
APPENDICES

D

Appendix 1 Assay Result of Ore Samples Collected from Trenches

	pung an megalakkendar padak diganépadakah dianggan pancanggan penghipak dalah di terdak penghipak di Albang pe	gradus hais variante en entre en entre en entre en entre en en entre en entre en entre en entre en entre en en	*****				~
試料。	採取位置	試料名	Au (g/t)	. Ag (g/t)	Cu (%)	Рb (%)	Zn (%)
番号		Otto		(9/1)	<0.01	<0.01	<0.01
	MJT-1,94-95.2m from E end	Sili, zone with Qtz vein	0.4		<0.01	<0.01	<0.01
TA102	MJT-1,94.5m from E end	Sili. sandstone	<0.4	<1			<0.01
TA103	MJT-1 98m from E end	Dissemi, part	0.8	<1	<0.01	<0.01	
TA104	MJT-1 116m from E end	Hematite veinlet	0.4	1	<0.01	0.01	0.06
	MJT-1 109m from E end	Hemalite vein	<0.4	. 2	<0.01	0.05	0.08
TA106	MJT-1 106m from E end	Hematite network	0.4	11		0.29	0.26
TA107	MJT-1 102m from E end	Hematite network	0.4	3		0.07	0.05
TA108	MJT-1 150.5m from E end	Sili. zone	<0.4	<1	<0.01	<0.01	<0.01
TA109	MJT-1 151.5m from E end	Massive hematite	<0.4	<1	< 0.01	<0.01	<0.01
TA110	MJT-1 154m from E end	Dissemi, part	0.4	<1	0.02	0.03	0.01
TA111	MJT-1 155m from E end	Dissemi, part	<0.4	<1	0.03	0.03	0.01
TA112	MJT-1 15m from E end	Hematite network	0.4	<1	<0.01	0.01	0.01
TA201	MJT-2 39m from E end	Limonite network	<0.4	1	<0.01	0.04	<0.01
TA202	MJT-2 50m from E end	Limonite network	0.4	<1	<0.01	0.04	0.0 5
TA203	MJT-2 149.5m from E end	Limonite network	0.4	<1	<0.01	0.02	0.03
TA204	MJT-2 170m from E end	Limonite network	<0.4	<1	<0.01	0.01	0.03
TA205	MJT-2 167m from E end	HemaGoe. network	0.4	<1	<0.01	0.01	0.02
TA206	MJT-2 186.5m from E end	Hematite vein	0.4	<1	<0.01	<0.01	0.01
TA207	MJT-2 194m from E end	Limonite vein	0.4	<1	<0.01	<0.01	0.04
TA301	MJT-3 185m from E end	Hematite network	<0.4	<1	<0.01	<0.01	0.01
TA302	MJT-3 179.5m from E end	Calcite vein	0.4	<1	<0.01	<0.01	<0.01
TA303	MJT-3 170-171m from E end	Hematite network	0.4	<1	<0.01	<0.01	<0.01
TA304	MJT-3 169-170m from E end	Hematite network	<0.4	<1	<0.01	<0.01	<0.01
TA305	MJT-3 168-169m from E end	Hematote network	<0.4	<1	< 0.01	<0.01	<0.01
	MJT-3 160.7m from E end	Hematote network	<0.4	, <1	< 0.01	0.01	0.02
	MJT-3 160m from E end	Hematote network	0.4	<1	<0.01	<0.01	<0.01
	MJT-3 159.3m from E end	Hematote network	< 0.4	<1	<0.01	0.01	<0.01
	MJT-3 158.5m from E end	Hematote network	0.4	<1	<0.01	<0.01	0.01
	MJT-3 136m from E end	Goethite vein	0.4	<1	<0.01	0.03	0.05
	MJT-3 123.5m from E end	Hematite network	0.4	<1	<0.01	<0.01	0.03
1		The same of the sa	L				

Appendix 2 Assay Result of Rock Samples Collected from Trenches (1)

战料	·····································	法料記載	l Au	Ag	Cu	Pb	Zn
番号			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
TG101	MJT-1 95.2-97.2m from E end	Fine sandstone	31	<1	19	20	44
TG102	MJT-1 97.2-99.2m from E end	Fine sandstone	29	<1	31	20	41
TG103	MJT-1 99.2-101.2m from E end	Fine sandstone	30	<1	29	20	36
TG104	MJT-1 92-94m from E end	Siltstone	21	<1	23	40	53
TG105	MJT-1 90-92m from E end	Siftstone	29	<1	28	<10	54
TG106	MJT-1 88-90m from E end	Fine sandstone	29	<1	32	20	53
TG107	MJT-1 86-88m from E end	Fine sandstone	52	<1	22	10	46
TG108	MJT-1 84-86m from E end	Fine sandstone	23	<1	16	20	52
TG109	MJT-1 82-84m from E end	Fine sandstone	32	<1	21	10	44
TG110	MJT-1 80-82m from E end	Fine sandstone	26	<1	43	40	64
TG111	MJT-1 102-104m from E end	Limestone with Hema, network	<10	5	4	230	256
TG112	MJT-1 104-106m from E end	Limestone with Hema, network	15	8	4	160	512
TG113	MJT-1 106-108m from E end	Limestone with Hema, network	29	5	33	3240	1272
TG114	MJT-1 108-110m from E end	Limestone with Hema, network	<10	2	6	420	1010
TG115	MJT-1 110-112m from E end	Limestone with Hema, veinlet	<10	2	9	390	1282
TG116	MJT-1 112-114m from E end	Limestone with Hema, veinlet	11	2	4	200	828
TG117	MJT-1 114-116m from E end	Limestone with Hema, veinlet	<10	Ž	6	140	616
TG118	MJT-1 116-118m from E end	Limestone with Hema, veinlet	<10	2	10	80	484
TG119	MJT-1 118-120m from E end	Limestone	<10	2	4	60	242
TG120	MJT-1 120-122m from E end	Limestone with Hema, veinlet	<10	<1	4	220	484
TG121	MJT-1 141-143m from E end	Fine sandstone	25	<1	44	40	40
TG122	MJT-1 143-145m from E end	Fine sandstone	26	<1	48	20	33
TG123	MJT-1 145-147m from E end	Fine sandstone	33	<1	. 36	60	38
TG124	MJT-1 147-149m from E end	Fine sandstone	20	<1	19	20	36
TG125	MJT-1 149-151m from E end	Fine sandstone	24	<1	28	10	36
TG126	MJT-1 151-153m from E end	Siltstone	24	<1	41	30	39
TG127	MJY-1 153-155m from E end	Aplite	17	<1	35	40	36
TG128	MJT-1 155-157m from E end	Aplite	13	<1	21	30	30
TG129	MJT-1 157-159m from E end	Coarse sandstone	19	<1	42	70	58
TG130	MJT-1 159-161m from E end	Coarse sandstone	15	<1	31	60	87
TG131	MJT-1 161-163m from E end	Fine sandstone	14	<1	36	70	195
TG132	MJT-1 163-165m from E end	Fine sandstone	16	<1	29	50	161
TG133	MJT-1 165-167m from E end	Fine sandstone	238	<1	116	150	460
TG134	MJT-1 167-169m from E end 🖖	Fine sandstone	50	<1	56	150	309
TG135	MJT-1 169-171m from E end	Shear zone	70	<1	69	120	332
TG136	MJT-1 171-173m from E end	Shear zone	12	<1	5	50	108
TG137	MJT-1 173-175m from E end	Limestone with Hema, veinlet	10	<1	5	100	120
TG138	MJT-1 175-177m from E end	Limestone with Hema, velolet	12	<1	5	30	291
TG139	MJT-1 177-179m from E end	Limestone with Hema, veinlet	<10	<1	4	50	307
TG140		Limestone with Hema, veinlet	13	<1	5	60	225
TG141	MJT-1 181-183m from E end	Limestone with Hema, veinlet	<10	<1	6	90	295
TG142	MJT-1 183-185m from E end	Limestone with Hema, veinlet	13	<1	14	300	416
							. , ,

Appendix 2 Assay Result of Rock Samples Collected from Trenches (2)

战料	採取位置	战料記載	Au	Λg	Cu	Ръ	Zn
番号			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
	MJT-1 185-187m from E end	Limestone with Hema, veinlet	<10	<1	8	120	264
TG144	MJT-1 187-189m from E end	Limestone with Hema, veinlet	<10	<1	4	140	243
TG145	MJT-1 189-191m from E end	Limestone with Hema, veinlet	<10	<1	4	80	256
TG201	MJT-2 60-62m from E end	Limestone with Hema, veintet	16	<1	3	250	155
TG202	MJT-2 62-64m from E end	Limestone with Hema, veinfet	<10	<1	2	370	202
TG203	MJT-2 64-66m from E end	Limestone with Hema, veinlet	<10	<1.	4	430	506
TG204	MJT-2 66-68m from E end	Limestone with Hema, veintet	12	<1	3	190	187
TG205	MJT-2 68-70m from E end	Limestone with Hema, veinlet	<10	<1	3	160	215
TG206	MJT-2 70-72m from E end	Limestone with Hema. veinlet	13	<1	3	140	165
TG207	MJT-2 72-74m from E end	Limestone with Hema. veinlet	<10	<1	4	150	273
TG208	MJT-2 74-76m from E end	Limestone with Hema. veinlet	10	<1	5	260	251
TG209	MJT-2 76-78m from E end	Limestone with Hema, veinlet	<10	<1	3	190	255
TG210	MJT-2 78-80m from E end	Limestone with Hema, veinlet	<10	<1	4	120	222
TG211	MJT-2 80-82m from E end	Limestone with Hema, veinlet	<10	<1	3	150	207
TG212	MJT-2 82-84m from E end	Limestone with Hema, veinlet	<10	<1	3	120	209
TG213	MJT-2 84-86m from E end	Limestone with Hema, veinlet	<10	<1	3	130	242
TG214	MJT-2 86-88m from E end	Limestone with Hema, veinfet	16	<1	3	70	201
TG215	MJT-2 88-90m from E end	Shear zone with Hematite	13	<1	7	250	427
TG216	MJT-2 90-92m from E end	Shear zone with Hematite	<10	<1	6	210	396
TG217	MJT-2 92-94m from E end	Shear zone with Hematite	10	<1	4	200	260
TG218	MJT-2 94-96m from E end	Shear zone with Hematite	<10	<1	3	160	245
TG219	MJT-2 96-98m from E end	Limestone with Hema, veinfet	<10	<1	4	160	220
TG220	MJT-2 98-100m from E end	Limestone with Hema, veinlet	<10	<1	4	160	311
TG221	MJT-2 100-102m from E end	Limestone with Hema, veinfet	<10	<1	8	130	389
TG222	MJT-2 102-104m from E end	Limestone with Hema, veinlet	<10	<1	16	320	460
TG223	MJT-2 104-106m from E end	Limestone with Hema, veinlet	<10	<1	5	160	259
TG224	MJT-2 106-108m from E end	Limestone with Hema, veinlet	<10	<1	2	210	175
TG225	MJT-2 108-110m from E end	Limestone with Hema, veinlet	<10	<1	3	70	72
TG226	MJT-2 110-112m from E end	Limestone with Hema, veinlet	<10	<1	3	50	61
	MJT-2 112-114m from E end	Limestone with Hema, veinlet	<10	<1	3	30	54
TG228	MJT-2 114-116m from E end	Limestone with Hema, veinlet	<10	<1	11	200	327
TG229	MJT-2 116-118m from E end	Limestone with Hema, veinlet	<10	<1	4	50	259
TG230	MJT-2 118-120m from E end	Limestone with Hema, veinlet	<10	<1	4	40	300
	MJT-3 118-120m from E end	Limestone with Hema, veinlet	<10	<1	2	120	70
	MJT-3 116-118m from E end	Limestone with Hema, veinlet	<10	: <1	2	70	80
TG303	MJT-3 114-116m from E end	Limestone with Hema, veinlet	<10	<1	. 3	20	80
TG304	MJT-3 112-114m from E end	Limestone with Hema, veinlet	<10	<1	8	80	135
L	MJT-3 110-112m from E end	Limestone with Hema, veinlet	<10	<1	3	20	73
	MJT-3 108-110m from E end	Limestone with Hema, veinlet	<10	<1	5	50	125
ļ	MJT-3 106-108m from E end	Limestone with Hema, veinlet	<10	<1	13	150	286
TG308	MJT-3 104-106m from E end	Limestone with Hema, veinlet	<10	<1	3	20	73
	MJT-3 102-104m from E end	Limestone with Hema, veinlet	<10	<1	5	70	184

Appendix 2 Assay Result of Rock Samples Collected from Trenches (3)

战料	採取位置	試料記載	Au	Ag	Cu	Pb	Zn
番号			(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
TG310	MJT-3 100-102m from E end	Limestone with Hema, veinlet	<10	<1	<1	20	64
TG311	MJT-3 98-100m from E end	Limestone with Hema, veinlet	<10	<1	<1	20	57
TG312	MJT-3 96-98m from E end	Limestone with Hema, veinlet	<10	<1	2	30	40
TG313	MJT-3 94-96m from E end	Limestone with Hema, veinlet	<10	<1	5	20	54
TG314	MJT-3 92-94m from E end	Limestone with Hema, veinlet	<10	<1	3	130	117
TG315	MJT-3 90-92m from E end	Limestone with Hema, veinlet	<10	<1	5	20	76
TG316	MJT-3 88-90m from E end	Limestone with Hema, veinlet	<10	<1	4	30	89
TG317	MJT-3 86-88m from E end	Limestone with Hema, veinlet	<10	<1	8	140	147
TG318	MJT-3 84-86m from E end	Limestone with Hema, veinlet	<10	<1	4	20	43
TG319	MJT-3 82-84m from E end	Umestone with Hema, velnlet	<10	<1	3	30	. 84
TG320	MJT-3 80-82m from E end	Limestone with Hema, veinlet	<10	<1	3	40	92
TG321	MJT-3 78-80m from E end	Limestone with Hema, veinlet	<10	<1	2	50	192
TG322	MJT-3 76-78m from E end	Limestone with Hema, veinlet	<10	<1	3	60	193
TG323	MJT-3 74-76m from E end	Limestone with Hema; veinlet	<10	<1	2	70	96
TG324	MJT-3 72-74m from E end	Limestone with Hema, veinlet	<10	<1	6	250	239
TG325	MJT-3 70-72m from E end	Limestone with Hema, veinlet	<10	<1	5	210	240

Appendix 3 Assay Result of Ore Samples Collected from Drill Holes

战料	採取位置	試料記載	Au	Ag	Cu	Рb	Zn
番号	an and an	camalaunah pekada seminya sariana sarah pembangan sarah sampan sarah sampan kan sarah sarah sarah sarih sarih	(9/1)	(g/t)	(%)	(%)	(%)
BA201	MJVS-2, 208.0 m	Hematite-geothite veinlet	<0.4	1	<0.01	0.05	0.16
BA301	MJVS-3, 17.3 - 17.7 m	Hematite-goethite vein	0.4	<1	<0.01	0.04	0.09
BA302	MJVS-3, 26.0 - 26.5 m	Hematite-goethite veln	0.4	1	<0.01	0.04	0.02
BA303	MJVS-3, 70.0 - 70.1 m	Goethite-hematite vein	0.4	<1	<0.01	0.01	0.01
BA304	MJVS-3, 87.3 - 88.2 m	Limonite vein	0.4	1	<0.01	0.06	0.10
BA305	MJVS-3, 85.9 m	Hematite veinlet	0.4	<1	<0.01	0.04	0.02

Appendix 4 Assay Result of Rock Samples Collected from Drill Holes

战料	採取位置	以料記載	Au	A a	Çu	Рь	Zn
番号	1大·以[]	6% ትና ቆህ የ ሃፋ	(ppb)	(ppm)		(ppm)	
	MJVS-2, 84.5 - 85.5 m	Siltstone	58		81	71	231
	MJVS-2, 85.5 - 86.5 m	Siltstone / fine sandstone	86	<1 <1	107	40	291
	MJVS-2, 86.5 · 87.5 m	Fine sandstone	72	<1	90	22	99
	MJVS-2, 87.5 - 88.5 m	Fine sandstone	40	<1	52	13	73
	MJVS-2, 88.5 - 89.5 m	Fine sandstone	67	<1	49	13	98
	MJVS-2, 89.5 - 90.5 m	Fine sandstone	68	<u>\$;</u>	57	22	136
	MJVS-2, 90.5 · 91.5 m	Fine sandstone	61		39	16	101
BG208	MJVS-2, 91.5 - 92.5 m	Siltstone / fine sandstone	196	<u> </u>	59	1841	943
BG200	MJVS-2, 92.5 - 93.5 m	Fine sandstone	84	:<1	20	555	352
	MJVS-2, 93.5 - 94.5 m	Fine sandstone	36	: <u><1</u> :<1	28	196	341
		Sheared limestone	13	- 1	15	610	474
		Sheared limestone	16		10	810	
		Sheared limestone	18	<1 <1	10	500	614 223
BG214		Sheared limestone	11		10	350	251
	MJVS-2, 122.0 - 124.0 m	Sheared limestone	13	1	26	150	104
		Sheared limestone	16	1	13	210	153
		Sheared limestone	21	1	9	190	118
		Sheared limestone	11	<1	8	150	559
		Sheared limestone	26	1	-1-11	230	192
		Sheared limestone	47	1	11	140	61
		Sheared limestone	86	1	10	210	133
		Sheared limestone	50	<1	11	210	122
		Sheared limestone	52	<1	15	350	507
		Sheared limestone	29	<1 <1	11	140	250
		Sheared limestone	62	- <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	15	180	1322
		Sheared limestone	23	· <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	33	120	204
		Sheared limestone	45	- <u>- </u>	15	80	258
		Sheared limestone	36	- 21	10	60	151
		Sheared limestone	53	<u>> </u>	12	110	691
	MJVS-2, 184.0 - 186.0 m	Sheared limestone	35	<u></u>	20	80	203
		Sheared limestone	30	- }	78	50	198
		Chancalling	28	<1	10	40	107
BG301	MJVS-3, 67.6 · 69.6 m	Sheared limestone	52	<u>>'</u>	37	260	276
		Sheared limestone	162	- \\ \ \ \ \	45	190	354
	MJVS-3, 121.6 - 123.6 m		69	<1	15	110	205
		Sheared limestone	27	<u>}'</u>	16	70	134
		Sheared limestone	16		13	70	169
	MJVS-3, 136.2 - 138.2 m		18	<1	50	220	617
8G307		Sheared limestone	33	<u>``</u>	32	180	569
	MJVS-3, 140.2 - 142.5 m		28		54	70	336
		Sheared limestone	13	<1 <1	9	320	164
22203	1110 4 0-0, 20.0 - 00.0 111	Olicated illinesions	إدا		9	320	104

Appendix 5 Result of the Measurement of Physical Properties on Cores

試料番号	試料採取位置	試料名	Resistivity (ohm·m)	Chargiability (ms)
GP101	MJVS-1, 65.7 m	Calcareous fine sandstone	241	372.6
GP102	MJVS-1, 73.5 m	Limestone with Py dissemi.	148	369.8
GP103	MJVS-1, 77.2 m	Calcareous fine sandstone	6,383	25.5
GP104	MJVS-1, 124.4 m	Fine sandstone	1,072	8.2
GP105	MJVS-1, 144.0 m	Calcareous fine sandstone	862	187.7
GP106	MJVS-1, 157.0 m	Limestone	11,222	11.9
GP201	MJVS-2, 142.0 m	Limestone	28,498	2.7
GP202	MJVS-2, 155.8 m	Limestone breccia	11,521	3.3
GP301	MJVS-3, 36.2 m	Limestone	19,816	3,1
GP302	MJVS-3, 107.4 m	Limestone breccia	9,866	5.2
GP303	MJVS-3, 176.3 m	Limestone	26,971	1.0
GP401	MJVS-4, 12.5 m	Calcareous mudstone	275	4.6
GP402	MJVS-4, 28.0 m	Calcareous mudstone	403	40.3
GP403	MJVS-4, 65.1 m	Calcaréous mudistone	296	16.3
GP404	MJVS-4, 70.6 m	Limestone	1,120	79.6
GP405	MJVS-4, 114.0 m	Calcareous fine sandstone	14,344	52.6
GP406	MJVS-4, 120.8 m	Calcareous mudstone	112	70.5

Appendix 6 Drilling Meterage and Diamond Bit Consumption

	A THE SOLVE THE RESIDENCE		Da	illing M	eterage		Total
Item	Size	Bit No.	MJVS-1	MJVS-2	MJVS-3	MJVS-4	(m)
·	NQ	10001	8.00				8.00
Diamond		10002			9.60		9.60
Bit		10003			17.30		17.30
		Total	8.00		26.90		34.90
			Drilling	Length/B	it 11.6m		1:

Appendix 7 Specifications of Drilling Machine and Equipment

Drilling Machine Model "L-38"	1 set
Specifications:	
Capacity	575m(NQ), 725m(BQ)
Dimension L x W x H	2,440mm x 1,070mm x 1,450mm
Hoisting capacity	3,000kg
Spindle speed	236, 490, 900, 1,510rpm
Engine model "Deutz 4FL"	60hp
Drilling Machine Model "SBK-4"	3 set
Specifications:	
Capacity	300m(NQ), 500m(BQ)
Dimension L x W x H	5,200mm x 1,050mm x 1,300mm
Hoisting capacity	2,500kg
Spindle speed	280, 640, 710, 1,600rpm
Engine model "Deutz 4FL"	55hp
Drilling Pump Model "NB3-120/40"	6 sets
Specifications:	
Piston diameter and Stroke	60mm, 90mm
Discharge capacity	120 liter/min at 40kg/cm ²
Dimension L x W x H	1,050mm x 600mm x 550mm
Engine model "D12"	12hp
Dtilling Pump Model "11GRI"	1 set
Specifications:	
Piston diameter and Stroke	100mm, 150mm
Discharge capacity	300 liter/min at 63kg/cm ²
Dimension L x W x H	1,500mm x 900mm x 1,000mm
Engine model "D50"	50bp
Generator Model "G200/6.5"	4 sets
Specifications:	
Capacity	6.5kw 50hz 220/380v
Derrick for L-38	
Specifications:	
Height and Max load capacity	8.5m, 10,000kg
Dertick for SBK-4	
Specifications:	
Height and Max load capacity	7.5m, 12,000kg
Drilling tools	
Drilling rod 2 ¹ / ₂ " 6.0m	95 pcs
2 ¹ / ₂ " 3.0m	35 pcs
Drilling rod NQ-WL 6.0m	8 pcs
NQ-WL 3.0m	220 pcs
Casing pipe 127mm 1.0m	5 pcs
127mm 1.5m	5 pcs
127mm 6.0m	25 pcs
Casing pipe 108mm 1.0m	20 pcs
108mm 1.5m	8 pcs
108mm 6.0m	60 pcs
Casing pipe 89mm 1.0m	10 pcs
89mm 1.5m	5 pcs
89mm 6.0m	45 pcs

Appendix 8 Consumption of Expendable Items

	Specifi~				Quantity		
Description	cations	Unit	HJYS-1	MJVS-2	MJVS-3	MJVS-4	Total
Light oil		liter	2,300	2,200	1,800	1,200	7,50
Hydraulic oil		liter	40	60	50	40	19
Engine oil		liter	60	80	65	60	26
Greas		kg	5	7	6	5	2
Bentonite		kg	65,000	50,000	35,000	8,000	158,000
C.H.C.	. :	kg	400	360	280	100	1,14
Cement		kg	2,200	2,200	1,000	1,000	6,40
Diamond bit	NQ-WL,NQ	ρc	1		2		
Diamond reamer	NQ-WL	ρc	1				
Metal bit	132 mm	ρc	4	6	15	5	30
Metal bit	110 mm	pc	60	65	68	50	24
Metal bit	91 Fm	рс	45	50	53	35	18
Metal bit	76 mm	pc	50	30	35	20	13
Metal bit	59 mm	pc pc	25				2
Metal Bit	NQ-WL	рс	2		1		
Core barrel Ass'y	NQ-VL	set	2	2	1		
Inner tube Ass'y	NO-MF	set	3	2	1		
Inner tube	NQ-WL	рс	2	, 1	1		
Core lifter case	NQ-WL	ос	2	2	1		
Core lifter	NO-Ar	рс	3	1	. 1		
Single core tube	108 mm	рс	δ	5	6	3	2
Double core tube	108 mm	рс	3	4	4	2	1:
Single core tube	69 mm	рс	10	13	12	6	4
Double core tube	89 mm	ρ¢	4	6	6	3	1:
Single core tube	74 mm	рc	10	8	7	3	2
Double core tube	74 mm	pc	3				
Chuck piece		рс	8	8	8	8	3
Hoisting wire rope	_	meter	50	48	48	48	19
Wireline rope		peter	500	500			1,00
Core box		box	34	43	43	32	15:
Water pipe		meter	1,300	300	1,000	1,000	3,60

Appendix 9 Summary of Working Time

		DELLLING	, tag	Shift	Į.	Men Working	укты д				WOFELDG TIME	,			200
Mole	Bit	DELLILOS	Core	SUTTITAG	Total	Znea. Pack	Morker	Settitad	Other	Recover-	Total	Aspen-	Dismant-	Trans-	Orand
ě.	9778	Length	Length						Works	700		blage	lement	porter	Total
					•	:			1					1,00	Tax Car
				abitt	*BASS	1100	Tool Tool	hours	bours	hours	hours	hours	boure	hours	bours
F-84-1	112	31.50	27.20	4	7	10	14	22	74		96		•		152
	91 ==	51.00	42.15	23	34	99	89	SO	152	30	232				232
	76 188	83.90	54.20	42	69	100	1,68	6	267	04	799				999
	rocal	166.40	123.55	72	124	951	250	159	723	110	992	8	8		1048
MJV8-2	112 🖦	72.00	66.40	29	12	25	er	51	137	3.6	216	98	32		2892
	91	135.00	90.50	75	08	113	178	133	786	\$6	584				284
	76 100	3.00	3.70	2	7	7	14	3	19		99				1
	Total	210.00	158.60	75	108	145	230	187	585	26	998	9\$	16		9368
K-RVZ-3	112 ==	16.10	13.60	*	*	۴	8	71	30		72	9	16		91
	92 %	157.30	102.35	52	70	63	140	137	368	96	601				601
	1 92	32.90	17.80	10	17	22	35	22	27	84	190				1981
	Total	206.30	133.75	99	16	111	182	179	405	**	726	8.4	16		792
*.7V8-4	112	60.00	48.40	13	15	18.	30	36	09	16	112	88	15		216
	37 1	62.00	56.20	2.9	0*	49	82	59	175	96	336				336
	76 📠	18,00	9.30		n	*	9	6	115		3.6				78
	TOTAL	160.00	113.90	75	58	7.7	118	110	250	112	472	88	16		576

Appendix 10 Record of Drilling Operation (MJVS-1)

MJVS-1

	Orin	ng Length		Total	C	Shift		Working	Man
Date	Shift 1	Shift 2	Shift 3	Drilling Length	Core Length	Drilling	Total	Engineer	Worker
	(m)	(m)	(m)	(m)	(m)	(shift)	(shift)	(man)	(mar
0/14 10/15	Assemb Assemb						<u>'</u>	2	
0/15	Assemb		·				1	3	
0/17	Assemb						1	3	
10/18	Assemb						1	2	
10/19	Assemb						1	2	
0/20	2.00	4.00		6.00	4.55	2	5	3	
10/21	9,00	7.00		16.00	14 85	5	2	3	
10/22	3.00	5.00		8.00	6.50	. 2	2	2	
10/23	1.50	Casing		1.50	1.30	1	2	. 3	· · · · · · · · · · · · · · · · · · ·
10/24	Casing	Casing				<u></u>	2	3	:
10/25	Casing	Casing	i				2		
10/26	0.80	Repair		0.80	0.80	1	. 2	2	
10/27	1.70	3.00		4.70	4 40	2	5	3	
10/28	0.40	2.10	ļļ	2.50	2 20	2	5	3 2	· · · · · · · · · · · · · · · · · · ·
10/29	0.50	1.70		2 20	1.65	. 2	2		
10/30	<u> </u>		 						
10/31		4 92		4.30	3 20	2	2	2	
11/1	3.00	1.30 3.30		4.00	3 20	2	2	2	
11/2	0.70 2.50	2.50		5.00	3.90	2		3	
11/3	2.50	2.50	 	3.00	3.90				
11/4	1.00	5.00	 	6.00	5 20	2	5	. 3	
11/6	5.00	3.00	 	8.00	6.10	2	2	3	
11/7	3.00	1.50	<u> </u>	4,50	3.70	2		2	
11/8	2.50	*.00		2.50	2.10	i	1	2	
11/9									
11/10		Casing				· ·	1	3	
11/11	Casing	Recover					5	3	
11/12	Recover	1.50		1.50	1.10	1	2	5	
1/13	2.50			2.50	2.10	. 1	1	3	
11/14									
11/15	2.50	Casing		2.50	2.50	1	2	2	
11/16	2.50	0.50		3.00	2.30	2	2	2	
11/17	2.20	2.80	2.50	7.50	6.30	3	3	4	
11/18	2.00	3.00	1.50	6.50	5 20	3	3	3	
15/19	Clean	0.50	Repair	0.50	0.50	1	3	3	
11/20	Repair						1 1	4	
11/21	Repair	Clean	3.50	3.50	2 50	1	3	: 4	
11/22	Clean	: 2.00	1.50	3.50	1.40	2	3	3	
11/23	1.50	1.50	Repair	3.00	1.50	. 2	3	3	
11/24	Repair	Clean	Clean	<u> </u>	جيدات ند		3	7 4	
11/25	Clean	Clean	2.00	2.00	0.00	!	3	3	
11/26		1.00		1.00	0.50	1	1	2	
11/27					2.70				
11/28	0.30	1.70	 	2.00	0.70	2	2	3	
11/29		1.50	Trouble	1.50	0.00	1	2	3	
11/30	Recover	1.50	6.50	8.00	6.40	: 2	3		
12/1	Clean	0.70	0.80	1.50	1.10 2.50	2	3	3	1 1
12/2	Prepar	1.00	2.00	3.00 5.50	4.00		3	3	
12/3	1.50	3.00 2.50	2.50 3.00	7.00	1.70	3	3	4	
12/4	2.50	3.00	3.00	5.50	3.30	2	2	3	
12/5 12/6	2.50	3.00		3.50	3.30			<u>-</u>	
12/7	2.50	4.10	2.40	9.00	8.00	3	3	3	
12/8	2.00	Clean	Clean	2.00	1.50	1	3	4	
12/9	4.50	Clean	Clean	4.50	2 20	1	3	3	:
12/10	1.20	Clean	0.50	1.70	1.10	2	3	3	<u>-</u>
12/11	0.80	Clean	Trouble	0.80	0.50	2	3	3	·
12/12	Clean	Cement			,		5	3	
2/13		. /							
12/14									
12/15	Clean	Clean	1.40	1.40	1 00	1	3	4	
2/16	Clean	Clean	Clean				3	3	
12/17	Clea∩	Clean					2	2	
12/18	Clean	Clean	Clean				3	4	
2/19	Clean	Clean	Clean				3	4	
12/20	Clean	Clean	Clean				3	3	
12/21	Clean		I				1	2	
			LI						
12/22									
12/22									
	Oismant						1	4	

Abbreviation

Assemb : Assemblage Casing : Insert casing Cement : Cementing Clean: Clean out the hole Dismant: Dismantlement Prepar: Preparation Recover: Recovery from trouble Repair: Repair drilling equipment Setup: Repair drilling equipment

	D	iling Lengt	h	Total	C	Shi	ħ :	Workin	g Man
Date	Shift t	Shift 2	Shift 3	Driting Length (m)	Core Length (m)	Dolling (shift	Total (shift)	Engineer	Worker
10/15	Assemb	¥"\	ļXX			(Srait)	(Sing	(man) 3	(man) 6
10/16	Assemb	····		i		1	1		6
10/17	Assemb			1		1	1	4	6
10/18	Assemb						1	3	6
10/19	Assemb				ļ		1	3	6
10/20	Assemb	ļ	ļ				1	4	6
10/21	Assemb	5.00	ļ	5.00	4,40			3	6
10/22	8 90	1.10	 	10.00	9.90			2	4
10/24	Repair Repair	 		 		ļ	ļ <u>:</u>	2	2
10/25	9.00	4.40		13.40	13.20		2	2	4
10/26	3.00	4.60		7.60	6.90	2		2	4
10/27	3.00	4.60	4.40	12.00	11.40			4	
10/28	2.50	2.30	1.20	6.00	5.20	3	3	3	6
10/29	3.00	3.50	3.10		7.90	3		3	6
10/30	3.50	2 90	2.00	8.40	7.50	3	3	4	€
10/31	~	ļ					ļ		
11/1	Clean					 	1	2	5
11/2	Casing Clean		 			 	 		5
11/4	Recover					 		2	5
11/5	5.70	2.90	0 60	9.20	4.30	3		3	6
11/6	2.10	3.40	2.30	7.80	6.20	3		4	6
11/7.	2.00	1.00		3 00	2.20	2		3	4
11/8									
11/9									
11/10	ļ	3.40	2.00	5.40	4,70	2	2	3	4
11/11	1.20		7.00	1.20	0.70	1	ļ <u>!</u>		
11/12	1.40 3.40	1.00	1.00	9.40 3.40	2.30	3	3	3	6
11/14	9.40			3.40	3.30	1	2	3	4
11/15	Clean	1.60		1.60	0.90	<u> </u>	3	3	6
11/16	1.50	1.00	1.50	4.00	3.10	3	3	3	6
11/17	Recair	Clean	Cement				3	4	6
11/18									
11/19	Cement	Cement	0.50	0.50	0.50	1	3	3	6
11/20	Clean	Trouble	· · · · · · · · · · · · · · · · · · ·		 		2	. 3	4
11/21	Recover						1	5	. 2
11/22	Trouble						1	2	
11/24									
11/25				- -			·		
11/26	}	7			7				
11/27	Recover			, i i i			i	3	4
11/28	Recover							3	4
11/29	Recover		<u> </u>		÷		1	2	4
11/30	Recover						1	2	1
12/1	Recover						1	3	4
12/2	Recover						, ,	3	4
12/4	Recover								
12/5	Recover						1		
12/6						· · · · · · · · · · · · · · · · · · ·			
12/7	Clean	0.50	2.00	2.50	2,10	2	3	3	6
12/8	2.00	1.30	1.70	5.00	3.70	3	3	4	6
12/9	3.00	3.80	3.80	10.60	5.70	3	3	3	- 6
12/10	1.40	2.00	2 20	5.60	4.40	3	3	3	6
12/11	3.60	3 20	3.00	9.80	6.30	3	3	4	6 6
12/12	1.50 Trouble	2 20	1.30	5.00	2.00	3	3	4	
12/13 12/14	Trouble 3.00	3.70 5.00	2.30 4.00	12.00	3.50	2	2	2	4
12/15	1.00	5.00	4.00	10.00	7.20 5.30	3	3	3	6
12/16	1.50	3.10	5.10	12.70	8.80	3	3		6
12/17	2.30	3.50	1.70	7.50	5.90	3		3	6
12/18	3 50	2.80	2.50	8.80	7.40	3	3		6
12/19	Clean	2.00	Clean	2.00	1.20	1	3	4	<u>6</u>
12/20	Clean	Clean	1.00	1.00	0.50	1	3	3	3
12/21	Clean	Clean					2	3	4
12/22				l					
12/23	Diema							1]
12/24 12/25	Dismant Dismant	- }							6
10153	PASHIGE #						1		6
Total			**********	210.00	158.60	75	117	176	284
-								- 1101	204

Abbreviation

Assemb : Assemblage Casing : Insert casing Coment : Comenting Clean: Clean out the hole Dismant: Dismantement Prepar: Preparation Récover : Recovery from trouble Repair : Repair drilling equipment Setup : Repair drilling equipment

Appendix 12 Record of Drilling Operation (MJVS-3)

MJVS-3

	Dr	lling Lengt	h	Total		Shift		Workin	g Man
Date				Drilling	Core	- 1			
	Shift 1	Shift 2	Shift 3	Length	Length	Drilling	Total	Engineer	Worker
:	(m)	(m)	(m)	(m)	(m)	(shift)	(shift)	(man)	(ma
1/9	Assemb		1				1	2	1.7
1/10	Assemb							2	
17/11	Assemb		l				1	2	
	Assemb		l				il	2	
11/12		· · · · · · ·	l					2	
1/13	Assemb		} -				·		
1/14			 						
11/15	Assemb		l				1		
1/16	4.00	3.00	7.00	14.00	11.50	3	3	3	
11/17	6.70	4.00	4.30	15.00	8.70	3	3	- 4	
11/18	4.00	3.00	3.20	10.20	6.20	3	3	3	
11/19	0.80	Reaming	Trouble	0.80	0.40	1	3	4	
11/20	Repair						1	. 2	
11/21	Repair	Reaming	Reaming				. 3	4	
11/22	4.00	9.50	1.50	15.00	9.30	. 3	3	3	
11/23	3.00	4.00	4.60	11.60	8.70	3	3	3	
11/24	5.40	5.00	3.40	13.80	11.60	3	3	4	
11/25	5.00	2.50	Repair	7.50	5.80	2	3	3	· · · · · · · · · · · · · · · · · · ·
11/26	Repair	4.60	3.50	8.10	7.20	2	3	3	
		4 00	3.50	7.50	3.40	2	3	4	
1/27	Repair		3.50	3.90	3.20		2	3	
11/28	Repair	3.90	l					3	
11/29	0.90	1.00	Trouble	1.90	1.40				
11/30	Repair		ļ				1	2	
12/1	Prepar	1.50	Prepar	1.50	. 1.00	1	3	4	
12/2	Prepar	Prepar	0.20	0.20	0.00	: 1	3	3	
12/3	Repair	4.10	4.00	8.10	3.00	2	3	3	
12/4	1.00	1.50	Trouble	2.50	1.70	2	3	4	
12/5	1.60	0.70		2.50	1.20	2	2	3	
12/6									
12/7	2.60	5.00	4.50	12.10	7.50	.3	3	3	
12/8	Repair	4.00	2 30	6.30	4.70	2	3	4	
12/9	200	1.50	2.40	5.90	2.15	3	3	3	
12/10	1.80	5.00	3.20	10.00	7.10	3	3	3	
12/11	5.30	<u></u>	<u></u> -	5.30	4.00		<u></u>	2	
12/12	330		3.00	3.00	2.10	il·		2	
	2.50	2.20	200	670	4.10	3	- 3	3	
12/13			- 200	0.70	7.10		2		
2/14	Clean	Clean	├ ───-						
2/15	Casing								
12/16	1.60	L	3.10	4.70	1.90	2	2	2	
2/17	<u> </u>	4.30	1.00	5.30	3.30	2	2	2	
12/18	Repair	Repair	5.30	5.30	4.50	1	3	4	<u> </u>
2/19	Clean	6.80	3.10	9 90	4.70	2	3	4	
2/20	1.40	2 30		3.70	1.00	5	2	3	
2/21	4.00	Jamming	[4.00	2.40	1	2	2	
2/22	Recover	l					1	2	
2/23	Recover	Recover					2	3	
2/24	Dismant		r					4	
	Dismant	· · · · · ·		+			il		
12/25	Distribution								
				206.30	133.75	62	99	131	21

Assemb : Assemblage Casing : Insert casing Cement : Cementing

Clean: Clean out the hole Dismant: Dismantlement Prepar: Preparation

Recover: Recovery from trouble Repair: Repair drilling equipment Setup: Repair drilling equipment

Appendix 13 Record of Drilling Operation (MJVS-4)

MJVS-4

ra estate	T Or	iling Lengt).	Total		Shift		Workin	g Man
Date	Shift 1	Shift 2	Shaft 3	Drilling Length	Core Length	Oriting	Total	Engineer	Worker
. : .	(m)	(m)	(m)	(m)	(m)	(shift)	(รกสเ)	(man)	(man)
11/18	Assemb		1					2	2
11/19	Assemb	I]	. 1	1	2
11/20	Assemb						1	2	2
11/21	Assemb		I I	T			. 1	2	5
11/22	Assemb		TT				. 1	2	5
11/23	Assemb	1	† <u>-</u>				1	1	5
11/24	Assemb		1		,		1	2	. 2
11/25	Assemb	1	1				1	2	. 2
11/26	Assemb				-		t	2	4
11/27	Assemb	1	1					2	4
11/28	Assemb		tt				1	3	6
11/29	10.00	4.50	Trouble	14.50	13.00	2	3	3	6
11/30	4.00	3.70	3.80	11.50	7.30	3	3	3	. 6
12/1	6.00	4.00	6.00	16.00	13.20	3	3	4	6
12/2	Repair	2.00		2.00	1.60		2	3	4
12/3	4.50	4.80	3.70	13.00	10.50	3	3	3	€
12/4	3.00	1.90	2.10	7,00	6.30	3		4	6
12/5	3.70	3.80	4.00	11,50	8.50	3	3	4	6
12/6	1.50	3.00		4.50	3.00	2	3	3	6
12/7	Repair	3.00	2.00	5.00	4.00	5	3	<u>š</u>	6
12/8	7.00	4.40	3.60	15.00	9.40	3	3		6
12/9	0.70	2.30		3.00	2.10	2	2	3	4
12/10	3.00	5.00	2.70	7.70	4.90	3	3	3	6
12/11	Repair	2.50	2.00	4.50	2.70	<u>2</u> †	3	4	6
12/12	1.10	2.50	2.20	5.80	4.00	3	3	- 1	6
12/13	Repair	1.40	3.30	4.70	2.70	5	3	. 3	- 6
12/14	3.00	3.30	1.70	8.00	5.60	3	3	3	· 6
12/15	4.30	Trouble		4.30	3.50	il i	2	3	4
12/16		Repair	Repair					2	
12/17	Recover	Recover	1.52					2	
12/18									
12/19							 }		
12/20		- 	 -	 +				 +	
12/21	Recover	Recover					2	3	
12/22	Repair	4.00	6 20	10.20	5.90		3	4	
12/23	5.40	6.40	- 0.20	11.80	5.70			3	6
12/24	Dismant	0.40	├ -	11.80	5.70				
12/25	Dismant	 	 -					4	6
12/23	UISTI A/I		 						- 6
Total				160.00	113.90	45	72	100	160

Abbreviation

Assemb : Assemblage Casing : Insert casing

Cement: Cementing

Clean: Clean out the hole Dismant : Dismantement

Prepar: Preparation

Recover : Recovery from trouble Repair : Repair drilling equipment Setup: Repair drilling equipment

Appendix 14 Record of Drilling Performance (MJVS-1)

					Surv	rey	period				Tot	aln	an day
			Pe	eriod		,	Days	Work day	y	Off day	Engine	er	Worker
peration						1		(lay <i>s</i>	days.	п	nen	mer
Prepar	ation	14.10.	1995	- 19	.10.199	95	6		,6.	<u> </u>	15	<u> </u>	24
								Drilling		1 7 7			
Drilli	ng	20.10.	1995	- 21	.12.199	95	63		44	9	136	•	22.2
1.						:		Recover1	ng .				
						:			10		20		28
Removi	ng	22.12.	1995	- 24	.12.199	95	3		1	2	4	1	6
Tota	1		1			:	72		61	11	175		280
rilling L	ength				. :	٠.			Core re	covery o	f 100m ho	le	
Length		166.0	00m	Overb	ourden		0.00m			10		C	ore
planne	d						· . · · · · · · · · · · · · . · . · . · . · . · . · . · . · . · . · . ·	Depth of	hole	Core		I	ecovery
Increa	se					: .				recov	егу	c	umulate
or				Core			i.	(m)	<u> </u>	{ 8) :	<u>.</u>	(\$)
Decrea	se			lengt	h :	1	23.55m	0.00 - 1	00.00	83.	7 .	· 	83.7
in								100.00 - 1	66.40	60.	1	i	74.2
length				:	: 	-	<u> </u>		<u> </u>	ļ			
Length			-	Core		1	100		<u> </u>				
drille	d	166.4	Om	recov	ery	L,	74.28						
orking ho	ours			h	!	۱ ۴							
Drilli	ng		1	59	16.6	5	15.3		Effic	lency of			-
Other	wrking	<u> </u>	7.	23	72.9	\dashv	68.9	Total m/	1 .		166.40m	1	: F ()
Recove	ring	1	1	10	11.1	_	10.5	period	++-				/ day)
To	tal		9	92	100.0	7	94.7	Total m/			166.40m	1	
Assemb	lage	<u> </u>	ļ	48			4.6		(m/shi				shift)
Disman	tlement			8			0.7		r	gth/bit (zed	
Water		•		:				Bit size	112	mm	91 mm	+	76 mm
	ortatio		_			4	<u> </u>	Drilled				· :	
	onstruc					4		length	31	.50	51.00	+	83.90
	ensport							Core					
l	nd tota		1,0	18	L		100.0	length	21	.20	42.15		54.20
asing pig	e inser	ted	 										
Size	Mete	rage	dri:		X 100	R	ecovery			•			
		(m)-	lene		(1)		(1)		÷				
127mm			ļ										
108mm	61	.0		36.	. 7]	0.0			٠			
89mm	82	. 5		49.	. 6		0.0			:			

Appendix 15 Record of Drilling Performance (MJVS-2)

				Sur	vey p	erlod	the Armitist was a second			Tota	l man day		
1.			Perio	d.		Days	Work d	эy	Off day	Engineer	Worker		
Οġ	eration							days	days	me	n inen		
1	Preparatio	n 16.10	.1995 - 20	.10.19	95	5		5	i	23	38		
		ļ					Drillin	g					
	Drilling	21.10	.1995 - 21	.12.19	95	62		36	11	119	196		
							Recover	ing	•				
								15	·	24	38		
	Removing	22.12	.1995 - 25	.12.199	95	4.		. 2	2	8	12		
	Total					71		58	13	176	284		
Dr	illing Lengt	h						Core re	covery of	100m hold	3		
	Length	210.0	0 m Over	burden	13	3.70m					Core		
	planned		-				Depth of	hole	Core		recovery		
	Increase								recove	erγ	cumulated		
	or Decrease		Core	* *:			(m)		{ •	(1)			
	Decrease in		leng	th	158	1.60m	0.00 - 100.00		85.9	85.9			
							100.00 - 210.00		, 66.1	75.5			
1	length					· · ·							
	Length		Core			1 1							
	drilled		Om Leco.	very	75	5.51	· · · · · · · · · · · · · · · · · · ·		<u>L</u>				
no:	rking hours	<u> </u>	, h		B.				1 1				
;	Drilling :	<u> </u>	187	21.6		20.0	Efficie		lency of d	rilling			
	Other worki		585	67.7	1 1	62.5	Total m /	work		210.00m/5	1days		
	Recovering	 	92	10.7		9.8		d (m/da	 -	(4.12	m/day)		
	Total		864	100.0	<u> </u>	92.3	Total m /	F 10 1		, 1	09shifts		
:	Assemblage	·	56			6.0		(m/shi			/shift)		
	Dismantleme	ent	16		——-	1.7	· · · · · · · · · · · · · · · · · · ·	1	gth/bit (each size	dbit }		
	Water						Bit size	11	2 mm	91 mm	76 mm		
	transportat						Drilled				5 26		
	Road constr				*		length	72	.00 1	135.00	3.00		
	and transpo		<u> </u>				Core		8 .				
	Grand to		936	<u> </u>	$-\frac{1}{1}$	0.00	length	66	.40	90.50	1.70		
Cas	sing pipe ins	erted											
			Rec	overy									
	length (+)			(1)			•						
	127mm							÷					
	108mm 73.7 35.1			0.0									
	8 9mm												

Appendix 16 Record of Drilling Performance (MJVS-3)

					Surv	rey	period					T	otal m	an day
				Period	1		Dàys	Work da	у	Off	iay	Engia	heer	Worker
Operation									days	da	ys .		men	men
Prepara	ation	9.11.	199	5 - 15	.11.19	95	7	<u> </u>	8		1		12	24
						-		Drilling	,		- 1			
Drilli	ıg	16.11.	199	5 - 23	.12.199	95	38		34	÷	1		89	146
	:			:				Recoveri	ing					
Ĺ					:				3	: .	:		22	36
Removi	ng	24.12.	199	5 - 25	.12.19	95	2		2	· · · · ·			8	12
Tota	1						47		45		2	1	31	218
Drilling L	ength				-				Core re	cover	yof	100m	hole	<u> </u>
Length		206.00	m (Overt	ourden		12.50m				44		. C	ore .
planne	1		, 1		<u>:</u>	_		Depth of	hole	Co	re		. r	ecovery
Increa	se						100		44 (1)	91	cove	ry	C	umulated
or			7.1	Core		:		, ' (m)			(+)	·		(%)
Decrea	5 e			lengt	:h	1	33.7 5m	0.00 - 1	100.00	J	71.2		·	71.2
110								100.00 - 2	206.30	. 1	58.8			64.8
length	:		١.							<u> </u>				· :
Length			:	Core										
drille	1	206.30	m	recov	er y	L	64.81			<u> </u>				
Working ho	urs	<u> </u>		h		۱.	•	:	:		. :		:	
Drilli.	ng	1	_	179	24.6	5	22.6		Effic	iency	<u>-</u> -			
Otherw	orking	<u> </u>	L	105	55.6	5	51.1	Total m/	work		. 2	100	m/37d	· ·
Recove	ring	1 / :		44	19.8	3	18.2	period		у)	- : 			/day)
То	tal	1:	L	728	100.0	2	91.9	Total m/	work				71 :	hifts
Assemb	lage			48		_	6.1	shift		1				shift)
Disman	tlement	· · · · · · · · · · · · · · · · · · ·	_	16			2.0	Drilli	ng len	gth/b	it (each s	izedl	oit)
Water								Bit size	112 n	nm.	91 1	rura	74 mm	
transpo	rtatio	n	Ŀ	· 				Orilled						
Road co	nstruci	tion		:				length	16	.00	157.	40	32.90)
and tra	nsport	ition		· · · · ·				Core			t,			
Gra	nd tota	1		192		\sqcup	100.0	length	13	.20	102.	75	17.80)
Casing pip	e inser	ted			5						•			
Size	Meter	eps		erage 111ng	X 100	R	ecovery							. '
		(m)		iath -	(1)		(1)							:
127mm	 -	.0	-	21.		-	0.0					•	٠	
108mm						 				**				
* ^ O 11011														

Appendix 17 Record of Drilling Performance (MJVS-4)

		-	Surv	ey perio	od.				Tot	alm	an day
		Perio	đ	Day	18	Work da	у	Off day	Engine	er	Worker
Operation							days	days	1	aen	men
Preparation	18.11.1	995 - 26	.11.199	5 11	Ĺ		11		21	1 ;	30
				,		Drilling	g ·		<u> </u>		<u> </u>
Drilling	29.11.1	995 - 23	3.12.199	5 25	,		19	. 3	54	ı	90
				1		Recover	ing .				
				: .			3		17	, :	28
Removing	24. 1.19	95 - 25	. 1.199	5 2	2		2		8	}	12
Total				38	}		35	3	100	,	160
rilling Length						:	Core re	covery of	100m ho	le	
Length	160.00 n	Over	burden	0.00	m					C	ore
planned					:	Depth of	hole	Core		F	scovery
Increase		1				1		recov	ery	CI	umulated
or		Core				{ m }	:	1.5	,		(-1)
Decrease		leng	th	113.90	m	0.00 -	100.00	76.	8	,	76.8
in			14	:	: , -	100.00 - 1	160.00	61.	8		71.2
length			1 2 1 1	-							:
Length		Core				• •					
drilled	160.0 m	recov	very	71.2%						1	
orking hours		h	•		•						
Drilling		110	23.3	19.	1		Effici	lency of d	rilling	i	
Other working		250	53.0	43.	4	Total m/	work	Jan 1	160.00m	/22d	ays
Recovering		112	23.7	19.	4	регіо	i (m/day	<i>a</i>	(7,2	23 m ,	/day)
Total		472	100.0	81.	9	Total m/	work		160.00m,	/ 595	hifts
Assemblage		88		15.	3	shift	(m/shi	ft)	(2.71	l m /	shift)
Dismantlemen	:	16		2.	8	Drilli	ing leng	jth/bit (each si	zed b	oit)
Water						Bit size	112	ron	91 mm	T	76 mm
transportation	n	1 14		1	2	Drilled	[: -
Road construc	tion				-	length	60.	.00	82.00	1	18.00
and transport	ation				• •	Core				-	
Grand tota	1	576		100.	0	length	48.	40	56.20		9.30
asing pipe inse	ted							- 			
	м	eterage									'
Size Mete	11	rilling ength		Recove				•			
	(m)		(%)	(1)	}						
		· · · · · · · · · · · · · · · · · · ·					•				
 		· 									
			1	:							•

Appendix 18 Results of Microscopic Observation of Thin sections

Sample	Samo 1			5			Minerals	ls							
Number	Location	Rock Name	Texture		Fragments								× ×	Matrix	
				2 2	17	Bi	ខ	7 72	To Im	п) Ot	<u>ಭ</u>	33	20	g
TT101	150 m from E end of MJT-1	Quartz Wacke	Clastic	0						∇		0			
11102	202 m from E end of MUT-1	Micrite	Aphanitic						-, -				0		
177103	Surface of MJVS-1	Black mudstone	Clastic									0		◁	
17201	124 m from E end of MJT-2	Limestone breccia		4		-			©		_		0	4	
TT301	93 m from E end of MJT-3	Fine limestone					0		_	:					
TT302	60 m from E end of MJT-3	Fine limestone			:		 ©					_	_		
17303	400 m west of MIVS-4	Shale	Clastic						-			0		·	_
TT304	450 m west of MJVS-4	Fine sandstone	Clastic	0							٥	0		4	
11305	300 m southwest of MJVS-2	Mudstone	Clastic	0	:							0		0	0
11306	1,250 m south of MJVS-2	Siltstone	Clastic	0	-							0	_		
11307	400 m SSW of MJVS-2	Siltstone/mudstone	Clastic	0		0						0			_
21308	550 m south of MJVS-2	Silicified rock					<u> </u>	-			-		•	0	4
TT309	550 m south of MJVS-2	Medium sandstone	Clastic	0					-			0	7	•	٠
18101	MJVS-1 93.4 m	Siltstone	Clastic	0	⊽	·					7	\	© 	4	
TB102	MJVS-1 93.5 m	Sandstone-Siltstone	Clastic	0	4	4					7	V V	(i)	٥	
BIZOI	MJVS-2 146.4 m	Limestone								-			◎	•	
BT301	MJVS-3 201.5 m	Calcite veinlet				:							-		
ST401	MJVS-4 74.0 m	Limestone										- <u>/</u> - 1	© —		
BT402	MJVS-4 75.5 H	Limy siltstone	Clastic	0					_	· 0		7	Ø ∇	 .	

Abbreviation

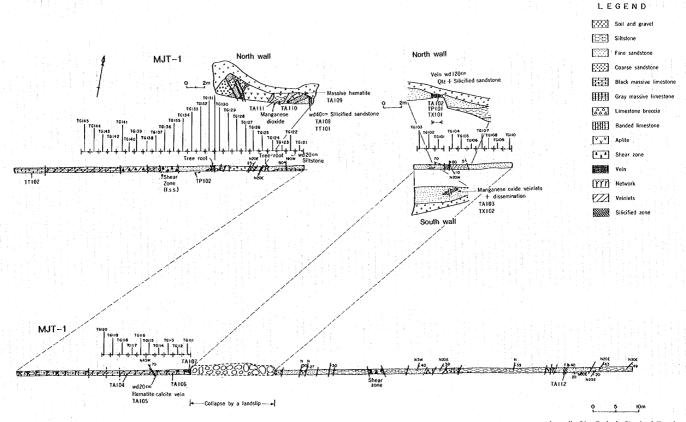
	Zi:Zircon	Qt:Quartzite	٠
Fl:Feldspar	To: fourmaline	Cl:Clay minerals	
Bi:Biotite	Im: Limestone	Op:Opaque minerals	
Cc:Carbonate	Sh:Shale		

©:Abundant O:Common △:Few

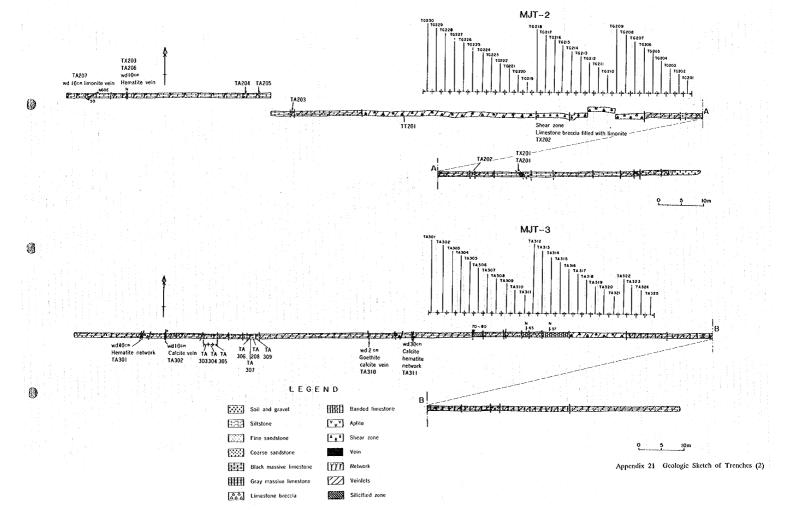
Appendix 19 Results of Microscopic Observation of Polished Sections

Sample	Sample	Description			0	re Ki	neral			
Number	Location		Py	As	Cp	Gn	Po	Нe	Li	Gr
TP101	94 m from E end of MJT-1	Silicified Vein		1				<u></u>	0	1
TP102	163 m from E end of MJT-1	Massive Hematite		1	1			Ť	Õ	
BP101	MJVS-1 79.0 m	Dissemination	\perp_{Δ}		Δ					
8P102	MJVS-1 82.5 m	Dissemination		Δ-						
BP103	MJVS-1 93.5 m	Dissemination	0		Α					+-
8P401	MJVS-4 74.0 m	Dissemination	Ť			•		نسند	 	
8P402	HJVS-4 75.5 m	Dissemination	$\pm \bar{\lambda}$							

Abbreviation


Py:Pyrite	Gn:Galena	Li:Limonite	⊚:Abundant
AsiArsenopyrite	Po:Pyrohtite	GriGraphite	O:Common
Cp:Chalcopyrite	He:hematite		△:Few
	* · ·		·:Rare

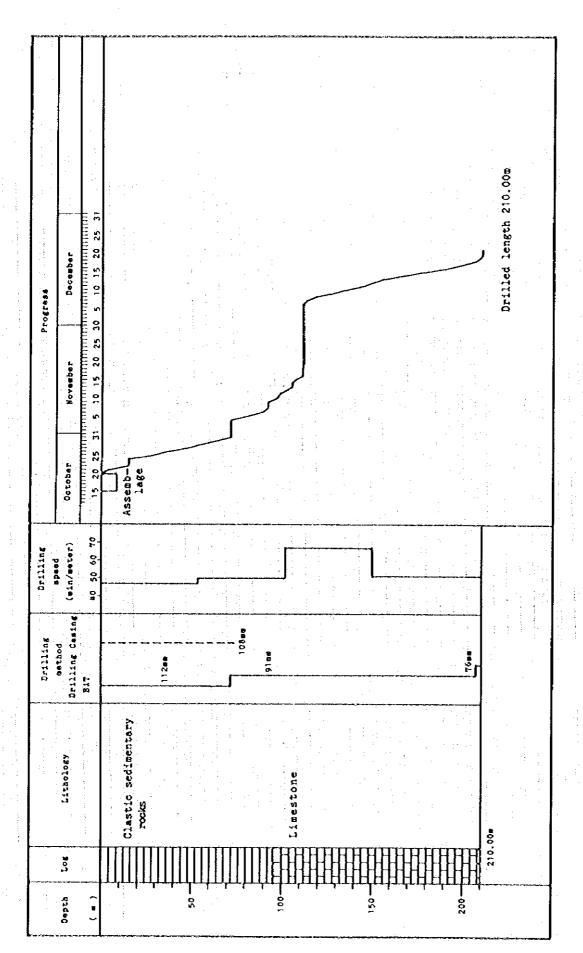
Appendix 20 Results of X-Ray Diffraction Analysis


Sample	Sample -	Rock Name				. Hi	neral			
Number	Location		Q2	Fì	HL	Ke	СÞ	Cc	Do	Go
TE101	94 m from E end of HJT-1:	Silicified sandstone	0	0	Δ	Δ		6 2		
TX102	98 m from E end of MJT-1	Altered sandstone	0	O	Δ	Δ	T		1	1
TX201	39 m from E and of MJT-2	Oxidized Fe vein					T	0	Δ	
TX202	90 m from E end of MJT-2	Oxidized Fo vein					! .	0	Δ	17
TB 203	196.5 m from E end of MJT-2	Oxidited Fe vein					:	0	Δ	
BX 101 .	MJVS-1, 91.3 m	Clay with Py dissemi	0		0		O	Δ	0	 -
9X102	MJVS-1, 99.5 m	Clay with Py dissemi	0	Ő	0		O	Δ	Ā	Λ
9×103	HJVS-1, 126.7 m	Shear zone	Ô	Δ	0	1	Δ	•	-	$\overline{\Lambda}$
BX104	MJVS-1, 141.5 m	Sheared calcite	0	•	Δ			~~~~~	0	-
BX105	MJVS-1, 166.9 m	Clay with Py-Qtz	0	Δ.	0		0	0	Δ	
BX401	H3VS-4, 58.2 m	Clay	Ō	Δ	0	1	Δ			
BX402	MJVS-4, 70.0 m	Phyllite			Δ		Δ	0	Δ	

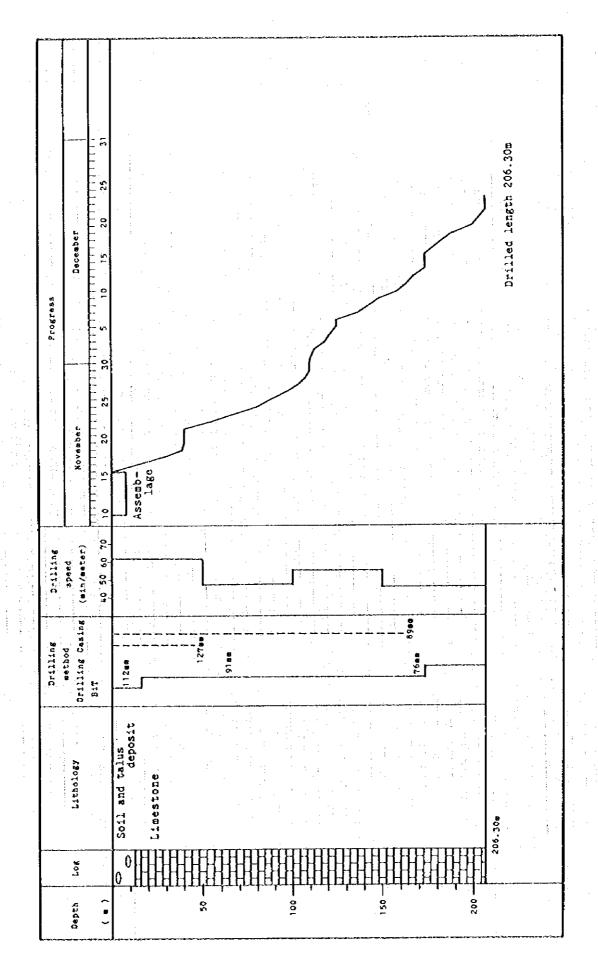
Abbreviations

Qs:Quarts		ChiChlorite	O: Abundant
Fl:Feldspar	•	Cc:Calcite	O:Compon
MirHica		Dorbolomite	∆:Few
Ka:Kaolina	:	GorGoethite	¹ -:Rare

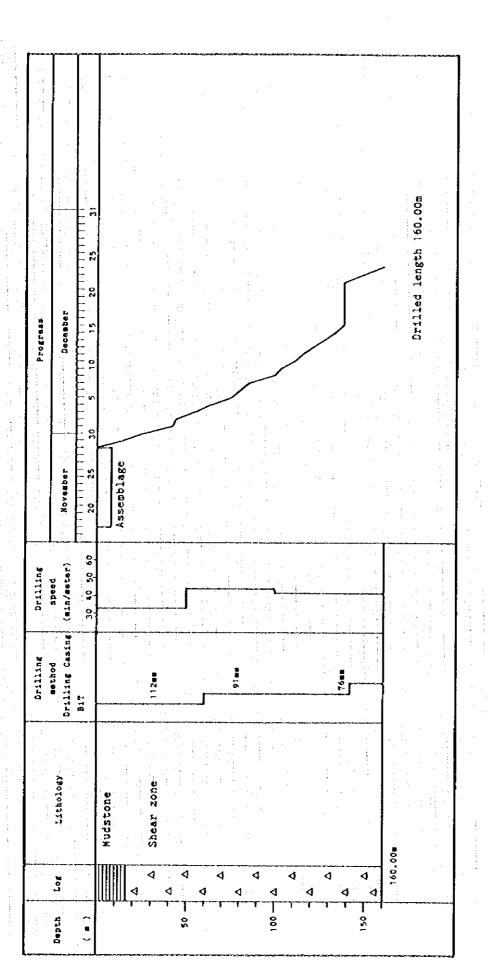
Appendix 21 Geologic Sketch of Trenches (1)



)


1

Ž.


Appendix 22 Chart of Drilling Progress (MJVS-1)

Appendix 23 Chart of Drilling Progress (MJVS-2)

d

Appendix 25 Chart of Drilling Progress (MJVS-4)

B

Depth (m)	Log	Lithology	Mineralization
Depth (m)		Lithology 0 - 8.0 Pale brown mudstone, wealhered 8.0 8.0 - 13.2 Black mudstone, soft, partly brown to reddish brown 13.2 13.2 - 16.5 Reddish brown mudstone 16.5 16.5 - 22.0 Black mudstone, soft 22.0 Black mudstone, soft partly sheared 36.0 36.0 - 57.3 Sheared black mudstone, partly brown	Mineralization
50	Δ Δ Δ Δ Δ		

Depth (m)	Log	Lithology	Mineralization
	ΔΔ		
	۵۵		
	ΔΔ	36.0 - 57.3 Sheared black mudstone,	
	٨٨	partly brown	·
	Δ	partty brown	
	Δ	57. 3 57.3 - 57.8	
	ΔΔ	57.8 Sheared brown fine sandstone	
	ΔΔ	57.8 - 60.2	
60-	Δ Λ Δ	60. 2 Sheared pale gray sillstone	
	Δ Δ	60. 5 60.2 - 60.5	
	۸۵	Sheared brown fine sandstone	
	Δ.		
	Δ		
	ΔΔ		
	ΔΔ	60.5 - 78.0	
	ΔΔ	Sheared-argillized	
	ΔΔ	black mudstone,	
70-	Δ Δ	matrix is gray clay	
	ΔΔ		
	ΔΔ		
	ΔΔ		
	Δ		
	ΔΔ	-76.0	
	Δ Δ Δ		
	ΔΔ		
	ΔΔ	76.0 - 89.0	
80-	$\Delta \Delta$	Shear zone with fragments	
	ΔΔ	of silicified fine sandstone	
	ΔΔ	(Py dissemi.)	
	ΔΔ	and black mudstone	,
1 1	ΔΔ		
	ΔΔ		
	ΔΔ		
	Δ.	89.0	
90-	~ ~		
	~~	89.0 - 93.0 Black argillized zone	
*	?		
	Δ΄Δ	93.0	89.0 - 103.4
	Δ Δ Δ	93.0 - 103.4	Pyrite rarely disseminated
	Δ	Shear zone with fragments	in matrix of shear zone
	Δ.	of black sandstone,	
	ΔΔ	pale gray sandstone	
100	ΔΔ	and black mudstone	
100	L		

Direction: S85°E Inclination: -70°

Depth (m)	Log	Lithology	Mineralization
	Δ Δ Δ Δ Δ		
	_ ^	103. 4	
		103.4 - 110.0 Dark gray massive timestone,	
		sheared ?	19
110-		110.0 110.0 - 112.0	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Sheared-argillized zone 112.0 - 116.5	
	Δ Δ Δ	Shear zone with fragments of silicified fine sandstone	
	ΔΔ	116. 5	
120-	Δ Δ Δ	118.5 - 124.0 Shear zone with fragments	
	Δ Δ Δ Δ	of sandstone and black mudstone	
	Δ Δ	124.0	
14 = 1	Δ Δ Δ Δ Δ	124.0 - 129.0 Shear zone with fragments of black mudstone	
	Δ Δ	129. 0	
130-	Δ Δ Δ	129.0 - 140.0 Sheared-argillized zone	
	Δ Δ Δ Δ	with fragments of dark gray fine sandstone and black mudstone	
	Δ Δ Δ Δ		
	Δ Δ Δ Δ		
140-	Δ Δ Δ	-140.0	
	Δ Δ Δ	Sheared-powdered limestone	
: -	Δ Δ Δ Δ	Sheared-argillized zone with fragments of dark gray fine sandstone	
	Δ Δ	Sheared-argillized zone with fragments of limestone,	
150	Δ Δ Δ	Py-disseminated limestone and black mudstone	

MJVS-1

Direction: S85°E

Inclination: -70°

Depth (m)	Log	:	Lithology	·	Mineralization
160- 166. 40		156. 0 158. 0 162. 5	Sheared black fimestone Shear zone with fragments of black mudstone and black fine sandstone Both contain weakly disseminated pyrite. Shear zone with fragments of black mudstone and quartz sandstone, filled with dark gray clay		

		<u>Direction</u>	
Depth (m)	Log	Lithology	Mineralization
	000	0 - 2.0	
ļ		Soil	
		2.0	
		2.0 - 5.0	
		Pale brown fine sandstone,	
	: :::	weathered 5. 0	
		3. 0	
			:
	3.1.1.1		
		5.0 - 15.0	
10		Pale brown to pale gray	
		micaceous fine sandstone	
:			
			
-	===	-15. 0 Gray siltstone, soft	
		16. 2	
		Pale brown fine sandstone, sol	n l
		T till brown this sundations, so	
		-18. 8 Gray siltstone, soft	Limonite disseminated
00	7777		
20-		20. 6 Gray fine sandstone, weathere	
		Brown coarse sandstone, loose	
	::::::	-22. 6 Pale brown to pale gray	
1 1		fine sandstone, weathered	
		24.7	24.7 - 26.0
		Gray siltstone, soft	Hematite network in part
		Gray fine sandstone	
		-28.0 Brown coarse sandstone	
		28.9	
30-		Gray sillstone, soft	
1.4.1			
		Gray fine sandstone, soft	
1 .		33.0	
		Gray coarse sandstone, soft	
	<u> </u>	-35.0	
		l i Girav fina candelana cali	
		36.0 Stay find Sandstone, son	
		Brown fine sandstone	用《食食法》:" 是是一个人的。"
	133	to sillstone	39.0 - 39.2
		เบ อกเอเบกซ	Weakly silicified, limonite veinlets
40-	EEE	100	
. 10		40.4	41.0 - 41.4
			Weakly silicified, limonite veinlets
	1::7::3	' '	43.5
		Gray fine sandstone	Limonite vein, width 2 cm
		Gray into sandstone	
		1 40.0 60.0	
-	! ; ; ; ;	49.6 - 50.8	40.0
		Pale brown medium sandstone	49.9 Limonite vein, width 1 cm
50	[::::::	49.6	Lintonite veni, width 1 cm

Depth (m)	Log	Lithology	Mineralization
	Δ Δ Δ	50. 8 Brown fine sandstone 52. 8 Shear zone 54. 0 Shear zone with fragments	52.8 - 54.0 Limonite veintets 54.0 - 56.8
1	Δ Δ Δ	of weakly silicified mudstone 56.8 Shear zone with fragments 57.8 of fine sandstone and mudstone 58.2	Limonite network in part
60-		Gray fine sandstone, partly weathered	
	44	63. 6 Brown siltstone, strongly weathered	
70-	Δ Δ Δ Δ Δ Δ	Shear zone with fragments of fine sandstone, siltstone and coarse sandstone	
	Δ Δ Δ Δ	72.0	
	$\begin{array}{c} \Delta \\ \Delta \\ \Delta \\ \Delta \\ \Delta \\ \Delta \end{array}$	Sheared gray sillstone	72.0 - 83.3 Limonite veinlets in part
80-	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		
	Δ Δ Δ Δ Δ Δ Δ	83. 3 84. 5 84. 9 Sheared fine sandstone, brown Sheared siltstone, sheared Sheared siltstone Sheared fine sandstone,	
90-	Λ [*] Λ	gray to brown 89. 0 Pale brown to brown fine sandstone, sheared? 91. 8 Sheared sittstone	
	Δ Δ Δ	91.8 Sheared siltstone, 93. 2 matrix hematite Gray fine sandstone 95. 3	91.8 - 95.3 Hematite network
100		Sheared limestone, matrix clay and hematite 98.5 - 102.0 98.5 Sheared timestone, matrix calcite	

Depth (m)	Log	Lithology	Mineralization
		102. 0	
		Black massive limestone	105.4 - 112.0
110-			Calcite-hematite veintets
110~		112. 0	
	~ Δ Δ ~ ~	Sheared limestone with reddish brown to gray clay	
	Τ	Black massive limestone 118.0 Sheared limestone with	
120-	Δ Δ Δ Δ ~	reddish brown clay 120. 5 Sheared limestone with	
	Λ Δ Λ Δ Δ Δ	gray clay, partly limonite or hematite stained	
	~ 	126. 5 Black massive limestone with calcite and calcite-hematite veinlets	
130-	~ Δ Δ Δ Δ ~	Sheared limestone filled with gray clay	
	Δ Δ Δ Δ	134. 0 Black massive limestone	
	Δ Δ Δ Δ Δ	Sheared black limestone, partly containing brown clay	
140-		138.8	
		Black massive limestone	138.8 - 150.0 Hematite veinlets
150			:

Direction: N85°W

Depth	í	<u> </u>		Tronitation, 470
(m)	Log		Lithology	Mineralization
		150.0	Limestone breccia	
	7 7	152. 0	Sheared limestone filled	
	~ Δ	157 7	with reddish brown clay	
		-153. 7		
. 1				
		9 1		
160	1-1-7-7-7			
	141		Limestone breccia	150.0 - 172.0
1				Limonite veinlets
Í	1 T			
1				
		*:		
170-				
		172.0		
	۵ ۵	****		
	ΔΔ	:		
	Δ Δ			
	Δ Δ			
	Δ Δ	1 .	Sheared limestone filled	
1	ا ۵۵		with reddish brown clay	
180-	۵۵	: 1 :	. 基本信息 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ΔΔ			
1 1	۵ ٍ۵			
	۵۵			
	∆ ٍّ∆			
	∆ َّ∆			
	۵۵			
	111	189.0		
190-				
	琩		Pale gray massive limestone,	189.0 - 210.0
		* *	partly limestone breccia	Limonite veinlets
				+
200				

MJVS-2

Direction: N85° W

Depth (m)	Log	Lithology	Mineralization
		Pale gray massive limestone, partly limestone breccia	
210			

Depth (m)	Log		Mineralization
	000		
	000		
	۰۰۵	:	
	°°°		
-	Š 000	0 - 12.5	·
	000	Soil and gravel	
1 :	ွိဂ္ဂ		
	ဝဂ္ဂိ		
	ွိုိဝဝ		
10-	ວວິ ເ		
10	000		
	ک د	12.5	
	·•	Black massive limestone	40.5 44.0
		-14. 3	12.5 - 14.3 Hemalite veinlets
÷	Δ-1	14. 0	nemaine veimets
	<u> </u>		
	-\hat{\range}-\hat{\range}-	Limestone breccia	la del del composition de la composition della c
	1,77		17.3 - 17.7
20			Hematite-goethite vein
20-		20. 7	
	┎┸ ╖┸╏		
			23.3
}	4 -7-4-7-1		Hematite sheared vein
-			Hematic Siteated Velil
	╁┰╬┰┨		
-			26.0 - 26.5
	1_1_1	Black massive limestone	Hematite network
	<u>+</u>		
30-			
30	$\iota_{\perp}\iota_{\perp}$		
	<u> </u>	"我没有没有是谁的过去式和一点来?" [4]	
			34.5 - 35.0
	4 -4-1		Hematite-goethite veinlets
Ť		Cave	g
- i - i - i - i	다다		
Į		医悬滑性背侧的 一身上的一身似的大军副	
Į.	┆╸╏╸ ┦		
40			
,			
·	1		
		Cave	
	Į		
	두급		
1		•	
	1-1-	·	
		·	
50			

Depth (m)	Log	Lithology	Mineralization
Depth (m) 60-		Black massive timestone 63. 5 65. 0 Black massive limestone 67. 6 Sheared limestone filled with reddish brown clay 70. 1 Black massive limestone	Mineralization 61.0 - 100.0 Limonite veinlets 70.0 - 70.1 Goethite-hematite vein contained sheared limestone
80-		-83. 4 Sheared limestone	
		85. 3 Black massive limestone 87. 5 Sheared limestone filled 88. 2 with limonite	
90		8lack massive limestone 91. 0	
		Sheared limestone 92. 5 Limestone breccia 97. 0	
100		Cave 99. 0	

Depth	Log	<u> </u>	Lithology	Mineralization
(m)		ļ		
	-154	102. 0		
		1	Cave	
	47	103.5		
	$\frac{1}{\sqrt{1-1}}$		Limestone breccia	
		108.6 109.1	Cave	
110-		103. 1		
	1.0			
	114			
			Limestone breccia	
. 1.			and the state of the state of	
	$\Delta_{T_{\tau}}$			
	114			100.0 - 150.0 Limonite veintets
120	14 <u>1</u>			Landinte Venilets
120-] Δ.			
1 1 1	~	-121.6		
	~ ^		Sheared timestone filled	
:	^ ^		with gray clay	
	Δ Δ		or goethite-hematite	
	<u> </u>	126. 7		
130-	┖┰┸┰╽ ┖┰┸┰╏		Black massive limestone	
		-133. 0		
	Δ Δ		Sheared black limestone	
	Δ~Δ		filled with pale gray clay	
	ΔΔ	-136. 2	1000 A 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Δ Δ			
	ړ ۲۵		Sheared black limestone filled with brown clay	
140-	Δ Δ			
	Δ~Δ			
	, ĩ, n	142. 5		
			Plack marking the sales	· · · · ·
			Black massive limestone	
		146.0	Cave	
:	į	148.0	Black massive limestone	
		148.6	Cave	
150	n	149. 4	0440	

0

	1				
Depth (m)	Log	· .	Lithology		Mineralization
			Black massive lin	restone	
	7	-153. 7	Sheared black lim	iestone	
		155. 2			
	TTT				
160-					
'00		!			
				11.	
	1 7 7			•	
	╏╷┖╻┖			+1	
: .				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	L	1			
170			Black massive lin	nestone	
170-					
		· .			
		1.11		:	
		,			
		1			
100					
180-					
1 17					
			$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{3}{2} \left(\frac{3}{2} \right)$		185.8 - 190.2
		} :			Catcite-limonite veintets
		1		4.1 1月17岁	
		190.1	Cave		
190		190.8	Oavo		
1	1	191. 7	Cave		
		192. 5		-	
		193. 6 194. 2	Cave		
		1			
1		1			
		1			· ·
1					
200		1	·		

MJVS-3

Direction: N70°W

Depth (m)	Log	Lithology	Mineralization
		200, 0 Cave 201, 4 Black massive limestone 202, 6	
		Cave -204. 2	·
206. 30		Black massive limestone	

		7.3-17	Direct		303 E IIICIII adoli70
Depth (m)	Log		Lithology	:	Mineralization
		4 F	Weathered brown mudston	e	
		4. 5	Black mudstone		
10-	Δ Δ	10. 0 11. 2	Sheared-argillized zone Black mudstone		
	~ ~	-16. 5	Argillized zone with fragme	ents	
20-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 20. 1	of black mudstone		
30-			Sheared-argillized zone with fragments of black mudstone, partly phyllitic		
	Δ Δ Δ Δ Δ Δ Δ Δ				
40-	Δ Δ Δ Δ				
				, ,	
50	Δ Δ Δ Δ Δ Δ			·	

Depth (m)	Log	Lithology	Mineralization
(m) 70		Sheared-argillized zone with fragments of black mudstone, partly phyllitic 68. 0 Breccia of black mudstone and fine sandstone 17. 0 Shear zone with fragments of calcareous mudstone with fine sandstone fragments	84.6 - 68.0
	P P <td>90. 7 Sheared-argillized zone with fragments of black mudstone 97. 2 Sheared black mudstone</td> <td>97.2 - 100.0 Pyrite dissemination in mudstone</td>	90. 7 Sheared-argillized zone with fragments of black mudstone 97. 2 Sheared black mudstone	97.2 - 100.0 Pyrite dissemination in mudstone

Depth (m)	Log	Lithology	Mineralization
	~ ~ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Dark gray clay -102. 0 Sheared-argillized zone with fragments of Black mudstone	102.0 - 106.0 Pyrite dissemination In black mudstone
110-		-106. 0 Sheared-argillized zone with fragments of fine sandstone and black mudstone	
120-	Δ Δ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	114. 0 Dark gray clay 118. 8	
	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	Sheared black mudstone	
130-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sheared-argillized zone with fragments of black mudstone and fine sandstone,	
140	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	partly black mudstone fragments rich	
150	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ		

MJVS-4

Direction: S85°E

Depth (m)	Log	Lithology	Mineralization
	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Sheared-argillized zone with fragments of black mudstone and fine sandstone	
160	Δ [*] Δ Δ [*] Δ		

