CHAPTER 5

DEMAND FORECAST

CHAPTER 5

DEMAND FORECAST

1. Introduction

The main purpose of this chapter is to estimate the growth in demand for telephone and other service and to provide the basis for an economic and technical study of the basic plan for the telecommunications network development in Ulaanbaatar city up to the year 2010. The forecasting base year is set at 1995, and successive forecasts are made in 2000, 2005 and 2010. In order to make realistic forecasts, emphasis is placed on collection of the most recent data.

Demand for telephone service is estimated by three methods in this study, i.e., Methods I, II and III. Method I is for macroscopic forecast for the whole country, based on the former socialist countries data. Method II is for semi-macroscopic forecast for Ulaanbaatar city, and Method III is microscopic forecast for 9 districts in Ulaanbaatar city. Demand for other services is estimated by a regression model obtained from other country's data. The following sections present the results of this study on demand forecast up to 2010, as well as assumptions and procedures adopted for the study.

2. Telephone Demand at the end of the Year 1995

As of the end of September 1995, the number of telephone subscriber lines in the Ulaanbaatar city is 44,082 and that of waiters, 23,174, with the total telephone demand amounting to 68,256. The Ulaanbaatar city consists of 9 districts, namely, Suhbaatar, Chingeltei, Bayangol, Songinohairhan, Bayansurh, Khan-Uul and 3 districts as enclaves which are Nalaih district which is 45 Km apart from the Ulaanbaatar city to the southeast, Baganuur district, 140 Km to the east, and Bagahangai district, 130 Km to the south.

Table 5-2-1 shows the number of telephone subscriber lines and waiters classified by exchange and Table 5-2-2 shows those by district. Similarly the total demand was classified by exchange and district, as shown in Table 5-2-3, based on the results of the detailed field survey conducted by "Study of the basic data of the Ulaanbaatar city telephone network" [N.Nansaljav, D.Dolgorsuren, Sh.Ganbold and M.Naranbaatar] in 1993.

According to MCAC, most of the waiters are residential ones except those in Baganuur district, because in most districts demand for administrative / business use telephones has almost been satisfied as they are given high priority over residential ones.

The demand in Ulaanbaatar city is 68,256, which occupied 60.8% of the demand in whole Mongolia, i.e., 112,247, at the end of September 1995. In this study, this is regarded as the demand at the end of 1995, which is the starting point of demand forecasting up to 2010.

Table 5-2-1 Number of Subscriber Lines and Waiters in Ulaanbaatar City by Exchange

At the end of 1995

I make the second secon	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Marcal Control Control Control	
Exchange	Subscriber	Lines	Waiters	Demand	Remarks
	Admin. / Busi.	Resident			
ATC-2	307	1,279			ATC-73
ATC-32	6,187	6,180	7,144	21,097	Bio, Shuvuu
ATC-5	1,955	5,359			Gachuurt, Honhor
ATC-35	292	565	3,855	12,026	
ATC-33	1,156	1,148	965	3,269	Jargalant, ICC
ATC-31	1,474	1,804	1,709	4,987	
ATC-36	1,127	7,544	6,961	15,632	
ATC-37	246	414	400	1,060	
ATC-38	351	3,619	2,314	6,284	
ATC-76	88	57	0	145	
Nalaih	239	701	171	1,111	
Baganuur	327	1,600	* 655	2,582	
Bagahangai	48	15	0	63	,
Sub-total	13,79 7	30,285	24,174	68,256	
Total		44,082	24,174	68,256	

Note: Bio - Biokombinat, Shuvuu - Shuvuun Fabric, ICC - International Children's Center Jargalant (Partizan)

* 200 waiters out of 655 in total are those for administrative/business use telephones.

Table 5-2-2 Number of Subscriber lines and Waiters in Ulaanbaatar City by District

At the end of 1995

District	Subscriber	Lines	Waiters	Demand	Remarks
(Dureg)	Admin, / Busi.	Resident	42.000		
Suhbaatar	3,081	4,554	3,943	11,578	ATC-73
Chingeltei	4,040	3,139	4,183	11,362	ATC-73
Bayangol	1,099	7,159	6,072	14,330	
Songinohaihan 📒	1,513	5,037	3,663	10,213	Jargalant, ICC
Bayansurh	1,642	5,805	3,378	10,825	Gachuurt, Honhor
Khan-Uul	1,808	2,275	2,109	6,192	Bio, Shuvuu
Nalaih	239	701	171	1,111	
Baganuur	327	1,600	* 655	2,582	
Bagahangai	48	15	0	63	
Sub-total	13,797	30,285	24,174	68,256	
Total		41,082	24,174	68,256	

Table 5-2-3 Results of Detailed Field Demand Survey in 1993 Study of the basic data of the Ulaanbaatar city telephone network [N. Nansaljav, D.Dolgorsuren, Sh. Ganbold and M.Naranbaatar]

No.	District	Exchange/site	Population	Exchange/Site	Household	Household Exchange/Sitel	Tele	Telephone Lines			Demand
		Name		Share		Share	Adi./Bus.	Resi.	Waiter	Demand	Share
_	Subbaatar	ATC 32	45,597	61.92%	18,247	74.76%	1,407	3,390	1,907	6,704	76.92%
	pć plopčeni si	ATC 5	14,401	19.56%	2,570	10.53%	662	93	684	1,439	16.51%
		ATC 73	13,635	18.52%	3,592	14.72%	22	75	475	572	6.56%
	Sub-Total		73,633	14.49%	24,409	19.55%	2,091	3,558	3,066	8,715	16.04%
C.1	Chingeltei	ATC 2	29,016	35.54%	7,280	37.41%	2,300	2,330	948	5,578	71.99%
9-40		ATC 6	15,740	19.28%	3,451	17.74%	21	100	430	551	7.11%
ancin		ATC 73	36,894	45.19%	8,727	44.85%	18	Ж 4	1,567	1,619	20.90%
	Sub-Total		81,650	16.07%	19,458	15.58%	2,339	2,464	2,945	7,748	14.26%
'n	Bayangol	ATC 36	107,056	100.00%	24,572	100.00%	1,068	6.216	5,170	12,454	100,00%
	Sub-Total		107.056	21.07%	24,572	19.68%	1,068	6,216	5,170	12,454	22.92%
4	Songinobaihan	ATC 33	55,802	52.60%	11,742	51.65%	268	879	1,528	3,304	33.19%
		ATC-36	11,056	10.42%	2,455	10.80%	9	234	327	567	5.70%
		ATC 38	39,236	36 98%	8,535	37.55%	67	3,608	2,409	6,084	61.12%
***	Sub-Total		106,094	20.88%	22,732	18.20%	970	4,721	4,264	9,955	18.32%
Ś	Bayansurh	ATC 5	92,335	100.00%	22,074	100.00%	1,797	4,533	4,844	11,174	100.00%
-N	Sub-Total		92,335	18.17%	22,074	17.68%	1.797	4,533	4,844	11,174	20.57%
9	Khan-Uul	ATC 34	19,114	40.40%	4,768	41.02%	1,003	1.180	1,114	3,297	76.89%
		ATC 37	21,425	45.28%	5,612	48.28%	218	349	406	973	18.43%
· QSate		Ulzit	3,306	%66.9	515	4.43%	0	0	8	ळ	0.01%
		Biokombinat	3,469	7.33%	728	6.26%	0	0	ੁੱ	Ö	0.02%
	Sub-Total		47,314	9.31%	11,623	9.31%	1,221	1,529	1,538	4,288	7.89%
_	Grand-Total		508,082	100.00%	124,868	100.00%	9,486	23,021	21,827	54,334	100.00%

3. Telephone Demand Forecast

3.1 Demand Forecast Procedures

Demand for telephones was projected by three methods, i.e., (I) macroscopic forecast method based on the former socialist countries data, (II) semi-macroscopic forecast method based on the Ulaanbaatar data, and (III) microscopic forecast method based on district data. Figure 5-3-1, -2 and -3 present procedures these three forecast models.

Method I: Macroscopic forecast method (Based on former socialist countries data)

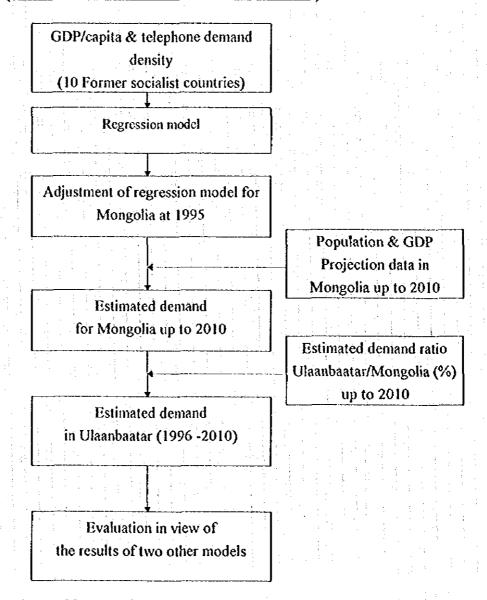


Figure 5-3-1 Macroscopic Forecast Method Procedure

Method II: Semi-macroscopic forecast method (Based on Ulaanbaatar data)

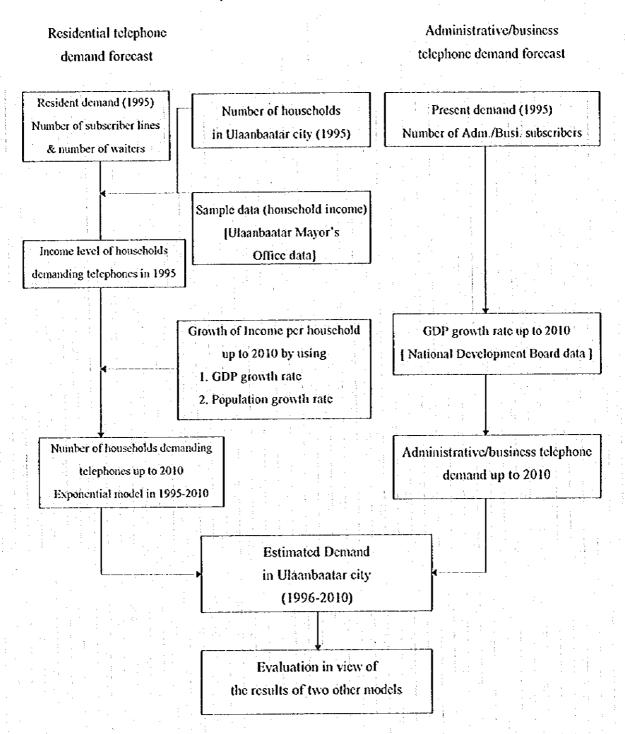


Figure 5-3-2 Semi-macroscopic forecast Method Procedure

Method III: Microscopic forecast method (Based on district data in Ulaanbaatar city)

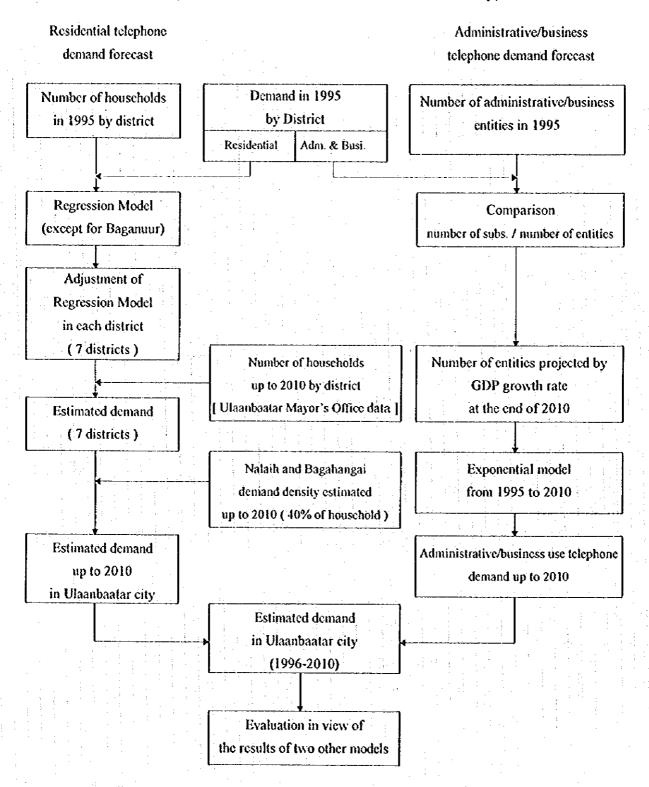


Figure 5-3-3 Microscopic Forecast Method Procedure

3.2 Socio-economic Growth Forecast

In order to forecast future telephone demand, socio-economic growth both in Ulaanbaatar city and Mongolia was estimated in terms of population, GDP and GDP per capita for each forecasting year. The population and GDP growth rate in Mongolia were estimated based on the data issued by National Development Department, and the population in Ulaanbaatar city, based on the data issued by Ulaanbaatar Mayor's Office.

The average growth rate of GDP in U.S. dollar was estimated to be 5.9% per annum from 1995 to 2010. GDP estimated by the constant price in 1992 based on the above average GDP growth rate was used for three forecast methods as mentioned above. In fact, GDP per capita in 1995 is lower than that in 1992 because of the negative growth rate in economic activities and the drop of exchange rate against U.S. dollar as follows:

GDP per Capita: 21,360 Tg./(40Tg./US\$) = 534 US\$ per Capita in 1992 constant price. 169,608 Tg./(450Tg./US\$) = 377 US\$ per Capita in 1995 constant price.

In macroscopic forecast method (Method I), the Study Team made a regression model by using the constant U.S. dollar price in 1992 because the latest telecommunications data in 50 countries over the world were available in 1992. The population, GDP and GDP per capita for each forecasting year are shown in Table 5-3-1.

Table 5-3-1 Population and GDP Projection

Year	1995	2000	2005	2010
Population				
Mongolia	2,317	2,508	2,770	3,058
Ulaanbaatar city	619.3	668.4	721.5	778.7
GDP (Million US\$)	1,213	1,594	2,133	2,854
GDP/capita (US\$)	523	636	770	933

Note: GDP and GDP per capita at 1992 constant price in US dollar

3.3 Method I: Macroscopic Forecast Method (Based on former socialist countries data)

For understanding the current telephone demand situation in Mongolia, the Study Team analyzed the Mongolian position in the world by applying the ITU regression model. This model was made by studying correlation between the expressed demand (Subscriber lines + Waiters) per 100 inhabitants and GDP per capita using statistical data of 50 countries over the world in 1992. The data used to develop the model consist of the number of existing subscriber lines and that of the waiting applicants registered. That is, the estimated demand does not include potential demand.

As a result of the analysis, the following regression model was obtained:

 $Ln ((SL + WA)/POP \times 100) = -5.502 + 0.9692 \times Ln (GDP/POP)$ (R squared = 0.82)

where,

Ln : natural logarithmic operator

SL: the number of subscriber lines in 1992

WA: the number of registered waiters in 1992

POP : population in 1992

GDP : GDP in 1992

The data to obtain the regression model are given in Data book (Vol. V, Chapter 4, PP. 4-1) Figure 5-3-4 shows a demand regression expressing a correlation between telephone density and GDP per capita and a supply regression expressing a correlation between telephone supply density and GDP per capita. This figure indicates that telephone density per 100 inhabitants increases in line with the increase in GDP per capita.

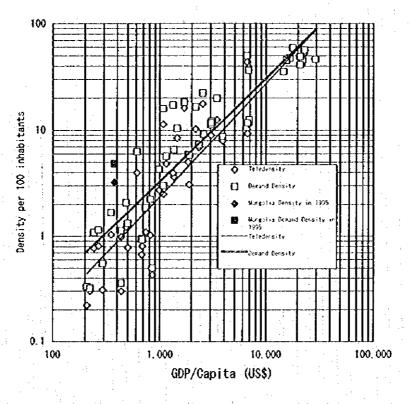


Figure 5-3-4 World Telephone Service in 1992

As can be seen Figure 5-3-4, Mongolia ranks higher, both in telephone demand and supply, than the average levels illustrated as the demand/supply regression curves obtained from 50 countries data in 1992. It means that the development level of telephone infrastructure in Mongolia is already high despite of rather low GDP per capita (US\$ 534 per capita at 1992 constant price). It is assumed that this is because most former socialist countries have given high priority to the development of basic infrastructures such as telecommunications. Then, the Study Team made another regression model based on the data of former socialist countries in 1992 to forecast Mongolia telephone demand. Table 5-3-2 shows the former socialist countries data to develop the regression model.

Table 5-3-2 Former Socialist Countries Data in 1992

Country	GDP/capita (US\$)	Population	Subscriber Lines	Waiters	Telephone Demand	Expressed Demand Density (100 per Pop.)
Mongolia	534	2,215,000	79,120	29,610	108,730	
Geogia	847	5,500,000	572,700	290,050	862,750	15.69
Kasakhstan	1,681	17,000,000	787,200	2,658,700	3,445,900	20.27
Kyrgyzstan	814	4,500,000	338,700	80,780	419,480	9.32
Moldova .	1,281	4,400,000	511,000	200,100	711,100	16.16
Romania	1,076	22,700,000	2,574,070	1,181,310	3,755,380	16.54
Tajikistan	677	5,600,000	268,900	77,710	346,610	6.19
Turkmenstan	591	3,900,000	243,580	85,850	329,430	8.45
Ukraine	1,820	52,100,000	7,577,900	3,685,400	11,263,300	21.62
Uzbekistan	692	21,500,000	1,439,510	326,580	1,766,090	8.21

Data Source: World Telecommunication Development Report, prepared by ITU in 1994
World Development Report 1994, prepared by the World Bank

As a result of the analysis of these data, the following regression model was obtained:

$$((SL + WA) / (POP \times 100)) = 0.006 \times (GDP / POP)^{1.1062}$$
....(1)
(R squared = 0.83)

SL: the number of subscriber lines in 1992

WA: the number of waiting applicants registered in 1992

POP : population in 1992

GDP : GDP in 1992

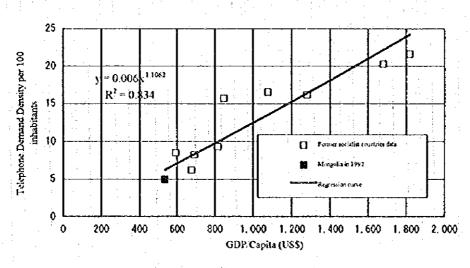


Figure 5-3-5 Former Socialist Countries in 1992

To apply the model to Mongolia in this study, the formula (1) was revised as follows, using the expressed demand of 68,256 at the end of 1995 in Ulaanbaatar city including the demand in Nalaih, Baganuur and Bagahangai.

$$(SL + WA - 29,099) / (POP \times 100) = 0.006 \times (GDP/POP)^{1.1062}$$
 (2)

The Study Team adopted this formula (2) to estimate the telephone demand up to 2010 in Mongolia.

Table 5-3-3 shows the results of the above macroscopic forecast method (Method I).

	The second second			
Items	1995	2000	2005	2010
Mongolia				
Population	2,317,000	2,508,000	2,770,000	3,058,000
Demand	112,247	160,861	230,120	324,794
Demand Density	4.84	6.41	8.31	10.62
Ulaanbaatar city	:			
Population	619,300	668,400	721,500	778,700
Demand	68,256	96,326	135,697	188,602
Demand Density	11.02	14.41	18.81	24.22
Mongolia/Ulaanbaatar (%)	60.81%	59 88%	58.97%	58.07%

Table 5-3-3 Results of Macroscopic Forecast Method (Method I)

3.4 Method II: Semi-Macroscopic Forecast Method (Based on Ulaanbaatar data)

In order to estimate the residential telephone demand up to 2010 in the Ulaanbaatar city, the income level of households demanding telephones in 2010 was assumed by using sample income data provided by the Mayor's office in Ulaanbaatar city. This sample data is given in Supporting Document (Vol. IV, Chapter 3, PP. 3-4 - 3-7). The Study Team assumed that the richest portion of households is able to afford the telephone subscriptions. The share of this portion is estimated in 4 steps as described in the following section. Detail calculation procedure of semi-macroscopic forecast method are described in Supporting Document (Vol. IV, Chater 3, PP. 3-8 - 3-13).

3.4.1 Residential Telephone Demand

(1) First Step

In September 1995, the total residential telephone demand in Ulaanbaatar city is 54,259 consisting of the number of the existing residential subscriber lines and that of waiters (30,285 and 23,974 respectively), while the number of households is 137,600 according to the Mayor's Office in Ulaanbaatar city. The percentage of the richest portion of the households demanding telephones in 1995 is calculated as follows:

54,259 (residential telephone demand) / 137,600 (households) = 39.4%.

According to the above mentioned sample income survey, minimum income level of the highest 39.4% household is approximately 43,100 Tg. / month / household in September 1995.

(2) Second Step

Growth rate of income per household on average between 1995 and 2010 was calculated on the following conditions and by applying the following formula.

Economic growth rate of Ulaanbaatar city (same as the whole nation):

Approx. 5.9% (5.8731 %) per year on average between 1995 to 2010

Population growth rate of Ulaanbaatar city:

Approx. 1.54% (1.5386 %) per year on average between 1995 to 2010

Growth rate of income per household : $((((1.059^{15})/(1.0154^{15}))^{(1/15))-1) \times 100$ Approx. 4.3% (4.2688 %) per year on average between 1995 and 2010

(3) Third Step

Income level per household in 1995 that will reach 43,100 in 2010 was calculated by the following formula.

43,100 Tg. / (1.0426882
15
) = 23,022.92 Tg.
= 23,023 Tg. (Approximately)

Income distribution pattern in 1995 was assumed to remain unchanged until 2010 in this study. In this assumption, the number of households earning 22,023 Tg. / month / household in 1995 occupies 75.5% in the share of richest portion in all households.

(4) Final Step

The number of households and residential telephone demand in 2010 were calculated as follows:

619,300 (population in 1995) / 137,600 (housholds in 1995) = 4.5 persons / household 778,700 (population in 2010) / 4.5 (average household size)

= approx. 173,000 (households in Ulaanbaatar city in 2010)

 $173,000 \times 75.5\% = 130,615$ (residential telephone demand in 2010)

The Study Team estimated the residential telephone demand is to be 130,615 in 2010 and made the following exponential formula to meet the above-mentioned figure in 2010 from the residential demand in 1995, i.e., 54,259.

 $RDt = 376.82 \times PHt^{1.357}$

RDt : The number of Residential Demand in period t

PHt The Percentage of Households in Ulaanbaatar city whose income will reach

43,100 Tg. /month /household in period t

Figure 5-3-6 shows the percentage of households in Ulaanbaatar city that will reach 43,100 Tg./month/household in 1995, 2000, 2005 and 2010.

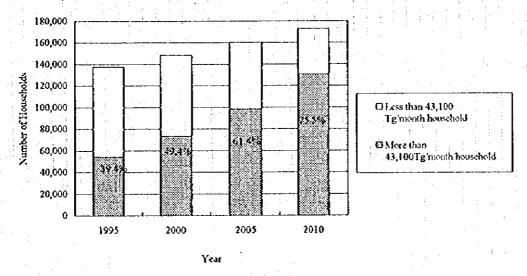


Figure 5-3-6 Number of Households Demanding Telephone in Ulaanbaatar City

3.4.2 Business Telephone Demand

Business demand was assumed to increase in line with the economic activity growth in Mongolia. Then, business demand forecast was made by using the GDP growth rate in Mongolia up to 2010, and the demand in 1995, i.e., 13,997 (13,797 subscriber lines and 200 waiters in Baganuar).

Table 5-3-4 shows the results of demand forecast in Ulaanbaatar city obtained by using the semi-macroscopic forecast method (Method II).

3.4.3 Total Telephone Demand

Table 5-3-4 Results of Semi-macroscopic Forecast Method (Method II)

	1995	2000	2005	2010
Residential demand	54,259	73,359	98,424	130,615
Business demand	13,997	18,398	24,620	32,947
Total demand	68,256	91,757	123,044	163,562

3.5 Method III: Microscopic Forecast Method (Based on district data in Ulaanbaatar city)

To estimate the residential telephone demand, the model was made by studying correlation between the number of households in districts in Ulaanbaatar city in 1995. Otherwise, it is assumed that the number of companies (big and medium size companies in 1995) well signifies business telephone demand in 1995. Therefore, the Study Team assumed that the number of companies (including small sized companies which will demand telephones during the forecasting years) estimated in 2010 based on the GDP growth rate is equal to business telephone demand in 2010.

3.5.1 Residential Telephone Demand

Residential telephone demand in 9 districts is shown in Table 5-3-5. Based on this data except for Bagamur, the following regression model is made. (In this table, an exceptional case is observed in Bagamur district where demand per 100 inhabitants accounts for as high as 49.5%, in spite of the fact there are only a small number households as compared with other districts.

Table 5-3-5 Household and Residential Telephone Demand by District in 1995

District	Population	No. of Household	Telephone Demand	Tel. Deman d / house
Suhbaatar	80,200	16,822	8,711	51.8
Chingeltei	90,400	21,088	7,256	34.4
Bayangol	111,700	24,822	13,237	53.3
Songinohairhan	124,300	27,485	8,698	31.6
Bayansurh	105,300	23,400	9,031	38.6
Khan-Unl	60,900	13,533	4,384	32.4
Nalaih	23,400	5,200	872	16.8
Baganuur	16,900	4,150	2,055	(49.5)
Bagahangai	6,200	1,100	15	1.4
Total	619,300	137,600	54,259	39.4

Data source (No. of households and Population): The Mayor's Office in Ulaanbaatar city

Figure 5-3-7 shows the regression obtained by using the above data except for Baganuur.

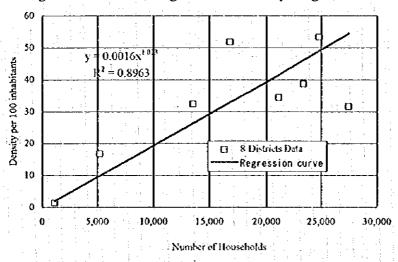


Figure 5-3-7 Regression Model for Residential Telephone Demand Forecast

As a result of the analysis, the following regression model was obtained:

(Residential telephone demand per 100 households) = 0.0016 x (Number of households) (R squared = 0.89)

This model is adjusted to the demand level of each district in 1995 by district and is used for the residential telephone demand forecast up to 2010 in each district. However, the demand in Baganuur and Bagahangai obtained by this model is still low in 2010. Hence, the Study Team adopted such demand density as 40 per 100 households (Khan-Uul district level in 2010) for these districts in consideration of their importance in economic activities. Table 5-3-6 shows the results of residential demand forecasting in the year of 2000, 2005 and 2010.

Table 5-3-6 Residential Telephone Demand by District

District	1995	2000	2005	2010
Suhbaatar	8,711	10,171	11,962	13,755
Chingeltei	7,256	8,424	9,834	11,680
Bayangol	13,237	15,544	17,938	20,933
Songinohairhan	8,698	10,090	11,856	13,834
Bayansurh	9,031	10,612	12,270	14,428
Khan-Uul	4,384	5,110	5,987	6,970
Nalaih	872	1,288	1,692	2,604
Baganuur	2,055	2,369	2,792	3,213
Bagahangai	15	153	354	540
Total	54,259	63,761	74,685	87,957

3.5.2 Business Telephone Demand

To estimate the business telephone demand in each district up to 2010, the correlation between the business demand and the number of companies in each district was studied. As can easily be seen from Table 5-3-7, the larger the number of companies, the higher the business telephone demand.

Table 5-3-7 Number of Companies and Business Demand in 1995

District	Number o	of Companies	Business Demand	
Suhbaatar		3,132	3,081	
Chingeltei		3,250	4,040	
Bayangol		4,586	1,099	
Songinohairhan		3,112	1,513	
Bayansurh		3,976	1,642	
Khan-Uul		2,059	1,808	
Nalaih		414	239	
Baganuur		392	527	
Bagahangai		212	48	
Total		21,133	13,997	

In September 1995, the number of companies is larger than the number of telephones in demand for business use because the number of companies includes the small sized ones which are not in need of telephones at present. At the end of 2010, the number of companies projected with the GDP growth rate will be equal to the required telephones for business use. The number of companies at the end of 2010 calculated based on the GDP growth rate will be 49,744 including the small sized. The exponential to reach this figure in 2010 is as follows:

BTD $t = 0.0066 \times NCt^{1.4636}$

BTDt : Business demand in period t

Net: Number of companies in period t

The results of business telephone demand estimation is shown in Table 5-3-8.

Table 5-3-8 Business Telephone Demand by District

			* * *	
District	1995	2000	2005	2010
Suhbaatar	3,081	4,589	6,997	10,948
Chingeltei	4,040	6,019	9,176	14,359
Bayangol	1,099	1,637	2,496	3,905
Songinohairhan	1,513	2,255	3,438	5,378
Bayansurh	1,642	2,446	3,728	5,835
Khan-Uul	1,808	2,694	4,105	6,423
Nalaih	239	356	543	849
Baganuur	527	787	1,200	1,876
Bagahangai	48	70	109	171
Total	13,997	20,853	31,792	49,744

Table 5-3-9 shows the results of telephone demand forecast in Ulaanbaatar city obtained by using the microscopic forecast method (Method III).

Table 5-3-9 Results of Microscopic Forecast Method (Method III)

Item	1995	2000	2005	2010
Residential demand	54,259	63,761	74,685	87,957
Business demand	13,997	20,853	31,792	49,744
Total demand	68,256	84,614	106,477	137,701

3.6 Evaluation of Results of Telephone Demand Forecast

The results of telephone demand forecast obtained by Method-I, -II and -III are summarized in the Table 5-3-10, together with the forecast made by ADB (Asian Development Bank) Master Plan. The growth curves obtained from the three models in this study and the former master plan prepared by ADB, are shown in Figure 5-3-8.

Item	1995	2000	2005	2010
Population	619,300	668,400	721,500	778,700
Method I	68,256	96,326	135,697	188,602
Demand Density	11.02	14.41	18.81	24.22
Method II	68,256	91,757	123,044	163,562
Demand Density	11,02	13.73	17.05	21.00
Method III	68,256	84,614	106,477	137,701
Demand Density	11.02	12.66	14.76	17.68
ADB Master Plan	44,482	63,099	79,534	95,714
Demand Density	7.18	9.44	11.02	12.29

Table 5-3-10 Summary of Estimated Telephone Demand in Ulaanbaatar City

Speaking of the relation between telephone demand and supply, it is generally observed that the increase in supply of telephones is one of major factors which induce the increase in demand. That is, when much more telephones are supplied, much more demand is motivated.

As a result of the analysis of telephone demand obtained by three models, it was made clear that the demand forecast made by ADB Master Plan, in 1993 is not realistic at present because this forecast was made when Mongolia was still struggling with a significant reduction in budget due to less income from former USSR. However, from the beginning of 1995, several economic indicators in Mongolia began to recover and the nation's financial performance is becoming stable as compared with a past few years.

To enhance and continue this trend, telecommunication's role will become more and more important in the Mongolian society, and in Ulaanbaatar city, as the capital of the country, the telephone demand per 100 inhabitants is expected to exceed 20.0 in 2010.

On the other hand, the minimum target of GDP growth rate up to 2010 assumed by National Development Board in an average 5.9% per annum.

As a result of the above experiential and theoretical study, the forecast obtained by the semi-macroscopic model (Model II) is considered to be most reliable because the income level per household to demand telephone subscriber line in Ulaanbaatar city is taken into account in this model. Then, the telephone demand obtained by semi-macroscopic model (Method II) is adopted to use in this study.

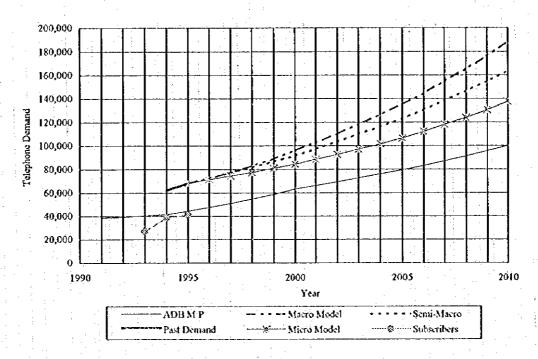


Figure 5-3-8 Telephone Demand Projection up to 2010

Figure 5-3-9 shows the administrative/business and residential demand in Ulaanbaatar city.

3.7 Telephone Demand Distribution to Exchanges

Semi-macroscopic demand in Ulaanbaatar city is distributed to the districts concerned in accordance with the distribution of microscopic demand projected on the district basis. Then the demand distributed to each district is further distributed to each horoo based on the results of the detail field survey conducted by "Study of the basic data of the Ulaanbaatar city telephone network" [N. Nansaljav, D. Dolgorsuren, Sh. Ganbold and M. Naranbaatar | in 1993 (refer to Data book, Vol. V, Chapter 4, PP. 4-4 - 4-27). Table 5-3-11 and Figure 5-3-10 present the demand by district and Table 5-3-12 and Figure 5-3-11 present the demand by exchange from 1995 to 2010 (on condition that the district and exchange boundaries not will change until 2010). The telephone demand by horoo up to 2010 is shows in Data book (Vol. V, Chapter 4, PP. 4-4 - 4-27). Table 5-3-13 present the demand by exchange rearranged in boundary up to 2010. New boundary of exchange is decided by Telecommunications Network Plan described in following Chapter 7.

Finally, in this basic plan, exchange boundaries in Ulaanbaatar city was planned to change up to 2010 through network planning described in Chapter 7 "Telecommunication Network Plan". Therefore, the telephone demand by exchange in present boundary were rearranged to adjust in planned exchange boundary planned in this study. Table 5-3-13 and Figure 5-3-12 show the telephone demand on planned exchange boundary up to 2010.

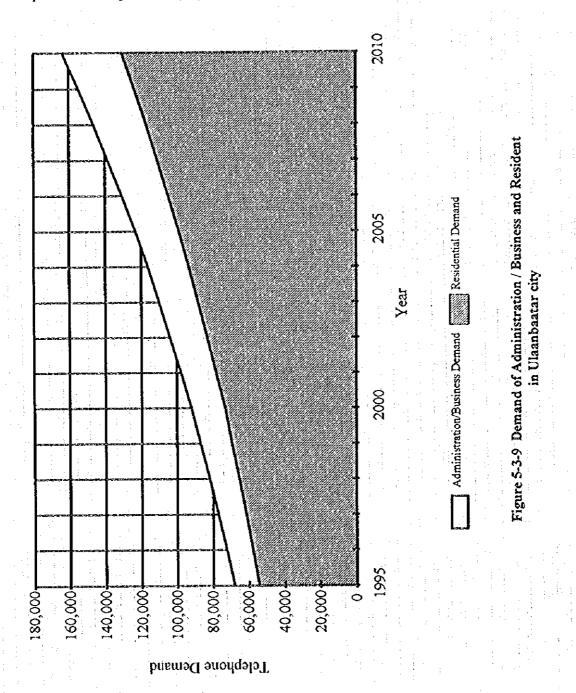
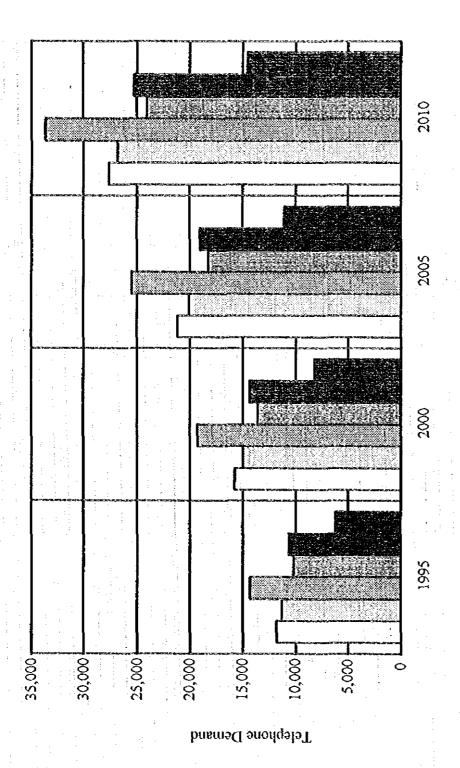



Table 5-3-11 Results of Demand Forecasting by District up to 2010 in Ulaanbaatar City

:						•											
Dwmet	Subscriber Category	\$661	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2000	2002	2008	5000	2010
Subbantar	Adm. / Business	3,081	3,244	3,423	3,610	3,820	4,049	4.392	4,549	4,823	gurs	5,418	5,744	6,0%	6,453	6,841	7.25
	Resident	X,711	9,353	9,768	10,447	11,036	11,702	12,441	13,278	14,064	14,952	15,764	16,680	17,648	1×.6×5	19,733	20.427
Chungelles	Adm. / Business	4,040	5.0	4,487	4.73	010'S	016.2	525	996'\$	525.9	6,704	7,107	7,533	7,985	8,464	8,971	9,51
	Readent	7,256	.743	8.317	8,730	9,307	9.692	10,397	10,905	11,654	12,498	12,960	13,831	14:754	15,379	16.373	17.34
Beyangol	Adm. / Busmess	1,099	1,157	122.1	**************************************	1,362	1,444	165'1	1,633	1,720	CZ8'1	1,933	1,049	2,171	2302	2,440	5×6
	Resident	13,237	14,062	14,958	15,986	16.876	17,884	19,002	20,266	21.103	22,430	23,641	25,012	26.459	28.012	29,579	31.0%6
Songunohauthan	Adm./Businoss	1,513	1,594	1,681	1,774	1.876	1,990	2100	2235	2369	2511	3,662	287	8,	3,171	3,361	3,562
DEC PARKE	Resident	8.698	9,22,6	9,938	10,432	11.148	11.609	12,482	13,092	14.022	14,660	15.625	16.706	17,395	18,60%	19,350	20,544
Bayanzurh	Adm. / Bustness	1,642	1,729		1.92	2,036	2,158	2,288	2,424	2.570	2.724	7887	3,061	3.244	3,439	3,545	3,869
k'en-k'aun	Resident	9,031	9,574	10.2.56	10,765	11,445	12,210	12,751	13,691	14.586	15,248	16.170	17,210	18,311	19.087	20,273	21,423
Khan-Uul	Adm. / Busmess	1,808	706"	5005	2,139	2,241	2,377	2.518	2,670	2829	3,998	3.179	3,370	3.572	3,787	4.014	4.25
	Resident	4.384	4.68	7	5,289	5,485	5.879	6,316	6.623	7.087	7,409	7.890	8,214	8,777	9,382	9,755	10,350
Nalath	Adm. / Business · · ·	239	اي ا		082	303	314	333	353	374	397	<u>á</u>	446	A73	\$	531	8
er announ	Resident	872	38	1.081	1,194	1,300	1,482	1.615	1,765	1.910	2.074	2,230	2,486	1,847	3.145	3,551	3.x67
Beganuar	Adm. / Business	:03	535	9xç	819	559	b69	736	780		87.7	ŝ	788	1,044	1,109	1.173	24
MI./ 2.10	Resident	2055	2176	2317	2,478	2,619	2,726	2,899	3,095	3,230	3,489	3.679	3,894	4,053	4,293	4,536	4,771
Bagahangai	Adm. / Busmess	X17	15	ß	9.	\$	8	38	L.	25	8	×	-8	¥	201	106	
	Resident	15	3	65.	001	130	175	211	265	307	401	46.5	512	573	634	-69	801
Total	Adm. / Busmess	13.997	14,739	645,21	16,405	17,356	18.39%	19,501	20.671	£16,15	23,226	24.620	26.097	27,663	29,323	31.082	32,947
	Resident	\$4.259	\$7,836	61,589	65,421	69.346	73.359	78,114	x2,980	88.013	93,161	98.42.0	104,550	110.817	117,225	123,847	130.61.5
•	Adm. / Bust. & Rest	95°C X9	525.27	77,134	92X,1X	x6,703	757,19	97.613	103,651	109.925	116,387	123,044	130,647	138.480	146,548	154,929	163.562
:														:			

☐ Chingeltei ☐ Bayangol ☐ Songinohairhan ☐ Bayanzurh ☐ Khan-Uul ☐ Figure 5-3-10 Results of Demand Forecasting by District

Figure 5-3-10 Results of Demand Forecasting by District (6 Districts only)

Table 5-3-12 Results of Demand Forecasting by Exchange up to 2010 in Ulaanabatar City

(In case of district and exchange boundary not to be changed up to 2010)

												ļ					
Exchange Name	Subscriber Category	1995	19%	1997	199x	1999	2000	2001	2002	2003	2004	2005	3005	2002	200K	2005	2010
ATC2/ATC32	Adm. / Busures	80	9969	67.16	7,085	7,496	2,8,5	×43	8,927	9,463	10,031	10,633	11.272	11,948	12,665	13,424	14.23
	Renident	11,363	12,172	. 12,850	13,645	-14,464	15.231	16.249	17,226	18,309	19,531	20.461	21.721	23.055	24.252	25,702	26,846
ATCS / ATC3S	Adm / Business	2,617	2756	2,907	3,068	3,245	3,440	3,647	3,864	4,097	4,343	4,602	4,880	8.13	5,483	5,811	6,16
	Resident	10.053	10,671	1.40	11,990	12,740	13,583	14.210	15,249	16.236	12,002	18,019	19,167	20,381	21,279	22,588	23,821
ATC33	Adm. / Business	1,399	1,474	P35"	1,640	1,735	1,840	1,949	2,067	2191	2322	2,462	2,609	2,766	2,932	3,108	3,294
	Resident	2.330	2.473	2,662	2795	2,987	3,110	3.344	3.507	3,756	3,927	4.1%6	4.476	4,660	4,985	5,184	5.50
ATC34	Adm. / Busmess	1,485	1,564	1,650	1,741	1,841	1,953	690	2193	2324	2463	2.612	2768	2,934	ure	3,29K	3,495
	Resident	3,279	3.506	3.65K	3,956	4.103	4.397	4,724	4.954	5.301	5.543	\$.900	6.144	6.565	7,01X	7,297	7.742
ATC36	Adm. / Boamess	1,144	1,205	1,271	5,5	1.419	1,504	565 1	1,69,1	1,792	1,899	2014	113	2362	3398	2,542	2,694
	Resident	14,491	18.397	16,393	17,493	18,484	19.558	20.800	22.152	23,120	24.570	25.88G	27,409	∞,990	30.680	32,391	34,068
ATC37	Adm. / Business	यू	318	336	353	374	396	420	446	स	39.	330	863	597	632	699	
	Resident	1,033	1.104	1.153	1.244	1.292	1.3%6	1,489	1,561	1.670	1,746	1.859	1.935	2.06%	2219	7.39%	1,43%
ATCDX	Adm, / Business	501	011	116	E	130	138	146	3	ž.	1.7	134	\$61	502	8	337	77
	Resident	5,825	6.140	6.655	6.986	7.466	77.5	x.359	× 76×	9,391	9,81%	10,464	11.18%	11,649	12.462	12.959	13,758
ATC73	Adm. / Business	8	6	F	न्	9,	ž	Š	×	3	Š	ᆵ	18.	- Ķ	133	141	
	Russident	1,87	3.068	3273	3(45)	3.671	3,K40	4.111	4,330	4,617	4.940	5,144	5.478	5,832	6,103	6.4×4	6.839
AIC76	Adm. / Business	ਸ਼	-11	អា	71	8	ጸ	8	31	55	SE	37	66	43	4	4	A. Elen
	Resident	घ	3	Ŷ	×	8	8	103	108	116	ຳລາ	(52)	138	144	154	160	170
Nalath	Adm. / Business	ຄື	ซึ	80	ñ	Ę,	31.0	333	353	374	397	43	446	673	10%	S	X
	Resudent	₹.	8	1,080	1.194	1.300	1.480	1,615	1,765	1.910	2.074	2230	2.4%	2,847	3,145	3,551	3.86
Вадепич	Adm / Business	Ď	555	386	38	559	69	236	780	833	£,2	6.6	8	1044	1,106	1,173	1242
on_w	Resident	2055	2176	2317	2.478	2619	2,20	2,899	3,095	3.280	3,4%9	3.679	3,894	4.053	4,293	4,536	4,771
Bagahangai	Adm. / Business	\$	s.	8	39.	\$	ਲ	8	E	St.	3	3	8	76	001	1001	7
	Resident	र।	X	\$	100	9.1	17.5	17	592	307	401	597	517	523	634	697	(0x
Total	Adm. / Business	13,997	14,739	15,549	16,405	17,356	18,394	19,501	20,671	21.912	33,226	24.620	26.007	27,663	29,323	33,082	32,94
	Resident	54,259	57.X36	61,525	65,421	69.346	73,359	78,114	SC. 940	88.013	99,161	98,434	104.550	110,817	117,225	123,847	130,615
	Admi, / Busi, & Revi	68.1.S	72.575	77.13	81,X76	x6.70¢	55.76	97,615	103,651	109.928	116.387	123,044	130.647	13×,480	146,548	154,929	163.563

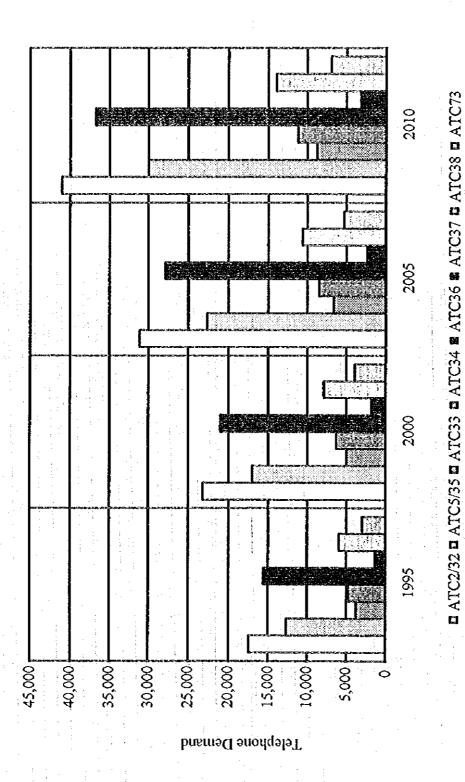


Figure 5-3-11 Results of Demand Forecasting by Exchange (8 Exchanges only)

Table 53-13 Results of Dimend Recenting by Exchange up to 2010 in Unsubstant City (Dimendard substants) of modern by dimediate desired all of the dimention 1995)

		*****	1206	N/V7	tand		- NAME OF THE	700	200	2000	200	1	<u> </u>	1	200	200	7 200
Extrage	Shulo	1995	1996	юл	1998	1999	200	2001	3112	2013	304	2118	2005	2007	218	2019	2010
Nine	Capiy	£(7)	# 45c		Z 00Z	72.704	771	0100	0.77	0.105	020	10122	1006	11(1)		1200	1267
AIC3	A&B D=3.4	5,872 10,393	6,186	6523 11,749	6886	7,285 L\226	7,722 13,936	8186 14861	8,673 15,765	9,195 16,752	1 '	10,133 18,724	10,954 19,871	11,612 21,086	12,304 22,201	13041 23514	13,82 24,58
ances sirer	82331	-	ILLY.		12,477									1			
ATC-4	A&B	1,30	1,422	1,500	1,583	1,673	ι <i>775</i>	1,891	1998	2113	2233	2,374	2517	2,668	2,828 6,702	2,928	3177 7493
(ATC-34)	Reide	3173	333	3,542	3829	3971	4256	4572	47/5	-	5,363		5,945			7,061	
AJC 37A	A&B	201	309	326	311	361	3%	400	433	49)	480	516	517	581	615	651	(Θ)
(Aip et)	Richt	.509	58	.566	612	635	681	731	7 67	. 821	84	914	951	1,016	1(167	110	112
AJC371	A&B	0	0	()			0	0	. 0	0	()	,"	()	1 1		1 510	, , ,
(Yamne)	Rodin	540	586	610	65	20	731	780	827	886	92	<u> </u>	L(027	1,02	1,170	1,219	1,20
AIC-1	A&B	.35%	374	397	415	441	467	95	527	592	500 650	636	667	1	747	7)(878
(ATC-73)	Redu	3797	4059	4.321	4,561	4,850	5,079	5434	5,732	6107	6531		7,247	-	8(7)	8,577	9016
AJO3	A&B	1,537	1,618	1,70	1,803	1,907	2(121	2111	2,270	2,407	2,553	2705	2,868	1 1	3,222	3414	3619
	Reida	8,05	8899	9,512	1000	10634	11,34	11881	12,726	1357	14172		15927	17,031	17,741	18812	19,915
AIC-51	A&B	.,4	. 9		. 9	10	11	H	12	13	13	14	15	10	17	18	2
(Strebat)	Redu	30	360		40	43	49)	480	5)5	548	573		647	-	7)8	7.3	875
ADC-52	A&B	83	88	92	98	IB ~~	i 09	116	123	130	138		155		. 174	185	120
(Angalan)	Redut	235	20	267	281	208	318	332	356	380	300	42)	418	477	497	5.33	559
ABC6	AAB	1,73 {	1,836	1,925	2(3)	2147	2,27)	2414	2.50	2713	2,875	3018	3,231	3431	3631	388	407/
(AIC-30)	Residut	12,254	13(03)	1388	1478	15,625	16,531	17.583	1372	19.63			*****	24550	25,9%	27,427	28,821
AR-2	A&B	161	1,688	1,781	1,879	1,987	2,105	2,233	2,368	2.00	2,663	2,824	2,992	3173	3.367	3,500	3.785
(AlC33)	Reight	4957	5,266	5,632	5,972	6.335	- ૯૯૬	7,118	7,530	7,245	836	8,893	9,440	9,915	10,545	11,092	11,678
ARC 38	A&B	107	113	: 119 : (1)	127	131	14)	. 150 e 180	150	160	178	188	20!	213	22	200	253
(Date ATC 3	Ithirs I	3684	કુ(13)	6.0	6816	7.285	3,5%	815	8555	2163	9,577	1920	10,916	11,367	12,15)	12611	13,422 3
AICH	A&B	21	22 811	23	21 955	(2)	2% 1062	1112	31	1283	35 1311	37	1,529	41 1,591	1,70	46 1.771	1880
(Pezabelan)	Reibt	726		9	722	***			1,198			1,4%			17	18	<u></u>
kgkı	AAB Reibt	8 19	21	22	23	N 25	11 26	11 28	12 20	13 31	33			16	4)	43	, ,
										21			3/	9	41	10	11
linter	A&B Redut	43	4	v	51	55		61	65	, 70	73	$\frac{1}{n}$, 82 82] []	91	97	F/12
				9	10			11	12	^_			15		17	18	Ŀ
Colurt	A&B Reidit	K	21	22	23	10 24	21	27	20	31	32	34	X	30	40	43	45
El-Jontóna	A&B	110	116	121	129	m	18	151	163	173	183	191	2Y	218	21	245	201
(ARC-2G)	Radit	8	92	2	103	107	115	121	130	100	145	151	161	172	181	191	20
SiawaFine	A&B		57	6	63	6	71	75	8	8	89	95	ku	100	113	127	127
SINKERSING	Rodit		71	7	. K3	87	93	100	104	112	117	124	130	138	148	151	163
ht Oikhor	A&B	<u> </u>		3	.30	3	4	42	41	4	48	50	52	51	50	.58	6
BE (20:30)	Rodit	7	7		ď		ď		70		,	, i	0	7	n		ĭ
Nay	A&B	20	251	20	280	297	314	333	.353	374	יער	421	416	473	501	531	563
	Reidit	872	981	1081	1194	1.30	140	1618	1765	1.910	207	220	24%	2877	3145	3.551	386
Durang	A&B	527	555	392	618			736	781	827	87	-	981	****	1,100	-	1,243
Paper :	Reids	2/65	2176	2317	2478	2619	272	2,802	3005	3,280	3,483		3891	4053	4223	4536	4771
Peghngi	A&B	48	<u></u>		× 5 (3)	5)	63	<u> </u>	7)	75		81	- 1 ∞	94	Ku	107	113
rabinitis	Rodu	15	31	5) 5)	100	130	175	211	265		401	465	517		63	677	801
Ttel		13997		1558	******	17,356	18,32	19,508	21671	21,912		2(63)	26(0)7		29.123		32917
*74	A&B Roda	51,250	14,73) 57,836	61.585	K,423 65,421		7339	781H	£2,981	2(914 8(013	1			110817			÷ ′
	ASBAR	68256	72,575	77,131	81,80	8578	91,757	97,615	103.651					1844			
L	NUAK	0720	14.77.			er ve			3,4,6,4,13	υ, Δ	10 10	لننسا	F. 3 (A.1		- 7 J - 7 H		

Nite: A&B, Abiristolim and British

4. Demand Forecast of Other Services (Value-Added Services)

Demands for other services, i.e., telex, mobile, radio paging, leased circuit, and data communication services, are estimated in this study. At present, MCAC/MTC provides telex and leased circuit services and DATACOM provides data communication services throughout the country, while MonCom provides data communication services throughout the country, while MonCom provides paging service and MobiCom provides mobile telephone service in Ulaanbaatar city.

The latter two services have been introduced just recently and, therefore, the past trend data on the demand increase are not applicable for demand estimation for them. Usually estimation of demand for these services at an initial stage needs detailed market surveys including interviews for collection of fairly reliable data. The regression model obtained based on the data in other countries are adopted for demand projection for these services in this study.

4.1 Telex Service

Table 5-4-1 presents historical growth of telex services in Mongolia. According to MCAC/MTC staff, most of users are administrative offices in Ulaanbaatar city. Telex subscribers are classified into two groups: those connected to the host telex exchange in Hong Kong, and those connected to the host telex exchange in Moscow.

Demand for telex services will decrease rapidly in coming years, as is the case with a lot of countries where telex service demand is being transferred to other service media, i.e., facsimile, data communication, etc. It is observed that the average annual decreasing rate of telex subscribers is approx. 15.5% from the end of 1991 to Sep. 1995. The study team assumed that this same rate can be applied in the future demand.

Host Exchange Item 1991 1992 1993 1994 1995 ***** 38 Subscriber lines to Hong kong * 36 32 * 97 to Moscow E 138 * 116 * 81 68 Total 178 * 154 * 133 * 115 100

Table 5-4-1 Historical Data of Telex

Note *: These figures were estimated by the study team.

4.2 Cellular Mobile Telephone Service Demand

Mobile telephone service demand is estimated by the regression model drawn up, based on the relation between mobile telephone subscriber per 1,000 inhabitants and main telephone subscriber per 100 inhabitants at the end of 1993 in 70 countries. The data used for obtaining the regression model in these 70 countries are attached in Data book (Vol. V, Chapter 4, PP. 4-4). As a result of the analysis, the following regression model was obtained:

where,

MTt the number of mobile telephones in period t

MLt the number of main lines (telephone subscriber lines) in period t

POPt : population in period t

At present, MobiCom is planning to operate the mobile service in Ulaanbaatar city under the license of Mongolian Government. Within six months from the issue of the license, the whole city of Ulaanbaatar, including its suburbs and Buyant-Uhaa airport, will be covered by the cellular service. Up to the end of the fifth year from the commencement, the cellular mobile service network will cover five cities, i.e., Ulaanbaatar, Darkhan, Erdenet, Nalaih and Zuunmod, with the estimated total subscriber demand amounting to 930.

The study team assumed that the commencement year would be 1997 and the formula (1) was modified, based on the number of mobile subscribers mentioned above in the initial stage at the end of 1997. Modified regression model is shown below and this model is used to forecast the demand in Mongolia in future.

$$(MTt-1,784)/POPt \times 1,000 = 0.185 \times (MLt/POPt \times 100)^{12215}$$
 (2)

The results of the demand forecast are shown in Table 5-4-2. And it is noted that cellular mobile telephone demand will depend on future tariff system and socio-economic activities in Mongolia. Hence, the detail market surveys are to be conducted for further expansion.

Table 5-4-2 Mobile Telephone Demand Forecast

Year	2000	2005	2010
Mobile Subscribers	1,280	3,372	7,179

4.3 Radio Paging Service Demand

Generally, the demand for radio paging service is closely linked to the diffusion of public payphone and telephone subscriber lines. Recently, in the low telephone density countries, the number of
paging subscribers are rapidly increasing as that the price of paging terminal and tariff of paging service
are relatively low as compared with other communication services, such as mobile telephone etc. In
consequence, radio paging service demand is estimated by the regression model based on the relation
between telephone subscriber density and radio paging terminal density. The data in 16 countries were
used for analysis and the data used for obtaining the regression model in these countries are attached in
Data book. The conditions of 16 countries selected are as follows:

- (1) The number of radio paging terminals in 1993 are available,
- (2) Telephone density is less than 20.0 per 100 inhabitants in 1993.

 (In this study, the telephone subscribers per 100 inhabitants in Mongolia in 2010 is estimated more than 20.0.)

As a result of analysis, the following regression model was obtained:

$$PGTt/POPt \times 1000 = 0.1166 \times (MLt/POPt \times 100)$$
 (1)

where,

PGTt: the number of radio paging terminals in period t

MLt : the number of main lines (telephone subscriber lines) in period t

POPt : population in period t

 $(R^2 = 0.63)$

The formula (1) was modified as follows, based on the number of radio paging terminals amounting to 1,500 at the end of 1995.

$$(PGTt + 94)/ POPt \times 1000 = 0.1166 \times (MLt / POPt \times 100)^{1.5125}$$
 (2)

For the forecast of demand for radio paging service in the future, the formula (2) regression model was applied. The result of the demand forecast for radio paging service up to 2010 in Mongolia is shown in Table 5-4-3.

Table 5-4-3 Radio Paging Service Demand Forecast

Year	2000	2005	2010
Radio paging Terminals	2,554	4,733	9,171
Radio paging Density			
(per 1,000 pop.)	3.7	6.4	11.7

4.4 Leased Circuit Services Demand

At present, the number of leased circuits in the MCAC/MTC network is 300. According to MCAC/MTC staff in the marketing and economic division, most of the leased circuits users are those living in Ulaanbaatar mainly using the service for voice transmission. Table 5-4-4 presents the categories of leased circuits users.

Table 5-4-4 Categories of Leased Circuit Users

No.	User Category	No. of Organizations	No. of Leased Circuits	Share of Circuits (%)
1_	Government	30	188	62.6%
2	N.G.O.	2	2	0.7%
3	International Org.	1	3	1.0%
4	Transports	2	. 2	0.7%
5	Bank	4	4	1.3%
6	Service	8	27	9.0%
7	Industry	4	10	3.3%
8	Other Business Co.	37	62	20.7%
9	Others	2	2	0.7%
	Total	90	300	100.0%

As can be seen in Table 5-4-4, the total number of leased circuits used by governmental agencies, N.G.O. and international organizations accounts for approximately 65%, while that by business users, approximately 35%. It means that main users of leased circuits are the administrative / business users. To estimate the leased circuit demand in each forecasting year up to 2010, the Study Team assumed that the leased circuit demand will increase in line with the number of business activities as mentioned in section 3.5.2. Table 5-4-5 shows the result of leased circuit demand forecast in Ulaanbaatar city.

Table 5-4-5 Leased Circuit Demand Forecast

Item	1995	2000	2005	2010
No. of Companies	13,997	20,853	31,792	49,744
No. of Leased Circuits	300	447	681	1,066

4.5 Data Communication Demand

As mentioned in Chapter 4, DATACOM provides the following four types of data communications services with 400 users at the end of 1995. According to DATACOM, the users of these services are connected to the MCAC/MTC telephone network through the modern terminal. In this study, the demand of data communications users in Ulaanbaatar city is included in the business telephone demand already discussed in the previous section.

- (1) Domestic PC-Mail Services;
- (2) International PC-Fax Services;
- (3) Internet E-Mail Services; and
- (4) Packet Switching Services.

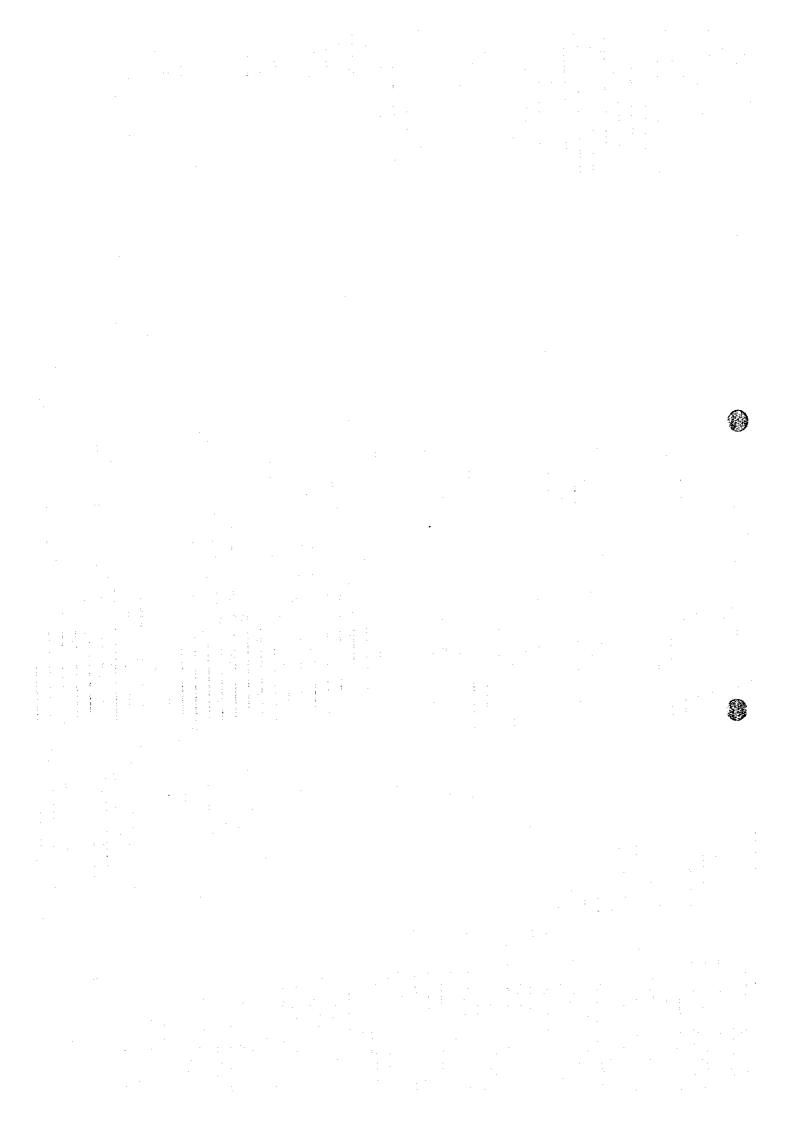

To estimate the data communications lines demand in each forecasting year up to 2010, the study team assumed that the data communication lines demand will be increase in line with the number of business companies as mentioned in Section 3.5.2. Table 5-4-6 presents the results of data communication lines demand forecast in Ulaanbaatar city. In consideration of the recent trend in data communication field in the world, it is assumed that half of the following data communication lines will become the potential lines of ISDN services.

Table 5-4-6 Data Communication Lines Demand Forecast

				<u> </u>
Item	1995	2000	2005	2010
No. of Company	13,997	20,853	31,792	49,744
No. of Data Communication Lines	400	596	909	1,422

CHAPTER 6

DEVELOPMENT FRAMEWORK & STRATEGIES

CHAPTER 6

DEVELOPMENT FRAMEWORK & STRATEGIES

1. Concept of Basic Plan

1.1 World Trend on Telecommunications Needs

Recent technological development in telecommunications, transportation, data processing and various production process allows us the world-wide socio-economic activities. In consequence, international economic relationships have been increasingly become complex and tightly connected.

In these circumstances, volume of information transactions in economic entities, especially in industrial and service sectors, has significantly increased. To support these transaction requirements, not only enhancement of conventional telecommunications means by increasing voice telephony but also introduction of new type telecommunications means including data communication, facsimile and utilization of data / information processing equipment are essential. Accordingly, telecommunications network has been indispensable infrastructure for those activities.

1.2 Telecommunications Needs in Mongolia

To realize higher economic growth and equitable distribution of social benefits, the Government of Mongolia has been strongly emphasizing the needs for adequate, efficient and reliable infrastructures in the development policy. In the policy, telecommunications development is placed as a highest priority for the industrial development, higher productivity of pasturage and agriculture and enhancing efficiency in the service sector.

The National Development Program states that public investment would be needed to build the infrastructure which is required as a necessary complement rapid private sector growth and socio-economic activities.

The Public Investment Program (PIP) in the National Development Program is an important instrument of Government policy. It aims at contributing to the establishment of conditions for

economic growth, hand in hand with improved social facilities and poverty reduction. The highest priority is placed on the energy, transport and telecommunications sector.

1.3 Telecommunications Policy and Objectives in Mongolia

This basic plan for the development of the telecommunications network in Ulaanbaatar city aims to fulfill the telephone demand in the city by the year 2010, upgrading its network structure for more reliable and efficient one and also preparing for the introduction of new type of teleommunications means. For the realization of the above, new technologies such as digitalization optical fiber transmission systems, SDH, and so forth, are used.

The Telecommunications Policy in Mongolia is framed as follows.

(Reference: Record of the discussion among MOID, MCAC and JICA Study team on March 18, 1996.)

The Telecommunications Policy.

- a) Telecommunications facilities should be provided to all, at cost-based tariffs.
- b) Universal service should cover the whole country's territory. This implies easy access to basic telecommunications services to all at affordable and reasonable prices.
- c) Acceptable quality of service should be attained for basic supplementary services for national and international communications.
- d) Waiting lists for telecommunications facilities should be eliminated.
- e) Prompt and effective attention should be focused on customer complaints and improvement of public relations.

1.4 Concept of Basic Plan

This Basic Plan was framed in line with the above mentioned Telecommunications Policy and designed in consideration of:

- a) Adoption of the timed local charge system is assumed;
- b) The basic telephone service is provided by the network which is economical not only in the installation but also in the operation;
- c) The network is made up applying the latest technologies. Targets of the telecommunications quality are established;
- d) The network is capable to fulfill every new application of basic telephone service within one year after its registration in the year 2010 and afterwards;
- c) Satisfaction of customers is responded by effective operation and maintenance.

1.5 Planning Period and Target Years of the Basic Plan

This basic plan covers long-term development for the telecommunications network up to the year 2010 in Ulaanbaatar city. The planning period up to the year 2010 is divided into several milestones as target years, i.e. a short-term plan up to 2000, a medium-term plan up to 2005 and a long-term plan up to 2010.

2. Key Development Targets up to 2010

Key development targets consisting of those for various service provisions, service quality, operational efficiency and network facility provisions for the respective short-term, medium term and long-term plans up to 2010 are summarized in Table 6-2-1.

Table 6-2-1 Key Development Targets up to 2010

		Present Status	Dev	elopment Targets	
Indexes	Sub-Indexes	as of 1995	Short-Term	Medium-Term	Log-Term
	·		Targets	Targets	Targets
			by 2000	ьу 2005	by 2010
Socio	Population	619,300	668,400	721,500	778,70
Economy	GRDP (million Tugrig)	86,106	113,071	151,315	202,49
<u>:</u>	Growth rate (% / year) of GRDP	6.3	5.6	6.0	6.0
Telephone	Expressed demand	68,256	94,065	123,044	163,56
Service	Supply Volume(SL)	44,082	65,524	102,212	163,56
: :	Switching Capacity(LU)	53,444	80,661	112,712	165,92
	SL/100 inhabitants	7.1	9.8	142	21
* * * * * * * * * * * * * * * * * * * *	No. of Tele-Post	6+21	7+23	7+25	8+27
	Office(24H)+(6H)	1:			
	No. of Telephone Operators	355	360	360	360
Telex Service		100	44	20	9
Leased Circuit Circuit	Voice Circuits, Data Circuits	300	447	681	1,066
Value Added	Cellular Mobile	Not operated	1,280	3,372	7,179
	Communications*				
Service	Data Communications	400	600	910	1,400
1.0	Radio Paging*	1,500	2,600	4,700	9,200
ta in the	Personal Handy-Phone System	Not operated	Not operated	Operated	Operated
	Narrowband ISDN	Not operated	Not operated	Operated	Operated
Service	Call Completion Rate	42%	60%	70%	80%
Quality	No. of Faults(/month/100 SL)	39	30	20	10
	Faults Clear Rate within 24hrs	70%	85%	90%	95%
Operational !	Number of Staff	1,351	1,428	1,505	1,583
Efficiency	Staff / 1,000 SL	31	22	15	10
Network	Switching System	Analogue &	Analogue &	digital	digital
Facilities 🗀		digital	digital .	ISDN	ISDN
	Transmission System	Microwave &	Microwave &	Microwave &	Microwave &
		OFTS	OFIS	OFTS	OFTS
		Analogue	UHF digital	UHF digital	UHF digital radio
		&digital	radio	radio	
	Subscriber Network System	Metallic cable	Metallic cable	Metallic cable,	Metallic cable,
			DRCS, OPMC	OFC, DRCS	OFC, DRCS
				OPMC	OPMC

OFC

OPMC:

Note

SL LU Subscriber Line

Line Unit

Integrated Service Digital Network

ISDN: DRCS:

Digital Radio Concentrate System

GRDP

Gross Regional Domestic Product

nationwide

Page 6-5

Optical Fiber Transmission System Optical Fiber Cable

Outside Plant Maintenance Center

3. Service Provision and Supply Volume

The service provision and supply volume up to the year 2010 are established based on the telecommunications policy which is outlined in the preceding section. In the policy, major objectives for the service provision and supply volume are as follows:

- · To attain an acceptable quality of service for voice and data communications
- · To climinate waiting lists for telephone facilities.

3.1 Service Provision

The telecommunications operators in Mongolia are providing various telecommunications services mainly consisting of basic telecommunications services and value added services. MTC has been granted a monopoly to provide basic telephone service, and leased circuit service.

Regarding the value added services, it is opened to private operators. An introduction of the value added services to be expected to popularize from short-term and long-term views are proposed considering a service development strategy of Mongolia and a world-wide trend on the telecommunications service development. In the basic services in Mongolia, it is expected from a view in a world trend that telex and telegram services will be transferred to other value added services.

The value added services both operated already and proposed are provided initially in Ulaanbaatar city and will be gradually expanded to outside Ulaanbaatar city in the country. The details of service introduction and enhancement are shown in the Table 6-2-1 "Key Development Targets up to 2010."

3.2 Supply Volume

The supply volume up to the year 2010 is established based on the telecommunications policy. According to the policy, "To eliminate waiting lists for telecommunications facilities" is the most crucial objective. Establishment of the supply volume described in this Chapter is mainly that for the ordinary telephone service.

3.2.1 Telephone Service

As of the end of 1995, approximately 44,000 SL (Subscriber Line) are provided as a result of development up to the present. It means 7.1 per 100 inhabitants. However, approximately 24,000 waiters are registered, and most of them are waiting for a long time.

According to the telecommunications policy, the MCAC intends to achieve that telephone service is to be made available on demand by the year 2010.

It means that all waiters will be cleared by 2010. However, as a result of analysis of the progress of the on-going projects and demand estimate, it is realistic that the target of fulfilling 100% demand will be attained by the year 2010 with further investment in addition to the on-going investment.

In consequence, all the planning components consisting of supply plan, network plan, facility plan, etc. are prepared based on the above condition.

The Table 6-3-2 shows a summary of the estimated demand and supply established based on the demand and the basic condition. The number of supply by area is referred to in Table 6-3-3.

Table 6-3-2 Demand and Supply

Year	1995	2000	2005	2010
Demand	68,256	91,757	123,044	163,562
Supply Volume (SV)	44,082	65,524	102,212	163,562
SV / 100 inhabitants	7.1	9.8	14.2	21.0

Note: The demand and the supply are the same after 2010 due to 100% fulfillment.

Table 6-3-3 The Number of Subscriber lines (SL) up to the year 2010

Site \ Year	2000	2005	2010
ATC 2	4,864	18,060	29,137
ATC 3	18,297	25,094	38,367
ATC 4	4,509	6,876	10,669
ATC 5	10,531	14,554	23,534
ATC 6	13,839	20,315	32,900
ATC 7	3,730	5,994	9,854
RSU37A	823	1,237	1,889
RSU37Y	472	778	1,294
RSU38	4,608	0	0
RSU51 (Shard)	0	493	825
RSU52 (Amgalan)	0	478	754
RSU21 (Bayan Hoshuu)	0	1,164	1,929
Jargalant	25	42	65
Honhor	50	69	113
Gachuurt	29	41	64
Biokobinat	219	315	462
Shuvvun Fabric	131	193	290
Int. Children	30	50	60
Nalaih	1,266	2,179	4,429
Baganuur	1,927	3,829	6,013
Bagahangai	174	451	914
Total	65,524	102,212	163,562

3.2.2 Telex and Telegram Services

According to the telecommunications policy, MCAC intends to provide not only telephones but also telegram and facsimile access to all people. The telegram service is realized by telephone network. As for the facsimile service expansion, it will be expanded depending on the development of the telephone network.

However, from a view of international trend on telex and telegram services, the number of telex subscribers and telegram messages have been gradually declining. In fact, the same trend is seen also

in Mongolia. Considering the above situation, it is not proposed to expand the existing system. In the future, those services will be replaced by other services and transferred to the value added services.

3.2.3 Leased Circuit Service

In Mongolia, leased circuits mainly consists of data, voice, packet and telex circuits. In the business activities, leased circuit services become important means of business communication in all industrial and service sectors. In addition, the leased circuit service is also indispensable not only for ordinary commercial sectors but also for telecommunications business sector, especially for value added service operators. Based on a result of leased circuit demand estimate and considering the above circumstances, necessary leased circuit capacity is included in the transmission network plan and facility plan. From a view of area expansion, the leased circuit service is to be expanded to nation-wide service. With a progress of popularization of the value added services and computer communication toward the information society, careful market survey is to be carried out.

3.2.4 Value Added Services

Recognition of the crucial role played by telecommunications for the promotion of socioeconomic development and business development is very significant not in the developed countries but also in the developing countries. With a progress of innovation toward information society, value added services will be essential for administrative, business and social activities. In addition, the provision of the value added services will be very attractive as a business in the new field.

In accordance with the telecommunications policy MOID encourages investment and parallel operation by the private sector in healthy competition with MTC for the operation of the value added services to be expected to popularize. The status of operation of the value added services at the end of 1995 is referred to the Table 6-2-1.

(1) Cellular Mobile Telephone Service

Since March 1996, the cellular mobile telephone service is operated by a company, Mobicom Corporation, which is a joint venture of three companies. It was established in September 1995. The coverage area of the service is Ulaanbaatar city. The total number of cellular mobile telephone

subscribers is expected to be 300 at the initial stage. It is only 0.7% of the total telephone subscribers in the city. Table 6-3-4 shows expected numbers of subscribers and service areas to be added.

Year	1996	1997	1998	1999	2000
Annual Increase	300	90	160	165	215
Accumulation	300	390	550	715	930
Service Area	Ulaanbaatar	Ulaanbaatar	Darhan	Naraih	Baganuur
			Erdenet	Zuunmod	Suhbaatar
			added	added	Choir
					Sainshand
4					Arvaiheer
		1			etc.
					added

Table 6-3-4 Number of Subscribers

The cellular mobile telephone service meets the need to communicate anywhere and with anybody. In consequence, this service is considered to be rapidly popularised in the area described in Table 6-3-4 as in many countries, both industrilized and developing counties. Mobicom Corporation monopolizes the cellular service until 1998.

(2) Other Value Added Services

As already described at the beginning of this sub-section, MOID encourages the private sector to participate in the operation of the value added services in healthy competition. The value added services have many potential needs toward information society and are keeping unforeseeable needs for users and immeasurable large business market for telecommunications service providers in not only the developed counties but also the developing countries including Mongolia.

In Mongolia, most of the value added services except several services are not provided yet. Considering the situation, it is proposed that the value added services which are not provided yet is to be started as a pilot project in Ulaanbaatar city. With an increase of number of the users, the service areas will be gradually expanded to othe major cities and major districts. For the value added services, careful market survey, user servey and example survey should be carried out not only in Mongolia but also in other countries which have experience to such services.

4. Network Expansion and Improvement

Considering the telecommunications policy, one of the most important development objectives is to climinate waiting lists. In this plan, it is proposed that the above objective will be achieved by the year 2010 considering the progress of on-going projects. In consequence, 100% fulfillment of the demand within one year after the registration of the application will be attained.

Based on the above, the proposed telecommunications network of this basic plan is designed in consideration of the following:

- a) The network is economical in not only the installation but also the operation.
- b) The network is made up applying latest technologies at present.
- c) The network is capable of fulfilling every new application of basic telephone service within one year after its registration in the year 2010 and afterwards.

The development targets for respective network components are shown in Table 6-4-1. For more details, refer to Chapter 7 "Telecommunications Network Plan"

Table 6-4-1 Development Targets for Network Component up to 2010

System	Present Status as of 1995	Development Targets			
		Short-Term by 2000	Medium-Term by 2005	Long-Term by 2010	
Switchig	Analogue & digital	digital	digital ISDN	digital ISDN	
Transmission	Microwave & OFTS/Analogue & digital	OFTS & microwave, digital radio	OFTS & microwave, digital radio	OFTS & microwave, digital radio	
Subscriber Network	Metallic cable	Metalic cable, OPMC	Metalic cable, OFC	Metalic cable, OFC	

Note:

OFTS:

Optical Fiber Transmission System

OFC:

Optical Fiber Cable

OPMC:

Outside Plant Maintenance Center

5. Service Quality Improvement

The service quality is able to be indicated by major three factors i.e. call completion rate, faults rate and fault clearance rate. They are still at low level compared with those in developed countries. Low call complection rate will result loss of revenue from call charge and high faults rate will bring an increase of operation and maintenance cost. Low clearance rate will affect to various customers' activities. The service quality as of the end of 1995 is as follows:

- Call completion Rate: 42% *

 Mainly caused by called number busy, customer error and forward system.
- Number of Faults: 39 / month / 100 SL **

 Mainly occurs at subscriber cables and overhead lines.
- Fault Clearance Rate within 24 hours: 70% **
 - * Refer to Volume V. Chapter 3 Page 3-49
 - ** Refer to Volume V. Chapter 3 Page 3-29

The above service quality will be able to be improved by taking appropriate actions with an introduction of adequate quality control system. Improvement targets of the service quality are shown in the following Table 6-5-1.

Table 6-5-1 Improvement Targets of the Service Quality

Item		Target Year			Actions to be taken
	1995	2000	2005	2010	
Call	42%	60%	70%	80%	· Increase SL for high traffic subscribers
Complection	- 10				· Promote pilot number and call waiting service
Rate					Campaign to reduce incorrect dialling
					Expand telecommunication facilities
Faults Rate	39%	30%	20%	10%	Replace unreliable cables
			, :		Up-grade skill of maintenance staff
Clearance Rate	70%	85%	90%	95%	· Modernization of customer service management
within 24 hours					Reinforce maintenance teams

6. Operational Efficiency Improvement

The operational efficiency is able to be indicated by the number of total MTC staff per 1,000SL. The number of staff per 1,000 SL as of the end of 1995 was 51. It means low efficiency compared with 16 of both Thai and Malaysia 1991. This low efficiency will result large operation and maintenance cost.

The present low efficiency will be able to be improved mainly by modernization of network facilities, introducting computerised operation and maintenance system and restructuring operation and management. As this basic plan is limited within Ulaanbaatar city, Table 6-6-1 shows the improvement targets of the operational efficiency in Ulaanbaatar city.

Table 6-6-1 Improvement Targets of the Operatinal Efficiency in Ulaanbaatar city

Item	Target Year				
	1995	2000	2005	2010	
No. of subscriber line (SL)	44,082	65,524	102,212	163,562	
No. of Staff	1,351	1,428	1,505	1,583	
No. of Staff / 1000 SL	31	22	15	10	

CHAPTER 7

TELECOMMUNICATIONS NETWORK PLAN

CHAPTER 7

TELECOMMUNICATIONS NETWORK PLAN

1. Basic Concept of Network Plan

1.1 Fundamentals of Network Plan

The proposed network of this basic plan is designed in consideration of:

- a) The network is economical not only in the installation but also in the operation;
- b) The network is made up applying the latest technologies at present;
- c) The network is capable to fulfill every new application of basic telephone service within one year after its registration in the year 2010 and afterwards; and covering whole Ulaanbaatar city.

The discussion on the design of the network is done on the assumption that the nation wide general service is provided by one network provider. However, attention is paid to the fact that several telecommunications service entities already coexist in Mongolia.

1.2 Compatibility of Different Networks

Mongolia has regulated to introduce new telecommunications service entities, some telecommunications service entities are found besides MCAC.

The other telecommunications service entities have their own network, respectively. Some of them are inter-connected by some means with MCAC network. There is a cellular telephone service network, a data communications service network, a governmental communications service network, a railway communications service network, a paging service network, etc. MOID plans to introduce some more networks in future. Only MCAC provides a general network which is consisted of subscriber line networks, transmission links and telephone switching centers, covering the whole country.

Those different networks will coexist in Mongolia. Inter-network connection of those networks are taken into consideration in making up the proposed network. The MCAC should be equipped with the function of inter-network connection linking with their communications networks.

1.3 Evolution of Existing Network to ISDN

Some developed countries have been introducing ISDN to integrate the telephone network, telex network and data communications network. However, the ISDN is still on the way of development. This Basic Plan does not propose to introduce all ISDN systems.

The existing MCAC network should be changed gradually into an ISDN in consideration of economic aspects and technical issues in future. The assets accumulated for the past should be maintained and used to the utmost. It is recommended to introduce an ISDN in the capital, Ulaanbaatar, at the first stage of ISDN era and extend it, in proportion to the growth of demand, from a point to a line and finally from line to area. The ISDN should be able to contain an Intelligent Network (IN) function. For this, the ISDN should be equipped with CCS No. 7 ISDN User Part (ISUP). The IN will enable MCAC to provide the general public with such services as Toll Free Call service, Premium Charge Call service, Universal Personal Communication Number service, etc.

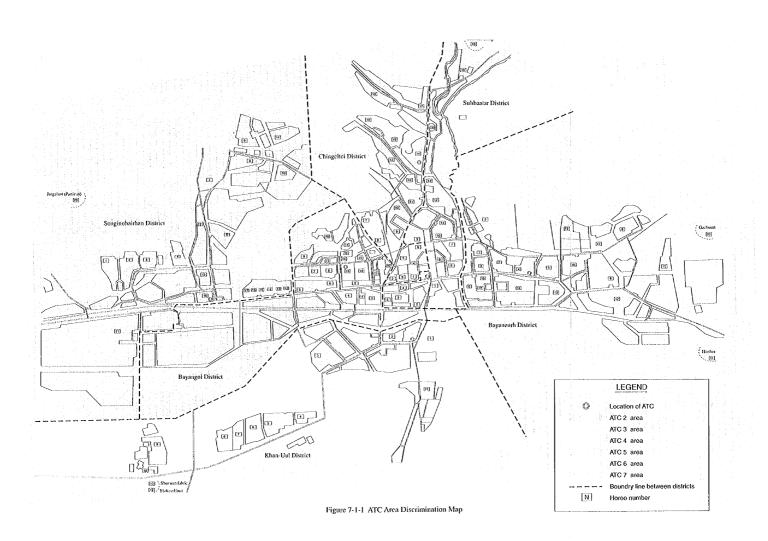
During the transfer phase from conventional networks to an ISDN, such various networks as normal telephone network, data communication networks, cellular telephone networks, telex network, and leased circuits networks will coexist. The telex network now provided by MCAC will be demolished when its subscriber number is considerably reduced. Then the telex service may be substituted by facisimile or data communication service through digital telephone network or ISDN. At the first stage of this basic plan, narrow-band ISDN system will be introduced.

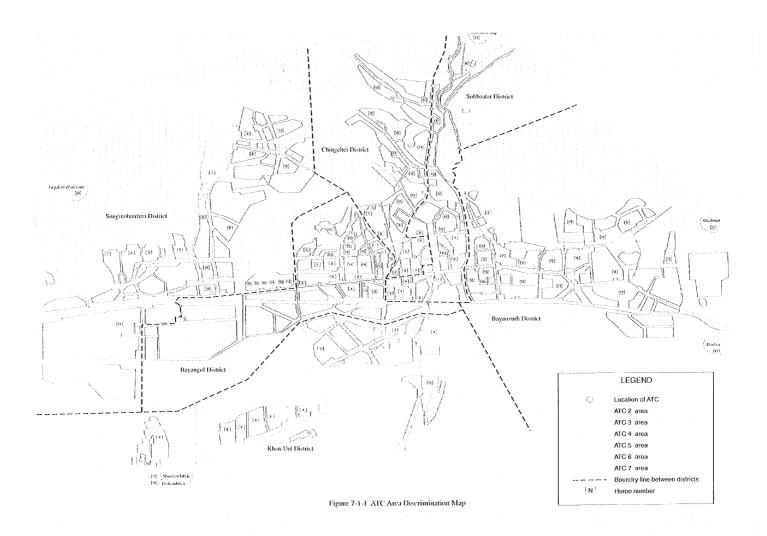
1.4 Measures for Higher Reliability of MCAC Network

MCAC will adopt some measures for higher reliability of its network. MCAC will realize the policy to provide the key telephone node with separate hardware. Separation by function of combined-function switching unit and introduction of loop (or ring) transmission path will be the objects of new stage as the MCAC network is getting larger.

The Ulaanbaatar city area network should be established with a highest reliability taking account of its role as the national Capital. All the host exchanges in the Capital should be linked with a ring transmission path for establishing a reliable network.

1.5 Switching Unit Abbreviation in Ulaanbaatar City for Basic Plan


For this study, the study team made the abbreviation of switching units on the condition as shown in Table 7-1-1.


Table 7-1-1 Condition to Make The Abbreviation of Switching Units

Nev	Abbreviation of Switching	Units	
Digit 1	Digit 2 and 3		Digit 4
Type of Exchange	Site Number or Site Name	Unit Num	ber in Age Order
S : SxS	e.g.	Digital	(Alphabet)
X: XB	03 : ATC-3		
P: PBX		PBX	(Number)
H: Host Switching	BI Biokombinat		
R : Remote			
Switching		**	

Table 7-1-2 presents the abbreviation of switching units for Basic Plan. Hereinafter, the following abbreviation will be used in the this document.

Each ATC telephone office area is shown by distinguishable color in Figure 7-1-1.

Table 7-1-2 New Abbreviation of Switching Units in Ulaanbaatar city								
Site Name	Old SW	Type of	Function	New SW				
	Unit Name	SW Unit	of SW	Unit SW				
ATC-3	ATC2	SxS	LS	S03				
	ATC3	E-10B	TLS (MS)	H03A				
·		(HOST)	LS	H03B				
		(HOST)	LS .	H03C				
ATC-4 (ATC-	ATC34	RSU (E-10B)	LS	R04A				
		(HOST)	LS	H04A				
ATC-37A (Airport)	ATC37A	RSU (E-10B)	LS	R37A				
ATC-37Y (Yannag)	ATC37Y	RSU (E-10B)	LS	R37B				
ATC-7 (ATC-73)	MDF73	From ATC2	LS	M73				
		(HOST)	LS	H07A				
ATC-5	ATC5	SxS	LS	S05				
	ATC35	RSU (E10B)	LS	R05A				
		(EWSD)	TLS (MS)	H05A				
ATC-51 (Sharhad)		(RSU)	LS	R51A				
ATC-52 (Amgalan)		(RSU)	LS	R52A				
ATC-6 (ATC-36)	ATC36	RSU (E-10B)	LS	R06A				
		(HOST)	LS	H06A				
ATC-2 (ATC-33)	ATC33	RSU (E-10B)	LS	R02A				
		(HOST)	LS	H02A				
ATC-38	ATC38	RSU (E-10B)	LS	R38A				
ATC-22 *	ATC22	(RSU)	LS	R22A				
ATC-21 (Bayan hoshuu)		(RSU)	LS	R21A				
Jargalant	(JA)	XB	LS	XJA				
		(RSU)	LS	RJAA				
Honhor	(IIO)	XB	LS	XHO				
		(RSU)	LS	RHOA				
Gachuurt	(GA)	XB	LS	XGA				
		(RSU)	LS	RGAA				
Biokombinat (ATC-76)	ATC76	XB	LS	XBI				
		(RSU)	LS	RBIA				
Shuvyun Fabric	(SF)	PBX	LS	PSF				
		(RSU)	LS	RSFA				
Int. Children Camp	(IC)	PBX	LS	PIC				
		(RSU)	LS	RICA				
Nalaih	(NA)	SxS	TLS	SNA				
		PBX	TLS	PNA				
	4	(HOST)	TLS	HNAA				
Baganuur	(BN)	XB	TLS	XBN				
		PBX	TLS	PBN1				
		PBX	TLS	PBN2				
		(HOST)	TLS	HBNA				
Bagalianbai	(BH)	XB	TLS	XBH				
		(RSU)	TLS	RBHA				

Note:

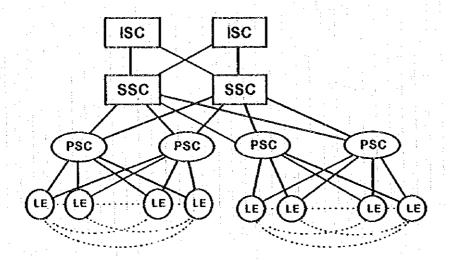
Note.

I.S

TLS

(MS)

*}


: Trunk Area, : Local Switch, : Trunk & Local Switch, : Tandem Function The name of "RSU-38" will be changed to "RSU-22"

2. Network Configuration in 2010

Recently, digital telecommunications networks introduced in the world have been changed into simple ones (less hierarchical levels compared to conventional ones), reflecting large capacity and lower price of transmission systems, and high processing ability of exchanges. With such background, MCAC network will be able to be constructed simple. However, taking into account the future conditions of Mongolia (territory, population growth, etc.), i.e. co-existence of digital and analogue systems in the transient period, it will be appropriate to maintain four levels of the present status.

In addition, from the viewpoint of network reliability, it is desirable to construct network so that exchanges of each level should doubly belong to two upper level exchanges in order that 50 percent of traffic of busiest hours could be saved in case that one of the upper level exchange breaks down. More over, the new ISC should set up in other than Ulaanbaatar city.

Figure 7-2-1 shows the network configuration in Mongolia in future.

:Depend on traffic volume

Figure 7-2-1 Concept of the Logical Network Configuration

2.1 How to Decide Network Configuration

- (1) ISC is the equipment to process international calls that will become more important in future. It is necessary to duplicate it at an appropriate time.
- (2) SSC which will consist of two exchanges in 1997 should be pluralized and be connected in mesh in the future.
- (3) PSC should be belonged to plural SSCs and LE should be belonged to plural PSCs.
- (4) At least, two PSCs should be installed in each AIMAG.
- (5) In the case that the outgoing traffic between two LEs is more than 40 erlangs, direct route should be set up.

Considering the circumstances mentioned above, Figure 7-2-2 shows the logical network configuration of Ulaanbaatar city in 2010 and Figure 7-2-3 shows the physical network configuration of Ulaanbaatar city in 2010.

Volume V, Chapter 5, page 5-1 shows the configuration of Host exchanges and RSUs (2000,2005 and 2010), and the same Volume, same chapter, page 5-2 shows a list of exchanges in operation up to 2010.

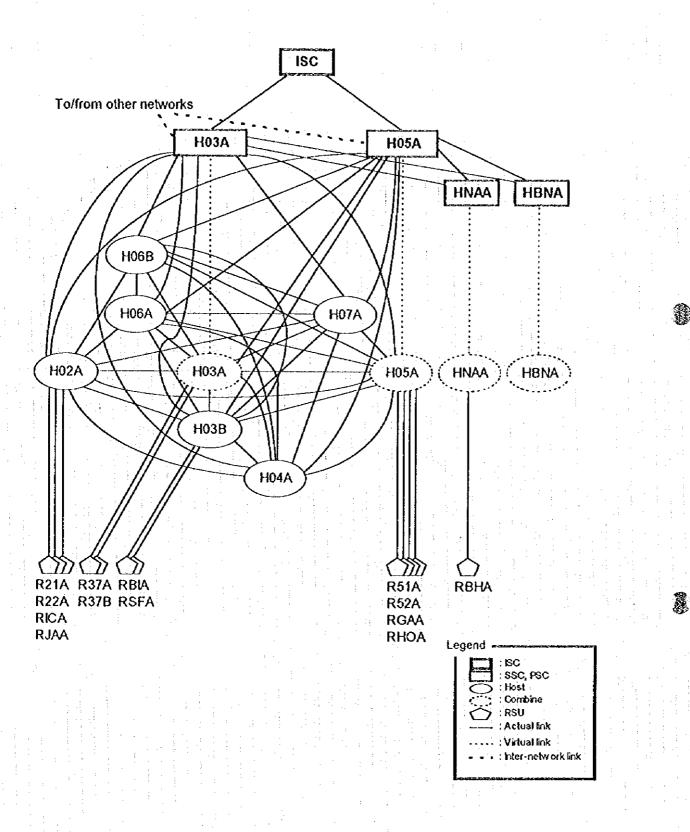
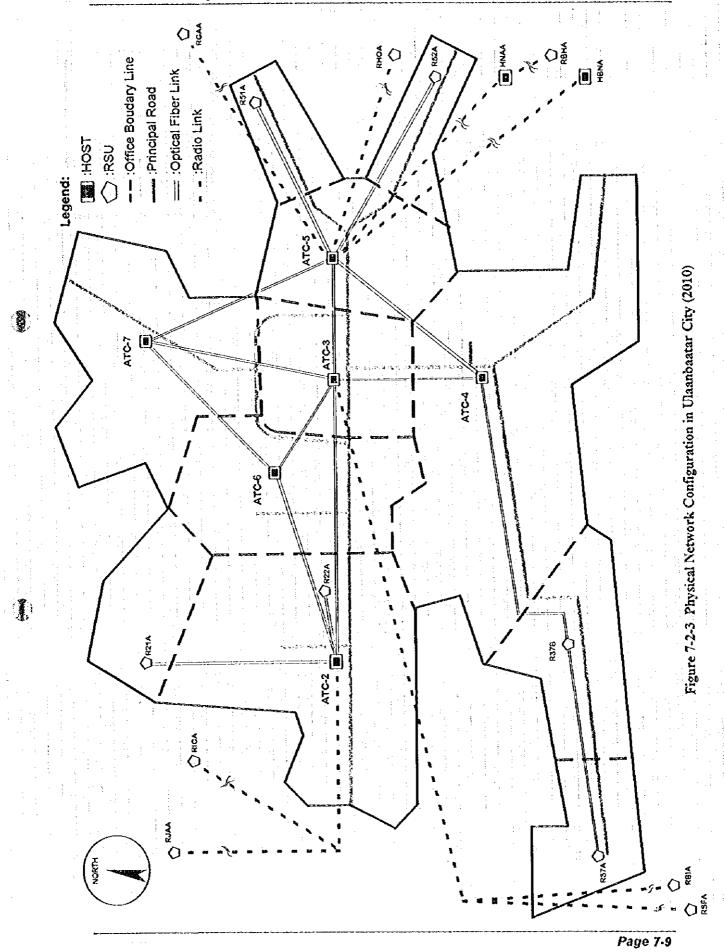



Figure 7-2-2 Logical Network Configuration of Ulaanbaatar city in 2010

3. Fundamental Technical Plan

3.1 Numbering Plan

3.1.1 Number structure

Telephone number of Mongolia consists of Country code (CC), Trunk code (TC), Exchange code (EC) and Subscriber number (SN). The CC is "976" in accordance with CCITT Rec. E. 163. Figure 7-3-1 shows the existing number structure of Mongolia. The maximum number of digits of the telephone number (CC+TC+EC+SN) of Mongolia is 10.

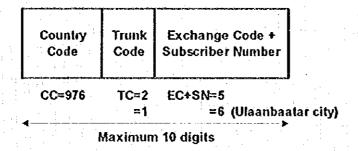


Figure 7-3-1 Existing Number Structure of Mongolia

3.1.2 Trunk Code & Local Number

The numbering plan should be revised in the future introducing escape code to access to other networks operated by entities other than MCAC/MTC.

Provision of new services may require a unique escape code prefixed to the routing digits. In consideration of new services, Mongolia will have to adopt a new numbering plan in near future. The numbering plan as outlined in the ADB Master Plan will be the basis for the proposed numbering plan described hereafter.

In the network, a seven digit numbering scheme is applied. For routing purposes two unique digits of Trunk code are prefixed to the 5 digits local number.

Ulaanbaatar case is the exception with a 6-digit local numbering scheme.

Table 7-3-1 shows the national numbering, or trunk code plus local numbering.

Table 7-3-1 National Numbering

Aimag/	National Numbering		Aimag/	National Numbering	
Main City	TC	EC-SN	Main City	TC	EC-SN
Choir	75	X-XXXX	Baruunurt	51	X-XXXX
Tsetserleg	73	X-XXXX	Suhbaatar	49	X-XXXX
Ulgie	71	X-XXXX	Zuunmod	47	X-XXXX
Bayanhongor	69	X-XXXX	Ulaangom	45	X-XXXX
Bulgan	67	X-XXXX	Hovd	43	X-XXXX
Altai	65	X-XXXX	Muren	41	X-XXXX
Sainshand	63	X-XXXX	Underhaan	39	X-XXXX
Choibalsan	61	X-XXXX	Darhan	37	X-XXXX
Mandalgovi	59	X-XXXX	Erdenet	35	X-XXXX
Uliastai	57	X-XXXX	Nalaih	33	X-XXXX
Arvaiheer	55	X-XXXX	Baganuur	31	X-XXXX
Dalanzadgad	53	X-XXXX	Ulaanbaatar	1	XX-XXXX

3.1.3 Special Service Numbers

(1) Public Service

MCAC provides some 3-digit special numbers for the services to public. Table 7-3-2 shows the 3-digit numbers with corresponding services.

It is desirable that this special service numbering will be adopted as the local special service numbering through out Mongolia.

Table 7-3-2 3-Digit Special Numbers for Public Services

Number	Service	Number	Service
100	Emergency Ambulance	117	National Enquiry
101	Fire	118	National Enquiry
102	Police	119	Information (Airport)
103	Ambulance	120129	Police Use
104	Spare	139	Railway Enquiry
105	NEAX61→E-10B Operator	140159	Subscriber Facilities,
106	International Operator Booking		(Rotary dial telephone sets)
107	National Operator Booking	179	MobiCom
108	Spare	181	Fault Reports
109	Directory Enquiry	182	Fault Reports
110114	MobiCom	185188	Fault Reports
115	E-10BNEAX-61 Operator	193198	Manual AIMAG Operator
116	International Enquiry	199	Mobile Service Enquiry

(2) Services other than Ordinary Telephone

For various services, the following numbers are allocated;

Railway service:

74 + XXXX

Cellular service:

99 + Area Code + XXXX

[Ulaanbaatar city 991 + XXXX]

L Other cities

99 + XX + XXXX

Telex service

08 00 + XXXXX + letters

Paging service :

35-8282 Operator

3.1.4 Proposed Local Numbering Plan in Ulaanbaatar city

As Ulaanbaatar city is the capital of Mongolia, the population and number of telephone subscriber will rapidly increase compared to the other provincial areas.

(1) Numbering Capacity

a) Planning Term

A long planning period is normally required for numbering plan because of the fundamental nature of the numbering plan i.e. great difficulty and inconvenience to both administration and subscribers of changing their numbers. ITU suggests 50 years as the planning term.

b) Necessary Digit Number

The necessary digits are decided by the required numbering capacity. On the assumption that after 50 years the population of Ulaanbaatar city is 1.3 million and at that time the penetration ratio becomes 50 per 100 persons, the required number of telephone subscribers in Ulaanbaatar city is considered to be less than 700,000.

In the case of the 6 digit system, the total theoretical possible numbering capacity becomes one million.

However, trunk code "0","1", the first number of exchange code "0" and special service code "1XY" decrease the whole capacity of numbering.

Therefore, total possible numbering capacity is:

$$8 \times 10^5 = 800,000$$

Under the above condition, the 6 digit numbering plan will be enough for Ulaanbaatar city for coming 50 years, if the numbering is well assigned.

(2) The Exchange Code Numbering Plan in the Year 2010

Table 7-3-3 shows the proposed local numbering plan for telephone offices in Ulaanbaatar city in the year 2010. At present, the escape code for numbering of railway network is 74 as shown in the table 7-3-4.

In future, this escape code number should be transferred to another number (e.g. IXY or 9X). Table 7-3-5 shows the exchange code numbering introduction schedule with new exchange installations.

Table 7-3-3 Exchange Code Numbering in Ulaanbaatar City (in the year 2010)

Site Name	Unit Name	Exchange Code	Exchange Capacity
ATC-3	Н03А	31;32	14,336
	H03B	30;33;36;39	35,000
ATC-37A	R37A	37	3,012
ATC37Y	R37B	37	2,012
ATC-76 (Biokombinat)	RBIA	37	700
Shuvuun Fabric	RSFA	37	500
ATC-5	H05A	50,51;52	26,500
ATC-51 (Sharhad)	R51A	59	1,000
ATC-52 (Amgalan)	R52A	59	1,000
Honhol	RHOA	59	200
Gachuurt	RGAA	59	100
ATC-6	H06A	60,61,62	35,000
	H06B	63	5,000
ATC-2	H02A	20;21;22	31,000
ATC-21 (Bayan Hoshuu)	R21A	29	2,000
International Children Camp	RICA	29	100
Jargalant	RJAA	29	100
ATC-7	H07A	70,71	14,000
ATC-4	H04A	40,41	15,000
Nalaih	HNAA	2	6,500
Bagahangai	RBHA	3	1,200
Baganuur	HBNA	2	7,000

Table 7-3-4 Exchange Code Numbering for Host Exchange and RSU in Ulaanbaatar City

		HANGARI BERMIN IDAK KERKA		orionia cum		g general de leis de la const	**********		Dente and De	(in	the year	r 2010
A/B	0	1	2	3	4	5	6	7	8	9	*	#
0	Inter- national					Trunk			Telex			
क्रमेंस्ट काउट जो-1		Ulaanbaatar		· compando	Spec	ial Serv	rice	TO STATE OF THE PARTY OF	THE PERSON NAMED IN	-		
1					THE REAL PROPERTY AND ADDRESS OF THE							
2	H02A	H02A	H02A							R21A RICA RJAA		
3	H038	Н0ЗА	Н03А	H03B			H03B	R37A,R37B RBIA RSFA		- H03B		
4	H04A	H04A	: :			НодА	H07A					
5	H05A	H05A	H05A							R51A,R52A RHOA RGAA		
6	H06A	H06A	H06A	H06A H06B								
7	H07A	H07A			Railway							
8												
9										Cellular		
*												
#		,										

AB-XXXX

A: The first digit number of exchange code

B: The second digit number of exchange code

X: The digit number of subscriber

Table ?	7-3-5	Exc	hange	Code	Nu	mber	ing S	sche	dule	in U	aanb	aata	<u>r Ci</u>	<u>ty</u>		
Site Name	Unit	1997	1998	1999		2001					2006				2010	Ex Cap In 2010
ATC-3	НОЗА	31,32	Proc. No. of States - Community A		ang transport	· ·			**************************************		*. C4.046#4 . ***	med direct	60.00,cm-ra	-		14,336
	H03B		30,39	ļ					36					33		35,000
ATC-37A	R37A	37														3,012
ATC37Y	R37B	37											[2,012
ATC-76 (Bickombinal)	RB1A		i		37											700
Shuvuun Fabric	RSFA				37	,										500
ATC-5	H05A	50		SEAULIPEN Y	51			- Constitution				52				26,500
	R35A	35				1 .						Dis				
ATC-51 (Sharhad)	R51A						59						·			1,000
ATC-52 (Amgalan)	R52Å					:	59									1,000
Honhot	RHOA	1.5			59											200
Gachuurt	RGAA							59					<u> </u>			100
ATC-6	H06A		60,61,62					***************************************								35,000
•	H068					:			i				63			5,000
	R36A	36	Disuse								:		<u> </u>			
ATC-2	HO2A			-		20;21		:		22						31,000
	R33A	33				Dis									-	
ATC-38	R38A	38			1	Dis					,					
ATC-21 (Bayan Hoshuu)	R21A	1. 1			1	29			:	- :						2,500
International Children Camp	RICA						29				. :					100
Jargalant	RJAA							29								100
ATC-7	H07A				45					-					46	14,000
ATC-4	HO4A) ;) ;	1					:		40,41					15,000
:	R34A	34	:		10.0						Dis					
Nalaih	HNAA			#									T			6,500
Bagahangai	RBHA						#	7 .								1,200
Baganuur .	HBŅA			:			#									7,000

Dis: Disuse #: used number at present

3.2 Signaling Plan in Ulaanbaatar city

MCAC now uses CCITT signaling system R2 (Digital Version) in Ulaanbaatar city. The CCITT No.7 signaling system will be applied to the links between Ulaanbaatar, Erdenet and Darhan. Figure 7-3-2 shows the existing plan. It is recommended that CCITT No.7 signaling system should be introduced throughout the network at a later stage of this basic plan.

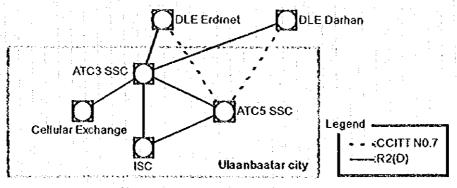


Figure 7-3-2 Existing Signaling Plan

CCITT Recommendations indicate the Signaling System No.7 protocols which provide the signaling functions required to support services in a telephone network, data communication network, as well as basic bearer services and supplementary services for voice and non-voice applications in an integrated services digital network. Leading telephone exchange manufacturers make their products in compliance with the specifications defined by such Recommendations and supply them to users for international and national applications.

CCITT Recommendations deal with fundamentally the international networks. However, most signaling procedures, information elements and message types specified for international use are also required in typical national applications. Coding space has been reserved in order to allow national administrations and recognized private operating agencies to introduce network specific signaling messages and elements of information within the internationally standardized protocol structure.

The signaling messages specified by CCITT cover most services essential to a general telephone network. Accordingly, MCAC can establish its signaling link network making use of the messages already specified by CCITT.

It is recommended to conduct a further study for establishing the guidelines or specifications regarding the detailed parts of Signaling System No.7 for MCAC network use and getting harmony with exchange control software specifications. MCAC should introduce only the signaling systems defined by CCITT in order to avoid inter-working problems or cost increase afterwards.

As the signaling system between host exchanges, CCITT No.7 is essential signaling system to introduce ISDN and new services. Therefore MCAC should introduce CCITT No.7 signaling system as soon as possible.

3.3 Synchronization Plan

3.3.1 Existing Network

In the existing network, there are only two switches which are synchronized:

- E10B (ATC3)
- NEAX61E (ATC3)

In this network, the E-10B switch (ATC3) serves as the master clock supply with the accuracy of 10⁻⁸.

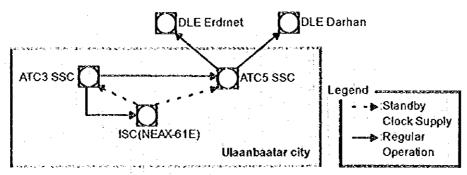


Figure 7-3-3 Synchronization Principle

3.3.2 New Network

The new exchanges shall be synchronized in Ulaanbaatar with the E10B (ATC3) and NEAX61E.

But in future, the master clock should have the accuracy of 10⁻¹¹ to satisfy the requirements on slip rate recommended by CCITT Rec. G811/823/824 for international digital links. It is recommended that the high accuracy master clock should be introduced to the digital international switch at a later stage of this basic plan and all the other digital switches in Mongolia should be synchronized to the master.

Therefore, it is recommended to change to the high accurate master clock system at a later stage of this basic plan. The central clock in Ulaanbaatar will be the master clock for Erdenet and Darhan. Figure 7-3-4 shows the national reference clock network of MCAC in future.

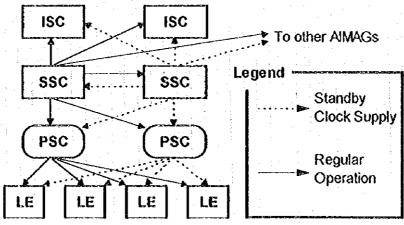


Figure 7-3-4 National Reference Clock Network of MCAC

3.4 Inter-Network Connection

3.4.1 Inter-network Connection of Existing Networks in Mongolia

In Mongolia there are several telecommunications networks besides MCAC telephone network; i.e., cellular telephone network, data communication network, railway communication network, governmental communication network, and paging service network. Data communications network are not inter-connected with MCAC telephone network. Governmental network has not been inter-connected, but is going to be inter-connected with MCAC network in the future. Figure 7-3-5 shows the existing major networks and inter-connection between them.

To/From foreign countries

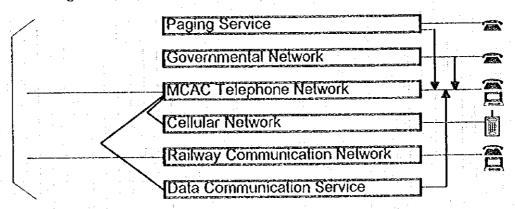


Figure 7-3-5 Existing Major Networks and Inter-Connection between Them

The cellular telephone network and railway communication network are interconnected with MCAC telephone network through trunk circuits. It is inter-connected with E-10B local exchange through trunk circuits. Paging service network is now connected with MCAC telephone network by means of normal telephone subscriber numbers.

3.4.2 Inter-network Connection in Future

MCAC network will be inter-connected with the existing and new networks through a gate switch. The MCAC gate switch should be, primarily, in Ulaanbaatar. The number of gate switches or the connection points should be increased in proportion to the growth of inter-network traffic. The signaling system between the gate switches should be CCITT No.7 signaling system.

3.5 Charging System Plan

3.5.1 Existing Network

National calls are charged by time at rates determined by distance in five charging zones as follows:

0 to 100km 101 to 300km 301 to 500km 501 to 1,000km Over 1,000km

Local calls will be also charged by timed local call charge. However, nowadays this facility is not available in some of the existing switches.

3.5.2 New Network

Charging of calls shall depend on:

Duration								
Time of	day							
Distance								

The local exchange shall be capable of charging calls. As the new switch equipment will comprise of IDD facilities.

Charging at the booking offices/manual switch boards would be possible.

As it is intended to introduce card telephones, transmission of charging pulses must be possible.

3.5.3 Billing System

Charging information will have to be stored on data processing media.

The data processing media shall be a tape, since there already exists an operational procedure for ATC3 and NEAX61E (international accounting) switches. The Specification for the new switching technology has to coincide with the existing data format.