity and not the absolute value of gravity. The gravity value of each station is calculated by obtaining the difference of the corrected gravity values between the station and the base station and then adding the gravity value of the base station to this difference. The gravity value of the base station is obtained by separate measurement between the base station and the reference station where the gravity value is known.

#### (3) Gravity reduction

The process of calculating the Bouguer anomaly values is called the gravity reduction and it consists of "latitude correction", "terrain correction", "atmospheric correction", "free air correction" and "Bouguer correction".

#### a. Latitude correction

This correction is done by subtracting the standard gravity of the earth from the gravity value. The standard gravity is given as a function of the latitude and normal gravity  $\gamma_0$  of equation (6) is presently used as the standard gravity.

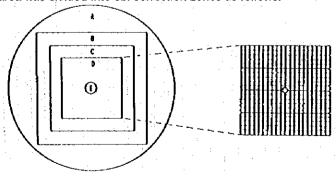
$$\gamma_0 = \frac{a \gamma_c \cos^2 \phi + b \gamma_P \sin^2 \phi}{(a^2 \cos^2 \phi + b^2 \sin^2 \phi)^{1/2}}$$
 (6)

a: Equatorial radius of the ellipsoid of revolution (6,378.14 km)

b: Polar radius of the ellipsoid of revolution (6,356.75 km)

γ_E: Equatorial normal gravity of the ellipsoid of revolution (978,032 gal)

ye: Polar normal gravity of the ellipsoid of revolution (983.218 gal)


However, the following approximate formula for normal gravity of Geodetic Reference System 1967 will be used.

$$\gamma_0 = 979031.85 (1 + 0.5278895 \sin^2 \phi + 0.000023462 \sin^4 \phi) \text{ (mgal)}$$
 (7)

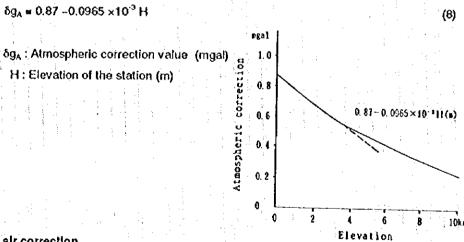
#### b. Terrain correction

This correction is made in order to correct the effect of the topographic relief of the vicinity of the stations on gravity values. It is done in a fashion by which high reliefs are shaved off and depressions are buried and a flat surface is assumed. The correction for both cases is positive. The correction for flat surface is 0 mgal and for areas with rugged relief, it may reaches tens of milligals.

For the present survey, the range of terrain correction was set for a radius of 60 km and the area was divided into six correction zones as follows.



**Terrain Correction Concept** 


Items of Terrain Correction

Zone	Range of	Grid Interval	Correction
	correction		type
A	60km radius - zone B	4 km × 4 km	Far
В	32km × 32km - zone C	1 km × 1 km	Medium
С	8 km × 8 km - zone D	250 m × 250 m	Near
D	1 km × 1 km - zone E	50 m × 50 m	Neighbor
E	20m radius from station		Close

The effect of the topography is stronger near the stations and is inversely proportional to the square of the distance from the station. Therefore, the grid is set densely closer to the station. The topographic elevation grid data which were read from 1:25,000, 1:50,000, 1:500,000 topographic maps were used for the correction of zone A-D. For zone E, topographic profile of 20 m radius from the sketched station was used for correction.

#### c. Atmospheric correction

This is done in order to correct the effect of the atmosphere to gravity measurement. The atmospheric pressure will be integrated to a height of 50 km above the station using the atmospheric density distribution based on standard atmospheric model. The correction value decreases exponentially with altitude. The variation of the correction values, however, can be approximated by a linear function for altitude below 3 km. And equation (8) is usually used for this correction.



#### d. Free air correction

The vertical gravity gradient near the earth's surface is -0.3086 mgal/m, and thus the gravity decreases with height. The free air correction corrects the effect of elevation for each station.

 $\delta g_e$ : Free air correction value

Yo: Normal gravity

R: Distance from the earth's center to the station

H: Elevation from the geoid

The value defined by equation (10) is called the free air anomaly.

$$\Delta g_F = g - \gamma_0 + \sum \delta g T + 0.3086H$$
 (10)

(9)

Ag_F: Free air anomaly

g: Gravity value

 $\sum \delta g_T$ : Terrain correction value

#### e. Bouguer correction

The difference of the gravity values measured at different elevations corresponds to the attraction of the material (rocks) which exists between the elevations of the stations. Bouguer correction eliminates this difference by setting a datum plane and eliminating material between the datum and a parallel plane passing through each station. Usually geoid is used as the datum. A homogeneous circular slab is assumed to exist between the geoid and a parallel plane including the station for the correction (equation (11)). The radius of this slab is set at 60 km, the same as the range of terrain correction.

$$\delta g_{B} = -2\pi G \rho (A + H - (A^{2} + H^{2})^{1/2})$$

$$\simeq -0.0419 \rho (A + H - (A^{2} + H^{2})^{1/2})$$
(11)

δg₈: Bouguer correction value

G: Gravitational constant

 ρ : Density, average density of rocks between the geoid and earth's surface

A : Circular slab radius (60 km)

H: Station elevation

#### f. Bouguer anomaly values

The values obtained by correcting the gravity values for latitude, terrain, atmosphere, free air and Bouguer are called the Bouguer anomalies  $\Delta g_B$  and are expressed by equation (12).

#### ∑δg_T: value of terrain correction

The Bouguer anomaly is defined at the earth's surface and the value varies by the density used for the Bouguer and terrain corrections. Thus the Bouguer anomaly contains information not only on the density structure below the good but also the difference of the real and the assumed density used in correction for the rocks between the good and the surface.

Tables of relevant data regarding this gravity survey are attached in the Appendices 5, 6 and 7. These data include; location (coordinates and elevation) of stations, gravity values, various correction values, normal gravity values and Bouguer anomalies, and Bouguer anomalies for eight different assumed density values.

#### App. 5 List of Gravity Values

ST. NO

Station No.

OBS. DAY

Observed date (year/month/day)

LATITUDE

Latitude

LONGITUDE

Longitude

LEYEL

Elevation (m)

ABS. G

Gravity value

ETC

G:GPS. L:Levelling

TERR. C

Terrain correction value

F. E. C

Free-air correction value

B. G. C

Bouguer correction value

NORM. G

Normal gravity value

ANON. F

Free-air anomaly value

ANOX. B

Bouguer anomaly value

121	YEAR)	* .	*	₹; ‡	M	1.1.57	0.5	ž	AVIT	L SU	RVEY	*			INDONESI	ESIA					DENSITY	1) 23	00 (G/CN**3)	~	A GE
9	0.85	DAY		7. C	53	. ४ घ	3	×	TUD	į.	13	EVEL		BS.6		ы	Ö.	* :	TERR. C	3. S. C.	æ	် ပ	NORM. G	ANOM. F	ANON.
c	85.5	10 to	•	138		45.6	108	י בע ויייו	8		9	895	9	202	· •	C7	GPS			4	- 1,	14		144,791	127,650
	•	- K-	1 1				3 5	 U. R.	30		× •	7.35	20 0	5	~ .	$\cdots$	SPS	* 1		<u>.</u> .	7	24 v		148.129	128 997
		6	•			80	108		4	64	3 63	042	9 6	55	; ;; ; ;;	1 -1 3 ~7	200		1.978	86.030	-23	200	978 123319	152.705	130 721
	wi z		•				108	:	4	٠,	6	118	o o	3	00	e o	CPS	ie.		o	92-	7.7	. ~	162.455	135.784
	A 10	· ·	• •			» ه -	900			ري د دي	∞ :	788	00	00 5	<u td="" ÷<=""><td>63.0</td><td>S 50 50</td><td>4 1</td><td></td><td>0.1</td><td>8</td><td>4.3</td><td>7</td><td>162.326</td><td></td></u>	63.0	S 50 50	4 1		0.1	8	4.3	7	162.326	
		9	. (			9	108		10	<b>.</b>	3 (	) (c)	Ö	2		<b>^</b>	2 0 2 0 3 0 5 0			٠.	0 1	0	•	159.984	133, 823
		6	ì	-		2	108	1 17	3	0 د	9 (	8	. 0	18	- ~	3 60	0 d				7 2 1	- 04 - 04 - 04	7.5	100.001	131.843
	••		•			0,	80	-	2	0	4	216	Ġ	18		***	Ses				1 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	200		154.252	108 801
		6 t	1			0	108		0	63	5	0.83	Ġ,	17.8	A .	- 64	20	*	4.85		-25	89	: ~	152.777	127, 110
						6	2 6	-		× ×	200	127	n, c	8		~ ·	200		•	۵.	-24	7	~	152.963	-
		00	Ü	_		77	100	4 14		• 0	9 2	d 69 0 90 0 90		200		~ *	и и а о о	# #	• .	٠. د	225	4	٠.	152,902	130,088
		00 1-	•	- '		63	108		63		è	4.26	· o	190	_		8				12.5	36	-	120.001	7 t
	. 2	- - - -	•	_		; ;	108		a	ف	7	891	ò	193			GPS	4			-23	0	•	158.763	٠,
		00 i	•			*	108			<b>6</b> 00	~	722	ð	200	446	***	CPS	à		_:	-21	9	٠.	159,010	137.042
		00 ¢	٠.			Ν.	200		0	، ف	÷ :	Ö (	ò	200	90	•••	CP S				-22	5.	7	159.967	, ~<
		· •	• •			× 4	0 0	2 5	<b>3</b> (		Ö			202	80	4-				<u>.</u>	22		••	160.604	43
	_					۾ ۾	9 0	7 -	9 6	<b>.</b>	0.0	9 0	,	400	0 1		2 6			ᅶ.	-51	00 f	•	160,660	139.283
		9 60	ì			00	0 0	1 64		<b>,</b> c	ف ف	200	n ò	0 7 7	474		A 0.			1.		7 0	~ .	157,325	o.,
		00	Ĩ			0	108	1		• 00		6	ò	1 63	951		. 6.	: :	•	: .:	1 1	30	1 -	201 /01	_
		60 -4	ī			9	108	Ξ		ي.	2 -	82	ò	23.8	~		2			: 22	-17	. 00	. «	200	о и
		σ.	,			•	108	_	3			80	ò	.239	717		SPS				-12			163.445	
		9	•			۰.	80	= :	0	~		3.78	6	245	\$8.1		2 P.S			9	-12	09	78	165.013	
	- '		•			0	80 6	9	2	4.		0	0	243	99	er (	۵.	1	7.2	49.863	-13	3	78.1	168 408	
		n o	' '			?	9 0	2 5	30	ه د		2 6	3.	42.	9	ຕ່ເ	0.0		71	٥,	2	90 i	8	169.975	
		9	٠			٥	0 00	22	) }	> 🕶	•	* **	200	200	70	26	, ,		: -	· -	7	; * c	×	170.501	
		9	·			0	80	2		- 60		9	, 60	25.4	999	3 62	2				1		0 0	457 501	158.300
		6	ï			, 0	108	0	Ţ	4	٠,	6.4	9	258	013		6			34.734	Ó	207	8	167.933	
			ī				108	9 (	ج دي دي	<u>د</u> د		5.0	6	555	0	00	5		- 5		10	6.8	78.1	168 943	158,775
	- 2	n 0	៊ែ				200	3 .	4 6	<b>5</b> 1		7 6	,	9.00	× •	'n	2				o i	 60 i	8	168.903	
		· 61	ا ،			. 2	2 0	2 2	6	•	• •	3 2	•	2696	2 1 2		2			3 6	e v	2 6	*	168.331	160.273
		6				o	108	2	9			2	6	277		i ès	2		٠.			3 00		164.707	
		0 .	1			7	108	0	33	10	•	96	9	2834	:05	63	P.S		7.7		Ť	6	8	162,687	
		9				×,	80.0	2:	27	~	<b>₹</b>	6	5	283	( 90 (	o .		L			Ŧ	5	7.8	163,302	162,079
		<b>&gt;</b>	· 1			4.6	9 6	3 .	,		•	2 4	~ :	0.7	0	٠.	2	<u>.</u> .	~ `	74.273			89	155.133	
		,				, c	2 6	? 5	•	ė u			- 6	200	3.0	٠.	20	: ن	-, -	,	-27		8	158.683	
	- 1	6	1			0	108	•			•	, v		200	9				• -	200		-	•	164.026	774 701
		61,	•			ç	108	0	0			50	-	281				_	•	· ·	,			164.950	
٠. د		13	٦			99	108	0			•	9		2825	=				•	6.226			80	162.629	
		6	,			۰,	108	on .		0	•	44	5	2838	5.2			_		5.511	7	261 9	78	163.218	161.957
· ·		0, 0	- 1			· ·	108	o 0		6	•	68	6	2859	4 i		<u>.</u>		'	4.353	Ŷ	Ψ.	78.12	164.133	163,187
		20				ş e	200	· ·			•	φ. τ		2882	4.4				~ .	4.555	d.	001.00	7	167.506	166.505
		0				> 57	0 0	0 60		á c			~ &~	0000	> e:		ن د		-	3.036	7	70 100 100 100 100 100 100 100 100 100 1		168.568	167, 165
		,				!	:	,			,			3	,		, 3	·	•	2		h h		7.7.	974-001

(

	62									•		٠			-		1				. :																			
	AGE=	ANONE	163,104	161.231	162,009	62.23	162.667	162.880	162.085	160.950	5.85	58.0	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	, v.	54.5	4.4		55.4	 	159.972	54.8	59.0	8	58.700	200	5	9	161.425	161.797	163.939	163.570	119.813	119.440	120.109	120.315	428 661	121.497	133.072	123.905	
	d	ANOM. F			22	3	8	ផ្លាំ	3 6		2	8	2																								137.248		138.041	
·	(E**#3) 00	NORM, G	78.12619	78.12625	78.12643	78.12654	78.12665	78.12675	78.12678	78.12680	78.12683	78,12685	78.12687	78.12691	78.12692	78.12594	78.12692	78.12689	78.12690	78.12692	78.12648	78.12693	78.12698	78,12705	78.12709	78.12714	78.12716	78.12720	78.12721	78.12726	78.12729	78.12365	78,12343	78.12340	78 12338	70.16.50	78.1234	78.12396	78.12367	
	ENSITY = 2.0	ບ . ຄ	85 . 39	6 178	1 2 2 2 3 4	586 9	476 9	0 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.549	596	25.5	. 522 - 3	. 531 9 891	474	6 864.	.467		455 9	264	0000	.282 9	.436 9	294	511	2000	6.059	252	369	0.409	300	0.235 9	6.036 6.44 6.44	5.872 9	6 276.5	560 9	2000 C	15.751 9	2554	.136 9	
	30	S &	8	Б°	≎≎	8	3	òò	900	9	, ,	3.9	N 5	7	0	2	9 63	4.	\$ \$	, ,	9	- 4			? ?	9 (	90	1 63		3 m	1.73	40	33	5.86	4.55		58.948	5.63	- 5 - 65 - 78 - 78	
		TERR. C	2,	, ,	3 #	1,3	91:	7	33	4	77	133	÷.	? = =	= :	*	. 2			-		97.	- 27	6	6		2	27	Ξ.	22	63	, i	. 22	2	3	3.0	0.235	es 6	2 5	
	YISZ	8 tc	+4 /	.,.	4 1-4	بنہ	:		4 ma	-4.	٠.	-4					٠	_		, ,	-	I GPS				غيد أه	<i>.</i>	·					3	7 CP	3		11 GPS *	5	55	
,	ZNOGNI	ABS. G	8.28474	8.28419 9.4419	8.28497	8.28614	8.28701	01/27.8	8.28639	8.28516	8,28332	8.28251	8.28174	91082.8	8.27919	87878.8	8.27969	8,28006	8.28157	8.28484	8.27689	8.28374	28358	8.28341	8.28415	8.28619	8.28674	8.28664	8.28591	8.28916	8.28915	22661.0	8.19903	8.20233	8.20341	0.40448	8.20	8.21587	8.20847	
	RVEY ****	13/81	333	,	759	998.9	6 2 6 9	) (	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 211	96	229 3	332	6 199	940	on or on the state of	662.9	430 3	150.9	25.00	306.9	6 861	000	900	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	761.9	203	398 9	877 9	7.66	2,799 9	7.666.9	9.701.9	8,267 9	4,005.9	7 7 7 7 7 7	188,257 97	7.521.9	8.931.9	
	F GRAVITY SU	NCITUDE	8 10 2	2 43	8 10 58.	8 10 55.	8 10 55	1	8 11 34.	2 40	22.	8 12 39.	8 12 55.	13 28	8-13 48	8 14 10		8-14-55.	15.10	8 15 42.	8 13 8	91.8	8 16 15.	16 45	10	82 17 28	8 17 46.	91 81 9	34.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 19 22.	19 27	8 19 18	8 19 6.	8 45.	27 21 0	8 18 21.	35 54.	17 33.	
	THE LIST O	ATITODE	46 7.8	46.16.2	46 43.2	46 58.8 1	47 15.0	47 30.0	47 34.8	47 37 8 1	47 43.2	47 46.2	47 48.0	47 54.0	47 55.8 ::	44 60 60 60 60 60 60 60 60 60 60 60 60 60	47 55.2	47.51.0 1	47 52.2	47 55:22	46 49.8	47 57.0	op op op op op op	48 13.0	48 21.0	48.28.2	48 31.2	48 37 2	48 39.0	48 46.8	48 51.0 1	39 45.0	39 12.6	39 7.8 1	20.4	7	39 12.6	40 32.4	39 49.2	
	R) ****	OBS.DAY L	5. 7.19	0.17.0	5 719	5 719 -	577.6	2 7 2 4 1 4 4	01.70	5,719	1 617 5	5 719	5 719	514.5	5.719	5 719	27.70	5, 71.9	4 7 9 9	1 612 5	5 717 -	5.7.5	5 7 6	0 0	51.6	5.712	27.5	5 712	5 712	21.7	5 712		. 6	5 7 9	, , ,	7 0	1 I	5 711	11	
·	95 ( YEAR	ST.NO			3 W	L.	9	. •	ം	: 0 -	٠ د	က	4 v	, w	<b>.</b>				~ ~	3 V		9 5	. 60		·	. ~	c2 ×	ריי	9 6	- <del>6</del> 0	6	۰ د	• &				o t~	<b></b>	100	

į )

) ( )

	. 63	ά	4	φ	0	4		ه دم	2 +	40	. 60	·		٠,				٠.		<u>-</u> د	ند						٠.			i.		٠		:				5					
		ż	•	-				ų,	, c	. 7	42	12		0	~ 0	5	7	Ö	e i	Ž	9	5	š	4	\$	57,6	262	7	9	\$000	677	748	, co	323	24.0	892	197	593	2 5 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	220	239	220	5.0
	ä	×		2	Į,	92		28	7 .	3	32		3	38		42	44	46	<b>.</b>	7 6	4	3	S	ار دې د	55	\$ \$	5.	,		, o	35.	9	÷ 6	3	- 0	4	4.	53		 		33.02	3
	ď			vo	∞ <	> 4.																																					-
		, j	• '	ŧ-	5:	3 %		6	7	8	35	ŝ	3	2	è	2.1	3	3.0	5		259	43	2	96	413	253	90	352	380	0.46	96	930	200	7	2 3	9	90	9	200	9 9	5	4.26 0.00	
		KONY		36	Ŷ٠.	- 2	,	<b>Q</b> •		4	Ś	9	3	٠ د م	, ,	2	5	*	9	9	62.	63.	9	9 0	56	. 9	00 Y	90	20		9	6	· ·		2 0	4	,	9	~i <	7 °C		52.4	;
	3		•	-		-	•	-	•	•		~				٠.		~		4	-	Ä	Ā.	I I	H	H	-::	4, 64	-		:::	#4 .	~ =			9	-1	5	-	7 17	55		3
	*			*	ý é	0.34		~ ×	9	7	80	0	4.		7 V	Ċ	£-		C	o ≪	ب	7	II :	N 00	9	ج		>'	4		2 00	<b></b> .	⊣. જ	<b>83</b> 4		. 63		<b>K</b> ~ 4	٠÷ د	t va		∞ €	•
	/cx	ن	•	٠.	CJ 4	2 6		ď.	. 4	.,	*	**	~			9		٠,		* *		03	9	<b>→</b> •	₹4	6.5	* 0	מי מ	(0)	Ň	ñ	**	ōਔ		000	00	ñ	66	7.	56	~	-	7
	9	NORY		 50 ·	စ်ဝေ								-	· ·	٠,٠	· ~		<b>-</b> • i	-	-				4 ~								~ :	3 64		7 .		€.3	646		A 64	61	63 C	4
	8	75		•		- 1-		20	6	6	6	97	9.3			5	97.	2	6		97	978	8	27.00	978	9.48	0 4 0 4	000	97.8	978 978	378	8 t 6	97.0	978	200	8	978	978	0	2 20	27.8	978.1	2
	2	: e	: .	န	00 4 1- 4	9 89 64																																				4 4	
•	}	ی		دن. دن ا	N 4	9		- ×		67	9		٠,	71 ÷	. 0	~	3	7	7 3	8	ô	8	4	- 6	òò	ف	800	3 60	20	2.5	4	25	***	\$ 5	9 4	5	76	30.5	9 6	Š	23	6 4 0 4	0
	NS.ITY	0.3		1	7 7	7		7	12	7	7	ï	-	- 12	7	-	6	90 0	20 0	1	-	∞ .	φ.	9 4	9	0	٠	9	4	0 0	20.	0.0	2		0 00		202	9	0 ģ	2	20	19.40	
,	DEN			<b>~</b> .	<u>- «</u>						_											:	٠.							:								•	•	•	•	• '	
		ပ		# :	7 0	100		2 0 4	. 3	5.59	527	0.75	53.0	20 0 00 0		31.8	38	£ 5	770		161	÷	705	? =	88	60 6	9.5	: :	55	27.8	4	40	9	2	9 60	3	6	9 6	<u>ب</u> پ ج	> 00 (1)	92	4 5	-
		ι., (.,		0 (	4 4 5 -		9	. 4	4.5	9	48.	90	4:	9 6		40.	*			500	80	0	* "	9 00	m	63.4	3 10		٠٠.	- 6	9	·	; ; ;	0 0	, co	.,		es v	 	∞ ∞	5.7	72.44	;
						:																																					
	÷	∞		40 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5	270	233	244	233	230	** c	200	80	1.85	23.2	. 9	8	23	32	8	3 0	- 6	2	8	9 40	0	en t	. d	13	× 5	* 60	9 .		~	6	g 5	2 %	. 4	61	528	,
		TER		0 (	<b>•</b> •		-	0	0	0	0	6	0	5 0	Ö	0	0	0 0		5	8	9	, ,		3	3	) c		0 0	000	6	0 0	8	0		0 :		55 F	? fr	8		n 17	,
		*	*	* :					<u>.</u>		_	_			_																								-	_	_	_	
					200	20		Š	Ň	Š	en :		v e	20	ė	'n		· ·	9 es			e Cons	e Se	-	* 	7				H H D KÀ				* *		_	Ξ.	* é Oraș		نه دخت	*	* * 'n ori	
	ΥI	110			5 6	3	Ü	ی ,	3	3	G	65	9	ט כ	G	S	. د	<b>5</b> 0	9 0	Ö	Ç,	6	5 G	3 23	3	3	3 5	ö	öö	3 3	ö	ى ق	Ü	င် ပ	: 6	G	ខ	<u>ი</u> მ	5 6	3	8	36	;
-	NDONESIA			J ,	<u>ت</u> د	3	2	13	ä	3	3	Ξ.	3.	3 1	3	3	Ξ.	3 -		4	- 1 - 1	Ξ.	7 -	13	Ξ,	٠		1.4		÷	۲, ۲,	4 .3			; c;	3	er :	3 2	3 5	1	e ;	3 13	;
	003			~ 6	9 40	<u>t</u> -	9	- 66	*	, v	çı .	۰,	٠.	<b>-</b> -	ų,	<b>50</b> -	n e	ے ف	> 00	· in	٠,				vo «		a ch				٠	~ ~										Q (6)	
	≅	O	•	<b>∞</b> •	2	₹.	ုင္		**	2	= :	<u>-</u>	9	3 3	2	٠.	29	7 4	9 67	٠	ĸ,	٠, i		Ň	ō,	, .	Ń		46		00 4	20	8	<b>~</b> ~	. œ	6	- 6	-	· •	രം	00 -	75	
	- !	83	. •	i, e	70	7		2	63	2	2		, ;	1 5	5	3	.,	, ,	25	3	23	36	2 6	26	2	7	, 62	8	9 6	9 60	02	38	7	7 7		Ž:	2	÷ 5	. 6	Š	<u> </u>	30	
		-	·	~ ~	9 4 6		9.78	9.4	978	97.8	978	) (0 1 ~1 0 (0	× 6	8 0	978	9.4	50 C	2 0	2,0	8.78	200	× 6	0 00	200	∞ c	× 0	8	8	∞ «	00	80	0 00	8	× ×	8	00 t	60 c	× ×	200	7.8	× 0	010	
	*	VEI	•	ກ່ອ	, 62	*	4	17	8	0	ė	2:	2.5		65	9		<b>&gt;</b> (1	, e	Ģ	+	0		6.5		2 6	. w	v.	o, c	9 00	es (	. 63	0	on vo	. 65	·	•	n en n ed	90		on c	n en	
	* . 	ĽΕV	4	ي م	90	'n																																					
	~			o 4		c)	4	4	4	<b>1</b> 1	, i		3 4	-	13	15	ž.	200	: 5	8	on a	20 6	- 2	28	on o	90	3	-	90 E													213	
	N				ب ہ	₩.	**	66	~	<b>.</b>	-u ,		٠.						_	_																							
	ΙΤΥ			, ·		6		9	2	~; œ:	_		, v		2.	4	•	- 0	-	0	vo c	3 6	. 00		o e	36	- 30	8	o o		'n,	2 0	2	er od	0	ري دي	<b>∀</b> °	7 6	9	*	200	7 9	
	KAVI	£	<b>*</b> : •	- *	-	<b>Ł</b>																							•		•	~	ν.	v	~,	<b></b> ·		٠,	N	C2	· > 1	36	
	5	LON	۰.	: o os		80		~	٠.	٠.	٠.																	Ξ.	-									-	. ~		-	٠,	
	ö ⊩	. •			×		2	=		3:	3 (	2 5	-	2	2	2 :	2 5	2	2	2	2 :	) C	2	0	2 5	2 0	•	٠,		2	v	, ,	9	-	•	•		ാറ	. ~	108	~ ~	<b>``</b>	
	e i	, ·	· ~	, 2	9	63	00	9	4	'n,	۰	• <	> 4	∞:	*		> ہ	2	4	۰,۰	× •	. 4	4	00	۰ د	10	6	<b>60</b> (	ò 4	0	4. <	- 00	0	<u>ہ</u> م	w	·	, c	> 03	e ois	9	ç	1 0	
	⊶ : ⊵:	F .	ŭ	, -	8	4	. 23	36	8	3	4.6	. :	4 6	3	Α.		0 ¥	, c-	7	4	4.5		50	4	• ÷	4 00	63	- :	2 5		۱ د ۱۰	6	8	. 0	20	÷.		 	46	9	် ့	90	
•	H.	~		3 4	4	4	4	4	7	,	<del>-</del> -		1 4	42	4	4 .	2 4	4	4	4 .	4	, v.	5	46	9 4	4.6	<b>\$</b>		- 6-	7	23 CO	39	8	§ <del>\$</del>	9	÷ ;	2 6	> 60 F 63	88	လ က (	30 G	9 0	
	* *	-10	3 6	-	-	1	~	~	- 2	~ *	- ×						-					_																			- 6		
	*	γX		• 🗢																																							
	į	8.0	· -	•	-1		7	<b>~</b>	t	- :			- 1-		ا بند ا جع	o	- 8-	. 00	۰۵ د	∞ 0 t~ t	- 1	· ×	. <b>6</b>	∞ ( i~ I	- 6-	· 6~	6	0 4	32	7.0	716	715	21.5	22.5	7.15	715	0 5 6	9	7.16	716	0 4	9	
	AK)	0			8	w.	5	S	vo u	Ċυ	O 14	<b>3</b> K	1 10		٠ ١	A	~ ·-					<b>.</b>																		500			
	3	\$.	: <u></u>		80	4																																					
•	2	L		1	=	Ξ.	3		~ .	-	-	-	•	Ξ	<del>र</del> ूषे । स्टबं	~ .		: ::	12	~ .	2 6		7	7	3 6	. 50	음	** *	? *?	e e		ñ	ë,	4	4	* ;	4	140	4	60 K	ė v	3	

( )

								-								•									:									Ċ									•	
AGE= 4	ANOK. B	-	129.256	~	9,	~ ~	. 0	. ~							140.041	154.057	137.547	155,234	62.392	159.525	104,446	159.018	158.862	158.339	165.171	161.000	161.765	159.984	561.398	164.387	164.766	162.531	128.474	127 586	127.407	127.801	128.306	128.451	130.471	132.560	510.701 1010.701	. ^	132,996	
<b>a</b>	ANOM. F	-	149,599	147.756	147.525	110.151	154.740	158,993	150,601	161.202	162.349	64.987	163.405	000	104 . 404	167.116	154.432	173.358	171.560	170.021	172 266	167.980	169 031	160.623	176.631	171 484	170 342	170.691	167 747	169.867	166.196	164, 100	148.257	143.615	142.621	143.307	143.387							.,
00 (G/CK**3	NORM. G	8	8	00	0 0	00	20	78	8	00	80	× (		0 00	> 00	8	8	~	80		. 00		+4	7		٠,	78.125692		į			in i		1 24		Ξ	7					**		241
NSITY = 2.	3.6.6	034 9	543	295	n o ov		710 9	714 9	453 9	600	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 · · · · · · · · · · · · · · · · · · ·	200 200 200 200 200 200 200 200 200 200	200	6 300	0.59	885 9	124.9	60 C	70	6 952	962 9	170 9	6	30	34.	-8.577 93	9	200	9 6	30 97	1.569 97	2.5	16.029 97	14 97	15.506 97	81 97	14.737.97	200	77 710 07	91 97	28 97	99 97	34 97
ស់ ល	7.E.C	71.074	75.913	400.00	1000	51.874	55.104	77.284	61, 50	64.073	57.679	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	22. 425	54.630	52,504	49.009	63.137	67.713	**************	, etc.	40.473	33.894	38.347	200	37.100	36.001	32.473	26.540	11.769	13.137	6.135	6	9	59.975	6.36	8	6.47	7.7	0		7 61	:	5.80	. 44
* *	TERR.C	٠.	٠,	• •		~		99	ינים	ů,	. ·	ś.	- 47	*	N	S.	€3 (	on v	o e	3 61	14	es	4.	<b>م</b> ر	9 12	v.	0.490	* 00		4	ès (		* *	8	~	ć.						~	-	~
KSIA	M70	ب	() ( () (	3 C	<u>ن</u> د ده د	, cs	o i	ا ق م	و د د د	3 i	5 ē	5 2	. G	3	5	ਤ 	Gi	3 6	5 6	ö	3	3	5 8		: 5	3	# # # # # # # # # # # # # # # # # # #	3 64	;		a.				_	_			-	_	_	•	_	~
* INDONESI	ABS. G	78.20380	000	78 1930	78.23052	78.23021	8.22327	1505.50	72127	1022.0	0.77.0	2302	8.2559	8.2339	8.2357	8.2423	8. 2149	7677.9	25.55	8.2554	8.2567	8.2583	8.2553	2000	8.2585	8.2602	978.263070	266.2	78.2810	78.2820	78.28596	78.40.07	78.19695	78.20686	78.20903	76.20873	52012-01	20117	78.21.41	78.20724	78.21382	21967	21566	. 20230
*** ;	LEVEL	*	2 2 2	2.24	1.183	5.327	. 198	9 6	700		7 4	7.5.5	.870	292.	67,369	56.041	01.645	200.00	25.2	25.081	.372	07.046	674.13		, 4 8	874	40	90	328	.763	990.	36.463	40.191 5	587 9	2222	5 775 08	77.78	, ,	950	817.9	947 9	62.842 3	056 9	
114.000	LONCITUDE D X S		7	25	\$ 11 34	3 1.1 1.3	11 16	77.	7 6	300	10 20	10.25	15 45	10 22	10 32	000	200	, « , •	10.15	9 55	9 40	2	⊃ 00 ~ ¥ ~ 00	0	10 3	6	0 to	000	9 22	6	, , , ,		15 55,	16 11.	91	27 07		16 12	16	5 54	15 54.	٠	5 45	
1	TITUDE A S	39.35.4 10.	2.5	57.0	3.0	50.4	4 6 50 6	000		7.	30.0	4.7	25.2	4.2	4.1	200	7	1 42	43.8	37.8 1	45.0	4.00		9	30.0	57.0	30.00	27.6 1(	16.2 10	7.2	20.00	28.2	7.91	9.75	0. 0. 24	0.0		8.6	2.4 10	9.8	9.6 10	4.5	4.0	7
	λ¥α		91	91	11 -2	-				- 2			:			.~ E	- K- - I		2 -7	7 - 2	6 1	7 6	2 - 2	9	2 -7			8 - 7	6	6			- 2	F 8							5	· ·	- 4	-
		152 95	þ	9	8	0, 0	000	90	5.0	52 95	53 95	54 95	56 . 55	200	27	000	90	28	72 95	3 95	4. A		7 9 5	8 95	9 95	0.0	, c)	3 95	4 95	50.0	) kr	6	9.95	9.		) (r)		5 95	6 9.5	7 95	8 95	7) V	0 Y	<b>&gt;</b>
																													:										•					

( )

			PAGE=	A KOXA																					133.782															45.	
			3)	ANON. F	150	4.	4.0	1.58	151	153	4.5	156	156	200	1 48	6.1	1 20	154		1.47	148	15.5	155	153	150.250	102	1630	157	156.	165.	157	156	156.	***	9	150	24	. 8	146	147.	
( ,	) .		2**#2/5) 00"	NORM. G	978.124592	978, 124472	978.124843	978.125151	978.124205	378.123954	978,123990	978.125845	978.126025	978.126150	978.126114	978.126799	978, 126589	978,126416	978.126400	978.126335	978.126299	978.126581	978.126710	978.124078	978.124058	778.125079	378.125231.	78.125451	78.125451	78.125183	78.125484	78.125544	78.125592	78.125620	78.125488	78.126178	78.125584	78.125865	78.125917	78.125913	
			ENSITY = 2	B.G.C	્ઠ્રે	926	988	93	9 6	% i	-11.624	0.7	4.0	3 5	23	, v	9	62	917	3.922	154	. 64	450	804	:	930	874	. 235	508	660	00 to	405	376	233	345	535	רי כי	·i	w i	0	
			4	7 · E	භ භ	ಬ 4 ಬ ಭ	66	vo e	- W		4.4	8	2 6	1.2	on e	•	*		7 47	ų	ý v	**	2 %	62	61.597		4 K	45	Ç (;	9	) m	35	35	- 10	42	-	2.4	*	00 C	•	
		:	:	TERR. C	0.560	1.644	0.924	0, 0 4, 8	1.450	0 c	1.464	0.185	3 2 3 3	0 273	0.200	0.200	0.164	27.2	0.186	0.206	0 200	0 133	0 162	0.318	0.321	0.622	0 3 80	0.324	0.870	606.0	0.469	0.632	000	0.339	0.436		0.288	0.656	0.306	<b>*</b>	
			ONESIA	ETC.	* S40 61	100 CPN	* S40 67	12 GPS *	L3 GPS .	# # 0000 FT	4 25	1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 652	L3 GPS .	20 C C C C C C C C C C C C C C C C C C C		* :::	* * * *	1 2	# (	* *	*	13 69 8	13 GPS #	13 GPS *	11 625 *	11 GPS =	L1 GPS *	# SS # 11	E1 698 F	LI GPS *	L1 GPS .	* * * * * * * * * * * * * * * * * * * *	L1 6PS #	17. 675.	LW GPU: #		L1 GPS *	[1] GPS #	•	
()			INDON	ABS. G	78.211384	78.221722	78.211599	8.199039	8.205242	8.234807	8.231256	197197-8	8.258820	8.263918	8.283083	8.280610	8.278688	8.275400	8.273278	8.269389	8.274370	8.276364	8.206463	8.212647	8.212390	8.243974	5.243246	3,236667	242305	3.233514	.248390	1.245510	251778	239612	245561	267283	. 250041	.255685	266243	; ;	
			URVEY ****	13/37	202.091 9	55.871	13.816	42.073	18.891	31:058	38.870	2 6	50	200	9 0	53	, 0	2 63	<b>3</b>		25	7.1	1.150	-098.0	83.161	939	. 9 9 2		508	246	052	333	0 00	229	537	200	900	25.25	454		
			GRAVITY S	S	15.19.8	-	- L	.5	4 6	0	0 4	9	12	,	? *?	5	× ×	4	4.	ď		90	2 (4)	₩.		6	* 63	~ ~	8	N 69		r3 e-				÷ 63	121		 		•
		:	187 01	S 10	7.2. 108	0.00	201	.8 108	0.00	801	4 108	201	.2 108	2 108	2 108	2 108	2 108	8 108	0.0	8 103	2 108	801.0	8 0 1 1 8	800	801	108	108	2 108	108	0 108	901 9	20.00	80	801 9	200	801	4 108	30 0	80		
			7 3KL ***	LATITUD	42	2:	2 5	4.1	4 4	5	53	Š	\$	4 4 5 4		4 .	- <del>4</del>	4	4.6	4	5	4 4	<b>2</b>	4 4 0 c	* * * * * * * * * * * * * * * * * * *	4 4 4 4	4	4 4	<b></b>	4 4 5	4	44	. 74	44	4 4	 94 94	44	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	45.		
( )			AR > **	OBS. DAY	95 717	717	717	717	717	713	10 CT	7.19	719	N 01	7.2	2 2	2 2	7.12	2 4	2 2	212	712	6	713	200	718	718	716	716	716	716	21.0	716	716	0 00	717	717	717	7:7		
			Σ (X	٥.	202	12.		J.,	ă.,		44.5						٠.														•		٠.	٠, ٠				<i>n</i> en	. 0		