THE MASTER PLANSTUDAT

(O)N

ELOOD:CONTROLLISTHENORTHERN RURMLREGION:OF:SANIM:CRUZ.

IN

THE REPUBLIC OF BOLIMA

FINAL REPORT

SUPPORTING REPORT

PAOIPIC CONSULVANTES MARXILLONG (OKNO)

ANIAS SOCIATIONNY PAR CENTRAL CONSULTANCE INC. (OKNO)

	1	S I CO	. 3
4	- 3		
	2,7	` }_	ે દ
	TJI	S	5.3.
			-
	12 6	180	15%
2			

• •

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF SUSTAINABLE DEVELOPMENT AND ENVIRONMENT
MINISTRY OF ECONOMIC DEVELOPMENT
SANTA CRUZ REGIONAL DEVELOPMENT CORPORATION
REPUBLIC OF BOLIVIA

THE MASTER PLAN STUDY ON FLOOD CONTROL IN THE NORTHERN RURAL REGION OF SANTA CRUZ IN THE REPUBLIC OF BOLIVIA

FINAL REPORT
SUPPORTING REPORT

JUNE 1996

PACIFIC CONSULTANTS INTERNATIONAL TOK YO
IN ASSOCIATION WITH
CENTRAL CONSULTANTS INC. TOK YO

HEAR STATES THE SHARE THE

er State of the control of the second of the engineering to

The cost estimate was made based on prevailing market price in October 1995 and expresses in Bolivianos according to the following exchange rate.

US \$1.00 = Bs. 4.86 = Yen 100.00

(As of October, 1995)

1129528 (4)

LIST OF SUPPORTING REPORTS

SUPPORTING REPORT A : HYDROLOGY

SUPPORTING REPORT B : SOCIO-ECONOMY

SUPPORTING REPORT C: FLOOD AND FLOOD DAMAGE

SUPPORTING REPORT D : REGIONAL DEVELOPMENT

SUPPORTING REPORT E: AGRICULTURE AND LAND USE SUPPORTING REPORT F: FLOOD MITIGATION

SUPPORTING REPORT F: FLOOD MITIGATION
SUPPORTING REPORT G: DRAINAGE IMPROVEMENT

SUPPORTING REPORT H : ENVIRONMENT

SUPPORTING REPORT I : ORGANIZATION

SUPPORTING REPORT J : COST ESTIMATION

SUPPORTING REPORT K : PROJECT EVALUATION

APPENDIX : TERMS OF REFERENCE OF SURVEY

WORKS

ABBREVIATIONS

AASANA:

Administración Autónoma de Servicios la Navegación Aérea

ADEPLE:

Asociación de Productores de Leche

CAICO:

Cooperativa Agropecuaria Integral Colonias Okinawa Ltda.

CAISY:

Cooperativa Agropecuaria Integral San Juan de Yapacaní Ltda.

CAO:

Cámara Agropecuaria del Oriente

CDF:

Center of Forest Development

CETABOL - JICA:

Centro Tecnológico Agropecuario en Bolivia - JICA

CIF:

Cost, Insurance and Freight

CNPV:

Encuesta Demográfica Nacional de Población y Vivienda

COD:

Chemical Oxygen Demand

CORDECRUZ:

Corporación Regional de Desarrollo de Santa Cruz

(Santa Cruz Regional Development Corporation)

DHI: EDEN: Internacional Hydrological Decade

EEC:

Encuesta Demográfica Nacional European Economic Community

EIA:

Environmental Impact Assessment

ENDSA:

Encuesta Nacional de Demografía y Salud

ENPV:

FEGASACRUZ:

Encuesta Nacional de Población y Vivienda Federación de Ganaderos de Santa Cruz

FOB:

Free on Board

GDP:

Gross Domestic Product
The Government of Bolivia

GOB:

The Government of Japan

JICA:

Japan International Cooperation Agency

(Agencia de Cooperación Internacional del Japón)

MDN:

Ministerio de Defensa Nacional

(Ministry of National Defense)

MDSMA:

Ministerio de Desarrollo Sostenible y Medio Ambiente

(Ministry of Sustainable Development and Environment)

OMM:

World Meteorological Organization

OTAI:

Organización de Técnicos de la Agro-Industria

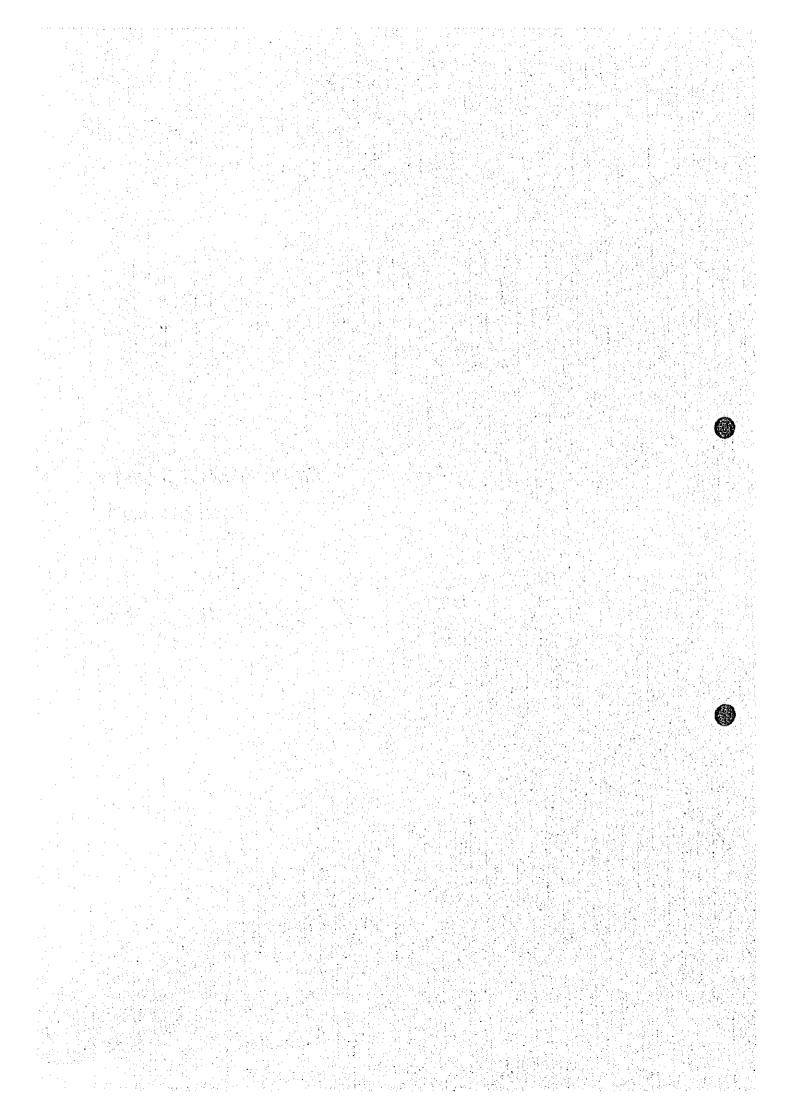
SEARPI:

Servicio Encauzamiento de Aguas y Regularización del Río Piraií

SEDAMA:

Secretarías Departamentales del Medio Ambiente

SENAMHI:


Servicio Nacional de Meteorología e Hidrología

SENMA: SNA: Secretaría Nacional de Medio Ambiente Servicio Nacional de Aerofotogrametría

SNC:

Servicio Nacional de Caminos

SUPPORTING REPORT A HYDROLOGY

TABLE OF CONTENTS

SUPPORTING REPORT A			

1.		A - 1
2.		A - 1
	2.1 Río Grande, Río Piray and Río Yapacani	A - 1
	2.2 River System and Drainage Basins in the Study Area	A - 1
	2.3 River-morphological Characteristics	A - 2
	2.3.1 Río Chané and Río Pailón	4 - 2
	· · · · · · · · · · · · · · · · · · ·	4 - 3
3.		۸ - 3
	3.1 Meteo-hydrological Observation Network	4 - 3
	3.1.1 Rainfall Gauging Station	4 - 3
	3.1.2 Water Level and Discharge Gauging Station	4 - 3
	3.2 Meteo-hydrological Data Collected	4 - 4
	3.2.1 Daily Rainfall Data.	4 - 4
	3.2.2 Hourly Rainfall Data	1 - 4
	3.2.3 Daily Water Level and Discharge Data	A - 5
4.	General Meteorological Condition	4 - 5
5.	Rainfall Analysis	4 - 5
	5.1 Monthly and Annual Rainfall	4 - 5
	5.2 Daily Rainfall during Major Floods	4 - 6
	5.3 Frequency Analysis for One Day to Seven Day Rainfall	4 - 7
	5.3.1 Frequency Analysis by Gumbel Method	1 - 7
	5.3.2 Return Periods of 1992 Floods and 1983 Floods	1 - 7
	5.4 Rainfall Intensity Curves	A - 8
	5.5 Design Rainfall Pattern	A - 8
	5.5.1 Correlation of Annual Maximum Daily Rainfall	A - 8
	5.5.2 Design Hyetograph	4 - 9
6,	Water Level and Discharge Analysis	4 - 9
	6.1 Río Grande, Río Piray and Río Yapacani	4 - 9
	6.2 Discharge Measurement	- 11
7.	Rainfall Runoff Analysis A	- 11
	7.1 SCS Unit Hydrograph Method	
	7.2 Catchment Characteristics	- 12
•	7.3 Aerial Reduction Factor	- 13
	7.4 Runoff Discharge	- 13

Flood	Analysis	
8.1	Objects of Flood Analysis	Α
8.2	Hydraulic Models	Α
,	8.2.1 Model Concept	A
	8.2.2 Model Formulation.	Α
8.3	8.2.2 Model Formulation Simulation of Probable Floods. 8.3.1 Río Chané Basin.	A
•	8.3.1 Río Chané Basin	Α
	8.3.2 Arroyo Yapacanicito-Jochi-Tacuaral Basin	A
Study	on Low-water Runoff	A
9.1	Drought Rainfall	A
Sumn	nary of Findings	

Description of the control of the cont

and the second of the second o

 $(x_1, \dots, x_n) \in \mathbb{R}^n$, where $x_1 \in \mathbb{R}^n$, we satisfy $x_1 \in \mathbb{R}^n$

and the commence of the second of the second

the contract of the contract of the

and the second of the second o

(1) The second of the second o

in the second of the second of

in the second of the second of

LIST OF TABLES

SUPPORTING REPORT A

Table A.3.1	List of Hydrological Gauging Stations and Collected Data	
m.1.1. 4.2.1	(1/2)	A - 21
Table A.3.1	List of Hydrological Gauging Stations and Collected Data (2/2)	Δ 22
Table A.4.1	Meteo-hydrological Condition in the Study Area	
Table A.5.1	Annual and Monthly Rainfall of 1992 and 1983	
Table A.5.2	Annual Maximum Rainfall	
	Station: 5806 Santa Cruz - Trompillo	A - 25
Table A.5.3	Annual Maximum Rainfall	
	Station: 61NP Saavedra (CIMCA)	A - 26
Table A.5.4	Annual Maximum Rainfall	
	Station: Okinawa II (CETABOL - JICA)	A - 27
Table A.5.5	Annual Maximum Rainfall	
	Station: Colonia San Juan de Yapacani (JICA/CAISY)	A - 28
Table A.5.6	Summary of Probable Maximum Rainfall by Gumbel	
	Method	A - 29
Table A.5.7	Return Periods of Annual Maximum Rainfalls of 1992 and	
6	1983	A - 30
Table A.5.8	Annual Maximum Hourly Rainfall of Saavedra	
Table A.5.9	Annual Maximum Hourly Rainfall of Santa Cruz - Oficina	
Table A.5.10	Annual Maximum Hourly Rainfall of Okinawa II	A - 33
Table A.5.11	Probable Maximum Rainfall within 24 Hours by Gumbel	
	Method	A - 34
Table A.5.12	Design Rainfalls for Saavedra and Santa Cruz	
Table A.5.13	Design Rainfalls for Okinawa II and Col. San Juan de	
	Yapacani	A - 36
Table A.6.1	Annual Maximum Water Level and Discharge of the Río	
	Piray	A - 37
Table A.6.2	Results of Discharge Measurement	
Table A.7.1	Dimensionless Curve Number of SCS (CN)	
Table A.7.2	Characteristics and SCS Parameters of the Río Chané	
	Basin and Arroyo Yapacanicito-Jochi-Tacuaral-Tejeria	
	Basins	A - 40
Table A.7.3	Runoff Points and SCS Parameters of the Río Chané	
	Basin and Arroyo Yapacanicito-Jochi-Tacuaral-Tejeria	
	Basins	A - 41

Table A.8.1	Inundation Area and Depth of Chane - Pailon without	
	Flood Mitigation and Drainage Improvement	A - 42
Table A.8.2	Inundation Area and Depth of Chane - Pailon with Flood	
	Mitigation and Drainage Improvement (Alternative I)	A - 43
Table A.8.3	Inundation Area and Depth of Chane - Pailon with Flood	,
	Mitigation and Drainage Improvement (Alternative II)	A - 44
Table A.8.4	Inundation Area and Depth of San Juan - Antofagasta	•
	without Flood Mitigation and Drainage Improvement	A - 45
Table A.8.5	Inundation Area and Depth of San Juan - Antofagasta with	1
	Flood Mitigation and Drainage Improvement (Alternative I)	A - 46
Table A.8.6	Inundation Area and Depth of San Juan - Antofagasta with	
	Flood Mitigation and Drainage Improvement (Alternative	
• .	II)	A - 47
Table A.9.1	Continuous Minimum Monthly Rainfall	-
	Station: 5806 Santa Cruz - Ti npillo	A - 48
Table A.9.2	Continuous Minimum Monthly Rainfall	
	Station: 61NP Saavedra	A - 49
Table A.9.3	Continuous Minimum Monthly Rainfall	
	Station: Okinawa II	A - 50
Table A.9.4	Commuous Minimum Monthly Kaintan	
	Station: Col. San Juan de Yapacani	A - 51
Table A.9.5	Summary of Probable Monthly Drought Rainfall by Log-	
	Normal Distribution	A - 52
Table A.9.6		
* *	(1984 - 1994, Jan - Sep. 1995)	A - 53
	and the control of t The control of the control of	eternis i Salari Para la la Salari
		· · · · · · · ·

Compared to the control of the contr

in a first transfer of the constitution of the

and the control of the second section in the second section in the second section in the second section is a second section in the second section in the second section in the second section is a second section in the second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the secti

LIST OF FIGURES

CHPI	$2 \cap R$	TI	VC	REP	ORT.	A

Fig. A.2.1	River System and Drainage Basin	
Fig. A.3.1	Network for Meteo-hydrological Observation	A - 55
Fig. A.5.1	Daily Rainfall in January 1992.	A - 56
Fig. A.5.2	Daily Rainfall in March 1983	A - 57
Fig. A 5.3	Distribution of Probable Maximum Rainfall by Gumbel Method	
•	Station: 5806 Santa Cruz - Trompillo	A - 58
Fig. A.5.4	Distribution of Probable Maximum Rainfall by Gumbel Method	
	Station: 61NP Saavedra	A - 59
Fig. A.5.5	Distribution of Probable Maximum Rainfall by Gumbel Method	
Ü	Station: Okinawa II (CETABOL-JICA)	A - 60
Fig. A.5.6	Distribution of Probable Maximum Rainfall by Gumbel Method	
	Station: Colonia San Juan de Yapacani (JICA/CAISY)	A - 61
Fig. A.5.7	Rainfall Intensity Curves of Saavedra	
Fig. A.5.8	Rainfall Intensity Curves of Santa Cruz - Oficina	A - 63
Fig. A.5.9	Design Rainfalls for 10-Year Return Period	
Fig. A.6.1	Locations of Discharge Measurement	
Fig. A.7.1	Sub-Catchments and Runoff Points of the Río Chané Basin	
Fig. A.7.2	Sub-Catchments and Runoff Points of the Arroyo Yapacanicito-	
``	Jochi-Tacuaral-Tejeria Basins	A - 67
Fig. A.7.3	Aerial Reduction Curve	A - 68
Fig. A.7.4	Peak Runoff Discharges of the Río Chané Basin	A - 69
Fig. A.7.5	Peak Runoff Discharges of the Río Yapacauicito-Jochi-Tacuaral-	
	Tejeria Basins	A - 70
Fig. A.7.6	Specific Discharges of the Río Chané Basin and Arroyo	
Ü	Yapacanicito -Jochi-Tacuaral-Tejeria Basins	A - 71
Fig. A.7.7	Runoff Hydrograph of Chane River Basin	
Fig. A.7.8	Runoff Hydrograph of Arroyo Yapacanicito-Jochi-Tacuaral	
V	Basins	A - 73
Fig. A.8.1	Model Structure of Flood Analysis for the Río Chané Basin	
Fig. A.8.2	Model Structure of Flood Analysis for the Arroyo Yapacanicito-	
Ü	Jochi-Tacuaral Basins	A - 75
Fig. A.8.3	Simulation of 1992 Floods	
	-Chane-Pailon (Río Chané Basin)	A - 76
Fig. A.8.4	Simulation of 1992 Floods	
	- San Juan-Antofagasta (Arroyo Yapacanicito-Jochi-Tacuaral	
	Rasin).	A - 77

Fig. A.8.5	Simulation of 10 Year Floods without Flood Mitigation and	
	Drainage Improvement	
	- Chane-Pailon (Río Chané Basin)	A - 78
Fig. A.8.6	Simulation of 10 Year Floods with Flood Mitigation and	
	Drainage Improvement (Alternative I)	
	- Chane-Pailon (Río Chané Basin)	A - 79
Fig. A.8.7	Comparison of Simulated Hydrograph of Flood Water Level	1 3 m
	Chane - Pailon : without Project and Alternative I	A - 80
Fig. A.8.8	Simulated Maximum Water Level of Probable Floods	. 100
	Chane - Pailon : Alternative I	A - 81
Fig. A.8.9	Peak Discharge by Hydraulic Simulation for Chane - Pailon	
	Area Alternative I : Río Chané Basin	A - 82
Fig. A.8.10	Simulation of 10 Year Floods without Flood Mitigation and	
	Drainage Improvement	1
* * * * * * * * * * * * * * * * * * * *	-San Juan - Antofagasta (Arroyo Yapacanicito-Jochi-Tacuaral	
	Basin). A second of the design	A - 83
Fig. A.8.11	Simulation of 10 Year Floods with Flood Mitigation and	
	Drainage Improvement (Alternative I)	
	-San Juan - Antofagasta (Arroyo Yapacanicito-Jochi-Tacuaral	
	Basin)	A - 84
Fig. A.8.12	Comparison of Simulated Hydrograph of Flood Water Level	
	San Juan - Antofagasta: without Project and Alternative I	A - 85
Fig. A.8.13	Simulated Maximum Water Level of Probable Floods	
•	San Juan - Antofagasta : Alternative I.	A - 86
Fig. A.8.14	Peak Discharge by Hydraulic Simulation for San Juan -	
	Antofagasta	into protesta de la compansión de la compa La compansión de la compa
	-Alternative 1: Arroyo Yapacanicito-Jochi-Tacuaral Basin	A - 87

SUPPORTING REPORT A HYDROLOGY

1. General

Hydrological study has been conducted to clarify the meteo-hydrological condition of the study area, which causes floods as well as drought. Based on the hydrological study, hydraulic study for floods was conducted.

Following sub-sections describe general meteo-hydrological condition in the study area, characteristics of the storm rainfall, rainfall runoff analysis, flood analysis and analysis for drought rainfall. Final sub-section describes the summary of the findings of the hydrological study.

2. River System and Drainage Basin

2.1 Río Grande, Río Piray and Río Yapacani

The study area is bounded by the Río Grande in the east, Río Piray in the center and the Río Yapacani in the west. The Río Piray and the Río Yapacani are the major tributaries of the Río Grande. The Río Grande joins with the Río Ichilo and changes the name to Río Mamore and finally joins with the main stream of the Río Amazonas. The catchment areas of the Río Grande, Río Piray and Río Yapacani are about 106,000 km², 10,660 km² and 9,960 km² respectively.

2.2 River System and Drainage Basins in the Study Area

The river system and drainage basins between the Río Grande and the Río Yapacani are roughly divided into three parts. They are the central part, eastern part and western part. The river system and drainage basins of these three parts are composed of following rivers (refer to Fig. A.2.1):

1) Central Part

Río Piray : main stream

Others : tributaries of the Río Piray except Río Chané and

医大型性动物 化二氯磺胺基酚 化二氯甲酚二甲酚二甲酚

Contract to the second

1. [4] 医主动性性肾髓体性 医气头虫虫虫

Río Palometillas

2) Eastern Part

Río Chané : right tributary of the Río Piray

Río Pailón : right tributary of the Río Chané

Arroyo Los Sauces : main tributary of the Río Pailón (most upstream is

Santa Cruz de la Sierra)

Quebrada Chané : left tributary of the Río Chané

Quebrada El Toro : left tributary of the Quebrada Chané
Quebrada Las Maras : left tributary of the Quebrada El Toro

Quebrada Las Chacras: left tributary of the Río Chané
Others: tributaries of the Río Grande

Others :

Río Palometillas

3) Western Part

left tributary of the Río Piray

Arroyo Asuvicito : tributary of the Río Palometillas

Arroyo Lupe : tributary of the Río Palometillas

Arroyo Quimori : tributary of the Río Palometillas

Río Palacios : right tributary of the Río Yapacani

Arroyo Piquircito : lest tributary of the Río Palacios

Arroyo Tacuaral : left tributary of the Río Palacios

Arroyo Jochi : left tributary of the Río Palacios

Arroyo Yapacanicito : right tributary of the Río Yapacani right tributary of the Río Yapacani

2.3 River-morphological Characteristics:

2.3.1 Río Chané and Río Paitón

The eastern part and the central part of the study area have been formed as an alluvial plain of the Río Piray like alluvial fan. Land elevation of the eastern part is higher in the southern - central area and lower in the north - eastern area. The Río Piray flows around the relatively higher portion of this alluvial plain. Río Chané flows on this alluvial plain.

By the floods of the Río Grande in the downstream reach near Okinawa I and Okinawa II, sediment deposition has been proceeded and natural levee has been formed with the maximum width of about 20 km for both sides of the river. The Río Pailón has been formed along the lowest elevation between the alluvial plain of the Río Piray and the natural levee of the Río Grande.

2.3.2 Arroyo Yapacanicito and Arroyo Jochi

Land of the downstream reaches of the Río Yapacani from National Road No.7 has been formed by sand deposition by the Río Yapacani. Soil characteristic along the Río Yapacani is sandy. Arroyo Yapacanicito has been formed on this alluvial plain of the Río Yapacani. As the sediment of the Arroyo Yapacanicito is clayey, the soil along the Arroyo Yapacanicito is clayey. Small natural levce is formed along the Arroyo Yapacanicito.

Arroyo Jochi flows in the right side of the Arroyo Yapacanicito. Sediment of the Arroyo Jochi is also clayey. Small natural levee is formed along the Arroyo Jochi.

3. Available Data

In this sub-section, available meteorological and hydrological data for the study is described.

3.1 Meteo-hydrological Observation Network

Fig. A.3.1 shows the meteo-hydrological observation network in and around the study area.

3.1.1 Rainfall Gauging Station

List of rainfall gauging stations in the study area is shown in *Table A.3.1* (1). The numbers of the rainfall stations are 34. They are the stations of SENAMHI, SEARPI, CETABOL - JICA, CAICO, CAISY and others. Among these stations, Santa Cruz - Trompillo and Viru Viru Aeropuerto are the general meteorological stations.

Aerial distribution of the rainfall gauging stations are thick in the main stream basin of the Río Piray (central part), rather rare in the Río Chané basin (eastern part) and very rare in the basins in the western part. Therefore, additional rainfall gauging stations are necessary for the eastern part and western part.

3.1.2 Water Level and Discharge Gauging Station

Existing water level and discharge gauging stations in and around the study area are as follows (refer to Table A.3.1 (2) and (3));

Río Piray : Puente Eisenhower

La Belgica

Río Grande : no gauging station

Río Yapacani : Puente Yapacani of National Road No.7

Río Chané and its tributaries : no gauging station

Tributary of Río Palacios : Río Palometillas at National Road No.7

Other rivers : no gauging station

Along the Río Grande, there are abandoned stations at Puerto Pailas and Abapó. Abapó locates about 150 km upstream from Puerto Pailas.

In order to know the effect of Río Grande and Río Yapacani on the floods in the study area, it is necessary to install more water level and discharge gauging stations along the Río Grande and Río Yapacani. Water level and discharge gauging stations are also necessary for the Río Chané, Río Palacios and others.

3.2 Meteo-hydrological Data Collected

3.2.1 Daily Rainfall Data

The collected daily rainfall data are listed in *Table A.3.1 (1)*. Number of the rainfall gauging stations which have daily rainfall data older than 1975 or 1976 is 10 stations. Among the 10 stations, following four stations have relatively long record:

5806 Santa Cruz - Trompillo : 52 years record

61NP Saavedra : 44 years record

Colonia San Juan de Yapacani : 35 years record

Okinawa II : 26 years record

Above four rainfall stations are selected as the principal stations for the study.

3.2.2 Hourly Rainfall Data

Available hourly rainfall data relating to the above principal stations are listed in below;

25NP Santa Cruz - Oficina : 1973 - 1994 (21 years record)

61NP Saavedra : 1951 - 1994 (44 years record)

Okinawa II : 1986 - 1994 (8 years record)

As the Santa Cruz - Oficina and Saavedra have rather long record, these data were used to analyze hourly rainfall pattern.

3.2.3 Daily Water Level and Discharge Data

Collected daily water level and discharge data are listed in *Table A.3.1* (2) and (3). Water level and discharge data of the Río Piray has about 6 to 18 years record. Water level data of the Río Grande have only 4 years record. Discharge data of the Río Grande have 3 to 18 years record. Water level and discharge of the Río Grande are not observed now. Water level measurements of the Río Yapacani and right tributary of the Río Palacios (station: Río Palometillas) have been started only since 1994.

4. General Meteorological Condition

Table A.4.1 shows the general meteorological condition in the study area. Mean temperature is 20 °C to 27 °C. Difference between the maximum and minimum temperature is about 10 °C. The hottest months are November to February and the coldest months are June and July.

Average annual rainfall of the western, southern, northern and eastern parts are 1898 mm, 1356 mm, 1301 mm and 1274 mm respectively. There are dry season and wet season in the study area. Dry season is between April to October and rainy season is between October to March. Transition seasons are March to April and September to October. Rainfall amount in the rainy season is about 60 to 70 % of annual rainfall.

5. Rainfall Analysis

5.1 Monthly and Annual Rainfall

Table A.5.1 shows the comparison of monthly and annual rainfall of 1992, 1983 and average year for the selected 8 stations which have about 20 years rainfall record.

(1) Rainfall in 1992

Amount of annual rainfall of 1992 was about 2 to 2.5 times of that of average year. Amounts of monthly rainfall of January, February and December were about 2 to 3 times of that of average rainfall. Amounts of monthly rainfall of April and May were about 2 to 4 times of that of average rainfall. Hence, the study area was rather

saturated condition during rainy season. Also, run-off rate and run-off coefficient during storm rainfall were rather high in 1992.

医抗性 医胸膜皮肤 医乳头皮炎 医二氏管 计选择键

(2) Rainfall in 1983

Amount of annual rainfall of 1983 was about 1.0 to 1.5 times of that of average year. Amounts of monthly rainfall of March and May were about 1.5 to 2.0 times and 2.0 to 3.5 times of that of average year respectively. During March 1983 Floods, there was very heavy local rainfall in the upstream reach of the Río Piray. Hence, the rainfall of March in the study area was not the main reason for the floods of the Río Piray.

5.2 Daily Rainfall during Major Floods

Fig. A.5.1 and Fig. A.5.2 shows amounts of daily rainfall of January 1992 and March 1983 for the four principal rainfall stations of Santa Cruz - Trompillo, Saavedra, Okinawa II and Col. San Juan de Yapacani.

(1) January 1992 Floods

Continuous rainfall with duration of about 4 to 6 days was observed in the whole area. The amounts of the continuous rainfall were 453.6 mm at Saavedra, 374.0 mm at Okinawa II, 293.3 mm at Col. San Juan de Yapacani and 168.1 mm at SC - Trompillo. Daily maximum rainfall was 220.4 mm at Saavedra, 196.5 mm at Col. San Juan de Yapacani, 194.0 mm at Okinawa II and 168.1 mm at SC-Trompillo. Daily maximum rainfall was observed on January 13 at SC - Trompillo, January 14 at Saavedra and January 15 at Okinawa II and Col. San Juan de Yapacani.

It can be said that the January 1992 Floods was caused by the very heavy rainfall in the northern, eastern and western part of the study area. The heavy rainfall concentrated in three days for the four stations. Therefore it can be estimated that rainfall amount of these three days affected the floods very much.

(2) March 1983 Floods

Floods occurred in 18 th. March, 1983. Rainfall amounts around 18 th. March for the four stations were small. Hence, it can be confirmed that the rainfall in the study area was not the main reason for the floods.

5.3 Frequency Analysis for One Day to Seven Day Rainfall

5.3.1 Frequency Analysis by Gumbel Method

Table A.5.2 to Table A.5.5 show annual maximum rainfall of 1 day to 7 day for the four principal stations.

Frequency analysis for the annual maximum rainfall by Gumbel Method was conducted. The annual maximum rainfall of the four principal stations fit to Gumbel Distribution especially for Saavedra, Okinawa II and Col. San Juan de Yapacani as shown in Fig. A.5.3 to Fig. A.5.6. Table A.5.6 shows the summary of probable maximum rainfall.

5.3.2 Return Periods of 1992 Floods and 1983 Floods

Table A.5.7 shows the summary of return periods of January 1992 Floods and March 1983 Floods.

(1) January 1992 Floods

The return periods of the storm rainfall within 3 days are as follows:

Santa Cruz - Trompillo

2 to 5 year return period

Saavedra

over 100 year return period

Okinawa II

50 to 100 year return period

Col. San Juan de Yapacani

5 to 10 year return period

Note:

Annual maximum rainfall at SC - Trompillo in 1992 was recorded in December. Annual maximum rainfall of other three stations were

recorded during January 1992 Floods.

(2) March 1983 Floods

Annual maximum rainfalls of 1983 for the four principal stations were observed in January and February at SC - Trompillo, November and January at Saavedra, February at Okinawa II and May at Col. San Juan de Yapacani. Hence, the rainfall amount of March 1983 floods was smaller than the annual maximum rainfall of 1983. Therefore, the return period of the rainfall of March 1983 Floods were less than 2 years for the four stations.

5.4 Rainfall Intensity Curves was hand all self on the following at the

(1) Annual Maximum Data of Hourly Rainfall: (4) And the properties of the expectation of

Hourly rainfall data were analyzed to clarify the rainfall pattern within one day. Table A.5.8 to Table A.5.10 show the annual maximum rainfall of 0.5 hour to 12 hour for Saavedra, SC - Oficina and Okinawa II. Data of SC - Oficina was used together with the daily rainfall data of SC - Trompillo. Rainfall with heavy intensity does not continue more than 12 hours for the three stations. As Saavedra and SC - Oficina have rather long periods of records, these data were used for further analysis.

(2) Probable Maximum Hourly Rainfall

Probable maximum hourly rainfalls was calculated for Saavedra and SC - Oficina by Gumbel method. Table A.5.11 shows the summary of calculation.

医骨髓 化环烷基甲基甲基磺基磺酚异甲基乙基磺基

The state of the s

I don't be a first of the contract of the cont

(3) Rainfall Intensity Curves

As the trends of accumulated rainfall of the above two stations are different around 4 hours, the rainfall intensity curves of 0 to 4 hours and 4 to 24 hours were made separately. The rainfall intensity curves of Saavedra and SC - Oficina are shown in Fig. A.5.7 and Fig. A.5.8. Equations of the intensity curves are also shown by using Talbot pattern.

5.5 Design Rainfall Pattern

5.5.1 Correlation of Annual Maximum Daily Rainfall

Design rainfall patterns for the four principal rainfall stations of Santa Cruz, Okinawa II, Saavedra and Col. San Juan de Yapacani were studied. Rainfall intensity curves of Santa Cruz and Saavedra were used to make their own design rainfall patterns. Design rainfall patterns of Saavedra was also used for making those of Okinawa II and Col. San Juan de Yapacani. This is because correlation of annual maximum daily rainfall of these two stations with Saavedra are bigger than the correlations of these two stations with Santa Cruz as shown below.

Coefficient of Correlation for Annual Maximum Daily Rainfall:

Saavedra - Okinawa II : 0.51
 Saavedra - Col. San Juan de Yapacani : 0.48
 Santa Cruz - Okinawa II : 0.12
 Saavedra - Santa Cruz : 0.06

5.5.2 Design Hyetograph

As mentioned in Sub-section 5.2, January 1992 Floods were affected by three day heavy rainfall. Furthermore, the rainfall of third day was the biggest among these three days. Therefore, three day rainfall with peak behind was adopted for daily rainfall pattern for the design rainfall. Hourly rainfall pattern of each day is set as peak center. Distribution of hourly rainfall was made by using the rainfall intensity curves. Rainfall amount of 1st. day to 3rd. day for 10 year return period are shown below for example;

	Rainfall Amount (mm/day)		
	1st. day	2nd. day	3rd. Day
Saavedra	25.6	35.4	161.4
Santa Cruz	10.3	24.9	174.2
Okinawa II	21.9	21.4	165.3
C. S. de Yapaçani	19.3	39.8	220.8

Design rainfall of the four stations with various return periods are shown in *Table A.5.12* and *Table A.5.13*. Fig. A.5.9 shows the design rainfalls of 10 year return period.

6. Water Level and Discharge Analysis

6.1 Río Grande, Río Piray and Río Yapacani

(1) Río Grande

There are two abandoned water level and discharge gauging stations along the Río Grande. They are Abapó and Puerto Pailas. Catchment areas of the Abapó and Puerto Pailas stations are 60,600 km² and 74,500 km² respectively. Among them,

Puerto Pailas locates at the most upstream of the Río Grande in the study area. However, their observation periods were short and old.

There were several studies relating to the Río Grande. Among them, following two studies are the major ones.

- Agrar and Hydrotechnik GMBH; Proyecto de Desarrollo Agroindustrial Abapó -Izozog, Sep. 1974
- 2) SOGREAH GALINDO, Actualización del Estudio de Factibilidad del Proyecto Rositas, Dec. 1982

According to the above studies, flood discharge of the Río Grande becomes as follows;

Return Period	<u>Abapó</u>	Puerto Pailas
10-year	6800 m³/s	4550 m³/s
20-year	8200 m³/s	5500 m³/s
50-year	10300 m³/s	6900 m³/s
100-year	12000 m³/s	8000 m³/s

Specific discharges of Puerto Pailas are 0.07 to 0.13 m³/s/km².

Above discharge indicates that the discharges of Puerto Pailas are smaller than those of Abapó. This seems to be caused by the inundation between the two stations as well as small rainfall runoff from the sub-catchments between them. However, observation of water level and discharge are necessary to be started again for studying the hydrological characteristics of the Río Grande. Hydrological study for Río Grande Basin will be necessary in the future.

(2) Río Piray

1) Annual Maximum Water Level and Discharge

Table A.6.1 shows the annual maximum water level and discharge of the Río Piray. Recently, rather big discharges were recorded in 1989 and 1991. The flood hydrograph continued about 3 days in 1989 and 4 days in 1991 at Eisenhower.

Colombia (Colombia) (Colombia)

over the first term of the movement of the common of the c

on the given at the Config. Continues the continue the the continue t

Environment of the contract that the same all parts of the

2) Probable Flood Discharge

Probable flood discharge was studied by the Master Plan of the Río Piray by SEARPI. The simulated probable flood discharges at Eisenhower (catchment area 4010 km²) are as follows:

Return Period	<u>Eisenhower</u>
10-year	2700 m ³ /s
20-year	3480 m ³ /s
50-year	4660 m³/s
100-year	5620 m³/s

Specific discharges at Eisenhower are about 0.7 to 1.4 m³/s/km².

(3) Río Yapacani

There is no adequate water level and discharge data for the Río Yapacani. Hydrological study for Río Yapacani Basin will be necessary in the future.

6.2 Discharge Measurement

Discharge measurement was conducted in the Río Chané, Río Pailon, Quebrada Chané, Arroyo Yapacanicito, Arroyo Jochi and Arroyo Tacuaral. Fig. A.6.1 shows the sites of discharge measurement. The results of the discharge measurement are summaries in Table A.6.2.

7. Rainfall Runoff Analysis

In order to know runoff characteristics of the study area, rainfall runoff analysis was conducted. In this report, rainfall runoff analysis for Río Chané Basin and Río Yapacanicito-Jochi-Tacuaral-Tejeria Basins were conducted.

7.1 SCS Unit Hydrograph Method

after the artist he

Unit Hydrograph Method by U.S. Soil Conservation Service (SCS) was applied for the rainfall runoff analysis. Main parameters of SCS Method are as follows;

(1) Antecedent moisture conditions (AMC)

AMC(I) : dry condition

AMC (II) : average wet condition

AMC (III) : wet condition close to saturation

During 1992 Floods, the study area seemed to be very wet condition. Therefore, AMC (III) was used in this study.

(2) Dimensionless Curve Number (CN)

CN depends on land use condition and soil infiltration as shown in Table A.7.1.

(3) Lag Time (tl)

Time of concentration of basin is defined as the travel time of water from the hydraulically most upstream point to the most downstream point. Equation of California Bureau of Road (CBR) in below was used for calculating lag time in this study.

Carry to the second of the second

ti (hr) =
$$(11.9 (L/1.609)^3/(H/0.3048))^{0.385}$$

where, ti : lag time (hr)

L: hydraulic length of longest water course (km)

H: elevation difference of the water course (m)

7.2 Catchment Characteristics

Fig. A.7.1 and Fig. A.7.2 show the sub-catchments and runoff points of the Río Chané Basin and Arroyo Yapacanicito-Jochi-Tacuaral-Tejeria Basins respectively. Table A.7.2 shows the characteristics of sub-catchments and SCS parameters of these basins.

Rainfall runoff was calculated for each runoff points with corresponding catchment area. Table A.7.3 shows the runoff points with catchment area as well as their parameters for SCS. Although the Qda. Meco basin is included in the basin of Río Grande main stream, its water is assumed to be entered into Río Pailon upstream during floods. Therefore, Qda Meco basin was added on the basin of Río Chané.

7.3 Aerial Reduction Factor

Aerial reduction factor of point rainfall to aerial rainfall was applied for the study of Río Piray by SEARPI. In this study, this factor was checked by using the annual maximum daily rainfall of Saavedra and other stations. The results are shown in Fig. A.7.3. As the aerial reduction factor of SEARPI reveals a safer value, the curve of SEARPI was also applied in this study.

7.4 Runoff Discharge

7.4.1 Río Chané Basin

(1) Design Rainfalls

Design rainfalls with return periods 2, 5, 10, 20, 30, 50 and 100 year of Santa Cruz, Okinawa II and Saavedra were used for the runoff analysis. For the each runoff point, basin mean rainfall was calculated.

(2) Runoff Discharge

Fig. A.7.4 shows the calculated peak runoff discharge of each runoff point. Fig. A.7.6(1) shows the calculated specific discharges of the Río Chané Basin. Fig. A.7.7 shows the runoff hydrograph of the Río Chané and Río Pailon etc. At the major runoff points, the probable runoff discharges are calculated as follows;

Probable Peak Runoff Discharge (m³/s)

	Return Period (Year)		
	10-Year	20-Year	50-Year
Río Chané (downstream)	1270	1510	1820
Río Chané (upstream)	1200	1420	1700
Río Pailón (at Road 9)	1340	1580	1890
Qda Chané (at Road 9)	390	460	540

Specific discharges at the most downstream of Río Chané are about 0.2 to 0.8 m³/s/km². These specific discharges coincide with the tendency of specific discharges of the Río Piray which was calculated by SEARPI.

7.4.2 Arroyo Yapacanicito-Jochi-Tacuaral-Tejeria Basins

(1) Design Rainfall

Design rainfalls with return periods 2, 5, 10, 20, 30, 50 and 100 year of Col. San Juan de Yapacani were used for the runoff analysis.

(2) Runoff Discharge

Fig. A.7.5 shows the calculated peak runoff discharge of each runoff point. Fig. A.7.6(2) shows the calculated specific discharges. Fig. A.7.8 shows the runoff discharge of the Arroyo Yapacanicito, Jochi etc. At the major runoff points, the probable runoff discharges are calculated as follows;

Probable Runoff Discharge (m³/s)

	Return Period (Year)			
	10-Year	20-Yea	r ,	50-Year
A. Yapacanicito (downstream)	540	630	i epiteti	740
A. Yapacanicito (upstream)	220	250		290
A. Jochi (mid-stream)	270	310		360
A. Tacuaral (mid-stream)	330	380	37. 3	440
A. Tejeria (downstream)	210	240		280
		1 1 1 1 1 1 1 1 1		化热 医牙髓病

Tendency of specific discharges of this basin is almost same as that of the Río Chané basin.

8. Flood Analysis

8.1 Objects of Flood Analysis

Objects of flood analysis are as follows;

- 1) To simulate flood area with depth and duration for without flood mitigation and drainage improvement measures
- 2) To simulate flood area with depth and duration for with flood mitigation and drainage improvement measures
 - 3) To make clear the hydraulic effects of flood mitigation and drainage improvement measures

8.2 Hydraulic Models

Hydraulic models were made for the Río Chané Basin and Arroyo Yapacanicito-Jochi-Tacuaral Basin. These basins correspond to the two target areas of structural measures for flood mitigation and drainage improvement. The target areas are Chané-Pailón and San Juan -Antofagasta.

8.2.1 Model Concept

Concept for the hydraulic models are as follows;

(1) Model Structure

Model structures are composed of river and drainage systems with sub-catchments as shown in Fig. A.8.1 and Fig. A.8.2. Inundation areas and retarding basins are included in the river systems.

(2) Rainfall Runoff

Rainfall runoff of each sub-catchments is calculated by SCS method. Runoff hydrograph enter into channels as lateral inflow.

(3) Hydraulic Calculation

Hydraulic calculation is done by un-steady flow method. Considering the existing conditions of river channels, Manning's roughness coefficients of the river channels under without river improvement were set as 0.035 for Río Chané Basin and 0.040 for Arroyo Yapacanicito-Jochi-Tacuaral Basins. The Manning's roughness coefficient under with river improvement was set as 0.030. The Manning's roughness coefficient of the inundation area was 5 times of that of river channel.

8.2.2 Model Formulation

Hydraulic models for the Chané River Basin and Arroyo Yapacanicito-Jochi-Tacuaral Basins are formulated. Calibration of the models are done by comparing the actual condition of 1992 Floods with simulated flood conditions by the models.

Fig. A.8.3 and Fig. A.8.4 shows the simulated inundation area and average flood depth along the rivers of the above two basins by the formulated models. The results of the calibration are as follows:

(1) Río Chané Basin

Although the simulated inundation depth is higher than the survey results, it is in the acceptable range comparing with the actual depth along the rivers. Simulated inundation area is almost same as the actual condition.

Soft in the second second

(2) (1) (1) (1) (1) (1) (2)

(2) Arroyo Yapacanicito-Jochi-Tacuaral Basin

The simulated inundation depth is in the acceptable range comparing with the actual depth. Although the simulated inundation area is a little smaller than the actual condition, it is in the acceptable range.

8.3 Simulation of Probable Floods

Simulation of probable floods for without flood mitigation and drainage improvement measures as well as with flood mitigation and drainage improvement measures are done. Simulated probable floods are 2, 5, 10, 20 and 50 year floods. Design rainfalls of these floods are 3 day rainfall with corresponding return periods.

8.3.1 Río Chané Basin

(1) Inundation Area and Depth

Followings describe the conditions of the simulated inundation area and depth for the without and with flood mitigation and drainage improvement measures of Chané - Pailón in the Río Chané Basin as well as Okinawa Drainage. On-going 7 bridge project of JICA is included in the river systems for both without and with conditions. Hydraulic effects of the Alternative I and Alternative II are described below.

1) Alternative I

Table A.8.1 and Table A.8.2 show the simulated inundation depth and area of probable floods for without project and Alternative I. Fig. A.8.5 and Fig. A.8.6 show those of 10 year floods. Inundation conditions of Río Pailón, Qda. Chané, Chane - Chacras and Okinawa Drainage will be very much improved by Alternative I.

Although river improvement will be done for the Río Chané, flood water level of the Río Chané will be almost same or slightly increased by Alternative I. This will be caused by the increasing of flood discharge from the upstream basins due to the river and drainage improvements as well as the backwater effect of the Río Piray.

For reference, Fig. A.8.7 shows the comparison of hydrograph of flood water level of the without project with that of Alternative I. Fig. A.8.8 shows the maximum flood water level of the Río Chané, Río Pailon and Quebrada Chané of Alternative I.

2) Alternative II

Table A.8.3 shows the simulated inundation depth and area of probable floods for Alternative II. As the Río Pailon, Qda. Chané, Qda. Las Chacras will be improved by the Alternative II, inundation conditions of Río Pailón, Qda. Chané, Chané, Chane - Chacras and Okinawa Drainage will be also very much improved.

However, as the river improvement will not be done for the Río Chané, flood water level of Río Chané will be increased comparing with that of without project condition. The amount of increasing of the flood water level will be 0.5 to 0.9 m for 10 floods.

(2) Duration of Inundation

Durations of inundation of 10 year floods for Chané - Pailón of without project and Alternative I were simulated as follows;

	Without	Alternative I
Downstream of Road 9	6.0 day	2.4 day
Upstream of Road 9	2.8 day	2.1 day

Duration will be much decreased in the downstream area.

(3) Discharge Distribution

Fig. A.8.9 shows the distribution of peak discharge simulated for Alternative I.

8.3.2 Arroyo Yapacanicito-Jochi-Tacuaral Basin

(1) Inundation Area and Depth

1) Alternative I

Table A.8.4 and Table A.8.5 show simulated inundation area and depth for the without and Alternative I of San Juan - Antofagasta in the Arroyo Yapacanicito-Jochi-Tacuaral Basin. Fig. A.8.10 and Fig. A.8.11 show the inundation area with depth of 10 year floods for without and with conditions respectively.

Inundation conditions of San Juan and Antofagasta will be very much improved by Alternative I for the reaches in which river and drainage improvement will be done.

For reference, Fig. A.8.12 shows the comparison of hydrograph of flood water level of the without project with Alternative I. Fig. A.8.13 shows the maximum flood water level of the Arroyo Yapacanicito and Arroyo Jochi of Alternative I.

2) Alternative II

Table A.8.6 shows the simulated inundation depth and area of probable floods for Alternative II. Flood condition will be also very much improved by Alternative II.

(2) Duration of Inundation

Durations of inundation for 10 year floods of without project and Alternative I of San Juan - Antofagasta were simulated as follows;

Harry Company of the Company of the	Without	Alternative I
Arroyo Yapacanicito	1.1 day	0.3 day
Arroyo Jochi	1.5 day	0.4 day
Arroyo Tacuaral	2.0 day	0.0 day

Duration will be much decreased for the above three rivers.

(3) Discharge Distribution

Fig. A.8.14 shows the distribution of peak discharge simulated for Alternative I.

9. Study on Low-water Runoff

Eastern part of the study area has a problem of drought. In order to know the drought condition, low-water runoff is necessary to be studied. In this report, analysis of drought rainfall is presented.

9.1 Drought Rainfall

Table A.9.1 to A.9.4 show continuous minimum rainfall of 1 month to 6 month of Santa Cruz - Trompillo, Saavedra, Okinawa II and Col. San Juan de Yapacani. Table A.9.5 shows the results of frequency analysis for the four stations by log-normal

distribution. Applicability of log-normal distribution was very good for 3 month to annual rainfall.

There are 3 years of drought between 1984 and 1994. They are 1988, 1993, 1994. 1995 is also said as drought year. Return periods of drought for these years for the above four stations are shown in *Table A.9.6*. SC-Trompillo, Saavedra, Okinawa II and Col. San Juan de Yapacani represent southern part, northern part, eastern part and western part of the study area. Drought scale of four month rainfall of them are shown below.

	Drought S	cale (4 Mont	h Rainfall)
Station	<u>1st.</u>	<u>2nd</u>	<u>3rd.</u>
SC-Trompillo	1994	1988	1995
	(49.4)	(34.4)	(18.9)
Saavedra	1988	1995	1993
	(>200)	(31.9)	(3.5)
Okinawa II	1995	1988	1993
angang ng mga kaleberg kalimit d	(16.5)	(12.8)	(5.7)
Col. San Juan de Yapacani	1988	1995	1993
•	(>200)	(145.6)	(28.6)

Remarks: values in parenthesis are return periods of drought.

Characteristics of drought rainfall are listed below;

- 1) Whole study area has experienced very severe drought rainfall in 1988.
- 2) Severe drought rainfall was observed in western part in 1993.
- 3) In 1994, severe drought rainfall was observed in southern part.
- 4) Whole study area experienced severe drought rainfall in 1995.

10. Summary of Findings

(1) Meteo-hydrological Observation Network

1) Meteo-hydrological observation network in and around the study area is necessary to be reinforced both for the rainfall gauging stations and water level and discharge gauging stations.

(2) 1992 Floods

- 1) Amount of annual and monthly rainfall of 1992 is much bigger than those of average year. River basins in the study area was seemed to be rather saturated condition in 1992.
- 2) Storm rainfall of January 1992 Floods is characterized as three day continuous rainfall with big amount.
- 3) Return periods of the storm rainfall during 1992 Floods are over 100 years in the northern part, 50 to 100 years in the eastern part, 5 to 10 years for the western part and 2 to 5 years for the southern part of the study area.

(3) Runoff Analysis

- 1) Rainfall intensity duration curves were updated for Saavedra and Santa Cruz.
- 2) Three day rainfalls with peak behind were applied for the rainfall runoff analysis for the study area.
- 3) Runoff discharges of the Río Chané basin and Arroyo Yapacanicito-Jochi-Tacuaral-Tejeria basins were calculated and specific discharge curves were made.

(4) Flood Analysis

- Flood analysis for without and with flood mitigation and drainage measures is being done.
- 2) Hydraulic effect of Alternative I and Alternative II of Chané Pailón was simulated. Inundation condition will be much improved by Alternative I as well as Alternative II except Río Chané.
- 3) Hydraulic effect of Alternative I and Alternative II of San Juan Antofagasta was simulated. Inundation condition will be much improved by Alternative I as well as Alternative II except the most downstream reach of the Arroyo Yapacanicito.

(5) Low-water Runoff

- 1) Study area have experienced drought rainfall in 1988, 1993, 1994 and 1995 in recent years.
- 2) Return periods of drought rainfall of 1988, 1993, 1994 and 1995 was calculated.

TABLES

and the control of th

TABLE A.3.1 LIST OF HYDROLOGICAL GAUGING STATIONS AND COLLECTED DATA (1/2)

I. LIST OF RAINFALL GAUGING STATIONS AND COLLECTED DAILY RAINFALL DATA

Station	Station Name	Loca	tion	Eleva-	. (Obser	ration	Started					Data C	ollect	ed	
No.		Latitude	Longitude	tion .	M	ianual		Λυ	tomat	ic .		Begin	ning		End	
		i .	[(El. m)	Day N	Mon.	Year	Day	Mon.	Year	Day	Mon.	Year	Day	Mon.	Year
1. DAT	A FROM SEARPI					:	-									
09NP	San Pedro de Terevinto	17° 43' 05″	63° 26′	450	6	10	1988			:	- 6	10	1988	31	12	1994
20NP	Villa Diego	17° 35' 27''	63° 31′ 25″	380	ì	5	1988	1 1			1	5	1988	31	12	1994
	Montero - Ciudad				i	2	1973			٠.	1	1	1989	31	12	1994
	Patuiu	- -			,	Ī.	1959				- 1	1	1989	31	12	1994
25NP	Santa Cruz-Oficina	17° 47′	63° 10'	416	11	11	1975	111	11	1975	ш	11	1975	31	12	1994
28NP	Perotó	17° 29'	63° 10' 42''	350	1	5	1988		_		i	5	1988	31	12	1994
50NP	Viru Viru-Aeropuerto	17° 38′ 51″	63° 07' 55''	360	3	8	1984	_	-		1	8	1984	31	12	1994
51NP	Warnes	17° 30′	63° 08′	330	16	2	1976	16	2	1976	16	2	1976	31	12	1994
52NP	San Isidro	17° 27′	63° 31'	332	8	11	1975	8	11	1975	8	- 11	1975	31	12	1994
55NP	Portachuelo	17° 21'	63° 24'	289	1	11	1975	_	-	-	1	11	1975	31	12	1994
56NP	La Belgica-Ingenio	17° 33′	63° 13	378	1	2	1954	- 1			1	2	1954	31	12	1994
57NP	La Belgica-Puente	17° 32'	63° 13	348	1	10	1977			_	ı	10	1977	31	12	1994
58NP	Terevinto	17° 43'	63° 23'	425	Ţ	· 9	1977	1 13	10	1986	1	9	1977	31	12	1994
59NP	Puente Eisenhower	17° 19′	63° 19	277	1	10	1978	- 1	-		1	- 10	1977	31	12	1994
60NP	Gabetas	17° 20' 35"	63° 21° 25 ''	280	1	10	1981				1	10	1981	31	12	1994)
61NP	Saavedra	175 14	63° 10'	320	1	8	1951	10	8	1951	ì	8	1951	31	12	1994
	Mineros (Unagro)	17*06'	63° 14'	245	1	11	1975		-		` 1	11	1975	31	12	1994
5806	Santa Cruz-Trompillo	17° 47′	63° 10°	437	1	ŀ	1943				1	1	1943	31	12	1994
5807	SantaCruz-Universidad	17° 46′ 38″	63° 11'	725	18	1	1971	-	•		1	2	1971	31	12	1994
2. DAT	A FROM SENAMHI										·					
	Algodenera Boliviana	17° 33′	63°09′	345	. :		1958		_		_			_	-	_
	Algonodera Sta. Clara	17°35'	63°05′	344	100		1963		-		_	-	-	_	_	-
	Buen Retiro	17° 13'	63°03°	275			1978		-		-	_		: .		
	Chocuete	17° 27'	63°06′	313			1974		-		-	-	-	-	-	
	Est. Exp. Vallecito	17° 46′	63°09'	398				١,	-		_	-		_		-
1 1	Guapilo	17° 46′	63°04'	325			1975		-		-	-		-		
	Ingenio Esperanza	17° 18′	63° 03°	368			1944	-	-			-	-			-
1 .	La Victoria	17° 36°	63°03′	344	:		1969	.	-		_	٠.	-	_		-
	Okinawa I	17° 13°	62° 53°	252			1966	٠.	-		1	1	1977	31	12	1994
1 1	Okinawa III	17° 32"	62° 55°	300			1963		-			-	-	-	, * -	-
	Puerto Pailas	17* 39*	62° 47′	280	. 1		1977	1 -		: •	ì	1	1977	31	12	1994
	Puesto Fernandez	17°00"	63° 14′	230			1977			· -	-	-	-	-		-
3. DAT	A FROM CETABOL	JIÇA	.) ; .								·			:	• • •	
	Okinawa II	1 7° 23 ′	62° 54	280			1969				3	1	1969	31	12	1994
1. DAT	A FROM CAISY	:	4		i											
	Col. San Juan de Yapacas	17° 15′	63° 50	350		ì	1960	<u> </u>	-		1	1	1960	31	12	1994
5. DAT	A FROM SPERNR		į									•				
13PY	Buena Vista	17° 27′	63° 40'	379	2	11	1990		•	.	2	11	1990	31	12	1993

Notes; SEARPI: Sevicio Encauzamiento de Aguas y Regularizacion del Rio Pirai

SENAMI II: Servicio Nacional de Meteorologia e Hidrologia

CETABOL-JICA: Centro Tecnologico Agropecuario en Bolivia-JICA CAISY: Cooperativa Agropecuaria Integral San Juan de Yapacani Ltda.

SPERNR: Subproyecto de Proteccion de Emias y Recursos Naturales Renovables

TABLE A.3.1 LIST OF HYDROLOGICAL GAUGING STATIONS AND COLLECTED DATA (2/2)

2. LIST OF WATER LEVEL GAUGING STATIONS AND COLLECTED DATA

Station	Station Name	lo	cation	Catchment	Eleva	(Obser	vation	Start	N.				Data	Collec	ted	
No.		Latitude	Longitude	Λιca	, tion	M	anua	1	^	utoma	tic		Begir	ming		Lnd	
				(km2)	(El. m)	Day N	ion.	Year	Day	Mon.	Year	Day	Mon.	Year	Day	Mon	Yest
1. WAT	ER LEVEL DATA OF TI	IE RIO PI	RAY							,							
0506	Angostura	18° 09' 59'	63° 34' 05'	1417.7	620.0	1	1	1976					1 10	1977	31	12	1991
0510	La Belgica	17° 32'	63° 13'	2815.3	348.0	1	10	1977] .			1.			١.		_
0505	Bernejo	18ª 06°	63° 38′	477.4	1000.0	1	11	1975					1 10	1976	31	12	1994
0504	Colorado	18° 08'	63°08′	102.3	1020.0	1	:					: 1	1	-1981	31	. 12	1994
0512	Eisenhower	179 19	63° 19'	4010.0	279.5	1	10	1977	١.			1 1	1 10	1977	-31	12	1994
0520	Espejos	17° 58′ 30′	63° 34′ 17′	236.0	496.7	1	4	1981	Ι.			2	7 11	1976	31	12	1994
0530	San Pedro de Terevinto	17° 43′ 05′	63° 26'	165.0	450.0	6	01	1988	-	-		. (5 10	1988	25	- 11	1993
2. WAT	ER LEVEL DATA OF T	I HE RIO GI I	I RANDE I	i			•			:						:	
0401	Puente Abapo			60600.0		:			١.] - [9	1971] 31	. 3	1974
0402	Puerto Pailas	17° 40'	62° 47	74500.0				:]	-	1971		3	1974
3. WAT	 ER LEVEL DATA OF TE	 E RIO YA	PACANI		. :					·				٠.		•	: 1.
00411	Rio Yapacani (Puente)	179 24	63° 43'	5970.0	283.0	25	7	1994			-	2.5	5 7	1994	31	12	1994
4. WATI	ER LEVEL DATA OF TI	I IE TRIBU I	I TARY OF I	I RIO PALA I	cios L						:					:	
003H	Rio Palometillas (Puente)	17:23	63° 32'	261.5	290.0	20	7	1994		-		20	7	1994	31	12	1994

3. LIST OF DISCHARGE GAUGING STATIONS AND COLLECTED DATA

Station	Station Name	lo	cation	Catchment	Eleva-	Obse	rvation	Start	ed		T		Data	Collec	ted .	
No.		Latitude	Longitude	Arca	tion	Manus	1		utoma	tic		Begin	ming		End	
				(km2)	(Et m)	Day Mon.	Year	Day	Mon.	Year	Day	Mon.	Year	Day	Mon.	Year
1. DISC	HARGE DATA OF THE	RIO PIRA	Y				:									
							•	1								
0506	Angostura	18° 09' 59	63° 34' 05'	1417.7	620		:	4.4			24	12	1975	- 31	12	1993
0510	La Belgica	17° 32'	63° 13′	2815.3	348				1		1	4	1976	31	12	1991
0505	Bennejo	18° 06'	63° 38°	477.4	1000						17	ı	1976	131	12	1993
0504	Colorado	18°08'	63°08'	102.3	1020	1.5					10	9	1981	31	12	1993
0512 .	Eisenhower	17° 19'	63° 19.	4010.0	279.5			!			4	2	1977	31	12	1991
0520	Espejos	17° 58′ 30	63° 34° 17	236.0	496.7	-	:	~			27	11	1976	31	12	1993
0530	San Pedro de Terevinto	17° 43' 05	63° 26°	165.0	450	٠.	1				6	10	1988	25	11	1993
2. DISC	l HARGE DATA OF THE	I RIO GRAI	I NDE			f.					÷				:	
0401	Puente Abapo		1	60600.0					1		١.	,	: 1964	30	ŋ	1981
0402	Puerto Pailas	17° 40′	62° 47'	74500.0							13	6		1 .	3	1974
3. DISC	 HARGE DATA OF THE 	 RIO YAPA 	CANI	:		i :	:							. :-	•	
00411	Rio Yapacani (Puente)	17° 24'	63° 43'	5970.0	283.0	15 9	1993		•		15	9	1993	23	11	1994
4. DISC	HARGE DATA OF TRIE	UTARY O	, F the ric I	PALACI	os		•			!						
00311	Rio Palometilias (Puente)	17° 23′	63° 32°	261.5	290	2 7	1991				2	7	1991	8	12	1994

TABLE A.4.1 METEO-HYDROLOGICAL CONDITION IN THE STUDY AREA

]					M	ONTH						Annua
	Jan.	Feb.		Apr.	May	Jun.	Ail	Aug	Sep.	Oct.	Nov	Dec.	1
I. MONTHLY AVERAGE T	EMPER	RATUR	E			··		<u>`</u>				nit: °C)	Averag
5806 SC - Trompitlo Max.	30.4	30.5	30. t	28.5	26.0	23.9	24.6	27.4	29.2	30.5	30.8	-	
Mear	f '		25.8	24.2	22.0	20.3	20.2	22.6	24.5	26.0	26.8		24.
Min.	21,4	21.4	20.8	19.0	17.4	16.5	15.3	16.5	18.4	19.8	20.7		18.
61NP Spavedra Max.	30.4	30.4	30.4	29.0	27.0	25.3	25.9	28.5	30.2	30.9	30.4	20.1	30
. Mean	1			23.4	21.6	19.9	20.2	21.3	23.9	25.2	24.4	30.1	29.
Min.	21.5		•	18.9		15.4	14.5	15.6	17.8	19.5	19.8	25.3 20.7	23. 18.
Okinawa 2 Max	1 704		:										
	30.6	30.8		29.5	26.8	25.3	25.6	28.5	29.5	31.4	31.3	30.9	29.
Mean	26.0	25.7		24.2	21.6	19.9	19.6	21.8	23.3	25.6	26.1	26,1	23.
Min.	21.7	21.2	20.8	19.4	17.2	15.5	14.1	15.9	17.4	19.6	20.7	21.5	18.
Col. San Juan de Yapacai Max.	30.6	30.8	30.9	29.7	27.0	25.4	25.9	27.7	28.8	30.7	30.7	30.6	20
Mean	26.3	26.4	26.2	24.7	22.5	20.8	20.6	21.8	23.1	25.2	25.6	26.3	29.
Min.	22.0	21.9	21.6		18.0	16.3	15.3	16.0	17.5	19.7	20.8	26.3	24. 19.
Data - CO Tracca 111 - 22 - 1045		.033.0											
Data : SC-Trompillo (Jan. 1943 Okinawa 2 (Apr. 1981 - 1	- Dec. 19 lec. 1994	792), Sat 1 ('라 S	avedra (. San bass	lan. 195 do Yan	2 - Dee. seani Os	1994) ה- נמו	. 150. 1	อกสา					
	1				(30)	ii. (273 -	· LAC. I	274)					
MONTHLY AVERAGE R	LLATIV	E RUN	HDITY	• '							ω	ait : %)	Average
5806 SC - Trompillo	75.0	75.0	75.0	74.0	76.0	76.0	69.0	61.0	60.0	64.0	67.0	71.0	70.
SINP Saavedra	75.0	76.0	73.0	72.0	73.0	71.0	63.0	56.0	56.0	61.0	66.0	73.0	68.
Okinawa 2	83.2	82.0	82.6	81.7	81.2	79.0	73.4	69.0	68.5	70.9	75.7	79.5	74.
ol. San Juan de Yapacani	80.1	79.7	77.8	77.3	78.2	78.4	73.7	69.8	69.2	70.3	74.0	78.5	75.6
Data : SC-Trompillo (Jan. 1943	Dec. 19	92), Saa	wedra (I	an. 1950	5 - Dec. :	1992)							
Okinawa 2 (Apr. 1981 - E	ec. 1994), Col. S	an Juan	de Yapa	cani (Ja	1992)		994)				.0%	
Data : SC-Trompillo (Jan. 1943 Okinawa 2 (Apr. 1981 - E B. MONTHLY AVERAGE R	ec. 1994), Col. S	an Juan	de Yapa	cani (Ja	1992)		994)			-	: mm)	
Okinawa 2 (Apr. 1981 - E	ec. 1994 AINFAL), Col. S L AND	an Juan RAIN	de Yapa Y DAYS	ocani (Ja:	1992) n. 1973	- Dec. 1		70.9		(Uni	: mm) t : day)	Tota
Okinawa 2 (Apr. 1981 - E	ec. 1994 AINFAL 181.5), Col. S L AND 137.3	RAINI 126.0	de Yapa Y DAY S 104.3	90.0	1992) n. 1973 75.2	-Dec. 1	42.9	70.9	99.3	(Uni 130.1	: mm) t : day) 181.9	Tota 1301.7
Okinawa 2 (Apr. 1981 - E	ec. 1994 AINFAL), Col. S L AND 137.3 12	RAIN 126.0	de Yapa 7 DAYS 104.3 9	90.0 10	1992) n. 1973 75.2 8	- Dec. 1 61.8 6	42.9 4	5	99.3	(Uni 130.1 9	: mm) : day) 181.9 12	Tota 1301.7 108
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo	ec. 1994 AINFAL 181.5), Col. S L AND 137.3	RAINI 126.0	de Yapa Y DAY S 104.3	90.0	1992) n. 1973 75.2	-Dec. 1	42.9 4 48.2	5 71.9	99.3 7 106.5	(Uni 130.1 9 147.1	: nim) t: day) 181.9 12 200.4	Total 1301.2 108 1356.1
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo	ec. 1994 AINFAL 181.5 13 224.1), Col. S L AND 137.3 12 161.4	RAIN! 126.0 11 114.0	de Yapa Y DAYS 104.3 9 84.5	90.0 10 83.5	1992) n. 1973 75.2 8 69.3	61.8 6 45.2	42.9 4	5	99.3	(Uni 130.1 9	: mm) : day) 181.9 12	Total 1301.2 108 1356.1
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo INP Saavedra	181.5 13 224.1), Col. S L AND 137.3 12 161.4 11	RAIN 126.0 11 114.0	de Yapa Y DAYS 104.3 9 84.5 7	90.0 10 83.5 8	75.2 8 69.3	61.8 6 45.2 4	42.9 4 48.2 4	5 71.9 5	99.3 7 106.5 7	(Uni 130.1 9 147.1 9	i nim) i: day) 181.9 12 200.4	Tota! 1301.2 108 1356.1 94 1274.2
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo INP Saavedra	181.5 13.224.1 13.200.8 11.301.7	137.3 12 161.4 11 166.1 10 239.4	RAIN 126.0 11 114.0 10 109.4 8 180.3	de Yapa Y DAYS 104.3 9 84.5 7 82.9 6	90.0 10 83.5 88.8 6	75.2 8 69.3 5 58.3 5	61.8 6 45.2 4 48.4 3 69.2	42.9 4 48.2 4 52.1 3 77.9	5 71.9 5 66.8	99,3 7 106.5 7 101.5	(Uni 130.1 9 147.1 9 122.6	: nim) 1: day) 181.9 12 200.4 12 176.5	Total 1301.2 108 1356.1 94 1274.2
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo INP Saavedra Kinawa 2	181.5 13 224.1 13 200.8	137.3 12 161.4 11 166.1	RAIN 126.0 11 114.0 10 109.4 8	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6	90.0 10 83.5 88.8 6	75.2 8 69.3 5	61.8 6 45.2 4 48.4 3	42.9 4 48.2 4 52.1 3	5 71.9 5 66.8 4	99,3 7 106.5 7 101.5 6	(Uni 130.1 9 147.1 9 122.6 7	i ajan) t: day) 181.9 12 200.4 12 176.5	Total 1301.2 108 1356.1 94 1274.2 77 1897.5
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Kinawa 2 col. San Juan de Yapacani Data : SC-Trompillo (Jan. 1943	181.5 13.224.1 13.200.8 11.301.7 17	137.3 12 161.4 11 166.1 10 239.4 15	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952	90.0 10 83.5 8 88.8 6 156.9 10	75.2 8 69.3 5 58.3 5 97.4 8	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9	99.3 7 106.5 7 101.5 6 134.0	(Uni 130.1 9 147.1 9 122.6 7 161.3	: n(m) t: day) 181.9 12 200.4 12 176.5 10 272.7	Total 1301.2 108 1356.1 94 1274.2 77
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R 806 SC - Trompillo INP Saavedra Kinawa 2 Col. San Juan de Yapasani	181.5 13.224.1 13.200.8 11.301.7 17	137.3 12 161.4 11 166.1 10 239.4 15	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952	90.0 10 83.5 8 88.8 6 156.9 10	75.2 8 69.3 5 58.3 5 97.4 8	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9	99.3 7 106.5 7 101.5 6 134.0	(Uni 130.1 9 147.1 9 122.6 7 161.3	: n(m) t: day) 181.9 12 200.4 12 176.5 10 272.7	Total 1301.2 108 1356.1 94 1274.2 77
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Kinawa 2 col. San Juan de Yapacani Data : SC-Trompillo (Jan. 1943	181.5 13 224.1 13 200.8 11 301.7 17 Dec. 1994)	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa , Col. Sa	RAIN 126.0 11 114.0 10 109.4 8 180.3 13 vedra (J	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 88.1952 de Yapad	90.0 10 83.5 88.8 6 156.9 10	75.2 8 69.3 5 58.3 5 97.4 8	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9 6	99,3 7 106.5 7 101.5 6 134.0 9	(Uni 130.1 9 147.1 9 122.6 7 161.3	: nim) 1: day) 181.9 12 200.4 12 176.5 10 272.7 15	Total 1301.2 108 1356.1 94 1274.2 77 1897.5
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Kinawa 2 Ol. San Juan de Yapasani Okinawa 2 (Jan. 1969 - D)	181.5 13 224.1 13 200.8 11 301.7 17 Dec. 1994)	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa , Col. Sa	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vedra (Juan e	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952 de Yapa	90.0 10 83.5 8 88.8 6 156.9 10 1-Dec. I	75.2 8 69.3 5 58.3 5 97.4 8	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9 6	99,3 7 106,5 7 101,5 6 134,0 9	(Uni 130.1 9 147.1 9 122.6 7 161.3 10	10(m) 11: day) 181.9 12 200.4 12 176.5 10 272.7 15	Total 1301.2 108 1356.1 94 1274.2 77
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 886 SC - Trompillo INP Saavedra Skinawa 2 Ol. San Juan de Yapacani Okinawa 2 (Jan. 1969 - 1) MONTHLY AVERAGE W	181.5 13.224.1 13.200.8 11.301.7 17 Dec. 1994) IND SPI	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa , Col. Sa	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vedra (Junuarian MD D1R NW-08	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952 de Yapa ECTIO NW-08 1	90.0 10 83.5 8 88.8 6 156.9 10 1-Dec. I	75.2 8 69.3 5 58.3 5 97.4 8	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9 6	99,3 7 106.5 7 101.5 6 134.0 9	(Uni 130.1 9 147.1 9 122.6 7 161.3 10	10mm) 1: day) 181.9 12 200.4 12 176.5 10 272.7 15	Total 1301.2 108 1356.1 94 1274.2 77 1897.5 125
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Skinawa 2 Col. San Juan de Yapacani Okinawa 2 (Jan. 1943 - Okinawa 2 (Jan. 1969 - D. MONTHLY AVERAGE W 896 SC - Trompillo	181.5 13 224.1 13 200.8 11 301.7 17 Dec. 19 20.1994) IND SPI	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa , Col. Sa EED AN NW-09 (RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vedra (Juan o	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 Br. 1952 de Yapa ECTIO NW-08 1 S-08	90.0 10 83.5 8 88.8 6 156.9 10 1- Dec. I cani (Jan N	75.2 8 69.3 5 58.3 5 97.4 8 994) 1960 -	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9 6	99,3 7 106.5 7 101.5 6 134.0 9	(Uni 130.1 9 147.1 9 122.6 7 161.3 10 t= 0.51	10mm) 1: day) 181.9 12 200.4 12 176.5 10 272.7 15	Total 1301.7 108 1356.1 94 1274.7 77 1897.5 125
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Okinawa 2 Ol. San Juan de Yapacani Okinawa 2 (Jan. 1943 - Okinawa 2 (Jan. 1969 - 1) MONTHLY AVERAGE W 806 SC - Trompillo INP Saavedra Oata : SC-Trompillo (Jan. 1943 - 1) Oata : SC-Trompillo (Jan. 1943 - 1)	181.5 13.224.1 13.200.8 11.301.7 17 Dec. 1994) IND SPI NV-09 1 NV-09 1 Dec. 191	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa Col. Sa EED AN NW-09 (N-07	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vedra (J in Juan NU-08) N-07	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 Br. 1952 de Yapa ECTIO NW-08 1 S-08	90.0 10 83.5 8 88.8 6 156.9 10 1- Dec. I cani (Jan N	75.2 8 69.3 5 58.3 5 97.4 8 994) 1960 -	61.8 6 45.2 4 48.4 3 69.2 6	42.9 4 48.2 4 52.1 3 77.9 5	5 71.9 5 66.8 4 83.9 6	99,3 7 106.5 7 101.5 6 134.0 9	(Uni 130.1 9 147.1 9 122.6 7 161.3 10 t=0.51 IW-10 I N-09	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Total 1301.7 108 1356.1 94 1274.7 77 1897.5 125 Average NW-10 N-09
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Skinawa 2 Col. San Juan de Yapacani Okinawa 2 (Jan. 1969 - D MONTHLY AVERAGE W. 806 SC - Trompillo INP Saavedra Oata : SC-Trompillo (Jan. 1943 - D MONTHLY AVERAGE W. MONTHLY AVERAGE EV.	181.5 131.224.1 13.200.8 11.301.7 17 Dec. 1994) IND SPI NV-09 1 NV-09 1	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa Col. Sa EED AN NW-09 (N-07	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vodra (J in Juan NV-08 NV-08 Vodra (F	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952 de Yapa ECTIO NW-08 1 S-08	90.0 10 83.5 8 88.8 6 156.9 10 9 - Dec. 1 N NW-09 N S-10	75.2 8 69.3 5 58.3 5 97.4 8 994) . 1960 -	61.8 6 45.2 4 48.4 3 69.2 6 IDec. 19	42.9 4 48.2 4 52.1 3 77.9 5 5 (Ur	5 71.9 5 66.8 4 83.9 6	99,3 7 106.5 7 101.5 6 134.0 9	(Unit 130.1 9 147.1 9 122.6 7 161.3 10 t = 0.51 1W-10 1 N-09	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Total 1301.7 108 1356.1 94 1274.2 77 1897.5 125 Average NW-10 N-09
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Okinawa 2 Ol. San Juan de Yapacani Okinawa 2 (Jan. 1943 - Okinawa 2 (Jan. 1969 - 1) MONTHLY AVERAGE W 806 SC - Trompillo INP Saavedra Oata : SC-Trompillo (Jan. 1943 - 1) Oata : SC-Trompillo (Jan. 1943 - 1)	181.5 131.224.1 13.200.8 11.301.7 17 Dec. 1994) IND SPI NV-09 1 NV-09 1	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa Col. Sa EED AN NW-09 (N-07	RAIN' 126.0 11 114.0 10 109.4 8 180.3 13 vedra (J in Juan N-07 vedra (F	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 Br. 1952 de Yapa ECTIO NW-08 1 S-08	90.0 10 83.5 8 88.8 6 156.9 10 1- Dec. I cani (Jan N	75.2 8 69.3 5 58.3 5 97.4 8 994) 1960 -	61.8 6 45.2 4 48.4 3 69.2 6 Dec. 19	42.9 4 48.2 4 52.1 3 77.9 5 (Urive-11 N-11	5 71.9 5 66.8 4 83.9 6 nit: kno NV-11 N S-11	99.3 7 106.5 7 101.5 6 134.0 9	(Unit 133.0	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Total 1301.7 108 1356.1 94 1274.2 77 1897.5 125 Average NW-10 N-09
Okinawa 2 (Apr. 1981 - E MONTHLY AVERAGE R. 806 SC - Trompillo INP Saavedra Skinawa 2 Col. San Juan de Yapacani Okinawa 2 (Jan. 1969 - D) MONTHLY AVERAGE W. 806 SC - Trompillo INP Saavedra Oata : SC-Trompillo (Jan. 1943 - D) MONTHLY AVERAGE W. MONTHLY AVERAGE EV. MONTHLY AVERAGE EV.	181.5 13 224.1 13 200.8 11 301.7 17 Dec. 19 ec. 1994) IND SPI IND SPI IND SPI NW-09 1 N-07 Dec. 19:	137.3 12 161.4 11 166.1 10 239.4 15 94), Saa , Col. Sa EED AN NW-09 (N-07 94), Saa ATION 108.2 77.4	RAINY 126.0 11 114.0 10 109.4 8 180.3 13 vedra (J in Juan NV-08) N-07 vedra (F	de Yapa 7 DAYS 104.3 9 84.5 7 82.9 6 122.7 10 en. 1952 de Yapa ECTIO NW-08 1 S-08 cb. 1975 90.7 94.1	90.0 10 83.5 8 88.8 6 156.9 10 1 - Dec. 1 Pani (Jan N NW-09 N S-10 74.0 75.4	75.2 8 69.3 5 58.3 5 97.4 8 994) 1960 -	61.8 6 45.2 4 48.4 3 69.2 6 Dec. 19	42.9 4 48.2 4 52.1 3 77.9 5 (Urive-11 N-11	5 71.9 5 66.8 4 83.9 6	99.3 7 106.5 7 101.5 6 134.0 9	(Unit 133.0	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Total 1301.7 108 1356.1 99 1274.2 77 1897.5 129 Average NW-10 N-09

TABLE A.5.1 ANNUAL AND MONTHLY RAINFALL OF 1992 AND 1983

Station							Month						Annu
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug	Sep.,	Oct.	Nov.	Dec	Tot
YEAR 1992													
5806 Santa Cruz - Trompillo	193.7	313.7	1145	413.5	183.8	132.6	47.1	100 2	234.0	7.1	149.4	295.6	2249
56NP La Belgica - Ingenio	343.1	334.6	137.5	391.6	206.7	82.3	28,4	90.4	210.1	123.2	128.2	476.7	2552
GINP Saavedra	500.2	340.1	182.3	319.2	191.0	62.2	24.7	124.0	238.5	68.2	137.6		2708
2NP Mineros (Unagro)	391.2	347.6	241.7	331.2	207.6	46.3	13.5	90.7	282.4	68.2	161.5		2546
Okinawa II	380.0	393.0	98.0	291.0	194.0	52.0	4.0	80.0	215.0	50.0	119.8	361.7	
55NP Portachuelo	360.7	445.0	128.0	371.0	232.2	10 1 .6	21.0	83.9	242.8	117.6	89.7	436.0	2629
S2NP San Isidro	463.3	432.4	201.6	511.8	282.7	141.4	53.1	146.7	244.3	118.5	184.5		3319
Col. San Jisan de Yapacani 💡	353.2	473.7	264.6	420.6	333.5	179.7	48.0	119.4	182.0	86.8	146.3		3162
YEAR 1983	:			!	•								
5806 Santa Cruz - Trompillo	395.3	94.9	270.3	166,7	228.3	78.1	144.0	24.6	10.5	174.1	242.3	116.5	1945.
6NP La Belgica - Ingenio	258.5	111.5	252.6	119.5	292.6	44.7	127.3	39.3	21.5	472.8	159.4	221.6	2121
INP Saavedra	302.3	150.1	179.3	61.9	242.8	39.9	70.6	19.1	41.4	92 5	272.2	258.7	1730.
32NP Mineros (Unagro)	196.1	242.3	292.2	82.9	292.0	60.0	47.3	25.0	7.5	85.0	221.0	110.0	
Jkinawa II	240.2	151.0	175.1	80.2	201.9	50.2	56.1	0.0	34.2	73.8	74.6	81.8	1219
5NP Portachoelo	263.5	116.1	243.7	106.6	241.2	89.8	124.6	10.3	13.9	163.2	139.2	208.6	1720
2NP San Isidro	316.3	269.2	316.9	156.6	407.7	67.4	202.3	19.2	21.2	128.4	199.1	135.8	6.7.7
'ol. San Juan de Yapacani	361.7	169.8	192.4	143.1	324.6	86.8	212.2	21.5	27.5	117.3	201.6		2009.
AVERAGE YEAR										•			
806 Santa Cruz - Trompillo	181.5	137.3	126.0	104.3	90.0	75.2	61.8	42.9	70.9	99.3	130.1	181.9	1301.
6NP La Belgica - Ingenio	219.1	161.9	124.3	113.1	88.8	80.2	61.4	44.9	84.5	119.1	126.0	197.2	1417.
INP Soavedra	224.1	161.4	114.0	84.5	83.5	69.3	45.2	48.2	71.9	106.5	147.1	200.4	1356.
2NP Mineros (Unagro)	272.4	196.8	144.2	92.1	116.3	76.5	34.3	59.3	80.6	97.1	178.3	202.7	1556.
Kinawa II	200.8	166.1	109.4	82.9	88.8	58.3	48.4	52.1	66.8	101.5	122.6	176.5	1274.
5NP Portachuelo	231.6	210.1	168.0	93.4	123.0	71.7	59.1	64.0	81.4	110.1	178.1	242.4	1639.
2NP San Isidro	311.5	233.6	199.4	130.2	175.9	96.9	83.1	75.3	108.9	135.8	189.3	287.3	2066.
ol. San Juan de Yapacani	301.7	239.4	180.3	122.7	156.9	97.4	69.2	77.9	83.9	134.0	161.3	272.7	1897.

TABLE A.5.2 ANNUAL MAXIMUM RAINFALL STATION: 5806 SANTA CRUZ - TROMPILLO

Year	1 Day Max.	~~~~	2 Day Max.		3 Day Max.		4 Day Max.		5 Day Max.	:	6 Day Max.		7 Day Max	
	(mm)	Date	(mm)	(Date)	(mm)	Daie	(mm)	Date	(num)	Date	(mm)	Date	(mm)	Date
. 1943	165.0	27/12	165.0	26/12	165.0	25/12	165.0	24/12	169.3	27/12	169.3	26/12	169.3	25/1
1944	87.0	25/10	150.0	25/10	153.8	25/10	154.5	24/[0]	154.5	23/10	154.5	22/10	164.9	20/10
1945	99.0	23/03	113.0	24/03	113.0	23/03	113.0	22/03	113.0	21/03	124.2	20/03	153.2	24/0
1946	114.7	10/05	177.5	10/05	180.3	10/05	181.8	09/05	181.8	09/05	181.8	09/05	181.8	09/0
- 1947	118.0	19/01	137.0	19/01	149.7	18/01	156.1	18/01	167.5	16/01	193.4	19/01	206.1	18/0
1948	93.3	28/07	186.3	27/07	187.3	27/07	198.3	25/07	223.3	24/07	224.3	24/07	224.3	24/0
1949	0.011	21/06	111.5	20/06	115.5	05/03	116.5	04/03	147.7	13/12	149.7	12/12	149.7	12/1
1950	92.8	03/03	137.7	02/03	137.9	01/03	140.9	28/02	149.9	27/02	149.9	27/02	149.9	27/0
1951	75.6	24/11	87.6	24/11	87.8	23/31	95.8	31/01	92.8	30/01	100.7	30/01	101.2	30/0
1952	107.5	05/09	130.4	05/09	130.4	05/09	130.4	05/09	130.4	05/09	130.4	05/09	130.4	05/0
1953	90.2	08/04	91.2	07/04	91.2	07/04	137.2	21/03	137.2	21/03	137.2	21/03	137.2	21/0
1954	107.5	04/01	110.0	08/03	120.0	28/04	213.0	06/03	216.4	05/03	216.4	05/03	217.4	03/03
1955	250.0	23/01	285.7	23/01	300.7	22/01	304.7	22/01	312.7	20/01	337.7	19/01	351.7	18/0
1956	163.5	06/01	163,6	05/01	205.5	06/01	208.7	06/01	211.2	06/01	212.2	06/01	213.7	Ò6/0
1957	110.0	07/12	134.0	07/12	137.0	07/12	138.1	07/12	138.1	07/12	142.7	03/12	145.7	03/1:
1958	100.0	18/02	102.1	24/12	113.7	24/12	113.7	24/12	117.7	22/12	140.I	20/12	151.7	20/1
1959	70.5	21/04	91.8	21/04	92.3	21/04	92.3	21/04	111.6	14/03	111.6	14/03	123,6	12/0.
1960	64.0	03/02	67.5	01/04	68.5	31/03	81.0	30/03	81.0	30/03	81.3	28/03	86.6	30/0
1961	91.0	28/02	141.0	27/02	146.0	27/02	159.6	27/02	164.8	24/02	170.4	25/02	183.4	24/0.
1962	62.3	18/12	62.3	18/12	87.3	18/12	87.3	18/12	110.3	18/12	111.4	18/12	119.9	18/1:
1963	68.2	19/11	75.2	18/11	102.8	17/11	112.3	16/11	116.1	12/02	117.1	12/02	127.3	10/0
1964	89.0	11/01	105.0	17/11	105.0	17/11	108.2	17/11	108.2	17/11	126.9	17/11	126.9	17/1
1965	65.0	09/03	79.1	19/10	92.1	18/10	96.1	18/10	96.1	18/10	96.1	18/10	122.7	25/09
1966	102.6	12/13	102 6	12/11	102.6	12/11	102.7	09/11	103.9	08/11	103.9	08/11	103.9	08/1
1967	95.0	15/08	101.7	19/07	101.7	19/07	135.6	04/01	135.6	04/01	204.8	04/01	204.8	04/03
1968	112.2	24/12	119.2	23/12	121.7	16/01	186.2	21/12	187.2	20/12	197.2	19/12	197.2	19/12
1969	77.1	09/02	82.2	29/11	82.3	29/11	82.3	29/11	127.2	26/11	127.3	26/11	127.3	26/11
1970	110.5	27/11	111.7	27/11	111.7	27/11	111.7	27/11	127.0	27/11	127.0	27/11	127.0	27/11
1971	91.0	22/12	91.0	22/12	91.0	22/12	91.0	22/12	120.5	10/12	121.5	10/12	121.8	09/12
1972	144.0	03/04	149.0	03/04	149.3	02/04	149.3	02/04	149.3	02/04	149.3	02/04	154.0	03/04
1973	57.0	14/02	78.0	13/02	83.7	12/02	85.7	11/02	85.7	1,1/02	85.7	11/02	88.7	08/02
1974	100.0	25/10	116.0	24/10	117.0	24/10	134.5	22/10	148.1	21/10	198.1	20/10	199.1	20/10
1975	161.0	30/11	161.1	29/11	161.1	29/11	161.1	29/11	188.0	30/11	188.4	30/11	226.1	24/11
1976	60.1	27/12	91.6	27/12	93.6	26/12	93.6	26/12	101.2	27/12	135.6	22/12	167.1	22/12
1977	355.2	03/01	389.8	03/01	398.7	02/01	403.1	02/01	407.2	01/01	407.2	01/01	407.2	01/01
1978	100.8	14/01	115.8	13/01	120.0	15/06	121.8	16/06	146.4	10/01	164.9	09/01	192.5	08/01
1979	102.0	14/01	145.0	13/01	161.1	12/01	182.8	11/01	182.8	11/01	187.6	11/01	187.6	11/01
1980	83.2	30/04	87.4	30/04	92.9	30/05	92.9	30/05	94.3	30/05	113.2	20/02	122.2	19/02
1981	156.6	24/04	157.8	24/04	157.8	24/04	160.0	04/10	169.0	24/04	169.0	24/04	169.0	24/04
1982	147.6	02/10	148.0	02/10	163.7	18/02	163.7.	18/02	238,5	02/10	240.1	02/10	240.6	02/10
1983	126.4	31/01	129.6	31/01	129.6	31/01	142.4	28/02	152.7	28/02	170.4	09/01	170.7	09/01
1984	75.8	05/01	99.8	14/12	129.0	13/12	155.6	11/12	196.2	11/12	208.8	10/12	218.4	10/12
1985	91.0	08/03	101.3	08/03	117.8	08/03	126.2	07/03	130.8	07/03	139.3	03/03	154.1	04/03
1986	95.0	23/11	118.5	20/02	151.9	16/12	158.2	15/12	173.0	14/12	193.1	16/02	198.6	15/02
1987	110.9	17/12	167.4	27/07	170.2	27/07	170.2	27/07	170.2	27/07	170.2	27/07	170.2	27/07
1988	77.8	06/01	106.1	26/12	130.0	27/12	173.1	26/12	173.1	25/12	173.1	24/12	173.1	23/12
1989	116.8	22/02	139.8	21/02	142.7	21/02	142.7	20/02	142.7	19/02	145.9	12/12	151.8	12/12
1990	74.6	28/12	92.0	27/12	98.7	20/11	104.2	20/11	104.2	19/11	123.5	31/05	138.1	30/05
1991	141.6	26/01	151.6	26/01	153.0	25/01	192.9	26/01	230.2	26/01	231.6	25/01	232.0	24/01
1992	109.2	29/12	136.6	29/12	191.6	29/12	196.9	28/12	197.1	27/12	198.4	26/12	198.4	25/12
1993	101.2	06/02	146.2	06/02	146.4	05/02	146.4	04/02	146.4	03/02	184.4	02/02	206.8	01/02
1994	95.0	30/09	115.8	30/09	135.1	28/12	135.1	28/12	173.1	26/12	176.1	25/12	176.1	25/12
MAX	355.2		389.8		398.7	·	403.1		407.2	1	407.2		407.2	

TABLE A.5.3 ANNUAL MAXIMUM RAINFALL STATION: 61NP SAAVEDRA (CIMCA)

Year	I Day Max.		2 Day Max		3 Day Max.		4 Day Max.		5 Day Max		6 Day Max.		7 Day Max.	
	(mm)	Date	(nm)	(Date)	(ເກກາ)	Date		Date	(nun)	Date	(nm)	Date	(mm)	Date
1943									<u></u>	7,000	(11117)	17010	(1111)	17016
1944							2		ł			•		
1945						j	ĺ					. 2	100	4
1946]			1 4		.		: -						
1947							[1.1		1 .		-1
1948		:										1 .		
1949	,							1						
1950				1		100		1	4.4.2			1.1	ţ	100
1951	116.8	16/12	119.3	16/12	119.3	16/12	119.3	16/12	121.8	16/12	124.3	16/12	126.8	16/12
1952	96.5	12/01	114.2	04/09	114.2	04/09	114.2	04/09	134.3	24/01	134.3	24/01	139.3	22/01
1953	144.7	03/11	144.7	63/11	144.7	03/11	14.7	03/11	165.0	03/11	165,0	03/11	165.0	03/11
1954	137.1	03/01	144.7	02/01	144.7	02/01	152.3	03/01	159.9	02/01	159.9	02/01	159.9	02/01
1955	162.5	21/01	203.1	21/01	253.8	21/01	289.3	20/01	335.0	19/01	357.8	18/01	357.8	18/01
1956	165.0	11/09	208.1	90/01	208.1	10/09	208.1	10/09	208.1	10/09	208.1	10/09	208.1	10/09
1957.	104.1	15/02	109.1	17/07	116.7	16/07	116.7	16/07	116.7	16/07	116,7	16/07	119.2	09/02
1958	149.8	06/12	152.3	05/12	170.1	06/12	185.3	06/12	187.8	05/12	203.0	06/12	238.5	30/11
1959	76.1	23/01	78.6	23/01	78.6	23/01	104.0	20/01	106.5	20/01	106.5	20/01	106.5	3 .
1960	91.4	09/04	99.0	08/04	99.0	08/04	99.0	08/04	99.0	08/04	99.0	08/04	99.0	20/01
1961	76.1	21/12	81.1	21/12	93.9	08/11	103.8	21/12	106.5	22/02	124.2	21/02		08/04
1962	101.5	08/01	106.5	07/01	109.0	07/01	109.0	07/01	114.1	06/03	114.1	06/03	131.8	20/02
1963	91.0	11/02	113.0	11/02	190.0	11/02	190.0	11/02	197.5	09/02	197.5	09/02	136.9 197.5	02/01
1964	109.2	03/12	109.2	03/12	109.5	08/02	122.2	08/02	122.2	08/02	124.5	-		09/02
1965	78.9	21/02	78.9	21/02	111.8	28/01	111.8	28/01	160.0	26/01	124.3 160.0	28/11	124.5	28/11
1966	99.1	19/12	101.6	18/12	101.6	18/12	101.6	18/12	152.4	15/12	152.4	26/01	167.6	24/01
1967	119.4	21/01	127.0	03/06	144.8	03/06	170.2	18/01	170.2			15/12	152.4	15/12
1968	73.7	17/10	81.3	17/10	81.3	22/12	114.3	21/12	114.3	18/01	170.2	18/01	170.2	18/01
1969	55.8	30/11	81.2	29/11	81.2	29/11	81.2			21/12	127.0	19/12	127.0	19/12
1970	38.2	21/12	61.0	24/10	61.0	24/10	63.5	29/11	81.2	29/11	81.2	29/11	81.2	29/11
1971	45.9	16/04	53.4	06/09	53.4	06/09	53.4		68.6	24/10	68.6	24/10	68.6	24/10
1972	72.0	03/10	95.5	03/10	101.7	16/11	106.9	06/09	53.4	06/09	56.1	16/04	56.1	16/04
1973	89.0	29/12	99.0	23/11	114.0	27/12	159.5	15/11	114.4	14/11	119.6	13/11	121.5	14/11
1974	93.0	24/10	140.0	24/10	151.0	24/10	159.0	26/12	159.5	26/12	159.5	26/12	161.8	23/12
1975	62.2	20/09	62.2	20/09	62.2	20/09	82.8	24/10	160.3	24/10	174.8	24/10	174.8	24/10
1976	108.0	23/12	129.0	23/12	144.1	22/12	144.6		82.8	20/09	84.4	20/09	109.2	23/11
1977	102.9	24.01	109.9	18/01	120.0	02/01	138.5	01/01	144.8 146.0	20/12	146.0	23/12	161.1	22/12
1978	99.5	22/11	126.5	26/11	126.5	26/11	126.5	26/11	126.5	01/01	199.6	19/01	215.7	18/01
1979	153.4	15/02	186.5	15/02	195.7	14/02	202.6	13/02	208.4	26/11	196.0 1 208.4	21/11	226.0	22/11
1980	102.6	30/04	135.2	02/04	143.2	02/01	160.5	02/04	166.1	12/02 01/04		12/02	217.9	10/02
1981	87.6	06/12	129.6	05/10	175.0	04/10	187.7	04/10	187.7		176.8	31/03	176.8	31/03
1982	143.7	14/12	146.4	14/12	183.0	12/12	207.5	11/12	216.0	04/10 10/12	187.7 289.0	04/10	187.7 290.8	04/10
1983	91.3	21/11	113.7	13/01	124.5	13/01	129.8	12/01	157.9	10/01		10/06	,	10/06
1984	66.5	23/11	83.3	14/02	98.0	13/12	116.5	10/12	135.8	11/12	168.7	10/01	179.5	09/01
1985	152.5	30/06	155.5	30/06	158.1	30/06	158.1	30/06	155.8	27/07	161.3	10/12	166.8	09/12
1986	103.7	11/08	103.7	11/08	103.7	11/08	123.3	11/08	137.5	16/05		26/07	175.6	26/07
1987	152.4	05/06	153.9	04/06	178.2	30/11	178.2	30/11	185.7	30/11		15/05	140.9 199.5	15/05
1988	76.2	26/11	76.2	25/11	87.9	26/12	101.3	03/01	105.6	٠.		27/11		27/11
1989	130.2	24/08	145.0	24/08	158.0	24/08	163.9	24/08	236.8	03/01 20/08		03/01	109.8	03/01
1990	92.0	20/11	136.9	01/06	160.4	31/05	179.0	30/05	236.8 181.1			20/08	264.6	20/08
1991	195.8	11/01	250.7	11/01	258.5	11/01	258.5	•		30/05		30/05	197.4	30/05
1992	220.4	14/01	282.3	13/01	360.3	12/01		10/01	258.5	09/01		25/01	264.9	07/01
1993	142.6	06/02	195.8	06/02	197.3	05/02	400.1	12/01	421.3	11/01		10/01	453.6	09/01
1994	115.2	20/06	222.8	19/06	225.4			04/02	197.7	03/02		02/02	218.5	01/02
MX.	220.4	10.00	282.3	17/00		19/06	225.6	19/06	225.6	19/06		19/06	226.6	19/06
717	44V.Y		454.3		360.3		400.1		421.3		453.6		453.6	

TABLE A.5.4 ANNUAL MAXIMUM RAINFALL STATION: OKINAWA II (CETABOL - JICA)

/ear	1 Day Max.		2 Day Max		3 Day Max.		4 Day Max		5 Day Max		6 Day Max.	:	7 Day Max.	
	(nun)	Date	(mni)	(Date)	-	Date		Dote		Date	(mm)	Date		Date
1943			· · · · · · · · · · · · · · · · · · ·											
1944]			1]	1						
1945											1	:	1	
1946]						1		,			:		
1947]	:	ì]		1	
1948						1								
1949											ļ			
1950	1	ž.		•	·	\$								
1951					:	Ì					ţ			
1952											Ì			
1953		1	1		i						<u> </u>			
1954		1									ŀ			
1955		:		•	1			÷			ţ			
1956		1		,						-				
1957		1		1				-						
1958		·	İ	:			ł				ł			
1959	7							:						
1960			[100			1	: "	ļ		•			
1961					. *		į	•	}			•		
1962		٠					Ì		ł				ļ	
1963						•							1	
1964						:	٠,		ļ					
1965	1.0		*.		1	100		٠	ì		•	i i	ļ	
1966											ì			
1967			10.0		1	100					\$			
1968					l								167.3	5641
1969		30/11	101.4	30/11	106.0	29/11	106.0	29/11	106.0	29/11	107.3	26/11	E .	26/11
1970		26/01	67.9	26/01	76.0	28/12		28/12	120.0	28/12	125.9	28/12		28/13
1971		09/02	67.0	09/02	75.0	09/02	86.0	09/02	89.0	09/02	102.0	09/02	119.0	09/0
1972				12.02	1	2442	120.0	24412	128.0	24/12	1740	24/12	174.0	24/1
1973		24/12	65.0	13/02 24/10		24/12 24/10		24/12 24/10		24/12	174.0 172.0	24/10		24/19
1974		24/10 25/08		29/01	132.0 95.0	29/01		29/01	111.0	29/01	128.0	29/01	1	29/0
1975 1976		24/12	177.8	23/12	182.4	23/12		23/12	182.4	23/12	196.4	23/12		23/1
1977		05/01	129.6	04/01	171.6	03/01		02/01	188.0	02/01	188.0	02/01	188.0	02/0
1978		27/11	125.0	17/06		17/06		17/06	134.0	17/06	135.0	17/06	1	09/0
1979		20/04	124.0	28/01	153.0	14/02		13/02	*	12/02	•	11/02		10/0
1980		29/01		28/04	1	28/04		28/04	T .	28/04	149.6	24/04	9	24/0
1981	2 2	08/03	225.0	08/03	235.6	07/03		07/03	235.6	07/03	235.6	07/03	306.0	08/0
1982		12/12		19/12	1	19/12		12/12		12/12	•	10/06		10/0
1983		16/02		16/02		16/02		16/02		16/02		16/02		16/0
1984		14/02	•	14/02		13/02		13/02		11/02	1	10/02	•	09/0
1985		31/07		31/07		31/07		31/07		28/07		27/07	3	27/0
1986		20/05		20/05		18/05	•	17/05		16/05		16/05		16/0
1987		05/08		24/01		23/01	1	23/01		23/01	153.4	23/01	I .	23/0
1988		06/01	1	06/01		06/01		06/01		13/02		12/02		12/0
1989		21/08		21/08		21/08		21/08		21/08		21/08		21/0
1990		17/01		16/01		04/05	The second second	04/05		04/05		04/05	9	04/0
1991		07/09		13/02	•	12/02		11/02		11/02		09/02	,	08/0
1992		15/01	•	14/01		13/01		12/01		11/01		11/01		11/0
1993		07/02		06/02	1	06/02		06/02		03/02		02/02	149.5	02/0
1994	1	20/06	1	20/06		19/06	1	19/06		19/06	i	19/00		19/0
MAX	195.0		226.0		295.0		297.0		374.0		374.0		374.0	

TABLE A.5.5 ANNUAL MAXIMUM RAINFALL STATION: COLONIA SAN JUAN DE YAPACANI (JICA/CAISY)

Year	I Day Max.	CHECK	2 Day Max.	and the second of the second	3 Day Max.	Law market	4 Day Max.		5 Day Max.		6 Day Max.		7 Day May	·
	(inm)	Date	(mm)	(Date)	(mm)	Dote		Date	(mm)	Date		Date		Date
1943				·							·			
1944	ļ	:				:								1
1945	ł													
1946	}					i.					·	:		
1947														
1948						-		:						
1949								:		2				
1950						1		1						
1951						:				:				
1952				1						. [
1953		: 1						:	İ					
1954					•			· i						
1955						:				.				
1956				:						7				1.
1957														· · · i
1958												1		
. 1959				:				:				1		•
1960	277.5	30/05	426.0	29/05	426.0	29/05	426.0	29/05	426.0	29/05	426.0	29/05	426.0	29/05
1961	145.2	05/03	149.6	04/03	191.8	18/02	225.2	18/02	294.6	18/02	356.4	18/02	374.4	18/02
1962	94.4	10/03	101.2	23/02	106.5	08/03	134.4	07/03	162.9	06/03	162.9	06/03	168.3	04/03
1963	191.0	11/02	193.4	10/02	221.3	11/02	227.4	11/02	229.8	10/02	235.5	09/02	235.5	09/02
1964	111.2	01/10	125.7	16/11	136.7	15/11	149.2	17/04	162.3	27/09	189.6	26/09	189.6	26/09
1965	110.0	30/12	155.0	20/10	201.0	19/10	205.5	18/10	209.0	18/10	214:0	18/10	214.0	18/10
1966	97.0	31/01	156.5	18/12	156.5	18/12	238.5	16/12	238.5	16/12	238.5	-16/12	253.5	13/12
1967	216.0	03/06	239.0	03/06	248.0	03/06	268.5	03/06	274.7	02/06	275.2	02/06	275.2	02/06
1968	113.0	16/12	126.0	16/12	163.5	19/01	208.5	18/01	222.0	-17/01	230.5	16/01	289.5	:15/01
1969	132.0	02/01	164.0	18/01	184.5	18/01	188.0	18/01	190.0	17/01	191.5	16/01	229.5	15/01
1970	97.0	11/11	111.0	01/03	111.5	28/02	128.0	27/02	129.0	26/02	169.0	31/12	172.0	31/12
1971	98.5	05/01	101.5	05/01	109.3	05/01	154.0	02/01	157.0	02/01	169.0	01/01	172.0	01/01
1972	106,0	16/06	165.5	25/08	216.5	25/08	250.5	25/08	250.5	25/08	256.5	25/08	258.5	25/08
1973	112.0	29/12	180.0	25/04	181.5	24/04	181.5	24/04	181.5	24/01	196.5	24/01	208.4	24/04
1974	94.0	25/10	116.0	24/10	118.8	24/10	163.9	24/10	166.6	24/10	170.1	24/10	170.1	24/10
1975	109.0	30/03	111.6	18/03	111.6	18/03	112.2	29/03	124 0	29/03	141.1	18/03	141.3	18/03
1976	107.0	18/10	113.7	03/03	158.5	02/03	163.0	01/03	163.2	01/03	163.2	01/03	163.2	01/03
1977	95.0	31/12	166.9	04/01	176.9	03/01	228.9	03/01	245.9	01/01	246.9	01/01	250.9	01/01
1978	146.6	05/12	152.6	04/12	189.8	03/12	193.0	29/12	193.0	29/12	206.0	29/12	206.0	29/12
1979	174.3	16/02	186.3	15/02	234.9	14/02	237.1	14/02	237.3	13/02	237.3	13/02	237.3	13/02
1980	253.4	23/11	255.1	22/11	299.9	21/11	299.9	21/11	312.4	01/04	312.4	01/04	315.4	30/03
1981	275.0	25/05	285.8	25/05	285.9	24/05	285.9	24/05	285.9	24/05	285.9	24/05	451.9	20/05
1982	191.3	02/10	193.3	02/10	195.1	13/06	219.6	12/06	261.1	11/06	305.6	10/06	305.7	10/06
1983	109.5	11/05	154.8	10/05	189.1	10/05	206.1	10/05	216.6	10/05	218.6	09/05	220.2	08/05
1984	132.0	01/12	152.0	01/12	152.0	01/12	163.6	11/12	180.4	10/12	186.4	10/12	191.4	09/12
1985	147.1	31/07	154.5	30/07	161.5	30/12	161.5	30/12	200.6	27/07	207.6	27/07	207.6	27/07
1986	152.2	16/12	187.2	15/12	242.1	16/12	246.5	14/12	281.6	14/12	281.6	14/12	282.3	12/12
1987	205.9	28/07	217.4	28/07	217.4	28/07	217.4	28/07	217.4	28/07	217.4	28/07	217.4	28/07
1988		27/12	174.5	27/12	181.7	26/12	190.7	26/12	190.7	26/12	194.4	24/12	203.1	23/12
1989		08/01	199.6	07/01	201.9	07/01	201.9	07/01	203.0	05/01	216.7	04/01	230.4	02/01
1990	151.1	14/01	151.1	14/01	162.1	14/01	168.1	14/01	242.2	14/01	271.5	30/05	281.9	31/05
1991	183.9	12/01	213.3	12/01	223.1	11/01	227.2	10/01	230.4	10/01	235.0	08/01	244.9	07/01
1992	196.5	15/01	232.3	14/01	256.9	13/01	292.9	12/01	293.3	11/01	293.3	11/01	303.1	28/12
1993		07/02	174.4	06/02	175.4	06/02	175.4	06/02	175.4	06/02	182.2	03/02	182.5	02/02
1994	94.2	26/01	105.0	04/12	105.5	04/12	112.7	04/12	119.6	25/01	121.7	25/01	135.0	25/01
IΛX	277.5		426.0		426.0	I	426.0	:	426.0	T	426.0	1	451.9	

TABLE A.5.6 SUMMARY OF PROBABLE MAXIMUM RAINFALL BY GUMBEL METHOD

1

Return Period			Probable N	1aximum Rair	ıfall		
(Year)	1 Day	2 Day	3 Day	4 Day	5 Day	6 Day	7 Day
1. 5806 SANTA CR					:		
200	292.7	328.2	342.0	357.4	373.1	383.9	388.9
100	265.6	298.7	311.7	326.3	341.2	351,7	357.0
50	238.5	269.1	281.3	295.1	309.3	319.5	325.0
40	229.7	259.5	271.5	285.0	299.0	309.0	314.7
30	218.3	247.2	258.7	272.0	285.6	295.6	301.3
20	202.2	229.6	240.7	253.4	266.6	276.4	282.3
10	174.2	199.1	209.4	221.3	233.7	243.2	249.3
5	145.0	167.3	176.7	187.7	199.4	208.5	214.9
2	100.9	119.3	127.4	137.1	147.5	156.2	162.9
2. 61NP SAAVEDR	· A						
200	256.9	321.1	369.7	402.1	417.5	452.9	458.8
100	235.1	292.7	336.0	364.7	379.8	411.5	417.3
50	213.2	264.2	302.3	327.2	341.9	369.9	375.0
ծը 40	206.1	25 5 .0	291.3	315.1	329.6	356.4	362.
	197.0	243.1	277.2	299.4	313.8	339.0	344.1
30		226,2	257.2	277.2	291.4	314.4	319.9
20	184.0	196.8	222.4	238.6	252.3	271.5	276.
10	161.4	166.2	186.1	198.3	211.6	226.8	232.
5				137.4	150.2	159.2	164.4
2	102.4	120.0	131.3	131,4	130.2	133.2	
3. OKINAWA II	200				•		
200	266.3	296.2	332.6	345.7	391.3	391.4	416.9
100	243.2	271.2	304.3	316.6	357.3	358.9	382.0
50	220.1	246.1	275.9	287.4	323.2	326.2	346.9
40	212.6	238.0	266.7	278.0	312.2	315.6	335.
30	202.9	227.5	254.8	265.8	297.9	302.0	320.9
20	189.2	212.6	237.9	248.5	277.7	282.6	300.
10	165,3	186.7	208.6	218.5	242.5	248.9	263.5
	140.4	159,7	178.1	187.1	205.9	213.7	226.
5 2	102.8	119.0	131.9	139.8	150.5	160.7	169.
4. COL. SAN JUAN	N DE YAPAC	ANI					
200	352.4	. 417.6	440.7	445.8	459.2	471.1	522
100	322.4	381.7	404.0	410.7	423.8	435.4	481
50	292.2	345.7	367.1	375.4	388.4	399.6	439.
40	282.4	334.1	355.2	364.0	376.9	388.0	425
30	269.8	319.0	339.8	349.3	362.1	373.1	408
20	251.9	297.7	317.9	328.4	341.0	351.8	383
10	220.8	260.6	279.9	292.0	304.4	314.9	340
5	188.3	221.9	240.3	254.1	266.3	276.4	295
2	139.3	163.5	180.5	196.9	208.7	218.2	228

TABLE A.5.7 RETURN PERIODS OF ANNUAL MAXIMUM RAINFALLS OF 1992 AND 1983

And the second of the second o

Control of the State

Station	1		Annual N	1aximum Ra	infall		
	1 Day	2 Day	3 Day	4 Day	5 Day	6 Day	7 Da
1. YEAR 1992							13 12 1
		1 .	/. * * *		1 -		
1-1 Annual Maximum Rainfall			*		:	÷ .	
		+ .*.	1			(Unit : mm
5806 Santa Cruz - Trompillo	109.2	136.6	191.6	196.9	197.1	198.4	198.4
61NP Saavedra	220.4	282.3	360.3	400.1	421.3	453.6	453.6
Okinawa H	194.0	226.0	295.0	297.0	374.0	374.0	374.0
Col. San Juan de Yapacani 🐇 💮	196.5	232.3	256.9	292.9	293.3	293.3	303.1
÷ .	\		:	11.			
1-2 Return Period			1 1	÷ :			
						J)	Jnit : year)
5806 Santa Cruz - Trompillo	2.6	3.1	7.2	6.3	4.9	4.4	14,1
61NP Saavedra	64.6	81.5	170.0	193.8	210.7	200.0	186.2
Okinawa II	23.3	29.3	83.3	67,4	150.0	147.8	89.1
Col. San Juan de Yapacani	6.2	6.5	7.0	10.0	8.5	7.1	5.9
			1 P		i		
2. YEAR 1983						-	
4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1					* .	
2-1 Annual Maximum Rainfall						12.1 12.1	
5004 B . O . B . W						•	Unit : mm)
5806 Santa Cruz - Trompillo	126.4	129.6	129.6	142.4	152.7	170.4	170.7
61NP Saavedra	91.3	113.7	124.5	129.8	157.9	168.7	179.5
Okinawa II	97.2	97.2	103.6	122.6	128.6	130.4	140.0
Col. San Juan de Yapacani	109.5	154.8	189.1	206.1	216.6	218.6	220.2
2-2 Return Period	1		i en		; ·.	. -	:
·				and the state of		: (L	Jnit : year)
5806 Santa Cruz - Trompillo	3.8	2.7	2.1	2.3	2.3	2.8	2.5
61NP Saavedra	1.0	1.6	1.6	1.6	2.4	2.4	2.7
Okinawa II	1.6	1.6	< 1.0	< 1.0	< 1.0	^{-†} < 1.0	< 1.0
Col. San Juan de Yapacani 🖟 💎	< 1.0	1.6	2.4	2.6	2.4	2.1	1.6
	1 .	•	1 1	**11			

-y - X**‡**

TABLE A.5.8 ANNUAL MAXIMUM HOURLY RAINFALL OF SAAVEDRA

STATION: 61NP SAAVEDRA

STATION: 61	INF SAATE	·				<u></u>		<u>(L</u>	Init: mm)
Year					eration (hr)		()	9.0	12.0
	0.5	1.0	2.0	3.0	4.0	5.0 85.1	6.0 91.4	116.8	116.8
1951		72.4	73.7	73.7	73.7	66.0	73.2	87.1	102.4
1952		43.2	57.2	59.7	59.7		133,4	144.8	144.8
1953		55.9	83.8	106.7	119.4	125.7	124.5	135.9	137.2
1954		61.0	76.2	96.5	113.0	116.8	108.0	114.8	118.1
1955		78.7	90.2	100.3	105,4	106.7	114.3	114.3	114.3
1956		50.8	99.1	100.3	101.6	114.3 135.9	142.2	144.8	144.8
1957		73.7	73.7	73.7	73.7	120.7	142.2	133.4	147.3
1958		73.7	95.3	105.4	106.7		61.0	67.3	73.7
1959		30.5	34.3	44.5	55.9	58.4 67.3	81.3	90.2	91.4
1960		35.6	43.2	59.7	66.0		62.2	66.0	74.9
1961		48.3	50.8	53.3	54.6	58.4	99.1	115.1	118.1
1962		35.6	47.0	68.6	80.0	89.7		94.0	94.0
1963		33.0	49.5	59.7	64.8	73.7	81.3		
1964		63.5	71.1	83.8	90.2	94.0	96.5	104.1	104.1 83.8
1965		55.9	58.4	62.2	81.3	83.8	83.8	83.8	95.3
1966		50.8	50.8	58.4	61.0	63.5	71.1	82.6	
1967		58.4	85.1	90.2	100.3	104.1	106.7	109.2	111.8
1968		50.8	53.3	53.3	55.9	58.4	66.0	72.4	72.4 57.2
1969		44,5	45.7	49.5	50.8	50.8	50.8	57.2	
1970		29.2	33.0	34.3	34.3	34.3	34.3	34.3	34.3
1971		25.4	34.3	35.6	38.1	39.4	41.9	43.2	45.7
1972		33.0	35.6	48.3	58.4	62.2	63.5	66.0	66.0
1973		37.6	45.7	53.0	62.0	66.0	67.2	71.9	86.1
1974	16.3	32.5	44.5	53.5	60.4	74.4	82.9	91.2	91.7
1975		42.3	61.2	63.0	63.0	63.0	63.0	69.7	69.7
1976	{1,1 ·	22.2	42.2	45.8	49.3	51.2	54.4	57.6	62.6
1977		13.5	20.3	25.0	29.6	30.9	36.1	52.1	64.0
1978	5	28.8	48.5	54.8	61.9	69.9	73.9	79.8	84.2
1979	: "	46.3	63.0	87.0	113.0	145.0	160.5	176.0	179.7
1980		56.8	80.8	90.8	93.0	93.7	95.4	96.1	138.8
1981	•	42.9	67.0	87.0	87.3	87.3	91.0	97.0	99.6
1982		67.4	129.1	138.1	139.1	139.3	140.2	141.6	141.6
1983	**	40.0	55.2	69.2	74.7	75.2	79.8	92.5	99.9
1984		36.7	40.5	45.3	47.3	47.3	47.3	67.3	69.1
1985	•	20.0	31.0	50.0	51.0	58.5	58.5	58.5	58.5
1986		40.2	51.5	58,7	61.7	64.7	64.7	65.2	69.8
1987	5.0	37.4	67.4	82.4	85.9	106.4	112.2	131.2	134.9
1988	20.0	40.0	68.0	70.0	70.3	70.5	73.0	76.0	76.0
1989		57.0	82.2	117.5	127.3	130.2	133.2	140.2	145.0
1990	37.0	73.1	86.0	98.4	113.6	117.6	121.9	125.9	130.0
1991	26.0	51.7	83.0	105.0	126.0	137.0	153.0	178.3	199.8
1992	30.0	60.0	102.5	124.5	127.5	150.2	177.2	208.4	229.0
1993	25,0	50.0	84.0	109.0	124.0	134.0	138.1	169.0	185.0
1994	40.0	58.9	68.9	83.9	88.9	93.9	98.9	106.4	106.4

ANNUAL MAXIMUM HOURLY RAINFALL OF SANTA CRUZ **TABLE A.5.9** - OFICINA

ir				Div	ration (hr)				nit: mm)
	0.5	1.0	2.0	3.0	4.0	5.0	6.0	9.0	12.0
1951				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				:	
1952	•								
1953					1.5		•		
1954			***						
1955			* 4	*	+ 1 +	- ' .		•	
1956									
1957				1		4		:	
1958			* -			1		9	
1959			· ;						
1960				* 5	1.	•	100		
1961									
1962									
1963								: .	
1964	•				* .	*		*	
1965						111			
1966					*	-			
1967			•			٠			
1968					,	÷ .	1		
1969		: '					100		
1970									
1971				•		*			
1972							•		•
1973		38.5	62.5	69.9	75.5	78.3	80.4	84.6	84.6
1974		54.4	57.3	61.7	64.1	64.8	65.2	83.6	88,1
1975	29.0	57.7	78.1	91,8	112.2	127.8	134.5	142.6	152,8
1976	19.5	39.0	58.0	68.0	77.8	84.5	87.0	88.5	88.5
1977	35.0	70.0	130.0	191.5	239.9	253.7	270.5	322.8	347.5
1978	23.0	45.9	60.1	80.1	99.8	100.8	101.2	107.2	111.1
1979	12.7	25.4	32,1	41.6	53.2	64.6	79.2	97.0	97.1
1980	29,8	59.6	116.6	121.5	121.5	124.3	127.9	139.3	140.7
1981	30.1	60.2	95.4	109.1	1220	130.6	143,5	155.6	158.1
1982		68.9	87.8	89.0	89.0	89.0	89.9	114.7	116.1
1983	27.3	54.5	73.9	85.1	96.1	100.4	101.4	107.6	122.0
1984	20.2	40.4	60.4	75.3	81.6	82.7	82.7	82.7	95.1
1985	47.0	47.4	48.7	51.6	54.6	64.9	72.9	78.2	82.2
1986	24.5	49.0	73.5	88.2	108.1	118.1	128.1	151. 6	152.3
1987	34.8	69.6	106.8	117.1	119.6	120.0	126.1	126.1	126.1
1988	20.0	40.0	60.0	72.2	99.4	106.3	107.3	107.6	108.3
1989		69,4	87.0	98.0	127.5	134.8	142.8	143.7	143.7
1990	17.8	35.5	56.5	79.4	93.4	94.4	106.4	108.0	108.0
1991	33.9	67.8	99.6	107.8	111.9	112.4	114.9	116.3	116.5
1992	31.0	62.0	77.0	97.0	122.1	142.1	157.1	176.3	183.0
1993	18.8	37.5	67.5	97.5	107.5	108.5	110.5	127.8	157.9
1994						1	* :	•	+ 1

TABLE A.5.10 ANNUAL MAXIMUM HOURLY RAINFALL OF OKINAWA II

STATION: OKINAWAII - CETABOL JICA

Year				Ď	ration (hr)				Unit: mm)
	0,5	1.0	2.0	3.0	4.0	5.0	6.0	9.0	12.0
1951			*		 	·	- 1-1,112, 12, 12, 12, 1		
1952									
1953									
1954	100								
1955		* .							
1956	V 1					*			:
1957									
1958	v *	2							•
1959					4, 1		1	1	
1960									
1961									
1962		·				·			
1963									
1964									
1965									
1966									
1967									
1968									
1969			-						
1970		:							
1971			*						
1972									
973		1 t	,						:
1974	4.0	100							
1975									
1976	+ 1 *		4			1. 1	11.		
1977							1	. :	•
1978 1979	:								
1980									
1981						•	.*		
1982									
1983								•	
1984									
1985									
1986	37.5	75.0	112.5	150.0	155.5	161.0	161.0	161.0	161.3
1987	51.5	15.0		100.0					
1988	26.5	53.0	53.0	53.0	53.0	53.0	53.0	53.0	55.0
1989	20.0	40.0	44.5	49.0	53.0	57.0	59.0	61.0	61.5
1990	13.0	24.0	35.0	46.0	57.0	68.0	79.0	90.0	101.0
1991	20.0	40.0	49.5	59.0	64.0	70.5	80.0	80.0	80.0
1992	34.8	46.8	58.8	61.8	72.0	82,8	91.8	100.8	102.0
1993	9.0	18.0	20.5	23.0	25.5	28.0	30.5	33.0	35,5
1994	18.0	29.0	37.5	50.0	55.0	60.0	65.0	70.6	75.6

TABLE A.5.11 PROBABLE MAXIMUM RAINFALL WITHIN 24 HOURS BY GUMBEL METHOD

STATION:

SAAVEDRA

(Unit: mm)

Duration_			R	eturn Perioc	(Year)			
(br)	- 2	5	10	20	30	40	50	100
0.5	26.0	37.9	45.9	53,5	57.9	61.0	63.3	70.7
1.0	44.2	58.6	68.1	77.3	82.5	86.2	89.1	98.0
2.0	59.1	79.8	93.5	106.7	114.3	119.6	123.8	136.6
3.0	69.1	93.0	108.9	124.1	132.9	139.0	143.8	158.6
4.0	74.9	100.9	118.1	134.6	144.1	150.8	156.0	172,0
5.0	81.3	111.0	130.7	149.6	160.4	168.1	174.0	192.3
6.0	85.8	118.0	139.2	159.6	171.3	179.6	186.0	205.8
9.0	94.2	130.0	153.7	176.4	189.5	198.7	205.8	227.8
12.0	99.2	137.5	155.2	177.9	191.0	200,2	207.3	229.3
24.0	102.4	137.9	161.4	184.0	197.0	206.1	213.2	235.1

STATION:

SANTA CRUZ - OFICINA

(Unit: mm)

Duration			R	eturn Perioc	i (Year)			
(hr)	2	5	10	20	30	40	50	100
0.5	26.5	36.5	43.1	49.4	53.0	55.6	57.6	63.7
1.0	49.8	62.3	70.7	78.6	83.2	86.5	89.0	96.7
2.0	71.7	94.0	108.8	122.9	131.1	136.8	141.3	155.0
3.0	85.0	113.9	133.0	151.3	161.9	169.3	175.0	192.8
4.0	97.3	133,0	156.7	179.4	192,5	201.7	208.8	230.9
5.0	97.5	140.7	165.7	189.7	203.5	213.2	220.8	244.0
6.0	97.7	140.9	166.1	201.9	216.8	227.3	235.4	260.4
9.0	98.2	141.6	167.5	202.0	217.1	227.7	235.9	261.3
12.0	98.7	142.3	168.8	202.0	217.3	228.1	236.4	262.1
24.0	100.9	145.0	174.2	202.2	218.3	229.7	238.5	265.6

TABLE A.5.12 DESIGN RAINFALLS FOR SAAVEDRA AND SANTA CRUZ

			Pahum E	eriod (1	'earl	(Un	t.mm)
Time (2		terum r	20	30	50	100
L Day Tola	11.3	19.9	25.6	31.0	34.1	38.1	43.3
1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
2	0.0	0.1	0.1	0.1	0.1	0.1	0.2
3	0.1	0.1	0.1	0.1	0.3	0.2	0.2
4	0.1	0.1	Q.1	0.2	02	0.2	0.2
5	0.1	0.1	0.2	0.2	0.2	0.3	0.3
ε	0.1	0.2	0.2	0.3	0.3	0.4	0.4
7	0.1	0.3	0.3	0.4	0.4	0.5	0.5
8	0.2	0.4	0.5	0.6	0.6	0.7	0.8
9	0.3	0.5	0.7	0.9	0.9	1.0	1.2
. 10	0.5	0.9	1.2	1.5	1.6	1.8	2.0
11	1.1	1.9	25	3.0	3.3	3.7	4.2
12	4.7	8.2	10.6	12.8	14.1	15.7	17.9
13	20	3.5	4.5	5.4	6.0	6.7	7.6 2.7
14	0.7	1.2	1.6	1.9	2.1	2.4	1.5
15	0.4	0.7	0.9	5.1	1.2	1.3 0.8	0.9
16	02	0.4	0.6	0.7	0.7 0.5	0.6	0.6
17	0.2	0.3	0.4	0.3	0.4	0.4	0.5
18	0.1	0.2	0.3 0.2	0.3	0.3	0.3	0.4
19	0.1	0.2 0.1	0.2		0.3	0.3	0.3
20	0.1	0.1	0.1	0.2	02	0.2	0.3
21 22	0.1	0.1	0.1	0.1	0.1	0.2	02
23	0.0	0.1	0.1	0.1	0.1	0.1	0.2
24	0.0	0.1	0.1	0.1	0.1	0.1	0.1
nd, Day Total	17.6	28.3	35.4	42.2	46.1	51.0	57.6
25	0.1	0.1	0.1	0.1	0.2	0.2	0.2
26	0.1	0.1	0.1		0.2	0.2	0.2
27	0.1	0.1	0.2		0.2	0.2	0.3
28	0.1	0.2	0.2	0.2	0.3	0.3	0.3
29	0.1	0.2	0.3	0.3	0.3	0.4	0.4
30	0.2	03	0.3	0.4	0.4	0.5	0.5
31	0.2	0.4	0.4	0.5	0.6	0.6	0.7
32	0.3	0.5	0.6	0.8	0.6	0.9	1.0
33	0.5	0.8	1.0	1.2	1.3	1.4	1.6
34	0.8	1.3	1.7	20	2.2	2.4	2.7
. 35	1.7	2.8	3.4	4.1	4.5	5.0	5€
36	7.3	35.7	14.6	17.4	19.0	21.0	23.8
37	3.1	. 5.0	6.2	7.4	8.1	9.0	10.1
38	1.1	1.7	2.2	2.6	2.8	3.2	3.6
39	0.6	1.0	1.2	1.5	1.6	1.8	2.0
40	0.4	0.6	0.8		1.0	1.1	1.3
41	0.3	0.4	0.5	0.6		0.8	0.9
42	0.2	0.3	0.4	0.5	0.5	0.6	0.6
43	0.1	0.2	0.3	0.3	0.4	0.4	0.5
44	0.1	0.2	02	0.3	0.3	0.3	0.4
45	0.1	0.1	0.2	0.2	0.2	0.3	0.3
46	0.1	0.1	0.2	0.2	0.2	0.2	0.2 0.2
47	0.1		: 0.1	0.2	0.2		-
48	0.1	0.1	0.1	01	0.1	0.2	235.1
rd Day Total	102.4	137.9	161.4	184.0	197.0	213.2	237.1
49	0.3	0.0	0.7		1.1		1.3
50	0.4	. 0.6	0.8	1.0		1.4	1.6
51	0.5	8.0	1.0				1.5
52	06	1.2	1.2 1.5	1.4		2.1	2.3
53 54	0.7 1.0	1.5	1.9		2.4	2.7	2.9
54 55	1.3	2.0	2.4			3.5	3.8
56	1.8	2.7		3.9		4.7	5.1
56 57	2.8	4.0	4.9		6.1		7.4
58	4.8	6.5	7.8	8.9	9.5	10.3	11.4
59		11.6		13.6	14.4		16,8
60	42.2	58.7	69.4		85.8	93.2	102.8
61	18.0	22.1	24.8		28.8	30.6	33.8
62	6.3	7.2	7.7	8.3	8.7	9.1	10.0
63	3.6	5.1				8.2	9.0
64 .	22		4.0		5.1	5.5	6.1
65	1.5	2.3	2.8		3.6		4
66	1,1	1.7	2.1		2.7	3.0	3.3
67	0.8					2.4	2.6
68	0.7		1.3		1.7		2.1
69	0.5	0.9	1.1			1.6	1.7
70	0.4			1.1		1.3	17
	0.4			0.9	1.0	5.1	1.2
71	0.4						1.0

ESIGN RAINF.	ALL OF S	SANTA	CRUZ			(Unit.	mm)
				ried (Ye	ar) 30	50	100
Time st Day Total	8.1	5 9.4	10	20 11.1	11.5		13.0
1	0.0	00	00	0.0	00	0.0	00
2	0.0	0.0	0.0	0.0	00	0.0	0.0
3	00	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0
5	0.0 0.0	0.0 0.0	0.0	0.0	0.0	00	0.0
6	0.0	0.0	00	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	00	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0
9	0.0 0.0	0.0	0.0	0.1	0.1	0.1	0.1
11	1.3	1.5	1.6	1.8	1.8	1.9	2.1
12	3.7	4.4	4.8	5.1	5.3	5.6	6.0
13	2.0	2.4	26	2.8	2.9	3.1 1.3	3.3 1.4
14	0.9 0.0	1.0 0.0	1. 1 0.0	1.2 0.0	1.2 0.0	0.0	0.0
15 16	0.0	0.0	0.0	0.0	0.0	00	0.0
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0
20	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	00	0.0	0.0	0.0	00
23	0.0	0.0	00	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	00	00	30.6	0.0 33.1
and. Day Total	18.4	22.3	24.9 0.0	27.4 0.0	28.9 0.0	0.0	0.0
25 26	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	0.0	00	0.0	00	0.0	0.0	0.0
- 28	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	0.0	0.0	00	0.0 0.0	0.0 0.0	0.0 0.0	0.0
30 31	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0
32	0.0	0.0	0.0	0.0	0.0	0.0	00
33	0.0	0.0	0.1	0.5	0.1	0.1	0.1
34	0.1	0.1	0.1	0.1	0.1	0.1 4.8	0.2 5.2
35 36	2.9 8.5	3.5 10.3	3.9 11.5	4.3 12.7	4.6 13.4	14.2	15.3
37	4,6	5.6	6.3	6.9	7.3	7.7	8.3
38	20	2.4	2.7	3.0	3.1	3.3	3.5
- 39	0.1	0.1	0.1	0.1	0.1	0.1	0.1
40	0.0	0.0 0.0	0. 0	0.0	0.0	0.1	0.0
41 42	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	0.0	0.0	0.0	0.0	00	0.0
44	0.0	0.0	0.0	0.0	0.0	0.0	0.0
: 45	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0
46 47	0.0	0.0	0.0	0.0	0.0	0.0	00
48	0.0	0.0	0.0	0.0	0.0	0.0	00
3rd Day Total		145.0	174.2	202.2	218.3		265.6
49	0.0	0.2	0.3	0.4 0.5	0.5	0.6 0.7	0.7
50 51	0.0	0.2 0.3	0.4	0.6	0.7	0.8	1.0
52	0.0	0.3	0.5	0.7	0.9	1.0	1.7
53	0.0	0.4	0.6	9.0	1.1	1.3	1.5
54	0.1	0.5	0.8	1.2	1.4 1.9	1.6 2.2	2.0
55 56	0.1 0.1	0.7 1.1	1.2 1.7	1.6 2.3	2.7	3.1	3
57	02	1.7	2.7	36	4.1	4.7	5.6
58	0.5	3.2	4.9	6.2	7.0	8.1	9.
59	159	20.6	23.7	26.6	28.3 87.3	30.4 94.2	33 103
60 61	46.7 25.4	61.9 33.1	72.1 38.2	61.7 43.0	45.9	49.4	54
62	109	14.0		18.0	19.2	20.6	22.
63	0.3	2.3	3.6	4.6	5.2	6.1	7.
64	0.2	1.3	2.1	2.8	3.3	3.8	4.
65	0.1	0.9	1.4	1.9 1.4	2.2 1.6	2.6 1.9	3.
66 67	0.1	0.6	1.0 0.7	1.1	1.0	1.4	1.
. 67	co	0.3	0.6	0.8	1.0	1.1	1.
63				0.7	0.8	0.9	1.
69	0.0	0.3	0.5				
69 70	0.0	0.2	0.4	0.5	0.6	0.8	0
69						0.8 0.6	

TABLE A.5.13 DESIGN RAINFALLS FOR OKINAWA II AND COL. SAN JUAN DE YAPACANI

DESIGN RAINEALL	OF OURSELVER

			Return I				it mm)
Time	2	5	10	20	30	50	100
st Day Total	12.9	18.4	21.9	25.3	27.3	29.8	33.1
1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
5	0.1	0.1	0.1	0.1	0.1	Q.1	0.1
3	0.1	0.1	0.1	0.1	0.1	0.1	0.2
4	0.1	0.1	0.1	0.1	0.2	0.2	0.2
5	0.1	0.1	02	0.2	0.2	0.2	02
. 6	0.1		0.2	0.5	0.3	0.3	0.3
7	0.2		0.3	0.3	0.3	0.4	0.4
8	0.2		0.4	0.5	0.5	0.5	0.6
		05	0.6	0.7	0.7	0.8	0.9
9	0.4					1.4	16
10	0.5	09	1.0	1.2	1.3		3 2
11	1.3	1.8	2.1	2.5	2.7	2.9	
12	5.3	7.6	90	10.4	11.3	123	13.7
13	2.3	32	3.8	4.4	4.8	5.2	5.8
14	0.8	1.1	1.4	1.6	1.7	1.8	20
15	0.5	0.6	0.8	09	1.0	1.1	1.2
16	0.3	. 0.4	0.5	0.6	0.6	0.7	0.7
17	0.2	0.3	03	0.4	0.4	0.4	0.5
18	0.1	02	0.2	03	0.3	03	0.4
19	0.1	0.2	0.2	0.2	0.2	0.2	0.3
20	0.1	0.1	0.1	0.2	02	0.2	0.2
			0.1	0.1	0.1	0.2	0.2
21	0.1	0.1					
22	0.1	0.1	0.1	0,1	0.1	0.1	0.1
23	0.0	0.1	0.1	0.1	0.1	0.1	0.1
24	0.0	0.1	0.1	0.1	0.1	0.1	0.1
nd. Day Total	16.2	19.3	21.4	23.4	24.6	26.0	28.0
25	0.1	0.1	0.1	0.1	0.1	0.1	0.1
26	0.1	0.1	0.1	0.1	0.1	0.1	0.1
27	0.1	0.1	0.1	0.1	0.1	0.1	0.1
28	0.1	0.1	0.1	0.1	0.1	0.1	0.2
29	0.1	0.1	0.2	0.2	0.2	0.2	0.2
30	0.2	0.2	0.2	0.2	0.2	0.2	0.3
31	0.2	0.2	0.3	0.3	0.3	0.3	0.4
							0.5
32	0.3	0.3	0.4	0.4	0.4	0.5	
33	0.4	0.5	0.6	0.6	0.7	0.7	0.8
34	0.8		1.0	1.1	1.2	1.2	1.3
35	1.6	1.9	2.1	2.3	2.4	25	2.7
36	6.7	80	8.8	9.7	10.1	10.7	11.5
.: 37	28	3.4	3.8	4.1	4.3	4.6	4.9
38 :	1.0	1.2	1.3	1.4	1.5	1.6	1.7
39	0.6	0.7	0.8	0.8	09	0.9	1.0
40	0.4	0.4	0.5	0.5	0.5	0.6	0.6
41	0.2	0.3	0.3	0.3	0.4	0.4	0.4
42	02	0.2	0.2	0.3	0.3	0.3	0.3
43	0.1	0.2	0.2	0.2	0.2	0.2	0.2
				0.2	0.2	0.2	0.2
44	0.1	0.1	0.1				
45	0.1	0.1	0.1	0.1	0.1	0.1	0.1
46	0.1	0.1	0.1	0.1	0.1	0.1	0.1
47	0.1	0.1	0.1	0.1		0.1	0.1
48	0.0	0.1	0.1	0.1	0.1	0.1	0.1
3rd Day Yotal	102.8	140.4	165.3	189.2	202.9	220.1	243.2
49	03	0.6	0.7	0.9	0.9	1.0	, 1.2
50	0.4	0.7	0.8	1.0	1.1	1.2	1.4
51	0.5	0.8	1.0	1.2	1.3	1.5	1.7
52	0.6	1.0	1.2	1.4	1.6	1.8	2.0
53	0.7	1.2	1.5	1.8	2.0	2.2	2.5
54	1.0	1.5	1.9	2.3	2.5	2.7	3.1
55	1.3	2.0	2.5	3.0	3.2	3.6	40
56	1.8	28	3.4	4.0	4.4	48	5.4
				5.8	63	6.9	7.7
57	28	4.1	5.0				
58	4.9	6.7	8.0	9.2	9.8	10.6	11.7
59	100	11.8	13.0	14.2	149	15.7	16.8
60	42.4	59.7	71.1	82.1	88.4	96.2	106.8
61	18.1	225	25.4	28.1	29.6	31.6	34.2
65	6.4	7.3	7.9	8.6	8.9	9.4	100
63	3.6	5.2	6.2	7.2	7.8	8.5	9.4
64	23	3.4	4.1	4.8	5.2	5.7	6.4
65	1.5	2.4	29	3.4	3.7	4.1	4.6
. 66	1.1	1.7	2.2	2.6	2.8	3.1	35
67	0.6	1.3	1.7	2.0	2.2	2.4	2.8
	0.7	1.1	1.3	1.6	1.8	2.0	22
68						1.0	1.8
- 69	0.5	09	1.1	1.3	1.4	1.6	
			0.9	1.1	1.2	. 1.3	1.5
70	0.4	0.7					
	0.4	0.6 0.5	0.8			1.1	1.3

						(Un	it mm)
Time		5	Return I	Period (20	Year) 30	50	-100
1st Day Total	17.0	18.4	19.3	20.2	20.8	21,4	22.3
1 2	0.1 0.1	0.1 0.1	01	0.1 0.1	0.1 0.1	0.1 0.1	0.1
3	0.1	0.1	01	0.1	0.1	0.1	0.1
4	0.1	0.1	0.1	0.1	0.1	0.1	0.1
5 6	0.1	0.1	0.1	0.1	0.2	0.2	0.2
] 0 1	0.2 0.2	0.2	0.2	0.3	0.3	0.3	0.3
8	0.3	0.3	0.3	0.4	0.4	0.4	0.4
9	0.5	0.5	0.5	0.6	0.6 1.0	0.6	0.6
10	0.8 1.7	0.9	0.9 1.9	1.0 2.0		1.0 2.1	2.2
1 12	7.0	7.6	8.0	8.3	8.6	8.8	9.2
13	3.0	32	3.4	3.5	3.7	3.8	3.9
14	1.1 0.6	1,1 0.6	1.2 0.7	1.2 0.7	1.3 0.7	1.3 0.8	1.4 0.8
16	0.4	0.4	0.4	0.4	0.5	0.5	0.5
17	0.3	0.3	0.3	0.3	0.3	0.3	0.3
18 19	0.2 0.1	0.2	02	0.2	0.2	0.2	0.2
20	0.1	0.1	0.1	0.1	0.1	0.1	0.1
21	0.1	0.1	0.1	0.1	F. 0.1	0.1	0.1
22	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1
23 24	0.1	0.1	01	0.1	0.1	0.1	0.1
2nd. Day Tota	24.2	33.6	39.8	45.8	49.2	53.5	69.3
25	0.1	0.1	0.1	0.1	0.2	0.2	0.2
26 27	0.1 0.1	0.1	0.2	0.2 0.2	0.2 0.2	0.3	0.3
28	0.1	0.2		0.3	0.3	0.3	0.3
29	0.2	0.2	0.3	0.3	0.4	0.4	0.4
30	0.2	0.3	0.4	0.4	0.5	0.5	0.6
32	0.4	0.6	0.7	0.8	0.9	1.0	1.1
33	0.7	Ç.9	1.1	1.3		1.5	1.6
- 34	1.1	1.6 3.3	19 39	2.2 4.5	2.3 4.8	2.5 5.2	2.8 5.8
35 38	10.0	13.9	16.4	18.9	20.3		24.5
37	4.2	59	7.0	8.0	8.6	9.4	10.4
38	1.5	2.1		2.8 1.6	3.0 1.7	3.3 1.9	3.7 2.1
39 40	0.9	1.2 0.7	1,4	1.0	1.1	1.2	1.3
41	0.4	0.5	0.6	0.7	0.7	0.8	0.9
42	0.3	0.4	0.4	0.5	0.5		0.5
43	0.2	0.3	0.3	0.4	0.4	0.4 0.3	0.5 0.4
45	0.1	0.2	0.2	0.2	0.3	0.3	0.3
46	0.1	0.1	0.2	0.2	0.2	0.2	0.3
47 48	0.1	0.1	0.1	0.2	0.2	0.2 0.2	0.2
3rd Day Total	139.3	188.3		251.9	269.8	292.2	322.4
49	0.5	0.8	0.9		1.3	1,4	1.6
50 51	0.7	0.9 1.1	1.1 1.3	1.3	1.5 1.7	1.6	1.9 2.2
51	0.8	1.3	1.5		2.1	2.3	2.7
53	1.0	1.6	2.0	2.4	2.6	2.9	3.3
54 55	1.3	2.1 2.7	2.5 3.3	3.0 3.9	3.3 4.3	3.6 4.7	4.1 5.3
. 56	1.8		4.6		5.8	6.4	7.2
57	3.8	5.5	6.7	7.8	8.4	9.1	10.2
58	6.6	89	10.7	12.2	13.0 19.8	14.1 20.9	15.6 22.3
59 60	13.6 57.4	15.8 80.1	17.4 95.0	18.9 109.3		127.7	141.6
61	24.5	30.2	339	37.4	39.4	42.0	45.3
62	8.6	9.8	10.6	11.4	11.9	12.5	13.3 12.5
63 64	4.9 3.1	6.9 4.5		9.6			8.5
65	2.1	3.2	3.9	4.6	5.0	5.5	6.1
66	1.5	2.3		3.4		4.1	4.7
67 68	1.1 09	18		2.7 2.1	2.9 2.3	3.2 2.6	3.6 2.9
69	0.7					2.1	2.4
70	0.6	1.0	1.2	1.5	1,6	1.8	2.0
71 72	0.5 0.4	0.8	1.0	1.2 1.1	2 1.4 1.2	1.5	1.7
Total Rain	180.6	2403	279.9	317.9	339.8	387.1	404.0
3							

TABLE A.6.1 ANNUAL MAXIMUM WATER LEVEL AND DISCHARGE OF THE RIO PIRAY

1. ANNUAL MAXIMUM WATER LEVEL OF THE RIO PIRAY

						(Unit: m)
YEAR	0506	0510	0505	0504	0512	0520
	Angostura	La Belgica	Bermejo	Colorado	Eisenhower	 Espejos
1975						
1976						
1977	٠		3.70			2,30
1978						i
1979						
1980	1.65	1.76	2.72		2.38	1.90
1981	2.20	2.20	3.50	1.64	2.87	2.28
1982	2.06		2.02	1.22	1.97	
1983	5.76		9.73	5.10	2.43	
1984	1.96		1.61		1.53	1.38
1985	2.62	2.41	2.22	1.96	1.89	0.96
1986	2.82	3,31	2.55	2.55	2.62	2.60
1987	2.85	1.54	3,76	2.06	3,10	2.40
1988	2.70	1.20	2,70	1.95	2.06	2.01
1989	2.36	1.34	1.93	1.65	2.49	2.79
1990	2.49	1.38	2.15	1.60	2.40	2.52
1991	3.59	1.64	4.48	3,06	2.31	4.15
1992	4.15	1.69	3.63	2.09	2.40	3,50
1993	3.68	1.63	3.48	2.80	2.21	4.12
1994	2.42	0.98	2.50	1.67	1.82	2.92
AVER.	2.89	1.76	3.29	2.26	2.30	2,56

Note:

- 1) Italic value shows the monthly maximum of daily average water level.
- 2) Water level indicates the water level on staff gauge and does not indicate the topographic elevation.

2. ANNUAL MAXIMUM DISCHARGE OF THE RIO PIRAY

(Unit: m3/s) 0504 0512 0520 0506 0510 0505 YEAR Colorado Eisenhower Espejos Angostura La Belgica Bermejo 1975 1976 43.57 589.07 72.56 1977 78.72 266.00 390.44 310.19 140.33 210.44 1978 884.03 85.73 128.47 224.50 1979 247.18 386.00 48.15 12.92 1980 150.00 152.69 444.00 33.00 1981 226.00 197.70 1982 458.42 77.21 41.22 1983 248.71 81.24 562.40 23.60 1984 67.58 406.09 104.47 1.96 1985 777.75 142.64 173.40 591.41 173.38 482,59 1986 53,98 566.18 250.39 278.18 963.60 1987 200.14 769.75 332,34 59.36 287.92 1988 483.43 668.57 1635.80 630.40 59.56 1989 370.95 349.40 114.65 234.24 857.10 43.72 54,38 1990 405.63 638.66 1991 644.40 1819.50 525.40 37.37 2092,70 26.12 149.23 417.42 1992 822.51 26.12 394.63 384.30 1993 737.38 1994 53.35 862,26 254,13 183.10 363.13 640.07 AVER.

Note: Italic value shows the monthly maximum of daily average discharge.

TABLE A.6.2 RESULTS OF DISCHARGE MEASUREMENT

Dec. 6, 1995 0.40 (m/s) (m/s) 1 Dec. 6, 1995 0.40 6,12 0.21 Dec. 6, 1995 0.20 0.90 0.25 Dec. 5, 1995 0.10 0.20 0.00 1 Dec. 5, 1995 0.10 0.20 0.00 2 Dec. 5, 1995 0.15 0.19 0.01 3 Dec. 5, 1995 0.25 0.40 0.00 5 Dec. 5, 1995 0.67 4.37 0.08 6 Dec. 5, 1995 0.67 3.09 0.64		River/Measurement Site	Section	Date	Water	Area		age .	Discharge
Rio Chane Rio Chane Rio Chane Rio Chane Chare Bridge at Calimanes Rio Chane Rio Chane			NO.		(E)	(m2)			(m3/s)
Chane Bridge near Puesto Fernandez R301 Dec. 6, 1995 0.40 6,12 Bridge at Caimanes R310 Dec. 6, 1995 0.55 9.70 Rio Pailon Bridge of National Road No.9 R210 June 5, 1995 0.20 0.90 Bridge of Main Road Okinawa I to II R214 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro Bridge of National Road No.9 QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras Arroyo Yapacanicito QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Jochi Bridge of Main Road Y01(temporary) Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral AT02 Dec. 5, 1995 0.67 4.37 Bridge of Main Road AT02 Dec. 5, 1995 0.67 4.37	7.	Rio Chane							
Ridge at Caimanes R310 Dec. 6, 1995 0.55 9.70 Ridge of National Road No.9 R210 June 5, 1995 0.20 0.90 Bridge of Mational Road No.9 R214 Dec. 5, 1995 0.10 0.20 Bridge of Mational Road Okinawa I to II R214 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro Bridge of National Road No.9 QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras Bridge of the Main Road to Caimanes QCH02 Dec. 5, 1995 0.15 0.19 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.20 0.40 Arroyo Jochi Bridge of Main Road A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral A102 Dec. 5, 1995 0.67 3.09		Chane Bridge near Puesto Fernandez	R301	Dec. 6, 1995		: Ω	6.12	0.21	1.09
Ridge of National Road No.9 R210 June 5, 1995 0.20 0.90 Bridge of National Road No.9 R214 Dec. 5, 1995 0.10 0.20 Bridge of Main Road Okinawa I to II R214 Dec. 5, 1995 0.15 0.50 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro Ridge of National Road No.9 QT05 Dec. 5, 1995 0.15 0.19 Quebrada Toro Bridge of National Road No.9 QT05 Dec. 5, 1995 0.15 0.19 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Bridge of Main Road AT02 Dec. 5, 1995 0.67 3.09	건	Bridge at Caimanes	R310	Dec. 6, 1995	0.5		9.70	0.05	0.37
Bridge of National Road No.9 R210 June 5, 1995 0.20 0.90 Bridge of Main Road Okinawa I to II R214 Dec. 5, 1995 0.10 0.20 Guebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro Bridge of National Road No.9 QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras Quebrada Las Chacras QCH02 Dec. 5, 1995 0.15 0.19 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.67 4.37 Bridge of Main Road Actos Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral AT02 Dec. 5, 1995 0.67 3.09	<u>ત</u>	Rio Pailon			·				
Bridge of Main Road Okinawa I to II R214 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras QCH02 Dec. 5, 1995 0.15 0.19 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.20 0.40 Arroyo Jochi Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral A102 Dec. 5, 1995 0.67 3.09	5	Bridge of National Road No.9	R210	June 5, 1995	0.5	Q	06.0	0.25	0.19
Bridge of Main Road Okinawa I to II R214 Dec. 5, 1995 0.25 0.50 Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro QTOS Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras QCHOZ Dec. 5, 1995 0.15 0.19 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.20 0.40 Arroyo Jochi Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral A102 Dec. 5, 1995 0.67 3.09			•	Dec. 5, 1995	0.1	o.	0.20	8	00.00
Quebrada Chane R319 Dec. 5, 1995 0.10 0.20 Quebrada Toro Quebrada Toro QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.20 0.40 Arroyo Jochi Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral A102 Dec. 5, 1995 0.67 3.70	2-2	Bridge of Main	R214	Dec. 5, 1995	0.2	ς;	0.50	0.00	0.00
Quebrada Toro QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras Quebrada Las Chacras QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Arroyo Jochi Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Bridge of Main Road A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral A702 Dec. 5, 1995 0.67 3.09	<u>લ પુ</u>	Quebrada Chane Bridge of National Road No.9	R319	Dec. 5, 1995	0.1		0.20	0.00	00.00
Quebrada Las Chacras QT05 Dec. 5, 1995 0.15 0.19 Quebrada Las Chacras Quebrada Las Chacras QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Arroyo Jochi Az06 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral AT02 Dec. 5, 1995 0.67 3.09		Onskrada Torre	. **						
Quebrada Las Chacras QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral A702 Dec. 5, 1995 0.67 3.09 Bridge of Main Road A702 Dec. 5, 1995 0.67 3.09	; 1	Bridge of National Road No.9	QT05	Dec. 5, 1995	0.1	· vs	0.19	0.01	0.00
Bridge of the Main Road to Caimanes QCH02 Dec. 5, 1995 0.20 0.40 Arroyo Yapacanicito Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Arroyo Jachi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral A102 Dec. 5, 1995 0.67 3.09 Bridge of Main Road A102 Dec. 5, 1995 0.67 3.09	vi	Quebrada Las Chacras							
Arroyo YapacanicitoY01(temporary)Dec. 5, 19950.403.10Arroyo JochiArroyo TacuaralA206Dec. 5, 19950.674.37Arroyo TacuaralA702Dec. 5, 19950.673.09	5-1	Bridge of the Main Road to Caimanes	QCH02	Dec. 5, 1995	0.2	0	0.40	0.00	00'0
Most Downstream bridge Y01(temporary) Dec. 5, 1995 0.40 3.10 Arroyo Jochi Arroyo Tacuaral A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral A702 Dec. 5, 1995 0.67 3.09	ઙ	Arroyo Yapacanicito		:					
Arroyo Jochi A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral A702 Dec. 5, 1995 0.67 3.09	<u>ত্</u>	Most Downstream bridge	Y01(temporary)	Dec. 5, 1995	0.4	ç	3.10	0.25	0.66
Bridge of Main Road A206 Dec. 5, 1995 0.67 4.37 Arroyo Tacuaral Arroyo Tacuaral AT02 Dec. 5, 1995 0.67 3.09	7.	Arroyo Jochi						·: .	
Arroyo Tacuaral Bridge of Main Road AT02 Dec. 5, 1995 0.67 3.09	7-1		A206	Dec. 5, 1995	9.0	<u>.</u>	4.37	0.08	0.30
Bridge of Main Road AT02 Dec. 5, 1995 0.67 3.09		A TANA Taking to Indiana		1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	;		:	
	: ፚ		AT02	Dec. 5, 1995	0.0		3.09	8	1.68
	:								

TABLE A.7.1 DIMENSIONLESS CURVE NUMBER OF SCS (CN)

SCS CURVE NUMBERS (CN)

Land Use Description	T H	ydrologi	c Soil Gr	oup
	A	В	С	D
1. Cultivated Land				
Without conservation treatment	72	81	88	91
2) With conservation treatment	62	71	78	81
]			
2. Pasture or Range Land				
1) Poor condition	68	79	86	89
2) Good Condition	39	61	74	80
				70
Meadow: good condition	30	.58	71	78
4. Wood or Forest Land				
Thin stand, poor cover, no mulch	45	66	77	83
2) Good cover	25	55 .	70	77
5. Open Spaces, Lawns, Parks, Golf Courses, Cemetries etc.				
1) Good condition: grass cover on 75% or more	39	61	74	80
2) Fair condition: grass cover on 50% to 75%	49	69	79	84
6. Commercial and Business Area (85% impervious)	89	92	94	95
7. Industrial Districts (72% impervious)	81	88	91	93
8. Residential Area				
1) 1/8 acre or less: 65% impervious	77	85	90	92
2) 1/4 acre: 38% impervious	61	75	83	87
3) 1/3 acre: 30% impervious	57	72	81	86
4) 1/2 acre: 25% impervious	54	70	80	85
5) 1 acre: 20% impervious	51	68	79	84
Paved Parking Lots, Roofs, Driveways etc.	98	98	98	98
10. Streets and Roads				
Payed with curbs and storm sewers	98	98	98	98
2) Gravel	76	85	89	91
3) Dirt	72	82	87	89

Notes: Hydrological Soil Groups

Groupe A: low runoff potential with high infiltration rates.

deep sand, deep loess, sandy loam.

Groupe B: moderate infiltration rates.

shallow loess, aggregated silt.

Groupe C: slow infiltration rates.

clay loams, shallow sandy loam, soils low in organic content and soils

usually high in clay.

Groupe D: high runoff potential with very slow infiltration rates.

soils swell significantly under wet condition, heavy plastic clays etc.

TABLE A.7.2 CHARACTERISTICS AND SCS PARAMETERS OF THE RIO CHANE BASIN AND ARROYO YAPACANICITO-JOCHITACUARAL-TEJERIA BASINS

1. CHARACTERISTICS OF SUB-CATCHMENT OF THE RIO CHANE BASIN

Sub-catchment	Area	Hydraulic	Average	Ä	Grox	nd Conditi	on (Average	%)				
		Length	Catchm.	Hydrat	ilic Soil Gro	upe C	Hydrau	dic Soil Gro	upe O	SCS Curve		nethod
	1	-	Slope	Cultivated	Pasture	Forest	Cultivated	Pasture	Forest	Number(CN)	Lag Time	Velocity
:	(km2)	(m)	(%)	83.0	80.0	73.5	86 0	84.5	80.0		<u>(h/)</u>	(m/sec)
A - 1	63.35	12500	0.08	5.0	5.0	20.0	45.0	5.0	20.0		7.2	0.48
A - 2	193.68	22000	0.03	25.0	10.0	15.0	25.0	10.0	15.0		16.9	0.3
A-3	164.7	23000	0.07	30.0	5.0	15.0	30.0	5.0	15.0	82	12.2	0.52
A - 4	60.08	4200	0.07	25.0	10.0	15.0	25.0	10.0	15.0	- 82	9.3	0.36
A - 5	15.8	4000	0.05	30.0	5.0	15.0	30.0	5.0	15.0	82	3.6	0.31
A-6	211.87	22000	0.15	25.0	5.0	15.0	35.0	5.0	15.0	82	8.8	0.70
A - 7	112 68	28000	0.19	20.0	100	15.0	30.0	10.0	15.0	82	9.6	0.81
A-8	270.08	39000	0.22	17.5	17.5	10.0	27.5	17.5	10.0	82	11.7	0.93
A - 9	141.89	32000	0 23	17.5	17.5	10.0	27.5	17.5	10.0	82	10.0	0.89
A-10	66.14	28000	0.21	17.5	17.5	10.0	27.5	17.5	10.0	82	9.2	0.85
A-11	275.46	42000	0 23	17.5	17.5	10.0	27.5	17.5	10.0	82	12.2	0.96
B-1	6.72	2500	0.08	12.5	125	20.0	22.5	12.5	20.0	81	2.1	0.33
6-2	153,49	32000	0.13		15.0	15.0	20.0	15 0	15.0	82	12.4	0.7
8-3	64 04	16000	0.21	20.0	20.0	10.0	20.0	20.0	10.0	82	6.0	0.7
Č-1	3.18	4000	0.15		100	20.0	30.0	100	20.0	81	2.4	0.47
G-2	35.03	14500	0.14		20.0	10.0	20.0	20.0	10.0	82	6.6	0.61
C-3	197.4	40000	0.23		20.0	10.0	20.0	20 0	10.0	82	11.9	0.9
C-4	38.77	11500	0.14	20.0	20.0	10.0	20.0	20.0	10.0	82	5.5	0.56
C-5	11.36		0.13		20.0	10.0	20.0	20.0	10.0	82	2.7	0.40
C-6	121.16		0.24		20.0	10.0	20.0	20.0	10.0	82	8.8	0.89
C-7	23.93		0.19		20.0	10.0	20.0	20.0	10.0	82	3.3	0.58
C-8	38.43	21000	0.22	20 0	20.0	10.0	20.0	20.0	10.0	82	7.3	0.80
D-1	244.82	33000	0.19		10.0	10.0	40.0	10.0	10.0	83	11.0	0.83
Ĕ-1	105.9		0.08		7.5	7.5	35.0	7.5	7.5	83	12.2	0.56
Ē·2	69.70		0.14		7.5	7.5	350	7.5	7.5	83	6.3	0.61

2. CHARACTERISTICS OF SUB-CATCHMENT OF YAPACANICTIO-JOCHI-TACUARAL-TEJERIA BASINS

				Average		Grou	nd Condit	ion (Averag					
			Hydraulic	Catchment		lic Soil Gro			Hic Soil Gro		SCS Curve	CBR r	
River	Sub-catchment	Area	Length	Slope	Cultivated	Pasture	Forest	Cultiva!ed	Pasture	Forest	Number(CN)	Lag Time	Velocity
	•	(km²)	(km)	(%)	83.0	80.0	73.5	86.0	84.5	60.0		(hr)	(m/sec)
Yapacanicito	R_Y1_1	668	10.3	0.000	125	12.5	25.0			25.0		7.5	0.38
	R_Y1_2	98.4	19.6	0.050	12.5	12.5	25.0		12.5	25.0		122	0.44
	R_Y1_3_1	32.8	3.5	0.050	30.0	10.0	10.0	30.0	10.0	10.0	83	3.2	0.30
	R_Y1_3_2	21,1	2.4	0.125	30.0	100	10.0		10.0	10.0	83	1.7	0.39
	R_Y1_3_3	42.0	13.8	0.125	30.0	10.0	10.0	30.0	10.0	10.0	83	6.6	0.58
Subtotal	R_Y1_3	95.9	19.7	0.112							83	9.0	0.61
	R_Y1_4_1	8.3	2.5	0.200	30.0	100	10.0	30,0	10.0	10.0	83	1.5	0.47
	R_Y1_4_2	10.0	2.5	0.200	30.0	10.0	10.0	30.0	10.0	10.0		1.5	0.47
	R_Y1_4_3	8.9	2.1	0.200	30.0	10.0	10.0	30 0	10.0	10.0	83	1.3	0.45
	R_Y1_4_4	4,3	1.5	0.200	30.0	10.0	10.0	30.0	10.0	10.0	83	1.0	0.42
	R_Y1_4_5	3.4	3.2	0.200	30.0	10.0	10.0	30.0	10.0	- 10.0	83	1.8	0.50
Subtotal	R_Y1_4	349	11.8	0.200						٠,	83	4.9	0.67
	R_Y2_1	62. 8	19.4	0.050	20.0	10.0	20.0	20.0	10.0	20.0	81	12.1	0.44
	R Y2 2 1	10.5	4.2	0.083	30.0	10.0	10.0	30.0	10.0	10.0	83	3.1	0.38
	R Y2 2 2	1.4	2.3	0.083	30.0	10.0	10.0	30.0	10.0	10.0	83	1.9	0.33
Subtotat	R_Y2_2	11.9	6.5	0.083							82	4.3	0.42
Subtotal	Yapacanicito	370.7											_
Jochi	R_J_1	41.6	13.6	0.070	7.5	7.5	35.0		7.5	35.0	79	8.1	0.47
•	R_J_2	11.8	2.1	0.070	15.0	10.0	25.0		10.0	25.0	80	1,9	0.30
	R_J_3_1	53	2.6	0.070	20.0	10.0	20.0	20.0	100	20.0	81	2.3	0.32
	R_J_3_2	6.3	2.5	0.070	20.0	10.0	20.0	20.0	10.0	20.0	81	2.2	0.32
	R_J_3_3	64.7	21.0	0.115	250	10.0	15.0	25.0	10.0	15.0	82	9.4	0.62
Subtotal	R_J_3	76.3	26.1	0.106					1 1	4	82	11.4	0.63
	R_J_4	18.3	5.0	0.120	25.0	100	15.0	25.0	10.0	15,0	. 82	3.1	0.46
Subtotal		148.0					· · · · · · · · · · · · · · · · · · ·	· .					
Facuarai	R_T_1	38.2	10.2	0.060	7.5	7.5	35.0	7.5	7.5	35.0	79	7.4	0.38
	R_T_2	88.2	26.0	0.100	15.0	10.0	25.0	15.0	10.0	25.0	80	11.7	0.62
	R_T_3_1	10.0	4.7	0.110	15.0	10.0	25.0	15.0	10.0	25.0	80	3.0	0.43
	R_T_3_2	67.0	19.8	0.110	15.0	20.0	15.0	15.0	20.0	15.0	: 81	9.1	0.60
Subiotal	R_T_3	77.0	24.5	0.110							80	10.7	0.63
	R_T_4	49.4	13.2	0.200	10.0	20.0	20 0	10.0	20.0	20.0	81	5.3	0.69
Subtotal	Tacuaral	252 8											
Tejeria	R_TJ	43.6	17.0	0.180	25.0	10.0	15.0	25.0	10.0	15.0	82	6.7	0.70

TABLE A.7.3 RUNOFF POINTS AND SCS PARAMETERS OF THE RIO CHANE BASIN AND ARROYO YAPACANICITO-JOCHITACUARAL-TEJERIA BASINS

1. CHACHMENT CHARACTERISTICS FOR RUNOFF POINTS OF THE RIO CHANE BASIN

	-	Chach-			SCS		
		ment	Hydraulic	Grand	Curve	ÇBR n	nethod
Point Code	Sub-catchments	Area	Length	Slope	Number	Lag Time	Velocity
		(km²)	(km)	(%)	(CN)	(hr)	(m/sec)
P-1	A-1_11,B-1_3,C-1_8,D-1	2519.1	132700.0	0.133	82	36.6	1.01
P-2	A-2_11,B-1_3,C-1_8,D-1	2455.7	120200.0	0.139	82	33.4	1.00
P-2-1	A-2_11,C-1_8,D-1	2231.5	120200.0	0.139	82	33.4	1.00
P-2-2	8-1_3	224.3	50500.0	0.152	82	16.5	0.85
P-3	A-3_11,C-1_8,D-1	2032.8	98200.0	0.118	82	30.4	0.90
P-3-1	D-1,A-3_11	1563.5	98200.0	0.164	82	26.8	1.02
P-3-2	C-1_8	469.3	58500.0	0.198	82	16.7	0.97
P-4	D-1 _. A-4_11	1398.8	75200.0	0.193	82	20.5	1.02
P-5	D-1,A-5_11	1338.7	71000.0	0.200	82	19.3	1.02
P-5-1	D-1,A-5_10	1063.3	71000.0	0.200	82	19.3	1.02
P-5-2	A-11	275.5	42000.0	0.231	82	12.2	0.96
P-6	D-1,A-6_10	1047.5	67000.0	0.209	82	18.2	1.02
P-6-1	D-1,A-6	456.7	55000.0	0.173	82	16.8	0.91
P-6-2	A-7_9	524.7	67000.0	0.209	82	18.2	1.02
P-6-3	A-10	66.1	28000.0	0.207	82	9.3	0.83
P-7	A-8,A-9	412.0	39000,0	0.223	82	11.7	0.93
2-7-1	A-8	270.1	39000.0	0.223	82	11.7	0.93
P-7-2	A-9	141.9	32000.0	0.225	82	10.0	0.89
P-8	B-2,B-3	217.5	48000.0	0.156	82	15.7	0.85
P.9	B-3	64.0	16000.0	0.213	82	6.0	0.74
P-10	C-2_8	466.1	54500,0	0.202	82	15.7	0.96
P-10-1	C-4 8	233.7	44000.0	0.205	82	13.3	0.92
P-10-2	C-2.C-3	232.4	54500.0	0.202	82	15.7	0.96
P-11	C-3	197.4	40000.0	0.225	82	11.9	0.94
P-12	C-5_8	194.9	32500.0	0.228	82	10.1	0.90
P-12-1	C-7,C-8	62.4	28000.0	0.211	82	9.3	0.84
P-12-2	C-5,C-6	132.5	32500.0	0.228	82	10.1	0.90
P-13	C-6	121.2	28000.0	0.243	82	8.8	0.89
P-14	C - 8	38.4	21000.0	0.219	82	7.3	0.80
P-15	D-1	244.8	33000.0	0.188	83	11.0	0.83

2. CHACHMENT CHARACTERISTICS FOR RUNOFF POINTS OF THE YAPACANICITO-JOCHI-TACUARAL-TEJERIA BASIN

			Chach-			SCS		
	* · · · · · · · · · · · · · · · · · · ·		ment	Hydraulic	Grand	Curve	CBR n	nethod
River	Point Code	Sub-catchments	Area	Length	Slope	Number :	Lag Time	Velocity
			(km²)	(km)	(%)	(CN)	(hr)	(m/sec)
Yapacanicito	P_Y1	Y1_1, Y1_2, Y1_3, Y1_4, Y2_1, Y2_2	370.7	61.4	0.099	80	22.7	0.75
	P_Y2	Y1_2, Y1_3, Y1_4, Y2_1, Y2_2	303.9	51.1	0.108	80	19.0	0.78
	P_Y2_1	Y1_2, Y1_3, Y1_4	229.2	51.1	0.108	81	19.0	0.75
	P_Y3	Y1_3, Y1_4	130.8	31.5	0.145	83	11.7	0.75
	P_Y4	Y1_4	34.9	11.8	0.200	83	4.9	0.67
	P_Y2_2	Y2_1, Y2_2	74.7	25.9	0.058	81	14.3	0.50
	P_Y5	Y2_2	11.9	6.5	0.083	82	4.3	0.42
Jochi	P_J1	J_1, J_2, J_3, J_4	148.0	46.8	0.096	60	18.6	0.70
	P_J2	J_2, J_3, J_4	106.4	33.2	0.106	81	13.8	0.67
	P_J3	J_3, J_4	94.6	31.1	0.108	82	13.0	0.67
	P_J4	J_4	18.3	5.0	0.120	82	3.1	0.46
Tacuaral	P_T1	T_1, T_2, T_3, T_4	252.8	49.7	0.121	80	17.8	0.77
	P_T2	T_2, T_3, T_4	214.6	39,5	0.140	80	14.1	0.78
	P_T2_1	T_2	88.2	26.0	0.100	80	11.7	0.62
	P_T3	T_3, T_4	126.4	37.7	0.142	80	13.6	0.77
	P_T4	T_4	49.4	13.2	0.200	81	5.3	0.69
Tejeria	P_TJ1	TJ 1	43.6	17.0	0.180	82 1	6.7	0.76

TABLE A.8.1 INUNDATION AREA AND DEPTH OF CHANE - PAILON WITHOUT FLOOD MITIGATION AND DRAINAGE IMPROVEMENT

Target Area	Distance	Potential		Inundation Denth (m)	Denth (Ê		-	Jamparion Arns (km2)	A Sms /	(2)	
	(my)	(km) Inundation		Return Period (Year	10d (Yes	 	<u> </u>	8	Return Period (Year	nod (Ye	(H)	ľ
		Arca (km2)	2	S	2	20	8	2	'n	.01	22	\$.
	185.80	845.1	89.0	0.90	1.06	1.19	1.36	601.3	725.6	7.677	799.2	820.7
B. UPSTREAM OF ROUTE 9	24.40	179.1	0.19	0.28	0.37	ð.4.	0.58	49.5	68.5	83.3	97.3	115.7
1. RIO CHANE	35.00	107.4	0.88	81.1	1.39	1.57	8	93.3	106.0	107.4	107 4	107.4
1-1 Jet. Rio Piray - Jet. Qda. Chacras	12.50	63.4	1.24	1.57	1.72	1.86	2.03	63.4	63.4	63.4	63.4	63.4
1-2 Jet. Qda. Chaeras - Jet. Qda. Chané	22.50	44.0	0.68	0.97	1.20	14.	1.69	29.9	42.7	40	4.0	44.0
2. RIO PAILON	42.90	260.5	0.58	0 77	0 03	1 07	27	170.4	9 (81	000	1077	200
2-1 Jet. Rio Chané - Route 9	23.50	18.7	0.97	1.26	1.49	1.69	1.96	159.8	164.7	16.7	6.7	1 2
2-2 Route 9 - Jet. A. Sauces	8.00	50.8	0.13	0.22	0.32	0.42	0.56	9.9	11.2	16.3	21.3	28.4
2-3 Jet. A. Sauces - Okinawa II	11.40	45.0	0.09	0.15	0.20	0.26	0.36	4.1	. 8.9	0.6	11.7	16.2
		. •										
3. QDA. CHANE	43.30	159.5	0.33	0.50	0.63	0.75	0.88	. \$6.9	81.13	100.7	112.4	123.2
3-1 Qda. Chané: Jet. Río Chané - Route 9	18.00	38.2	0.17	0.39	0.56	0.70	0.85	6.5	14.9	21.4	26.7	32.5
3-2 Odn. Chané: Upstream of Route 9	1.00	22.0	0.68	98'0	96.0	1.05	1.16	15.0	18.9	21.1	22.0	22.0
3-3 Qda, Toro: Jct. Qda. Chanć - Route 9	15.50	50.1	0.67	0.83	96.0	1.09	1.24	33.6	41.6	48.1	50.1	50.1
3-4 Qda. Toro: Upstream of Route 9	1.00	18.0	0.05	0.17	0.26	0.39	0.56	6.0	3.1	4.7	7.0	10.1
3-5 Qda, Maras; Jct, Qda, Toro - Route 9	6.80	23.9	0.0	80'0	0.15	0.17	0.22	1.0	1.9	3.6	4.1	5.3
3-6 Oda, Maras: Upsrcam of Route 9	1.00	7.3	0.00	0.10	0.24	0.33	0.45	0.0	0.7	1.7	2.4	60
4 CHANE-CHACRAS	83.00	3180	0 73	0 03	1 07	~	133	123.1	900	2100	2100	2100
4-1 Qda, Chacras: Jct. Río Chané - Route 9	36.00	160.2	0.73	0,93	1.07	1.18	132	117.0	149.0	160.2	160.2	160.7
4-2 Qda. Chacras: Upstrcam of Route 9	1.00	4.0	0.80	1.05	1.19	1.33	1.49	3.2	4.0	0.4	0,4	4
4-3 Chané Drainage	26.00	154.7	0.73	0.93	1.07	1.18	1.32	112.9	143.9	154.7	154.7	154.7
S. OKINAWA DRAINAGE	26.00	177.0	6.55	ر ار	0.85	8	2	07.1	127 6	1 37/1	6031	7.2.4
S. Donnethous of Donne	2								C. 121	2	7007	0 / /
S Thereses of Banks	3.5	7.0.7	200	1/70	79.7	3 .	0.0	77.3	103.6	119,6	131.3	145.9
Concent of Notice	3	32.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.50	1.50	<u>چ</u> د	1.90	8.61	23.9	26.5	28.8	31.7

WITH FLOOD MITIGATION AND DRAINAGE IMPROVEMENT (ALTERNATIVE I) TABLE A.8.2 INUNDATION AREA AND DEPTH OF CHANE - PAILON

1

Target Area	Distance	Potential		Inundation Depth (m)	Depth ((E	r	1.5	Inundation Area (km2)	Arca (k	m2)	
	(km)	(km) Inundation	E.	Return Period (Year)	od (Yea	E C	l	02.	Return Period (Year,	nod (Yes	G	Γ
		Area (km2)	. 7	\$	10	20	50	2	\$	10	20	50
A. DOWNSTREAM OF ROUTE 9	185.80	845.1	0.17	0.33	0.51	19.0	0.83	9'901	8'961	325.5	443.7	554.4
B. UPSTREAM OF ROUTE 9	24.40	179.1	9.0	0.23	0.32	0.41	0.52	26.5	53.4	67.4	82.5	100.8
1. RIO CHANE	35.00	107.4	0.78	1.21	1.45	1.67	1.93	84.5	103.4	107.4	107.4	107.4
1-1 Jet. Rio Piray - Jet. Oda. Chacras	12.50	4.63	1.33	1.76	16.1	2.16	2.50	63.4	63.4	63.4	63,4	63.4
1-2 Jet. Qda. Chacras - Jet. Qda. Chané	22.50	44.0	0.48	0.91	1.19	1.40	19:1	21.1	40.0	44.0	44.0	44.0
2. RIO PAILON	42.90	260.5	0.04	0.14	0.27	0.42	0.59	11.6	36.9	72.2	115.1	162.5
2-1 Jct. Rio Chané - Route 9	23.50	164.7	0.05	0.09	0.26	0.47	0.70	8.2	14.8	42.8	77.4	115.3
2-2 Route 9 - Jet. A. Sauces	8.00	\$0.8	0.04	0.31	0.41	0.52	0.62	2.0	15.7	20.8	26.4	31.5
2-3 Jet. A. Sauces - Okinawa II	11.40	45.0	0.03	0.14	0.19	0.25	0.35	7.	6.3	8.6	11.3	15.8
3. QDA CHANE	43.30	159.5	0.06	0.14	0.26	0.35	0.44	14,4	28.2	46.6	59.5	75.9
3-1 Qda. Chané: Jet. Río Chané - Route 9	18.00	38.2	0.00	0.05	0.14	0.23	0.31	0.0	1.9	5.3	80	8.11
3-2 Oda, Chané: Upstream of Route 9	1.00	22.0	0.19	0.38	0.43	0.49	0.58	4.2	8.4	9.5	10.8	12.8
3-3 Oda, Toro: Jct. Oda, Chané - Route 9	15.50	50.1	0.16	0.29	0.46	0.56	0.70	8.0	14.5	23.1	28.1	35.1
3-4 Qda. Toro: Upstream of Route 9	1.00	18.0	0.12	0.15	0.23	0.32	0.46	2.2	2.7	4.1	5.8	89.3
3-5 Qda, Maras; Jet. Qda, Toro - Route 9	6.80	23.9	0.00	0.01	0.13	0.16	0.20	0.0	0.2	3.1	3.8	4°.
3-6 Qda, Maras: Upsrcam of Route 9	1.00	7.3	0.00	90.0	0.21	0.32	0.43	0.0	0.4	1.5	2.3	3.1
4. CHANE-CHACRAS	63.00	318.9	0.00	0.09	0.29	0.48	0.63	0.0	28.7	92.5	153.1	200.9
4-1 Qda. Chacras: Jct. Río Chané - Route 9	36.00	160.2	0.00	0.00	0.29	0.48	0.63	0.0	4.4	46.5	76.9	100.9
4-2 Oda. Chaeras: Upstream of Route 9	1.00	4.0	0.00	0.09	0.29	0.48	0.63	0.0	0.4	1.2	1.9	2.5
4-3 Chané Drainage	26.00	154.7	0.00	0.09	0.29	0.48	0.63	0.0	13.9	2,0	74.2	97.4
5. OKINAWA DRAINAGE	26.00	177.9	90.0	0.26	0.39	0.49	09.0	22.6	53.1	74.2	91.1	108.6
5-1 Downstream of Route 9	25.00	145.9	0.04	0.23	0.36	0.46	0.56	5.8	33.6	52.5	67.1	81.7
5-2 Upstream of Route 9	20.	32.0	09.0	0.94	1.13	1.31	1.53	16.8	19.5	21.7	24.0	26.9

WITH FLOOD MITIGATION AND DRAINAGE IMPROVEMENT (ALTERNATIVE II) TABLE A.8.3 INUNDATION AREA AND DEPTH OF CHANE - PAILON

Target Area	Distance	Potential		Inundation Depth (m)	Depth ((E	-		Inundation Area (km2)	Arca (k	m2)	
	(km)	Inundation		Return Period (Year)	od (Yea	្ន		F	Return Period (Year)	nod (Ye	ig)]
		Arca (km2)	2	٧٠	10	20	50	~	S) 2 1	20	30
A. DOWNSTREAM OF ROUTE 9	185.80	845.1	0.31	0.46	0.64	0.80	96.0	106.6	196.8	3255	443.7	554,4
B. UPSTREAM OF ROUTE 9	24.40	179.1	90.0	0.23	0.32	0.41	0.52	26.5	53.4	67.4	82.5	100.8
1. RIO CHANE	35.00	107.4	1.49	1.93	2.14	2.33	2.59	84.5	103.4	107.4	107.4	107.4
1-1 Jet. Río Piray - Jet. Qda, Chacras	12.50	63.4	1.68	2,10	2.29	2.46	2.65	63.4	63.4	63.4	63,4	63.4
1-2 Jet. Qda, Chacras - Jet. Qda, Chane	22.50	44.0	1.38	1.83	5.06	2.26	2.56	21.1	40.0	44.0	44.0	44.0
2. RIO PAILON	42.90	260.5	0.04	0.14	0.27	0.42	0.59	11.6	36.9	72.2	115.1	162.5
2-1 Jet. Rio Chané - Route 9	23.50	164.7	0.05	0.09	0.26	0.47	0.70	8.2	14.8	42.8	77.4	115.3
2-2 Route 9 - Jet. A. Sauces	8.00	50.8	9.0	0.31	0.41	0.52	0.62	2.0	15.7	20.8	26.4	31.5
2-3 Jct. A. Sauces - Okunawa II	11.40	45.0	0.03	0.14	0.19	0.25	0.35	1,4	6.3	8.6	11.3	15.8
					- 1	- 1			:		. ;	
3. QDA. CHANE	43,30	159.5	90.0	0.14	0.26	0.35	4	14.4	28.2	46.6	59.5	7.9
3-1 Qda. Chané: Jet. Río Chané - Route 9	18.00	38.2	0.00	0.05	0.14	0.23	0.31	0.0	1.9	5.3	90 90	8.11
3-2 Qda. Chané: Upstream of Route 9	1.00	22.0	0.19	0.38	0,43	0.49	0.58	4.	8.4	9.5	10.8	12.8
3-3 Qda, Toro: Jct. Qda, Chané - Route 9	15,50	50.1	0.16	0.29	0.46	0.56	0.20	8.0	14.5	23.1	28.1	35.1
3-4 Qda, Toro; Upstream of Route 9	1.8	18.0	0.12	0.15	0.23	0.32	0.46	2.2	2.7	4.1	5.8	8.3
3-5 Qda, Maras; Jct. Qda. Toro - Route 9	08.9	23.9	00.00	0.01	0.13	0.16	0.20	0.0	0.2	3.1	3.8	4.8
3-6 Qda, Maras: Upsream of Route 9	1.00	7.3	0.00	90.0	0.21	0.32	0.43	0.0	0.4	1.5	2.3	3.1
4. CHANE-CHACRAS	63.00	318.9	0.00	0.09	0.29	0.48	0.63	0.0	28.7	92.5	153.1	200.9
4-1 Qda. Chacras: Jet. Rio Chané - Route 9	36.00	160.2	0.00	0.09	0.29	0.48	0.63	0.0	4 4	46.5	76.9	100.9
4-2 Qda. Chacras: Upstream of Route 9	1.00	4.0	0.00	0.09	0.29	0.48	0.63	0.0	0.4	1.2	1.9	2.5
4-3 Chané Drainage	26.00	154.7	00.00	0.00	0.29	0.48	0.63	0.0	13.9	44.9	74.2	97.4
5. OKINAWA DRAINAGE	26.00	177.9	0.06	0.26	0.39	0.49	09 0	22.6	53.1	74.2	91.1	108 6
5-1 Downstream of Route 9	25.00	145.9	0.04	0.23	0.36	0.46	0.56	5.8	33.6	52,5	67.1	81.7
5-2 Upstream of Route 9	1.00	32.0	09'0	0.94	1.13	1.31	1.53	16.8	19.5	21.7	24.0	26.9

TABLE A.8.4 INUNDATION AREA AND DEPTH OF SAN JUAN - ANTOFAGASTA WITHOUT FLOOD MITIGATION AND DRAINAGE IMPROVEMENT

Tarect Area	Distance	Potential		nundation	Inundation Depth (m)	а) (ш		I	nundatio	Inundation Area (km2)	m2)	
	(H	Inundation	L.	cturn Pe	Return Period (Year)	Û.	-		Seturn Pe	Return Period (Year)	(H	
		Area (km2)	4	'n	10	20	50	2	S	10	20	30
A. WHOLE AREA	111.40	663.1	0.29	0.42	0.48	0.53	65.0	315.8	419.5	464.2	495.0	533.4
SAN JUAN	63.20	355.1	_	0.69	0.79	0.88	0.97	187.8	259.4	283.4	297.6	315.8
[1-1 Arrovo Yapacanicito: Downstream	32.40	165.0	_	0.97	1.07	1.16	1.25	127.1	160.1	165.0	165.0	165.0
1-2 Arrovo Yapacanicito: Mid-stream	21.30	96.0	Ī	0.47	0.59	. 89.0	0.78	23.0	45.1	9.99	65.3	74.9
1-3 San Juan Drainage Main; km 24 - km 28		15.5		0.50	0.50	0.50	0.54	7.6	7.8	7.8	7.8	8.4
San Juan Drainage Main: km 17 -		35.0	0.32	0.59	69.0	0.75	0.83	11.2	20.7	24.2	26.3	29.1
1-5 Arrovo Tejeria: Downstream of Road Main	7.50	14.0		0.26	0,40	0.54	0.68	0.8	3.6	5.6	7.6	9.5
1-6 Arroyo Tejeria: Upstream of Road Main	2.00	29.6	_	0.75	0.82	0.87	0.98	18.1	22.2	24.3	25.8	29.0
2 ANTOFAGASTA	48.20		_	0.50	0.59	99.0	0.74	128.0	160.1	180.8	197.4	217.6
[2-1 Arrovo Jochi; Mid-stream	7.00	76.0	0.16	0.26	0.32	0.37	0.41	12.2	19.8	24.3	28.1	31.2
2-2 Arrovo Joch: Upstream	18.60		_	0.47	0.60	0.70	0.81	7.4	11.3	14,4	16.8	19.4
2-3 Arroyo Tacuaral, Mid-stream	6.20			0.63	69.0	0.74	0.81	85.9	100.2	109.7	117.7	128.8
2-4 Arrovo Tacuaral: Upstream	16.40			0.59	0.66	0.71	0.78	22.5	28.9	32.3	34.8	38.2

WITH FLOOD MITIGATION AND DRAINAGE IMPROVEMENT (ALTERNATIVE I) TABLE A.8.5 INUNDATION AREA AND DEPTH OF SAN JUAN - ANTOFAGASTA

Target Area	Distance	Potential	7	Inundation Depth (m	n Depth (m)			Inundation Area (km2)	n Arca ((ZH2)	
	(F.)	(km) Inundation		Return Period (Year)	nod (Ye	(F			Return Period (Year)	oy) bon	ar)	ľ
	,	Area (km2)	2	5	10	20	50	7	٧	01	20	\$0
V WHOLE AREA	111,40	663.1	0.21	0.30	0.37	0.43	0.51	160.2	223.7	253.9	285.8	326.4
. SAN JUAN	63.20	355.1	-	0,49	0.60	0.71	0.83	133.7	182.4	202.0	223.6	250.3
-1 Arroyo Yapacanicito: Downstream	32,40	165.0	0.81	1.01	1.13	1.22	1.32	133.7	165.0	165.0	165.0	165.0
-2 Arrovo Yapacanicito: Mid-stream	21.30	0.96		0.04	0.11	0.21	0.32	0.0	∞. ⊙	10.6	20.2	30.7
-3 San Juan Drainage Main; km 24 - km 28		15.5	-	0.13	0.21	0.28	0.41	0.0	2.0	e E	4.	6.4
		35.0	-	0.23	0.38	0.51	0.70	0.0	8.3	13.3	17.9	24.5
-S Arroyo Tejeria: Downstream of Road Main	7.50	14.0	-	0.10	0.26	0.45	0.63	0.0	1.4	3.7	6.3	8.9
-6 Arroyo Tejeria: Upstream of Road Main	2.00	29.6	_	0.07	0.21	0.33	0.50	0.0	2.1	6.2	6.6	14.9
ANTOFAGASTA	48.20	308.0	0,25	0.37	0.45	0.51	0.59	26.6	413	51.9	62.2	76.1
- I Arroyo Jochi: Mid-stream	7.00	76.0	0.00	90.0	0.12	0.17	0.21	0.0	4.6	9.1	12.9	16.0
-2 Arroyo Joch: Upstream	18.60	24.0	0.31	0.47	09.0	0.70	0.81	7.4	11.3	14.4	16.8	19.4
-3 Arroyo Tacuaral: Mid-stream	6.20	159.0	0.00	00.0	0.00	0.01	0.0	0.0	0.0	0.0	1.6	6.4
-4 Arrovo Tacuaral: Upstream	16.40	49.0	0.39	0.52	85.0	0.63	0.70	161	25.5	28.4	30.9	34.3
					İ		İ					١

WITH FLOOD MITIGATION AND DRAINAGE IMPROVEMENT (ALTERNATIVE II) TABLE A.8.6 INUNDATION AREA AND DEPTH OF SAN JUAN - ANTOFAGASTA

Target Area	Distance	Potential	1	Inundation Depth (m)	Depth (m)	÷	I	nundation	Inundation Area (km2)	m2)	
	(FF)	(km) Inundation		Return Period (Year)	riod (Yes	(i	-	Ŧ	ctum Pc	Return Period (Year)	(i	
	,	Area (km2)	7	\$	10	20	50	2	\$	10	20	20
A. WHOLE AREA	111.40	663.1	0.22	0.31	0.38	0.44	0.50	161.9	228.1	258.2	286.9	322.5
1. SAN JUAN	63.20	355.1		0.51	0.62	0.72	0.82	135.3	186.8	206.2	224.7	246.5
1-1 Arrovo Yapacanicito: Downstream	32.40	165.0		1.03	1.15	1.24	1.33	135.3	165.0	165.0	165.0	165.0
1-2 Arrovo Yapacanicito: Mid-stream	21.30	0.96		0.11	0.19	0.26	0.34	0.0	10.6	18.2	25.0	32.6
1-3 San Juan Drainage Main; km 24 - km 28	: 	15.5	: .	0.13	0.21	0.28	0.36	0.0	2.0	3.2	4.3	5.6
1-4 San Juan Drainage Main; km 17 - km 9		35.0	0.00	0.16	0.28	0.41	0.56	0.0	5.8	6.6	14.3	19.4
1-5 Arrovo Tejeria: Downstream of Road Main	7.50	14,0		0.10	0.26	0.45	0.63	0.0	1.4	3.7	6.3	8.9
1-6 Arroyo Tejeria: Upstream of Road Main	2.00	29.6		0.07	-0.21	0.33	0.50	0.0	2.1	6.2	6.6	14.9
a thought of a thing and a	0,0	000	4:	600	37.0	15	0	9 96	£	\$10	. 0	7,4
2. ANIOFACASIA	46.40	200.0		\c.\0		2.0	2	2.07		6.40	7:70	2
2-1 Arroyo Jochi: Mid-stream	1.8	76.0		90.0	0.12	0.17	0.21	0.0	4.6	1.6	12.9	0.0
2-2 Arrovo Joch: Upstream	18.60	24.0		0.47	900	0.70	0.81	7.4	11.3	14.4	16.8	19.4
2-3 Arrovo Tacuaral: Mid-stream	6.20	159.0	0.00	0.00	0.00	0.01	0.04	0.0	0.0	0.0	1.6	6.4
2.4 Arrovo Tacuaral: Upstream	16.40	49.0		0.52	0.58	0.63	0.70	19.1	25.5	28.4	30.9	34.3

TABLE A.9.1 CONTINUOUS MINIMUM MONTHLY RAINFALL STATION: 5806 SANTA CRUZ - TROMPILLO

(Unit:mm)

·							(Unit: mm
YEAR				nimum Rainfa			Annua
	1 Month	2 Month	3 Month	4 Month	5 Month	6 Month	Rainfa
1943	17.5	40.5	67.0	144.8	195.1	272.9	122
1944	6.2	80.5	87.6	177.3	211.3	262.5	90
1945	1.0	89.3	122.4	215.9	235.6	269.1	92
1946	13.8	94.7	208.4	358.0	426.7	516.0	175
1947	43.9	172.7	331.5	396.9	592.4	653.9	183
1948	7.5	23.8	82.8	231.6	446.7	504.9	172
1949	0.0	0.7	27.6	96.7	260.0	414.8	135
1950	3.0	16.6	64.8	169.1	293.8	364.7	112
1951	0.4	75.3	145.7	168.0	231.5	. :306.4	- 111
1952	1.7	9.4	140.3	237.5	- 260.4	327.4	122
1953	0.0	12.7	34.5	70.3	197.1	370.5	120
1954	18.0	62.8	133.1	214.9	239.9	270.9	118
1955	0.0	23.0	79.3	228,7	324.6	394.8	153
1956	2.1	35.2	82.9	132.4	160.0	261.6	116
1957	23,0	123.9	184.9	304.8	440.8	510.3	149
1958	12.2	33.9	130.6	215.0	315.4	369.7	126
1959	9.4	42.4	117.6	170.6	202.0	283.8	115
1960	22.2	58.6	97.2	153.8	220.6	304.5	93
1961	7.2	25.7	52.5	77.6	142.9	214.1	123
1962	13.6	29.3	45.1	93.1	132.2	220.3	82
1963	5.4	32.2	86.5	148.8	216.8	254.6	84
1964	3.6	43.7	64.6	102.9	169.7	243.3	118
1965	2.0	83.9	136.6	202.3	235.8	307.4	109
1966	1.5	4.7	41.2	147.4	251.1	262.8	104
1967	11.0	47.7	91.5	181.6	315.6	438.8	123
1968	2.0	30.1	41.2	79.5	87.4	140.2	91
1969	5.0	6.0	70.2	170.4	270.9	383.7	110
1970	6.0	15.4	62.9	89.1	149.9	189.7	71
1971	13.6	52.0	101.3	134.7	190.1	222.4	84
1972	8.0	102.8	202.7	248.8	353.2	431.8	107
1973	0.2	30.1	56.8	78.0	148.2	161.2	84
1974	0.3	40.8	149.8	213.5	227.4	354.4	13:
1975	15.4	93.0	160.4	264.0	413.2	559.6	13
1976	1.1	16.0	48.9	123.1	142.0	237.6	108
1977	9.6	48.4	148.1	230.1	409.8	518.5	178
1978	2.2	40.2	83.2	154.3	279.1	332 2	117
1979	0.0	37.1	75.9	157.1	177.1	267.3	115
1980	38.1	99.9	183.9	284.0	333.2	442.5	133
1981	4.4	34.6	122.7	262.4	507.9	577.1	201
1982	37.1	103.7	202.4	397.6	642.3	696.8	209
1983	10.5	35.1	179.1	257.2	431.3	659.6	194
1984	33.1	84.7	138.9	172.0	242.8	334.3	154
1985	31.0	99.3	181.8	301.5	412.3	453.4	140
1986	47.9	220.9	306.8	469.5	582.9	694.6	161
1987	19.1	66.5	186.5	355.3	561.1	718.8	193
1988	8.8	29.7	39.3	70.9	118.9	193.9	105
1989	12.5	39.7	125.9	194.7	353.3	432.5	153
1990	40.6	140.8	250.5	291.1	406.4	605.4	134
1991	5.7	49.9	123.4	215.9	327.5	435.9	158
1992	47.1	147.3	279.9	463.7	697.7	734.4	224
1993	13.5	82.1	140.0	227.9	258.0	342.8	in
1994	3.4	22.6	34.4	63.5	93.4	152 3	89
AVER.	12.4	58.3	122.2	204.0	298.8	382.2	130

TABLE A.9.2 CONTINUOUS MINIMUM MONTHLY RAINFALL
STATION: 61NP SAAVEDRA

	Continuous Minimum Rainfell							
YEAR	l Month	2 Month	3 Month					
1943	1 Minim	2 Mondi	21/10/14	1110101	- J. 141011G1		Rainfall	
1944								
1945								
1946			÷					
1947					•			
1948								
1949			Ē			Į.		
1950						[
1951								
1952	0.0	0.0	93.4	174.8	192.4	250.6	1350	
1953	2.5	7.5	45.3	85.8	197.3	318.9	1257	
1954	0.0	2.5	- 80.9	131.5	189.6	273.2	982	
1955	0.0	5.0	68.4	108.8	174.5	260.6	1474	
1956	20.2	146.8	222.7	298.5	488.5	546.7	1656	
1957	48.1	144.5	238.1	311.6	473.6	605.1	1461	
1958	0.0	35.4	98.6	151.4	303.5	351.3	1596	
1959	0.0	30.3	101.1	192.2	204.8	303.6	1154	
1960	12.6	45.4	106.0	169.4	232.7	303.6	959	
1961	0.0	20.2	73.2	133.9	187.0	262.9	1240	
1962	5.0	20.1	50.4	73.1	121.0	186.8	1006	
1963	7.6	15.2	55.8	88.8	129.4	170.0	1036	
1964	5.0	20.2	55.8	93.9	159.9	241.2	1299	
1965	2.5	38.1	177.8	182.8	269.2	375.9	1394	
1966	0.0	0.0	68.6	155.0	162.6	259.1	1115	
1967	10.2	38.1	83.8	121.9	218.4	330.2	1133	
1968	2.5	43.1	58.3	101.5	134.5	225.9	1072	
1969	0.0	20.3	38.1	82.6	151.2	227.4	817	
1970	2.5	10.1	. 17.7	91.4	139.6	172.6	622	
1971	5.0	10.0	43.0	88.7	170.0	215.7	664	
1972	17.8	55.9	134.6	172.7	271.8	319.3	1322	
1973	5.0	25.l	72.7	78.4	150.4	187.3	1225	
1974	6.0	79.0	139.0	191.2	268.7	322.2	1316	
1975	6.2	69.2	139.1	188.6	293.4	358.8	1088	
1976	0.0	10.6	39.8	153.1	182.3	279.1	1213	
1977	6.8	26.5	42.1	116.7	194.6	246.6	1333	
1978	3.2	12.0	81.9	163.7	210.0	279.9	1333	
1979	0.0	13.7	33.9	48.8	142.3	192.4	1386	
1980	8.1	25.8	56.7	171.5	244.7	408.4	1661	
1981	9.0	34.3	130.3	270.5	432.0	621.2	2063	
1982	9.8	74.5	152.7	306. 7	405.8	701.3	1908	
1983	19.1	60.5	129.6	171.0	263.5	475.7	1731	
1984	19.2	46.5	84.3	137.2	167.3	237.3	1564	
1985	1.0	113.8	189.6	322.2	443.6	573.9	1408	
1986	5.4	76.4	237.3	330.7	432.0	511.6	1459	
1987	22.3	120.3	261.2	359.2	532.6	651.4	1986	
1988	1.7	5.5	16.6	. 35.1	• 60.1	168.7	1021	
1989	16.3	76.8	155.2	215.7	400.6	505.7	1636	
1990	43.0	95.3		206.3	383.3	607.4	1636	
1991	0.5	23.7	64.7	137.2	236.2	308.7	1559	
1992	24.7	86.9	210.9	401.9	517.6	655.2	2708	
1993	8.0	48.2	59.4	122.2	149.5	189.6	1130	
1994	5.2	64.2	147.0	228.5	287.5	491.2	1410	
AVER	8.4	44.1	104.5	1713	255.1	352.9	1358	

TABLE A.9.3 CONTINUOUS MINIMUM MONTHLY RAINFALL STATION: OKINAWA II

YEAR	Continuous Minimum Rainfall							
11.00	1 Month 2 Month 3 Month 4 Month 5 Month 6 Month							
1943							Rainfa	
1944								
1945				*				
1946								
1947								
1948								
1949								
1950								
1951				•				
1952				+ .				
1953								
1954								
1955								
1956			-					
1957								
1958								
1959								
1960			7		- 1			
1961						, ,		
1962			1+					
1963			-	•				
1964								
1965		-						
1966					-			
1967					1			
1968					1.			
1969	0.0	45.7	117.2	185.9	283.6	352.3	107	
1970	0.0	0.0	0.0	5.0	20.0	42.0	58	
1971	10.0	38.0	73.0	124.0	188.0	226.0	61	
1972	33.8	80.3	155.6	229.2	315.4	389.0	125	
1973	3.5	38.5	57.0	101.0	143.5	151.5	9.	
1974	4.0	52.0	82.7	137:2	192.0	228.5	120	
1975	0.0	84.5	156.5	257.0	389.0	498.5	113	
1976	0.0	4.2	62.1	108.2	166.1	252.4	117	
1977	2.5	38.5	74.0	112,7	148.2	190.4	100	
1978	1.4	18.4	104.5	207.1	228.5	270.6	11:	
1979	0.0	23.6	26.6	82.7	170.1	226.2	113	
1980	17.0	46.0	63.2	160.6	222.6	354.8	160	
1981	14.0	47.4	126.4	226.0	369.5	556.5	219	
1982	12.3	88.3	162.1	359.4	464.8	539.6	168	
1983	0.0	34.2	90.3	140.5	214.3	288.9	12	
1984	4.0	22.8	- 54.2	79.2	110.2	146.0	130	
1985	10.8	53.6	181.4	262.8	357.5	515.1	126	
1986	1.2	66.2	202.7	267.5	324.3	454,1	162	
1987	10.0	114.4	229.4	318.8	406.4	495.6	16.	
1988	0.0	3.2	13.3	35.6	58.9	114.4	70	
1989	2.0	39.0	119.3	183.8	259.8	366.1	12:	
1990	41.4	124.9	212.9	361.9	460.6	620.6	171	
1991	0.0	50.0	116.0	193.0	283.0	399.0	120	
1992	4.0	56.0	136.0	330.0	401.0	540.8	22:	
1993	0.0	19.7	121.1	57.6	85.8	105.0	7	
1994	0.0	71.5	137.0	170.5	253.0	403.0	11;	
AVER.	6.6	48.5	106.7	180.7	250.6	335.7	12	

TABLE A.9.4 CONTINUOUS MINIMUM MONTHLY RAINFALL STATION: COL. SAN JUAN DE YAPACANI

	Continuous Misseum Dair-Gil							
YEAR ,	134 3	Continuous Minimum Rainfall 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month						
1913	l Month	2 Month	3 Month	4 Month	2 MORIUL	OMM	Rainfall	
		•	•					
1944		•						
1945								
1946								
1947								
1948					7.7			
1949 1950			1					
1950				•				
			•		•			
1952	i							
1953			\$ 18 m	, -		€.		
1954 1955	,							
1956								
1957 1958		· .			:			
1959						*		
1959	44.3	129.4	221.6	274.5	418.1	628.0	1819	
	61.1	138.3	295.1	372.3	559.3	718.4	2833	
1961 1962	4.0	8.9	20.4	67.0	99.0	196,9	1181	
1963	20.8	48.6	176.4	208.2	240.2	360.9	1917	
1964	15.6	64.1	113.5	191.6	319.7	488.4	1893	
1965	44.5	140.8	296.5	374.3	521.4	635.1	2146	
1966	1.0	28.0	162.0	312.5	452.0	602.5	1964	
1967	49.5	149.0	262.5	350.0	451.5	565.0	1869	
1968	11.0	62.3	81.4	173.7	208.7	360.7	1750	
1969	15.5	89.8	226.9	305.9	463.7	628.9	2043	
1970	8.5	32.5	74.2	127.2	200.5	343.2	1403	
1971	34.5	83.7	136.5	182.7	242.6	330.9	1396	
1972	52.7	171.5	296.0	411.9	553.7	751.9	1929	
1973	8.2	54.6	92.5	126.8	182.5	308.9	1653	
1974	13.0	71.7	134.2	185.5	216.0	299.1	1747	
1975	26.1	141.3	287.3	402.5	525.9	657.4	1718	
1976	13.9	39.1	66.3	173.9	203.1	364.8	1551	
1977	32.4	99.1	212.6	313.5	417.6	531.1	2085	
1978	20.6	87.4	190.8	321.9	407.6	511.0	1998	
1979	1.4	34.8	71.7	203.1	268.4	355.6	1495	
1980	13.8	31.4	140.6	291.9	339.5	692.9	2561	
1981	1.7	85.1	183.4	312.6	601.3	841.3	3264	
1982	53.4	206.2	387.2	731,9	939.4	1120.4	3002	
1983	21.5	49.0	166.3	348.0	465.3	666.9		
1984	21.3 22.1	83.8	210.6	329.7	412.5	539.3	1856	
1985	12.8	91.6	114.1	227.2	364.7	511.5		
1986	48.0	134.4	215.8	308.5	385.2	538.2	1728	
1987	6.6	44.3	153,3	357.4	624.3	735.8		
1988	0.0	18.8	23.1	46.2	71.5	209.4	1016	
1989	12.8	72.8	96.2	249.8	319.4	356.3	1565	
1990	39.2	100.8	180.7	261.4	507.0	683.9		
1991	54.9	117.9	190.5	263.9	400.7	514.6		
1992	48.0	167.4	347.1	436.2	582.5	762.2	3163	
1993	5.1	43.4	72.7	87.5	142.5	195.4	1084	
1994	2.6	28.8	90.6	184.2	219.8	281.6		
AVER.	23.5	84.3	171.2	271.9	380.8	522.5		

TABLE A.9.5 SUMMARY OF PROBABLE MONTHLY DROUGHT RAINFALL BY LOG-NORMAL DISTRIBUTION

			•	1.				
		:				. (Unit : mm)	
Return Period			Probable Mon	thly Rainfall f	or Drought		Annua	
(Year)	1 Month	2 Month	3 Month	4 Month	5 Month	6 Month	Rainfall	
1. 5806 SANTA C	RUZ TROM	PILLO						
200	0.1	2.7	21,2	48.2	75.0	117.1	623,9	
100	0.1	3.5	24.7	54.8	84.8	130.2	667.6	
50	0.1	4.7	29.3	63.2	97.3	146.7	720,3	
20	0.3	7,3	37.7	78.1	119.0	174,6	805.1	
10	0.5	10.7	47.0	93.9	142.1	203.5	887,6	
5	3.1	17.0	61.5	117.7	176.4	245.4	1000.1	
2	5.1	41.1	103.0	181.1	266.7	350.8	1256,0	
2. 61NP SAAVED	RA	:						
200	0.0	0.3	15.1	37.3	65.4	104.5	629.6	
100	0.0	0.4	17.9	42.7	73.9	116,5	675.9	
50	0.0	0.7	21.6	49.6	84.7	131.7	731.7	
20	0.1	1.4	28.4	62.0	103.3	157.5	822.0	
10	0.2	2.6	36.2	75.3	123.0	184.3	910.4	
5	0.4	5.6	48.8	95.5	152.4	223.3	1031,5	
2	2.6	24.1	85.9	150.3	229.1	322.1	1309.2	
3. OKINAWA II				•			•	
200	0.0	0.3	0.4	10.4	29.0	49.7	499.5	
100	0.0	0.5	0.7	13.4	35.1	59.0	544.3	
50	0.0	0.8	1.2	17.9	43.5	71.3	599.2	
20	0.0	1.7	2.8	27.0	59.7	94.2	689.7	
10	0.1	3.2	5.6	38.9	78,7	120.3	780.3	
5	0.2	7.0	13.4	60.8	110.3	162.2	907,5	
. 2	1.3	31.1	70.3	142.2	210.4	287.1	1210.6	
4. COL. SAN JUAR	N DE YAPAC	CANL); (1)					
200	0.3	10.7	23.0	54.2	78,1	154.3	900.4	
100	0.4	12.9	27.5	62.6	90.0	172.3	964.6	
50	0.6	15.7	33.5	73.5	105.4	194.9	1041.9	
20	1.1	21.1	44.8	93.1	132.9	233.5	1166.4	
10	1.9	27.4	57.9	114.6	162.9	273.6	1288.0	
5	3.8	37.6	79.0	147.8	208.9	332.1	1453.9	
2	13,4	68.9	143.2	239.9	335.7	480.8	1832.3	

TABLE A.9.6 RETURN PERIOD OF DROUGHT RAINFALL (1984 - 1994, JAN - SEP. 1995)

	Return Period of Drought Rainfall (Year)									
	1 Month	2 Month	3 Month	4 Month	5 Month	6 Month	Annual			
1) SC-Trom	pillo									
1988	< 2	3.4	18.3	34.4	20.0	13.3	4.4			
1993	< 2	< 2	< 2	< 2	2.3	2.2	2.9			
1994	3.3	4.3	31.8	49.4	65.6	43.9	9.4			
1995	< 2	4.4	5.1	18.9						
2) Saavedra							•			
1988	3.2	5.0	146.4	>200	>200	15.8	5.4			
1993	< 2	< 2	4.1	3.5	5.5	9.3	3.9			
1994	< 2	< 2	< 2	< 2	< 2	< 2	< 2			
1995	10.0	3.6	139.3	31.9						
3) Okinawa	II									
1988	>20	10.0	5.0	12.8	21.5	12.2	18.0			
1993	>20	3.4	4.6	5,7	8.9	15.9	14.6			
1994	>20	< 2	< 2	< 2	< 2	< 2	2.6			
1 9 95	>20	4.3	4.1	16.5						
4) Col. San	Juan de Yap	acani								
1988	>200	32.8	200.0	>200	>200	38.7 .	66.8			
1993	4.6	4.4	6.5	28.6	16.8	49.6	39.9			
1994	8.2	9.3	4.5	3.8	4.7	9.3	7.9			
1995	7.3	37.3	93.7	145.6						

V.,	: .	<i>;</i> .			and the second of the second o		:
9	÷						
					•	¥	
					1,	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	
						•	and a second
	1 1			1.	· · · · · · · · · · · · · · · · · · ·		* *
-	v *			£			1
				* *			***
			•	* *			
			4				
			1 4 TE	* .	1		

