CHAPTER 3 ROUTE SELECTION FOR PRELIMINARY SURVEY

3.1 General

This chapter discusses the past development of road network and the current status of major projects and plans to be taken by RDA. Urban centers, with scale and growth are studied with the road network formation. And priority routes determined for preliminary bridge survey in this master plan study are shown.

3.2 Road Network Development

3.2.1 Categorization of Road Network

A main road network in Sri Lanka has been developed in radial direction from Colombo. The country has a dense network of roads and almost every part of the country is accessible by road. The total length of the road network, as assessed in 1992, is 96,568 kilometers(sce Table 3.1), and the average density of road network exceeds $1.5 \mathrm{~km} / \mathrm{sq}$. km.

The classified roads have a hierarchical system designated as A, B, C, D and E class roads. Class A represents the primary/trunk roads, and the main roads are categorized as B class roads. C, D and E represent the lower order roads in the systen, which are essentially link roads, connecting the A and B system. Some of these, however, are access roads.

In January 1990, the C, D and E class roads were handed over to the newly established Provincial Councils, and the A and B class roads along with a selected set of roads providing access to places of national importance were categorized as National Highway.

Presently, the newly formed Road Development Authority(RDA), who is the successor of the previous Department of Highways(DOH), manages these National Highways and they add up to a total kilometers of 10,964 .

Table 3.1 Categorization and Management of Road Network

Category and Management	Length
National Highways managed by the Road Development Authority	10,964
Provincial roads managed by the Provincial Councils	14,916
Roads managed by the Municipal Councils, Urban Councils, Pradeshiya Sabhas etc.	52,521
Roads managed by the Agencies, such as Irrigation, Forestry and plantations	13,167
Total	96,568

Table 3.2 Length Distribution of National Highways by Category

Classification		Length (Kmi)						Surface Condition	
		Total Lengih	1 Lane 4.0 m	Intermediate $4.0-$ 5.5 m	$\begin{aligned} & 2 \text { Lane } \\ & 5.5 \\ & 7 \mathrm{~m} \end{aligned}$	Intermediat c 7. 12 m	4 Lane or 12.0 m	Payed	Unpaved
	Primary/Trunk Routcs	3,807	535	1,655	1,255	297	94	3,007	
2.	Sccondary Routes	6,339	2,717	3,158	412	42	-	6,339	
	Access to places of national importance and other roads	818	355	135	53	36	20	770	48
	Total	10,964	3.607	4,948	1,690	375	114	10116	48

3.2.2 Classification of National Highways

The National Highways are classified into the following categories depending on their functions:
(a) Primary routes

The highways that connect the provincial capitals (9 in number), and the District centers (25 in number), are considered as primary routes. They are also referred to as Trunk routes. They are essentially the A routes of the formally classified roads.
(b) Secondary routes

As secondary routes are classified the routes that connect up the A routes, and also those connect up other impoitant townships/population centers. They are essentially the previously classitied B routes.
(c) Access roads

The third category is the access roads which provide access from the Primary routes and Secondary routes to places of national importance - strategic, religious, cultural, etc.

The National Road Network is categorized according to road width/number of lanes and surface type, and the distribution by these road category is summarized as shown in Table 3.2.

3.2.3 Road Network Development Plans

During the last decades major roads in the country have been developed with such extenal assistance as the Asian Development Bank, the World Bank, OECF and other bilateral technical and financial aids. In the early stage of the development, the financial aids were mainly drawn to the maintenance and rehabilitation of roads.

Highway development project groups are listed in Table 3.3 for those implemented since 1980 s and others being uiderway at present, while their Route-A sections are presented in Figure 3.1 and Projects on Routes B highways are in Appendix D3.

Improvements of the existing Baseline Road and its southwards extension project is now underway. The first stage consists of the detailed engineering design from New Kelani Bridge(NKB) roundabout to High Level Road junction at Kirillapone and widening and construction of the Baseline Road from NKB roundabout to Kanatta Junction. The widening and construction of Baseline Road are planed to continue in the second and third stages that cover the extension from Kanatta Roundabout to High Level Road junction and from Iligh Level Road to Galle Road at Ratmalana.

A detailed design of Colombo - Katunayake Expressway has been finished already, and a
count of the affected persons, families, etc., was carried out with the assistance of the National Housing Development Authority (NiDA). Efforts to resettle the affected persons have been rendered continuously to acquire the land for the project implementation.

Table 3.3 Highway Development Projects in the Last Decades

WB 1st	1980s Completed	Rehabilitation, 200 km Periodic Maint, 200 km Bridge replace: 40 bridges
ADB 1st	1980s Completed	Improve: 228 km Bridge replace: 4
WB 2nd	1980s Completed	Improve: 292 km Bridge replace: 22
ADB 2nd	1990-95 Ongoing	Improve: 145 km Bridge replace: 6
WB 3rd	1990-98 Ongoing	Improve: 402 km Bridge replace: 20
ADB 3rd	1994 Ongoing	Improvement 175 km Bridge replace: 19
WB 4th	1995-Starting soon	Rehabili. $7,000 \mathrm{~km}$ Bridges not finalized
OECFJ	1996- Start soon	Baseline Rd. F/S by ODA (UK)'91 DD ongoing
Kwuait	1995- Start soon	Improvement 28 bridges
JICA	1995. Start soon	2nd phase of Victoria Br Replacement
KOREA	1995-	F/S \& DD, ongoing for Katunayake - Anuradapura highway

Figure 3.1 Locations of the Highway Development Projects in the Last Decades

Several new highways and circular roads have been planned to meet the increasing demand. The following eight highways were identified as the priority projects and they are at various stages of studies and implementation. Locations of those projects are presented in Figure 3.2
a) Improvements of Baseline Road and extension southwards - Inner Circular Highway to Colombo;
b) Colombo - Katunayake Expressway (CKE);
c) Outer Circular Highway (OCH) to city of Colombo;
d) Southern Highway from Colombo (OCH) to Galle and Matara;
e) Highway from Colombo to Ambepussa via CKE;
f) Highway from Colombo (OCH) to Ratnapura via Ingiriya;
g) Highway from Colombo to Padeniya via CKE; and
h) Highway from Colombo to Chilaw via CKE and "Rata Meda Para"

3.3 Urban Sector Development

3.3.1 Urban Sector Administration

There are 53 Urban Local Authorities consisting of 12 Municipal Councils and 41 Urban Councits as shown in Figure 3.3. Sri Lanka has always had a greater number of small and medium size. The slow rate of development of towns of larger size is evident from the fact that the number of towns with population greater than 50,000 las increased only from five in 1946 to nine in 1981, while the number of towns with populations between 5,000 and 50,000 has increased from 25 to 94 .

3.3.2 Spatial Distribition of Urban Population

Urban centers with 1981 population over 25,000 are concentrated in the suburbs of Colombo as presented in Figure 3.4. Colombo had the largest urban population of 587,647 in 1981 followed by Deliwela-Mt. Lavinia, 173,529, and Moratuwa, 134,826 as listed in Table 3.5, and the urban population distribution is exhibited in Figure 3.5:

Figure 3.2 Locations of Priority Highway Plans

Figure 3.3 Urban Local Authorities in Sri Lanka

Figure 3.4 Locations of Urban Centers with Population More Than 25,000 (1981 Census)

Table 3.5 Urban Population of Principal Towns in 1981

Principal Town	1971	1981	1981/71 Ratio	$25,000<*$ Population
Total	2,494,875	2,736,832	1,096	
Colombo	562,420	587,647	1,045	*
Dehiwela - Mt.	154,194	173,529	1,125	*
Lavinia				
Negombo	56,795	60,762	1,070	*
Moraluwa	96,267	134,826	1,401	*
Kotte	93,680	101,039	1,079	*
Kalutara	28,634	31,503	1,100	*
Kandy	93,303	97,872	1,049	*
Matele	30,065	29,752	0,990	*
Nuwara - Eliya	17,288	20,471	1,184	
Galle	71,266	76,863	1,079	*
Matara	36,554	38,843	1,063	*
Hambantota	6,895	8,577	1,244	
Jafina	107,184	118,224	1,103	*
Mannar	11,095	13,931	1,256	
Vavuniya	15,720	18,512	1,178	
Batticaloa	36,696	42,963	1,171	*
Trincomalce	40,592	44,313	1,092	*
Kumuegala	24,357	26,198	1,076	*
Putalam	18,167	21,586	1,188	
Chilaw	17,608	20,810	1,382	
Anuradhapura	34,734	35,981	1,036	*
Badulla	35,470	33,068	0,932	*
Ratnapura	10,614	37,497	3,533	*
Kegalle	13,305	15,016	1,129	

Source : Dept. of Census \& Statistics, 1984

* : More than 25,000 in population 1981

Figure 3.5 Distribution of Urban Population in Principal Towns in 1981

3.4 Priority Rontes for Preliminary Bridge Survey

3.4.1 Priority Criteria

The study covers all the Class A roads and Class B roads which were sclected by RDA for urgent requirements of bridge rehabilitation and improvement. Both Class A and B roads are National Highways and the former is categorized as the primary routes that comect the provincial capitals (9) and District Centers (25), and the latter is categorized as the secondary routes that connect up the A routes, and also those connect up other important townships/population centers. Other than the primary and secondary routes, there are national highways categorized as access roads which provide access from the primary routes and secondary routes to places of national importance - strategic, religious, cultural, etc.

The National Highways are thus classified by RDA. However, from the viewpoint of urban sector administration there is an another urban system in Sri Lanka, that is the Urban Local Authorities comprising of 12 municipal councils and 41 urban councils, which covers more extensive urban area than the Provincial and District Centers system.

In order to identify priority road sections for the bridge rehabilitation and improvement a broader concept of urban functions (i.e municipal and urban councils) and the traflic demand on roads were adopted in the following ranking method:

Priority

RankingDescription

\|st	Roads with ADT $>=5000$
2nd	Roads with $\mathrm{ADT}>=3000$, or those connecting Municipal Councils and important sea ports in a minimal network
3 rd	Roads with ADT $>=2000$, or those connecting neighboring Municipal Councils, orthose that ensure at leas one access from one Urban Council to the nearest Municipal Counci!.
4th	Roads with ADT> $=1000$
Sth	Roads with ADT <1000

3.4.2 Delincation of Priority Routes

Based on the previously mentioned criteria, priority road sections were selected in the order of five ranking groups. The road sections selected for a certain priority group are not necessarily connected in a reasonable manner. In order to delineate a meaningful route (road sections continuously connected), road sections that should be grouped into a lower ranking might be upgraded to form a coherent route. As the consequence, the priority routes for the preliminary survey (for bridge rehabilitation and improvement) were selected as presented in Figure 3.6.

Figure 3.6 Priority Routes for Preliminary Bridge Survey (Nationtial Highways class A)

CIIAPTER 4 SELECTION OF 100 BRIDGES FOR PRELIMINARY INSPECTION

4.1 General

The one of objectives of the Study is to formulate a Master Plan for improvement and rehabilitation of all bridges on A routes and some selected bridges on B routes which would be found the necessity of their urgent rehabilitation. As for the breakout of these bridges, 1713 nos. are on A-route, 2717 nos. are on B-route and there are 86 nos. of A-route bridge and 120 nos. of B-route bridge in the list of 206 Bridges to be required urgent rehabilitation made by RDA.

And the final bridge list on 4430 bridges was not completed at the time when this stage was commenced, therefore the Study Team selected 100 bridges out of the List of 206 Bridges prepared by RDA. the specific number of bridges was set up as about 100 for preliminary inspection and 10 out of these 100 bridges for detailed survey and preliminary design.

Accordingly, the main purpose of this chapter is to select 100 typical bridges for preliminary inspection which could be the representatives of all the study bridges. The inspection results on these selected bridges were used to establish a selection criteria for 10 bridges and to reflect in formulating a maintenance and rehabilitation program of these 100 bridges.

4.2 Selection Proccdare

In order to achieve the objectives of the Study, the study bridges shall be selected through the following procedures:

- Establishment of Socio-Economic Frame
- Traflic Demand Estimate and Analysis
- Investigation of Rehabilitation Priority of Routes

Classification in various itenis (completed year, type of construction, type of defect, type of proposed treatment)

4.3 Selection of the Bridges from Road Functional Viewpoint

The results are shown in Table $4.1 \& 4.2$ and the outline of each table is as follows:
a) Table 4.1 (SORTED BY 1995 TRAFFIC VOLUMES)

Routes are shown in big volume order, which are AA001 to AA035 and AB001 to AB045. Bridges on AA class roads and AB class roads selected from the list of 206 bridges (RDA) were added to this table, and the table was useful information for selecting 100 bridges for the Study.
b) Table 4.2 (SORTED BY 1995 TRAFFIC VOLUMES)

Routes ate shown in big volume order, which are only B class roads from the list.

And the statistics of these bridges by priority ranking of route is shown in Table 4.1 and 4.2.

Table 4.1 A Class Road Sorted by 1995 Traffic Volume

Ser No.		Ronte No.	Read Name	length of Road (kn)	Prov.	Location (kin)	1995
79	3 k	A003	Peliyagoda - Puttalam	126.30	West	39	7,600
84	110.2 k	AA001	Colombo - Kandy	115.84	Cent	111	16,100
1	$61 / 1 \mathrm{~m}$	A1002	Colombe - Galle - Hambantota - Wellawaya	317.77	West	51	8.900
75	$62 / 2 \mathrm{k}$	A002	Colombo - Galle - llambantota - Wellawaya	317.77	West	51	8,900
76	6211 k	M002	Colombo - Galle - Hambantota Wellavaya	317.77	West	51	8,900
108	167	AN033	Ia-Ela - Ekala Gampala - Yakkala	17.02	West	15	7,700
85	91.2 k	A001	Colombo - Kandy	115.84	Sab	91	7,100
29	$72 / 3 \mathrm{k}$	An002	Colonbo-Galle - Hambantota-Wellamaya	317.77	Sout	74	6,700
27	$87 / 1 \mathrm{k}$	A002	Colombo - Galle - Ihambatota - Wellawasa	317.77	Sout	105	6,700
28	$81 / 1 \mathrm{k}$	An002	Colonto - Gatle - Hambantota - Wellawaya	317.77	Sout	105	6,700
99	$5 / 1 \mathrm{k}$	A 1009	Kandy - Mana	320.99	Cent	7	6,200
95	$3 / 2 \mathrm{k}$	An006	Anbeprisia - Kuninegala - Trincomale	198.72	Sab	4	5,900
96	811 k	M006	Ambepussa - Kurunegala - Trincomalee	198.72	Sab	4	S,900
175	$1 / 2 \mathrm{~m}$	A13027	Old Coloubo - Galle Road, Panadufa	1.90	West	0.4	5,200
93	$21 / 4 \mathrm{k}$	A005	Peradeniya - Badulla - Chenkaladi	27929	Cent	15	5,000
203	$71 / 3 \mathrm{k}$	A1006	Ambepprsa - Kurnnegala - Trincomalee	198.72	Nup	57	3,800
102	$25 / 2 \mathrm{k}$	AA010	Katugastota - Kunungala - Putuan	124.59	Nup	30	3,600
86	199/3k	M002	Colombo-Galle - Hambantota Wellawaya	31777	Sont	180	,400
174	$86 / 1 \mathrm{k}$	A 1006	Ambepusa - Kunuegata - Trincomales	198.72	Cent	81	3,400
48	$25 / 4 \mathrm{k}$	M008	Panadua - Nambapana - Ratrapura	67.77	West.	22	,400
49	$25 / 3 \mathrm{k}$	AN003	Pauadura - Namkipana - Ratnapura	67.77	West	22	, 400
50	$24 / 1 \mathrm{k}$	AN008	Panadura - Nambapana - Rathapura	67.77	West	22	400
51	35/5 k	M008	Panausa - Nambapana - Ralnapura	67.77	West	22	400
36	$48 / 1 \mathrm{k}$	AN010	Katugastota - Kunnegala - Putham	124.59	Nup	50	,300
11	$133 / \mathrm{k}$	An00s	Peradenija - Badulla - Chenkaladi	279.29	Uva	138	,800
212	138/1 1	AN002	Colombo-Galle - Hanmantota - Wellavaya	317.77	West	177	2,800
80	$90 / 2 \mathrm{k}$	M003	betiyagoda P Putalam	126.30	Nup,	90	2,600
120	$12 / 2 \mathrm{k}$	A13029	Pasyala- Ciciula	19.31	West	16	2,200
77	$3 / 2 \mathrm{k}$	A019	Potgarawela - Kegalle	11.66	Sab	6	2,100
12	49/6 k	An008	Panadura - Nambeprans - Katnapura	67.77	Sab	52	,900
97	$5 \mathrm{~s} / 2 \mathrm{~L}$ k	AA008	Pandua - Nambapana - Rathapura	67.77	Sab	52	1,200
98	$59 / 2 \mathrm{k}$	An008	Pamadura - Nambupata - Ramapura	67.77	Sab	52	, 900
161	$50 / 4$	An011	Maradankadawela Habarana Tirikkondiadimadu	129.36	Ncp	40	1,700
65	$24 / 3 \mathrm{k}$	AA011	Maradankadimela Habatana Tirikkondiadimada	129.36	Nop	40	, 700
87	25611 k	N1002	Colonto - Galle - llambantota - Wellawaya	317.77	Sout	256	10
46	73/5	14007	Avissawella - Hatton - Nuwara Eliya	118.69	Cont	91	50
47	70/8	AN007	Avissuretla - Haton - Nuwara Elija	118.69	Cent	91	,500
3	$25 / 5 \mathrm{k}$	- AN017	Galle - Deniyaya - Madampe	143.93	Sout	22	, 400
52	$2 / 2 \mathrm{k}$	k A0017	Galle - Deniyaya - Madaupe	143.93	Sont	22	100
106	$69 / 1 \mathrm{k}$	- An026	Kandy - Mahiyangana - Padiyatalawa	80.73	Uva	75	0
160	115\%	¢ 1000	Kandy - Jallina	320.99	Ncp	110	300
179	$38 / 1 \mathrm{k}$	k AN017	Galle - Leniyaya - Madampe	143.93	Sout	42	0
2	$75 / 1 \mathrm{k}$	k AN010	Katugastota - Kunurgala - Puttam	124.59	Nup	70	200
89	163/9k	k N00t	Colombo - Ratuapura - Wellawaya - Batlicaloa	430.57	Uva	80	1,100
91	169/9 k	k A1004	Colombo - Rateapura - Wellawaya - Batticaloa	430.57	Uva	80	1,100
103	1611 k	k A 1012	Putalan- Trinconale	176.99	Nup	15	700
53	$36 / 3 \mathrm{k}$	k A1021	Kegalle - Bulathkehuprity - Karawanella	42.12	Sab	35	700
178	192/2 k	k An004	Colombo - Ratuapura - Wellawasa - Batticaloa	430.57	Una	193	300

Table 4.2 B Class Road Sorted by 1995 Traffic

$\begin{aligned} & \text { Ser } \\ & \text { No. } \end{aligned}$		Route No.	Rood Name	Length of Road (km)	Prov.	Location $\text { (} \mathrm{x} \mathrm{~m})$ \qquad	1,995
	911	13.435	Usugodaralte - Ambatale	8.00	West	3	10,900
204	$9 / 2 \mathrm{k}$	13435	Urugodavatte - Ambatale	8.00	West	3	10,900
205	$9 / 3 \mathrm{k}$	13435	Urugodavatte - Ambatale	8.00	West	3	10,900
206	$11 / 1 \mathrm{k}$	13435	Ungodawate - Ambatate	8.00	West	3	10.900
207	11/2k	$[3435$	Urugodavalte - Ambatale	8.00	West	3	10,900
195	102k	13288	Minuwangoda - Ganpala - Misiswatte	13.00	West	13	10,800
197	1033k	13288	Mintwangoda - Gampala - Miriswatte	13.00	West	13	10,800
201	1015k	13288	Minuwangoda - Gampaha - Miriswatte	13.00	West	13	10,800
70	316 k	13295	Moratura - Pilivandala	5.00	West	1	10,700
16	24/5 k	B084	Colombo-llorana	28.00	West	24	8,100
37	$26 / 3 \mathrm{k}$	[3084	Colombo - Horana	28.00	West	24	8,100
54	$31 / 4 \mathrm{k}$	3084	Colombo - Lorana	28.00	West	24	8,100
12.4	$36 / 2 \mathrm{k}$	B08 4	Colombo - Itorana	28.00	West	24	8,100
125	2777 k	13084	Coloubo - Ilorata	28.00	West	24	8,100
126	$34 / 1 \mathrm{k}$	13084	Colombo - Ilorana	28.00	West	24	8,100
5	$14 / 7 \mathrm{~m}$	B240	Kotte - Bope	29.00	West	16	7,100
66	7/1 k	B111	Kala - Kotadcilyava	27.00	West	12	6,700
151	$9 / 3 \mathrm{~m}$	1344	Veyangoda - Runamwella	32.00	West	7	4,300
154	94	[3445	Veyangoda - Remanmella	32.00	West	7	4,300
6	$38 / 3 \mathrm{k}$	13322	Negombo - Cirinlla	38.00	West	24	3,800
158	$3 / 2$	B473	Weniapprisa - Kirimelijana	6.00	Nup	2	3,600
72	616 m	13248	Labuduwa - Wandurambe - Sandarawela	22.00	Sout	5	2,700
147	$31 / 2 \mathrm{~m}$	13419	Thoppi-Madampe	27.00	Nup	12	2,400
148	: $42 / 2 \mathrm{~m}$	13419	Thoppr-Madampe	27.00	Nup	12	2,400
192	$3 / 2 \mathrm{~m}$	B272	Malawila - Idubaddawa	20.00	Nup	5	2;200
202	$14 / 5 \mathrm{k}$	13.34	Nagoda - Kalawella - Bellapiliya	56.00	West	11	2,100
78	5/5k	13199	Karandupena - kantukkana	9.00	Sab		2,000
123	23/2 m	13079	Chilaw - Warijagola	51.00	Nup	14	1,900
30	515 m	13014	Aubalangoda - Hepitiya - Pitipala	29.00	Sout	10	1,800
136	$9 / 4 \mathrm{~m}$	B272	Marawifa - Ulubaddava	20.00	Nup	16	1,700
20	1616	1326.4	Mallawapitiy - Rambordagalla - Keppetigala	35.00	Nup		1,700
3.4	$5 / 1$	13264	Mallawapiliya - Rambodagalla - Keppetigala	35.00	Nup		1,700
188	3/4 m	13472	Weliverija - Kirindiwela	13.00	West	7	1,700
$\therefore 7$	204 k	13425	Tudella - Pamunugama - Talahena - Negonbo.	20.00	West	17	1,600
42	$3 / 3 \mathrm{~m}$	13464	Weerauila - Tissa - Kataragana	24.00	Sort	2	1,600
40	$66 / 2 \mathrm{k}$	- 3421	Tinuranaketiya - Agalawatte	68.00	West	57	1,600
1.49	$50 / 2 \mathrm{k}$	k 13421	Tinuanaketiya - Agalawatte	68.00	West	57	1,600
132	$18 / 4 \mathrm{~m}$	18129	Galle - Udugama	37.00	Sout	13	1,600
18	$11 / 111$	1 13158	Horawela - I'elavatte - Pitigala	26,00	West	9	1,400
39	$30 / 2 \mathrm{k}$	k 1349	Pravi-Kalpitiya	40.00	Nup.	16	1,400
145	$21 / 3$	13409	Talgodapitiya - Yatavalte - Dombawala	29.00	Nup	8	1,400
198	$2 / 4 \mathrm{k}$	k B409	Talgodapitiya - Yatavatte - Dombawala	29.00	Nup,	8	1,400
26	$10 / 1 \mathrm{k}$	k 13462	Watlegana - Matale	13.00	Cent	7	1,200
129	277 k	k. 3127	Galigomuna - Rnwanmella	23.00	Sab	10	1,200
130	771 k	k 13127	Galigobuwa - Ruwanwella	23.00	Sab	10	1,200
131	$1 / 2 \mathrm{k}$	$k \times 1127$	Galigomuwa - Rusanwella	23.00	Sab	10	1,200
182	$1 / 2 \mathrm{k}$	k. 13.444	Veyangoda - Kalclija	7.00	West	3	1,200
150	4/5 k	k 13.44	Vegangoda Kalclija	7.00	West	3	1,200

$\left[\begin{array}{l} \mathrm{Ser} \\ \mathrm{No} \end{array}\right.$		Route No.	Road Name	$\begin{array}{\|l\|} \hline \text { Length of } \\ \text { Road (kn) } \\ \hline \end{array}$	Prov.	Location \qquad (km)	1,995
19	$6 / 10 \mathrm{~m}$	13207	Katukunuda - Neboda	16.00	West	7	1,200
33	$12 / 3 \mathrm{k}$	B157	Horena - Angurnwatot - Aluthgama	54.00	West	10	1,000
58	$44 / 3 \mathrm{k}$	B157	Horena - Anguruwatot - Aluthgama	54.00	West	46	1,000
59	$43 / 4 \mathrm{k}$	B157	Horena - Angimwatot - Aluthgama	54.00	West	46	1,000
21	$8 / 1 \mathrm{k}$	B421	Tinumaketiya - Agalawatte	68.00	Sab	32	900
78	$5 / 5 \mathrm{k}$	13188	Kaluaggala - Tabugana	14.00	West	6	900
68	1/5	13164	Jaftina Junction - Sri Maha Bodhi	2.00	Ncp	2	900
55	$8 / 10 \mathrm{k}$	13093	Dehiowita - Deraniyagala - Noori	28.00	Sab	13	900
56	$3 / 7 \mathrm{k}$	B093	Dehowita - Deraniyagata - Noori	28.00	Sab	13	900
127	$13 / 2 \mathrm{k}$	13093	Dehiowita - Deraniyagala - Noori	28.00	Sab	13	900
60	10/3	B300	Muttetugala - Ilitipitiya	19.00	Nup	9	900
13	4/5	B056	Bibile - Medagana - Nakkala	34.00	Uva	8	800
14	1015	13056	Hibile - Modagana - Nakkala	34.00	Uva	8	800
74	$6 / 5 \mathrm{k}$	13466	Weligama - Telijiawila	11.00	Sout	5	800
67	$23 / 2 \mathrm{k}$	B157	Herena - Angunwatot - Aluthgama	54.00	West	20	700
8	1213	B427	Udawalave - Tanamahila	35.00	Uva		600
31	3/3 m	13114	Elpitiya - Opatha - Avittawa	4.00	Sout	2	600
194	13/1	B019	Anamaduna - Usweva - Galgamuna	39.00	Nup	9	600
22	$2 / 3 \mathrm{k}$	13431	Ulapane - Misseliawa	23.00	Cent	4	600
15	$7 / 8 \mathrm{~m}$	B05?	Bibile - Uraniya - Mahiyangana	40.00	Uva	21	500
24	$12 / 4 \mathrm{~m}$	13454	Wanduranbe - Ethunale - Yakkatuwa	36.00	Sont		500
25	$4 / 9 \mathrm{~m}$	13454	Wondurambe - Ethumale - Yakkatura	36.00	Sout	10	500
35	$2 / 16 \mathrm{~m}$	13454	Wandurambe - Ethumale - Yakkaluwa	36.00	Sout		500
41	$10 / 3 \mathrm{~m}$	B454	Wandurambe - Ethunale - Yakkaluwa	36.00	Sout	10	500
140	$23 / 3 \mathrm{k}$	13332	Nunara Eliya - Uda Pussellawa	46.00	Cent	20	500
62	2913 k	B423	Tonigala - Kalawewa - Galewela	46.00	Nep	14	500
63	$27 / 2 \mathrm{k}$	13423	Tonigata - Kalawewa - Galewela	46.00	Nc	14	500
73	28/2k	B423	Tonigala - Kalawewa - Galewela	46.00	Nap	14	500
139	$25 / 1 \mathrm{k}$	13312	Naula - Elahera - Kaluganga	33.00	Cent	14	400
181	11/5k	13312	Naula - Elabera - Kahuganga	33.00	Conit	14	400
196	$13 / 3 \mathrm{~m}$	13312	Naula - Elalera - Kaluganga	33.00	Cent	14	400
135	$5 / 9 \mathrm{k}$	13249	lady Macillums Drive	6.00	Ceat		400
208	$10 / 4 \mathrm{k}$	13172	Kadugannawa - Gampola	17.00	Cent	16	400
71	$1 / 5 \mathrm{~m}$	B227	Kiriyankalli - Andigama	14.00	Nup		300
10	$4 / 2 \mathrm{~m}$	13478	Wilakatupotha - Galewatha - Kumbukgete	22.00	Nup	11	300
200	6.6 m	13478 ;	Wilakathpotha - Ganewatha - Kumbukgete	22.00	Nup	11	300
128	$15 / 4 \mathrm{k}$	13097	Demodita - Spring Valley - Badulla	21.00	Uya	4	100
57	$2 / 2 \mathrm{~m}$	13116	Lnibilinecgana Daulagala - Peuideniya	11.00	Cent	not fix	
17	2/3 41	13137	Ginoya - Bolawatle - Dankotura	5.00	Nup	not fix	
32	211 k	B137	Ginoya-Bolawalte-Dankotu*a	5.00	Nup	not fix	
38	$8 / 1 \mathrm{k}$	13265	Malwala - Cancy	14.00	Sab	not fix	
141	$1 / 1 \mathrm{k}$	B344	Padinupa - Vellaveli	6.00	Norlias	not fix	
143	$3 / 3 \mathrm{k}$	13374	Potuvil - Panama	18.00	NorEas	not fix	
186	$16 / 4$	13374	Potuvil - Panama	18.00	Norlias	not fix	
193	$5 / 2$	13379	Putalam - Marichchikadai	66.00	Nup	not fix	
172	13/1	B424	Triacomake - Pilmoddai	55.00	Norlias	not tix	
[9]	$8 / 7 \mathrm{~m}$	18471	Welimada-Kitklees	18.00	Uva	not fix	

And the statistics of these bridges by priority ranking of route is shown in Table 4.3.

Roads by Priority	$\begin{array}{lr}\text { Bridge Number } & \text { Total } \\ & \text { Nat. A }\end{array}$	Nat. 3	Total
Ist Priority Nat.A	$\begin{array}{lllllllll} 84 & 55 & 1 & 27 & 75 & 76 & 108 & 120 \\ 79 & 99 & 175 & 29 & 28 & 95 & 96 \end{array}$	17	32
Nat. B	$\begin{array}{llllllll} 195 & 197 & 201 & 70 & 66 & 16 & 37 & 54 \\ 124 & 125 & 126 & 5 & 23 & 204 & 205 \\ 206 & 207 \end{array}$		
2nd Priority Nat.A	$\begin{array}{lllllllll} 86 & 93 & 46 & 47 & 36 & 106 & 212 & 119 \\ 102 & 203 & 174 & 48 & 49 & 50 & 51 & 12 \\ 97 & 98 & & & & & & \end{array}$	8	26
Nat.B	$\begin{array}{llllllllllllllllllllll}123 & 202 & 17 & 32 & 151 & 154 & 158\end{array}$		
3rd Priority Nat.A	$808991657752111613 \quad 9$	9	18
Nat ${ }^{\text {B }}$	$\begin{aligned} & 78 \quad 138 \\ & 192 \end{aligned}$		
4th Priority Nat.A	$\begin{array}{lllllllllllllllll}103 & 178 & 43 & 87 & 44 & 45 & 90 & 160 & 179 & 10\end{array}$	26	36
Nat. B	```lllllllllllllll 135 20 34 136 39 40 7 26 42 150 188}1449132\quad145:198\quad18```		
5th Priority Nat. A		45	53
Nat. B	$12255 \quad 56 \quad 127128 \quad 316768 \quad 208 \quad 69$ $\begin{array}{lllllllllll}133 & 71 & 72 & 38 & 60 & 139 & 61 & 144 & 21 & 62\end{array}$ $\begin{array}{lllllllllll}63 & 73 & 22 & 24 & 25 & 35 & 41 & 74 & 78 & 13 & 14\end{array}$ $\begin{array}{llllllllll}8 & 194 & 15 & 140 & 181 & 196 & 10 & 200 & 141\end{array}$ $143 \quad 186 \quad 193 \quad 1729$		

Total

4.4 Classification of Study Bridges

4.4.1 Classification under Type of Bridge

As part of preparatory study all the bridges were grouped into different types of bridges. The followings are the types of bridges in the list of 206 bridges prepared by RDA. Table 4.4 shows classification under the type. Their practice of classification is different from the Japanese one (material used, no. of span, structural type), but it states the construction method only.

Type of Bridge

- RCS : Reinforced Concrete Slab
\therefore RCB : Reinforced Concrete Beam
- PSC / PRE : Prestressed Pretensioned Beam
- PSC/POS : Prestressed Posttensioned Beam
- ARCH/BR
$\therefore \mathrm{ARCH} / \mathrm{ST}$
- ARCH/CO
$-\quad$ STONE
- TIMBER
- ST.TR/T
- ST. TR/D
- RSJ/RCS

Brick Arch Bridge
Stone Arch Bridge
Concrete Arch Bridge
Stone Bridge
Timber Bridge
Steel Through Trusses

- RSJ/BUC

Steel Deck Trusses
R/C Slab Over Steel Girder
Buckle Plate Over Steel Girder

- RSJ/COR
- RSJ/T
- Stl. Grd (SG)
- Stl Trs

Corrugated Plate Over Steel Girder
Timber Deck Over RSJ
\therefore RCC

Steel Girder
Steel Truss
Reinforced Concrete

Table 4.4 List of Bridges Classified under Types

---3	A-Route	B-Route	Σ
ST. TR/	14	8	22
ST. TR/T	2	2	4
ST. TR / RCS	1	-	1
ST. TR / H:	-	3	3
ST, TR / COR	-	2	2
RSJ / RCS	13	16	29
RSI/CON	-	1	1
RSJ / BUC	8	16	24
ARCH/RSJ	1	-	1
RSJ / COR	2	6	8
RSI	12	16	28
RSJ / C	-	1	1
RSJ/T	3	7	10
ST $\cdot \mathrm{G}$	1	-	1
BAILEY	2	13	15
ARCH / BR	1	1	2
ARCH / ST	5	2	7
ARCH/CC	-	1	1
RCS	12	7	19
RCB	1	1	2
$\mathrm{RCB} / \mathrm{RCS}$	2	1	3
PSC.	2	2	4
PSC / PRE	1	3	4
CAUSEWAY	-	10	10
TIMBER	1	-	1
MASONRY	1	-	1
N.A (not applicable)	1	$\cdots 1$	2
Σ 边	86	$\therefore 120$	206

4.4.2 Classification under Completed Year

The classification in completed year is important in order to know the relevant design standard in Sri Lanka at that time. However, only 49 nos. (23.7%) were found from the List of 206 Bridges. The result is shown in Table 4.5.

Table 4.5 List of Bridges Classified under Completed Year

Completed Year	SER No.	Type	Route	Existing Defects
1860	99	ST.TR/DE	AA 009	Narrow
1869	77	ST.TR	AA 019	Narrow
1880	139	CAUSEWAY	B 312	Weak/Narrow
1889	9	ST.TR/COR	B 471	Narrow
1890	19	ST.TR/I	B 207	Weak/Narrow

Completed Year	SER No.	Type	Route	Existing Defects
1894	85	ARCLI/BR	AA 001	Narrow. Poor
1898	27	ARCH/ST	AA 002	Weak/Narrow
1898	80	RSJ/BUC	AA 003	Weak/Narrow
1898	23	ST.TR/	B 435	Narrow
1899	53	ST.TR/	AA 021	Narrow
1900	97	RSI/	AA 008	Narrow
1900	129	ARCH/B	B 127	Weak/Narrow
1900	131	RSJ/RCS	B 127	Weak
1905	11	ST.TR	AA 005	Weak/Narrow
1917	130	ST.TR	B 127	Weak
1918	79	RSJ/RCS	AA 003	Weak/Narrow
1918	78	RSI/BUC	B 199	Narrow
1920	12	ST.TR	AA 008	Narrow
1924	59	RSJ/	B 157	Narrow
1924	41	RCS/	B 454	Narrow
1926	93	ST.TR/	AA 005	Narrow
1927	39	RSJ/C	B 349	Weak/Narrow
1929	29	RCS	AA 002	Narrow
1929	48	ST.TR/	AA 008	Narsow
1929	51	ST.TR	AA 008	Narrow
1930	49	ST.TR/	AA 008	Narrow
1930	66	RSJ	B 111	Poor Alignment
1930	58	RSJ/RCS	B 157	Weak/Narrow
1930	21	ST.TR/H	B 421	Narrow
1930	40	RSJ	B 421	Weak/Narrow
1930	200	STTR/H	B 478	Narrow
1932	28	ST.TR/	AA 002	Weak/Narrow
1933	84	ST.TR/	AA001	Narrow
1940	50	ST.TR/	AA 008	Narrow
1940	98	RSJ/RCS	AA 008	Narrow
1940	173	RSJ/BUC	B 304	Weak
1940	74	RSJ/BUC	B 466	Natrow
1945	35	PSC/PRE	B 454	Narrow
1960	67	RSJ	B 157	Narrow
- 1960	70	RSJ/RCS	B 295	Narrow
1960	181	RSJ/RCS	B 312	Narrow
1963	205	RCS	B 435	Narrow
1963	206	RCS	B 435	Narrow
1964	42	RSJ/RCS	B 464	Narrow
1965	140	RSJ/RCS	B 332	Weak/Narrow
1965	143	ST.R/	13 374	Corroded
1967	65	RSJ	AA 011	Weak/Narrow
1970	149	RCS	B 421	Narrow
1993	202	BAILEY	B 304	Damaged

4.5 Selection Results of the 101 Bridges for Preliminary Inspection

Considering road functional viewpoint which is shown in Table 4.3, the representative bridges which cover all types of structures and defects were selected based on the above criteria.

A list of 101 bridges which presents the selection procedure is shown in Table 4.6.
Table 4.6 Seicction Results on the 101 Bridges for Preliminary Inspection

SRS	ROUT:	BRIDCE	traffic	YEAR OF	TYPE OF	What		ELISTIS	W10:I	PROP	IDTii	ExIStiN:	INENTORY	UXDER	Saciuity	LEST TRAFIC	KUPMT	mbabution
M	na	的	voi, bx:	const	3) $0^{\text {de }}$	MST	PROP	CARR	OHEA,	CARK	OVRa.	DEFECTS	Marction	construction	PROM15, ${ }^{\text {P }}$	B, ICHT 8 OHFECT	FIND	
84	A1001	$110 / 2 \mathrm{x}$	16.100	1933	ST. TR/	68.50 ;	80.00	5.50	8.30	7.40	12.00	Narrow					O(F.S)	\bigcirc
85	MOO:	91/2 1	7.100	189%	ARCII/BR	71.601	75.00	6.40	7.50	7.40	10.00	Nartow, Poor Aline					O(:S)	\bigcirc
0	14002	104/1x		1933	RCD/RCS	57.701		5.49	5.79	.			-					-
	14002	$64 / 1 \times$	6.700		RCa/RCs	29.701	30.00	7.30	9.50	7.40	10.40	Narrow, Jamage						0
27	MOO2	$87 / 1 \mathrm{k}$	6.700	1898	ARCI/ $/$ ST	33.401	33.00	6.70	6.70	7.40	9.80	Narrow, Micak					\bigcirc	0
28	M 002	$81 / 18$	6.700	1932	(ST. TR/	46.001	54.40	5.50	5.50	7.40	11.40	Narrow, Micak					0	-
291	11002	$72 / 3 \mathrm{Ni}$	6.700	1029	Res	7.60	16.28	5.40	5.50	7.40	10.40	Narrow					\bigcirc	-
751	$1 \mathrm{M002}$	$62 / 2 \mathrm{~K}$	8.900		ST. TR/	40.50		5.35	5.65	7.40	12.00	Tcak					O(f.S)	0
76	M1002	62/ : $\times 1$	8.900		RSJ/RCS	91.30		5.80	6.00	7.40	12.00	Yeak					O(F.S)	0
86	M002	$199 / 3 \times$	3.400		[190/	7.401		8.30	10.00			Sctiled						\bigcirc
871	$1 \mathrm{M002}$	256/18	1.600		IPSC....	4.90		5.00	5.60			ivarrow						0
21	14003	$43 / 25$	17.600	1918	RSJ/RCS	69.60	70.00	4.32	6.25	7.40	10.40	Sarrow						\bigcirc
80	M003!	96/28	2600	1898	[4SS/BUC	104.0011	111280	4.30	5. 50	7.40	9.80	Narrow, Heak						O
33	M003	JFB			ST.TR/	228.00		7.40	9.50	\cdots		Weak	\sim					-
$43!$	A1004:	206/ 98	300		ARCT/ST	34.00	34.00	4.90		7.40	9. 80	Narrow						\bigcirc
	A1004	196/7 K	300		RRS/RCS	30.90	33.00	4.60	4.60	7.40	9.80	Narrow						\bigcirc
45	A 004	206/10 8	300		ARCI/ST	38.90	37.00	4.25	4.25	7.40	9.80	Narrox						\bigcirc
881	M1004	$371 / 1$			PSC/PR	78.941		3.84	4.27.			Corrd				O		-
80	A 1208	163/9 $\mathrm{K}^{\text {c }}$	1.100		PSS /RCS	4.80		4.20	4.50			Narrow						0
901	A 1004	19972 K	300		[RSJ/RCS	6.90.	7.00	5.20	5.65	7.40	9.80	hicak. Damaxc				0		-
12	M004	$169 / 9 \mathrm{x}$	1.100		RCS	13.80	$13.80{ }^{\circ}$	6.80	7.10	7.40	9.80	Sctt Led						0
92	19004	427/ 1 8			St. TR/	289.00		4.60	5.60		\cdots	Damage			\bigcirc			-
1531	M1004	427/ 1 k			5T. TK/	202001		4.50	4.50			reak			\bigcirc			-
178	A1004	192/2	300		RSs/3bic	44.401	48.00	4.65	4. 65	7.40	0.80	Narrow						\bigcirc
[183]	1 A1004	361/1c			!								-	0		0		-
	A 1005	\| $33 / 1 \times 1$	2.800	1905	[ST. TR/	48.401	48.00	4.30	4.30	7.40	11.70	Natrow. Wcak		\bigcirc				-
	M 005	$242 / 28$			RSJ/BUC	21.20	20.00	4.50	4.80	7.40	9.80	Marrow, tcak				0		-
82	M 1005	$242 / 18$			RSJ/BJC	65.00	65.00	3. 80	4.00	7.40	9.80	Narrow. Xcak				0		\sim
	\| M 005	21/4 K	5.000		ST. TR/	98.20	100.00	4.90	4.90	7.40	1200	Narrow						0
94	Ha005	283/7 7			RCS	36.50		4.70	5.80			Damagc			0			-
189	M 1005	24911 8			BALET	21.35						Neak				0		-
25	M 1006	$3 / 28$	5.500		RS//RCS	11.501	12.00	5.50	6.00	7.40	10.00	Narrow	\therefore...				0	-
96	M 1006	8/1x	5.900		St. TR/RCS	97.80	99. 00	5.50	7.10	7.40	12.00	Narrow					0	-
174	As006	86/18	3.400		RCS	10.401	16.23	6.10	7.35	7.40	9.80	Poor Aline		,			0	-

- $-(2)$																			
!SR'	ROUTE	BRIDCE	trapgic	year of:	TYPE OR	LENGTI		distinc	ridill	PROP Wi	Iotil	exisfinc	Areryory	UNDER	SECURITY	IEsy grapte	griatit	dumution	
Na	Na.	ㅅ.	VOLUXE	CONST	BRIDCE	EXST	PROP	CARR	OVRA	CARK	OVRAL	DEFECTS	ISPR mition SUET	constructios	PROBICN	LIGTTHEEET	pus		
203	M006	$71 / 3 \mathrm{Ki}$	3.800		RCS	5.801		6.50				Damaye					0	-	
46	M007	73/5	1.500	.	ARCII/ST	12.20	13.00	6.20	6.50	6.80	9.20	Narrok						\bigcirc	
47	14007	70/8	1.500		ARCI/ $/$ ST	12.20	13.00	5.20	6.00	6.80	9.20	Narrow						O	
12	M008	$49 / 6 \mathrm{~K}$	1.900	1920	ST. TR/	1380	24.00	3.15	3.60	7.40	10.60	Narrow					0	-	
48	M008	$25 / 4 \mathrm{~K}$	3.400	1929	ST. TR/	2290	28.00	5.50	6.50	7.40	9.80	Narrow					\bigcirc	-	
49	M008i	25/3 1	3.400	1830	ST. TR/	13.60	13.00	4.30	4.80	7.40	\cdots	Narrow					\bigcirc	-	
50	M1008	35/1K	3.400	1940	ST. TR/	38.20	33.001	3.90	3.90	7.40	9.80	Narrow					\bigcirc	-	
51	M 008	24/: K	3.400	1929	ST. TR/	13.60	13.00	5.40	6.00	7.40	9.80	Narrow					\bigcirc	-	
97.	M008	58/2 ${ }^{\text {K }}$	1.900	1900	[RSS/	8.801	8.60	4.55	4.55	3.40	9.80	Narrow		0					
98	11008	59/2	1.900	1840	RS/RCS	8.90	8.00	3.60	3.80	7.40	0.80	Narrow					0		
99	A 009	5/ 1 X	6.200	1860	ST. TR/	137.4011	140.00	6.70	9.70	7.40	12.00	Narrow						0	
100	M00s! 1	161/2 ${ }^{1}$			Res	6.10		6.10	10.30			Damage			\bigcirc				
$10:$	M009 2	200/ 1			MASONRY	17.001		11.50	12.50			Damage			0			-	
160	\|M009	1	115/5x	1.300		RSJ/RCS	19.20	20.00	4.30	6.40	7.40	9.80	Dadly Dam			0			-
2	(1010	75/ 1 k	1.200		[RSJ/COR	122.40 1	120.00	5.60	5.60	6.80	9.20	Narcow						O	
35	ADO:O	4811.	3.300		RSJ/BUC	31.20	32.00	5.20	5.40	7.40	10.40	Narrow, Ticak						0	
102	MOIO	$25 / 2 \mathrm{~K}$	3.600		RSJ/COR	17.20	17.00	5.60	5.80	7.40	9. 80	Narrow, Neak		*				0	
65	M011!	24/3 8	1.700	1367	RSS/RCS	9.75	11.00	5.64:	5.64:	7.40	9.80	Narrow, R'cak						0	
161	MOH!	$50 / 4$	1.700		[$\mathrm{KS} / 1$	230.00		4.70	6.00	7.40	9.80	Narrow	-					-	
103	M012	$16 / 1 \mathrm{~K}$	1700		RCs	5.20		7.90	7.90			* Cak.			-			0	
162	M0:41	$147 / 3$			\|ST. TK/	122.001		4.20		7.40	9.80	Narrow, Mcak			0			-	
163	M014	[114/3			Kss/t	31:10	31.00	4.57	4.70	6.80	9.20	Damage			0			-	
106	Mad: 5	1/1			RSS/RCS	14.60		9.20	12.20			Nurrow			0			-	
105	MA0:5	25/2X			RS	8.501		6.80	7.50			Narrow			0				
	MO17	25/5 \times	1. 1.400		RS/	10.50	11.00	3.50	3.55	7.40	9.80	Narrow. Yeak							
52	2AN017	$2 / 28$	81.400		RSJ/T	10.401	10.00	4.30	4.40	6.80	9.20	Narrow, Damage						0	
	[M017	38/18	8		RSJ/T	+6.40.		4.55	4.55			Marrow, Hicak	-	0				=	
77	7 MOLS	1/28	A 2.100	1869	RSJ/RCS	120.35		5.30	5.70	7.40	9.80	Narrow						0	
53	M021]	$36 / 3 \mathrm{k}$	E 100	1899	ST. TR/	33.50	40.00	3.38	6.05	7.40	9.80	Karrow						\bigcirc	
100	6, 1026:	69118	$\times 1.400$	-	RSM/RCS	14.301	15. 60	3.50	4.70	7.40	9.40	karrow		+				0	
164	M027	$14 / 28$			RCB	47.00	47.30	7.30	7.80	7.40	9.80	Meak	-					-	
165	M029	17/3			ics	10.601	11.00	1 3.00	4.20	6.80	9.20	Narrow, Damage			0			-	
160	614029	1/7			NS	3.901	5. 00	3.90	4.26	6.80	9. 20	Daname			\bigcirc			-	
107	T M 032	$30 / 2$			RSJ/RCS	5.001		3.00	5.50			Corrd			0				

(A-ROUTR)-(3)

(B-ROUTE)-(1)

	ROUTE	BRIDCE 1	traffic	YEAR OF	type of	Lenct		cistang	Y1074	miop	DT:	gisting	Inveitory	CNDER	SECURITY	STRAEIC	RUWAIT	Emanytas	
Na	is	Sa	vot.exs:	coss	bride	Exst	Prop	CARR	OYRAL	CARR	OVRal	derects	sisert	constructios	PROBLEX	flicit derect	Fexo		
	O14,	5/5 ${ }^{\prime}$:. 828		RSJ/BUC	20.60		5.50	5.65			Hcak						0	
194	B 0.91	13/1			causeliay	\cdots							-					-	
180	B 027	1/1 k			RCS	16.90		5.30	5.30			-	-					-	
121	B 033	$2 / 2 \mathrm{x}$			Res	4.80		4.80	5.00			Damage			0			-	
	30391	7/7x			BMLEY	15.50	16.00	3.20		6.20	8.60					0		-	
122	13045	$19 / 18$	760		RSJ/RCS	18.50		3.45	5.00			Narrow, Wcak						0	
13	B 056	$4 / 5$	780		CNISETM	53.30	40.50	5.50	5.50	6.80	9.20	Submersib		\bigcirc				-	
	B 056	$10 / 5$	780		caisemay	30.50	60.00	5.50	5.50	7.40	10.40	Submersio	-	0				-	
	B. 057!	7/2 ${ }^{\text {x }}$	530		CaUSEMY	16.76	27.001	5.80	5.80	6.80	9.20	Narrow; Submersib	-	\bigcirc				-	
223	8079	23/ $2 \times$	1.880.		PSC/PRE	12.00	1200	3.65	4.25	7.40	11.00	Narrow						0	
16	B 084	24/5 1	8.060		[s/	9.70	9.83	4.50	4.50	7.40	9.80	Narrow, Ncak	-				0	-	
	13084	26/3 \times	8.060		BAILEY	21.701	10.74	4.20	4.20	7.40	9.80	Narrow					0	-	
	B 084	31/4 X	8.060		RSI/RCS	10.801	11.00	5.50	5.50	7.40	11.00	Narrow					0	-	
124	B 034	36/2 X	8.060		RSJ/BUC	4.70	4.70	4.60	4.60	7.40	11.00	! Na arow					\bigcirc	-	
125	13084	27/7 \times	8.060		RSII	4.201	4.001	5.70	5.70	7.40	11.00	Narrow	-						
126	B 084	34/18	18.060		RSI/	7.00	7.00	4.50	4.50	7.40	12.00	Narrow, Reak						-	
	P 093	8/1 K	840		Rss/Buc	20.401	22.00	4.55	4.55	6.80	9. 20	Narrow						C	
	[8 093	$3 / 7 \mathrm{~K}$	840		RSS/BUC	10.101	10.10	4.70	4.70	6.80	9.20	Narrow							
127	B 093	$13 / 2 \mathrm{~N}$	840		RST/T	10.30	11.001	4.25	4. 25	6.80	9.20	Narrow	-					\bigcirc	
128	B 097	15/4 ${ }^{1 /}$	140		TRST/RCS	15.30	15.30	3.00	3.50	7.40	9.80.	Narrow, Heak	-					0	
	B 111	4/2x	. 6.710	1330	Rsj/Cor	36.80	42.00	5.50	6.40	7.40	11.00	Poor Aline						0	
	8114	$3 / 3 \mathrm{~K}$	- 630		RSS/	1220		3.05	3.50			Ycak	-					\bigcirc	
	\|B 116	$2 / 2 \times$			Psi/RCS	10.001	10.00	4.50		6.80	9.20	Sarrow						0	
	13 127	$2 / 7 \times$	1.240	1900	ARCI/ $/ \mathrm{BR}$	4.501	4.30	4.45	5.25.	6.80	9.20	Mcak ${ }^{\text {\% }}$						0	
	\|B 127		$7 / \mathrm{K}$	1.240	1917	ST, Ti/	24.75	26.001	4.20	5.35	7.40	9.80	Narrow, \%cak						0
	[127	$1 / 2 \mathrm{~K}$	¢ i .240	1800	RSJ/RCS	5. 801	7.00	4.20	4.40	7.40	9.80	Narrow. Meak						0	
	18 129	$18 / 4 \mathrm{x}$	$\times 1.570$		RSJ/BuC	7.201	7.00	3.45	3.70	6.80	9.20	Narrow, Damage							
	: B :56	24/23 K			RCB/RCS	8.60		4.10	350			Heak	-					-	
	S\|3 156	24/78			$\mathrm{RSJ} / \mathrm{T}$	6.00		270	2.70			Fcak	-					-	
	\| 1 : 57 !	1213 x	N 1.040		RSS/RCS	68.85	71.50	3.30	380	6.80	9.20	Marrow, Mcak						0	
	8\|B 157]	44/3 K	K 1.040	1930	RSJ/RCS	10.30	10.00	- 3.40	4.20	6.80	9.20	Narrow. Weak						0	
	9 B 157	43/48	$\times 1.040$	1924	ims/COR	45.10	46.00	3.30	3.80	6.80	9.20	Narrow						0	
	7, 135	23/2K	K 710	1960	RSJ/RCS	19:40	20.00	3.50	3.50	8.80	9.20	Narrow						0	
	8 B^{1581}	11/11	$\times 1.46$		RS/ $/$	31.20	30.00	- 3.40	3.80	6.80	9.20	Narrow						0	

SER	ROUTE	BRIDCE	tRaftic	year of:	TYPE OF	LSMCT		existing	M1076	PROP Y	IOT1	existinc.	InYertory		SECURITY	LESS thatric YOUYE	kutat	enaution
Ma	Na	N	Voluxe	COMST	BRIDE	EXST	PROP	CARR	OVRAL	CARR	OVRAL	DEFECTS	MSPCHON	constructios	PROBLEX	LICITM DEEECT	FiND	
68	B 164	1/5	870		RS/ $/$	97.70	46.00	3.90	6.00	6.00		Narrow, Yeak						0
208	\| 172	$1014 \times$	350		BMLEY	18.30		4.20	4.80						\cdots			0
691	[B188	$3 / 5$	870		ST. TR/COR	13.60	16.00	3.00	3.60	6.80	9.20	Narrow						0
1133	18188	5/2	870		RSJ/COY	9.00	9.00	3.50	3.60	6.80	9.20	Narrow						\bigcirc
78	\| 199	5/5 ${ }^{5 / 1}$	1.980	1918	RSJ/BUC	127.20		6.65	6.65	7.40	10.00	Narrow						\bigcirc
19	13207	6/10 \%	1.220	1890	ST. TR/11	32401	40.001	4.30	4.30	6.80	9.20	Narrow, Yeak						0
71	' 227	1/5 x	320		ST. TR	16.601	16.00	4.25	5.40	6.80	0.20	Ycak						0
134	B 230	$4 / 4$			ARCII/ST	12.191		4.80	5.50	.		Damage				0		-
	'B240'	14/ 7 K	2. 120	-	RSJ/	4.80	7.10	4.20	5.20	7. 40	10.40	Narrow, Meak		\bigcirc				-
184	B 274	34/1 \times			PSC/PRE	59.80	59.80	4.26	4.26	.			-			0		-
190	! 274	33/3			RCC/BAEYY	4.701		7.201	7.20			Damage	-	0				-
72	8268	8/6x	2.700		ST. TR/T	12.50	12.00	4.30	4.82	6.80	9.20	Damage						0
135	\|B249]	5/981	400		(ssJ/	10.001		4.50	4.75	6.80	9.20	Narrow. Ycak	-)
20	\| B 264	16/6	1.690		RSI/RCS	14.60	14.001	4.25	4.25	7.40	2.80	\| Marrow						\bigcirc
34	B 264	5/i	1.690		ST. $7 R / T$	27.60	27.00	4.25	4.25	6.80	9.20	Narrow, Heak						0
38	B 265 \|	$8 / 18$	-		RSJ/T	17.00	19.701	3.30	3.30	6.80	9.20	Narrow. Neak						0
136	B 272	9/ $4 \times$	1.730		RSS/RCS	31.30	38.00	4.20	4.35	7.40	9.80	Narrow, Weak	-					0
192	[B 272	3/2x!	2.190		RSJ/	3.10		6.09	9.45			Prak		0				-
137	13 276:	$2 / 1$			MRCI/ST	12.80		4.60	5.50			Damage				0		-
195	1 B 288	$10 / 28$	10.800		iRSj/COR	5.301		5.50	5.50			Narrow, Poor Aline						0
197	73238	$10 / 35$	10.800		ST. TR/	52.80		5.60	6.70			Sarrow, Poor Aline						0
201	1 B 288	$10 / 5 \mathrm{~K}$	10.800		ARCI/ $/ \mathrm{CC}$	7.201		7.00	8.00			Poor Aline						0
3	[13255	3/6 6	10.700	1960	RSJ/RCS	43.50	45.00	5.50	5.50	7.40	11.00	Narrow						0
60	018300	1013	- 830		caustay	6.70.	32.50	4.60	4.60	6. 80	9.20	Narrow	-					0
	8; 3 304]	$16 / 5$	2.770		RSS/	1200	12.00	- 4.60	4.80	6.80	9. 20	Pcak						0
173	3/B 304]	$17 / 18$	- 2.770	1940	RSJ/BUC	7.00		5.75	5. 75			Corrd						0
202	2 [3 304]	$14 / 5 \mathrm{~K}$	K 2.770	1993	Bamby.	3.90		5.70	5.70			Oanasc	-					0
139	818312	25/1 1	- 430	1880	chusenay	68.40	97.40	3.00	3.50	6.80	9.20	Narrow, \%cak	-					0
	1 B 3121	$11 / 5 \times$		1960	RSJ/RCS	:8.90		3.50	4.11			Narrow	-			\bigcirc		-
196	63312	[13/3x]			BAILEY	12.20		4.80	4.80				-			0		-
	63322	3813 \times	8 3.770		BALEY	99.00	98.00	+ 4.95	4.95	7.40	11.00		-	0				-
140	0 B 322	23/3	5-470	1365	RSJ/RCS	14.50		4.00	4.60	6.80	9.20	Narrow, Yeak	-			0		-
	113 344	1/18			MILEY	144.501		6.00	+ 9.60						0			-
18	$7{ }^{\text {B } 346}$	$19 / 3 \mathrm{x}$			BMILEY	10.38		350	3.65				-	0				-

(3-ROUTE)-(A)																		
SER	roure	Bridee	tmancic	YEAR OF	TYPE of	LexG		EXISTINO	R10Tu	PROP	IDTI	EXISTING	Nventory	UNDER	SECURITY	CxTmuple	guxait	aramaion
Ma	Na	Na	volune	CONST	8RPDCE:	EXST	PROP	CARR	OrRai	CARR	OVRal	DERECTS -	Nspection SuER	COSSTRUCTION:	PROBLEX	LIGIT ${ }^{8}$ Derect	PUND	
15318	\| 445	18/3 ${ }^{1}$			IRSJ/BUC	19.50	20.00	3.50	3.50	7.40	9.80	Narrow	-					-
15418	B 445	$9 / 4$	4.310		RSS/BUC	10.50		4.80	6.80	6.80		Corrd						0
18518	134531	$2 / 5 \times$		1 :	BMLLELY	24.40		4.00	4.10			Sarrow	-	0				-
$24 \mid$ B	B 454	$12 / 4 \times$	480		\% S / T	11.00	12.00	275	370	6.80	9.20	Narrox. Xicak						0
2518	8454	4/9 ${ }^{\text {y }}$	480		RSS/RCS	25.01	27.001	3.00	3.30	6.80	9.20	Narrow. Heak						0
35 B	1354	$2 / 16 \mathrm{x}$	480	1945	PSC/PaS	23:60	24.00	3.00	3.25	6.30	9.20	Narrow						0
	B 454	$10 / 3 \times$	480	1924.	RCS/	7.00	12.00	3.70	4.00	6.80	9.20	Narrow, \%cak						0
1155 [13 481!	15/10			BaCLEY	12.20	12.20	4.30	4.90	7.40	9.80	*cak	-					-
15518	B 46 !	$28 / 3 \times$			[RS]	10.20	7.001	270	3. 90	6.80	2.20	Narcow	-					-
$157 / \mathrm{B}$	\| 461	28/ 2×1			[$\mathrm{SSJ} / \mathrm{BUC}$	24:80	. 1	3.05	3.25*			\|reak	-					-
26 ' ${ }^{\text {B }}$	B 462	101: 8	1.290		ST. TR/-	20.00	20.00	4.40	5. 20	7.40	9.80	Narrow	-					0
42.8	B 464]	3/3x	1.590	1964	[RSI/RCS	67.50	60.00	6.70	7.90	7.40	9.80	Narrow	-					0
741 B	B 466	$6 / 5 \mathrm{x}$	760	1940	RSS/BVC	10.20	10.00	5.68	5.68	6.80	9.20	Narrow						0
9 S	B 471	8/7 N		1889	\|ST. TR/COR	30.501	27.00	2.60	$2.75{ }^{\circ}$	7.40	10.30	Narrow		0				-
188:	B 472	3/4x			RSI/T	10.20		4.20	4.40				-	0				-
1.58\|B	[B 473]	3/2			ST. Ti/	13.70		4.30	5.20		Narrow. Heak	-					-
1018	[473 !	4/2 ${ }^{\text {x }}$	270		\|RSJ/BLC	57.50	54.00	4.20	4.70	6.80	9.20	Narrow, Weak		\bigcirc				-
20013	\|B 478	6/6 M			ST. TR/ $/ 1$	78.60		3.95	4.25			Narrow	-					-
	-																	
					I													64
	,				1			\cdots	-									
20918	13 146	21/1 K	2.700	1861	ARCI//BR	4.40		6:26	7.25									0
2210	18146	$6 / 3$ x	2.700	1942	[RSJ/RCS	23.70		3.54	4.20									0
2118	18146	8/3 K	2.700	1942	[RS//RCS	23.60		3.55	3.83									\bigcirc
				-														
	!			,														67
1	1											- . \cdot -						
		,							\cdots									
		I	,															

CHAPTER 5 PREIIMINARY INSPECTION

5.1 General

Preliminary Bridge Inspection has been carried out for selected 10) bridges mainly by visual inspection. The one of the purposes of this inspection is to investigate Bridge Rehabilitation Plan by understanding current condition of bridges and rehabilitation technique level in Sri Lanka, and then the results of this inspection shall reflect the Maintenance $\&$ Rehabilitation Guideline. The other purpose is to demonstrate field inspection techniques, to introduce inspection recording methods into RDA, and to recommend the required maintenance and rehabilitation works.

At the same time, the Preliminary Environmental Examination was carried out for selected 101 bridges in order to comprehend current environmental situation for the bridges and surrounding area and the likely impact.

The inspection procedure and summary of inspection results are presented in this Report. The inspection results for 101 bridges are described in two (2) separate booklets titled, and these report were submitted to RDA in October 1995.

5.2 Preliminary Inspection Procedure

5.2.1 Preparation Works

Prior to the Inspection, Bridge Inventory for 206 bridges made by RDA has been reviewed by the Study Team to refer their location for the " 101 bridges" to Route Map ($1: 500,000$) nade by RDA. In case of inconsistency occurs for its ID number, the Route Map has been assumed to be right. The inspection had been scheduled considering distance to and from the point, size and type of the bridge, road condition and other circumstances such as safety.

Three teams have been organized to cover all 101 bridges which are dotting all in Sri lanka. One team consists of one to two members from the Study Team and two released engineers from RDA. The following is actual assignment area for each team.

Colombo Team $:$	around Colombo city and the western of Sri Lanka,
Gasing in Colombo	
Galle Team	Southern part of Sri Lanka, basing in Galle
Kandy Team	$:$ Central part of Sri Lanka, basing in Kandy

Inspection sheets had been prepared prior to the inspection concerning makes of reliable Bridge Inventory, especially for RDA staff for their future use.

Conceming security of the Study Team, the Colombo Team and the Galle Team had carried out the Inspection with portable telephone and one vehicle, however, it had been impossible for the Kandy Team to use the portable telephone due to their
location, so that extra vehicle had been allocated for them.
Each team had been with the following instrument for the Inspection.

1. Survey instrument : Convex $(3 \mathrm{~m}, 5 \mathrm{~m})$, Holding scale, Steel tape (50 m)
Inclinometer, Concrete crack gage,
Plum bob, Slide caliper, Test hammer

Actual inspection progress is shown in Table 5.1.

5.2.2 Joint Isspection for Three Teams

To slandardize the criteria, joint inspection had been carried out for 8 bridges in 6 types as follows, all of which are especially common in Sri Lanka.

```
- PSC / PRE
- PCB
- STTR/T
-RSJ/COR
-RSJ/BUC
- ARCH/CO
```

Instant photographs of daniages on bridges had been taken to confirm the damage rating among the teams at the site.

5.2.3 Preliminary Bridge Inspection

The Inspection has been carried out by each team mentioned above.
(1) Visual Inspection

- any damages on main \& second members
- recording in the Inspection Sheets
(2) Measurement of Basic Dimensions
- bridge length, widti, cross section of girder, height of substructure
- sketching those dimensions in the Inspection Sheets
(3) Taking of Photographs
- complete view of bridge and present condition of damage parts
Table 5.1 Schedule of Preliminary Bridge Inspection

(4) Preliminary Environmental Examination
- current envirommental situation for the bridge and surrounding area and the likely impact
- recording in the Inspection Sheets

Details of the Preliminary Environmental Examination is stated in Chapter 16 in the Report.

Hearing

- regarding high flood level taken place in the past and any detour route for understanding the construction condition and environmental condition

5.2.4 Damage Rating Criteria

It is important for the visual inspection to observe any damage appeared on bridges along with the time passed by to understand the level of damage quantitatively. RDA, at present, carries out the visual inspection by rating "Good", "Fair", "Poor", and "Very Poor", and the Study Team basically have followed the rating criteria Actual rating has been carried out on a discussion between released engineers from RDA and the Study Tean for the following rating criteria.

Rating : Rating Criteria

1 No damage found in the results of inspection.
2 Damage found and requires routine maintenance inspection work.
3 Damage is critical and requires a detailed survey work to determine a necessity of rehabilitation works.
4 Damage is very critical and requires urgent rehabilitation work, load limitation or restriction.

Rating criteria of each member for bridge inspection is shown in "Bridge Inspection, Maintenatice \& Rehabilitation Guideline".

5.3 Overall Evaluation Criteria

Overall evaluation for each bridge had been carried out quantitatively for easy judgment of damage. Each part of the bridge had been evaluated with weighted factor depending on its importance and then considered for the overall evaluation. The overall evaluation is the most useful data to determine the priority for bridge rehabilitation in Sri Lanka.

However, main structural member is subjected to the evaluation by the following reasons.

- Care should be taken on pavement consistently, therefore, pavement should not
be included in the determination of the priority.
- Because embedded expansion joint is adopted as well as shoe and cind part of bean, and visual inspection is impossible, besides, no temperature changes whole year. Therefore expansion joint and shoe don't have to be considered.
- To save the constaction cost, abutment was made jutting out into the river to shorten bridge length. Therefore the wing is assumed to be main part.

The weighted factor for each part used in the Inspection is as follows:

Part

Superstructure	Deck slab	0.8
	Main beam, Main frame	1.0
	Painting	0.5
Substructure	Abutment (incl foundation)	1.0
	Pier (incl foundation)	1.0
	Wing	0.5

Each evaluation point has been determined by multiplying the weighted factor to evaluation for each part, and bigger one has been chosen each for superstructure and substructure, respectively. Any of bigger one, cither superstructure or substructure, then has been chosen and determined as overall evaluation for each bridge.

There are few cases where shoe shall be the main part for its structural aspect, in the case, weighted factor for shoe shall be 0.5 .

CIIAPTER 6 RESULTS OF PRELIMINARY BRIDGE INSPECTION

6.1 General

Preliminary bridge inspection were conducted on 101 bridges by three (3) teams. The purpose of this inspection is to investigate the situation of existing bridge in more details compared with the present inspection forms prepared by RDA.

This chapter presents the general condition of the bridges and results of the analysis of preliminary inspection based on the Bridge Inventory on 101 bridges. And this results formed a basis for Bridge Rehabilitation Plan \& Maintenance Management Plan.

As a result of this inspection, many steel girder bridges which became the aim of this inspection could survive their design life span by providing some maintenance works such as redecking of slab on BUC or COR, repainting of main beams, and covering of main beams with seinforced concrete.

6.2 Present Condition of the Bridges Inspected

6.2.1 Bridge Condition Rating

Damages detected in various members were filled in the form of bridge inspection sheets. Damage rating in each member, component part rating, and, finally, overall bridge rating were carried out in accordance with the procedure stated in "Bridge Inspection, Maintenance, and Rehabilitation Guideline".

As a result of the above ratings and the overall bridge satings are summarized in Table 6.1 and Table 6.2.

	$\begin{gathered} \text { Route } \\ \text { No } \end{gathered}$	$\begin{array}{\|c\|} \text { BRIDOE } \\ \text { No. } \end{array}$	TRNTLC voluna yno	$\begin{gathered} \text { Yest } \\ \text { Oof } \\ \text { covst } \end{gathered}$	rysor briote		Theor		$\begin{array}{\|c} \text { Nos: } \\ \text { or } \\ \text { of } \\ \hline \end{array}$					cromorerct		Structurn dmactspation								PRONONED TREAMMAT						Pex		
												Tarom	Pam		Kan			Wax	super－	Sutb	veral											
	${ }^{\text {No }}$											（RDN）	Nim	Daxk	Frame	Abuc．	ner	mal	mancore	menate							\bigcirc					
89	Mami	9，	$\underline{\text { maxama }}$	${ }^{\text {mm }}$	AKCHas			64， 0	4	6，201	750			780	10，001	\bigcirc	\bigcirc		2	2	？	1	2，0	20	2.0	\bigcirc	\bigcirc				\bigcirc	5
	$1{ }^{1}$	$4 \times 1 \mathrm{k} 1$	1 ，		RCB			30.001	3	7 7．00｜	9.0			710	20，40	\bigcirc	－	．	4	z	2	2	． 0	20	40	\bigcirc			\bigcirc			
	Mame	m／7k！	550002	ix＊｜	Rockis			3320	．	\％．0．0	7101	7，40	9.901	\bigcirc	\cdots		1	$\stackrel{1}{2}$	3	3	1.0	3.0	30					\bigcirc		14		
	Amme	620］		1803	st．tarmincs		［Re\％ikcs	cos．0．	1	－ 3	－ 581			0	．	3	3	2	－	3	3.0	20	，	．	\bigcirc			\bigcirc		17		
	mams	${ }_{6} \mathbf{3} 1 \mathrm{ik}$ ］	R20091	14×2	St．tertrecs			90.901		，	43	7,4	12，00｜	\bigcirc	\bigcirc	z	$\stackrel{\sim}{2}$	2	？	2	20	2.8	20	．	\bigcirc			\bigcirc				
8	Mame	1\％\％	moma		P．CMRE：			7 no		\％ 20	980				\square	：	3	4	－	2	3.0	1.0	1.0					\bigcirc				
	Mami	3Wik	1 Lamam		Prcank			1851	－	TM	550			\bigcirc	．	4	2	3	－	2	32	3.	3.2	0	\％	\bigcirc				\geqslant		
212	ame	IWenk	－ 12.20 mm	1993	MCCOPE			42：38	3.	1000	15.0			\bigcirc	．	2	4	3	2	2	4.0	30	40	\cdots	\bigcirc					3		
	－	＊VIX	13820 mal	19818	Sritaticor	1408		6820，		${ }^{\text {msx }}$	［1910		10.40	O			，		！	3	$2{ }^{20}$	20	20	\bigcirc	0	\bigcirc						
	A，Ami：	mink	350941	ixhm	St teticoik			10，0，	4	$3 \times$	421	200		0	．	－	3	2	2	？	3.2	20		\bigcirc	\bigcirc	\bigcirc				\triangle		
4	－noes	－ 2 cosok．	20m		RRCOMR			39，401	3	4.25	4.70	1405	9×0	\bigcirc	．		？	？	1	2	20	20	20	－	\bigcirc							
	anom	isma	2 L		ESIRUC			313	3	$4{ }^{4} 8$	4.50	700！	980	0	\cdots	4	2	2	3	3	3	30	32	\bigcirc	\bigcirc	\bigcirc				30		
	Musab	20 M K	27003		ARCHCO			3.401		0.001	4.3	7．00	9.50	0	．		2	1	1	2	20	1.6	2.0	0	0					$\stackrel{4}{4}$		
－	\underline{M}	is．ax	\％${ }^{\text {cma }}$		RSJ／Cok			$4{ }^{4}$	II	， 3	4			－	．	3	$\stackrel{2}{2}$	3	\cdots	3	2.	30	1.	\bigcirc	\bigcirc	0				5		
	Masa		9003：		kemox			13×0	3	－$\square^{2} 7$	200	740	9.80	\bigcirc	．	－	4	4	3	\cdots	4.	3.0	4.					\bigcirc		62		
	－	ists．	29M		ST．Trencom			4.8500	．	400	4.50	2，001	9，00	\bigcirc	．	\cdot	$\stackrel{2}{2}$	2	2	2	3.2	30	3.3	\bigcirc	\bigcirc	\bigcirc				4		
	Ma0s	3iak		Bem	Stiritaue			89，0］	，	4.85	8.03	7.00	1200	0	．	$\stackrel{3}{2}$	2	2	3	2	20	30	3.0	\bigcirc	\bigcirc							
	M 4007	т＞3	13×200		Nichist．			117		S20，	Som	6．40）	9.01	．	．			：	．	1	10	10	1.0	\bigcirc	\bigcirc					7		
	Mam？	тоank：	$1 \times 0 \mathrm{mmi}$		NRCNST			14.57	1	$5: 0$	6.301	－ 0 \％		\bigcirc		\cdots	2	3		1	30	30	3.0	\bigcirc	\bigcirc					${ }_{4}$		
	Mos？	，vik	16230909	1850）	Sr．tancoor	18989	（wan）Femmy	13×80	6	4．70］	10.30	7．0．	12001	0	\bigcirc	3	2	2	2	，	24	2.0	2		\bigcirc	\bigcirc			－	8		
	Nalo	Tvik	1110 \％an		RSJİCOK			imem		S19	5 Ss，	740	9.80	\bigcirc	\wedge	2	2		1	：	20	10	29	\bigcirc	\bigcirc	\bigcirc						
	Maloi	avik！	31198031		RUUCCK			3112	3	－ 92	S 51	76	10，00．	\bigcirc	\wedge	2	2	2	1	2	20	20	20	\bigcirc	\bigcirc	\bigcirc				$\stackrel{\infty}{0}$		
－103！	Moliol	Pax	2，50xal	1930	R．N／COR		（wan：somatester	1720	2	9 9 al	5	7.0	9，00	0		3	：	2	$\stackrel{3}{2}$	2	30	20	3.0	\％	\％	\bigcirc				${ }_{4}$		
	Man	zank！	150093	1907	RJIIRCS			9.9	I	（	S 63	7.0	$4{ }^{4}$	\bigcirc	O	2	3	2		2	3.	20	30		\bigcirc			\bigcirc		${ }^{\text {m }}$		
	$\underline{4012}$	1×112	－ 4700 max	100	Kest			6 m	I	3×1	5 m			\bigcirc				？	．	2		20	30					\bigcirc				
	Aanil	20x	1230 ma		KSICOR			10.50		－ 320	－30t	5.80	4， 21	a	．	3	3	1		1	3.0	10	30.	\bigcirc	\bigcirc	0				106		
		vas	1080×1		$\underset{\substack{\text { ST．tiNTROR } \\ \text { RSTBUC }}}{ }$			39820．		3	S．		90			3.	3	$\bar{\square}$	：	，	3.0 30	20 20				。						
3	M0：31	wank	－	3092	Stitrates		Kedikcs	3495		\％	165	7.0	9.90	\because	0	1	2	1	$\stackrel{\square}{2}$	1	20	10	20	\bigcirc	0					415		
	M Moss	64ik	17200901		Revics			is， 6		130	4.70	7.0				2			i	1	1.6	10	1.5	\bigcirc	0							
	Nas	xak	3277／		Rswave			5751		330	370	6 ， 40	920	\bigcirc	－	，	3	2	－	2	30	20	30	\bigcirc	0	\bigcirc				127		
${ }_{19} 9$	nama	.$_{\text {VK }}$			archar		（wankuskcs	in．m		500	204	a， 00	920	0		$\stackrel{4}{2}$	$\stackrel{2}{2}$	2	－	2	$\underset{\sim}{3.0}$	30		－	\bigcirc		－					
	Nacs	1／2M	470 mmi		R．V／COR			4×0		S 5^{3}	9.90			\bigcirc		3	4	3	．	3	40	30	40				\bigcirc					
	Nanso	$120 \times$	530080		resmes			0.35		703	703	760			\cdots						30			\bigcirc						is		
30	Bma	Nix	［：300 ${ }^{\text {a }}$		kSIMCOR			2070		350	－3001			0	－	3	3	2	3	3	30	30	10	\bigcirc	\bigcirc	\bigcirc				120		
2m	So3s	iwik．	unce	एल	ST Tiktikes	Remm		ix． 30		3.4	3，681			0		2					40	10	40	0			0					
13	－${ }^{1030}$	2vand	19xiso		RC3		（ixamparich	120	2	${ }_{3}^{1 / 7}$	－ 42×1	240	12．00	\bigcirc	$\stackrel{\square}{\square}$	，	3	3	1	3	24	3.0	3.0	\bigcirc	\bigcirc					， 188		
5	－${ }^{\text {was }}$	wiok	670 mo					20,50	2	4.50	－4．801	6.801	9.0	0		\pm	2	1	：	：	32	10	32	0	\bigcirc	\bigcirc				$1{ }_{1} 12$		
${ }^{\text {s．}}$	Racal	vax	670．505		R．S．Juc			10，10		477	4	6． F ，			．	${ }^{-}$	2	1		：	3.2	1.0	32	0	0	\bigcirc						
127	bens	120．x	60029．		RSTCOK			10．70		43	4	6，00）		\bigcirc		4		3	．		3.2	30	3	0	O	0				${ }^{1 \times 0}$		
1238	Bom	IMMK，	120033	［4915	Stimercs			1467		1.09		200	4803	\bigcirc	\bigcirc	4	3	．		3	32	4.3	4.0					0		184		
4	Bit	mik	$\underline{6133} 86$	L900	St reftecir			35904		S． 50	530	740	11，00	0	\wedge	2	：	2	2	1	3.	30	30	－	\bigcirc	－				168		
	814	NM，	S609］		RSNRES			12.38		${ }_{3} 03$	365			0		2		2	4	3	0	40	40					0				
	8176	2 za	－1230，${ }^{\text {a }}$		KSSMSUC		ITWan）Fimme	8.30		4.80	－ 308	6．80｜	430	0		3	，	2	．	？	3.0	20	3.	\bigcirc	\bigcirc	\bigcirc				172		
120	Br_{3}	2 mp ，		19001	MCCRAR			4 4，0）	，	（ 4.48	S331	5．mo	4.30	0	－OVer		4	3	．	3	． 0	10	40					\bigcirc		120		
1.30	H12	${ }^{2} 1 \mathrm{k}$ K	10．3．94！	192］	St tricicor			34.74		1） 4.16	4.8	740	480	\bigcirc	－	1	？	1	－	2	20	1.	3.0	0	\bigcirc	\bigcirc				im		
m	8 mz	1 m	1044×8	19001	RSSICOR		(Rep)Amoment	\because 4		守	4－437	－	5	0				2		$=$	30	20	30	\bigcirc	0	0				${ }_{18} 8$		
209	sum	ank	2580／40	1931	accmis		（Wenfencoor	0.40			72.6					3	$\stackrel{3}{3}$	2		2	30	20	3.0					\bigcirc		1		
2io	－	$60 . \mathrm{K}$	$\underline{3} 5$		R．SURCS			3 3，70	3	119	－ 4.20			0	\cdots	1	2	1	1	2	20	10	20	\bigcirc	O					${ }^{10}$		
	птй	\％ ik ］	$\underline{1}$	1981	Kivec			23，50｜	3	11 3 sm	3，囘			0	－	－	2	？	I	1	20	20	20	0	O					198		

IIST OE ABHIREVIATION \& SYMBOI, FOR TABLE 6.1 \& 6.2

Type of Superstruclure

ARCIH/BR	Brick Arch Mridge
ARCH/CO	Concrete Arch Bridge
ARCIIS	Steel Arch Bridge
ARCI/ST	Stone Arch Bridge
BAIIEY	Bailey l3ridge
catuseway	Canseway Bridge
PSC/PRI:	Prestressed Pretensioned Concrete Beam
PSC/POS	Prestressed Posttensioned Concrete Beam
RCB	Reinfored Conicrete Beam Bridge
RCS	Reinforced Conicete Slab Bridge
Rensox	Reinforced Conkrete Box Cubert
Rsjabue	Buche Plate over Rolled Steel Joist
RSJ/COR	Comgated Plate over Rolled Steel Joist
MSIDEC	Deck lhate over Rolled Steel Joist
RSIRRCs	Reinforced Concrete Slab over Rotled Steel Joist
$\mathrm{RSW} / \mathrm{T}$	Timber over Rolled Steel Joist
ST.TRJ)	Steel lech Truss
ST.TR/	Steel Througle Thess

Type of Repair

EXI	Rxtension of Bridge
RED	Re-deking
REP	Repair
RESUPIR	Replacemen or Superstnicture
WDN	Widening of Bridge
MB	Main Beam

Gcometric Defects

O	Defict existed
A	Better to be considered
(vit)	Vertical Alignment

Structural Defects (Rating)

$1 \quad$: No danage detected on the basis of the inspection results.

2 Damage has teen deteted and a follow-up sur ey is required
3 There is signifiesit danage and a detailed survey nieds to be centicd ont to establish, wheller repair work is to be carriad out or not.
4 Here is substantial danage and urgent repair is required or the bridge bas to be closed to tatlic or restriction on whicle weight to be imposed

Proposed Treatment

0 Concewable Treatmen for the defiets

6.2.2 Classification of Bridges Inspected

It is important to classify bridges monder several types because every type has different way of rehabilitation.
(1) Superstructure

As there are 7 bridges which have multi-type of superstructures among 101 bridges, the total number of bridge is 108. The type of superstructure could be classified as follows:-

Table 6.3 Classification of Superstucture Type

Type of Bridge	No. of Bridge (\%)	Type of Superstacture	No. of Bridge (\%)
Wrought Iron'	77 : (71.3)	ST.TR/D	$2 \quad(1.9)$
Mild Stecl Bridge		ST.TR/T	$20:(18.5)$
Ihd Stel Bridg	.	RSJ	54 (50.0)
		$\mathrm{ARCH} / \mathrm{S}$	1 (0.9)
Concrate Bridge	: 14 (13.0)	RCS	$3 \quad(2.8)$
		RCB	3 (2.8)
		PSC / PRE	$6 \quad(5.6)$
		ARCH/ CO	2 (1.9)
Stone Masonn Bridge	3 (2.8)	ARCH/ST	3 : (2.8)
Brick Masoury Bridge	5 (4.6)	ARCH/BR	$5 \quad(4.6)$
Causeray	$4 \quad 37$	CAUSIEWAY	$4:(3.7)$
RC Bos Culven	$1 \quad(0.9)$	$\mathrm{RC} / \mathrm{BOX}$	1 (0.9)
Bailcy Bridge	4 (3.7)	BAILEY	1 (3.7)
Total	108 (100.0)	Total	108 (100.0)

Wrought iron/mild steel bridges could be classified under the type of deck slab as follows:

Table 6.4 Classification of Deck Slab

Type of Bridge	No.	Type of Deck Slab	No.
ST.TR/D	2	COR	2
ST.TR/T	20	BUC	1
		COR	11
		DEC	1
		RCS	7
RSJ	54	BUC	22
		COR	15
		DEC	1
		RCS	14
ARCH	1	COR	2
Total	71		1

Rre ofleck Slab	No of Bridse (?)	
COR	29	(37.7)
BUC	23	(29.9)
RCS	21	(27.3)
DEC	2	(2.6)
Timber	2	(2.6)
Total	$77(100.0)$	

Span length for each type of superstructure is shown in Table 6.5.
Table 6.5 Classification of Span Iength

Treo of Superstresture	Span Lengh (M)	Span (M)	No.	Remarks
RSJ	$3.1 \sim 10.8$	$\begin{array}{r} 3.1<L \leqq 5.0 \\ 5.0<L \leqq 8.0 \\ 8.0<L \leqq 10.0 \\ 10.0<L \leqq 10.8 \end{array}$	$\begin{array}{r} 6 \\ 13 \\ 12 \\ 22 \end{array}$	
STTR/D	$10.9 \sim 20.8$	$\begin{aligned} & \mathrm{L}=10.9 \\ & \mathrm{~L}=20.8 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$	
ST:TR/T	$12.1 \sim 51.0$	$\begin{aligned} & 12.1<L \leq 20.0 \\ & 20.0<L \leq 30.0 \\ & 30.0<L \leq 10.0 \\ & 40.0<L \leq 50.0 \\ & 50.0<L \leq 51.0 \end{aligned}$	9 5 $\quad 2$ 3 1	:
ARCII/S		$\mathrm{L}=23.0$	1	
RCS	$3.8 \sim 6.6$	$3.8<\mathrm{L} \leqq 6.6$	3	
RCB	$6.7 \sim 10.0$	$6.7<1 \leqq 10.0$	3	
PSC / PRE	$4.8 \sim 16.6$	$\begin{aligned} & 4.8<L \leqq 7.0 \\ & 7.0<L \leqq 10.7 \\ & 10.7<L \leqq 13.4 \\ & 13.4<L \leqq 16.2 \\ & 16.2<L \leqq 16.6 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathbf{2} \\ & 1 \\ & 1 \end{aligned}$	One T-beam brdg. T-beim brdg.
ARCH/ST	$6.0 \sim 9.9$	$6.0<1 \leq 9.9$	3	
ARCH/BR	$4.4 \sim 15.4$	$\begin{aligned} & 4.4<L \leqq 5.9 \\ & 10.9<1 \leqq 15.4 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	
CAUSEWAY	$2.3 \sim 3.8$	$\begin{aligned} & 2.3<L \leqslant 3.0 \\ & 3.0<L \leqslant 3.8 \end{aligned}$	2	
RC/BOX		$L=4.6$	1	

There are 49 bridges of which the year constructed is known (the oldest bridge is No. 99 , Katugastota Bridge constructed in 1860), and there are 37 bridges (80%) which were constacted within the era of British Dominion out of former. However, there are only 9 bridges (20%) which were constnacted after the independence.

It is assumed that most of other bridges had been constincted in early 20 th century by their materials used (wrought iron, mild steel, stone, brick, etc.) Bridges constructed in these years are recycled one in their materials except concrete bridges.
(2) Classification of Type of Superstricture

98 out of 101 bridges are classified under their type of abutment as follows (there are 3 bailey bridges which are serial No. 61, 202, and 208) (bridges of which serial are No. 57 and 58 have 2 different types of abuitment.):

Table 6.6 Classification of Type of Abutment

Type of Abutment	No. of Bridge (\%)
Stone Masonny	70
Brick Masonry	(70.0)
Concrele	$18(4.0)$
RSJ	(18.0)
Caisson	(3.0)
Pile Bent	$1 .(10)$
Total	1

55 bridges out of 101 bridges which are multi-span bridge are classitied under their type of pier as follows (except 3 bailey bridges mentioned above.) (bridge of which serial is No. 68 has 2 different types of pier.):

Table 6.7 Classification of Type of Pier

Type of Pier	No. of Bridge (\%)
Stone Masonry	27 (48.2)
Concrate	7 (12.5)
RSJ	9 (16.1)
Caisson	8 (14.3)
Pile Bent	3 (5.4)
RC Rigid Frame	1 (18)
Truss	1 (1.8)
Total	56 (100.0)

6.2.3 General Condition of Each Main Structure Member

Average part rating of each main structure is shown in Figure 6.1, which reveals the following findings regarding the general condition of each main structure.

Figure 6.1 Average Rating of Each Main Structure

- Deck slab whicth is pat of steel bridge has been deteriorated in adyance as compared to other bridge members.
- In general, damage of superstructure is greater than damage of substncture.

6.2.4 General Bridge Condition of Each Bridge Type

The general bridge condition of each bridge type is indicated in Figure 6.2 which shows the average bridge rating of each bridge type. In this clause, average rating means average value of deck and main frame rating.

Figure 6.2 Average Rating of Each Bridge Type

- RSJ/BUC and RSJ/COR bridges are the most deteriorated type of bridges among other types of bridges.
- PSC/PRE bridges are generally in good condition.

6.3 Analyses of Preliminary Bridge Inspection Results

The purpose of this analyses is to study the general tendency of the damages observed in each bridge based on the results of damage condition rating and to assist in the planning of possible rehabilitation works which could deal with the various damages correspondingly in terms of type, degree and extent.

6.3.1 Present Condition of Superstructure

(1) Truss Bridge (22 bridges)

There are only 2 steel deck truss bridges, which are Katugastota Bridge of No. 99 and Nikapotha Bridge of No. 178, and others are steel through truss bridges. However, Gampola Bridge of No. 93 is the only steel through trass bridge which has upper lateral bracing, and rest of them are pony triss bridges. Bentota Bridges of No. $75 \& 76$ and Ritigaha Oya Bridge of No. 53 have portal braced (strut) main truss to prevent buckling.

Most of truss bridges are double warren truss bridges with no vertical member.
There are 18 bridges (82%) of which types are COR, DEC, or RCS, and with cross beam at thuss panel point, cross beam for support range and longitudinal direction for deck span: And there are 4 bridges (18\%) with stringer of which longitudinal direction shall be for deck span.

Cross section of main thuss for most of pony truss bridges is " TT " of upper chord and " 1. "of lower chord for long spamed bridge, and is " T " of upper chord and" 1 " of lower chord for short spanned bridge. Adding, wrought iron/mild steel is assumed to be used for these bridges with rivet connection because of their construction era of 1860 to 1945.

Serious damaged deck slab and corrosion at lower flange of cross section of lower chord are assumed to be main damage for truss bridges by observing free lime at bottom of the deck and damaged pavement such as pothole and crack.

Since no widening seems to be taken place, width (1 to 2 lanes, present) doesn't cope with the present traflic condition such as increasing traftic volume and heavy vehicles.

Especially for bridge which carries a bunch of pedestrian, footpath widening has been carried out by setting brackets at the panel points. However, carriageway widening hasn't done yet because of their structural difficulties. Most of bridges
have carriageway width of under 6.0 m except width of No. 99 Bridge with 6.7 m width so that heavy vehicles can not be passed by each other on the Bridge.

Since triss bridge has its characteristics which is difficult to be widened for its structurat aspect, therefore, it is needed to construct a new bridge next to that. Where the new bridge is constructed, it is assumed to be reasonable to detour traflic on the new one, and rehabilitation such as reconstruction of deck slab, reinforcing main girder and widening of footway should be taken place for the old bridge during the period. Bridges with narrow width of under 4 m (No. 33, 53, 122, 128) have to be reconstructed in the future.
(2) Wrought Iron/Mild Steel Beam Bridge ($\$ 4$ bridges)

There are 54 bridges (50%) which hold wrought iron/mild steet beam out of 101 bridges (however, the number of types of bridges is 108). Main beam of most of these bridges is I-beam, but beam with angle steel braced web are used for the bridges of No. 147, 148, $210 \& 211$.

Deck slab can be classified into 5 types, however, main types of these are 1) with cornugated steel deck over main girder, 2) buckle plate type (with buckle plate over angle plate connected to web), 3) normal RC deck slab type.

Many bridges have their asphalt random pavement over stone pitching pavement (at construction). There are some bridges with exposed upper flange and without either concrete or stone pitching pavement.

Damage on deck slab is obvious because of observing its honey comb crack of asphalt pavement, rain permeation due to pavement characteristics, and free lime of bottom of deck slab. There is also serious corrosion of outside girder due to no cantilevering of deck slab.

There are many types of bridges with no parapet wall for abutment and embedded end of girder into concrete. There are much corrosion observed by rain permeation in this type.

Where corrosion is observed on outside girders, it is recommended to take some countermeasure such as covering girder with concrete after putting stirnp reinforcing bars and longitudinal reinforcing bars in main girder.

Bridges of buckle type and corrugated type need to be replaced to RC deck slab due to obvious damage of the deck. To minimize damage on outside girders, RC deck slabs definitely have to be cantilevered and held creasing. There are some bridges with enough cross section for their span length, therefore, it is assumed to be possible to cantilever some deck slab. Furthermore, covering girder with concrete increases rigidity of main beam so that it is useful.

PSC / PRE beams are used for the new girders for widening because the available
span length of PSC / PRE is bigger than RSJ's span length. When PSC / PRE beams are combined with RSJ girders, RSJ girders should be covered with concrete.

Considering a road alignment and surrounding condition, widening work is divided into the following orders:

One side widening

- Repairing and widening of substructure
- Erection of PSC / PRE beams (construction for additional 1 lane)
- Traffic diversion (1 lane is available)
- Covering RSJ girders with concrete and redecking (2 lanes are available)

Both side widening

- Repairing and widening of substructure
- Erection of PSC / PRE beams at one side (construction for half lane)
- Traffic diversion (1 lane is available for temporary)
- Covering RSJ girders with concrete and redecking at the other side
- Traflic diversion (Final 1 lane available)
- Covering RSJ girders with concrete and redecking at the other side

The bridges which have big conroded main girders such like SER No. 75 are necessary to be reconstructed for superstricture.
(3) RCS (3 bridges), RCB (2 bridges)

Reinforced concrete bridges which locate at sea shore have damages due to sea salt effect, and it was seen that botton side concrete of beams had been dropped and the reinforcement had been broken.

As a repaining measurement, it is recommended to clean the corroded surface of reinforcement and pat a resin concrete into defective area and bond a steel plate with epoxy resin injections. It is considered that the sea salt effect is not so considerable, concrete lining with resin mortar or paint is reasonable for repairing

Reinforced concrete bridge in which main reinforcement is corroded evidently should be reconstracted.
(4) PSC / PRE (5 bridges)

SER No. 7 and 212 bridges which are located at sea shore have damage duc to sea salt effect, and these are the same level with the damages of reinforced concrete bridges. The repairing for beam surface is similar to the case of RCS or RCB.

SER No. 86 (PSC/PRE $\quad 1=7.2 \mathrm{~m}$) is presumed to be constructed in recent years
comparatively, and it was found that there was sure flaking of beam bottom due to differential settlement of abutment. Rehabilitation of the abutment and repairing of beams with steel plate bonding, and epoxy resin mortar injection are required.

SER No. 87 (PSC / PRE $1=4.8 \mathrm{~m}$) has no deck and load distribution is not expected, therefore, decking is necessary.
(5) Arch Bridge
(i) Wrought Iron Bridge (1 bridge) SER No. 84, Peradenia Bridge

Though there is not so big damage in main arch, the bottom plate of deck is corrugate and there is stain and free lime due to leak of water from surface of pavement. The steel members that support cantilever slab have corrosion caused by the above matter. It is recommended to redeck in early time.

Some white colour parts on arch member is considered to be effected by free lime from deck slab.
(ii) Concrete Arch Bridge (2 bridges)

No special abnomality was recognized in general SER No 45 bridge has side wall which consists of brick and it is seen that trees and grasses grow. It is required to demolish trees and grasses and carry out surface protection for wall and water protection for bottom side of pavement.
(iii) Stone Arch Bridge (3 bridges)

SER No. 27 bridge is located at sea shore and its surface shows deterioration due to sea waves and wind in about 100 years after constriction. And piers have some strippings.

SER No. 47 bridge is located at the curved point of river, so some part of abutment foundation is affected by scouring. It is necessaty to carry out river-bed protection in early time.

SER NO. 46 bridge is located at the curved point of road, so some part of handrails are broken by traffic accidents. There is no damage in main structure of this bridge.
(iv) Brick Arch Bridge (5 bridges)

Main damages of brick arch bridges are weathering and washout by infiltration water from pavement. SER No. 129 bridge shows deterioration throughout stricture. There are trees and grasses growing at the surface of brick wall and they cause cracks on brick wall. Reconstruction is necessary for SLER No. 129 bridge.

As for the other 4 bridges, it is required to clean the trees and grasses on the brick surface and carry out surface protection for wall and water protection for bottom side of pavement.

(6) CAUSEWAY (4 bridges)

Deck slab is reinforced concrete slab whose span length is 2.3 to 3.8 m . Amost of all substructures have spread foundation on rock and the bottom side of the foundation shown abrasion through long term's erosion. Considering this situation, it is considered that there have been dip, settement and displacement of substructure. There are big shear cracks due to the above conditions in every bridge. Especially SER No. 60 bridge has longitudinal crack through the main slabs of total spans. Other 3 bridges have some cracks on the main slab surrounded the substructure which is considered to cause settement and etc.

Repair method can be divided into the following items:

- Short term measurement : additional reinforced concrete on the surface of deck
- Long term measurement
reconstriction with improvement
of vertical alignment.
(7) RC/BOX (1 bridge) SER No. 91

There are many serious cracks for the bridge as follows:

- Cracks which are shown in the bottom side of deck (bump is 11 cm)
- Cracks in transverse direction of deck in the center of span
- Horizontal cracks at the center of depti in deck slab
- Horizontal cracks at the top of vertical wall

However, the existing bridge length is 13.8 m , it is enough to reconstruct a new bridge using $3 \times 5 \mathrm{~m}$ length of span PSC beams crossing the river.
(8) BAHLEY BRIDGE (4 bridges)

SER No. 22 bridge has 46 m of maximum span length, and it was constructed for the transportation to electricity power station 18 years ago. No special abnormality was recognized in general.

The other three bridges are used for temporary bridge since the wooden deck of SER No. 61 \& 208 bridges have severe damage, urgent rehabilitation is required and reconstruction of bridges would be necessary in the feature.

6.3.2 Present Condition of Substructure

(1) Abutment
i) Stone Masonry Abuturent
70% of abutments which were investigated in this Study are stone masonry abutments, and typical damages are washout, crack and loose stone. There are 4 bridges whose abutments are required to be repaired immediately and these abutments have big crack due to washout of footing. There are 12 bridges which require detailed survey and rehabilitation for loose stone in near future.

Other 52 bridges have low level damages, and their rating points are less than 2. As the rehabilitation for these bridges, it is considered that footing protection with concrete and repair of loose stones should be carried out.
ii) Brick Masonry Abutment

The percentage of brick masonry abutment is 4 and some abutments have large cracks and broken bricks because weathering of brick hastens inder continuous wet condition and brick have lost its durability. The crack which occurs on the surface of SER No. 32 bridge is 10 cm of width, and the other 3 bridges also have been judged as rating point 3 .

However, bricks are used for widening of abutment or construction of retaining wall, such using should be avoided considering character of brick.
iii) Concrete Abutment

18 bridges have concrete abutments, and this type will be used widely in the future.

There are 4 bridges which are judged as rating point 4, and these damage situation are as follows:

- SER No. 86 bridge : Settement occurs because the foundation type is not suitable for ground condition.
-SER No. 91 bridge : Cracks occurs because the foundation is supported on rock and silt.
- SER No. 139 \& 63 bridge : Settement occurs because foundation of causeway is often eroded.

Since it is possible to presume cause of damages, powerful and positive countermeasure is necessary when reconstriction of bridge will be carried out.

Three bridges were judged as rating point 3 and their situations are as follows:
-SER No. 62 bridge : Erosion of causeway foundation

- SER No 175 bridge : Deterioration of concrete due to sea salt effect
- SER No. 212 bridge : Horizontal cracks due to poor constriction

Even though SER No. $86 \& 212$ bridge were constructed in recent years, big damages were seen in both bridges. So careful consideration is necessary in future constriction stage.
iv) Other Abutments

There are 3 types of abutment other than the above types. RSJ type abument was adopted in the case of deep bed rock, and caisson type abutment consists of 2 caissons and tie wall between both caisson. Pile-bent type abutment consists reinforced concrete piles and tie wall.

Main damage of these abutments is cracks, and it is advisable to adopt concrete cover as the rehabilitation method.

The damages of the other 5 bridges are not very serious, and rating points are less than 2.
(2) Pier

i) Stone Masonry Pier

This type is used in wide range and percentage of this type pier is 48 . There is no bridge as rating point 4 , and 3 bridges were judged as rating point 3 . In the above 3 bridge, SER No. 27 bridge is scheduled to be reconstructed by the Kuwaiti Fund. Although the foundations of SER No. $44 \& 93$ bridges are washout, it is enough to protect the foundation with concrete cover.

The rating point of the other 23 bridges are less than 2 . Since loose stones are seen in every bridge, rehabilitation for joint parts is necessary as the same as abutment.
ii) Concrete Pier

There are 7 bridges which have this type of pier, and 4 bridges are causeway. The ground which surround foundation is eroded and causes settlement and inclination of foundation.

The pier of SER No 92 bridge has many cracks, and reconstruction is necessary. The damage of SER No $123 \& 212$ bridges are little, and they keep good condition.
iii) RSJ Pier

This type is adopted in nine bridges, and the piers of 3 bridges (SER No. 59, $70,136)$ keep this type from the first. The steet member of these piers are covered with concrete below the O.W.L. in order to avoid corrosion by water.

In the other 6 bridges, it is presumed that RSJ piers were added to the original piers for the purpose of rehabilitation after the construction of bridges. And damages of these bridges are as follows:

- SER No. 24, 30, 31, 38 bridges: Steel members are corroded because they are soaked in the river water and exposed to rain and sun.
-SER No. 25 bridge \quad Scouring of the ground which surrounds the foundation.

Pier was driven out by flood in the past years. The above damages are judged as rating point 3 or 4 .
iv) Caisson Pier

This type is adopted in 8 bridges, and those siluations are good.
v) Pile-bent Pier

This type is adopted only 3 bridges. Visual investigation on piles was impossible in SER No. 7 bridge because the water level was high at the time when the site survey was carried out, but there is possibility that the piles were damaged with sea salt.

The conditions of the other 2 bridges are good.
vi) Rigid Frame Pier

This type is adopted in the additional part of SER No. 68 bridge, and its condition is good.
vii) Trussed Pier

Trussed pier which consists steel support and bracing is adopted in SER No. 22 bridge (Bailey bridge), and its condition is good.
(3) Retaining Wall, Back-filling and Slope Protection of River Bank

As a general sule, many abutments jut out into the river in order to shorten a bridge length in Sri Lanka. And wing wall is impossible to be connected with abutment because the structure type of abutment is stone masonry or brick masonry. Therefore, retaining wall is used to cover back-filling instead of wing wall. The foundation of retaining wall is not so strong compared with abutment, and it is seen that there are many large cracks caused by scouring or settlement of the ground surrounding foundation.

Whereas there are no protections at the side embankment of abutment, and some parts of embankment have been washed away because of raining.

Slope protection of river bank should be given to the front of abutment and surrounding area because water flow changes greatly. Embankment will scoured unless this protection is carried out.

Retaining wall, back-filling, embankment and slope protection of river bank are also some part of bridge. Therefore lengthy and careful consideration should be given to these countermeasures in the future designs and reconstruction of bridges.

