

Figure 4-2-9.2 A sample of Provincia Administrative Map (Santa Cruz Dept., Velasco Prov., P703ADMI.BMP)

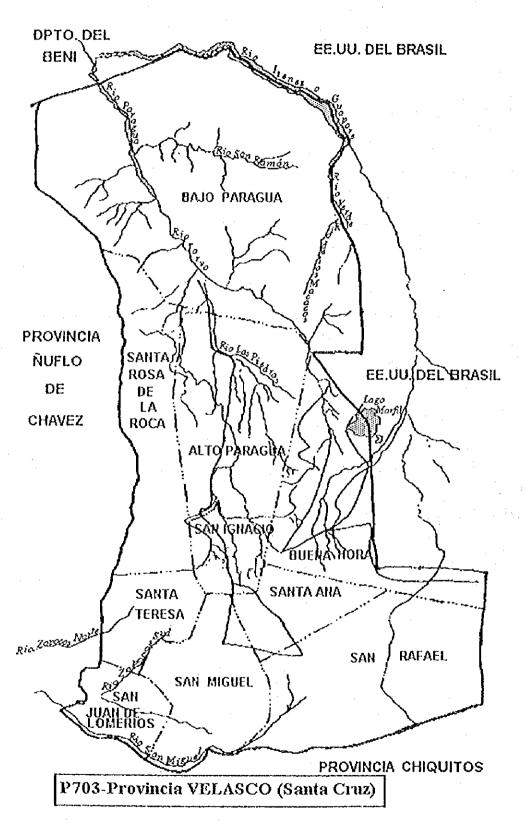


Figure 4-2-9.3 A sample of Department Administrative Map (D7-ADMLBMP-Santa Cruz)

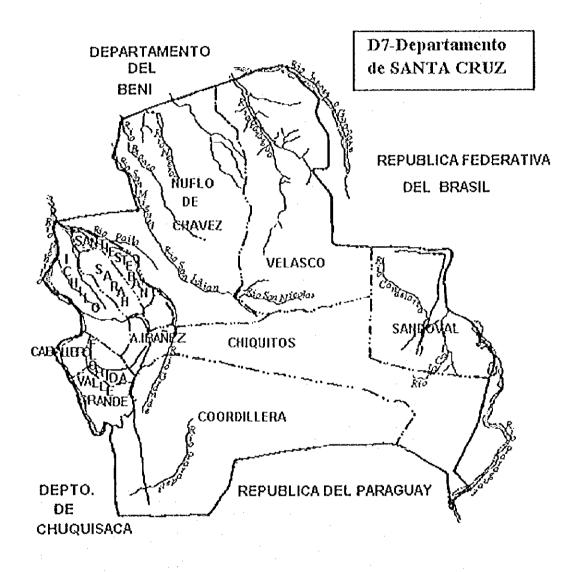
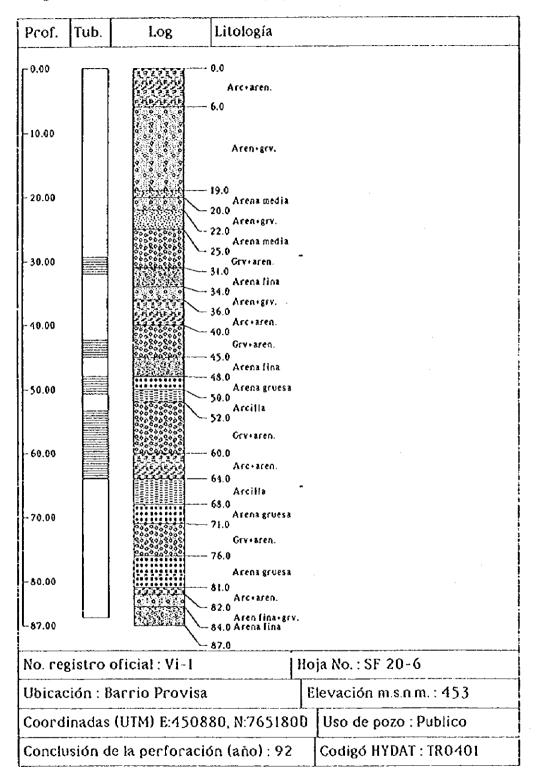



Figure 4-2-9.4 A sample of Well Geographic Column Map (W6030301A.BMP)

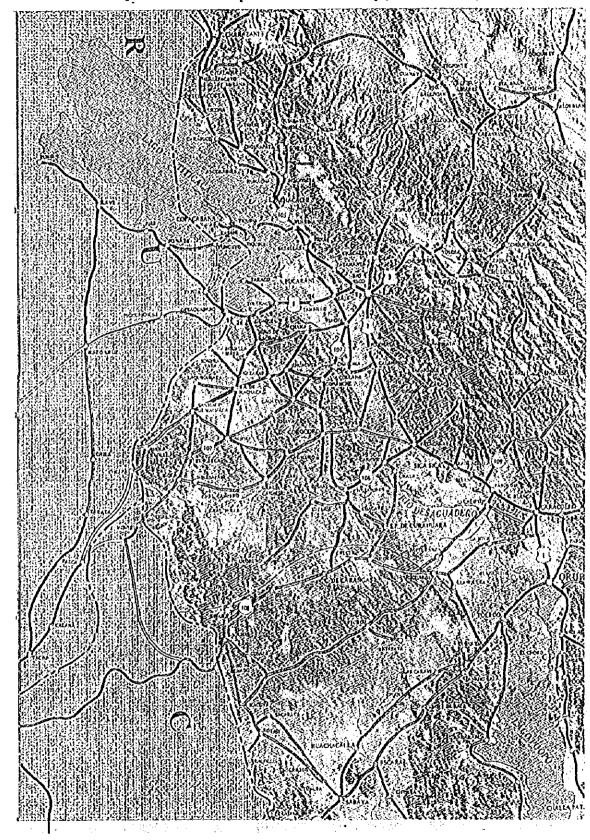
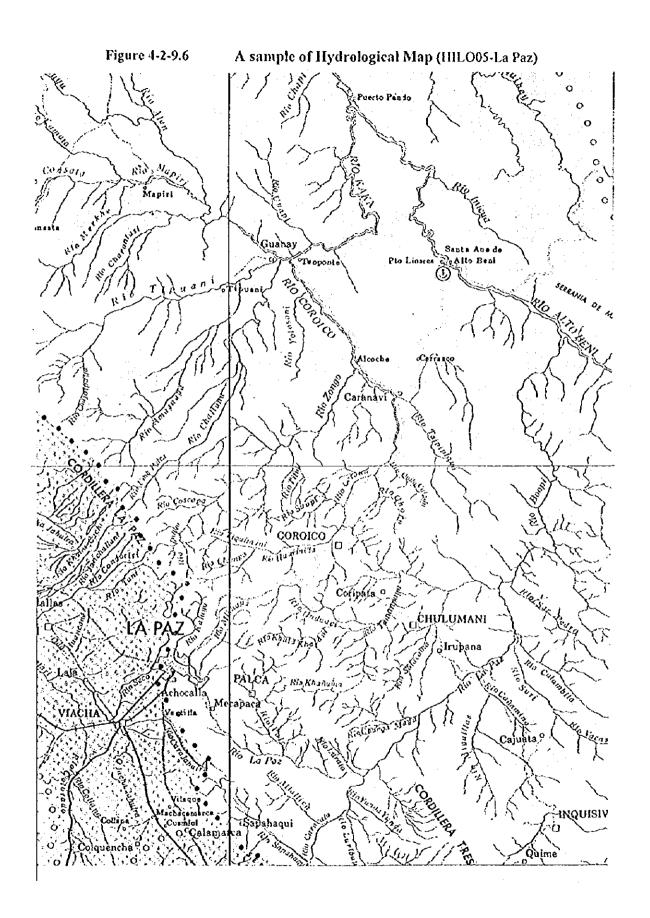



Figure 4-2-9.5 A sample of Road Network Map (ROAD05-La Paz)

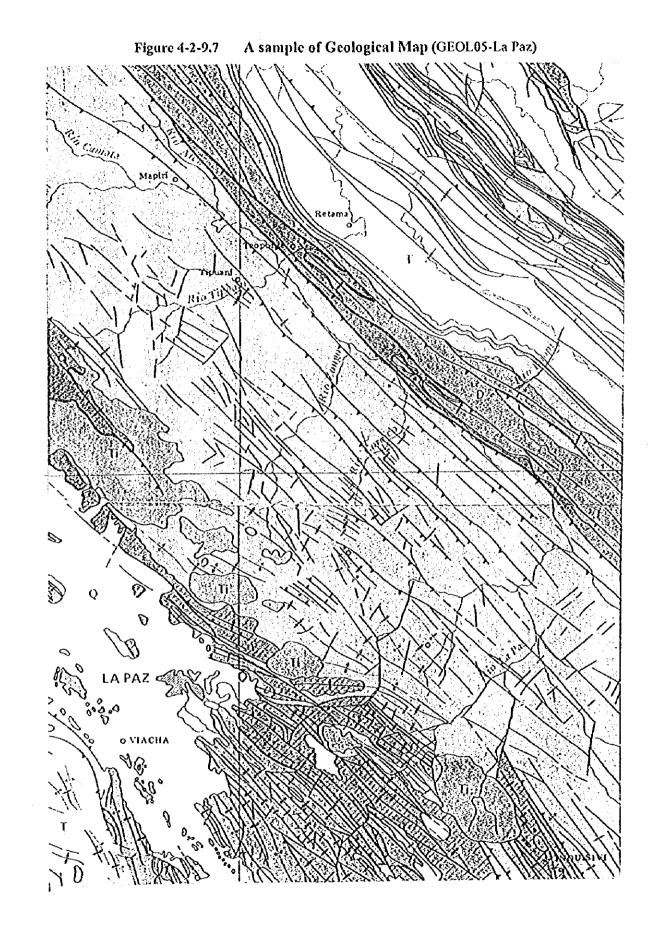


Figure 4-2-9.8 A sample of Topographic Map (TOPO05-La Paz)

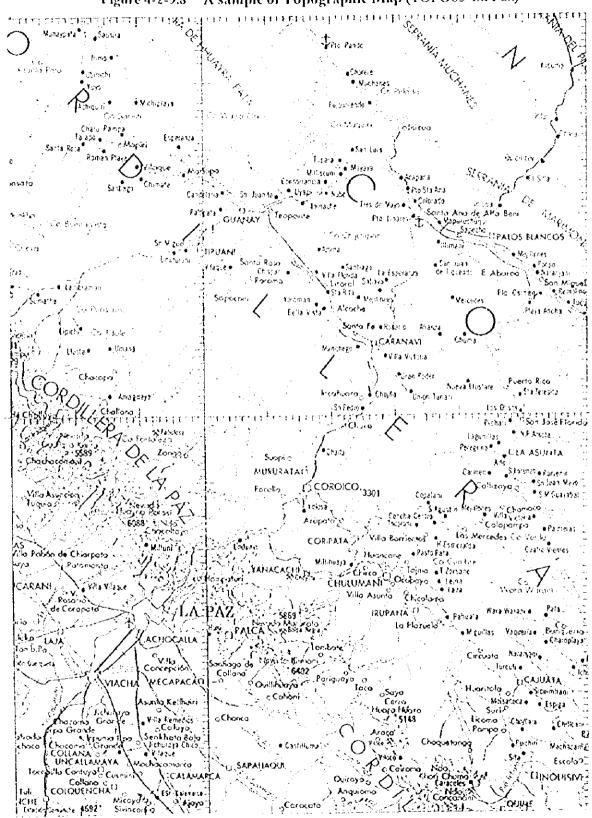
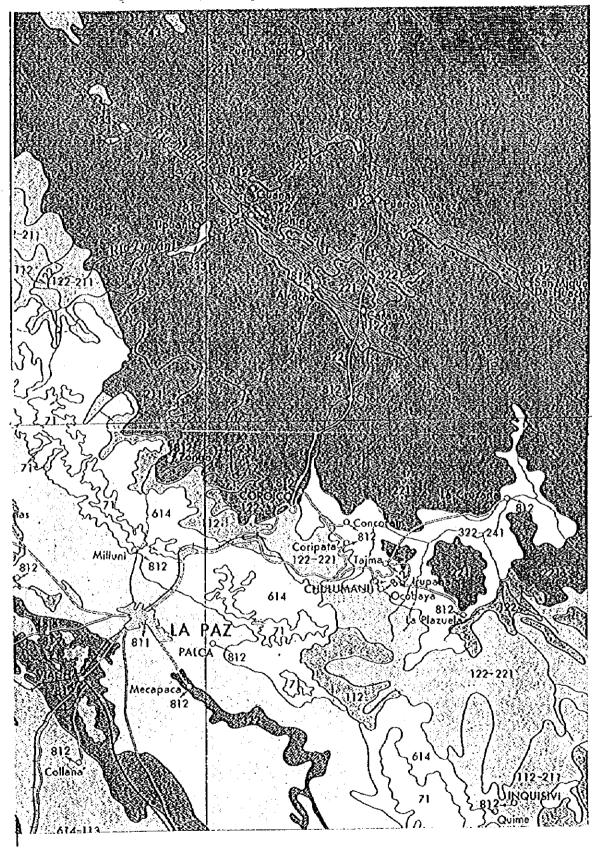
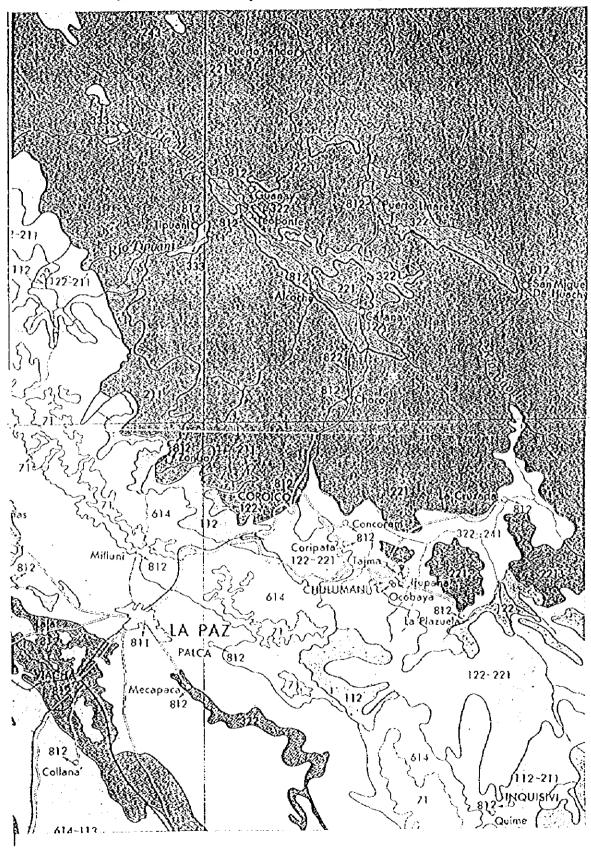




Figure 4-2-9.8 A sample of Topographic Map (TOPO05-La Paz)

Figure 4-2-9.9 A sample of Land Use Map (LAND05-La Paz)

.

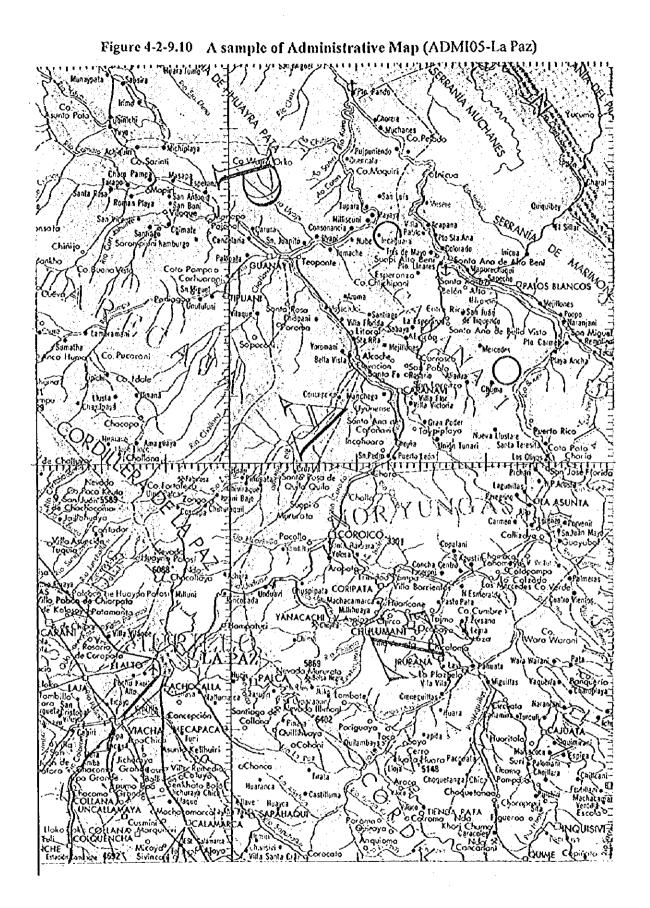


Figure 4-2-6.11 Hydrogeological Map

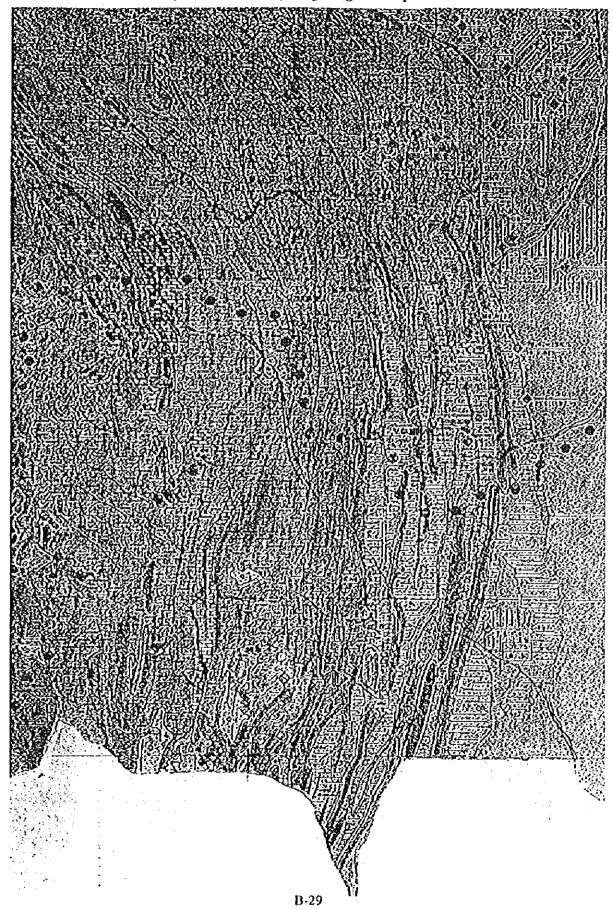


Figure 4-2-6.12 Natural Environmental Map

C. HYDROGEOLOGICAL INVESTIGATION

1. Geophysical Prospecting

1

2. Regional Groundwater Development Conditions in the Study Area

CHAPTER 4 HYDROGEOLOGICAL INVESTIGATION

4.1 Geophysical Prospecting

Two types of geophysical prospecting, such as vertical electric sounding of electrical resistivity and electromagnetic sounding, have been implemented in this study.

Vertical electric sounding (VES, Schlumberger method) was carried out to cover most parts of the Project Area (Altiplano, Valle and Llano), while electromagnetic sounding (transient electromagnetic method, TEM method) to cover the Chaco area.

The tools used by the current work are listed in the Table 4-1-1.

1) Principle and Method of Geophysical Prospectin

(1) Vertical Electric Sounding

Vertical electric sounding (VES) on the current work was implemented with electrodes allocation of the Schlumberger type as shown in following Figure 4-1-1. Electrical current I was run into then earth through a couple of the current electrodes A and B to measure the potential difference, generated between the two potential electrodes M and N by the current I. Two potential electrodes were symmetrically allocated on a traverse line as to substantially uphold such a relationship between the spacings of AB and MN as to being that $AB/2 > 3 \times MN/2$, while, station O is on the center of traverse line to being that OA = OB = AB/2 and OM = ON = MN/2.

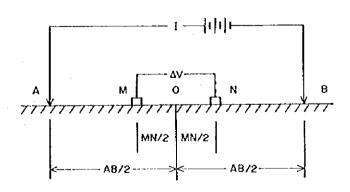


Figure 4-1-1 Configuración de Schlumberger de Sondeo Electrico Vertical (SEV) Figure 4-1-1 Schlumberger array of Vertical Electric Sounding (VES)

The apparent resistivity value in the occasion of the above is shown below:

Pa = K V/I

where

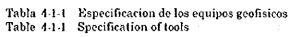
Pa: apparent resistivity

V: potential difference between the electrodes, M and N

I: intensity of current

K: electrode configuration coefficient, $2 \pi (AB/2)^2 - (MN/2)^2 /MN$

The smaller spacing value of MN of two potential electrodes, as small as possible, against the spacing value of AB of two current electrodes, should provide more effective geophysical achievements, since smaller V value is prone to be hardly measured if AB value get larger, as shown in the following equation:


$$V = Pa I MN/2 \pi / [(AB/2)^2 - (MN/2)^2]$$

Based on the above relationship, the current vertical electrical sounding has been substantially operated under a conditional combination of AB/2 and MN/2 as shown in the Table 4-1-2.

(2) Electromagnetic Sounding (TEM)

When a steady current in a cable loop on the Earth's surface is rapidly terminated, a time varying (primary) magnetic field is generated. The magnetic field induces eddy currents in underground conductivic materials (such as mineral deposits), and the manner in which these currents decay is characteristic of the properties of the conductive material (mainly their conductivity, shape and size).

The (secondary) magnetic field associated with these decaying currents is detected by a suitable coil known as the receiver (Rx). This Rx is a small multi-turn coil placed at the centre of the transmitting (Tx) loop. This loop configuration is known as In Loop and in this study this configuration is used. The transmitting (Tx) loop has a size of 100m x 100m as follow:

Method	Tools	Гог в	
Vertical Electric Sounding	McOhom 2115	OYO Corp.	
	Transmitter	Output Voltage	400V. P-P
		Range of current	1, 2, 5, 10, 50, 100, 200mA
	Receiver	Input Impedance	1M.
		Range of Measurment	0. 001mV-0, 6V
		Resolution	0. 001
	Power	Internal battery or	
		External battery of 12V	
	PowerBooster	350mA/200V	
		500mA/200V	
		650mA/200V	
		800mA/200V	
Electromagnetic	STROTEM 3	Geo Instruments Pty. Ltd.,	
Sounding (TEM)		Australia	•
	Transmitter	Waveform	Bipolar, Rectangular
		Reactition	25Hz to 0.12Hz with 50Hz rejection or 30Hz to 0.12Hz with 60Hz
		Current output	10 Amp max
		Voltage output	24 Volts DC max
		:	
	Receiver	Measurment range	8 micro-sec to 2 secs
		No. of measurment windows	53 total
•		Window width	50 micro-seconds
		Band width	10KHz
		Voltage resolution	1 microvolt (gain=0.1)
		Signalaveraging	1-9999
		Gain	0. 1, 1, 10, 100 times
		Instrument noise	12 nV max

Tabla 4-1-2 Hoja de calculo de Sondeo Electrico Vertical (SEV)
Table 4-1-2 Vertical Electric Sounding (VES) sheet

No.	AB/2	MN/2	K	dV (mV)	(mA)	Ř	ρa (Ω-m)
1	3	0. 5	27. 5		;		
2	<u>4</u> .	0. 5	49. \$	· • ···· · · · · · ·			
	5.	0. 5	17. 8 37. 7			- 4 " - 7	. = 1
4. 5	6. 5	0. 5	131. 9				,
6	6. 5	Ĭ	64. 8				:
7	8	1	99. 0				
8	10		155. 5				
10	13 16		263. 9 400. 6				
11	20		626. 7				
12	24	1	903. 2				
13	24		173. 1				
-				1			
14	30		1, 412. 1		:		
15	30		274. 9	40.00 40.00 00.00			
16	35		377. 0				
17	40	5	494. 8				
18	50	5	777. 5				
19	65	5	1, 319. 5				
20	65	10.	648. 0	:			
21	80	5	2, 002. 8				
22	80	10	989. 6				
23			1, 555. 1			· · · · · · · · · · · · ·	
24		10	2, 638. 9	ikan di			
25			4, 005. 5			·	
26	• • • • • • • • • • • • • • • • • • • •		6, 267. 5				
27	240		9, 032. 1				
28	· · · · · · · · · · · · · · · · ·		1, 731. 0		. :		
29			14, 121. 4	/			
30	300	50	2. 748. 9				a si eferi i sa i si si e a sa e
31	350	50	3, 769. 9				
32	400	50	4, 948. 0	<u> </u>			
33	500	50	7, 775. 4				

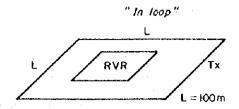


Figure 4-1-2 Configuración de Loop de TEM Figure 4-1-2 Loop array of TEM

The transmitter current waveform consists of positive going and negative going pulses. Between the pulses is an off-time, during which the signal is measured.

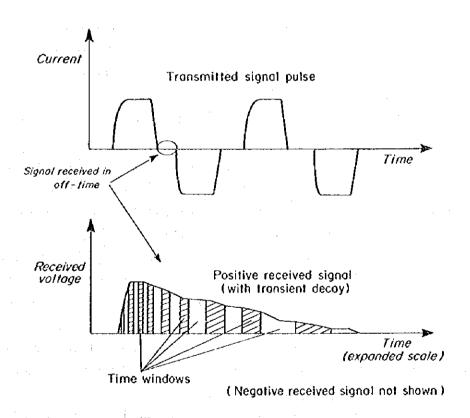


Figure 4-1-3 Senales transmitidos y recividos Figure 4-1-3 Transmitted and received signals

2) Results of Geophysical Prospecting

Groundwater prospecting is to detect an aquifer. A layer found by geophysical prospecting is judged to be an aquifer or not by the results of drilling and well logging. In geophysical prospecting, here, a word an "aquifer-resistivity layer" is used for a layer which has possibility to be an aquifer by analyzing it's resistivity structure.

According to the results of geophysical prospecting, it is known that a depth of an "aquifer-resistivity layer" is affected by local geological condition. The depth and specific resistivity of an "aquifer-resistivity layer" of each geophysical station including it's coordinate and elevation is shown in the Table 4-1-3. And the depth and specific resistivity of an "aquifer-resistivity layer" of each area is shown as follows:

Area		"aquifer- resistyvity layer"	specific resistivity
Altiplano	:	10m~250m	30~80 Ω-m
Valle	:	20m~250m	40~60 Ω-m
			(30~50 Ω -m in lacustrine layer)
Llanura	:	30m~250m	40~60 Ω-m
Chaco	:	100m~450m	25~80 Ω-m

(Main Report *afterhere written as MR*: See MR Figure 4-1-2, Table 4-1-3)

In Altiplano, the old age take ocupies widely and has thick lacustrine deposits. In this zone in which lacustrine sediment formation is thick, an "aquifer-resistivity layer" lies in deeper or is not find (e.g. Toledo). But, in the foot of the mountains or around the outcrops of the basement of the area an "aquifer-resistivity layer" lies relatively on shallow place. In island zone in the old lake, the depth of an "aquifer- resistivity layer" is about 10m in depth in very closed area around an island. And salt water exits under this "aquifer- resistivity layer". As going away from the island the thickness of an "aquifer- resistivity layer" reduces and on the contrary the upper surface of salt water rises (MR Figure 4-1-3).

The Valle is extended from the Department of Tarija to the department Santa Cruz through Chuquisaca. In the Valle an "aquifer-resistivity layer" of each Department lies on closed depth affected by topography and geology with differences.

In the Department of Chuquisaca, the tendency is toward deeper the depth of the "aquifer-resistivity layer" from the west to the east.

In the Department of Santa Cruz, there is a Quaternary wide valley and in the center of there (Cochabambita) an "aquifer-resistivity layer" lies on deep place and rises to surrounding.

In the Department of Tarija, like Chuquisaca, the tendency is toward deeper the depth of the "aquifer-resistivity layer" from the west (Iscayachi) to the east. But no "aquifer-resistivity layer" was detected at least 200m in depth in the north of Entre Rios (in Saladito, Lajitas) because the formations of there contain salt.

In the Llano, it is known that the tendency is toward shallower the depth of the "aquifer-resistivity layer" from Costa, where morphological condition is changed, to the east.

In the Chaco, the tendency is toward shallower the depth of the "aquifer-resistivity layer" from the west to the east.

Tabla 4-1-3 Datos de las estaciones geofísicas Table 4-1-3 Geophysical station's data

No. Station No	o Location	Depto	Eleva.	Latitude	Longitude	Depth of Aquifer	Res. Zone	Note
l LP1	Patacamaya	a. 1.∵	3795	17 19 09	67 54 18	27-70, 102-	35 A1	behind Raileway Station
2 LP2	Patacamaya	ط ا	3820	17 13 53	67 54 29	40-70	30 A1	E side of the Community
3 LP3	Patacamaya	ر 1 -	3845	17 13 57	67 53 55			site of new watertank
4 LP4	Patacamaya	LP	3785	17 14 52	7 54 13	-20-50, 150-	- 1	Cablebol's property
5 LP5	Patacamaya	L?	3790	17 14 38	7 54 00	35-65, 95-	60 A1	400m E of LPS
6 LP6	Patacamaya	LP LP	3800	17 13 40	7 55 24	70-110	1	near to the Wicuma River
7 LP7	Joco Pampa	LP	3810	<u></u>	7 55 17	16-150		Patacamaya
S LP8(2)	Collana Tholar	ΙΡ	3980	16 58 59	5	-09		behind the Community
9 LP9(2)	Tho	T.	3940	17 00 57	8 03 59	10-40, 56-	1	W side of the Community
10 LP10	Тороносо		4170	17 10 09	68 14 45	15-50	l (1km W of the Community
11: LP11	Topohoco	i.	4160	17 09 57	- 1	120-	- 1	300m N of LP10
12 LP12	Caquingora	ΙЪ	3870	17 14 47	68 29 33	35-70, 150-		behind the church
13 LP13	Caquingora	[]	3870	17 14 08	68 29 51	70-110	A]	e si
14 LP14	Caquingora	1	3890	17 14 47	68 29 52	-	A.]	well side
15 LP15	Caquingora	1	3930	17 14 44	68 29 28	10-45, 150-		north side of the church
16 LP16(2)	Umala	ដ	3860	17 22 21	68 01 27	25-55, 100-		entrance of the Community
17 LP17(2)	Umala	27	3870	17 22 03		36-55	. :	behind the Community
18 [P18(3)	Canaviri	LP	3840	17 20 13	8 01	30-45, 100-	1	behind the Community
19 LP19 (3)	Copani	д Т	3860	17 19 52	68 03 31	20-40, 55-130	1	Center of the Community
20 OR1	Penas	O.R.	3810	18 41 09	6 4	-100-		near to the cemetery
	lchu Kkollu		3805	11	66 49 40	50-	40 A1	Penas
~	Huacuyo	8	3790	18 41 59	66 44 26	117-		Penas
	Penas	R	3865	18 38 33	66 44 50	30-		Qda. Chillihuani
24 OR5	Penas	OR.	3880	18 38 44	65 44 49	30-105	,	cemetery
. !	Penas	S.	3895	18 37 14	66 45 30		I.A.	1km N from Wila Jakke
-	Tutuni	OR	4005	18 34 51	66 44 15	8-50	S0 A1	Penas
	Penas	ö	3915	18 35 45	66 45 09		Al	near to Ecia. Quebrada
	Pena Vinto	8	3840	18 40 41	9	-9-	1	Penas
!	Corque	8	3730	18 20 35	67 40 42	-05	40. Al	500m N from Runway road
	Huerta Mayu	R	3745	18 20 03	ر ا	25-200		Corque
٠.	Corque	8	3745	18 19 27	7.	-0+		1.5km N from H Mayu
. :	Collun Chullpa	8	3750	18 18 48	الم	-0-		Corque
	Corque	8	3725	18 21 30	4	20-200		SW corner of the runway
;	Corque	ö	3730	18 20 21	67 40 26	75-170	S0 A1	500m E of 0R10
8	Corque	80	3745	18 20 14	4	22-	3	between OR10 and OR11
اٰ ی	Corque	ප	3740	18 19 48	67 40 46	25-		between OR11 and OR12
37, OR18	Cordne	S	3755	18 17 08	67 40 55	28-150	S	near to Choachilla Rvr

Tabla 4-1-3 Datos de las estaciones geofísicas Table 4-1-3 Geophysical station's data

No. IStation No.	o Location	Depto	Eleva.	Latitude	Longi tude	1 Depth of Aquifer	Res. (Zone	Note
	Corque	OR	14	19	7	40-	38! Al	Tankh
39 OR20	Toledo	OR	7	18 11 25			A!	South of Toledo/roadside
L.	Toledo	080	3710	-	67 25 00	(1-13)	Al	KS.
41 0R22(3)	edo	OR.	3705	18 13 30			Щ	500m W of the bridge
Ł	Sillota Belen	OR N	3725	4.8 8.5	20 7	12-80	L.	nd Communi
43 OR24(2)	Sillota Belen	OR	3715	17 48 14	20	09-8;	70 A1	in front of Community
_	Janconnuo	OR	3760	17 46 01	67 14 19	15-80	73 A1	behind the school
		93	3765	17 46 04	7 14	8-160		ront
OR27	Cantu Sta. Ana	OR	3715	17 50 13	67 02 49	13-130		E of the sc
0R28	Cantu Sta. Ana	OR			7 02	16-95	26 Al	N of
48 0R29(2)	Juan	OR	3730	17 52 16	67 04 19			in front of the school
-	Juar	OR	3730	17 52 4S	7 04 3	10-60, 150-	I	700m S of 0R29
50j OR31(3)	_		3710	17 53 07	7 19	9-20	60 A1	school
0R32	Wallchapi	OR	3740	17 51 35	67 21 00	7-45	56 A1	church
	Anacasi		3745;	17 50 59	67 23 08	4-55	66 A1	рu
0R34	Kochiraya		3710	17 55 32	7 07 4		L_:	bebind Community
54, 0R35(3)	Aeropuerto	OR	c	17 58 12	(~	20-75	68 A1	W side of Runway
0R36	Rosa Pata		3720	18 39 58	7 32 5	55-	1 45 AI	nd the so
OR37	Rosa Pata	S	3720	18 40 03	67 33 02		30 A1	200m W of OR36
57; 0R38(3)	Rosa Pata		3720		7 32 4	18-50, 80-		L
	Quimsa Chata	OR	3710	17 47 38	7 36		! A1	behind the school
	Nva. Llallagua	OR		17 47 57	67 39 27	(5-17)	! A]	side of
	1131	OR	3710	17 47 44	7		A	N side of the Community
	Nva, Llallagua	OR	3710	17 47 58	7 39	-		ide of the
62 OR43(3)	010	S.	4105	19 06 47	ഹ	7-32, 62-	55. Al	50m S of the guide plate
Ē	ampo Leo	3	800	20 31 39	3 08 3	320-450		school
CH21	El Simbolar	5	570	20 31 19	رئ س	1220-300		school
65: CH41 (20)	El Paraiso	3	620	20 45 54	62 53 41	200-	14: Ch	ranch
CH42	Cuatro Vientos	3	570	20 51 48	2 41 1	170-		crossroads
CH43	Carandayti	Ë	\$10:	- 9	63 05 48	165-		farm field
1	El Salvador	3	\$50.	20 37 15	3 10 4	325-		pasture
69: CH52	.lpati de lvo	3	1220.	20 32 32	3 24 3	100-	50: Ch	00
1	ipati de ivo	5	1220	20 33 05		-100-	÷	crossroads
	uah	3	030	20 24 46	പ	16-	32° Ch	school
. 1	ŧ	သ	560	17 58 39		150-225	37 L1	in front of the School
73 SC2		ပ္လ	580	17 58 33	3 18	150-200	45 []	750m E from the school
- 1	آق	SC	520	17 58 31	3 19 0	120-200	40 L1	W from the
75 SC4 (3)	ျ	SS	240	17 58 15	3 19 3	135-	23: 11	400m NW from the crossr.
76 SCS	•1	သ	565	17 58 40	63 19 25			.500m from Cemetery
77: SC6	٦,	SC	555	17 58 53	63 19 18	150-	20: 11	north side of Community
- 1	San Juan	SC	560	17 59 14	63 19 10	140-	23: 11	near to the Church

Tabla 4-1-3 Datos de las estaciones geofísicas Table 4-1-3 Geophysical station's data

E) Cva. Latti tude 565 17 58 08 545 17 58 08 555 17 58 33 250 17 39 05 250 17 39 05 290 17 39 05 285 17 27 11 285 17 27 2 200 19 09 42 3200 19 15 33 3200 19 15 37 2490 19 16 41 150 18 18 22 150 18 18 22 150 18 18 22 150 18 18 22 150 18 18 23 1730 17 55 02 1450 18 10 33 1250 18 10 33

Tabla 4-1-3 Datos de las estaciones geofísicas Table 4-1-3 Geophysical station's data

Res. Zone Note	30. Va soccer ground	Va W of the old mine	Va entrance to an old mine	30 Va along the highway	43: Va (Col. Linares	100 Va near to Campo Grande	90. Va sugar cane field	120 Va near to Bernejo River	70 Va sugar cane field	130. Va Vda. Patrocina's house	130 Va near to the School	140 Va behind the runway, Berm.	80 Va Bermejo	30 Va Iscayachi	75 Va Iscayachi	80 Va Iscayachi	90 Va Iscayachi	27 Va Iscayachi	57 Va Iscayachi	30 Va school	70: Va behind the school		Va inear to the school	25: Va pasture	27 Va Ischool	32 Va pasture	35 Va pasture	Va behind the school	Va farm
itude : Depth of Aquifer	8 08 30-50	. 08	6 55	5 31 30-90	ļ	8 23 40-60, 110-	8 20 :60-110, 200-	9 16 23-40	9 23 70-100, 180-	8 06 :55-	7 25 75-	9 08 :45-	9 20 150-	7 59 7-45, 90-	3 01 6-30	5 13 :50-90, 160-	7 27 18-80	7 21 18-30	S 35 2-52	7 48 20–85	5 57 35-	5 39	7 18	8 57 20-45	S 36 8-40, 100-	9 10 8-20	2 24 20-38, 52-	7 28	9 19
Latitude Long	21 39 40 64 3	21 40 10 64 3	0. 21 40 00 64 3	21 40 44 64 3	3 22 40 17 64 1	5 22 48 31 64 1	22 49 26 64 1	22 49 30 64 1	22 49 49 64 1	3. 22 46 19 64 1	22 46 16 64 1	3 22 46 40 64 1	1 22 50 56 64 1	21 26 30 64 5	37 34 65 0	0 21 43 02 65 0	5 21 29 09 64 5	3 21 29 59 64 5	21 32 33 64 5): 21 25 52 64 2	0. 21 24 58 64 2	21 23 17 64 2	1 21 22 49 64 2	21 35 21 64 0	21 34 15 64 0	0. 21 39 00 64 0) 21 40 55 64 1	21 22 32 64 0	0: 21 17 04 ; 64 0
Depto Eleva.	TA 1710	TA 1710	TA 1730	TA 1730	: TA : 400	: TA 365	T.A 360	TA 350	TA 352	TA 379	TA 379	TA 378	TA 339	TA 3440	les TA 3810	0 TA 3710	TA 3465	TA 3460	TA 3550	TA 2300	e IA 2350	: TA 2430	TA 2400	TA 1230	TA 1250	TA 1210	TA 1130	TA 990	TA 890
No - Location	San Isidro	San Isidro	San Isidro	San Isidro	Col. Linares	Campo Grande	Bermejo	Bermejo	Веглејо	Вегшејо	Porcelana	Com. Talita	Naranjita	San Antonio		Chorcova Lago	Sama	Lulcayo	Pueblo nuevo	Junacas	Junacas Norte	Pol!a	Polla	Naranjos	Naranjos	El Puesto	La Cueva	Lajitas	Saladito
No. Station No -	120 TA6	121 TA7	122 TA8	123 TA9	124 TA10	125 TA11	I	- i	. 1		130 TA16			133 TA19	134 TA20	135, TA21	136 TA22	137: TA23		139 TA25	4	141 TA27	142: TA28	٠., ١	144 TA30		146 TA32		148: TA34

LP:La Paz OR:Oruro CH:Chuquisaca SC:Santa Cruz TA:Tarija
LP8(2): two points as LP8
Eleva.: elevation (m)
Depth of Aquifer: -depth of "aquifer-resistivity layer" - depth from the surface of the ground in meter (m)
Al:Altiplano Ch:Chaco Ll:Llano Va:Valle
Res.: resistivity of possible aquifer (\Omega-m)

(1) Department of Chuquisaca

In the Valle of this Department there are widely outcrops of Paleozoic basement and topographically the Valle forms a watershed between Amazon basin and Pilcomayo basin. Meteorologically this area is dry and annual precipitation is very small. Therefore there is no good condition for existing of groundwater.

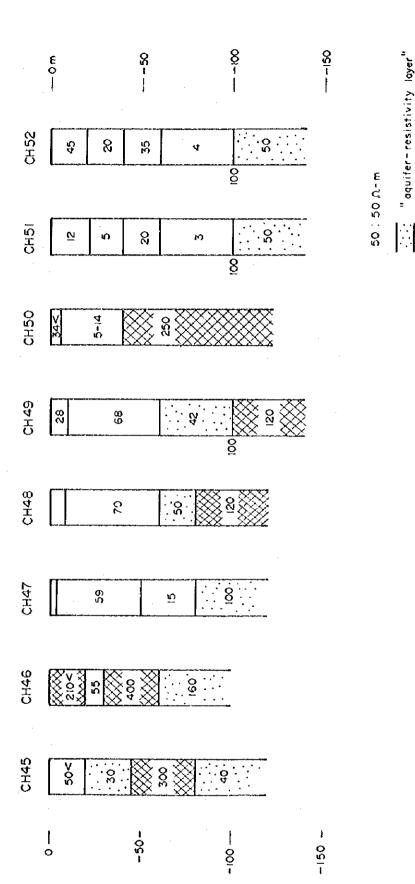
The resistivity columns of all geophysical stations in thic Valle are shown in the Figure 4-1-4-a-b.

In the Sucre zone we can comfirm the existing of two "aquifer-resistivity layers" with resistivities 30 Ω -m, 40 Ω -m respectively. The upper layer is 20m in depth and the lower 80m. The upper layer is no expect because of it's thickness (20m) and low specific resistivity. It seems that the "aquifer-resistivity layer" correspods to a part of the much fissured part inside the basement.

In Yamparaez zone, under the station CH55 an "aquifer-resistivity layer" lies under 50m in depth with it's 50 Ω -m specific resistivity and 20m thickness. It has small dimension.

In Lavadero (CH57) no "aquifer-resistivity layer" was detected.

In Tarabuco zone (CH46,CH47), "aquifer-resistivity layers" lie under $60m \sim 70m$ in depth with $160 \sim 100 \Omega$ -m specific resistivity. It seems that groundwater is in the fissure of the basement.


In Lupiara Pampa zone (CH48,CH49) an "aquifer-resistivity layer" lies under 60m depth with $40\sim50~\Omega$ -m specific resistivity. It seems that this "aquifer-resistivity layer" is not thick because the basement lies under surface $80\sim100$ m in depth.

In Redencion Pampa the basement was detected under surface 40m in depth but no "aquifer-resistivity layer".

In Padilla the vertical electric sounding (VES) is realized at a distance of about 500m from the shore of the old lake. An "aquifer-resistivity layer" lies under the surface more 100m in depth with 50Ω -m resistivity.

In the area from Sucre to Tarabuco the basement is widely exposured. It seems that "aquifer-resistivity layers" of this area correspond to parts of fissured zone inside the basement and a part with specific resistivity under 40 Ω -m is a fissured zone filled clay of shale or slate by weathering. It seems that Lavadero is under this geological condition.

In the Chaco, Ipati de Ivo is located in the west of the area and near to the Valle. Here an "aquifer-resistivity layer" lies under surface more than 100m with $50-60~\Omega$ -m. Generally the "aquifer-resistivity layer" lies under 350m deep with $30-80~\Omega$ -m in Campo Leon and under 250m deep with $25-70~\Omega$ -m in El Simbolar. Therefore the tendency is toward shallower the depth of "aquifer-resistivity layer" from the west to the east. (MR Figure 4-1-18-20, Figure 4-1-4-c-d).

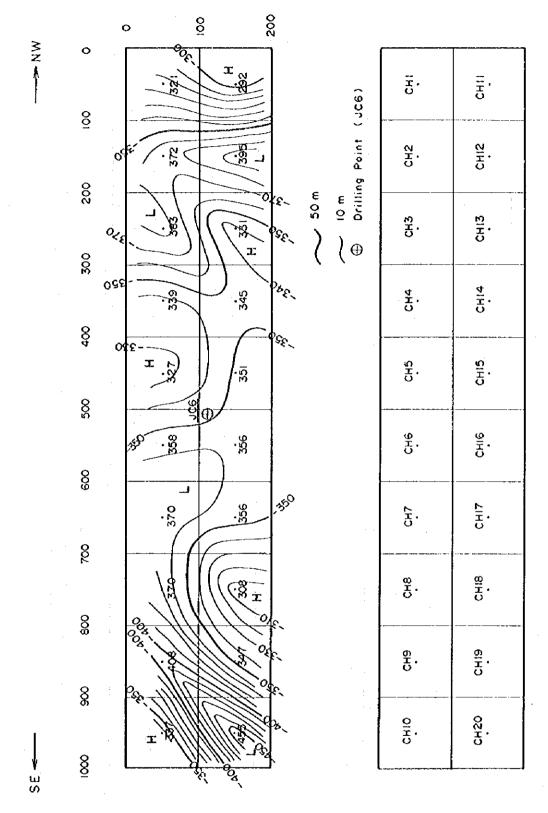

basement

Figura 4-1-4-a Columnas de resistividad(1), Chuquisaca Figure 4-1-4-a Resistivity columns(1), Chuquisaca

1

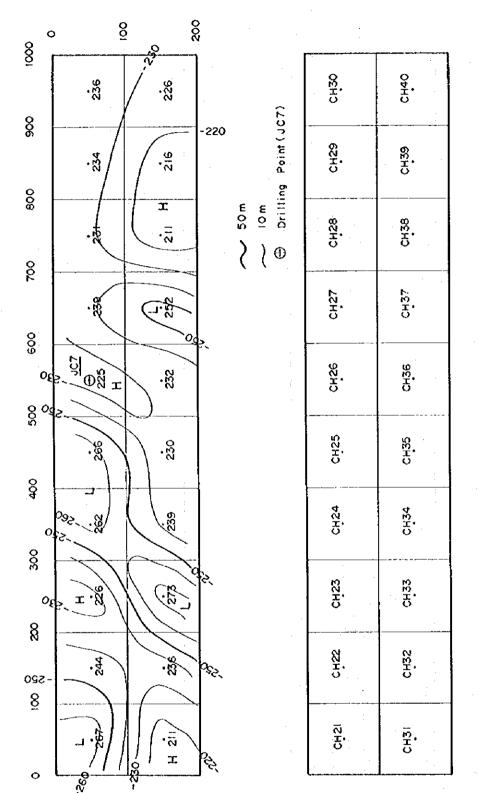

CH57	82 Z		<u>.</u>					
CH26	22	8 X	<u></u> \$ <u>@</u>	<u> </u>				
CHUU	42 8	8	×	£ 3∴ <u>8</u> 8 8				
OH 554	300	25		23	-			
CH 68		O ,	0,	ı,	<u>8</u>	0		
	0		50		00		1 50 -	

Figura 4-1.4-b Columnas de resistividad(2), Chuquisaca Figure 4-1.4-b Resistivity columns(2), Chuquisaca

(

Mapa de iso-profundidad de "capa de resistividad-acuifera" de Campo Leon, Chuquisaca Iso-depth map "aquifer-resistivity layer" of Campo Leon, Chuquisaca Figura 4-1-4-c Figure 4-1-4-c

Mapa de ixo-profundidad de "capa de resistividad-acuifera" de El Simbolar, Chuquisaca Iso-Dopth Map "Aquifer-Resistivity Layer" of El Simbolar. Chuquisaca Figura 4-14-d Figure 4-14-d

(2) South of the Department of La Paz

In this Department "aquifer-resistivity layers" lie under surface less than 50m. But these "aquifer-resistivity layers" generally have thin thickness. (MR Figure 4-1-6, MR Figure 4-1-7, Figure 4-1-5-a-b).

In Patacamaya zone, specific resistivity of the "aquifer-resistivity layers" vary with 30~80 Ω -m and it's depth with 200~100m depending to place. The tendency is toward shallower depth of the "aquifer-resistivity layer" from the north (LP7,100) to the south (LP4,20m).

In Collana Tholar, an "aquifer-resistivity layer" lies under surface 60m in depth with 30 $\,\Omega$ -m.

In Topohoco an "aquifer-resistivity layer" lies under surface 20m in depth with 30 Ω -m~100 Ω -m.

In Caquingora an "aquifer-resistivity layer" lies under surface 40m-70m in depth with $45-80 \Omega$ -m resistivity. It seems it is possibile to get water under the foofball ground (LP12) behind the Church or near to the pond (LP13). Unfortunately, near to the real well (LP14) no "aquifer-resistivity layer" was detected.

In Umala an "aquifer-resistivity layer" lies under surface 20~30m in depth with about 30 Ω -m resistivity.

In Canaviri an "aquifer-resistivity layer" lies under surface 30m with 25 Ω -m. But it is not much expected "aquifer-resistivity layer" by reason of it's low specific resistivity and thin thickness (15m).

In Copani two "aquifer-resistivity layers" were detected under surface 20m and 60m with 40 Ω -m resistivity. The upper layer has thin thickness (20m) and the lower 70m in thickness.

LPIG	β β	o			
LP15	25		ល		₹ ₹
다 4	¥	2)			
LPI3				<u>Q</u>	
LP 12	\$ 8		<u>o</u>	2	· · · ·
LPII	V V V V V V V V V V V V V V V V V V V		205	Sp.	
0. –	<u>N</u> N	.∵ 82 27	orași de		
9 0	86 &	8	8		ທ ·
	 	0 9 1	 00 1	1 00 1	- 500-

Figura 4-15-a Columnas de resistividad(2), La Paz Figure 4-15-a Resistivity columns(2), La Paz

r L	6	ū . δ .		}		<u>N</u>
<u>.</u>	m ;	n ⊆ n	ω		%	
: ;	3	σ <u>(</u> 8	ū			
	1			 -		1
	0	9 9 1		0 0 1		- 150

Figura 4-1-5-b Columnas de resistividad(3), La Paz Figure 4-1-5-b Resistivity columns(3), La Paz

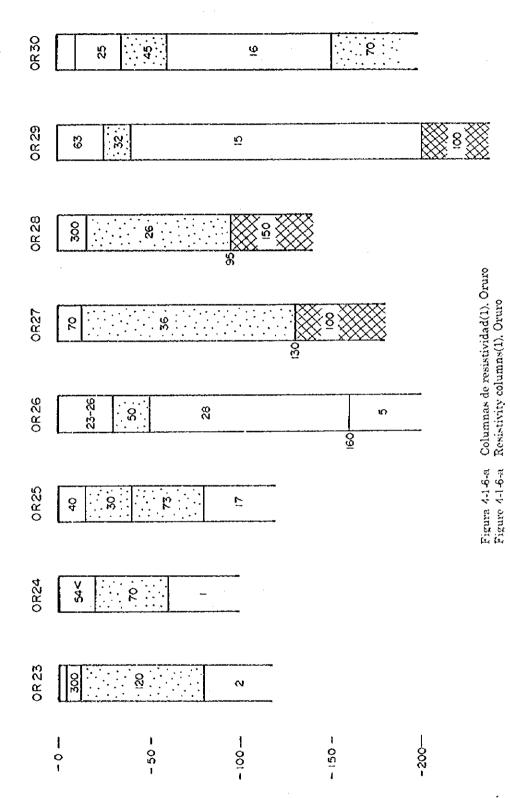
-500-

(3) Department of Oruro

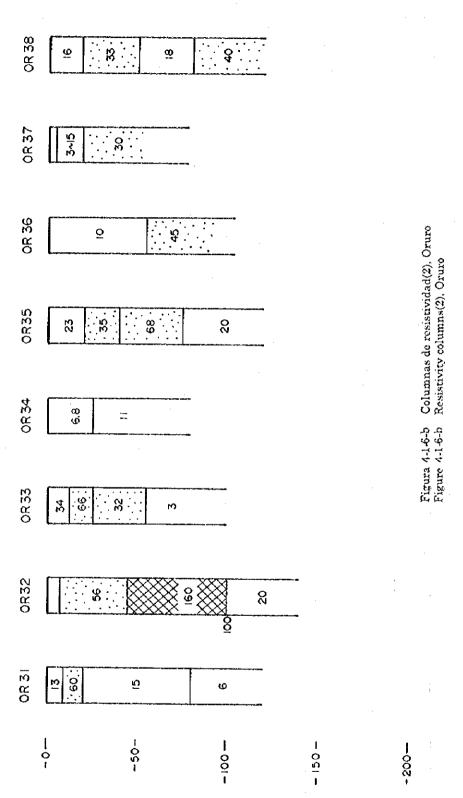
The old age lake occupies most part of this Department and has thick lacustrine deposits in some places. These lacustrine formations contain high salinity water. It's difficult to get groundwater to drink from these formations. But in the foot of the eastern mountain range and around the outcrops of the basement it is possible to detect an aquifer at shallow place under surface and around islands in the old lake, too. It becomes clear that an "aquifer-resistivity layer" lies under surface about 10m in closed area around the old islands. Under this "aquifer-resistivity layer" saline is detected. What saline exits under "aquifer-resistivity layer" is common characteristic in all islands area.

Corque zone is in a valley which is extended from south to north in Tertiary formations. An "aquifer-resistivity layer" lies under surface 20~30m with $40~55~\Omega$ -m in this zone (MR Figure 4-1-8, MR Figure 4-3-9). It seems that the water in the "aquifer-resistivity layer" is contaminated by a little saline because of existence of salt near to the current.

Penas zone is located in a valley like Corque. An "aquifer-resistivity layer" lies under surface $20\sim30m$ with $25\sim40~\Omega$ -m in the north of Penas, which is an inportant village of the Zone, and in the south of it $50\sim120m$ with $40\sim60~\Omega$ -m (MR Figure 4-1-10, MR Figure 4-1-11).


Cantu Santa Ana- San Juan Pampa zone is plane near to the foot of mountains and an "aquifer-resistivity layer" lies under surface about 15m with 25~45 Ω -m there. It's necessary to consider quality of groundwater by contamination by surface water. The depth of the basement is shallow under surface about 130m here.

Sillota Bellen zone includes Sillota Witu, Wallchapi and Anacasi. These villages are situated on a shore of a same old island and there an "aquifer-resistivity layer" lie under surface shallow in depth (about 10m). It became clear that salt water was under the "aquifer-resistivity layer" in every village. As going away from the island the "aquifer-resistivity layer" becomes thin and upper front of salt water rises. It seems that the "aquifer-resistivity layer"'s structure is as the Fig. 4.3.4, therefore it's necessary to search upper front of saline before to drill up for a well.


Janconuno is located in a shore of an old lake no like Sillota Belen. An "aquifer-resistivity layer" lie under surface about 15m with resistivity 50~70 Ω -m. A condition of this "aquifer-resistivity layer" is like it of Sillota Belen.

In Rosa Pata an "aquifer-resistivity layer" lies under surface 20m~50m with resistivity 30~45 Q-m. Around Rosa Pata there is salt educed, then it's necessary to analize groundwater before to use it. This village is located from Corque to south. Same rocks of Corque lie in a place with a distance of few kilometers from this village, then it seems that the basement lies shallow under this village.

Toledo and Nuva Llagua are situated in the old lake where lacustrine deposits are thick. No "aquifer-resistivity layer" is detected there. (Figure 4-1-6-a-c).

D

OR43 . 55 350 23 OR 42 9 0R4 9 0R40 0 N Φ 72 0839 <u>o</u> 0 1501

Figura 4-1-6-c Columnas de resistividad(3), Oruro Figure 4-1-6-c Resistivity columns(3), Oruro

C-23

(4) Department of Tarija

An "aquifer-resistivity layer" lies shallow in depth of 20m~50m in the valley of Iscayachi, which is located in the west of the Department, and 40~100m in La Choza, Junaeas in the Center. In Entre Rios in the east an "aquifer-resistivity layer" lies under 100m but in some stations no "aquifer-resistivity layer" was detected. In Bermejo zone, in the south an "aquifer-resistivity layer" was detected under 50~100m. Generally the tendency is toward deeper depth of "aquifer-resistivity layer" from the west to the east. Figure 4-1-7-a~d

In the valley of Iscayachi in the west an "aquifer-resistivity layer" lies under surface $20\sim50m$ with $30\sim90~\Omega$ -m and overlies besement. But the depth of the basement is shallow. In Chorcoya Lago (TA21) the depth of the "aquifer-resistivity layer" is lower (50m).

In San Isidro zone in the center an "aquifer-resistivity layer" generally lies under surface 30--70m with resistivity of $30\text{--}45\ \Omega$ -m but in the center of this zone no "aquifer-resistivity layer" was detected (MR Figure 4-1-21~4-1-23). This zone has an important condition to be an aquifer, of which two muddy beds are as putting an "aquifer-resistivity layer" between them. Lower muddy bed overlies basement. In Junacas zone an "aquifer-resistivity layer" lies under surface 40--50m with $30\text{--}70\ \Omega$ -m and has a thickness of about 30m. In Polla which is located in the north of Junacas zone, unfortunately, no "aquifer-resistivity layer" was detected. (MR Figure 4-3-24, Figure 4-1-8-a).

In Entre Rios zone in the north of the Department an "aquifer-resistivity layer" lies under surface $50{\text -}100\text{m}$. But in La Cueva(TA32) in the north of the zone an "aquifer-resistivity layer" lies under surface about 20m with 35 Ω -m. In this zone sandy mud stones, silt stones and muddy sand stones lie widely and each of them is relatively homogeneous. If an inner variation of them was detected as an "aquifer-resistivity layer" with 25~35 Ω -m, then it's difficult that the variation is an "aquifer-resistivity layer" because of low specific resistivity.

In Lajitas and Saladito in the north of Entre Rios no "aquifer-resistivity layer" was detected. In this zone low resistivity layer (under 10Ω -m) continues toawrd deeper and salt educed from rocks is observed there. It seems that almost formations of this zone contain salt.

In Bermejo zone an "aquifer-resistivity layer" lies under surface 50m with 45 Ω -m in Col. Linares in the north of the zone but 100m with 80 Ω -m in Naranjita in the south. It seems that a layer which lies under 30m with about 200 Ω -m corresponds to a gravel layer (Figure 4-1-7-b-d).

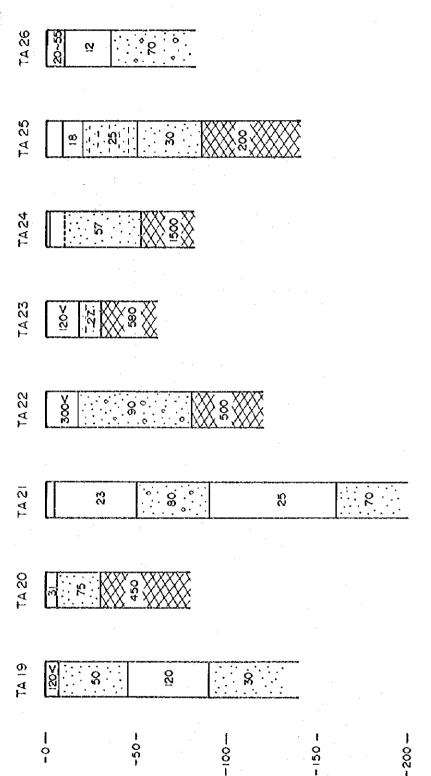


Figura 4-1-7-a Columnas de resistividad(1), Tanja Figure 4-1-7-a Resistivity profile(1), Tanja

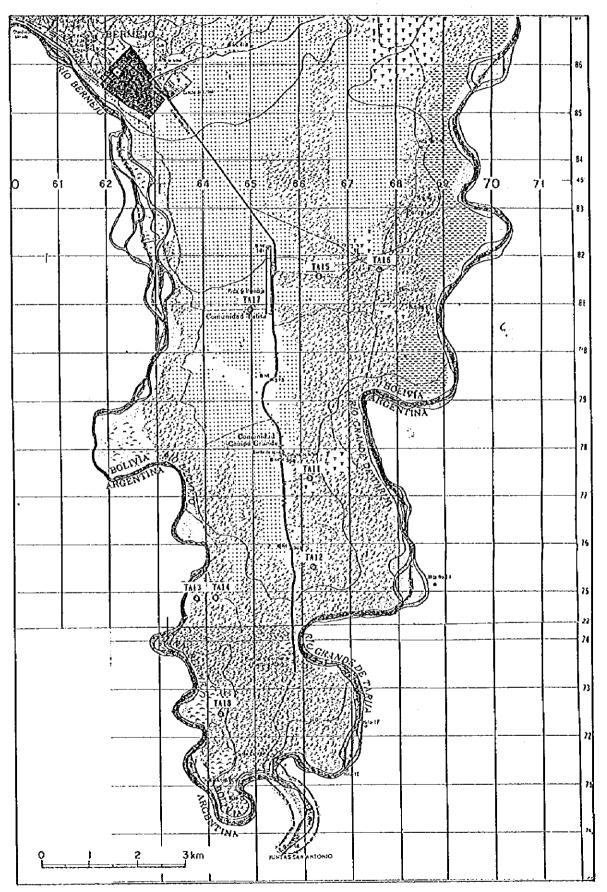
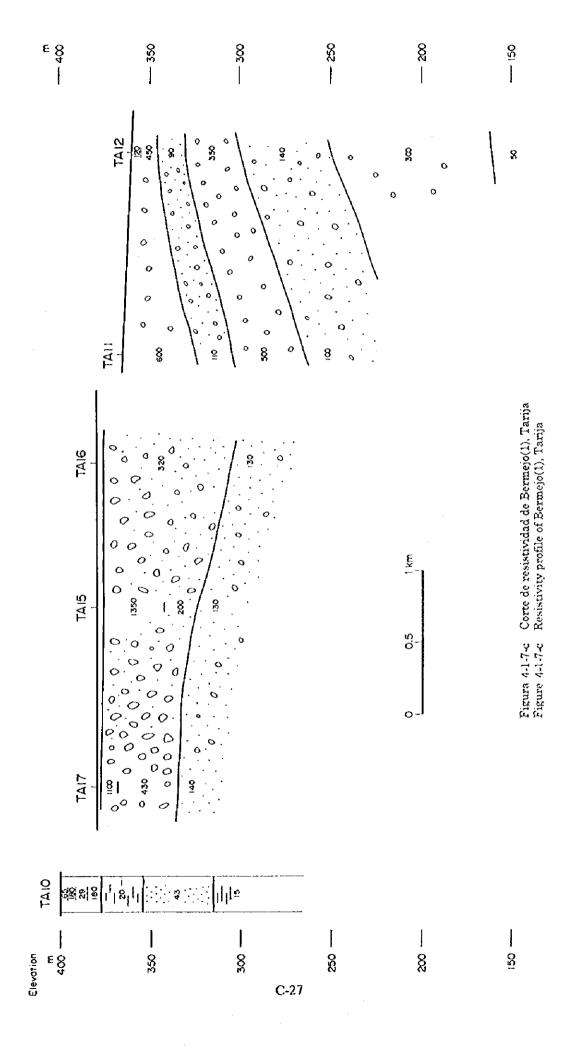



Figura 4-1-7-b Localizacion de las estaciones geofisicas en Bermejo, Tarija Figura 4-1-7-b Location of geophysical points in Bermejo, Tarija C-26

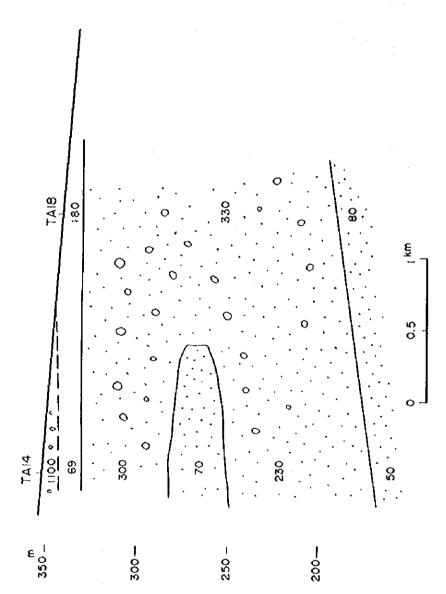


Figura 4-1-7-d Corte de resistividad de Bermejo(2), Tanja Figure 4-1-7-d Resistivity profile of Bermejo(2), Tanja

(5) Department of Santa Cruz

1

The tendency is toward shallower a depth of a "aquifer-resistivity layer" from Cochabambita to north east. (Figure 4-1-8-a-b).

In Trigal zone, an "aquifer-resistivity layer" lies under 200m in depth in Cochabambita with 60 Ω -m, and under 120m in El Trigal (SC26) with 60 Ω -m and under 35m with 35 Ω -m in Tucumancillo. The tendency is toward shallower depth of "aquifer-resistivity layer" to the periphery. In Lagunilla (SC23) no "aquifer-resistivity layer" is detected.

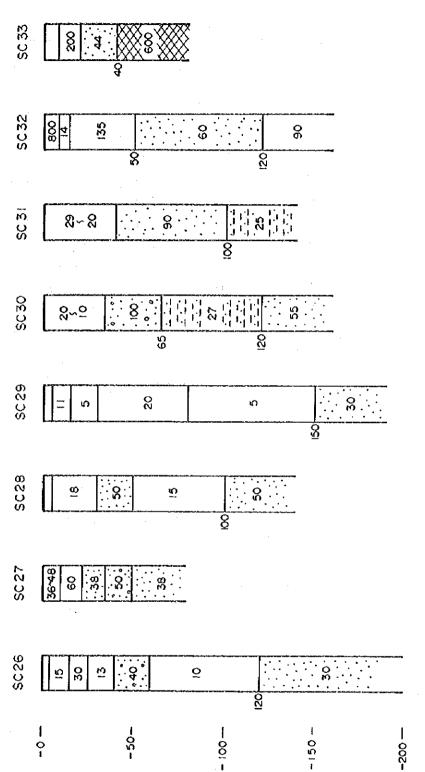
In Sanjon (SC22) an effective "aquifer-resistivity layer" by consideration of topography lies under surface 60m with 38~45 Ω -m resistivity.

In Comarapa zone an "aquifer-resistivity layer" lies under surface 35m with 50 Ω -m in Comarapa (SC27), 150m with 30 Ω -m in El Tambo (SC29) and 30m with 50 Ω -m in San Isidro(SC28). In San Isidro another "aquifer-resistivity layer" is detected under surface 100m with 50 Ω -m.

In Pampa Grande (SC30) an "aquifer-resistivity layer" lies under surface 70m with 30~55 Ω -m.

In Samaipata an "aquifer-resistivity layer" lies under surface 40m. It seems that this layer consists of an alternated layer with muddy bed and sandy bed by judging low specific resistivity of the layer.


In the Llanura, the tendency is toward shallower depth of the "aquifer-resistivity layer" from the west, Costa zone, to the east.


In San Carlos zone, a well, which is in the court of the School of San Carlos, gave us an important information about underground condition of this zone, of which the well is dry at least 130m under surface even if an "aquifer-resistivity layer" is detected by geophysical prospecting. It seems that upper surface of "aquifer-resistivity layer" is under $130\sim150$ m and it's efective specific resistivity is between 35 Ω -m and 45 Ω (MR Figure 4-3-12 \sim 14).

Okinawa I has a good well which wells out from the depth of about 70m. Vertical Electric Sounding was carried out to confirm the aquifer in the north with an interval of 500m from the well. An "aquifer-resistivity layer" was detected under surface about 70m with 40 Ω -m and a muddy bed, too, with under 20 Ω -m, which presses the lower "aquifer-resistivity layer", was detected. Then it was certified that Vertical Electric Sounding Method was very effective method to detect an aquifer.

In Yapacani (SC32) an "aquifer-resistivity layer" is under surface 50m with 60 Ω -m.

In Quituquina it was interpreted that an "aquifer-resistivity layer" laid under 100~120m. But it became clear that there was no "aquifer-resistivity layer" by the results of the test drilling JC5 (MR Figure 4-3-15~17).

Columnas de resistividad(2), Santa Cruz Resistivity columns(2), Santa Cruz

Figura 4-1-8-b Figure 4-1-8-b

1

C-31

3) Results of Geophysical Prospecting, Test Drilling and Well Logging at Test Wells

Nine geophysical stations ware sellected for test drilling on geophysical results. They are as follows:

Area	Well No.	Geoph. No.	Location
Altiplano	JC1	LP5	Patacamaya-La Paz
	JC2	OR10	Corque-Oruro
	JC3	OR3	Penas-Oruro (substituted OR5)
Valle	JC8	TA9	La Choza-Tarija
	JC9	TA30	Naranjos-Tarija (TA10- TA11-)
Llanura	JC4	SC11	San Carlos-Santa Cruz
	JC5	SC14	Quituquina-Santa Cruz
Chaco	JC6	CH5	Campo Leon-Chuquisaca
	JC7	CH26	El Simbolar-Chuquisaca

The results of geophysical prospecting, test drilling and well logging and each other's relation are as follows.

(1) JC1: Geophysical station LP5 in Patacamaya- La Paz

Geophysical results.

9~35m/230 Ω-m	high resistivity layer consisting of much debris from back	
	mountain range.	
30~65m/60 Ω-m	sandy layer - "aquifer-resistivity layer"	
65~95m/4 Ω-m	muddy layer	
95m~ /30 Ω-m	sandy layer - "aquifer-resistivity layer"	

Drilling

support geophysical results.

Well logging

23~65m aquifer Screen interval 23~65m

(2) JC2 : Geophysical station OR10 in Corque - Oruro

Geophysical results

9~40m/26 Ω-m muddy layer $40m\sim /40 \Omega - m$

sandy layer - "aquifer-resistivity layer"

Drilling

1

support geophysical results.

Well logging

support geophysical results.

Screen interval

42~66m

- (3) JC3: Geophysical station OR3 in Huacuyo Oruro Geophysical results
 - $4\sim 33$ m / 63Ω -m

mixed current deposit with gravels, sand, mud

33~117m / 150 Ω-m consolidated sand stone or conglomerate

117m \sim /47 Ω-m

sandy layer - "aquifer-resistivity layer"

Screen interval

29~60m

(4) JC4: Geophysical station SC11 in San Carlos - Santa Cruz

Geophysical results

65~140m/7 Ω-m

muddy layer

140~

/40 Ω-m

sandy layer - "aquifer-resistivity layer"

Results of drilling and well logging

support geophysical results

Screen interval

146~248m

(5) JC5: Geophysical station SC14 in Quituquina - Santa Cruz

Geophysical results

 $32\sim110\text{m}/110\ \Omega\text{-m}$

shale, slate, sand stone with few cracks

110m~

/35 Ω-m

shale, slate, sand stone with much cracks -

"aquifer-resistivity layer"

Drilling results

0~40m

mixed layer with grabel, mud

40m~

shale

110m~

more crack

Well logging

no support geophysical results

Screen interval

117~182m

(6) JC6: Geophysical station CH5 in Campo Leon - Chuquisaca

Geophysical results

280~350m / 15 Ω-m i

muddy layer

350m~ / 60 Ω-m

sandy layer - "aquifer-resistivity layer"

Drilling

~300m

muddy layer

300m~

sandy layer

Well logging

support geophysical results

Screen interval

306~361m

(7) JC7: Geophysical station CH26 in El Simbolar - Chuquisaca

Geophysical results

 $\sim 225 \text{m}/6 \Omega \cdot \text{m}$

muddy layer

225~

/23 Q-m

muddy + sandy layer - "aquifer-resistivity layer"

Drilling

~240m

muddy layer

240m~

muddy + sandy layer

Well logging

75~150m

sandy layer

Screen interval

99~159m

(8) JC8: Geophysical station TA9 in La Choza - Tarija

(Drilling point is located on the court of a chapel, 1km west from TA9)

Geophysical results

~31m / 12 Ω-m

muddy layer

 $31\sim90$ m/ $30~\Omega$ -m

sandy layer - "aquifer-resistivity layer"

90~105m/2 Ω-m

muddy or silt layer

105m~ / 120 Ω-m

basement

Drilling

support geophysical results.

Well logging
support geophysical results

Screen interval
46~119m welling out 7 1/s

(9) JC9: Geophysical station TA30 in Naranjos - Tarija

Geophysical results

8~40m/31 Ω-m

sandy layer - "aquifer-resistivity layer"

 $40\sim100\mathrm{m}$ / $16~\Omega$ -m

muddy layer

100m~ / 27 Ω-m

sandy layer - "aquifer-resistivity layer"

Drilling

muddy layer

dry well