Micro Socio-Economic Indicators

3.5

The forecasting process for micro (Mukim Level) socio-economic indicators in the Study Area until the year 2020 is shown in Technical Report. When forecasting the micro indicators, the following issues are taken into consideration :

- i) The forecasted macro socio-economic frame,
- ii) Essential characteristics of production activities of industry and population,
- iii) The three National Projects,
- iv) The existing spatial Development Plans in the Area,
- v) The requirements for Socio-Economic Development in the Area,

The forecasted macro frame presented in the previous section is used as the "Control Totals" of the micro indicators, which are forecasted based on factors particular to a certain mukim. The factors are induced from the above mentioned issues.

In this forecast, it is assumed that there are limitations on productivity per unit land of Agriculture and Manufacturing industries as well as the dwelling capacity per unit land of the residents. Therefore, some assumptions are examined for the prediction, which were presented in the Technical Report. These essential characteristics are reflected in the forecast.

The following three National Projects affected the forecast :

- Project of Movement of the Central Government Office from Kuala Lumpur to Putra Jaya in Mukim Dengkil of District Sepang,
- Project of Movement of the existing International Airport from Mukim Damansara of District Petaling to Mukim Labu and Sepang of District Sepang (KLIA).
- Construction project of the "Second National Car" production facilities at Mukim Serendah of District Hulu Selangor.

These Projects affect the GDP of industry, employment and population of Mukims. The existing spatial Development Plans, which were reviewed in Section 3.3, offer basic information on developing Mukims where future industrial activities and population are allocated.

Finally, the requirements for Socio-Economic Development provide basic information on the distribution of industrial activities and population along, as do the existing spatial Development Plans. They are utilized for the estimation of the carrying capacity of industrial activities and dwelling capacities of residents by Mukim and the concrete ways of allocation of overflowed portions from Mukims concerned.

The following situations do not allow the adoption of a simple forecasting method like the econometric model to forecast the socio economic indicators by Mukim :

- (1) Reflection of the above mentioned issues ii) $\sim v$),
- (2)
- Lack of more concrete data for forecasting the indicators by Mukim,

Peculiarity of smallness of the forecasting zone of "Mukim"

的复数事业是要的事件事件事

(3)

To overcome the problem, the Study Team devised a "Capacity-Overflow" Method for forecasting the indicators at micro-level. This method regards Mukim as a container which accommodates industrial activities and population.

化建筑 网络拉拉拉拉拉拉拉拉拉拉拉拉拉拉

The carrying capacity of industrial activities (Agriculture and Manufacturing) and dwelling capacity of residents limit accommodations in each Mukim. Volume/value will grow to the upper limits parallel with the corresponding average growth rate at State level, including those affected by the National Projects. Once the volume/value exceeds the upper limits, the volume/value in the Mukim concerned is set at the upper limit, and the excess is distributed to appropriate Mukims in accordance with distribution rules, which are established based on these issues iv) and v).

ىرى بەر بىلىغۇر يۈكۈك بېرىي

Table 3-10 : Population by Mukim / Traffic Zone until the year 2020 (Summary)

a an an an the south

				·	Annual	Average loc	(Uni reasing Rate	(%)
Traffic/Zone	1995	Yèar 2000	2010	2020	1995-2000	2000-2010	2010-2020	1995-2020
······································	2,698,220	3,282,800	4,708,010	5,937,440	4.0	3.7	2.3	3.2
Selangor					· ·		2.0	3.1
Gombak	445,540	542,070 272,349	777,400 342,800	948,050 342,800	4.0 4.0	3.7	0.0	1.7
Batu Rawang	223,840 67,440	82,050	180,350	322,920	4.0	8.2	6.0	65
Setapak	61,630	74,980	107,530	135,610		3.7	2.3	3.2
Ulu Klang	92,630	112,700	146,720	146,720		2.7 2.5	0.0	2.6
Klang	466,490 172,640	555,320 205,510	707,960 262,000	879,920 323,150	ſ	2.5	2.1	2.5
Kapar Klang	271,150	322,790	411,510	513,320	3.5	2.5	2.2	2.6
Bandar Klang	22,700	27,020	34,450	43,450		2.5 3.7	2.3 1.9	2.6 3.3
Kuala Langat	141,770	184,730	264,930 15,060	319,750 18,990		3.7	2.3	3.2
Bandar	8,630 16,460	10,500	32,000	40,360	t	3.7	2.3	3.7
Batu Kelanang	13,180	17,870	25,630	32,320	6.3		2.3	3.7
Monb	3,470	4,220	6,050	7,630			2.3	3.2 3.4
Tanjong Dua Belas	58,720	79,570	114,110 59,590	135,230 75,150			2.3	32
Telok Panglima Garang	34,150 7,160	41,550 8,710	12,490	10,070			-2.1	1.4
Jugra Kuala Selangor	128,090	155,840	223,500	265,970	4.0		1.8	3.0
Apl-Api	13,140	19,150	27,460	34,630			2.3	4.0
Batang Berjuntai	14,950	18,190		: 44,910 28,520			2.2	3.2
ljok	13,100 27,190	15,940 33,080	22,860 47,440	58,630			2.1	3.1
Jeram Kuala Selangor	9,310		19,360	19,360	7.8		0.0	3.0
Pasangan	7,020	10,230	20,020	27,390	7.8		3.2	5.6 0.0
Tanjung Karang	33,810			34,050	0.1 4.0	0.0	0.0 1.0	2.6
Ujong Permatang	9,270		16,180	17,820			2.4	3.2
Ulu Tinggi Pelaling	300 745,710	829,730	1,149,960	1,450,260		3.3	2.3	2.7
Bukit Raja	29,600	32,930	41,980	52,940	· 2.2		2.3	2.4
Damansara	283,940	315,930	402,770	507,950	2.2		2.3	2.4
Petaling	177,600	197,610			1 St.		2.3	2.4
Sungai Buloh	183,550						2.3	2.4
Bandar Petaling Jaya Sabak Bernam	104,120	• • • • • • • • •			4.0		5.2	4.3
Bagan Nakhoda Omar	9,640	11,730	12,870	12,870			0.0	12
Panchor Bedena	38,390						0.0	0.0
Pasir Panjang	23,230 23,650						3.8	4.0
Sabak Sungai Panjang	9,120			113,690		10.2	13.9	10.6
Sepang	61,170		339,320				2.7	8.2 9.2
Dengkil	34,730		245,110				2.6 4.7	9.2 7.1
Łabu	5,770					1	2.4	6.2
Sepang	20,670 522,160					38	1.9	3.0
Ulu Langat Ampang	238,220		263,400	263,400	2.0		0.0	04
Beranang	12,320	15,530	52,620	66,360	4.7		2.3 3.2	7.0 4.7
Cheras	69,580							4.5
Kajang	142,420 30,160					3.7	3.5	3.8
Semenyih Utu Langat	26,580			48,210	3.5	3.7	0.6	2.4
Ulu Semenyih	2,880	3,500	5,020	6,330	4.0		2.3	3.2 4.1
Ulu Selangor	83,170				4.0	•	2.3	3.2
Ampang Pechah Palana Kali	12,810 7,860		1			3.7	5.7	4.6
Batang Kali Buloh Telor	180		320	400	4.1	3.8	2.3	3.2
Kalumpang	3,270	3,720	5,100				0.0 7.0	1.8 4.8
Keding	4,290	4,890		13,770			12.0	70
Kuala Kalumpang Perolek	1,600					3.7	2.4	3.2
Perelak Rasa	3,040			6,700	4.0	3.7	2.4	3.2
Serendah	12,240	18,000	25,810	44,970	8.0		5.7	5.3 3.2
Sungai Gumul	560						2.4	32
Sungai Tinggi	4,940					1	5.0	4.0
Ulu Bernam Ulu Yam	9,180						2.3	2.9

最大的运行的复数形式 医正面变形成白白 自动的

(Cale da da

Table 3-10 : Population by Mukim / Traffic Zone until the year 2020 (continued).

Mukim/		Year			Annua	Average Inc	reasing Rati	e (%)
Traffic/Zone	1995	2000	2010	2020			2010-2020	
						l		
Kuala Lumpur F.T	1,329,300	1,590,560	2,021,630	2,408,490	. : 3.7	2.4	1.8	2.
Zone 100	117.160	131,299	154,628	175,565	3.7	2.4	1.8	2.
Zone 201	10,490	12,081	14,705	17.060	3.7	2.4	1.8	2.
Zone 202	61,090	76,534	102 016	124,885	3.7	2.4	1.8	2.
Zone 203	18,100	31,345	53,199	72,812	3.7	2.4	1.8	2.
Zone 204	27,550	51,087	89,921	124,773	3.7	2.4	1.8	2
Zone 301	40,150	64,685	105,166	141,495	3.7	2.4	1.8	2
Zone 302	162,240	186,411	226,293	262,085	3.7	2.4	1.8	2.
Zone 401	127,380	138,840	157,749	174,718	3.7	2.4	1.8	2.
Zone 402	88,250	91.071	95,725	99.902	3.7	2.4	1.8	2.
				240.412		2.4	1.0	2.
Zone 403	156,500	75,489	210,332		3.7			
Zone 500	64,700	166,508	93,291	109,267	3.7	2.4	1.8	2.
Zone 601	147,920	66,998	197,177	224,700	3.7	2.4	1.8	2.
Zone 602	37,230	48,630	116,115	160,195	3.7	2.4	1.8	2.
Zone 701	36,910	169,810	67,968	85,322	3.7	2.4	: 1.8	2.
Zone 702	157,570	102,958	190,006	208,131	3.7	2.4	. 1.8	2.
Zone 703	76,060	91,010	147,339	187,168	3.7	2.4	1.8	2.
ahang								
Bentong	88,850	95,040	109,740	128,240	1.4	1.4	1.6	1.
Bentong	16,760	50,020	57,760	67,500	1.4	1.4	1.6	1.
Pelangai	18,280	19,550	22,570	26,370	1.4	1.4	1.6	1.
Sabai	23,810	25,470	29,410	34,370	1.4	1.4	1.6	1.
00001				0.0.0				
legeri Sembilan					at in			
Seremban	289,490	328,130	424,670	553,980	2.5	2.6	2.7	2.
Атралдал	61,630	69,860	90,410	98,850	2.5	2.6	0.9	1.9
Labu	29,800	33,780	43,720	63,320	2.5	2.6	3.8	3
Lenggeng	9,820	11,130	14,410	18,800	2.5	2.6	2.7	2.0
Pantai	3,250	3,680	4,760	6,210	2.5	2.6	2.7	2.0
Rantau	30,830	34,950	45,230	64,610	2.5	2.6	3.6	3,(
Rasah	36,830	41,730	45,230	73,920	2.5	2.6	3.0	2.
Seremban	17,020	19,290	24,970	32,570	2.5	2.6	2.7	2.6
Setul	16,320	18,500	23,940	34,960	2.5	2.6	3,9	3.
Bandar Seremban	84,000	95,210	123,220	160,740	2.5	2.6	2.7	2.0
Perak			-					
Batang Padang	169,420	186,120	227,450	281,640	1.9	2.0	2.2	2.1
Balang Padang	30,370	33,360	40,770	50,480	1.9	2.0	2.2	2.
								2.
Bidor	30,730	33,760	41,260	51,090	1.9	2.0	2.2	
Chendering	20,470	22,490	27,480	34,030	1.9	2.0	2.2	2.1
Slim	25,430	27,946	34,140	42,270	1.9	2.0	2.2	2.1
Sungkai	36,530	40,130	49,040	60,730	1.9	2.0	2.2	2.1
Ulu Bernam Timur	25,890	28,440	34,760	43,040	1.9	2.0	2.2	2.1

Table 3-11 : GDP by Mukim / Traffic Zone until the year 2020 (Summary)

وتاريخ ويترافع وجاجر

Mukim		Year				Average Inc		
Traffic/Zone	1995	2000	2010	2020	1995-2000	2000-2010	2010-2020	1995-20
Selangor	24,275.0	37,694.0	76,255.0	131,751,0	9.2	7.3	5.6	. 7
Gombak	2,296.7	3,245.6	6,506.8	11,018.2	7.2	7.2	5.4	6
Batu	1,079.2	1,659.9	2,774.8	3,459.2	9.0	5.3	2.2	4
Rawang	511.5	726.7	2,039.6	5,152.5	7.3	10.9	2.2	9
Selapak	252.0	297.5	559.3	1,020.1	3.4	7.3	9.7 5.5	: 5
Ulu Klang	454.0	611.5	1,093.1 11,535.0	1,386.4 29,017.6	6.1 8.6	6.0 6.7	2.4	4
Klang	3,986.1	6,032.0 1,762.8	3,329.8	5,699.2	8.0	6.6	5.7	6
Kapar Klang	2,665.8	4,168.7	8,021.5	13,999.9	9.4	6.8	5.5	6
Bandar Klang	141.0	100.5	183.7	318.5	6.5	6.2	5.7	3
Kuala Langat	1,204.1	2,003.7	3,956.1	8,175.0	10.7	7.0	7.5	8
Bandar	37.1	52.9	102.1	160.9	7.4	6.8	4.7	. 6
Batu	71.6	117.0	283.5	421.1	10.3	9.3	4.0	7
Kelanang	57.3	92.7	196.1	33.7	10.1	7.8	5.5	. 7
Morio	18.3	25.2	53.6	90.7	6.6	7.8	5.4	6
Tanjong Dua Belas	335.4	677.4	1,327.0	3,143.2	15.1	7.0	9.0	: 9
Telok Panglima Garang	623.1	954.3	1,882.2	3,870.7	89	7.0	7.5	- 7
Jugra Kusia Salasaa	61.3	84.2	147.6	154.7	6.6 5.2	5.8	05	3
Kuala Selangor	855.4 92.3	1,100.9] 104.5	2,103.9 247.4	4,003.5 540.9	5.2	6.7 9.0	6.6 8.1	. 6
Api-Api Batang Berjuntai	92.3	179.4	389.0	901.2	7.7	9.0 8.0	8.8	8
liok	88.9	107.5	197.3	517.5	3.9	6.3	10.1	7
Jeram	142.9	221.4	427.1	953.3	9.2	6.8	8.4	7
Kuala Selangor	170.1	160.5	281.1	319.8	-1.1	5.8	1.3	2
Pasangan	58.2	83.3	174.8	269.0	7.4	7.7	4.4	6
Tanjung Karang	130.0	-174.4	256.3	324.4	6.1	3.9	2.4	3
Ujong Permatang	44.4	657.7	123.5	167.9	8.1	6.5	3.1	5
Ulu Tinggi	4.9	4.2	7.4	9.5	-3.1	5.8	2.5	2
Petaling	10,888.1	16,063.3	30,390.3	46,814.2	8.1	6.6	4.4	· · 6
Bukit Raja	101.1	137.3	247.1	411.4	6.3	6.1	5.2	5.
Damansara	6,495.6	9.621.1	19,042.8	30,764.4	8.2	7.1	4.9	6.
Petaling	758.4	968.5	2,253.0	5,381.2	5.0 6.8	8.8 5.8	9.1 4.4	8. 5.
Sungai Buloh Reades Relation Jour	2,756.0	1,081.3	6,944.7	7,335.5	9.1	5.0	0.5	- 4
Bandar Petaling Jaya Sabak Bernam	507.4	685.3	1,352.2	4,015.6	6.2	7.0	11.5	8
Bagan Nakhoda Omar	466.6	67.4	112.6	342.2	7.7	5.3	11.8	. 8.
Panchor Bedena	181.6	241.8	483.6	1,183.4	5.9	7.2	9.4	7
Pasir Panjang	118.1	127.5	188.7	235.7	1.6	4.0	2.2	2.
Sabak	113.9	177.0	350.8	1,129.9	9.2	7.1	12.4	- 9
Sungai Panjang	47.3	71.6	216.5	1,124.4	8.7	11.7	17.9	- 13
Sepang	384.3	2,217.9	6,944.6	10,496.6	42.0	12.1	4.2	14.
Dengkil	217.4	662.0	4,092.4	6,213.2	25.0	20.0	4.3	14.
Labu	50.5	682.7	1,248.0	1,869.1	68.4	6.2	4.1	15.
Sepang	116.5	871.2	1,604.2	2,414.3	49.5	6.3	4.2	12
Ulu Langat	3,596.6 991.1	5,418.7 1,396.9	11,181.0	18,840.8	8.5 7.1	7.5 4.1	5.4 2.3	6
Ampang Beranang	991.1	149.6	428.0	634.0	9.0	4.1	4.0	J.
Cheras	651.2	947.0	2,198.0	4,196.8	7.8	8.8	6.7	7.
Kajang	1,459.6	2 425.3	5,573.4	10,095.3	10.7	8.7	6.1	. 8
Semenyih	233.3	288.0	526 5	801.4	4.3	6.2	4.3	5.
Ulu Langat	141.8	183.4	324.9	437.2	5.3	5.9	3.0	4
Ulu Semenyih	22.5	28.5	51.0	70.7	4.9	6.0	3.3	4
Ulu Selangor	556.3	926.6	2,285.1	8,369.5	10.7	9.4	13.9	11
Ampang Pechah	103.5	66.7	134.1	425.2	-8.4	7.2	12.2	5
Batang Kali	55.3	84.3	161.5	626.8	8.8	6.7	. 14.5	10
Buloh Telor	3.3	1.8	3.2	4.6	-11.6	5.9 6.9	3.7	1. 5.
Kalumpang	10.9 24.7	14.7	28.6 59.9	38.7 123.4	6.3 5.7	6.3	3.1	5.
Kerling Kuala Kalumpang	19.8	14.5	26.1	75.2	-6,1	6.1	11.2	5.
Peretak	7.7	5.1	6.2	7.4	-7.8	2.0	1.8	-0.
Rasa	24.5	34.9	67.4	427.3	7.4	6.8	20.3	12
Serendah	83.6	384.1	1,267.2	5,467.9	35.6	12.7	15.7	18
Sungai Gumut	82	9.8	16.6	20.5	3.6	5.4	2.1	3.
Sungai Tinggi	43.1	48.7	87.1	120.8	2.5	6.0	3.3	4.
Ulu Bernam	124.3	172.3	318.9	568.3	6.7	6.3	5.9	6 .
Ulu Yam	47.6	57.2	108.5	463.4	3.8	6.6	15.6	9.

法法律法规律律师 计分子通信 动物学的医分子的 医多分子的 医多分子的

Table 3-11 : GDP by Mukim / Traffic Zone until the year 2020 (continued)

· · · · ·

						Unit : Millio		
Mukim		Year			Annua	Average Inc	reasing Rate	e (%)
Traffic/Zone	1995	2000	2010	2020	1995-2000	2000-2010	2010-2020	1995-2020
Kuala Lumpur F.T	15,595.00	22,703.00	38,789.00	60,895.00	7.8	5.5	4.6	5,6
Zone 100	1,258.8	1,830.7	3,154.8	5,016.8	7.8	5.6	4.7	5.7
Zone 201	151.1	161.2	278.3	443.4	1.3	5.6		4.4
Zone 202	795.5	1,142.2	1,935.6		7.5	5.4		5.5
Zone 203	209.5	277.9]	479.7	764.9	5.8	5.6		5.3
Zone 204	359.8	511.3	866.8	1,346.4	7.3	5.4		5.4
Zone 301	450.7	617.7	1,065.4	1,697.5		5.6		5.4
Zone 302	2,291.3	3,367,3	5,658.0	8,665.9	8.0			5.5
Zone 401	1,303.2	1,957.6	3,377.7	5,380.9	8.5			5.6
Zone 402	1,097.8	1,576.3	2,682.3	4,189.3	7.5	5.5	4.6	- 5.5
Zone 403	1,581.7	2,402.1	4,147.1	6,611.7	8.7	5.6		5.9
Zone 500	697.9	993.0	1,714.3		7.3			5.6
Zone 601	1,547.1	2,286.4	3,944.5	6 282.3	81	5.6	4.8	58
Zone 602	964.6	1,354.7	2,196.9	3 184.5				4.5
Zone 701	412 2	566.7	978.3	1,559.7	6.6			5.5
Zone 702	1,669.0		4,280.6	6,797.3				5.8
Zone 703	0 668	1,171.5	2,019.7	3,217.8	7.8	5.6	4.8	: 5.1
المتعدية متدابط وعديد يست			· · · · · · · · · · · · · · · · · · ·		Î .			8 8 F
Pahang		a		an An Anna				
Q	618.8	778.6	1,243,4	2,011.1	4.7	4.8	4.9	4.8
Bentong	364.5	433.0	690.3	1,114.3	3.5	4.8	49	4.0
Bentong	96.1	132.5	215.1	353.6	E	5.0	5.1	5.
Pelangai	158.2	213.1	338.0	543.2		4.7		5.4
Sabai	130.2						[
Negeri Sembilan								· · · · ·
Seremban	2,674.3	3,593.8	6,689.8	12,549.9		6.4	6.5	6.
Ampangan	211.4	286.7	501.6	3,783.1		5.8		12.5
Labu	724.3	961.5	435.8	556.7				-1.
Lenggeng	48.9	66.3	109.5	182.9	6.3	5.1	5.3	5.
Pantai	18.2	23.8	38.7	64.0	5.5	5.0		5.
Rantau	148.4	189.5	317.6	578.9	5.0	5.3		
Rasah	944.2	1,322.3	2,563.7	5,005.1	7.0	6.8		6.
Seremban	87.4	91.5	153.7	262.9	0.9	5.3	5.5	
Setul	144.5	138.0	230.5	420.7	-0.9	5.3	6.2	4.
Bandar Seremban	347.0		883.9	1,622.3	6.8	6.2	6.3	6.
Danidar Ocicincian								
Perak		1.						
Rotona Rodona	982.1	1,256.8	2.084.3	3,501.4	5,1	5.2	5.3	5.
Batang Padang Balang Padang	212.1	229.3	1 7	636.2				4.
Batang Padang	185.9		336.7					
Bidor Chaododog	103.7		245.9		1 1		1	5,
Chendering	110.8							6
Slim Suradiai	183.9	•		794.6		1		
Sungkai	185.6	P		592.6	•			
Ulu Bernam Timur	1.00.0	L	L	1				· · · · · · · · · · · · · · · · · · ·

2.1.14.14 (ALTERNATION AND ADDRESS OF ADDRESS ADDRES ADDRESS ADDRE

Table 3-12 : Forecast of Employment on Warking Place Basis by Mukim/Traffic Zone until the year 2020

gada tak

an general states and

4 H.H.

								Employee)
Mukim/	(Year	2010	2020	Annual 1995-2000	Average In 2000-2010	2010-2020	e (%) 1995-2020
Traffic/Zone	1995 929,400	2000	1.640.000	2,089,900		3.8	2.5	3.3
Selangor Gombak	100,690	107,310	157 000	193,860		3.9	2.1	2.7
Batu	45,680	52,741	67 070	63,050	29	2.4	-0.6	1.3
Rawang	21,350	22,720	45,970	84,280	1.3	7.3	6.2	5.6 2.0
Setapak	12,600	11,100	16,660	20,620	-2.5 -0.3	4.1 2.8	2.2 -0.5	0.8
Ulu Klang	21,060	20,750 177,820	27,300 238,240	25,910 305,820	2.5	3.0	2.5	2.7
Klang	157,430 52,350	54,640	72,960	91,570			2.3	2.4
Kapar Klang	98,020	119,350	160,120	207,770	4.0	3.0	2.6	3.1
Bandar Klang	7 060	3,830	5,160	6,480		3.0	2.3	-0.3
Kuala Langat	53,420	64,440	91,080	129,730	3.8	3.5	3.6 1.2	3.6 1.7
Bandar	2,150	2,100	2,940	3,310		3.4	2.1	3.2
Batu	3,980	4,640 3,670	7,190 5,700	8,840 7,000		4.5	2.1	3.2
Kelanang	3,220 1,080	1,010	1,570	1,920		4.5	2.0	2.3
Morib Tanjong Dua Belas	15,240	23,520	33,590	51,400		. 3.6	4.3	5.0
Telok Panglima Garang	24,290	26,010	35,690	53,940		3.2		3.2
Jugra	3,460	3,490	4 400	3,320	0.2	2.3	-2.8	-0.2
Kuala Selangor	43 920	39,320	54,310	69,590	-2.2		2.5 3.9	1.9 2.3
Api Api	5,210	3,900	6,250	9,120	-5.6 3.8	4.8 5.2	3.9 4.7	4.7
Batang Berjuntai	4 480	5,400 4,360	8,940 5,780	14,160 8,920	-2.5	2.9	4.4	2.4
liok	4 940 8,230	8,030	11,150	16,170	3		3.8	2.7
Jeram Kuala Selangor	8,070	4,690	5,960	5,220			-1.3	-1.7
Pasangan	2,990	3,240	4,990	5,530	1.6		1.0	2.5
Tanjung Karang	7,190	6,890	7,430	6,770		0.8	-0.9	-0.2
Ujong Permatang	2,470	2,630		3,500			-0.3 -0.9	1.4 -2.1
Ulu Tinggi	340	180	220	200 678,130			1.6	2.7
Petaling	347,410	435,760 5,300	578,530 7,020	8,420			1.8	1.5
Bukit Raja	5,870 201,420		342,800	420,610			2.1	3.0
Damansara Petaling	32,570		58,530	92,680		5.8	4.7	4.3
Sungai Buloh	23,620	37,160		55,880			1.5	2.2
Bandar Petaling Jaya	74,930	108,150	122,010	100,540	7.6		-1.9	1.2 4.7
Sabak Bernam	27,0 70	26,930	38,810	85,360		1	8.2 8.6	4.7
Bagan Nakhoda Omar	2,610	2,700	3,300	7,500 25,170			6.2	4.1
Panchor Bedena	9,280 6,300		13,780 5,260	4,770	1 · · ·	1	-1.0	-1.1
Pasir Panjang Sobok	6,250	7,080	10,230	24,420			9.1	5.6
Sabax Sungai Panjang	2,630	2,880	6,240	23,500	1.8		14.2	9.2
Sepang	19,260		184,900	201,500			0.9	9.8
Dengkil	9,620		109,570	120,630			1.0 0,7	10.6 10.2
Labu	3,120		32,580	35,000				8.1
Sepang	6,520 148,950		42,750 245,180	303,430			2.2	2.9
Ulu Langat	43 260		50,800				-0.6	0.4
Ampang Beranang	4,370		10,880	12,130	2.2	8.3		
Cheras	28,730	28,060	46,800	65,930	-0.5	5.2		
Kajang	53,740	69,500	114,020					4.3
Semenyih	11,800						1.6 -0.0	1.0
Ulu Langat	5,720		8,390 1,500		-27		-0.0	0.5
Ulu Semenyih	1,330 31,250		51,950		0.4		9.0	5.6
Ulu Selangor Amoang Pechah	4 810		3,740		-12 1	4.0	6.6	1.6
Batang Kali	2,880			9,600	0.1		9.3	4.9
Buloh Telor	250	90					0.0	-4.0 0.7
Kalumpang	670						-0.1 3.8	2.3
Kerling	1,450							
Kuala Kalumpang	1,420 250							
Peretak Rasa	1,240						13.9	6.5
Serendah	5,190			72,750	16.3	. 7.9	11.9	
Sungal Gumut	520	410	500	450	-4.6	2.0		
Sungai Tinggi	2,730	2,000						
Ulu Bernam	6,920	6,970		11,820				
Ulu Yam	2,920	2,280	3,140	7,230	1 ~40	1	L 0.7	

Table 3-12 : Forecasts of Employment at Working Place by Mukim / Traffic Z	one
until the year 2020	

aan African waxaa shiftaa

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u> </u>				: Employe
Mukim		Year			Annual	Average In	creasing Rai	e (%)
Traffic/Zone	1995	2000	2010	2020			2010-2020	1995-202
Kuala Lumpur F.T.	683,800	818,300	1,040,100	1,239,100	3.7	2.4	1.8	2
Zone 100	56,760	66,410	84,740	102,030	3.2	2.5	1.9	2
Zone 201	8,600	5,860	7480	9,010		2.5	1.9	C
Zone 202	35,060	40,960	51,860	61,160		2.4	1.7	
Zone 203	10,270	10,090	12,890	15,550		2.5		- : · i
Zone 204	15,530	18,330	23,230	27,420		2.4	1.7	
Zone 301	21,420	22,400	28,600	34,500		2.5	1.9	
Zone 302	96,420	120,030	151,400	176,570		2.3	1.5	
Zone 401	56,780	71.030	90,700	109,440		2.5	1.9	
Zone 402	48,910	56,680	71,920	85,240		2.4	1.7	
Zone 403	68,330	87,240	111,430	134,450		2.5	1.9	
Zone 500	32,170	36,070	46,060	55,590	2.3	2.5	1.9	
Zone 601	69,150	83,010	105,970	127,770	3.7	∠.5 2.5		
Zone 602	35,360	47,030	58,360	65,010			1.9	
Zone 701	19,590	20,590	26,290	31,720		2.2	1.1	. :
Zone 702	73,300	90,140	114,970	138,250	1.0	2.5	1.9	
Zone 703	36,150	42,430	54,200		4.2	2.5	1.9	
2008 705		42,450	54,2007	65,390	3,3	2.5	1.9	
ihang			·					
Bentong	30,290	32,370	37,380	43,810	1.3	1.4	1.6	
Benlong	16,420	17,290	20,270	24,020	1.0	1.6	1.7	
Pelangal	5,270	5,780	6,650	7,800	1.9	1.2	1.6	· · ·
Sabai	8,600	9,300	10,460	11,990	1.6	1.4	1.4	
egert Semblian							· · ·	
Seremban	102,800	116,760	151,550	197,980	2.6	2.6	2.7	
Ampangan	10,600	11,560	14,720	15,830	1.7	2.4	0.7	
Labu	23,920	29,140	38,290	51 640	4.0	2.8	3.0	:
Lenggeng	2,770	2.870	3,360	3,990	0.7	1.6	1.7	
Pantai	1,060	1,040	1,190	1,400	-0.4	1.4	1.6	
Rantau	8,250	8,060	9,600	12,480	-0.4	1.4	2.7	·
Rasah								
	33,710	37,450	50,390	68,450	2.1	3.0	3.1	. 2
Seremban	3,340	3,400	4,270	5,390	0.4	2.3	2.4	
Setul	5,610	5,060	6,090	8,020	-2.0	1.9	2.8	1
Bandar Seremban	13,540	18,180	23,640		6.1	2.7	2.7	
eak Balang Padang	44,480	49,390	60,510	74,690	2,1	2,1	2.1	2
Batang Padang	9,170	9.040	11,110	13,780	-0.3	2.1		
Bidor							2.2	1
	7,150	7 360	9,170	11,470	0.6	2.2	2.3	1
Chendering	4,170	5,290	6,510	8,080	4.9	2.1	2.2	2
Slim	5,730	7,440	9,140	11,320	5.4	2.1	2.2	2
Sungkai	9,150	11,450	13,920	17,020	4.6	2.0	2.0	2
Ulu Bernam Timur	9,110	8,810	10,660	13,020	-0.7	1.9	2.0	1

Chapter 4 TRAFFIC DEMAND ANALYSIS

CHAPTER 4 TRAFFIC DEMAND ANALYSIS

4.1 Existing OD Traffic Demand

4.1.1 Total Trip Generation

Trip generation is the process by which various socioeconomic activity are converted into number of trips. Several methodologies for forecasting the trip generation could be considered.

Trip generation could be estimated in the unit of person trips (for people movement) and tonnage (for goods movement) and sometimes in vehicular units depending on the purposes of the study. In this study, it will concentrate on the movement of vehicular unit. The trip production, therefore, is estimated in vehicular units.

Two types of methodology for the analysis, namely multiple linear regression analysis and triprate analysis are compared. Table 4-1 shows multiple linear regression models in the HNDP study.

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Type of Vehicle	Formula	Correlation Coefficient
P.Car GEN ATT	75.84 POP + 962.18 EMP 75.84 POP + 962.15 EMP	0.857 0.857
Bus GEN ATT	4.18 POP + 1.49 GDP 4.19 POP + 1.49 GDP	0.797 0.797
Lorry GEN ATT	48.09 POP + 166.52 EMP 48.10 POP + 166.49 EMP	0.779 0.779
ATT : A POP : F	Generation Attraction Population ('000)	
	Employment ('000) Bross Domestic Product (million)	

Table 4-1: Trip Generation Models (Linear regression)

The trip-rate method estimates trip production from the number of vehicles and trip generation rate by vehicle type. Table 4-2 shows statistical data for the number of registered vehicles in Selangor state and Kuala Lumpur. Table 4-3 shows an average daily trip generation rate obtained from HNDP study.

a fa har a shekara a para da

- -									:	
, ,, , _, , , ,		Cars	Taxies	Hire Cars	Buses	Lorries & Van	Trailers	Motorcycles	Others	Total
Selangor					•					
•	1985	284,704	5,294	656	4,125	62,811	6,583	379,291	13,504	756,958
	1986	292,276	5,343	625	4,265	66,686	6,667	391,971	14,026	781,83
	1987	301,041	5,414	625	4,370	67,972	6,666	399,486	14,233	799,83
	1988	313,629	5,491	663	4,423	69,623	6,666	408,766	14,786	824,04
:	1989	331,764	5,570	666	4,512	72,878	6,666	426,222	15,736	864,01
1.1	1990	354,283	5,911	694	4,629	78,447	6,667	451,375	17,485	919,49
1 1 	1991	380,255	6,215	739	4,800	84,363	6,675	479,015	18,889	980,95
: 1	1992	403,761	6,481	765	5,055	89,258	6,800	507,430	20,398	1,039,94
· .	1993	422,847	6,576	795	5,217	92,583	6,878	531,256	21,277	1,087,42
÷ *	1994	465,970	7,151	849	5,614	99,921	6,800	571,720	23,075	1,181,10
	1995	468,978	7,181	85 9	5,635	100,453	6,800	575,265	23,195	1,188,36
Kuala Lun	npur					· · ·				
	1985	146,750	2,680	918	1,920	18,118	2,655	126,027	28,534	327,60
•	1986	156,508	2,841	1,070	2,258	20,099	2,656	135,145	29,521	350,09
	1987	167,175	2,965	1,190	2,457	21,352	2,654	140,776	30,163	368,73
: 1	1988	183,231	3,125	1,399	2,670	23,257	2,661	148,028	31,031	395,40
	1989	209,765	3,357	1,657	2,947	26,803	2,672	162,845	33,756	443,80
	1990	247,677	4,353	2,151	3,282	32,089	2,673	184,515	37,582	514,32
	1991	290,917	5,355	2,391	3,747	39,355	2,679	210,021	42,240	596,70
	1992	324,601	5,893	2,755	4,300	45,425	2,904	236,451	46,638	668,96
	1993	361,008	6,403	3,166	4,852	50,147	2,963	264,056	47,378	739,97
1	1994	407,939	8,029	5,625	5,323	56,941	2,904	306,345	55,643	848,74
	1995	414,059	8 156	5,883	5 389	57,495	: 2,904	310,848	56,067	860,80

Table 4-2: Statistic of Number of Registered Vehicles in Selangor and Kuala Lumpur

(Source : HPU Data)

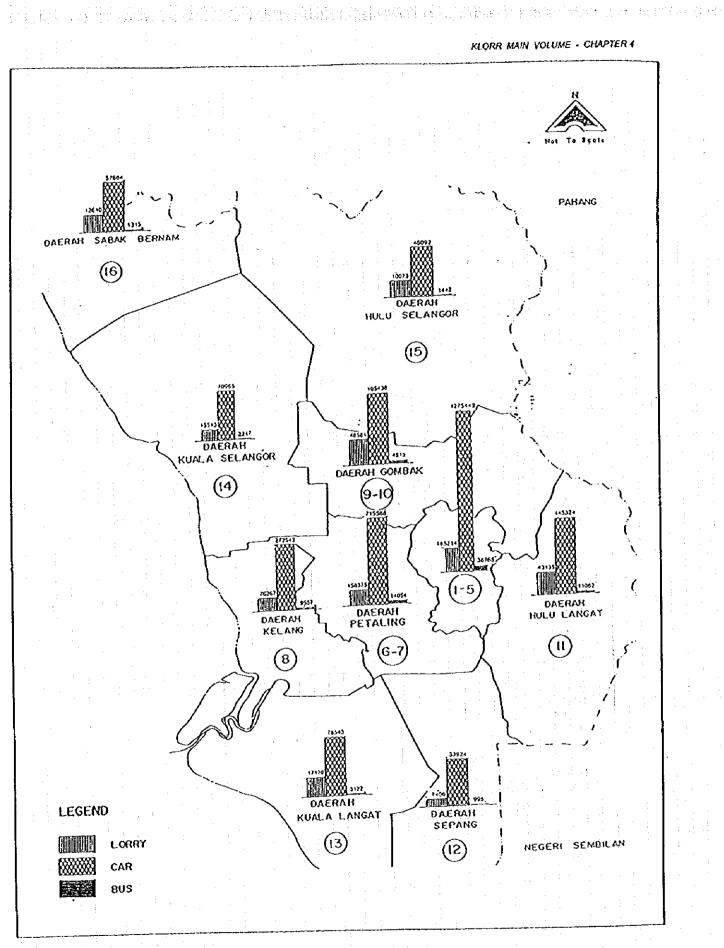
A DIA A S BALANT

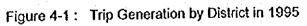
Table 4-3: Average Daily Trip Production Rates by Vehicle Type by State in Malaysia

		1			
State	P.Car	Goods Veh.	Bus	Taxi	All Vehicle
Perlis	3.9	4.5	7.8	7.4	4.2
Kedah	3.5	3.6	7.2	6.9	3.7
P.Pinang	3.5	3.7	6.8	9.2	3.6
Perak	3.8	4.6	5.7	8.2	4.0
K.L.	2.8	3.0	6.9	6.8	2.9
Selangor	3.1	3.5	8.4	5.1	3.3
N. Sembilan	3.6	3.2	9.2	5.8	3.6
Melaka	3.0	2.9	5.6	4.1	3.0
Johor	3.7	3.8	7.1	5.8	3.8
Pahang	3.7	3.7	6.5	4.4	3.8
Terengganu	3.6	3.3	5.3	4.5	3.5
Kelantan	3.7	3.9	4.6	5.7	3.8
P. Malaysia	3.4	3.6	7.1	6.1	3.5

(Source : HNDP Study; OIS Survey 1991)

The results obtained from those methods and data are summarized in Table 4-4 and compared with year 1991's data from the HNDP study.


Big differences between the results of the regression model and trip-rate method are observed. By the regression analysis it is projected to be less than the 1991 figures. Several reasons could be considered. One is over estimation of the HNDP socio-economic indicators in 1991. The other is continuous rapid growth of the Malaysian economy which could not be explained by regression models. The models might be influenced by low economic growth in the early 1980's, although high economic growth in the last third of the 1980's was attained,


Comparing the results of the trip - rate analysis and the 1991 figures, trip generation for passenger cars and buses has increased in line with the increment of the number of vehicles. However, contrary to the above results, lorry trip is smaller than the 1991 trip. Employment in 1991 could be a reason for the contradiction.

In conclusion, total trip generation in 1995 is determined by the trip-rate analysis. Figure 4-1 shows Trip Generation by Districts in Selangor and Kuala Lumpur.

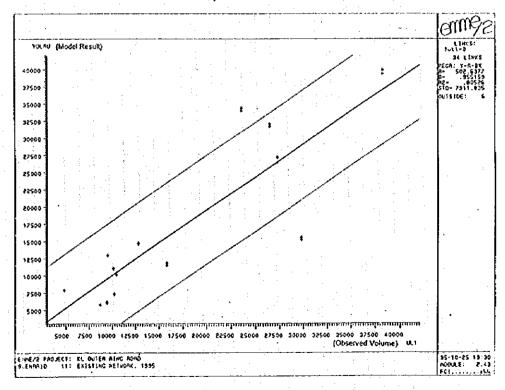
ĸ	LORR	Kuala L	umpur	Selan	gor	
Socio-	Population ('000)	1,32	9.3	2,698.2		
Economic Indicators	Employment ('000)	556	3.4	1,054	4.9	
(1995)	GDP (Million '78)	15,595.0		24,27	5.0	
	Type of Model	Regression	Trip-Rate	Regression	Trip-Rate	
Total Trip	P.Car	636,152	1,254.830	831,929	1,494.836	
Generation	Bus	28,793	37,184	43,569	47.234	
	Lony	156,574	181,197	204,981	375,386	
INDP Study (19	91 Traffic Demand)				:	
Socio-	Population ('000)	1,33	14.9	2,292.3		
Economic Indicators	Employment ('000)	662	2.3	896	.7	
(1991)	GDP (Million '78)	10,9	80.6	16,106.3		
	P,Car	857,	118	1,024.809		
Total Trip Generation	Total Trip Generation Bus		190	39,241		
·	Lony	206,265		319,490		

Table 4-4 :	Comparison of	i Total Trip	Generation

4.1.2 Trip Distribution

Trip Distribution determines where the trips produced in each zone will go, i.e : how they can be distributed among all other zones in the study area.

KLORR MAIN VOLUME - CHAPTER 4


出计 建筑 经再经济性 法财产

The present OD distributions in 1995 have been obtained from the results of the roadside interview survey. The distribution of some of the OD pairs which could not been obtained from the survey, such as internal trips within the Klang Valley, were assumed referring to the HNDP distribution patterns. Table 4-5 depicts the OD matrix for 1995.

Figure 4-3 illustrates the result of OD distribution patterns in 1995 for Selangor state and Kuala Lumpur. Huge traffic demand is observed within the Klang Valley area, while the demand in other areas is still small at present.

4.1.3 Network Model Validation

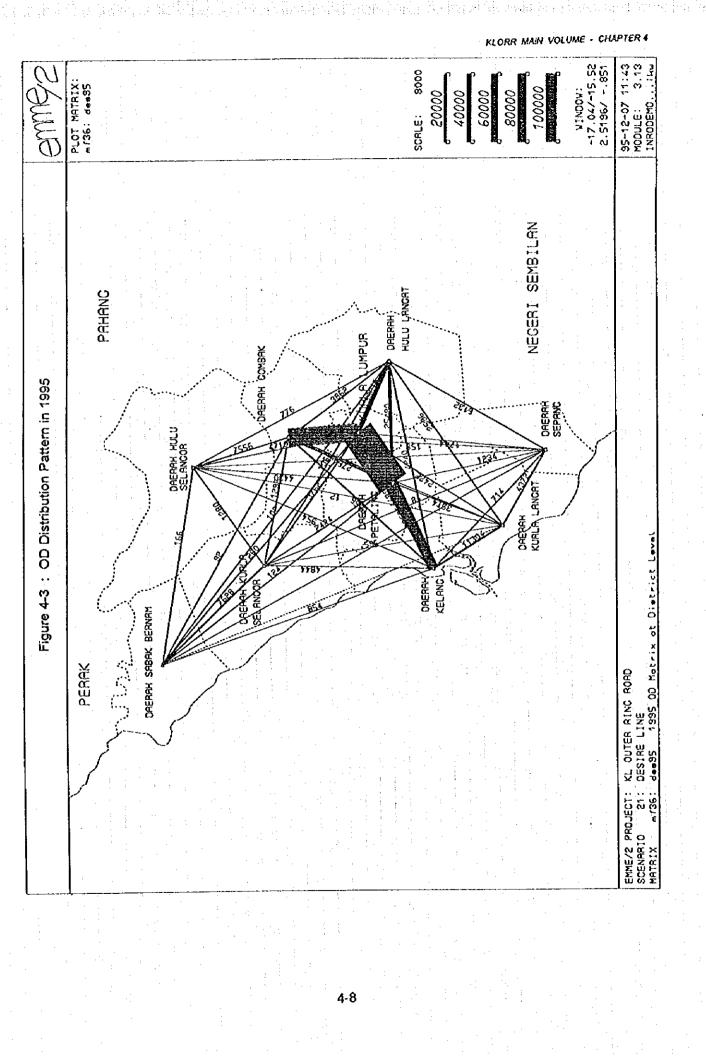
The 1995 OD Matrices are assigned to the 1995 network model developed on the EMME/2 software programme. Figure 4-4 shows the assignment results for the 1995 network model. The assignment results are then compared with observed traffic counts carried out by the Study Team and other available traffic census data. Figure 4-2 shows that the model results are able to replicate the Observed flows with reasonable accuracy, i.e. $R^2 = 0.81$, thereby validating the network model for use in further analysis.

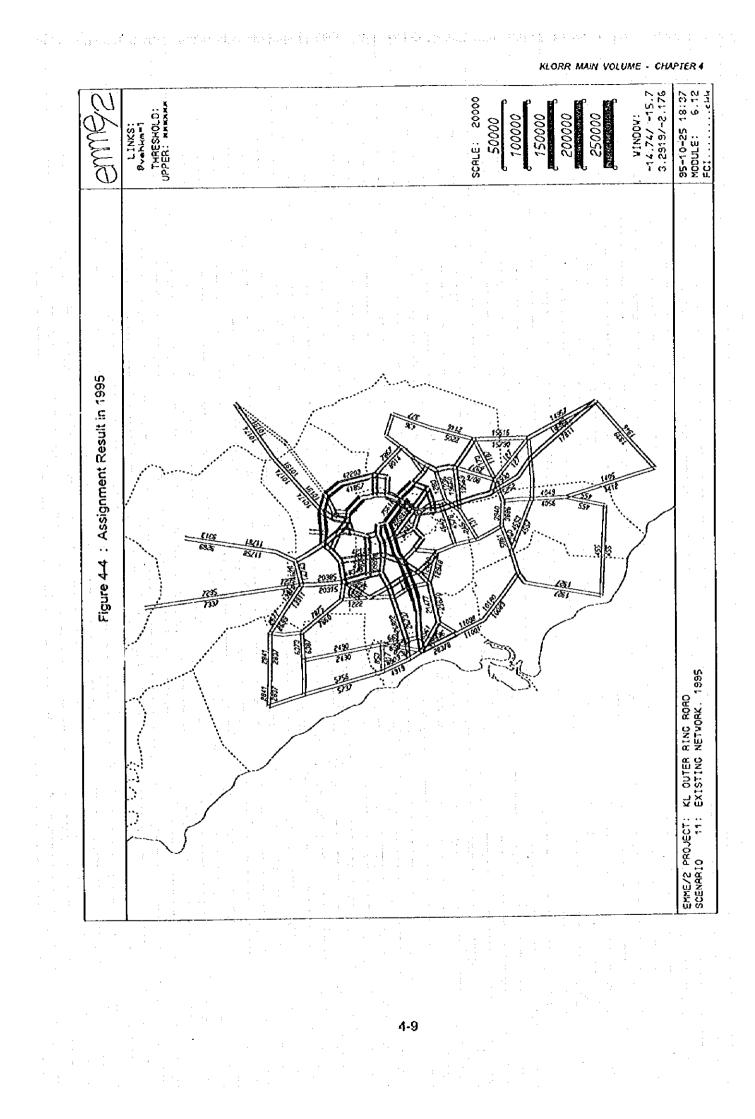
												•																														ĸı		NH NH	(R		VI.	4 ,;	Ņ	v	~0	ų.	U	γi	-	•	¢
500 500		5	200	6.9	100		ſ,	i.		8			1	201			6		2	X.	ž	3	91	202	888	3.9	Nico N	5	2	0	90	6	1	20		2	þ	6	9	F	F	Ā	Ŕ	1	F	۴	26	9	\$	10	ŀ	ľ	Ŧ	Þ	5]
	22		3	-								2							2	276	565	111	613	101		134	21 1968		ę	62	444	1	1	12		101	3	6	90	11	x	N.		561	90	21	- 505	8	147	1.5			5	 }			
					ľ	Ľ	l	ſ						1		1		1	Ì	200		54	26		-	Į.	L	141		25	9	\$:	24	14 :	14	6		0		İ.	5	1	Į,	Ā			120		6	L				ľ		Î	
		ļ	E			ſ	I.	l	L										l			4	0 0	_	12		ľ			9	8	0	-	71.	0	- 94	6		200	-	1	8		8	101	1		ļ	-97					100		ľ	
6729 6729	L		Ļ			735					l					l			l	ŝ					E	Ĩ	1				178											2.08					÷				l					P	
			542	ii I	X	2	È	ľ	ľ			Î					09.44	į				10	140644	280	929	2	ŝ	8		145	570	\$	J	180	1.5	1421	121	114	78	1.22	J	63	F	9 H	ĥ	37	202	(9)	53	ŕ		Ř	ĺ	ŝ	ĺ	21212	
			Ō	Ĩ	ľ	2	ĺ		ľ	ľ									2.2.0			(CBOC	410	24	1	51	8	2		~	*			8	Î	8	98	Ì	3	2	2	2	ñ		ò	15	£	5	°		ľ	97		ľ	ŕ		
	89		82	3	198	ŝ	Ŕ	5	8	ķ	10		5	<u>.</u>	F	2027						2	14446	452	63	265	291	155	2	0	578		'n	117	î	162	2255	•	5	3/	5	3	431	2	ž	Å	175	62	5		Þ		2	a	100	10717	1
	198		243	19151	546	618		F.	5	ļ	367					1.011	100		027450			È.	- 10	627	2:5	236	22	ž	~	5291	1/92	2	2	2	94	2.6	88	٥	ž	164	110	2	1	167	\$	10	169	1911	8		ļ	86				1000	
1010	20	ļ	55	202	1223	27	8	87	16	ľ			<u> </u>	9	L	L	<u> </u>	1		L	ļ	ļ	ŀ		E 1		8	8	9	ţ	8	0	2	2	ŝ	56	57	7	ñ	35	15	2	22	5	22		142	28	0	5	ŀ	6	ĥ	13	L	L	
	1221	ł.							16.7	1.034	183			101	102	184	1.16660	120			ļ	ļ	ł	14:00	802	1420	11841	46.	15	415	173	29			94	27.4	6311	51	1951	20	G	355	310	22	ŝ		673	1991	:03		I.	1	1	Ŀ	83	5	
f	1000	L				Į.	L	L		L	Ł		L		100.0	L	L	Ł	Ł	L							1126									5		0	8	- 22	81	51	116:	ŝ	5	-62	052:	101	20	131	12	52	100	1		122 101	1
	L	L		2	8 23	200	ĺ	Ę	1913		Į			ŀ		L	0.75	l		I	1				1010				ž					S.	5	1	26.	Ē				2			•		10 1			50						f	Ì
8.0	1	L			101	Ř	ľ	Ĩ	ľ	ſ	ĺ	ſ	E	Ĩ	Γ	ſ		ŀ	L	1										-			100		-		60	1	e	6			16	5			C [072		4	14			L	61 51		1	ł
		R	454	89		19091	122		E	6	TAP?	ĺ		1	L			Į.									566				787					_	9	-																		F	L
		ĺ		1624			Î	1	ĥ			ł	ſ	1		L		L			3	ĺ	-				1.52							2	2	18	5	ĥ	Ĩ		2	Ĩ	-	4		2	150	101	61	7	Ĩ	ſ	ſ	È	ŝ		
33	1981	3	11/6	30	1340	ğ	1.2	8	90		N.	3		χų.		19		ľ		37			-76	330	190	127	14	N.	61	3	011		Ĩ	7	2	5	\$	4	<u>_</u>	9	0	~		-		•	71	5	22	3	ľ	ľ	1	È	ŀ		
	G	19	575			542		i.	20.2	k				ř	ł	202							245	1111	193	- 22	1962	010	~	66	ίQςς S	9	8	7	0	5	27	4	~	'n	\$	2	6	4	ŝ	- 6	118:	10	2	5	0	Î		25		k	ч.
	100	24	699	10		3514	197	1.62	070	1	1212					100	5					3	X	834	11.11	1957	162	605	Ŧ	3	555	~	ş	2	i ej	•	201	4	<u>2</u>	0		2	14	•	1	-	100	72	ġ	161	ñ	Ē		ie O		101	
	10/1	. 	369			15251	Con 1	j,	100		2006	- <u>, , , , , , , , , , , , , , , , , , ,</u>	ļ			y vo						2	2.24	. 86	225	113	. 90%		2	2	77	5	8	2	0	-	00	Ŧ	<u>ن</u> ي	ŝ	0	7	151		0	9	205	31	C .	1001	ľ	Ĩ	ŝ	15	Ę		
			176	1616	1	12161	1965	100	170			100	÷			00			1.6		~	2	50-	444	111	1451	31.54		-7	2	126	2		•	0		9	0	5	Ň	5	•	8	~	4	-	951	5	11	113	Ļ	F	5	97	10		
	L	L		Į.	L	10901	L	ſ	1			L		ł	L	L	1	L	L			ł	1		101-92				j Q	161	102	-		ç	47	9	25	0	2	i la	-	50	0	2	~	-	165]	11	69	265]			1	1361		L	E
60001		Ł		L	Ł	Ľ	E	L	Ł	l	ļ	I	ĺ			ł		- <u>-</u>	L	ł							5746	i?	2	25	221	-	\$	2	5	\$	12	0	2		Ţ	2	201	9	2	~	206	11	100	181		Ł	1			L	I.
Ĩ.		L		1		•		1	1		1	Ł	Т	Ł	1	I.	н	L	Į	ł	1													1	16		241	ŝ		1 2 3	3	3	2.6	55	18						152	ļ	ļ	450 225	. 98	11 100	
10,2			Ł																I.	I							2823 2					- L				0	1	1							-												
	Į.		-38											1.	Ł	L	1	Ł	I		- 1	1					1602	1		-	-					Š							2					(2	ĺ		ſ			52855	
11			728	i i	1		L	1			1	1	1		L	I	ł	ŀ		·						ŀ	100		1	90	ŝ		-	•	6	*	\$		j					Î		2	DV I		ĺ		ſ		ſ	ſ		ľ	
科		3		193	1.22	39.4			125		T Still			22		ł					122	â	1991	1	98	123		8	¢.	25	52.	\$	Ŷ	101	9	10	0	4	1	2	1	9	2	5	0		0+	6		10	ſ	Í		ľ	2	02.661	
	100		19.91		ŀ	1001			12/2	1000		2		10.02			2			6	2	8	613		288	14.4	9	202	191	69	50	3	36.	Ċ	9	2	56	4	54	ľ		61	91	35,	1	~	157	26	ĥ	2	97	ľ	ĥ	k	X	10.74	
۶ ۶	12		i ci	12/0		Ŵ									\$		200			Ş	1051	0	56		2001	121	ĥ	42	6	2.1	115		101	9	1		Σ0:	-	160	36	161	167	i	10	6	5	125	F	ā	ŝ		ł		ķ		1915	1525
1240	20121		3	101		1000									,		2020			ŝ	9	455	20005	67.53	0001	90	12600	1072	15	3631	42941	100	1010	261	76	265	21	23	105	j.	27	990	<u>و</u> د	197	1	8	2 - 56	192	312			90		5	1.64		
			L	Ł	ļ	Į			210	Į.	1	100		8			é		ğ	ě	22	9623	-200	6700	9.00	1290		4290	0000	500	20032	2000	253.4	ŝ	200	100	1	4	040	ž	1	1	, it	ş,	540	90	Į,	5	100	1	4			ž			
	1	1	l	l	l	l		ĺ		1]		l		J	J	ĺ	1					ļ,		1			L	L	L	U	U	L	L	U	I,	L		L				Ļ	L	U	L			L	L	L	L	1	L	Ļ	ļ

Table 4-5 : OD Matrix (All vehicles) in 1995

4-6

KLORR MAIN VOLUME . CHAPTER 4


	KLORR MAIN VOLUME
s) in 1995	
D Matrix (All vehicles) in	<u>៲៰៷៹៹៰៰៹៷៹៷៹៷៹៷៹៷៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹</u>
Table 4-5 : OD M	
	88888888888888888888888888888888888888


. 1990 – State Berkin Delevant state beskar and the second state of all produced and the second state of the second state of the

CHAPTER 4

÷ -

÷

14.000

4.2 Future Traffic Demand

4.2.1 Forecasting the Number of Registered Vehicles

The number of registered vehicles is an important factor in forecasting vehicular traffic demand. There are two types of forecasting methods:

- (1) Structural model (linear regression model),
- (2) Time series vehicle forecasting model.

To determine the future number of vehicles in Selangor and Kuala Lumpur, these methods are used for comparison analysis.

The regression analysis was carried out with the number of registered vehicles and socioeconomic indicators from 1985 to 1995. Linear regression models obtained are shown in Table 4-6. Most models bare high correlation coefficients.

Area	Vehicle Type		Formula	Correlation Coefficient
		(1)	200.384 POP - 63211	0.975
	P. Car	(2)	13.869 GDP + 159276	0.990
		(3)	12.927 POP + 12.988 GDP +144721	0.99
Selangor		(4)	1.535 POP + 1450	0.966
	Bus	(5)	0.106 GDP + 3153	0.982
:	· · · · · · · · · · · · · · · · · · ·	(6)	16.372 POP + 1.653 GDP + 26225	0.988
	Lorry	(7)	2.769 GDP + 44660	0.985
	· · · · · · · · · · · · · · · · · · ·	: (8)	952,018 POP - 776011	0.984
	P.Car	(9)	38.146 GDP - 134871	0.985
	·	(10)	11.064 POP -8975	0.986
Kuala Lumpur	Bus	(11)	0.456 GDP - 1307	0.988
· .		(12)	81.157 POP + 2.168 GDP - 76757	0.981
	Lony	(13)	5.500 GDP - 20355	0.979

Table 4-6: Linear Regression Model for Forecasting Number of Registered Vehicles

Note POP:

Population ('000)

GDP: Gross Domestic Product (million MR)

For the time series vehicle forecasting analysis, trend type models with the saturation rate of vehicle ownership is used. The equation of the model is shown below:-

	Y = 1	K + e ^{^1}	A2 YR	
Where;	Y		Vehicle ownership (vehicles per 1000 population)	
1	ĸ	. =	Saturation rate of vehicle ownership	
	A1, A2	=	Parameters	
	YR	. =	Year	-

Table 4-7 shows trend type vehicle ownership forecasting models from the HNDP study. The models assume the saturation rate of 400, 25 and 100 for passenger cars, buses and lorries, respectively. These saturation rates were determined based on the data from developed countries.

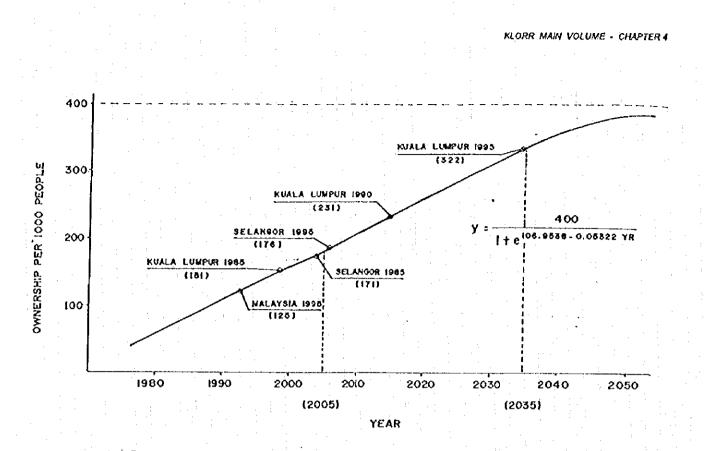

Type of Vehicle Formula Coefficient 0.962 Car 400 106 9538 - 0 05322 YR 1 + e 25 1 + e 68 2757 - 0 03292 YR Bus 0.988 100 1 +8 95 5106 - 0 04759 YR Lorry 0.949

Table 4-7 : Vehicle Ownership Forecasting Models

Source: HNDP study

Figure 4-8 illustrates the model for passenger cars and shows the existing conditions in the Selangor and Kuala Lumpur area as well as in Malaysia. Vehicle ownership in Malaysia in 1995 is 125 (ownerships per thousand people), while Kuala Lumpur and Selangor are far ahead of Malaysia in terms of ownership. For example, ownership rate for Kuala Lumpur in 1995 equals to the year 2035 for Malaysia. And for Selangor in 1995 equals to year 2005 for Malaysia. The biggest gap observed between Kuala Lumpur and Malaysia is nearly 40 years. The ownership rate of 322 vehicles recorded in Kuala Lumpur indicates an almost saturated situation.

The results for the future number of vehicles in 2020 obtained from each model or method are shown in Table 4-7. For the trend type model, imaginary years are used for parameter YR as a basic year, for example 1995 will be 2035 for Kuala Lumpur. Comparing these results carefully, the forecasting model for each vehicle type and area has been determined. The models for Selangor have been chosen from a regression analysis which means that the number of vehicles in Selangor will continue to increase following the growth of development. On the other hand, the growth rates for Kuala Lumpur will be reduced because of the already high rate of ownership and limited development areas.

it i state an de familie

计可非可能通过方式 医子宫 法法法 法

Figure 4-5: Passenger Car Ownership Model and its Rate in Selangor and Kuala Lumpur

Table 4-8 shows the future number of registered vehicles in 2000, 2010 and 2020 for Selangor and Kuala Lumpur.

		· · · · · · · · · · · · · · · · · · ·	(Unit V	ehicle)
		P.Car	Bus	Lorry
	1995	477,469	5,726	110,527
Selangor	2000	594,610	7,149	142,279
	2010	880,199	11,236	229,354
	2020	1,126,557	17,119	341,217
	1995	422,159	5,530	63,394
Kuala Lumpur 🐋	2000	530,674	7,571	85,302
	2010	724,067	12,453	131,507
	2020	901,546	18,810	180,564

Table 4-8 : Future Num	ber of Registered Vehicles
------------------------	----------------------------

Note: 1995 numbers are based on the models

ð.

4 12

· · · · · · · · · · · · · · · · · · ·					1		1
Area	Vehicle		Multiple Regressi	on Model	Trend Type	e Model	'95 Ownership
	Туре	No.	No of Vehicle	Ownership	No of Vehicle	Ownership	Ownership
		(1)	1.126,557	190			
	P.Car	(2)	2,357,626	330	2135,428	299	176
	· · · · · · · · · · · · · · · · · · ·	(3)	2.295,667	321			
Selangor		(4)	12.416	1.74			
Bus	Bus	(5)	17,119	2.80	33,995	4.76	2.09
		(6)	341,217	56.7			
	Lorry	(7)	483,562	67.7	535,643	75.0	39.7
	-	(8)	1,447,825	602			
	P.Car	(9)	2,183,778	908	901.498	374	322
Kuala		(10)	17,623	7.33			
Lumpur	8us	(11)	26,428	11.0	33,719	9.67	4.06
		(12)	250,127	104			
	Lorry	(13)	313,986	131	180,637	92.6	45,4

Table 4-9 : Comparisons of Vehicle Number Forecasting Models

Input : Socio Economic Indicators in 2020 Base Year for the Trend Type Model Selangor : 2005 (2020 → 2045) Kuala Lumpur : 2035 (2020 → 2060)

Note : Ownership means "Vehicle per 1000 population"

4.2.2 Future Total Trip Generation

Trip rate analysis has been applied for forecasting total trip generation for Selangor and Kuala Lumpur. As mentioned earlier, the regression model is useful for estimating trips from each traffic zone, but it is not adequate for estimating the total generation.

Future trip generation rate for each vehicle type will differ from the existing rates. The rates will decrease or increase depending on the type of vehicle. According to the experience in developed countries, the rate for passenger cars shows a tendency to decrease following the expansion of ownership. Buses have also shown the same tendencies, possibly caused by traffic congestion on roads. On the other hand, goods vehicles have increase in contrast to the others.

Expansion of the economy will encourage people and goods transport, as well as urbanization and motorization. However, the urban transportation system, especially the road system, cannot always accommodate the rapidly increasing traffic. Traffic congestion will occur everywhere, so that people, especially commuters will switch from private cars to public transport in order to avoid road traffic congestion. 经保持保证 化过程分子 化水晶合金 化合金合金合金合金

While for goods transport, there is only a limited modal choice besides road transport. They have to find a more efficient mode of transport, such as containerization, improvement of delivery system and so on. Even so, it will be needed to make more trips to meet the increased demand.

Based on the mechanism encompassed in the relationship between expansion of the economy and vehicle trips, future trip generation rates for each vehicle type are determined as shown in Table 4-9.

		P.Car	Bus	Lorry
	1995	3.10	8.40	3.50
Selangor	2000	3.00	8.00	3.60
	2010	2.90	7.50	3.80
1	2020	2.80	· 7.00	4.00
	1995	2.80	6.90	3.00
Kuala Lumpur	2000	2.70	6.00	3.10
	2010	2.60	5.00	3.30
	2020	2.50	4.50	3.50

		Generation	

Traffic congestion in Kuala Lumpur is getting more serious. The government of Malaysia, therefore, is enhancing the development of public transport system introducing KTM commuter service, LRT system and so on. In the traffic demand forecasting, the further development of public transport systems should be considered.

The traffic demand forecasting procedure applied in this study is a car based method, using HNDP car base models. In order to adjust the values obtained from HNDP models with a future development of public transport system, the following steps have been taken.

- Step 1 : To estimate total number of person trips
- Step 2 : To estimate person trips by P. Car and Bus respectively and assume the share of modal usage.
 - (Mode : P.Car, Public (Bus, Rail),

Step 3 : To set a future modal split. (Table 4-10)

The modal split is set up as a target value based on the Klang Valley Transportation Study (JICA).

Although the Malaysian government plans to setup a modal usage target of 40 (P.Car) : 60 (Public), it is not practical to achieve by 2020 based on the present public transport system development.

Step 4 ;

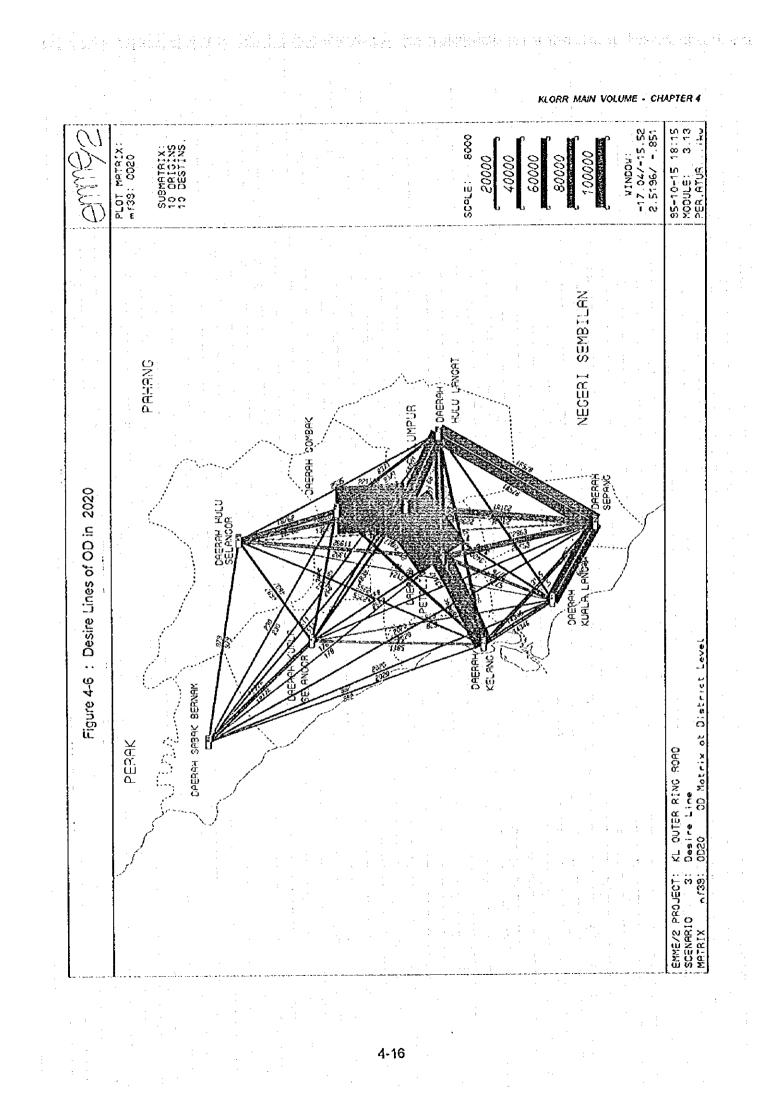
To adjust the trip generation for the zones in the Klang Valley and KL - KLIA corridor where rail mode public transport system will be introduced.

Year	P.Car		Total		
		Bus	Rail	Total	
1995	67	33	-	33	100
2000	60	33	7	40	100
2010	55	35	10	45	100
2020	50	35	15	50	100
(Target)	(40)	(40)	(20)	(60)	(100)

Table 4-11 : Transport Modal Split

Table 4-11 shows the future total trip generation after the adjustment of the modal split. The trip generation is estimated using the future socio-economic indicators mentioned in Chapter 3. The demand estimation in high economic growth case and traffic from KLIA passenger and cargo are referred to Appendix.

		P.Car	Bus	Lorry
	1995	1,480,154	48,098	386,845
Selangor	2000	1,686,994	57,192	515,124
	2010	2,288,616	84,290	876,265
	2020	2,886,256	119,833	1,371,719
	(Target)	(2,473,900)	(132,532)	:
	1995	1,182,045	38,157	190,182
Kuaia Lumpur	2000	1,348,305	45,426	264,435
	2010	1,713,720	62,265	433,972
	2020	1,880,475	84,645	631,974
	(Target)	(1,343,200)	(87,308)	· ·
	1995	2,662,199	86,255	577,027
Total	2000	3,035,299	102,618	779,559
	2010	4,002,337	146,555	1,310,237
	2020	4,766,731	204,478	2,003,693


Table 4-12 : Future Total Trip Generation after Adjustment*

Note : *Adjustment from - Modal Usage

4.2.3 Future Trip Distribution

Figure 4-6 shows the desire lines of Future OD in 2020. The majority of the demand is still within the Klang Valley Region. Substantial increases are noted for the trips between Sepang District and Klang Valley as a result of KLIA and Putra Jaya projects.

Table 4-12 depicts the forecasted OD matrix for 2020.

		27.49 27 289.99 289.28
		<u>38665557358265888</u>
		<u> </u>
· · · ·		
	<u>287.00.000000000000000000000000000000000</u>	<u>2 • • 7 8 2 • × • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5</u>
		<u></u>
	<u>aur eenenenum teneene saadar tataaaaa aa </u>	
0		
202		
ui (se		903 · Contra 1923 · Contra 192
vil vehicles) in 2020		<u> </u>
All ve		
OD Matrix (A		2782 <u>88888</u> 27788888
N N N		
0 		
4		<u> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>
Table 4-13 :		
-1		
		<u></u>
		<u>88988529378555295</u>

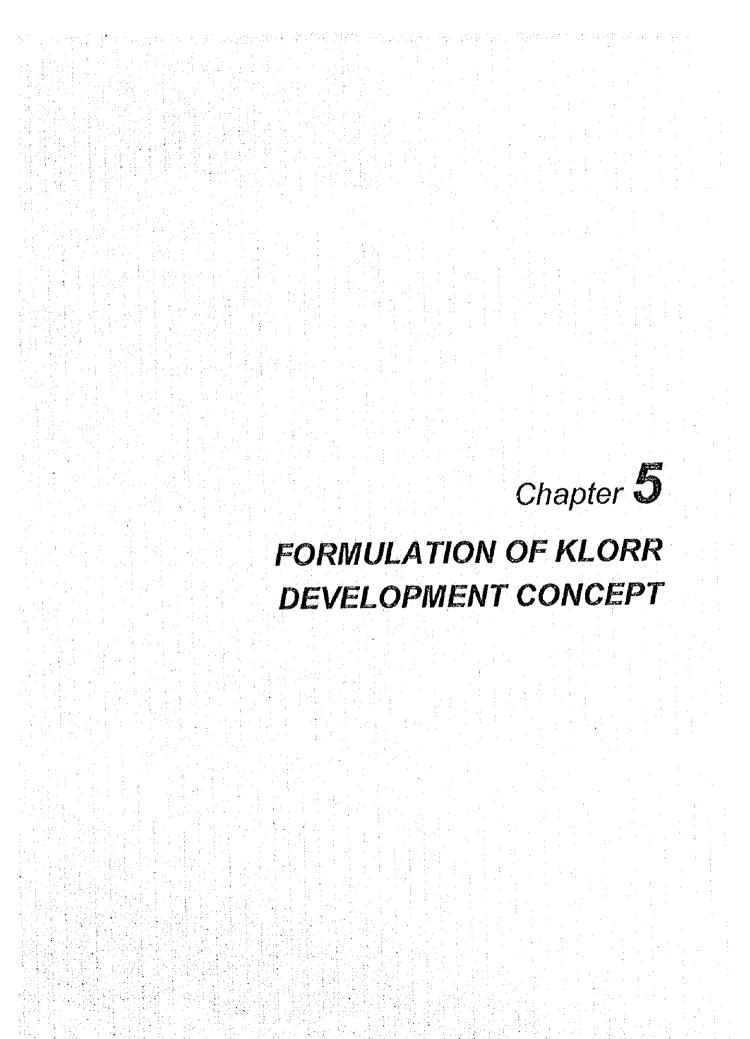

ALL STOR		(e) #2	10-1		77000		100/01	195937	144406			8	1 205495	00510	53303				22.54	276126	112023		110756						1000		102021	1 270551	30248	1 125746	18.35	22.40	6.5.1	101.0	1 00783						80.00		0.704	10057	41067	06216	206764	11 X	6010		2401	10,00	0	1			1 262.97
0053 0050	L				ľ		2	14	32 100	36 27			Ĭ	151 153	3	r				1.1	211 10	241 12	59.05									ž.	5	143	12 72	01 V		201	15 10		102 201							~	2	0. 55		í9	~		131 4464	ľ		1.22			
00141 01	L	-	L	ľ	ł	ł					I	ł				()))))		I				1021			Ę.			L								98 3			7	16	L		ļ									1.2			1382					ľ	2011
	L			L			L	1		2	0		I	5			0			Į		l	3	ĺ	5				ĺ	0						ŝ	_		10	0	0		8	263		ž	ő				90	26	0	0		-		5		5	
2057 6 17	77	101		0				ļ	0	ŝ	~				-	22	110	9	į						0	-	215	2	328	: 69							2	0	0	-	4	0	1.7	105		999	000	0.0		1		6 2	2	2	Ŷ	0		101	Ģ		-
2001	ł	1691	22	ž	175	1140	3	120	8	5	114	(0) (0)			12	171	8	218	1713		. e)		ļ	86	Ŷ	ŝ	1069	26,	3	564	145	ļ						2	2	2	12	X	125	1561	(Q)	(9) 1	3	1				110	2	16	20	8	-	13.42	151	1444	
	0	2	121	0	23	10	99				-	101				ŝ	6	-	150	ş		20%		¥		101	56	0	175	204	25	ļ				;;			•	0	•	0	2	31	2;	14	ŕ	5				à		2	2	66	61	42	22	~	_
3	9	X	11	101	57	237	22	22			8	130	1			2		3	315	226	Ę	ŝ	60			0/0	8	1	130	11	1024	F	202	8	k					2	ŝ	•	0	591	2	14	8	30	k		ļ	•		-	100	Ř	9	110	14	2	
10104	1	3231	11			100	192	, I				109	22.6	ļ			<u>ş</u> ti	505	19511	96-1	202		102				2			201			212		Ł	L	L				ž	3				100		5		<u>†</u>				2	5		2	Ì	Ŕ	-	
							•	8				_		75	L	ſ		°	10	42	01		7						102	47	90	97	07	36	3								l		ſ	8				1010101		ľ	ļ				00 95		0	•	
\prod			Ĵ						51 22			8		22					72	1 216	120	345							8		501	16	10	30	ſ	ľ	L					ſ			2	1				104										_	
Π												•	27	C 101				I		1010	19	2/10 0/2	191		100	ľ					1	-	24 18	0	5	ľ	1999		10			1	1	ļ	I				İ	24 04			l			I	ĺ			_	
2 5101						I		İ			l			124			L						400		ĺ	ľ						2	96	28	00		L	-29							ł	G70 17 00	- 1		160						045			ĺ		0	
[I	ſ		Į.	ł	L	ľ			ľ	l			ō						123 20	X	121			L	ſ	ł	ł	I		ĺ	2			24	24		151	46	ţ,								2		5025		2	5			žeč v				8	
118	ł							1501	101	155			11	12	0					ł	\$	301	100	ľ					100				R.	12	26	26	1015	151	\$	104	ļ				ł							56	ñ	- 151					2		
88	1	, , ,		141					14	07		Ĩ	R	40	9	ļ	Ş			Q.	Ŧ	045	211	1	1000	101				52	Ş		0/1	2	2	28	251	151	46	Ê		τ.	F		L		ł	1							ļ	126		2			
2~								5	0	12		<u>.</u>	Ì	12	151	1		ľ				2	22	10	20.67		ļ				t		8	2	ř	R	257 41	5156	15/51		407								-		65	191	0	Ā	ļ	ō	ļ	9	5		
ន្លុទ	1	į				ļ	ľ		40	3	į		6	181				L	н	L						L	L	l	L	L	L		ł	T			15422						L	<u>,</u> ,	ļ					•	8	148	ó	Ĩ,	,	6	205	20			
1044	L	I			ĺ		l	I			-		Ì								- 1		- 1												- 1						r –		E	45		1	I					40	ò	155	7	0	ľ				
			L			l	ľ	I						2×2	259	020	502	101				797	ľ	Å	1575	30	511	5	9	1444	ķ		2101			9/00	\$15	25214	0.00	5150	9515	151	1	13.	6				j	•	20	569			0			÷			
12 150	121 03		l			L																																										I.	1	1		F		181	10 10	2		8			1000
23.4		Į	l					I				l	l	1	1			1			1	1		1	57. 34	3 ?			L	Y07 247						5 SPC 6 4		205 337	35 03	18		24. 2	ľ	26 35		ř						1	Ì				1001		L	L	
11228		L	L	ł		E	ľ	L				L	L	1				L	l		ĺ	1			- 50														126	129	351	27		27	2		Ŕ		L	ł	ł							F	ĺ	L	
1 524 M	292			1001		6				10.02					11:0	295	200		1000				ţ	25	505	326;	1.002	26.5		6024. 43		64.1 (S.C.)						010101	-		\$	176	28	26	494		F.	L			1	263			146		440			r	
Į.	61	×		01		11				67	20			8	\$								-	-	127	101	151	99	153	3450		A 18 18410						020	2							Ē	l					: ~	1	~	~	1	13	0		0.11	
61.2 1	3			1609		1350				5	19055	19,91			222	1370	1946	1010	1007			i.		1	677	424	100/	630-	E.			17(2)								1098	Ĩ	534 (765	200	676	1961	127			120	22	1020	122	3765	22.1	52	7	510			
1000	000	1040	2030	\$0.00	1040	otovi	No.			60	2012	1940				2010	9617	0016	0016	14	10.00	5				0025	9620	1200	0020	0020	10200					ş		х С		629	929	0446	į	2110	000	110	2000					540	200	2055 2	2530	C540	99 7 90	1025		¥ .	J

Table 4-13 : OD Matrix (All vehicles) in 2020

4-18

KLORR MAIN VOLUME - CHAPTER 4

计传播编辑编辑 医外外的 计可算算法 医上颌外外

CHAPTER 5 FORMULATION OF KLORR DEVELOPMENT CONCEPT

5.1 Review of HNDP Study

The HNDP (Highway Network Development Plan) Study was conducted from May 1991 to February 1993 with the technical cooperation from the Government of Japan (JICA - Japan International Cooperation Agency)

The HNDP Study targeted the following two objectives covering the whole of Malaysia (Peninsular Malaysia, Sabah and Sarawak).

- a) To formulate a development plan of the national highway network up to the year 2010.
- b) To prioritize new and improved linkages in the planned network with respect to technical and economic consideration, and to formulate a road development program.

The highway network development plan was approved by the Cabinet and incorporated as the basic guidelines for the future development of highways in the Mid-Term Review of the Sixth Malaysian Plan.

Figure 5-1 shows the Conceptual Future Highway Network in Peninsular Malaysia established by the HNDP Study. The concept has proposed that the expressway network be extended to the east from Kuala Lumpur and in the east coast corridor from North to South.

A sustainable economic growth targeted in the Vision 2020 is expected to encourage industrial developments and urbanization in the east coast regions. Based on economic expansion, the traffic demand will increase tremendously, not only in the Number of Vehicular trips but also longer travel distance.

Selanger state will play the most prominent role in the expansion of economy in Malaysia as mentioned in Chapter 3. Figure 5-3 shows the conceptual highway network configuration for the Central Region from the HNDP Study. The highway network configuration aims at the dispersal of traffic converging in Kuala Lumpur and the Klang Valley; and to provide smooth linkages to region-wide highways and expressways.

As mentioned earlier, the inter-state traffic demand will increase according to the economic expansion. Figure 5-2 shows external traffic demand for Selangor State in 1995 and 2010. The future traffic demand on the state boundaries is forecasted to increase two to four times the existing (1995) traffic demand. The highest growth is indicated on the boundary between Selangor state and the eastern states. The KLORR will disperse the external traffic on the outer side of Kuala Lumpur.

KLORR MAIN VOLUME - CHAPTER 5

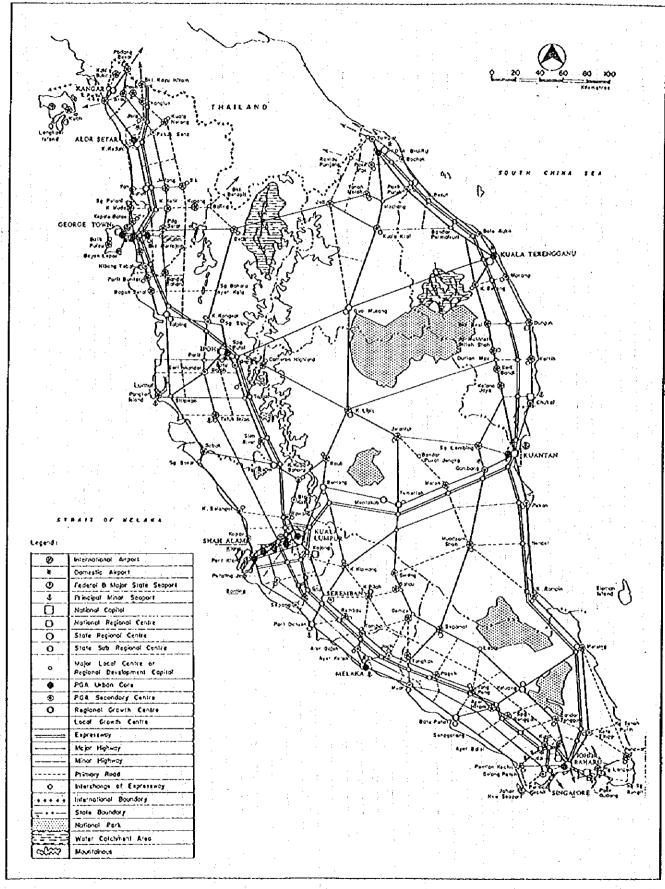


Figure 5-1 : Conceptual Future Highway Network in Peninsular Malaysia (By Functional Classification)

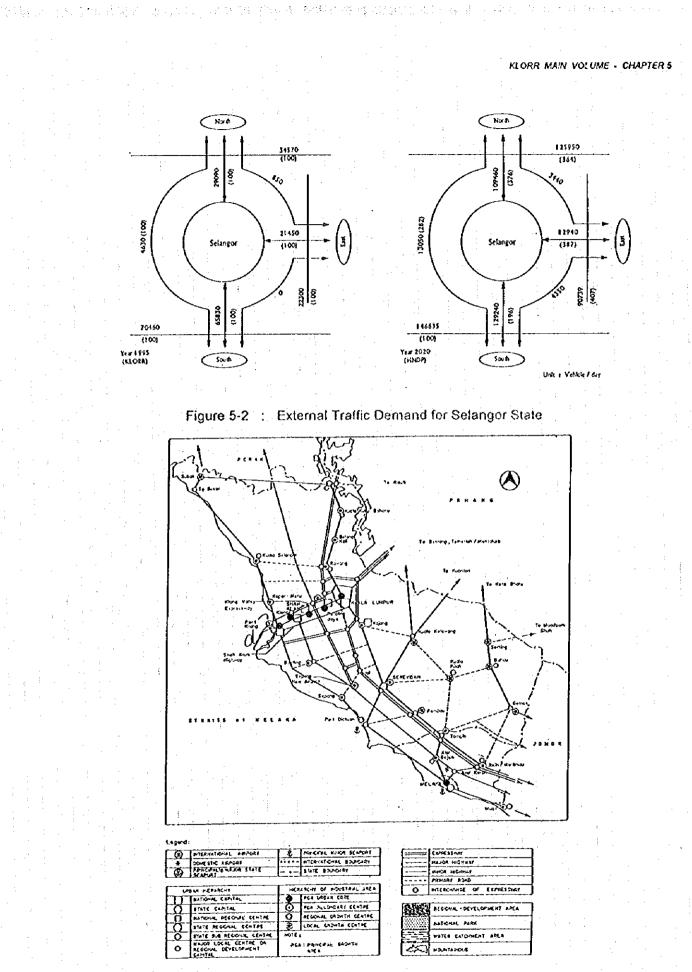


Figure 5-3 : Conceptual Regional Highway Configuration for Central Region in Peninsular Malaysia

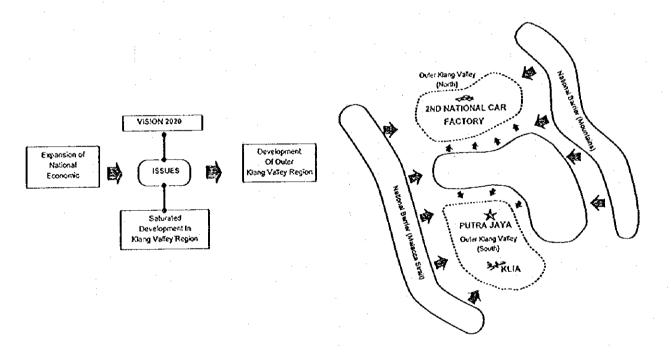
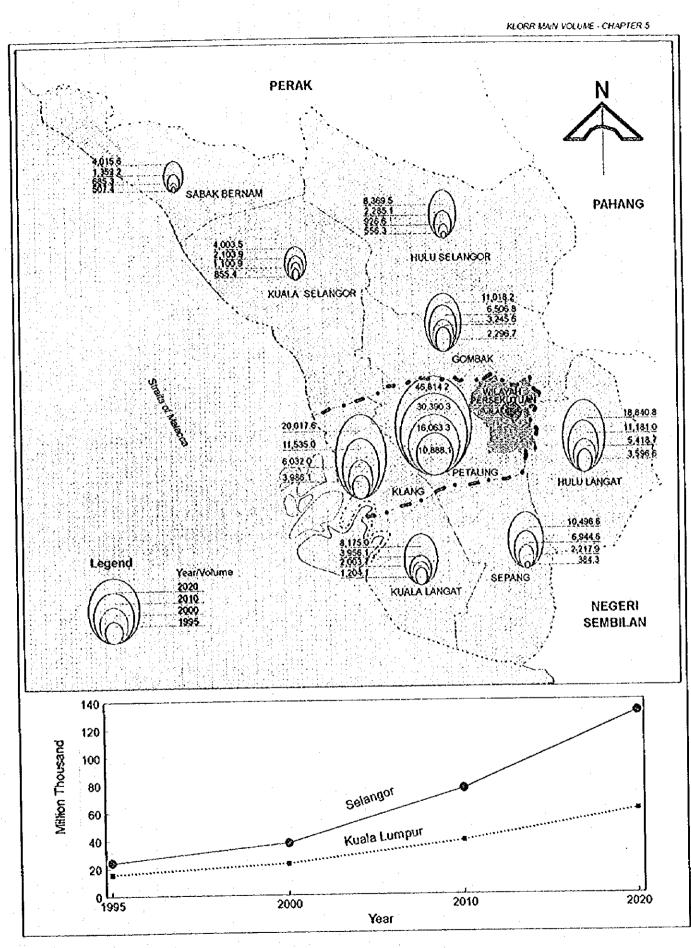
5.2 Development Trend and Issues

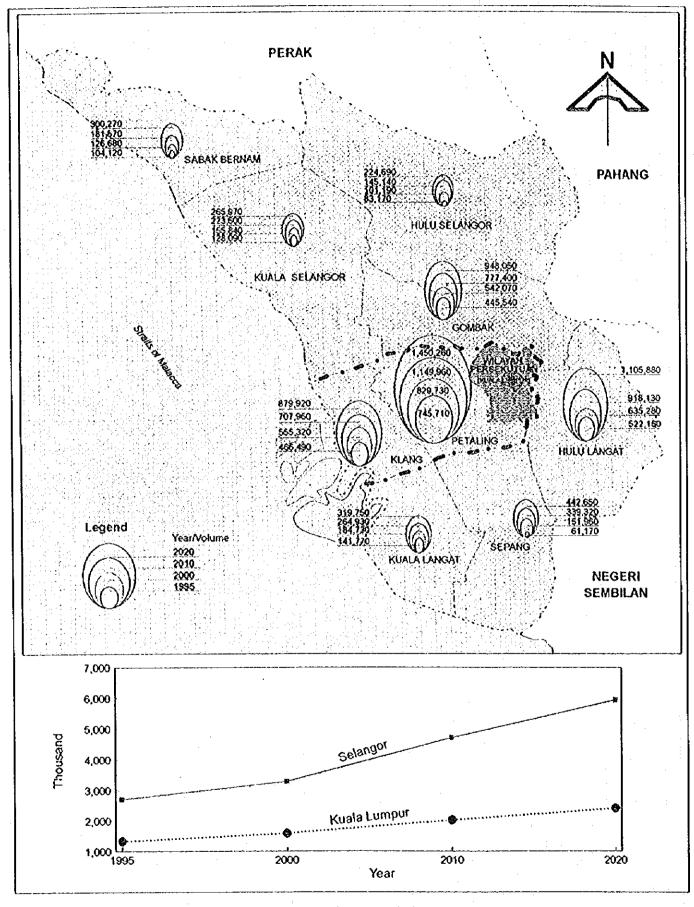
The development plan for Selangor State is discussed in detail in Chapter 3. In this section, effort will be made to identify the development trend and issues necessary to base the KLORR development concept, especially outside of Klang Valley Region.

The present capital region of Klang Valley has played the most significant role as the growth pole in national economic development during the last decade. Expansion of the economy has developed this region rapidly and it will be fully developed in near future.

The national economy is expected to expand further, targeting "Vision 2020". Based on economic growth, the development trend has started to over flow from Klang Valley to the north and south regions. The present development trend is illustrated in Figure 5-4.

New national development projects, such as Putra Jaya, KLIA and 2nd National Car Project, will encourage this trend and will form a new capital region, the Greater Klang Valley Region.


Figure 5-4 : Expansion of the Capital Region - Klang Valley

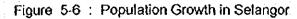
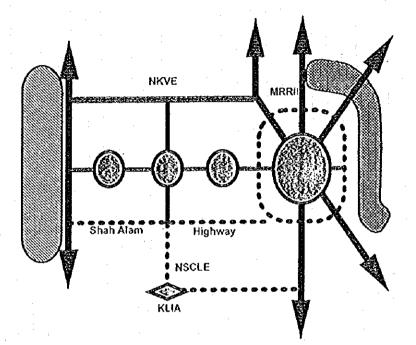

Figure 5-5 and Figure 5-6 show future economic growth by district in terms of GDP and Population. The rapid growth of GDP can be observed in the district Gombak and Hulu Selangor in the North, and Sepang and Kuala Langat in the South. Sepang district will expand rapidly, due to impact from Putra Jaya and KLIA projects. The distribution of population indicates same growth patterns as the GDP.

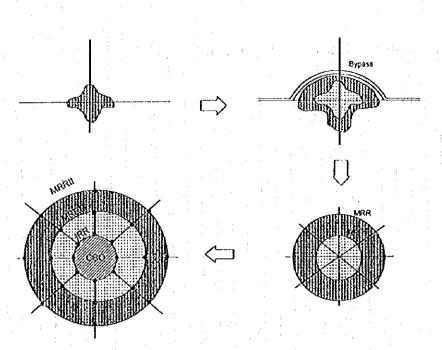
Figure 5-5 : Growth Domestic Product in Selangor

KLORR MAIN VOLUME - CHAPTER 5

5.3 Development of Network Configuration

Existing road network and traffic conditions are described in Chapter 2. The basic frame work of the network configuration for the existing urban area, Klang Valley including Kuala Lumpur, will be completed with the existing on-going, projects such as MRRII, Shah Alam Highway and North-South Central Link Expressway, as illustrated in Figure 5-7.



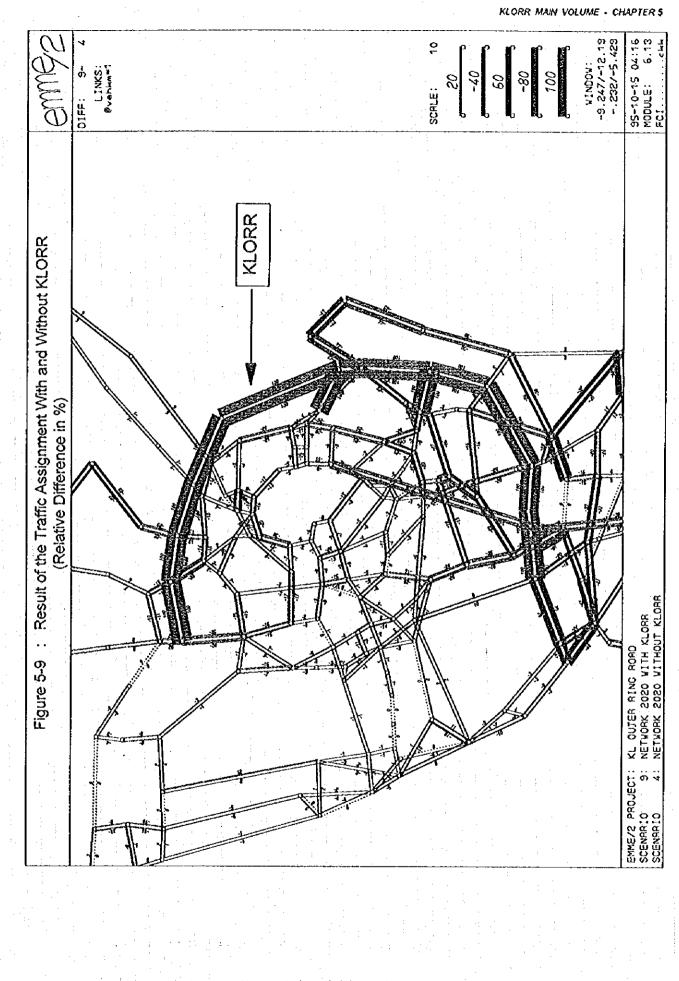

Figure 5-7 : Framework of Existing Urban Road Network

Future road network development for the existing urban area will be in the improvement of road network density based on the framework, which should be examined with other studies.

The other consideration is of the network configuration in Kuala Lumpur. Figure 5-8 shows the expansion of urban areas and road networks in Kuala Lumpur, which resulted in the urban road network forming a typical Radial-Circumferential configuration.

The major functions of the circumferential road are to disperse traffic and to provide a bypass route for through traffic. The necessity of a further outside circumferential road will be justified by the expansion of the urban area and present traffic conditions on the outer ring road (Middle Ring Road II - MRRII).

From view point of the expansion of the urban area, the KLORR can be justified in the north and south, because of the potentiality of rapid urbanization out side Klang Valley in the north and south. However, in the eastern side of Kuala Lumpur, urban expansion is controlled by the natural barriers of mountains. The justification of this link will be examined from the traffic congestion on the MRRII.


KLORR MAIN VOLUME - CHAPTER 5

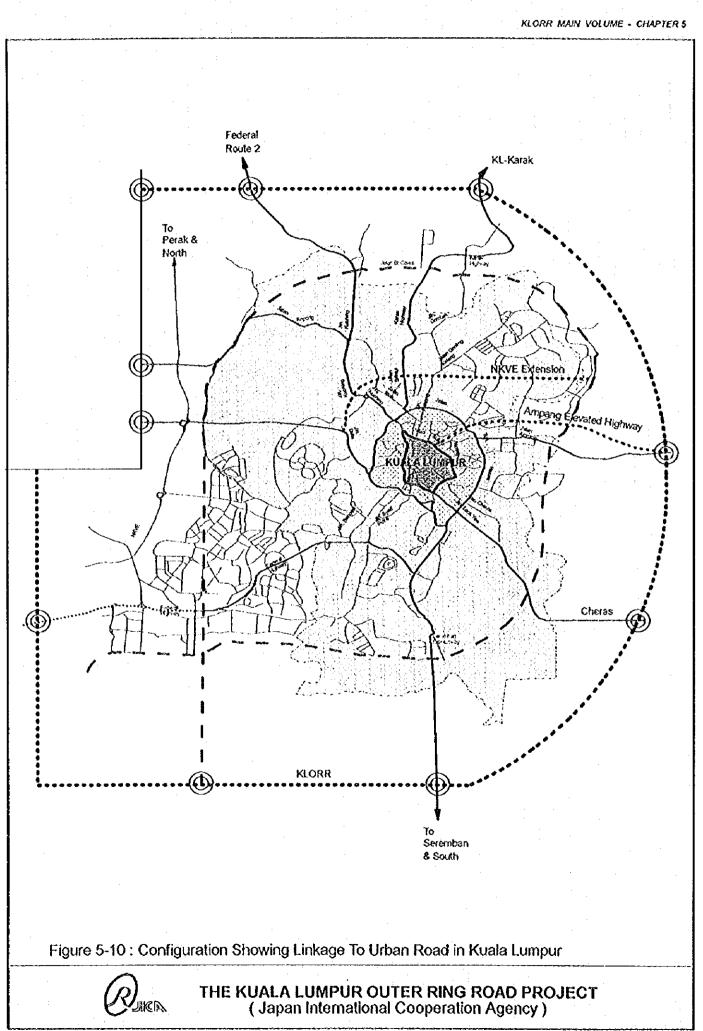

Figure 5-8 Expansion of Urbanization and Road Network

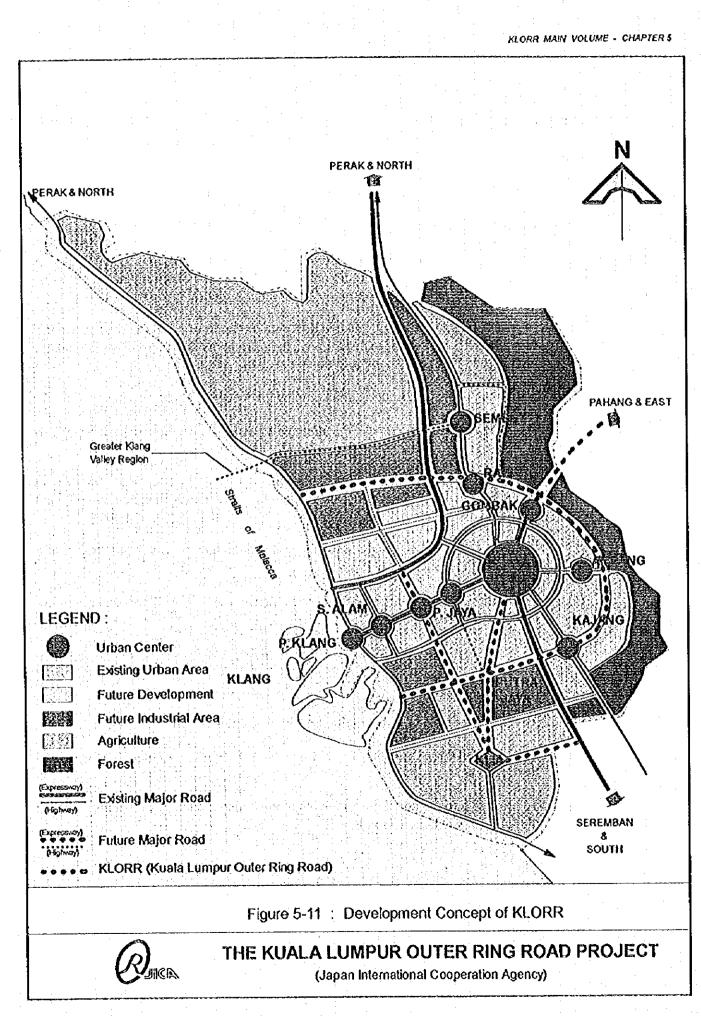
Figure 5-9 shows the result of traffic assignment with and without KLORR in year 2020 for the Study Area. Figure 5-9 also shows that the future traffic volume on the MRR II in the eastern sector is expected to decrease by 21%~25%, as compared with and without the KLORR. The traffic volume on MRRII without the KLORR is expected to be 133,300 veh/day; with the KLORR it is expected to be 102,000 veh/day by the year 2020. The volume/capacity ratio, considering the capacity to be 120,000 veh/day (6- lane) without the KLORR, will be 1.11, whereas, with KLORR it will be 0.85.

Based on the traffic assignment, MRRII will play an important role early on in traffic dispersal as an outer ring road. However, it will be selected based on the huge volume of regional traffic that will be generated from new urban areas.

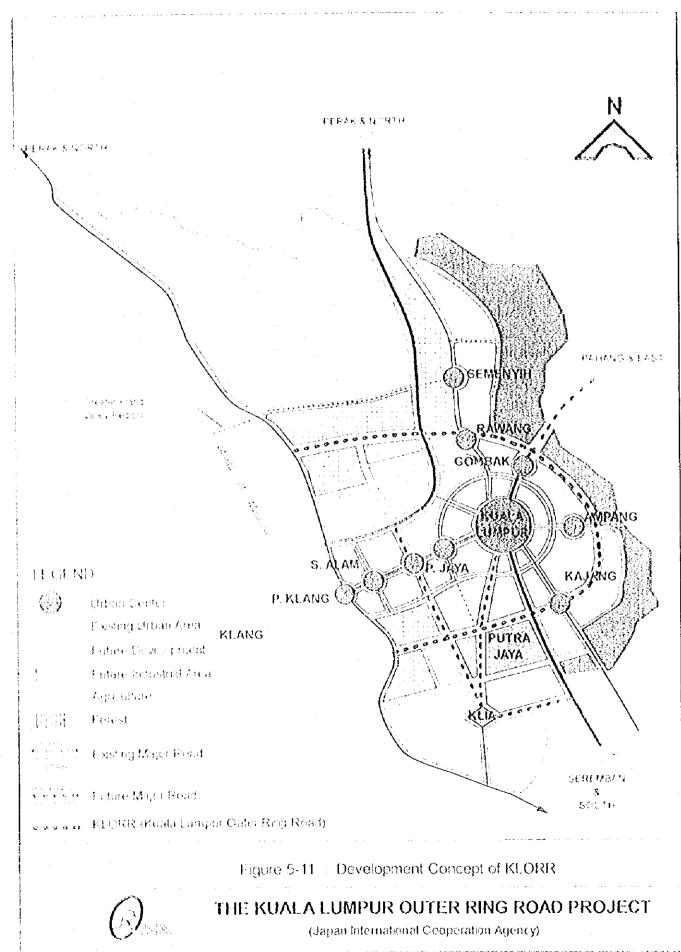
The next question in building a network configuration is how to connect to the existing road network with interchanges. The KLORR will encounter major radial roads such as Federal Route 1, Kuala Lumpur - Karak Highway, Kuala Lumpur - Seremban Expressway, etc. Besides these major inter-state roads, it is important to provide linkages to major urban roads in Kuala Lumpur to ensure desirable configuration. They are Jalan Ampang, East - West Link and Middle Ring Road II as shown in Figure 5-10.

5.4 KLORR Development Concept

In the recent trend of urbanization and motorization, the outer ring road is an element of infrastructure development, especially in metropolitan areas. The basic function of the outer ring road is to distribute population and traffic in order to improve the urban environment.


The KLORR development concept is based on this basic function and the needs are identified in previous sections. The development concept is illustrated in Figure 5-11 and interpreted into the following Goals and Development Objectives.

Goal 1: To encourage balanced urbanization in the Greater Klang Valley Region in order to sustain the rapid growth of the national economy of Vision 2020, taking into account harmonization with the natural environment.


Goal 2: To provide efficient, reliable and safe transport of goods and people in the capital region, and to minimize wasteful problems such as traffic congestion, road bottle-necks, air and noise pollution.

In pursuit of these goals, the KLORR shall employ the following objectives.

- (1) To provide an outer ring road in the strategic areas based on the expansion of urban areas and the regional development trend.
- (2) To provide functional linkage between urban centers in line with urban hierarchy in an effort to avoid over concentration on the urban functions in Kuala Lumpur, and to ensure an equitable distribution of acceptable levels of urban services.
- (3) To provide better access to the national development projects, such as KLIA, Putra Jaya and 2nd National Car Projects.
- (4) To link up major inter-state roads leading to the Capital Region Klang Valley in order to distribute external traffic.
- (5) To formulate a total highway network configuration, with a clear functional hierarchy of road types, capacity and design, capable of covering the Greater Klang Valley Region.
- (6) To provide sufficient road infrastructure to meet future traffic demand.
- (7) To provide an environmentally-friendly highway, in order to minimize environmental destructions.
- (8) To prepare a roadside (corridor) development concept aiming toward preservation of natural and living environments.

Based on the above strategies, the study envisions the outer ring road as a ring encircling the Klang Valley Region, which eventually connects with the coastal highway (Federal Route 5). The objectives (1), (2) and (3), which are related to the urban developments are basically in the northern and southern links. Presently in those areas, there is no-proper road infrastructure. The KLORR, therefore, will provide the first proper road access to the areas. Comparing the development pressure between the north and south areas, the south area has more development pressure because of the Putra Jaya and KLIA projects.

From the view point of the efficiency of the infrastructure investment, the construction of the highway should be implemented with urban development projects which provide most significant impacts for the KLORR projects. The question is which project will raise the efficiency of the KLORR project. Putra Jaya Development Project can be seen as such project for two reasons. Firstly, the function of Putra Jaya as the main administrative center and secondly, its short distance from Kuala Lumpur. On the other hand, KLIA is a transport terminal and far from Kuala Lumpur with 40 km distance. It is important to provide sufficient access to the transport terminal. In addition to providing a link to the administration center, it is equally important to link other urban centers with the priority of building a functional urban hierarchy.

The next point involves spacing these areas from an existing (including committed projects) outer most highway, New Klang Valley Expressway in the north and Shah Alam Highway in the south. It is important to provide sufficient space between major highways for proper urban development and strategic expansion of urban areas, as well as to formulate the network configuration mentioned in the strategy (5). The other issues concerned are network configuration and environmental preservation.

The objectives (4) and (5) aim toward the dispersal of traffic, and the objectives (7) and (8) are environmental considerations. There should be careful investigation of environmental conditions, in the eastern section of the KLORR.

The mountainous area in the eastern part of Klang Valley is an important green area which forms a favorable urban environment. The area, therefore, should be preserved as much as possible.

Chapter **6**

ENVIRONMENTAL ASSESSMENT FOR THE PROJECT CORRIDOR

CHAPTER 6

ENVIRONMENTAL ASSESSMENT FOR THE PROJECT CORRIDOR

This chapter summarizes existing environmental conditions and potential impacts based on the Preliminary Environmental Assessment Study report submitted to the DOE (Department of Environment). The PEIA study basically was conducted for the three alternative alignment indicated in the following chapter. The results of the assessment are referred to the PEIA report and also Appendix Volume.

6.1 The Existing Environmental Conditions

The Environmental Study Area covers an area of approximately 165,000 ha (407,340 acres) and includes Hulu Selangor, Gombak, Petaling, and Sepang Districts. The KLORR corridor bypasses the Kuala Lumpur Federal Territory region and passes through several major towns such as Serendah, Rawang, Batu Caves, Ampang, Gombak, Hulu Langat, Cheras, Kajang, Semenyih, Serdang, Puchong and Bangi. The existing environmental conditions in the Study area are as follows :

A. Physical Environment

1) Topography

Its outline ranges from low-lying plains with isolated hills in the south-western part of the area to undulating plain, whereas hills and mountains stand in the north and the east. The Main Range stretches from north to east with Gunung Hulu Kali (1,772m/5,814ft) as the highest point.

Only the catchment areas of Sungai Selangor, Sungai Kelang and Sungai Langat are confined within the boundaries of the Study Area. The northern part of the Study Area is drained by Sungai Selangor. Its middle part is saved by Sungai Kelang and Sungai Ampang whilst southern part of the Study Area is drained by Sungai Langat.

2) Geology

The general geology of the Study Area consists of various lithology from igneous, sedimentary to metamorphic rocks. The main mountain range consists of extensive masses of granite where original sedimentary cover has been removed by weathering and erosion. The low-lying areas mark the margin between granite and stratified rocks.

Climate

3)

The Study Area is located in an equatorial climate region characterized by uniform temperatures and high humidity throughout the year. Low negative water balance was recorded in the months of January, June, July, August and October. There is an even distribution of wind direction. The Monsoons, however, have some effect on the surface wind direction. The north-eastern winds are dominant during the months of December to March, whereas the southerly winds are dominant during the months of June till August.

dia 1986 kanalasi dasa di tabupatén

Water and Air Quality

The water of the nine rivers coursing the Study Area show satisfactory pH level. The water quality near water intake points are good. The BOD levels were tower than standard. The COD levels, however, exceed the standard at some point. The high COD levels may be due to non-biodegradable substances such as industrial wastes.

Overall air quality of the Study Area is satisfactory.

Noise Level

4)

5)

Noise levels near highway are rather high such as in Kajang, Karak Highway, Serendah and Templer Park reflecting daily traffic fluctuation. In Hulu Langat it is still low.

8. Biological Environment

1) The Flora and Vegetation

There are fourteen (14) Forest Reserves and four (4) virgin jungle Forest Reserves in the Study Area. The flora and vegetation are classified as follows:

- 1) Lowland dipterocarp forests --- logged over and virgin stand
- ii) Hill dipterocarp forests
- iii) Logged over hill dipterocarp forests
- iv) Quartzite ridge vegetation
- v) Limestone hills
- vi) Peat swamp forest
- Fauna

2)

The contiguous nature of the Forest Reserve within the State as well as with those of the neighbouring State offers a degree of mobility for many of the birds and animal. In general, it is observed that because of the contiguity, many of these forest reserves contain animal species that are common to each other.

C. The Socio-Economic Environment

The socio-economic and traffic condition of the study area are mentioned in Chapter 3 and Chapter 4 respectively. Only land use is mentioned here.

1) Land use

Information on existing Land use in the Study Area is derived mainly from the 1994 Malaysia Center for Remote Sensing Map based on satellite imagery of 1991. Land use details are presented in Table 6-1 and the spatial distribution of the Land use The Study Area is divided into 3 zones of Land use : Hulu Selangor and Gombak District represent the Northern Zone; Hulu Langat District represents the Middle Zone while the parts of the Districts of Sepang and Petaling represent the Southern Zone.

(1) Northern zone

Most of the forested land is located in the western portion of this zone, which covers 62% of this zone. Most of the forested area are forest reserves. Agricultural Land use accounts for 19% of this zone with rubber and oil palm

Table 6-1	:	Land use o	of the	Study Area

	Northern	Zone	Middle Z	one	Southern	Zone	Total	
	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)
Urbao land								
Urban and Associated Areas	5193.6	8.2	6325.6	8.6	977.6	3.5	12496.8	7.6
ndustrial Area		0.0	323.2	0.4	-	0.0	132.2	0.2
Estate Building	9.8	0.0	-	0.0	9.8	0.0	19.6	0.0
Recreational Area	312.8	0.5	÷ -	0.0	· · ·	0.0	312.8	0.2
Mining Area	1304.8	21	1667.2	2.30	1912.8	6.9	4884.8	3.0
Sub-tolal	6821.0	10.7	8316.0	11.3	2900.2	10.4	18037.2	11.0
Cultivated Land								
Mixed Horticulture	1038.4	1.6	1854.4	2.5	2617.6	9.4	5510.4	3.3
Rubber	9694.0	15.2	22037.0	30.0	5639.2	20.3	37370.2	22.7
Oil Palm	3354.0	5.3	4964.0	6.8	8489.2	30.5	16807.2	10.2
Forest Plantation	323.2	0.5		± 0.0	-	0.0	323.2	0.2
Paddy	-	0.0	342.8	0.5	-	0.0	342.8	0.2
Sub-total	14409.6	22.7	29198.2	39.8	16746.0	60.2	6035 3.8	36. 6
Non-Cultivated Land								
Natural/Semi-Natural	37782.4	59.4	29782.4	40.6	3980.4	14.3	71545.2	43.4
Vegetation	31102.4	0.0	25102.4	0.0	368.4	1.3	368.4	0.2
Dry Land Forest		0.0	98.0	0.0	19.6	0.1	117.6	0.1
Peat and Freshwater Swamp	1661.2	2.6	2826.0	3.8	580.8	2.1	5068.0	3.1
Forest	1528.8	2.4	959.6	1.3	724.8	2.6	3213.2	1.9
Logged Forest	1320.0	4.4	505.0	1.0				
Secondary Forest	:	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1			1. A. A. A. A. A. A. A. A. A. A. A. A. A.			
Bush, Grassland, Scrubrass land			<u></u>				· · · · · · · · · · ·	
Sub-total	40972.4	64.4	33666.0	45.9	5674.0	20.4	80312.4	48.7
Non-Cultivated Land, Non Vegetated Cleared Land	597.6	0.9	1404.0	1.9	1616.8	5.8	3618.4	2.2
Sub-total	597.6	0.9	1404.0	1.9	1616.8	5,8	3618.4	2.2
Water		1.2	832.8	5.1	871.6	3.1	2497.6	1.5
Large Water Body Large Fishpond	793.2	0.0	0.72.0	0.0	19.6	0.1	19.6	0.0
Sub-total	793.2	1.2	832.8	1.1	891.2	3.2	2517.2	1,5
Total	63593.8	100.0	73417.0	100.0	27828.2	100.0	164839.0	100.0

Source : Land Cover Map (1994), MACRES

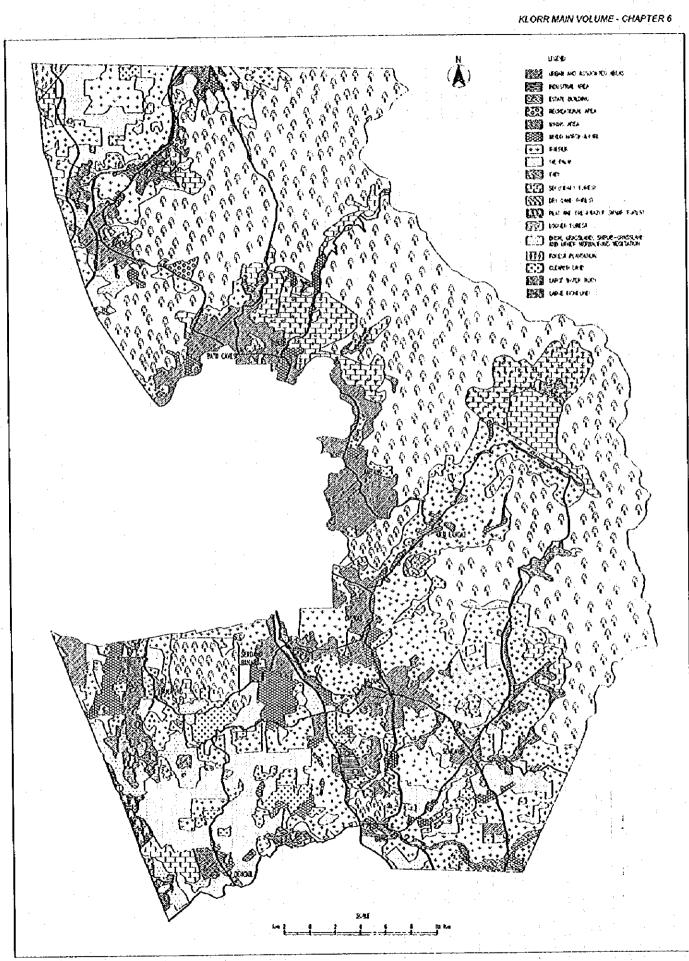


Figure 6 - 1 : Landuse Pattern

(2) Middle zone

The forested land use account for the biggest Land use category of 53% in this zone. Agriculture land is the second biggest Land use contributing 28% of the zone. A big stretch of rubber plantation is located at Hulu Langat. The urban area contributes to 15% of the zone. Most of these areas are located at peripheral of Kuala Lumpur such as Ampang and Cheras.

(3) Southern zone

Agriculture is the biggest Land use category in this zone, accounting 47% of the zone. The major crops are oil palm and rubber. The urban area covers 29% of the zone stretching from Cheras towards Kajang and further southwards to Bangi.

6.2 Identification of Environmentally Sensitive Areas

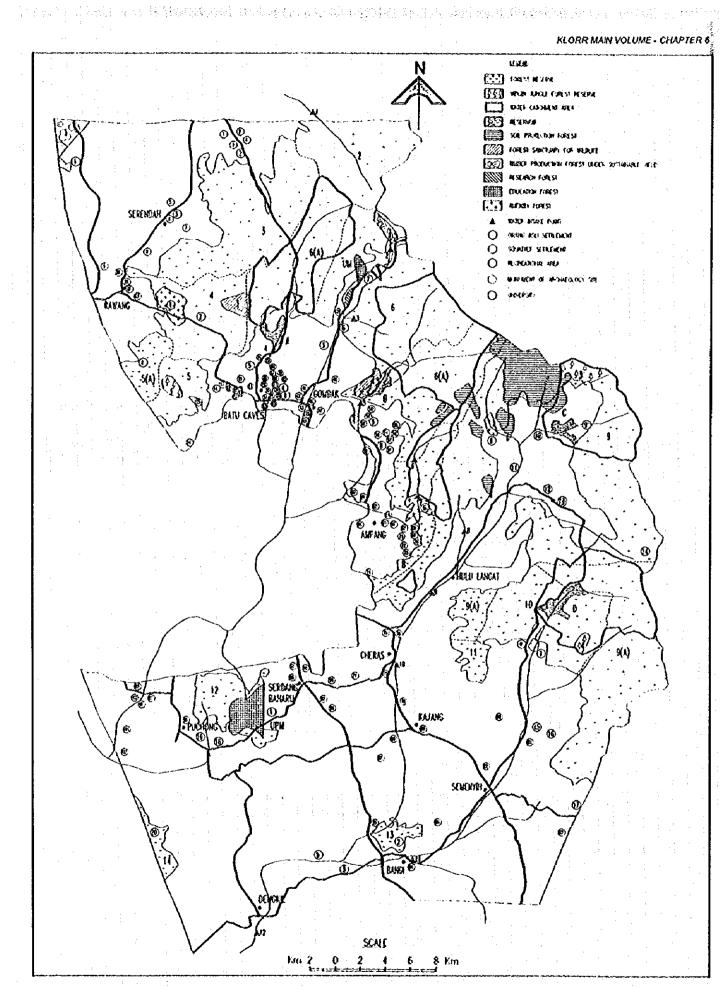
The environmentally sensitive areas in this Study Area are water catchment areas, water intake points, reservoirs, high-risk erosion areas, forest reserves, virgin jungle recreational parks, wildlife reserves, squatters, Orang Asli settlements, monuments and archaeological sites and universities. The location of sensitive areas in the Study Area are shown in Figure 6-2.

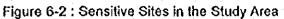
A. Physical Environment

(1) Water Catchment Area

There are five water catchment areas identified in the Study Area. Two of them are situated in Sg. Langat while the rest are located in Sg. Batu, Sg. Kelang and Sg. Ampang.

(2) Water Intake Points


The eleven water intake points in the Study Area are situated in Sg. Langal, Sg. Batu and Sg. Kelang.


(3) Reservoir

There are also four reservoirs in the Study Area. Two of them are located in Sg. Langat while the other two are located in Sg. Batu and Sg. Kelang.

B. Biological Environment

There are eleven forest reserves, four virgin jungle forest reserves, six recreational parks and two wildlife reserves situated in the Study Area.

LOCATION OF SENSITIVE SITES IN THE STUDY AREA

FOREST RESERVE

- Rantau Panjang 1
- Batang Kali 2
- Serendah 3
- Kanching 4
- 5(A) Bukit Lagong (Extended)
- Hulu Gombak (Extended) 6(A)
- Ampang
- Bukit Sungai Puteh (North) 8(N)
- 8(5) Bukit Sungai Puteh (South)
- Hulu Langat (Extended) 9(A)
- 10 Sungai Lalang
- 11 Sungai Jeloh
- Air Hitam 12
- Bangi 13 14
 - Kuala Langat (North)

VIRGIN JUNGLE FOREST RESERVE

- 1 **Bukit Lagong**
- Hulu Gombak 2
- Hulu Langat 3
- 4 Sungai Lalang

WATER INTAKE POINT

- Sg. Batang Kali 1
- Sg. Gombak 2
- Sg. Rumput 3
- Sg. Batu 4
- S Sg. Kelang
- 6 Sg. Ampang
- Sg. Ampang 7
- 8 Sg. Gahal
- Sg. Langat q
- Sg. Langat ю 11
- Sg. Beranang 12 Sg. Langat

RESERVOIR

- Batu Dam 1 Kelang Gate Dam 2 Sg. Langat Dam 3
- Semenyih Dam 4

FOREST SANCTUARY FOR WILDLIFE

- **Templer Park** 1
- 2 **Kelang Gate**

ORANG ASLI SETTLEMENT

机合理器 医德国人的复数 化多分子 医肠骨间 网络海豚属 新生物 法外外部 医生物 计分子 医中心的 化分子

HULU SELANGOR DISTRICT

- Kg. Bukit Manchong 1
- Kg. Gurney 2
- Kg. Melaka Serendah 3

GOMBAK DISTRICT

- 4 Kg. Hulu Kuang
- 5 Kg. Sg. Tua
- Pusat Pembangunan Orang 6 Asli (Hosp)
- 7
- Kg. Batu 16, Gombak
- 8 Kg. Hulu Kelang

HULU LANGAT DISTRICT

- 9 Kg. Dunglai Baru
- 10 Kg. Kuala Pansun
- Kg. Padang/Perdik 11
- Kg. Sg. Lui 12
- 13 Kg. Gabai
- 14 Kg. Genting Peras
- 15 Kg. Sg. Lalang
- 16 Kg. Kachau
- 17 Kg. Beroga

PETALING DISTRICT

- 18 Kg. Sg. Rasau Hulu
- 19 Kg. Sg. Rasau
- SEPANG DISTRICT
 - 20 Kg. Bukit Baja
 - Kemajuan Tanah Sungai a.
 - Lalang Orang Asli (FELCRA)
 - b. Sakai Reserve

SQUATTER SETTLEMENT

HULU SELANCOR DISTRICT

Mukim Hulu Yam

Hulu Yam Baru 1

6 7

- Hulu Kalong 2
- Kg. Sg. Chik 3
- Kg. Gurney

Mukim Secondah

- S Maccau Street
- Kg. Melaka 6
- Kg. Tok Pinanag 7
- Kg. Sg. Choh 8

COMBAK DISTRICT

Mukim Rawang

- **Rawang Tin** 9
- 10 Kg. Rajah
- 11 Bt. 18 & Bt. 19
- 12 Kg. Kenanga, Bt. 17
- 13 Bt 16 Rawang

Mukim Batu

- 14 Desa Aman, 8t. 11 15 FRI Kepong Selayang Tin 16 17 Lembah Selayang Seri Cendana 18 Jalan Bt. 50, Selayang Baru 19 20 Seri Wira Damai Seri Temenggung 21 22 Selayang Bahagia 23 Jalan Besar Selayang Baru 24 Kg. Mahkota 25 Jalan Sg. Tua Kg. Nakhoda 26 27 Kg Bendahara Kg. Bahtera 28 Kebun Sireh 29 Kg. Kannesion 30 Kg. Baru Batu Caves 31 32 Kg. Melayu Batu Caves 33 Lembah Indah 34 Kg. Laksamana Air Jernih 35 36 Kg. Jaya
- 37 Kg. Laksamana Jaya
- 38 **Bukit Perwira**
- 39 Kg. Benggali
- 40 Kg. Sentosa
- 41 Seri Gombak Indah

46 Lorong Muhibbah

- 42 Gombak Jaya
- 43 Taman Selasi
- Kok Doh II 44 45 Lembah Mutiara

KLORR MAIN VOLUME + CHAPTER 6

LOCATION OF SENSITIVE SITES IN THE STUDY AREA

Mukim Setapak

47 Kg. Tengah, Gombak

- 48 Kg. Desa Mukmi
- 49 8t. 10-12, Gombak

Mukim Hulu Kelang

- 50 Sg. Kelang
- 51 Suk Hulu Kelang
- 52 Batu 8
- Bukit Permai 53
- 54 Kg Kemeseh
- 55 Bukit Baru
- Bukit Baru 56 57
- Kg. Pasir Tambahan 58 Lembah Keramat
- 59 Kg. Selamat
- 60 Kg. Berembang
- 61 Kuala Ampang
- 62 Ampang Jaya

HULU LANGAT DISTRICT

Mukim Ampang

- 63 Kg. Seri Melor
- 64 Kg. Pandan Jaya
- Kg. Baru Ampang 6S
- 66 Kg. Seri Ampang
- Kg. Tengah 67
- 68 Taman Risab Rida
- Kg. Lembah Jaya Utama 69
- Kg. Ampang Indah 70
- 71 Kg. Ampang Campuran
- 72 Kg. Tasik Permai
- 73 Kg. Tasik Campuran
- 74 Kg. Cheras Baru

Mukim Cheras

- 75 Kg Taman Nasir
- 76 Kg. Sg. Raya
- 77 Kg. Baru Balakong
- 78 Kg. Indah
- 79 Kg. Lombong

<u>Mukim Semenyih</u>

- 80 Kg. Sg. Pening
- 81 Kg. Jalan Sg. Lalang
- 82 Batu 3
- 83 Kg. Baru Tarun

Mukim Kajang

84	Kg. Masjid Bangi
85	Kg. Teras Jernang
86	Kg. Sg Tangkas
87	Sg. Ramat
88	Kg. Sg Chua
89	Sg. Kantan

PETALING DISTRICT

Mukim Petaling

90.	Kg. Serdang Lama
91	Bel, Klinik Serdang
92 1	Kg. Taman Aman
93	Kg. Serdang Jaya
94 -	Lombong Sungai Besi
95	Simpanan Sg. Kuyoh
96	Batu 14 Puchong
97	Kg. Tun Razak
98	Kg. Bersatu
99	Kg. Kenangan

- 100 Kg. Seri Puchong
- 101 Kg. Pulas

SEPANG DISTRICT

Mukim Denekil

102 Kg. Tanah Liat

RECREATIONAL AREA

- 1 Kanching Forest Reserve Recreation Park
- 2 **Templer** Park
- 3 Mimaland
- 4 Baty Caves
- 5 Natioanal Zoo
- Ampang Forest Reserve Recreation 6 Park
- 2 Sungai Lalang Forest Reserve Rereation Park
- 8 Sungai Chongkak Recreation Park

MONUMENT OR ARCHAEOLOGY SITE

UNIVERSITY

University Pertanian Malaysia University Kebangsaan Malaysia

- **Batu Caves**
- Bukit Melawati, Ulu Kelang
- Bukit Piatu, Jenderam Hilir

1

2

3

1

2

Sociological Environment

C.

化油 新加斯库 机非接触 经财务保险证券 化拉克

The two main aspects in the sociological environment that need to be highlighted are the squatters and Orang Asli settlements.

(1) Squatter Areas

There are a total of 129 squatter settlements in the Study Area, most of them are located in the District of Gombak, Hulu Langat and Petaling. Based on the data obtained, industrial and agricultural squatters constitute 2.8% (609) while dwellings amounted to 97.2% (21,189). Squatters located in the Study Area are mainly situated near big towns due to migration from out of town areas.

(2) Orang Asli Settlements

Among Orang Asli in the Study Area, 93% of them belong to the Temuan sub-tribe, with a total population of 4,776. Hulu Selangor District has the highest population of 1,526 followed by Hulu Langat District with 1,133. There are a total of 35 Orang Asli kampungs in the Study Area.

(3) Others

There are also three monumental sites identified within the Study Area, whereas five archaeological areas are found in Bukit Melawati and Hulu Klang.

6.3 Potential Environmental Impacts and Assessment

6.3.1 Identification of Potential Environmental Impacts

Various activities will be carried out during the investigation, construction and operational phases of the Project. These activities will have a potentially significant impact on the natural as well as social environment.

The activities involved in the pre-implementation phase are ground inspection, geotechnical and soil investigation, and sociological survey. These activities will not cause any significant negative impact to the environment.

Activities in the development and construction phase of the Project will significantly affect the existing environment, especially soil erosion generated from activities such as site clearing and earthwork.

The major impact of the operational phase of the KLORR is the improvement of traffic flow. Existing road users will be able to avoid traffic congestion in the Kuala Lumpur region and save time by shortening of the traveling distance. The highway will provide better accessibility and linkage between the new development areas in the outskirts of Kuala Lumpur, such as the PERODUA project in the northern part and Putra Jaya in the southern part. Besides, economic activities in the area should increase significantly. There will also be an increase in employment opportunities and business activities. Therefore, with the increase of human activity and traffic volume in the area, noise and air pollution will rise. 医乳酸素 医骨髓管理 基本 医马克斯特 网络阿拉斯特 医原子 化合合物 化分析法 化

			T											**	VEC	I ACT	MTHE	\$										
S	CALE/	MAGNITUDE		ן ארגא	PRE- EATA	TION					ça	vs ret	стю.	4		•					ÖPER	ATION	u		~ ~			CTS
8	NEFICIA	L/POSITIVE IMPACTS	1-	Т	T		1	Γ	Τ	T	Т	T	Γ		Г	T	1	1	F	1	Γ					1	Γ	Г
	HIGH	+3			1					1							5	5										
	MEDIUM	+2						1	1							ğ	ISONOX.						- I				Ł	
	LOW	+1		Z		Í.	1.					1				Į	¥	1.	1		1	ğ		NS0	1:		MENT	[
:				Ĕ		 	8	1.			0			0		Ĭž	C BOUR	1		1.	١٤	ĝ	Į	ŝ			₹.	
A	VERSER	EGATIVE IMPACTS		Ĕ		SURVE	ANN R	3		3	BLASTING		١¢	No.		lõ.	5		Ľ.	1	1	Ş	١§	Ē	ě	Į	OEVELOI	
	HIGH	-9	ļş	Ιž	ŀ		Sec.	1 Å				[E.	ĝ	3	15	š				Ş	Ž	Į ž	13	١Ş	١ţ	٦ ۲	ļ
:	NEOTOM	-1	Į	Nº.	Ň	ÌÌ	N.	Įĝ.	ş	No.	Į Į	₹	.₹	Ŷ	a si	Ĭ	ž			ž	13	١Ş	Ę	ĮŽ	ð	١Ş	ž	1.
	LOW	-1	SURVEY	NEX	UND SURVEY	GEOTECHNICAL	SITE CLEARING/BURNING	STREM. CROSSINGS	ACCESS ROAD	EARTHMORKS	OW SWITHO	DEMOLITION	DAMINAGE ALTERATION	SURFACING , WE PAVING	WASTE DISPOSA	LUNDSCAPING / EROSION CONTROL	ESTABLISHMENT OF	TRAFFIC	OMRIERS	UNIOSCAPING	UTILITIES MANAGEMENT	EMPLOYNENTABOUR FORCE	ACCIDENTS/FIRE CONTRO	SOLIDATIONIO WASTE DISPOS	TRAFFIC CIRCULATION	URANY DEVELOPMENT	JAMA TURAL	TOURISM
			ES.	ENGINEERING INVESTIGNTON	Š	В.	SHE	Ĩ	Į Į	5	No.	Mad	Š	15	ž	3	EST	Ě	3	3	Ē	N.	ş	ğ	ě.	3	Đ.	ĮÈ
	1	SOIL PROFILE	1				·	1		-1	1	1							<u> </u>		<u> </u>		I		L			·
- I -		SOIL EROSION	1~	-1		-1	3	1	-	3		1	1	+3	1	+3		Ē		+3						Ŀ		I
1	3	SLOPE STABILITY		1	1		f	1	1	-3	1	1	-2			+3	1			+1	1.		1			1-		1
	1.3	LANGUSE	1	┢┈		1-	-2	1	.1	1	1		1-	1		+3	1	1	1.	1	1_	1	1	1	1	+3	+3	+3
		SUBSIDENCE & COMPACTION			1	1-			-1	-3		1—	1	1	1-	+3	1					1	1-	1		ľ		1-
		FLOW VARIATION	+			t—			÷	<u> -`</u> -	\vdash	-	-3	-1		1-	1	1-				1	1	1	1	1		1-
	s				1	┣	-	-3	╂─-	3	 		Ĩ	<u>⊢</u>	-2	+2	-1	+1	┣─		+1	-1		3		-1		-1
	SURFACE WATER	WATER OUALITY				┨	2	1~		<u> </u>					-					-				Į−	1—	╞╌		<u>⊢</u>
Z	× س	ORANAGE PATTERN		<u> </u>	÷		-2	Į	 		 		-1	11		<u> </u>	·						—					
PHYSICO-CHEMICAL	N N	WATER BALANCE		1_	<u>.</u>	I	-1		 		<u> </u>	<u> </u>		-1		+1		·	<u> </u>					 				
- B	۲ <u>۶</u>	FL000#4G	· ·	_	I		3	-2	[-3			-3	2		+1										-1		
8		STORM RUNOFF			1		-3		<u> _</u>			I	-2	-2		+1				+1								
₹	9.4	WATER QUALITY			·		<u> </u>		I					<u>:</u>	-2					+1				-3		,		
a.	GROUND WATER	FLOW REGAR											:	1										· •	., .			
	53	WATER TABLE		1			1					11	:	•	•	:	·					÷						
	w s	AR QUALITY	1			•	-3		-	3	.2	•1			-1			•1			:				-3	-1		
	3448	MSISILITY		1				1-	1	3	-2																	
1	ATHOSPHERE	MICRO CUMATIC CHANGES					~		-							•												
		ANTENSITY		1			-2		1—	-3	3	-1	-		•	 	 '	-1	+2		_				.3			
	NOISE	OURATION		{—		- i				-2	-1		·			•		-1										•
	2	FREQUENCY								-2				<u> </u>				-1			- <u>.</u>							
	·							-1								+1				+1			·			-3	•1	
	SPECIES &	FLORA				<u> </u>										_		<u>-</u>		_				<u></u>				
ž	1.5	FALNA		<u> </u>			3	<u>-1</u>	-1	<u> </u>								·								Ĩ.		-
ğ		CNOWIGERED SPECIES		 '		_ <u>`</u> _								·		. <u>_ :</u> .			<u> </u>							-		
PIOLOG	s È	HABITATS				_	<u> </u>				_			-	<u>-</u> -		·											
1	MABITAT & COMMUNITY	CONTRACTIES	!	ļ		<u> </u>																		<u> </u>		· · .		·
	38	ECOSYSTEMS	<u> _</u>	<u> </u>			-3	-1						_		+2				+2						-3	_	
	15	PSYCCLOGICAL WELL-BEING	İ.								-3	-3				+1		+2			+1	+1	+1		+3			+3
	HEN THA	PINSICAL SAFETY	1						•1	-2	-3	-2						-1	+3			_	+3					_
	କୁନ	CONTINUACABLE DISEASES						:		-					-3			•		1	15				+2		·	
		EMPLOYMENT	+1	•1	•1		+1			+1	1				+2	+1	:	+2		+2	•3	+3			:	+3	+3	+3
	SOCIAL A ECONOMICAL	HOUSING		[·										+3	-1			;				÷	+3		÷
FUMAN	S S	NE RASTRUCTUREATILITIES						<u> </u>	+1					+3				+3		<u> </u>	+3	,						
Ĩ	<u>ి స</u>	ECONOMICAL RESOURCES	-		·		<u> </u>											•3			+3					+3	+3	+3
	- ·. ·	UNOFORM								•1	ŀ . ↓			+3		+2				•3						+3		+3
	9 7	BIOTA	┨—							-			_			•1		-		-		_					-	
	AESTMETIC & CULTURAL		-							-2					-3	+1		-1		+1	+3	·						+3
1	50	TRANOULITY				—	.1 -3			2.3				+2	~	+3			~··	+3	-					+3		+3

Table 6-2 : Matrix of the Potential Impacts which may arise from the Project Development

÷.,

Spill-over projects are hoped to be initiated by the proposed development. These projects may be urban (commercial/industrial) development, recreational and residentiat development. In other words, new townships will be developed. When development starts to take place, various environmental and social changes will follow.

网络新闻学校 化油学学生 机运用器 化

The Project will facilitate new township development in the Project corridor. This will enhance economic growth in the outskirts of Kuala Lumpur as well as increases services and amenities for rural folks.

The proposed alignment of the highway would wind its way through some thickly forested mountain regions of Malaysia. Therefore, breath-taking scenic views would be offered by the rich natural surroundings. Such viewing points would be good recreational areas for weary road users. Other scenic spots with a good natural environmental setting may be developed into various resort / tourism spots.

The proposed Project would create new settlements around any consequential development. However, unplanned settlements might result with adverse impact due to inadequate services and amenities. Table 6-2 shows a matrix of potential consequence which may arise with the implementation of the Project.

6.3.2 Potential Significant Impact

(1) Impact on the Physical Environment

The potential significant consequences on the physical environment include soil erosion, changes in hydrological regime, water pollution, noise pollution and solid waste disposal.

Soil Erosion

There are two types of soil erosion, namely geological erosion and accelerated erosion. Geological erosion is a natural process, governed by the action of water, wind, climate and vegetation and generally the rate is low. Accelerated erosion is due to human activities such as land clearing and earthworks. It generally causes an adverse impact on the environment because of nutrient loss and sediment output.

Soil erosion analysis was carried out for the existing environment. During the construction phase, the high risk erosion areas are mostly in the northern and eastern section. About 6.5 % of the Project Site is classified as high risk erosion areas with an erosion rate more than 1000 tones/ha/yr. Figure 6-3 shows an overlay of the topography with the high risk erosion areas on the proposed routes. In order to reduce soil erosion during site clearing, slopes should be contour cut and turfed immediately.

Impact on the Slope Stability

Landslides normally occur on soil or highly weathered rocks with increased stress due to the high angles of slope cutting and increasing weight of mass especially after

a heavy down pour.

If slope cutting is parallel to the dip of the sedimentary strata or schist foliation (Kenny Hill Formation, Kajang Formation, Dinding and Hawthornden Schist), failures will happen between beds, and the situation would worsen with the occurrence of joints. With a proper drainage system, water normally seeps through these joints or discontinuities of strata, thus weathering the rock surface, accompanied by the formation of clay minerals, which act as a trigger mechanism to slope failures.

Exposed granite rocks without proper mitigation measures will enhance slope failure such as rockfall. The angle of slope cutting on solid granite without discontinuities can be as high as 80°, but for granite with joints and fractures, slope angle cuts should be reduced to less than 45°. If cutting of granite is impossible under such circumstances, anchoring, rock bolt, concrete and shotcrete are recommended (Sower, 1979).

Hydrology and Flooding

Hydrology of the environment is governed by the distribution of vegetation, rainfall and evapo-transpiration rate. Any variation in this dynamic equilibrium will cause changes in the hydrology of the area.

The proposed Project which involves forest clearing, construction of embankments, bridges and tunnels along the stretch would cause short term hydrological impacts. The results could be manifested in a variety of ways:

- Reduction in infiltration rate due to loss of vegetation cover leading to a reduction in the recharge ability of the water catchment.
- (ii)

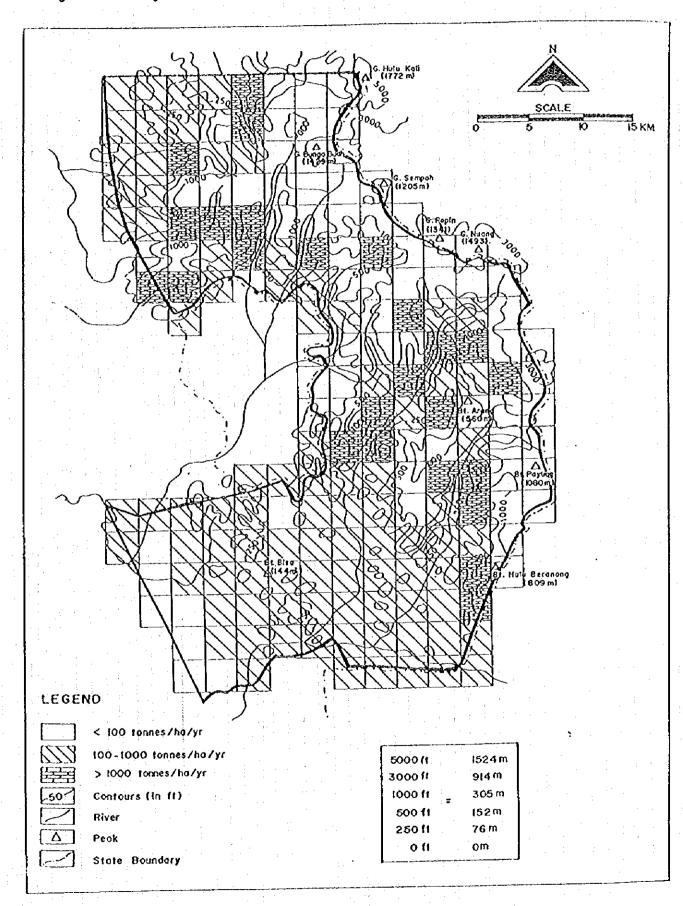
(iii)

(v)

(i)

Increase in surface runoff as a result of land clearing. The removal of vegetation cover will increase the surface area subject to surface runoff and therefore, erosive force.

Removal of vegetation will result in a reduction of rainfall interception which would have negative impacts on the availability of water supply at the abstraction points.


(iv) Blocking of existing streams for bridge construction may cause some shortterm localized flooding at upstream.

Construction of tunnels would alter the drainage pattern of the area.

For the proposed highway this impact will be more severe in the northern and middle sections where the proposed road alignments pass through the water catchment areas of Hulu Gombak Forest Reserve and Ampang Forest Reserve.

Water Pollution

Water pollution will be significant during the construction phase. Sedimentation is

医乳管骨骨骨骨 化合理管理器 医输出性 化甲基苯基甲基甲基苯基甲基甲基

6-13

KLORR MAIN VOLUME - CHAPTER 6

the main pollutant. During the construction phase, activities such as site clearing and earthwork will result in soil erosion and sedimentation of the waterways. The sediments will impact negatively on the downstream water quality especially where there are municipal water intake points or settlements which depend on the rivers for their water needs. The increase in suspended solids will raise the cost of treating drinking water at the water intake points. However, this impact will be for short-term.

Indiscriminate waste disposal is another source of water pollution during the construction phase. The waste generated from various earthwork and land clearing activities will need to be disposed. If this is not managed appropriately, it will pollute the bodies of water. Air pollution will be significant during the construction and operational phases of the Project.

Among all types of air pollutants, dust particles should be given particular attention during construction phase. Its source is mainly construction activities and earthworks. Typical particle concentration can be as high as 200 μ g/m³ if such activities are carried out without proper mitigation measures in place.

Emission from vehicles would cause substantial air pollution during operational phase. The toxicity of air pollutants varied accordingly from those of primary to secondary in nature.

For the proposed highway, the total suspended solids (TSP) level is expected to be below 200 μ g/m³. As a comparison, the existing TSP level on Karak Highway is 173 μ g/m³, which is well below the Recommended Malaysian Guidelines.

Noise Pollution

Noise pollution is expected to be significant during the construction and operational phase of the Project.

	% Contribution to the Noise									
Source of Noise	Light	Vehicles	Heavy Vehicles							
	Town	Upen Road	Town	Open Road						
Air intake inlet, exhaust outlet	15 - 35		15 - 60							
Exhaust pipe assembly	15 - 30									
Engine block	20 - 30	20 - 70		40 - 80						
Gear box and transmission	5 - 30		30 - 80							
Cooling fan	-		10 - 50							
Type-road surface contact	5 - 10	30 - 80	5	20 - 60						

Table 6-3 : Noise Pollution, by Different Moving Vehicle

Source : Saenz and Stephens, 1986

6-14

During the construction phase, noise will be generated by activities such as land clearing, stripping, grading excavation, transportation and mechanical plants. The impact by the noise pollution, during the construction phase on the environment, is dependent on the distance from the source of pollution. As expected, it decreases with the distance from the noise pollution source.

建立的 建对苯酚酸物基苯酚酸 法趋化的

Traffic noise would be one of the main consequences of this Project in the long run. It is caused by moving vehicles.

The estimated daily noise level L_{eq} (day night equivalent) for each zone of the highway range from 70 dBA to 73 dBA or specified by WHO's Recommended Noise Exposure Limits. Therefore the proposed Project would not cause significant hearing damage as the exposure time is less than 8 hours per day. However, particular attention should be paid to noise levels during daytime, especially in the southern zone where the estimated noise levels exceed the recommended noise exposure limits.

Generally, high traffic noise levels are expected along the northern and southern zones. This is mainly due to high traffic volume along these stretches of the highway.

1 1	Northe	rn Zone	N N	Aiddle Zon	Э	Southern Zone					
L _{eq} Levels (dBA)	A1	B1/C1	A2/ A2B2	B2/ A2 B2	C2	A3B3/ A3/ A3B3C3	A3B3/B3/ B3C3/ A3B3C3	C3/ B3C3/ A3B3C3			
Daytime	75.43	75.62	73.37	74.86	77.11	77.83	77.13	76.96			
Night-time	67.64	67.84	65.59	67.08	69.32	69.60	69.35	69.17			
Average	71.54	71.73	69.48	70.97	73.22	73.49	73.24	73.07			
Daily Traffic Volume	23,900	25,000	14,900	21,000	35,200	37,500	35,400	34,000			

Table 6-4 : Estimated Daily Leg Levels During the Operational Phase

Solid Waste Disposal

Solid waste disposal would not be an important issue if proper disposal areas were identified for the purpose.

- (2)
- Impacts on the Biological Environment

Under the National Forest Policy, the forest reserves are gazetted as permanent forest estates. Depending on their use, parts of the reserves can be gazetted for different purposes: soil and water conservation, water catchment areas, sustainable timber and other forest produce, balancing the ecosystem, preventing soil erosion, moderating the harmful effects of droughts and torrential rains (which can result in crop flooding and failures), research, recreation and education. The continued supply of water to reservoirs and hydro-electric dams to a great extent is dependent on the protective roles the forests in conserving the land surface surrounding the dams. The forested land is also the natural habitat for diverse animal wildlife including birds. Currently, sections of Ampang FR, Hulu Gombak FR, Hulu Langat FR, Kanching F.R and Sg. Lalang have been designated as water catchment areas. Many of these forests still harbour rare and endangered plant and animal species. Any disturbances on forest reserves would definitely affect their vital roles.

에는 사람이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것

> The development during the construction phase will have a negative effect on the flora and fauna in the Project area and its vicinity. The construction of roads in new areas, especially through forest reserves would open up new economic potential for logging as well as other developments, which may adversely affect the existing status of the forest and its inhabitants.

Impact on Forest Vegetation

During the construction phase, site clearing, trimming of slopes and other earthwork will result in the removal and destruction of vegetation along the road alignment. On sites that have been cleared of vegetation, secondary growth will appear. This normally include common secondary plant species comprising various grasses, *Melastoma, Macaranga, Mallatos etc.* Clearance of the forest will cause a significant impact directly or indirectly on the environment.

Direct impact on the environment includes :

(a) Permanent loss of good hill dipterocarp forests

This will be significant as the project area traverses hill dipterocarp forests. The forest areas affected will be greater in the Northern and Middle zones compared with those in the southern zones. Nevertheless, the area to be cleared will be small as the width of road will be 20 m. Therefore, in terms of quantity, the number of trees to be felled will be few, if they are cut selectively.

(b) Permanent loss of genetic resources or species of scientific interest

Along with the loss of forest is the loss of genetic resources found within the forest. The forest traversed by the proposed routes contains a large number of species.

(c) Disturbance of ecologically sensitive areas

Areas such as the quartz ridge at the Klang Gates and some limestone hills are sensitive areas with unique vegetation. If disturbed this vegetation will be permanently tost. Route A will skim through south of the quartz ridge.

Indirect impact from the loss of forest will create a pattern of deterioration on the existing environment due to the disruption of the vital roles played by the forests.

Indirect impact includes:

(a) Loss of wildlife habitat

The forest is the home for wildlife. A high population of various fauna is harbored in the forests including those which are endangered or protected. The animals depend a lot on the forest as it is their habitat. Due to a delicate and complex ecosystem in existence, any removal of forest causes loss of habitat for wildlife. This is especially true in the sanctuaries. There are two wildlife sanctuaries located in the impact Area, i.e., Templer's Park in Northern zone and Klang Gates in the Middle zone.

(b)

(c)

Erosion due to removal of vegetation cover

A direct effect of forest removal is soil erosion. The clearance of vegetation cover will expose land to various erosive agents, especially water. Soil erosion will then occur. A few parts in the Hulu Gombak Forest Reserve have been gazetted as the Soil Protection Forests so that a tunnel can be built to minimize culting and therefore minimizing the risk of erosion.

Change in hydrology regime

Forest cover plays a major role in maintaining the hydrology regime. Loss of forest cover will increase surface runoff due to the lowered infiltration rate. Increased surface runoff increases the possibility of floods. All three proposed routes will pass through many of the forest reserves which are gazetted as water catchment areas. Nevertheless, as the cleared working area will not be large, the impact will be minimal.

The subsequent development that will occur in tandem with the proposed Project will aggravate the above mentioned consequences. Therefore, controlled development is necessary.

Impact on Fauna

As mentioned above, the forest is home to wildlife. The forest reserves traversed by the proposed routes is home to many species of endangered and rare birds and animals. The main impact on fauna will be loss of habitat.

Clearance of vegetation for highway construction will drive most of the wildlife species further into the forest, including forest edge browsers such as cadging, rusa and pelanduk.

During the forest clearance, some large mammals (tigers, leopards, tapirs and wild boars) may move to other forests and may encroach into the neighbouring ecosystems. They may face death due to inter-species competition for established territories. Smaller mammals (rats, squirrels), reptiles and amphibians may face death earlier during forest clearance. The reduction in their numbers is significant even though a relatively small area is affected. Bird life will also be adversely affected except for aerial feeding species such as swifts and swallows and the occasional bare soil feeders such as pipits and mynahs.

144 C 116 S

Waterways will be polluted by silt/clay from the road construction as bridges will be constructed over the rivers. The bare soil and its compaction will cause more surface runoff leading to more severe erosion of the river banks. The sediment toad and turbidity of the river will increase, thus affecting the fish and other aquatic life adversely (especially in steep areas). Heavily silted rivers will affect respiration of adult and tarvae fish and aquatic insects and also reduce their breeding capacity. The effects are expected to be temporary.

Many of the existing forest reserves will be accessible after the completion of the highway. The forests will therefore be exposed to logging and hunting activities. The flora and fauna will again be threatened.

(3) Socio-Economic Environment

Affected Human Settlement/Community

Table 6-5	Affected Human	Settlement in th	ie Impact Area

Section	Human settlements	Impact
A1	Kg Melaka (Orang Asli) - 0.3km away	Public Safety
B1C1	New housing estate south of Batu Dam	Air & Noise, Public Safety Split of community, Relocation
A2/A2B2	Kg Padang/Perdik (Orang Asli) - 0.5km away Pekan Bt Lapan Belas.	Air & Noise, Public Safety
B2/A2B2	Taman Melawati Kg. Rantau Panjang	Air & Noise, Public Safety Split of Community, Relocation
C2	Taman Melawati, Kg Kemesah, Kemesah Height, Kg Muhibbah, Lembah Jaya Selatan in Ampang Area	Air & Noise, Public Safety Split of community, Relocation - Minimal Impact
A383/A3/A383C3	•	•
A3B3/B3/B3C3	Bandar Baru Bangi	Minimal Impact
АЗВЗСЗ	•	-
C3/B3C3/A3B3C3	Pekan Sg Chua	Air & Noise, Public Safety Split of community, Relocation

(a) Relocation of Population

Relocation of people is a major impact. Many of the affected households may be relocated in order to make way for the Project. It was found from the sociological survey that the affected squatter population generally agree to relocation if compensation is reasonable.

Public Nuisance

(b)

Population residing near the highway will be affected by an increase in air and noise pollution as a result of higher traffic volume along the highway. Long exposure to these pollutants would cause various negative health effects.

(c) Public Safety

The population in the vicinity of the Project would face various safety problems. During the construction phase, the tranquility and peace in the area would be disturbed by the immigration of workers (some of them may be foreign workers). Traffic safety will be a major problem during the operational phase. Road crossings and road accidents along highway may directly or indirectly affect the safety of people living in the area.

(d) Split of Community

This problem may arise when the road alignment traverses through human settlements. Communication difficulties in the bisected settlements may arise.

Land use

The proposed Ring Road, which has an average length of 80 km and 20 m in width would not have significant impact on the land use pattern there. This impact would be negligible as the Project covers only about 0.32-0.34 % of the Impact Area.

Overall, the Project covers an area of about 1.53 - 1.83km². It traverses several stretches of forested land, rubber and oil palm plantation, horticultural land, mining land and some associated urban areas.

The resulting urbanization of the vicinity will cause significant changes on land use, especially for agricultural and forest land at present. This phenomenon is verified by the emergence of various new townships along the North-South Expressway. The land value of the adjacent land parcels will be appreciated in tandem.

Business and Employment Opportunities

In the long term, the Project will further promote more business and employment opportunities in Kuala Lumpur, the Klang Valley and its catchment. The enhanced business environment would take place both during the construction and operational phases.

Traffic Impact

The construction of the highway will affect the traffic pattern of the surrounding region. The high traffic volume in central Kuala Lumpur is expected to be dispersed through the KLORR. Thus, the traffic congestion in the city centre would be reduced.

6.4 PEIA Report and DOE Comments

ii)

The PEIA report was submitted to the DOE (Department of Environment) and discussed in the EIA Committee meeting. The Committee basically approved the PEIA report. However, some sensitive issues were commented. They are :

- i) Detail geological and geotechnical study are required in the mountainous areas identified as prone to high risk soil erosions and slope failures.
 - Land developments should follow the Development Guidelines for the hilly areas prepared by Town and Country Planning Department.
- iii) The project implementation may cause soil erosion followed by some short-term localized flooding at the upstream of existing stream.
- iv) The proposed highway will pass through five forest reserves and park areas namely Bkt. Lagong, Kanching, Hulu Gombak, Ampang, Hulu Langat and Templer Park. The indirect impacts of the loss of forest will create a chain of deterioration on the existing environment, especially flora and fauna, due to the disruption of vital role played by the forests. An action plan to preserve the flora and fauna should be prepared.
- v) The proposed road alignment passes through the water catchment areas namely Sungai Gahal, Sungai Langat(2), Sungai Batu and Sungai Klang and crosses some rivers and streams where there are municipal water intake points. Proper mitigation measures including monitoring system should be prepared.
- vi) The project implementation will involve relocation and resettlement of the people including Orang Asli. The resettlement should be done with the related authorities.
- vii) Vibration generated by the tunneling work will affect the stabilization of structures such as Batu Dam and other surrounding buildings. Detail impacts and countermeasures should be examined and prepared.

These issues are taken into account in the preliminary engineering design for the optimum alignment discussed in the Chapter 8.

Introduction of tunnels and bridges can reduce the negative impacts on the forest reserves and water catchment areas and also minimize the effects to the flora and fauna, as well as soil erosion and slope failures in the mountainous sections.

For the open cut sections in the mountainous terrain, harmonization with natural environment will be given a special attention.

Although the preliminary engineering study is conducted based on the environmental considerations, some sensitive issues will require a detail study on the detail engineering stage, such as the detail geological and geotechnical study for the slope stability and tunnel construction method, etc.