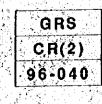
No. 1

JAPAN INTERNATIONAL COOPERATION AGENCY

MINISTRY OF COMMUNICATIONS THE ISLAMIC REPUBLIC OF PAKISTAN

<u>(</u>] \

1 22


BASIC DESIGN STUDY REPORT ON THE PROJECT FOR EXPANSION OF CONSTRUCTION MACHINERY TRAINING INSTITUTE IN THE ISLAMIC REPUBLIC OF PAKISTAN

MARCH 1996

JAPAN INTERNATIONAL COOPERATION AGENCY CONSTRUCTION PROJECT CONSULTANTS, INC.

YACHIYO ENGINEERING CO., LTD.

1129227 [3]

JAPAN INTERNATIONAL COOPERATION AGENCY

MINISTRY OF COMMUNICATIONS THE ISLAMIC REPUBLIC OF PAKISTAN

BASIC DESIGN STUDY REPORT ON THE PROJECT FOR EXPANSION OF CONSTRUCTION MACHINERY TRAINING INSTITUTE IN THE ISLAMIC REPUBLIC OF PAKISTAN

MARCH 1996

JAPAN INTERNATIONAL COOPERATION AGENCY CONSTRUCTION PROJECT CONSULTANTS, INC. YACHIYO ENGINEERING CO., LTD.

PREFACE

In response to a request from the Government of the Islamic Republic of Pakistan, the Government of Japan decided to conduct a basic design study on the Project of Expansion of Construction Machinery Training Institute and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Pakistan a study team from 2nd October to 22nd October, 1995.

The team held discussions with the officials concerned of the Government of Pakistan, and conducted a field study at the study area. After the team returned to Japan, further studies were made. Then, a mission was sent to Pakistan in order to discuss a draft basic design, and as a result, the present report was finalized.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

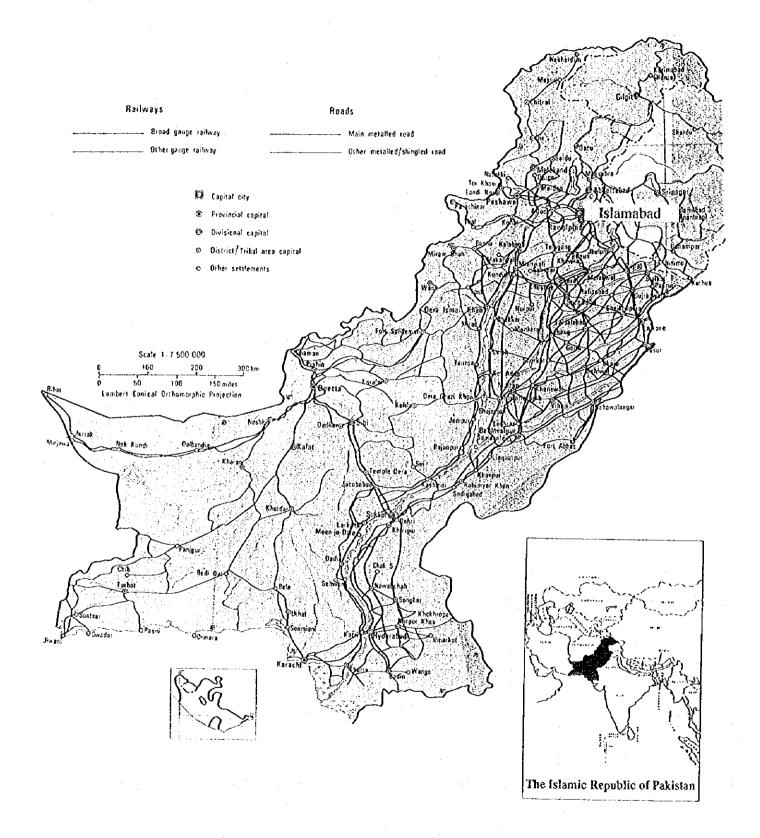
I wish to express my sincere appreciation to the officials concerned of the Government of the Islamic Republic of Pakistan for their close cooperation extended to the teams.

March, 1996

Kimio Fujita President Japan International Cooperation Agency

March, 1996

LETTER OF TRANSMITTAL


We are pleased to submit to you the basic design study report on the Project for Expansion of Construction Machinery Training Institute in the Islamic Republic of Pakistan.

This study was conducted by the Joint Venture of Construction Project Consultants, Inc. and Yachiyo Engineering Co., Ltd. under a contract to JICA, during the period from 29th September, 1995, to 14th March, 1996. In conducting the study, we have examined the feasibility and rationale of the project with due consideration to the present situation of the Islamic Republic of Pakistan and formulated the most appropriate basic design for the project under Japan's grant aid scheme.

Finally, we hope that this report will contribute to further promotion of the project.

Very truly yours,

Yoichi Higaki Project Manager Basic design study team on The Project for Expansion of Construction Machinery Training Institute Joint Venture of Construction Project Consultants, Inc. and Yachiyo Engineering Co., Ltd.

LOCATION MAP

Abbreviations

÷	ADP	Annual Development Programme
	AK	Azad Jammu and Kashmir
	CMTC	Construction Machinery Training Center
	ĊMTI	Construction Machinery Training Institute
	FATA	Federally Administered Tribal Areas
	FWO	Frontier Works Organisation
	GVI	Government Vocational Institutions
	NEC	National Economic Council
	NHA	National Highway Authority
	NLC	National Logistics Cell
.:	NTB	National Training Bureau
	NWFP	North Western Frontier Province
	PCSIR	Pakistan Council of Scientific and Industrial Research
	PECO	Pakistan Engincering Company
	PIDC	Pakistan Industrial Development Corporation
	РР	Perspective Plan 1988-2003
	PR	Pakistan Railways
	PSDP	Public Sector Development Programme
	SBP	State Bank of Pakistan
	WAPDA	Water and Power Development Authority
	ADB	Asian Development Bank
	ECC	European Economic Community
	IBRD	International Bank for Reconstruction and Development
	IDA	International Development Association
	IDB	Islamic Development Bank
	IMF	International Monetary Fund
	JICA	Japan International Cooperation Agency
	OECD	Organisation for Economic Cooperation and Development
	UNDP	United Nations Development Programme
	OECF	Overseas Economic Cooperation Fund, Japan

SAL	Structural Adjustment Loan
ĆIF	Cost, Insurance and Freight
СРІ	Consumer Price Index
FOB	Free On Board
GDP GNP	Gross Domestic Product Gross National Product
· ·	

BASIC DESIGN STUDY REPORT ON THE PROJECT FOR EXPANSION OF

CONSTRUCTION MACHINERY TRAINING INSTITUTE IN THE ISLAMIC REPUBLIC OF PAKISTAN

Prefa	lce						
Lette	er of Tra	nsmittal					
Locat	tion Ma	p					
Abbreviations							
СНА	PTER	1 Background of the Project	1-1				
ĊHA	PTER	2 Contents of the Project	2-1				
2.1	Objecti	ves of the Project	2-1				
2.2	Basic C	Concept of the Project	2-1				
	2.2.1	Necessity of the CMTI's Expansion Plan	2-1				
	2.2.2	Examination of the CMTI's Expansion Plan	2-12				
2.3	Basic D	esign	2-35				
	2.3.1	Design Concept	2-35				
	2.3.2	Basic Design					
СНА	PTER	3 Implementation Plan	3-1				
3.1	Implem	entation Plan	3-1				
	3.1.1	Implementation Concept	3-1				
	3.1.2	Implementation Conditions					
	3.1.3	Scope of Works					
	3.1.4	Consultant Supervision					
	3.1.5	Procurement Plan					
	3.1.6	Implementation Schedule	3-5				
	3.1.7	Obligations of Recipient Country					
3.2		on and Maintenance Plan					
	3.2.1	Maintenance System	3-8				
	3.2.2	Maintenance Cost Estimation					

CHAI	PTER	4	Project Evaluation and Recommendation	4-1
4.1	Project	Effect		4-1
			ion	

APPENDICES

Appendix 1	Member List of the Survey Team	A-1
Appendix 2	Survey Schedule	
Appendix 3	List of Parties Concerned in Pakistan	
Appendix 4	Minutes of Discussion	A-6
Appendix 5	Cost Estimation Borne by Pakistani Side	
Appendix 6	Road Development Programmes by the Federal Government	A-33
Appendix 7	Estimates of Required Manpower for Road Works	A-37
Appendix 8	Number of Vacancies and Applicants/Employment of Trainces	À-45
Appendix 9	Buildings and Facilitics Expansion Plan	A-47
Appendix 10	Status of Training Courses	A-50
Appendix 11	Situation of Local Agents of Foreign Makers	
Appendix 12	Equipment Maintenance Proforma	A-55
Appendix 13	Condition of the CMTI's Existing Equipment	A-60
Appendix 14	References	

CHAPTER 1. Background of The Project

Chapter 1 Background of the Project

The Government of the Islamic Republic of Pakistan has been promoting the agricultural and industrial sectors whose total share of the GDP exceeds 50%. (Agriculture and industry 24.5% and 26.7%, respectively, in 1995). The road sub sector plays an important role in national transport (freight and passenger) where more than 60% depends on road transport.

Regarding road conditions, of a total of 205,304 km of road network, only 51% are paved with all weather type surfaces but have low geometric standards of single lane.

Development of the road sub sector being a pre-requisite for economic growth and national integration, the Government has intensified efforts to expand and improve the existing facilities and accelerate development of the network by introducing new technologies and developing technical manpower in the road construction industry.

Under the Sixth Five Year Plan (1983-1988) the Road Construction Training Center (CMTI) was established with Japan's Grant Aid Assistance to develop skilled manpower in the field of construction machinery techniques. The facilities constructed included an administration building, training building, dormitory and canteen for trainees (total area of the facilities 7,964 m², project cost 2,970 million yen). Then technical assistance by Japanese experts has been provided during 1983 to 1990 for the training of instructors for construction machinery operation and maintenance. Training equipment of about 61 million yen equivalent was also introduced. During this period, transfer of technology was successfully conducted, and a training capacity of about 260 trainees per year was attained.

Under the Eighth Five Year Plan (1993-1998) the CMTC was renamed the Construction Machinery Training Institute (CMTI) in 1993 establishing the expansion plan which programmes expansion of the existing training courses and introducing new courses such as diploma of associate engineer course.

In due course of implementation of the expansion plan, the Government of Islamic Republic of Pakistan made a request to the Government of Japan for the procurement of construction material and training equipment to accomplish the expansion plan together with technical assistance by Japanese experts.

Items requested were as follows:

:

:

Construction material

Cement, concrete block, steel bars for construction of class room, training building and other facilities

Training equipment

Construction machinery such as concrete mixing plant, lifting equipment, vibrator, crane, etc.

CHAPTER 2. Contents of The Project

Chapter 2 Contents of the Project

2.1 Objectives of the Project

Under the Sixth Five Year Plan (1983-1988) the Construction Machinery Training Center (CMTC) was established in 1986 with Japan's Grant Aid Assistance to fulfill an increasing demand for skilled manpower in the construction machinery field. Then technical assistance by Japanese experts has been provided up to 1990 for training purposes in construction machinery operation, maintenance and management.

The Eighth Five Year Plan (1993-98) has given the highest priority to the development of physical infrastructure. In consideration of the fact that more than 60% of inland traffic is shared by roads, more than 60% of the total investment in the transport and communications sector under the Public Sector Development Programme (PSDP) was allocated to the road sub-sector.

In proportion to the increase of construction activities, an adequate supply of skilled man power is required nationwide. Under these circumstances, CMTC was renamed as the Construction Machinery Training Institute (CMTI) in 1993 and its training capacities are being expanded and upgraded.

The objectives of the Project for Expansion of Construction Machinery Training Institute (hereinafter referred to as "the Project") are to assist CMTI's expansion and upgrading plan through the provision of construction machinery, maintenance equipment and training equipment to increase its training capacities

2.2 Basic Concept of the Project

2.2.1 Necessity of CMTI's Expansion Plan

CMII's expansion plan was examined from the viewpoint of nationwide manpower demand in the road construction industry, and also from the recent trend of numbers of applicants and employment situation of the graduates of CMTI. The required manpower by category for construction works was estimated from the annual construction workload which was derived from the recent trend of the road programme, its rate of increase and annual output, and then compared to CMTI's present training capacities.

(1) Estimates of Manpower Demand in Road Construction Industry

1) Recent Trend of Road Programme

The growth rate of the nationwide road network during 1980-1994 is shown in Table 2.1 and the summary of on-going road programmes is given in Appendix-6.

	Hig	h Type Roa	id	Lov	v Type Roa	d	.	Total	·	Five
Year	Length	Growth	Rate	Length	Growth	Rate	Length	Growth	Rate	Year
	km	km	%	, km	km	%	km	km	%	Plan
1980/81	38,035			55,925			93,960			
1981/82	40,380	2,3345	6	45,679	554	1	96,859	2,899	3	
1982/83	42,773	2,393	6	57,020	541	Ĩ	99,793	2,934	3	
1983/84	49,325	5,552	13	63,591	6,571	12	-111,916	12,123	12	6th
1984/85	52,120	3,795	8	66,351	2,760	4	118,471	6,555	6	
1985/86	56,318	4,198	8	69,925	3,574	5	126,243	7,772	7	
1986/87	61,464	5,146	9	72,489	2,564	4	133,953	7,710	6	
1987/88	68,880	7,416	12	74,061	1,572	2	142,941	8,988	7	
1988/89	74,355	5,475	8	77,094	3,033	4	151,449	8,508	6	-7lh
1989/90	81,981	7,626	10	80,364	3,270	4	162,345	10,896	7	
1990/91	86,839	4,858	6	83,984	3,620	5	170,823	8,478	5	
1991/92	91,181	4,342	5	88,183	4,199	5	179,364	8,541	5	
1992/93	95,740	4,559	5	92,592	4,409	- 5	188,332	8,968	5	
1993/94	100,527	4,787	5	97,222	4,630	5	197,749	9,417	· 5 ·	8th
1994/95	104,735	4,208	4	100,569	3,347	3	205,304	7,555	- 4	
1995/96	108,924	4,189	4	103,586	3,017	3	212,510	7,206	. 3	
1996/97	113,281	4,357	4	106,693	3,107	- 3	219,974	7,464	3	
1997/98	117,812	4,531	4	109,893	3,200	3	227,705	7,731	3	

Table 2.1	Road Network Develo	pment since the Sixth	Five Year Plan
-----------	---------------------	-----------------------	----------------

Source: Economic Survey 1994/95

Note: 1) High Type Road = asphaltic surfaced road

Low Type Road = gravel and earthen road

2) On the other hand, classification for administration purposes is as follows:

2-2

- 1. National Roads
- 2. Provincial Roads
- 3. District Roads
- 4. Municipal Roads
- 5. Cantonment Roads

3) 1994/95 = July/1st, 1994 ~ June/30th, 1995

Manpower Demand of Road Construction Industry

Annual growth of road network from 1994/95 to the last year of the Eighth Five Year Plan 1997/98 is estimated at 4,000 km and 3,000 km for high type roads and low type roads, respectively.

To estimate the required manpower for construction to achieve this target, productivity analysis was made for typical road works for both high type roads and low type roads, in which the productivity rates by category of workers adopted by the Ministry of Construction of Japan were applied, but with partial modification to suit the current working conditions in Pakistan.

Typical road works in Pakistan arc as follows:

1. High type roads works

Typical of the high type roads in Pakistan is the asphalt concrete road, Calculation of annual workload of asphalt concrete roads was made based on the following conditions:

Road length	:	4,000 km
Right of way	. :	20 m
Pavement width	:	7 m
Base course (thickness)	:	15 cm
Subbase course (thickness)	:	20 cm

2 - 3

Typical work items for an asphalt concrete road are assumed to be earthwork, rock excavation, subgrade preparation, slope works, subbase course, base course, surface course and concrete structural work. Annual out-put for each work item is calculated based on the productivity set out. Then, the required number of engineers, associate engineers, foremen, skilled labours, common labour, operators, mechanics and drivers per year are calculated as (Annual work load) divided by (Annual out-put).

2)

2. Low type road works

Typical of the low type road in Pakistan is the gravel road. Calculation of annual workload for gravel roads was made based on the following conditions:

Road length	:	3,000 km
Right of way	:	20 m
Pavement width	:	7 m
Base course (thickness)	· :	15 cm
Subbase course (thickness)	:	20 cm

Typical work items for gravel road are assumed to be the same as those for an asphalt concrete road except for the surface course which is to be omitted. To derive the required number of workers by category, the same calculation method as for asphalt concrete roads was used.

3. Routine and periodic maintenance

Calculation of annual workload for routine and periodic maintenance of road was made on the following conditions:

High type road / 5% of total road length Low type road / 10% of total road length

Typical work items for periodic maintenance are assumed to be the same as those of construction works. For routine maintenance-pothole repair, grass cutting, cleaning of drain, etc. were considered.

Productivity analysis for the above three types of works is detailed in Appendix 7. The results indicate that the numbers of required manpower are 200,000, 150,000 and 150,000 for high type road works, low type road works and road maintenance works, respectively.

The required number of workers by category, i.e. construction machinery operators, mechanics, etc. is shown in Table 2.2.

Worker	Ratio	Manpower
I. Construction of High Type Roads		
Engineers	1%	2,000
Associate Engineers	2%	4,000
Foremen	2%	4,000
Skilled Labour	4%	8,000
Common Labour	67%	134,000
Operators	13%	26,000
Mechanics	5%	10,000
Drivers	5%	10,000
Others	1%	2,000
Sub-total	100%	200,000
II. Construction of Low Type Roads	······································	
Engineers	1%	1,500
Associate Engineers	1%	1,500
Foremen	2%	3,000
Skilled Labour	3%	4,500
Common Labour	74%	111,000
Operators	9%	13,500
Mechanics	4%	6,000
Drivers	4%	6,000
Others	2%	3,000
Sub-total	100%	150,000
III. Maintenance of the Existing Roads		
Engineers	1%	1,500
Associate Engineers	1%	1,500
Foremen	2%	3,000
- Skilled Labour	2%	3,000
Common Labour	87%	130,500
Operators	2%	3,000
Mechanics	1%	1,500
Drivers	3%	4,500
Others	21%	1,500
Sub-total	100%	150,000
IV. Total Manpower Required for Road Works	· · · ·	
Engineers	1%	5,000
Associate Engineers	2%	7,000
Foremen	2%	10,000
Skilled Labour	3%	15,500
Common Labour	75%	375,500
Operators	85%	42,500
Mechanics	4%	17,500
Drivers	40%	20,500
Others	1%	6,500
Total	100%	500,000

Table 2.2Required Manpower for Road Works (1995)

3) Macroeconomic View

The manpower demand for the road construction industry was derived also from the macroeconomic framework as follows:

The number of workers for the construction sector in 1994/95 is estimated at 2,360,000 as shown in Table 2.3. On the assumption that manpower/capital ratio between sub-sectors in the construction sector is almost equal, the number of workers for the road sub-sector is deemed to be proportional to the amount of public investment within the GDP. Thus, the number of workers for the road sub-sector is calculated as follows:

Manpower in construction industry		GDP share of road sub-sector		GDP share of construction sector		Required manpower for road sub-sector	
2,360,000	x	14,226	i	62,202	= .	541,271	

According to Workforce Situation Report and Statistical Year Book, 1993, the ratio of direct workers, i.e., workers excluding administration, clerical workers, to the total number of workers in the construction sector, is estimated at 90-95%. Thus, of the total of 540,000 for the road sub-sector, 500,000 (540,000 x 92.5%) are assumed to be directly related to construction works. This figure supports, coincidentally, the results of the productivity analysis made in the previous section.

GDP share by sector for 1994/95, Public Sector Development Programme (PSDP) for the road sub-sector for 1994/95 and Employment of Persons by Major Occupational Group and Industry (1993) are shown in Table 2.4, Table 2.5 and Table 2.6, respectively.

Sector	Occup	ation
	Million	%
Agriculture	16.16	47.54
Mining and Manufacturing	3.73	10.89
Construction	2.36	6.94
Electricity and Gas Distribution	0.29	0.85
Transport	1.88	5.52
Trade	4.52	13.31
Others	5.05	14.95
Total of Occupied Workers	33.99	100.00
Unemployed	1.69	
Total Workforce	35.68	

Table 2.3 Situation of Workers by Sector for 1994/95

Source: Economic Survey 1994/95

Table 2.4GDP by Sector for 1994/95

Sector	%
1. Commodity Producing Sectors	51.0
a. Agriculture	24.0
b. Manufacturing	18.5
c. Mining and Quarrying	0.5
d. Construction	4.1
e. Electricity and Gas Distribution	3.9
2. Service Sectors	49.0
a. Wholesale and Retail Trade	16.1
b. Transport, Storage and Communication	10.2
c. Finance and Insurance	2.3
d. Ownership of Dwellings	5.6
e. Public Admn. and Defense	6.5
f. Services	8.3
Total	100.0

Source: Economic Survey 1994/95

· · · · · · · · · · · · · · · · · · ·		·	(unit	
	1992/93		3/94	1994/95
Item	Actual	Allocation	Utilize	Allocation
Ministry of Communication	11,407.89	11,800.00	10,382.80	11,323.00
- National Highway Authority				
Main Ministry			÷.,	
Construction of Ravi Bridge		245.00	245.00	219.16
Construction of retention Wall and			•	6.34
Diversion of River Flow, Balakot				
- Machinery Training Institute				2.54
• Expansion of CTI				
- NCL	8.20	7.00	7.00	9.06
- Special Area				
· Azad Kashmir	223.10	304.17	290.72	408.30
· Northern Area	262.52	134.85	115.51	120.00
FATA	148.04	152.40	150.98	148.29
- Research				
NIT	13.77	11.00	11.00	9.06
Provincial				
- Punjab	1,240.55	970.00	963.31	700.00
- Sind	553.55	568.00	439.84	558.65
- NWFP	494.98	491.31	441.51	569.84
- Baluchistan	426.62	559.25	339.05	192.00
Total	14,779.12	15,242.98	13,386.72	14,266.24

 Table 2.5
 Public Investment for Road Sub-sector for 1994/95

Source: Detailed Annual Plan 1994/95 (Public Sector Development Programme)

Table 2.6 Employment of Persons by Major Occupational Group in the Construction Industry (1993)

(unit: thousand person				
Occupation	Urban Area	Rural Area	All Areas	
Professional	18	4	22	
Clerical & Sales	57	22	80	
Other Services	8	24	31	
Production	516	1,361	1,877	
Total	599	1,411	2,910	
Ratio of professional and production groups to the total	89.2%	96.7%	94.5%	

Source: Workforce Situation Report and Statistical Yearbook, 1993

	(unit: tho	usand person)
Years	Population	Workforce
1980/81	83,840	1,200
1981/82	86,440	1,220
1982/83	89,120	1,240
1983/84	91,880	1,370
1984/85	94,730	1,510
1985/86	97,670	1,420
1986/87	100,700	1,720
1987/88	103,820	1,850
1988/89	107,040	1,910
1989/90	110,360	1,970
1990/91	113,780	1,970
1991/92	117,310	1,970
1992/93	120,830	1,970
Annual Average Growth Rate (%)	2.8%	3.8%

Table 2.7 Population and Workforce 1980/81 - 1992/93

Economic Survey 1994/95 Source:

CMTI's Role for Manpower Supply for Road Sub-Sector (2)

The nationwide annual output requirement for engineers, associate engineers, construction machinery operators and mechanics for road works is assumed to be proportional to the annual growth of the workforce in the construction industry, i.e. 3.8% (Table 2.7), thus:

Annual growth of manpow	3.8%	
Category	Required number	Required annual output
Engineers	5,000	190
Associate Engineers	7,000	266
Operators	42,500	1,615
Mechanics	17,500	665

On the other hand CMTI's training capacity at present and after expansion is as follows:

Category		Category Course		inual Output
			Present	After expansion
Engine	cis	CMPE, CMS, CMO&M	60	100
Associ	ate Engineers	DAE	40	40
Operat	018	OP	120	300
Mecha	nics	MECH III, II, WELD, ELECT	40	400
Note:	CMPE CMS CMO&M DAE OP MECH III, II	 Construction Machinery Planning and E Construction Machinery Supervision Co Construction Machinery Operation and i Diploma of Associate Engineer Course Operator Course Mechanic III and II Course 	ourse	
	WELD	= Welding Course (new course)		

ELECT = Construction Machinery Electrician Course (new course)

Consequently, CMTI's annual output contribution to the overall annual manpower increase requirement (%) for road sub-sector is concluded as follows:

Category	Course	Output Contribution (%)		
		Present	After expansion	
Engineers	CMPE, CMS, CMO&M	31	53	
Associate Engineers	DAE	15	15	
Operators	OP	7	19	
Mechanics	MECH III, II, WELD, ELECT	21	60	

From the above analysis CMTI's role for manpower supply for road subsector is summarized as follows:

- Purpose of the training courses, CMPE, CMS and CMO&M are to provide practical training for engineers. About 53% of the demand from the construction industry will be fulfilled by CMTI after its expansion as compared to the present 31%. A significant contribution is expected from these courses, particularly for the training for junior engineers.
- DAE course is affiliated with Punjab Board of Technical Education. Since CMII is an unique agency which provides certification of diploma in construction machinery technology, CMII's contribution is limited to the 15% of the demand. Further expansion is probably anticipated in the near future.

- CMTI is also an unique agency for the Operator Course which provides practical training. At present, CMTI's contribution is limited to 7% of the demand. Some on-the-job training by governmental or private agencies is being conducted to make up for the shortage, however a figure of 19% will be attained after the expansion.
- The courses for training of mechanics meeting about 21% of the demand at present, will be improved to 60%. New courses for welders and electricians will be started under the expansion.
- (3) Trend of Applicants for CMTI

Trend of applicants for the last 5 years is indicated in Table 2.8 Names of the organizations which have constant vacancies for trainces, the number of vacancies, and the employment situation of certified trainces are shown in Appendix 8.

From Table 2.8 the following can be said:

- Approved numbers for Operator Course has increased by 2.2 times in 1995 as compared to 1991, while the ratio of applicants/approved numbers has increased from 2.7 to 4.8
- Approved numbers for Mechanic III Course has increased by 1.2 times, while ratio of applicants/approved is being maintained at about 1.6 in the last five years.
- Approved numbers for Mechanic II Engine Course has increased by 1.3 times, while applicants/approved number has increased from 1.2 to 1.5.
- Both the applicants and approved numbers for Mechanic II Chassis Course has decreased for the five years from 1991 to 1995. However, as shown in Appendix 8 the number of applicants at provincial level still remains high. This indicates that a considerable number of applicants are not qualified at the pre-qualification in the relevant provinces.
- For CMTI as a whole, the approved number has increased by 1.6 from the 1991 to 1995, and that of applicants by 2.6 for the same period, while the ratio of applicants/approved number has increased from 2.0 to 3.3.

Maintaining such high ratios for higher educational agency should be noted.

	·					and the second	10 C 10 C 10 C
		1991	1992	1993	1994	1995	'95 vs.'91
Basic Course							
Operator Course	Approved	65	100	150	150	144	2.2
· ·	Applicant	i (176)	(267)	(408)	(770)	(690)	3.9
	Ratio	2.7	2.7	2.7	5.1	4.8	1.8
Mechanic III Cou	rse						
	Approved	56	61	65	74	69	1.2
	Applicant	(90)	(104)	(177)	(130)	(112)	1.2
	Ratio	1.6	1.7	2.8	18	1.6	1.0
Mechanic II Cour	sc	. :					····
Engine Course	Approved	23	25	31	9	⁵ 30 -	1.3
	Applicant	(27)	(75)	(54)	(49)	(45)	1.7
	Ratio	1.2	3.0	1.7	1.7	1.5	1.3
Mechanic II Cour	SC						
Chassis Course	Approved	20	13	20	19	15	0.8
	Applicant	(34)	(18)	(29)	(23)	(17)	0.5
· · · · · · · · · · · · · · · · · · ·	Ratio	1.7	1.4	1.5	1.2	1.1	0.7
Total							
	Approved	164	199	266	272	258	1.6
	Applicant	(327)	(464)	(668)	(972)	(864)	2.6
	Ratio	2.0	2.3	2.5	3.6	3.3	1.7

Table 2.8 Applicant and Approved Number for CMTI

Source: CMTI

Note: 1) Figures in parentheses indicate the number of applicants.

As a result of the above examination, it is confirmed that CMTI's contribution for manpower supply will be significantly improved by the expansion plan, and implementation of the plan has high necessity and priority.

2.2.2 Examination of the CMTI's Expansion Plan

(1) Examination of CMTI's Expansion Plan

CMTT's expansion plan comprises three phases, whose content is as follows:

Phase 1

- a. Enhancement of scope/intake of operator and Mechanic III Courses
- b. Commencement of Diploma of Associate Engineer Course
- c. Commencement of Construction Machinery Planning and Employment Course

- d. Commencement of Supervisor Construction Machinery Course
- e. Enhancement of Workshop Equipment
- f. Induction of New Equipment for Snow Clearing
- g. Commencement of CNC Machinist Course
- h. Provision of Training Aids
- i. Provision of Accommodation for Training Facilities

Phase 2

- a. Enhancement of scope/intake of Mechanic II Engine and Chassis Courses
- b. Commencement of Construction Machinery Electrician Course
- c. Commencement of Special Welding Technology Course
- d. Enhancement of Construction Machinery Operation and Maintenance Course
- e. Enhancement of Rapid Runway Repair Course
- f. Diagnostic and Maintenance Equipment
- g. Enhancement of Driver Special Vehicle Course
- h. Provision of Accommodation/Workshop Facilities
- i. Provision of Training Transport
- j. Provision of Spares for Construction Machinery

Phase 3

- a. Commencement of Tunneling Courses
 - Surveying Course
 - Drilling Course
 - Blasting Course
 - Concrete Lining Course
 - Supporting Course

1) Buildings and Facilities

Buildings and facilities to be constructed under the Expansion Plan of CMTI are shown in Table 2.9. In the first stage, construction of training building, trainees' dormitory, canteen and related facilities started in 1993 as outlined in Table 2.10. The status of the first stage construction is as follows:

Start of design	June 1993
Contract of works	April 1994
Amount of contract	17,600,000 Rs

Construction period Progress to date May 1994 - 20 months 85% as at October 1995

Funds required for the construction have been financed from the Government's Public Sector Development Programme (PSDP) annual budget. Payments are being made on monthly basis according to progress. Final construction cost is estimated at about 20,000,000 Rs due to price escalation since start of works.

As for building and facilities plan, the examination leads to the following results:

- Dormitory and canteen have identical plans with the existing ones. Training building (DAE building), which was designed by the Pakistani side, conforms with the expected training capacity including the requested equipment.
- Plan for water supply, electricity, gas and telephone is well designed for the expected functions.
- Access to the new buildings from the outside is secured by extending the existing access road within the premises.
- New training yard for equipment operation practice is already secured.

Buildings and facilities expansion plan is shown in Appendix 9.

2) Construction Schedule

Construction period is 20 months from May 1994. Physical progress to date is regarded on schedule in spite of delay in delivery time of some construction materials.

Remaining are only finishing works for inner and outer wall of the buildings, installation of equipment for facilities and landscaping. Necessary funds for the works have already been allocated. Completion of the works is duly scheduled for the end of January 1996. Overall schedule since May 1994 is shown in Table 2.11.

3) Space and Area Required for the Equipment to be Introduced

The buildings and facilities allow enough space for installation or storage of the equipment to be introduced under the Project. There is no problem in structural strength. The practice area has already been expanded to meet the requirement.

For construction of facilities under CMTI's expansion plan, the Pakistani side can be regarded to have sufficient financial and technical background, thus, provision of construction materials for the expansion plan, which was originally requested by the Pakistani side, should be omitted from the framework of the Project.

		Prime and a second s
	Expansion	Existing
Buildings and Facilities	Facilities	Facilities
	(m²)	(m ²)
Administration Building	1,589	1,589
Training Building	3,471	3,471
Trainces' Canteen	347	347
Trainces' Dormitory	1,785	1,772
Access Roads, Parking Area, Open	25,672	8,382
Spaces		
Garage for Construction Equipment	425	725
Workshop	3,471	3,471
Maintenance Shop	88	
Squash Courts	99	· -
Staff Residence	1,834	
Total	36,947	21,600

Table 2.9 CMTI Expansion Plan

Source: PC-1 Phase II Expansion Plan CMTI

Table 2.10	Buildings and Facilities being constructed under CMTI Expansion Plan	į
------------	--	---

Buildings and Facilities	Structure	No. of Stories	Floor Area (m ²)	Remarks
DAE Training Building	RC	2 (partly 1)	1,589	6 classes
Dormitory for Traince	RC	2	1,785	5 x single 17 x 6 persons
Canteen	RC	1.	347	100 persons
Garage	Steel	1	425	18 cars
Total			1,785	
Corridor	4 m x 200 m		800 m ²	

Source: CMTI

 Table 2.11
 Construction Schedule of the Buildings and Facilities

	Remarks																	
5.	r				r	r	-1			·	- <u>[</u>		T	1	r			
9661							-					┼╌┠┈	╞╌┠╌╴				:	
8.	112								<u> </u>	┼╼┛┨╼	┼┨╴							
	11			 				γ		_ _	<u> </u>	-		-				
	2	L		·		. 	<u>.</u>											
	6						-				<u> </u>							
	8	·	· · · ·			<u>_</u>	÷ .			: 	· · ·		<u> </u>	 				
1995	2			<u>```</u> ```	•.	╎┈┛				<u> </u>		<u> </u>						
	9									· ·		<u>.</u>						
	Ś						•				· .	<u> </u>				$\left - \right $		
- -	4			i					` <u>`</u> ``````````````````````````````````			 		 	 			
	ر																	
	5		 .	 										. 	⊢ −			
	7																· ·	
	12	ļ_l	12	 						· ·								
.	11	· · · · · · · · · · · · · · · · · · ·											_					
	10							<u>.</u>			<u> </u>			ĹĿ				
1994	6			 		 						· · · ·	. 		<u>-</u>			
ř٩ ا	8		r						,				<u> </u>					
	2				ļ					· .			<u> </u>					
	9		:							:							e di s	
	<u>s</u> :		а. 							·			 	<u> </u>				
Year	Month																· .	
X	2] 2 /					-						Vork			1			
	Date	Work	3	Work	/orks				2	, vrk	Vorke	N SUO	orks	Work	Works			
		orary	Work	dation	rete V			Work	e Wo	ine W	lonid Vinc V	cllane	ide V	thing	trical	.		
$\ $	Item	1. Temporary Work	2. Earth Works	3. Foundation Work	4. Concrete Works	C Manager Works	KTTAT	Roof	- 17. Fitting Works	8 Painting Work	0 Finishing Works	10. Miscellaneous Work	11. Outside Works	12. Plumbing Works	13. Electrical Works			
L	II I	<u> </u>	ં	ຕ່	4	<u> </u>	<u>il</u>	<u>د</u> ج	17	¢	5 0	<u>; </u> 2		1 2	<u> </u>			
		1		·			÷	L	- 17		•			•				

(2) Examination of Training Courses

Enhancement of scope/intake of the existing courses and commencement of new courses in the three phases are as follows:

Phase 1

- a. Enhancement of scope/intake of Operator and Mechanic III Courses
- b. Commencement of Diploma of Associate Engineer
- c. Commencement of Construction Machinery Planning and Employment Course
- d. Commencement of Supervisor Construction Machinery Course

e. Commencement of CNC Machinist Course

Phase 2

- a. Enhancement of scope/intake of Mechanic II Engine and Chassis Courses
- b. Commencement of Construction Machinery Electrician Course
- c. Commencement of Special Welding Technology Course
- d. Enhancement of Construction Machinery Operation and Maintenance Course
- c. Enhancement of Rapid Runway Repair Course
- f. Enhancement of Driver Special Vehicle Course

Phase 3

- a. Commencement of Tunneling Courses
 - Surveying Course
 - Drilling Course
 - Blasting Course
 - Concrete Lining Course
 - Supporting Course

The existing courses, requested expansion courses, and the selected courses for the Project are shown in Table 2.12.

Existing Courses	Requested Expansion Courses	Selected Courses for the Project
Basic Course	Basic Course	Basic Course
- Operator Course	- Operator Course	- Operator Course
- Mechanic III Course	- Mechanic III Course	- Mechanic III Course
- Mechanic II Course	- Mechanic II Course	- Mechanic II Course
- Engine Course	- Engine Course	· Engine Course
· Chassis Course	Chassis Course	Chassis Course
- Diploma of Associate Engineer	- Diploma of Associate Engineer	- Diploma of Associate Engineer
Course	Course	Course
Special Course	Special Course	Special Course
Construction Machinery Planning	- Construction Machinery Planning	- Construction Machinery Planning
& Employment Course	& Employment Course	& Employment Course
Construction Machinery	- Construction Machinery	- Construction Machinery
Supervision Course	Supervision Course	Supervision Course
1 	- Rapid Runway Course	
	- Special Welding Course	- Special Welding Course
	- Construction Machinery Electrician	- Construction Machinery Electricit
	Course	Course
	- CNC Machinist Course	
	- Drilling Course	
	- Tunneling Course	
	· Survey Course	
	· Drilling Course	
	Blasting Course	
	· Concrete Lining Course	
	- Supporting Course	
Short Duration Course	Short Duration Course	Short Duration Course
Construction Machinery Operation	- Construction Machinery Operation	- Construction Machinery Operation
Maintenance Course	Maintenance Course	Maintenance Course

Table 2.12 CMTI Training Courses

The courses selected under the Project are determined on the following grounds:

- Rapid Runway Course is omitted because the priority of this course is not considered to be high.

- CNC Machinist Course, Drilling Course and Tunneling Course are omitted, because they require high and sophisticated level of instruction techniques. It will take considerable time for qualified and experienced instructors to become available in CMTI.
- Welding and construction machinery electrical technique are very essential elements of construction machinery technology. Some are already taught under present schemes, but more integrated and systematic training methods are required. Thus, Special Welding Course and Construction Machinery Electrician Course are to be provided under the Project.
- (3) Examination of Training Schedule

Number of vacancies for each course and proposed course under the Project are shown in Table 2.13. Training schedules for 1995 and 1996 are shown in Table 2.14.

		Existing		J	Expansio	n .	Rate of
Course	No. of	No. of	Annual	No, of	No. of	Annual	Increase
	Traince	Course	Output	Trainee	Course	Output	
Basic Course							
- Operator Course	40	3	120	100	3	300	2.5
- Mechanic III Course	20	3	60	40	3	120	2.0
- Mechanic II Course	÷.,						
· Engine Course	20	2	40	40	2	80	2.0
Chassis Course	20	2	40	40	2	80	2.0
Diploma Course	40	1	40	40	1	40	1.0
Special Course		1					
- Construction Machinery Operation	20	2	40	20	2	40	· 1.0
Maintenance Course	r						
- Construction Machinery Supervision Course	20	2	40	20	2	40	1.0
- Special Welding Course			· 0 ···	20	3	60	new
- Special Machinery Electrician Course			0	20	3	60	new
Short Duration Course							
- Construction Machinery Operation &			0	20	1	20	
Maintenance Course							
Total	180	15	380	360	17	840	2.2

Table 2.13	Number of V	Vacancics o	of Training	Courses
------------	-------------	-------------	-------------	---------

Source: CMTI

	Table 2.1	4 Training	g Schedule for	Table 2.14 Training Schedule for 1995 and 1996		
S. NO.		JAN FEB	MAR APR	MAY JUN	JUL AUG SEP	OCT NOV DEC JAN
-	Operator Course SER-27, 28, 29 (1995)		11 MAR (40)		1 JUL (20) 21 SEP	28 OCT (40) 18 JAN
· · ·	Operator Course SER-30, 31, 32 (1996)		3 MAR (100)	(100) 24 MAY	7 JUL (100) 28 SEP	30 OCT (100) 21 JAN
~	Mechanic III Course SFR-27, 28, 29 (1995)		11 MAR (40)	I JUN	1 JUL (20) 21 SEP	28 OCT (40) 18 JAN
	Mechanic III Course SEP-30 31 32 (1996)		3 MAR (100)	(100) 24 MAY	7 JUL (100) 28 SEP	30 OCT (100) 21 JAN
6	Mechanic II Engine Course	4 FEB	3 (40)	22 JUN	12 AUG	(40) 28 DEC
a	Mechanic II Engine Course	4 FEB	3 (40)	22 JÚN	4 AUG	(40) 21 DEC
	Mechanic II Chassis Course	4 FEB	3 (40)	NUC 22	12 AUG	(40) 28 DEC
4	Nechanic II Chassis Course	4 FEB	3 (40)	22 JUN	4 AUG	(40) 21 DEC
	SER-20, 21 (1996)	V				
	Construction Machinery Planning & Employment Course SER-4, 5 (1995)	28 JAN (28 JAN (20) 23 FEB		30	30 SEP (20) 25 OCT ←→
	Construction Machinery Planning & Employment Course SER-6 (1996)	27JAN	27 JAN (20) 22 FEB	ଛି↓		
0	Construction Machinery Supervision Course SER-4 (1995)			3 JUN (3 JUN (40) 29 JUN	
	Construction Machinery Supervision Course SER-3 (1996)			>) NU(2	2.JUN (40) 22.JUN	
-	Diploma of Associate Engineer Course SER-4 (1995)				2 SEP	(40) 31 AUG 98
1	Diploma of Associate Engineer Course SER-5 (1996)				1 SEP	(40) 31 AUG 98
ŝ	Special Welding Course (1996)	<u>8</u> €		(î2) 		(20)
6	Construction Machinery Electrician Course (1996)			8€		(20)
10	Construction Machinery Operation & Maintenance Course	<u>(8</u>)				
				-		

2 - 21

Source: CMTI

- (4) Examination of Equipment Schedule
 - 1) Consistency between Equipment Schedule and Training Schedule

For the determination of necessary equipment to be introduced under the Project, the required output and efficiency of the training schedule applied should be given primary consideration. Firstly, basic methodology of the selection of equipment is discussed, then detailed analyses of practice hours for every course together with equipment schedule are made as follows:

(a) Construction Equipment

- As the number of trainces will increase from 120 to 300 for the Operator Course, a considerable amount of equipment needs to be generally introduced for this course.

Mechanic III Course does not have any available equipment at present. As training practice of this course is conducted in parallel with OP Course throughout the year, the equipment for the two courses can not be used in common, therefore a considerable amount of equipment needs to be introduced.

- The number of trainces for Diploma of Associate Engineer Course (DAE) will not be changed, but as there is no available equipment actually at present for this course, a considerable amount of equipment needs to be introduced. Training practice of DAE and Operator Course (OP) are conducted in parallel throughout the year, therefore equipment for the two courses cannot be used in common.

Training practices in Construction Machinery Planning & Employment Course (CMPE) and Construction Machinery Supervision Course (CMS) are conducted for one month, ranging over a period of semester change of OP Course and Mechanic III Course (MECH III), respectively. Thus, basically the equipment of OP Course and MECH III Course will be used for those two courses. However, some special equipment which is not available from OP and MECH III courses needs to be newly introduced.

- (b) Maintenance Equipment
 - As the number of trainees of Mechanic II and III courses will be doubled, considerable numbers of new equipment need to be introduced.
 - As the Special Welding Course is a new course and there is no available equipment at present in CMII, considerable numbers of equipment need to be introduced.
- (c) Training Aids Equipment and Transport Vehicles
 - As Construction Machinery Electrician Course is a newly established course and there is no available equipment at present in CMTI, considerable numbers of equipment need to be introduced.
 - Training aids such as cutaway models, audio-visual equipment video films will be used for all courses. As the number of trainces will be increased by two and half times, a considerable number of equipment needs to be introduced.
 - For supply of fuel, oil and water, and preventive check and maintenance on practice field and also for training on such services on construction sites, several transport and service vehicles need to be introduced. Also, as site visits on actual construction sites or workshops is one of the important training activities for all courses, vehicles for transport for trainces need to be introduced.

2) Examination of Practice Hours of Construction Equipment

2 - 23

Practice hours of construction equipment are analysed as follows:

(a) Daily Hours Available for Practice of Construction Equipment Operation

Working hours:

• Weekday (from Saturday to Wednesday); 7:30 - 14:30

(1 hour for lunch) 7:30 - 12:30 Holiday

- Thursday;
- Friday;

Gross training hours:

• Weekday (from Saturday to Wednesday);	6.0 hours
• Thursday;	5.0 hours
 Checking before and after operation; 	1.0 hours
 Moving from garage to field; 	0.5 hour

Thus, daily hours available for practice can be deemed to be about 4.0 hours.

(b) Examination by Course

Operator Course

Training Period:

3 months (net training days - 78 days), of which;

24 days for lectures

14 days for maintenance practice

40 days for operation practice

Practice hours per course:
40 days x 4 hours = 160 hours

• Net practice hours for each equipment:

Net practice hours under the present training programme are shown in Table 2.15, where total of 40 trainces are given practice being divided into 8 groups each using with different equipment.

Group	Equipment	Practice Hours/Man day
Group 1	Bulldozer (No.1)	0.50
•	Bulldozer (No.2)	0.50
	Dozer Shovel (No.1)	0.33
	Total	1.33
Group 2	Bulldozer (No.3)	0.50
•	Bulldozer (No.4)	0.50
	Dozcr Shovel (No.2)	0.33
	Total	1.33
Group 3	Hydraulic Excavator (No.1)	0.50
	Hydraulic Excavator (No.2)	0.33
	Wheel Loader (No.1)	0.50
:	Total	1.33
Group 4	Hydraulic Excavator (No.3)	0.50
STOPP 1	Hydraulic Excavator (No.2)	0.33
·	Wheel Loader (No.2)	0.50
	Total	1.33
Group 5	Vibration Roller (No.1)	0.33
	Tyre Roller (No.1)	0.33
	Motor Grader (No.1)	0.66
	Total	1.33
Group 6	Vibration Roller (No.2)	0.33
croup c	Tyre Roller (No.2)	0.33
	Motor Grader (No.2)	0.66
	Total	1.33
Group 7	Dump Truck (off the road)	0.50
0.000	Dump Truck (on the road)	0.50
	Motor Scraper (No.1)	0.16
	Motor Scraper (No.2)	0.16
	Total	1.33
Group 8	Truck Crane (No.1)	0.25
r	Truck Crane (No.2)	0.25
	Stabilizer	0.33
	Asphalt Finisher	0.33
	Asphalt Distributor	0.33
	Total	1.33

 Table 2.15
 Net Practice Hours for the Construction Equipment Operator Course

The training practice hours available for equipment are evaluated as follows:

Motor Grader

3 hours and 20 minutes per day (0.66 hours x 5 men): accounting for 83% of 4 hours, reasonable.

- Bulldozer, Hydraulic Excavator, Wheel Loader and Dump Truck 2 hours and 30 minutes per day (0.5 hours x 5 men): accounting for 60% of 4 hours, considering time loss from interruption of operation for operator's changes and instructions during operation, reasonable.
- · Vibration Roller, Asphalt Finisher and Asphalt Distributor
- 1 hour and 40 minutes per day (0.33 hours x 5 men): accounting for 31% of 4 hours.
- Because the operation of this equipment is rather sophisticated, the operation practice is interrupted for instruction, reasonable.
- Shovel Dozer

1 hour and 40 minutes per day (0.33 hours x 5 men): accounting for 41% of 4 hours, reasonable.

Motor Scraper

50 minutes (0.16 hours x 5 men): accounting for 21% of 4 hours.

Motor scraper is not so common in Pakistan, thus it seems reasonable that practice hours are diminished to a considerable extent.

Number of trainces of the course will be increased from 40 to 100 (2.5 times), while numbers of equipment will be strengthened from 27 to 34 (1.2 times). The requested equipment can be classified into 6 groups according to purpose of the use, i.e. bulldozer, dump truck, wheel loader, hydraulic excavator, compactor and motor grader. Thus, number of trainees per group should be increased from 5 to 7, and practice hours per equipment should be increased.

As for basic equipment such as buildozers, hydraulic excavators, wheel loaders, dump trucks, etc., practice hours per equipment should be increased from the present 2.5 to 3.5 hours raising "training practice hour ratio" from present 60% to 87% of 4 hours.

It is concluded that the requested equipment schedule for the Operator Course can satisfy the minimum requirement for training practice, therefore the request is justified.

Mcchanic III Course

There is no available equipment at present for Mechanic III Course. The practice hours shall be established taking into consideration the expected number of trainces and equipment.

Training period of MECH III Course is the same as that of OP Course, i.e. 3 months (net 78 days). But operating practice hours of construction equipment of the course can be diminished compared to that of OP Course. Eighteen days out of the total 78 days can be deemed reasonable to be assigned to the practice.

The requested equipment can be categorized into 3 groups (1 group: $13\sim14$ men) according to the purpose of use in the same manner as shown in the OP Course.

 Table 2.16
 Net Practice Hours of the Construction Equipment for Mechanic III Course

Group	Equipment	Practice Hours/Man day
Group 1	Bulldozer	0.28
	Motor Grader	0.28
	Total	0.56
Group 2	Wheel Loader	0.28
-	Dump Truck	0.28
	Total	0.56
Group 3	Shovel and others	0.56
-	Total	0.56

Accordingly, practice hours per equipment per day will be:

0.28 hours x 14 men = 3.92 hours per day (for every equipment of Mechanic III Course)

Because these practice hours are maximised up to the daily available hours, i.e. 4.0 hours, the training should be conducted as effectively as possible.

Construction Machinery Planning & Employment Course (CMPE)

Training period of CMPE is 3 months (net 78 days) each, and the equipment of MECH III Course can be basically used for this course.

The requested equipment can be classified into 3 groups (1 group: 13~14 men) according to the purpose of use in the same manner as that of the Mechanic III Course.

 Table 2.17
 Net Practice Hours of the Construction Equipment for CMPE Course

Group	Equipment	Practice Hours/Man day		
Group 1	Bulldozer	0.28		
-	Motor Grader	0.28		
	Total	0.56		
Group 2	Wheel Loader	0.28		
•	Dump Truck	0.28		
	Total	0.56		
Group 3	Shovel and others	0.56		
	Total	0.56		

Accordingly, practice hours per equipment per day will be:

0.28 hours x 14 men = 3.92 hours per day (CMPE)

As for practice hours the same can be said as that of the Mechanic III Course.

Construction Machinery Supervision Course (CMS)

Training period of CMS is 3 months (net 78 days) each, and the equipment of MECH III Course can be basically used for this course.

The requested equipment will be classified into 3 groups (1 group: 13~14 men) according to the purpose of use in the same manner as that described in the Mechanic III Course.

Group	Equipment	Practice Hours/Man day	
Group 1	Bulldozer	0.28	
•	Motor Grader	0.28	
	Total	0.56	
Group 2	Wheel Loader	0.28	
. •	Dump Truck	0.28	
1	Total	0.56	
Group 3	Shovel and others	0.56	
•	Total	0,56	

Table 2.18	Net Practice I	lours of the Constructio	n Equi	ipment for CMS Course
------------	----------------	--------------------------	--------	-----------------------

Accordingly, practice hours per equipment per day will be:

0.28 hours x 14 men = 3.92 hours per day (CMS)

Diploma of Associate Engineer Course (DAE)

The training period of DAE is 3 years. The number of trainces is 40 for each year, thus a total of 120 trainces from 1st year to 3rd year receive the training. Three months of practical training are required, of which 40 days are used for operation practice and the remaining time for training of preventive maintenance, routine maintenance and safety control, etc.

The requested equipment can be classified into 3 groups (1 group: 13~14 men).

Group	Equipment	Practice Hours/Man day
Group 1	Bulldozer (No.1)	0.28
· a · ·	Wheel Loader (No.1)	0.28
	Total	0.56
Group 2	Bulldozer (No.2)	0.28
	Wheel Loader (No.2)	0.28
	Total	0.56
Group 3	Hydraulic Excavator	0.28
■	Motor Grader	0.28
	Total	0.56

Table 2.19	Net Practice Hours of the	Construction Equi	pment for DAE Course
------------	---------------------------	--------------------------	----------------------

Consequently, practice hours per equipment per day will be:

0.28 hours x 14 men = 3.92 hours per day

Because these practice hours are maximised up to the daily available hours, i.e. 4.0 hours, the training should be conducted as effectively as possible.

From the above examination, equipment practice hours of the existing training courses range from 1 hour and 40 minutes to 3 hours and 20 minutes. The equipment schedule for the Project was so established as to maximise the practice hours up to 4 hours in order to minimise the number of equipment to be newly introduced.

The results of the equipment schedule are shown in Table 2.20.1 to Table 2.20.5.

Where,

No. of minimum

requirement

No. of existing equipment
Numbers of the equipment possessed by CMTI.
No. of maximum
Numbers of the equipment derived on the assumption that present practice hours, i.e. 1 hour 40 minutes to 3 hours 20 minutes will not be changed in future training schedule.

: Numbers of the equipment derived on the assumption that the practice hours in future training schedule will be maximised up to 4 hours.

No. of requested equipment : No. of minimum requirement minus No. of Existing equipment.

The existing equipment, requested equipment and selected equipment under the Project are shown in Tables 2.20.1 to Table 2.20.4.

Table 2.20.1 Existing Equipment, Necessary Equipment and Requested Equipment

1) Construction Equipment

Condition			No. of	No. of
Specification	Existing	Maximum	Minimum	Requested
	Equipment	Requirement	Requirement	Equipment
	· · · 1			1
200 - 250 HP	1	3	3	2
155 HP	. 1	3	l	0
120 HP	1	2	L .	. 0 .
160 HP		i e t er	: 1	0
110 HP	1	- L	1	· 0
20 - 23 t	1	2	2	1
0.7 ກ ³	1	3	3	2
0.5 m ³	, j i .	3	2	L
0.09 m ³	1	1	1	Ó
16 m ³	: 2	2	2	0
3.5 m ³	1	3	2	1
1.7 m ³	1 -	2	1	0
130 - 140 HP	1	3	2	1
110 HP	1	2	1	0
349 HP	· · · 1	1	1	0
W = 6m	1	2	2	1
3000ℓ	1	· 1	1	0
9.5 - 11 1	÷ 1	2	1	1
6.5 1	1	1	1	0
	0	· 1	1	1
		· 1	1	1
	0	1	1	1
· · · · · · · · · · · · · · · · · · ·	. 1	1	1 .	0
	0		. 1	1
	0	1	1	1
	0	· 1	1	1
		$1^{(1)}$, $1^{(1)}$, $1^{(1)}$	1	· 1
	2	2	2	0
	1	1	1 -	0
	1	1	1	0 .
	- 1	1	1	0
200 - 250 112	6	2	1	1
A second s			1	1
		1 . 1	1	1
	1		1	1
-	120 HP 160 HP 110 HP 20 - 23 t 0.7 m ³ 0.5 m ³ 1.6 m ³ 3.5 m ³ 1.7 m ³ 130 - 140 HP 110 HP 349 HP W = 6m 3000 <i>ℓ</i> 9.5 - 11 1	$285 - 305$ HP 1 $200 - 250$ HP 1 155 HP 1 120 HP 1 160 HP 1 110 HP 1 100 HP 1 0.7 m ³ 1 0.7 m ³ 1 0.7 m ³ 1 0.9 m ³ 1 16 m ³ 2 3.5 m ³ 1 1.7 m ³ 1 $130 - 140$ HP 1 110 HP 1 349 HP 1 W = 6m 1 3000ℓ 1 $9.5 - 11 1$ 1 $6.5 1$ 1 $200 - 250$ HP 0 5 HP 0 $6 x 4, 13 - 14 t$ 0 $15.5 t$ 1 $125 - 130$ HP 0 $4 - 5 m^3/h$ 0 $10 t$ 2	285 - 305 HP 1 2 200 - 250 HP 1 3 155 HP 1 3 120 HP 1 2 160 HP 1 1 110 HP 1 2 160 HP 1 1 110 HP 1 2 0.7 m³ 1 3 0.5 m³ 1 3 0.5 m³ 1 3 0.9 m³ 1 1 16 m³ 2 2 3.5 m³ 1 3 0.9 m³ 1 1 16 m³ 2 2 3.5 m³ 1 3 1.7 m³ 1 2 3.5 m³ 1 3 1.0 HP 1 2 349 HP 1 1 Y= 6m 1 2 3000ℓ 1 1 9.5 - 11 1 1 2 6.5 t 1 1 200 - 250 HP 0 1 30 t 0 1	285 - 305 HP 1 2 2 200 - 250 HP 1 3 3 155 HP 1 3 1 120 HP 1 2 1 160 HP 1 1 1 110 HP 1 1 1 120 HP 1 2 1 160 HP 1 1 1 110 HP 1 2 2 0.7 m³ 1 3 3 0.5 m³ 1 1 1 16 m³ 2 2 2 3.5 m³ 1 3 2 0.9 m³ 1 1 1 16 m³ 2 2 2 3.5 m³ 1 3 2 1.7 m³ 1 2 1 130 - 140 HP 1 3 2 110 HP 1 2 1 3000ℓ 1 1 1 9.5 - 11 1 1 1 1 10 + 2 2 1 1

Table 2.20.2 Existing Equipment, Necessary Equipment and Requested Equipment

	. ,	1	· · · · · · · · · · · · · · · · · · ·	1. A.	
Equipment	Specification	No. of Existing Equipment	No. of Maximum Requirement	No. of Minimum Requirement	No. of Requested Equipment
Mechanic III Course (cont'd)			· · · · · · · · · · · · · · · · · · ·		
Hydraulic Excavator	0.5 m ³	÷ 0	1	1	1
Air Compressor	3.5 m³/min	0	1	1	1
Generator	5 KVA	0.	1	1	1
Diploma of Associate Engineer	Course (DAE)				
Bulldozer	200 - 250 HP	0	3	2	2
Wheel Loader	3.5 m ³	0	2	· 1	1
Wheel Loader	1.7 m ³	Ó	1	1	1
Motor Grader	140 - 155 HP	0	2	1	1
Hydraulic Excavator	0.09 - 0.36 m ³	0	1	1	1
Construction Machinery Planni	ng and				
Employment Course (CMPE)					
Pipe Layer	300 - 350 HP	¹ D	1	1	1
Hydraulic Excavator with	125 - 135 HP	0	1	i	· 1
Extra Long Boom		· · · · · · · · · · · · · · · · · · ·			
Construction Machinery Super-	vision Course				
(CMS)					
Pile Driver	125 - 135 HP	0	1	1	1

1) Construction Equipment (cont'd)

2) Maintenance Equipment

Equipment	Specification	No. of Existing Equipment	No. of Maximum Requirement	No. of Minimum Requirement	No. of Requested Equipment
Fuel Injection Test Room and H	ydraulic Test Room				
(Mechanic II and Mechanic III	Course)				
Injection Pump Test Stand	Bosch type	t	2	2	1
PT Pump Test Stand	Cummins type	1	2	2	1
Injection Flow Comparator	Cummins type	1 .	2	· 2 :	1 -
Nozzle Tester	i	i	2	2	1
Others		l	2	2	1 -
Air Compressor		· 1	2	: 2	1 .
Hydraulic Testing Unit		1.	2	2	1

Table 2.20.3 Existing Equipment, Necessary Equipment and Requested Equipment

2)	Maintenance	Equipment	(0	Ó	ňť	d)	ł
						÷	

Equipment	Specification	i	No. of Existing Equipment	No. of Maximum Requirement	No. of Minimum Requirement	No. of Requested Equipment
Welding Course (New Course)						
Air Carbon Arc Gouging Eq	uipment		0	1	1	1
Gas Welding Equipment			0	1	1	· 1
Gas Regulator			0	1	1	· 1
Flashback Arrester		.	0	1	1	· · · · 1
Welding and Cutting Torch		·	0	1	1	1
Mag Welding Machine and M	lig		0	1	1	· 1
Welding Machine		2	:			
High Speed Abrasive Cuttin	g Machine		0	1	1	1
Spot Welding Gun			0	1	1	1
Pipe Cutting Machine			0	1	1	1
Tig Welding Machine		·	0	1	1 .	1
Ultrasonic Flow Detector			0	1	1	1
Grinding Machine	•		0	1	1	1
Pillar Drill		\cdot	0	i	1	1
Power Hacksaw			0	1	1	Ĺ
Miscellaneous			0	1	1	1
Hand Type Circular Shear M	achine		0	1	1	1
Hand Lever Shearing Machin	ie	-	0	1	1	1
Table Shearing Machine			0	1	1	1
Workshop Equipment						
(Machine II and III Course)						
Mobile Floor Crane	2 t		O	2	2 .	2
Hydraulic Tyre Removing To	ool 10 t	•	0	1 -	1	1
Gasoline Engine Analyser	8 cylinders		0	1	1	1 1
Spark Plug Cleaner	12, 14 mm		0	1	1	· 1
Wheel Balancer	Cargo truck		0	1	1	1
Wheel Alignment			0	1	1	° 1 -
Distributor Test Bench	Gasoline		0	1	1 9	1
Injector Reconditioning Mac	hine		0	i .	1	1 -

Table 2.20.4 Existing Equipment, Necessary Equipment and Requested Equipment

3) Training Aids Equipment and Vehicles

Equipment	Specification	No. of Existing	No. of Maximum	No. of Minimum	No. of Requested
···· ···		Equipment	Requirement	Requirement	Equipment
Electrician Course					
Cutaway Model					
Starter Motor		1	2	2	1
Alternator		1	2	2	· 1
Gasoline Engine		1 1	. 2	2	: 1
Electric System Board	· · · ·				
Crawler Equipment		1	2	2	1 .
Vehicle		1	2	2	1
Electrical Component		· · ·	·		·
Starter Motor	·	0	2	2	2
Alternator		0	2	2	2
Generator	×.	0	2	2 .	2
Regulator		0	- 10	10	10
DC Generator	2 kW	0	1	1 ·	1
DC Generator	3 kW	0	L	. 1	1
All Courses				· · · · · ·	
Cutaway Model					· · ·
Aspiration/Exhaust		0	6	6	6
Transmission		4	12	12	8
Hydraulic		0	3	3	3
Steering		0	1	1	· 1
Engine		1	1	1	0 .
Training Video Film		2	12	12	10
Mechatronic Simulator		0	. 1 .	• 1 •	1
Overhead Projector	Common type	. 7	12	12 -	5
Overhead Projector	Direct type	0	10	10	10
Photo Copy Machine		2 ·	6	6	· · 4
LC Display Panel		: · 0	· 1	1	1
Multi Media Products		0	4	4	.:4
Microbus	27 - 30 persons	2	4 .	3	1
Service Car		0	2	2	2
Mobile Workshop	61	0	· 1	1	1
Water Bowzer	8 - 10 kl	1	2	2	1
Fuel Tanker	8 - 10 kl	1	2	2	1
4 WD	2600 - 3000 cc	2	3	2	0

2.3 Basic Design

2.3.1 Design Concept

(1) Natural Conditions

The climatic condition of Islamabad belongs to the temperate zone. Annual rainfall ranges from $500 \sim 1,000$ mm, and annual temperature from $10 \sim 30^{\circ}$ C.

Operation of the construction equipment will be limited to the CMTI's practice field, and most of the maintenance equipment will be installed in the Training Building (DAE Building), thus, operational conditions are not so severe to require special specifications for the equipment to be introduced.

(2) Situation of the Local Construction Industry

Most of the road programmes both by the central and regional governments are being executed on contract basis except some light works of routine maintenance recently. In this connection, the government's policy of promoting the mechanisation of road construction industry is given the highest priority to accelerate its road programmes. The public corporation such as FWO and NLC or several large private companies have been strengthening their equipment situation, however mechanisation of small and medium sized contractors essential for the road construction industry, has not always made progress to date.

As the purpose of the Project is to create skilled technical manpower to meet the demand for the mechanisation of the industry, the equipment under the Project should be that for general construction purposes as much as possible. Also, as the recent road programme is oriented toward higher standards, asphalt paving and maintenance of rehabilitated roads, the equipment should be such as to meet the predominant requirements of the road programme.

(3) Capabilities of Equipment Maintenance of the Implementing Agency

Most of the CMTI's existing equipment exceeds an age of 10 years. However, due to an appropriate maintenance operation by CMTI since introduction, there has been no un-operational equipment to date.

Regarding the stock of spare parts, it should be noted that those for routine maintenance and consumables are sufficiently stocked, but those for engine overhaul seem to be in short supply.

In conclusion, CMTI's technical level and capacity for maintenance of equipment is regarded excellent provided that necessary spare parts are supplied appropriately. Thus, spare parts for each equipment under the Project will be selected carefully based on consumption record of the inventory.

(4) Criteria for Selection of the Equipment under the Project

The equipment under the Project were selected on the following criteria:

- Equipment which can provide basic operational technique.

- Equipment of high usage rate in the CMTI's on-going training programme.
- Equipment of high popularity in the construction industry and of growing demand in Pakistan.
- Equipment which can provide applicational techniques of operation.

(5) Criteria for Country of Origin of the Equipment under the Project

1) Equipment to be procured from Japan or Third Countries

The equipment which satisfies the following criteria may be procured from Japan or third countries.

- Equipment from makers of high popularity in Pakistan.
- Equipment from makers having capable agent(s) in Pakistan for spare parts supply, maintenance services and aftercare services.

- The third countries shall be the member countries of OECD DAC.

- 2) Equipment to be procured in Pakistan
 - Equipment from member countries of OECD DAC, but normally procurable in Pakistan's domestic market.
- (6) Criteria for Procurement Schedule

CMTI expects the opening of new courses and an increase in the number of trainces as early as possible. The equipment procurement schedule shall be in conformity with the commencement of the training courses.

Construction of the buildings and facilities is in progress. There will be no equipment which affects adversely the construction schedule, but, several training aids equipment require an initial training to a certain extent. This period shall be included in the procurement schedule.

(7) Criteria for Hand Over

As for the equipment procured from Japan or third countries, the port of disembarkation will be Karachi.

For inland transport from Karachi to Islamabad (approximately 1,000 km) there are two alternatives, i.e. road or rail transport. Since rail transport is not always reliable due to the limited number of trains and the uncertain operational schedule, road transport is recommended.

Place of hand-over for all equipment under the Project will be CMTI in Islamabad.

2.3.2 Basic Design

(1) Design Policy

1) Construction Equipment

The purpose of the equipment to be introduced for each course is as follows:

1. Operator Course

Provide practical training in operation and daily checking technique for basic equipment of road works such as earth moving equipment and paving equipment.

Shortage of equipment will seriously affect the training schedule. Therefore, in formulating the equipment schedule, it is essential to take into account non-operational time due to periodic maintenance or interruptions due to troubles.

2. Mechanic III Course

Provide practical training in preventive maintenance or routine maintenance technique. The practice includes checking of engine sound, color of exhaust gas, level and temperature of radiator water, cooling air amount, temperature and pressure of engine oil, etc. through operational practice.

Since there is no equipment presently assigned to the course, basic equipment such as bulldozer, wheel loader, motor grader, dump truck, hydraulic excavator, air compressor, generator should be included.

3. Diploma of Associate Engineer Course

Provide a practical training in overall construction machinery techniques. The practice includes operation, daily checking, preventive and routine maintenance etc.

Since there is no equipment assigned to the course, basic equipment such as bulldozer, wheel loader, motor grader, dump truck and hydraulic excavator should be included.

4. Construction Machinery Planning and Employment Course

Provide short term practical training in machinery planning techniques. The practice includes operation, daily inspection, preventive and routine maintenance in order to become familiar with the characteristics of the equipment.

The equipment to be introduced for the Mechanic III Course will be commonly used for this course. Since the demand for pipe layers and hydraulic excavators with super long booms has increased recently in Pakistan, these two equipments should be included for this course.

5. Construction Machinery Supervision Course

Provide short term practical training in machinery supervision techniques. The practice includes operation, daily inspection, preventive and routine maintenance to make trainces familiar with the characteristics of equipment on the site. The equipment to be introduced for the Mechanic III Course will be commonly used for this course. Since demand for pile drivers has increased recently in Pakistan, they will be included for this course.

2) Maintenance Equipment

The equipment will be used for operation of Mechanic III Course, Mechanic II Course, Special Welding Course, Construction Machinery Electrician Course and Workshop in the training building.

Provide practical training in overall maintenance techniques for engine system, fuel system, electric system, hydraulic system, under carriage and chassis, and machinist techniques for reproduction of spare parts. Testing equipment, welding equipment and workshop equipment which are not available at present should be introduced.

3) Training Aids Equipment and Vehicles

The equipment used for lectures such as electrical training equipment, audio-visual equipment, photocopy machine, and vehicles such as service car, mobile workshop, water bowzer and fuel tanker should be introduced in proportion to the expansion of training capacity.

(2) Equipment Schedule

Equipment to be procured under the Project is summarised in Table 2.21.1 to Table 2.21.7.

(3) Procurement Plan

Country of origin of the equipment is summarized in Table 2.22. Situation of the maker's local agents in Pakistan is shown in Appendix 11.

Table 2.21.1 Equipment Schedule

(1) Construction Equipment and Spare Parts

- 1) Construction Equipment
- (Operator's Course)

No.	Item	Specification	Nos.
1.1	Bulldozer	285-305HP	Î.
1.2	Bulldozer	200-250HP	2
1.3	Dump Truck (off-the-road)	20-23 ton	1
1.4	Hydraulic Excavator	0.7m ³	2
1.5	Hydraulic Excavator	0.5m ³	1
1.6	Pneumatic Tire Roller	10-12 ton	1
1.7	Asphalt Finisher (wheel type)	Max. 6m	1
1.8	Wheel Loader	3.5m ³	1
1.9	Motor Grader	130-140 HP	1
1.10	Vibration Roller (Sheep foot type)	9.5-11 ton	: 1
1.11	Mobile Hammer attached to Hydraulic Excavator	125-130 HP	1
1.12	Smooth DrumVibration Compactor	5 HP	1
1.13	Automatic Curber	4-5 m³/h	1
1.14	Power Splitter	145-155 HP	1
1.15	Landfill Compactor	200-250 HP	1
1.16	Rough Terrain Crane	30 ton	l

(Mechanic III Course)

No.	Item	Specification	Nos.
2.1	Bulldozer	200-250HP	1
2.2	Wheel Loader	3.5m³	1
2.3	Motor Grader	130-140 HP	1
2.4	Dump Truck (on-the road)	6 x 4, 13-14 ton	1
2.5	Hydraulic Excavator	0.5m ³	1
2.6	Air Compressor	3.5m³/min	1
2.7	Generator	5 kVA	1

Table 2.21.2 Equipment Schedule

No.	Item	Specification	Nos.
3.1	Bulldozer	200-250 HP	2
3.2	Wheel Loader	3.5m ³	1
3.3	Motor Grader with scarifier	140-155 HP	1
3.4	Wheel Loader	1.7m ³	1
3.5	Hydraulic Excavator	0.09-0.36m ³	1

(Diploma of Associate Engineer in Construction Machinery Technology)

(Construction Machinery Planning and Employment Course)

No.	Item	Specification	Nos.
4.1	Pipe Layer	300-350 HP	1
4.2	Hydraulic Excavator with Super Long Boom	125-135 HP 0.4-0.5 m ³	1

(Construction Machinery Supervision Course)

	No.	Item	Specification	Nos.
ľ	5.1	Pile Driver mounted on Hydraulic Excavator	125-135 Нр	1

2) Spare Parts for Construction Equipment

Basic selecting method of spare parts for construction machinery is as follows:

No.	ltem	Specification	Nos.
6.1	Periodical Maintenance Parts	approx. 5 years use	1 Sei
6.2	Repair Kits	approx. 5 years use	1 Set
6.3	Consumable Parts	approx. 5 years use	1 Set

Table 2.21.3 Equipment Schedule

- (2) Workshop Equipment and Spare Parts
 - 1) Workshop Equipment
 - (Fuel Injection Test Room)

No.	Item	Specification	Nos.
7.1	Fuel Injection Pump Test Stand	Bosch type	1
7.2	PT-Pump Test Stand	Cummins type	1
7.3	Injection Flaw Comparator	Cummins type	1
7.4	Nozzle Tester	Bosch type	1
7.5	Inspection Instrument Set for Fuel Injection Test	Bosch and Cummins types	1
7.6	Air Compressor	11 kW	1
7.7	Reconstruction of Hydraulic Test Stand	125 HP	1

(Welding Equipment for Welding Course)

No.	Item	······································	
		Specification	Nos.
8.1	Air -Carbon Arc Gouging Equipment		1
8.2	Gas Welding Equipment (Oxygen and Acetylene)	with connection	9
8.3	Gas Regulator (Oxygen and Acetylene)	with connection	7
8.4	Flashback Arrestor		10
8.5	Welding and Cutting Torch		8
8.6	MAG Welding Machine		1
8.7	MIG Welding Machine		1
8.8	High Speed Abrasive Cutting Machine		1
8.9	Spot Welding Gun	Portable type	1
8.10	Pipe Cutting Machine		1
8.11	TIG Welder		1
8.12	Ultrasonic Flaw Detector		1
8.13	Grinding Machine with Spare Wheels	300x50x25 mm 200x25x20 mm	1
8.14	Pillar Drill	dia.30mm	1
8.15	Power Hacksaw	with connections	1
8.16	Accessory Set of welding		1
8.17	Hand Type Circular Shear Machine	thickness: 2 mm	1
8.18	Hand Lever Shearing Machine	thickness: 2 mm	1
8.19	Shearing Machine	thickness: 6 mm	1

Table 2.21.4	Equipment	Schedule
--------------	-----------	----------

No.	Item	Specification	Nos.
9,1	Mobile Floor Crane	2 ton	2
9.2	Hydraulic Tire Removing Tool	10 ton	1
9.3	Gasoline Engine Analyzer	for 8 cylinders	1
9.4	Spark Plug Cleaner and Tester	plug: 12, 14mm	1
9.5	Wheel Balancer with Tools and Weight Set	10 - 23'	1
9.6	Wheel Alignment Tesler		1
9.7	Distributor Test Bench		_1
9.8	Injector Reconditioning Machine		1
9.9	Miscellaneous		1

(Repairing Equipment for Mechanic II and III Course)

2) Spare Parts for Workshop Equipment

No.	Item	Specification	Nos.	
10.1	Consumable Part	approx. 5 years use	1 sei	

Table 2.21.5 Equipment Schedule

(3) Training Aid Equipment and Vehicles

1) Training Ald Equipment

(Basic Course, Mechanics II Course and Construction Machinery Electrician Course)

No.	Item	Specification	Nos.
	(Cut Away Model)		
11.1	Starter Motor	any type	1
11.2	Alternator	any type	1
11.3	Gasoline Engine	any type	1
	(Electric System Board)		
11.4	Electric System Board for Crawler type	Crawler type	1
11.5	Electric System Board for Wheeled type	Crawler type	1
	(Electrical Component)		
11.6	Starter Motor	7.5-11kW	1
11.7	Alternator	24V,25A	1
11.8	Generator	24V,25A	1
11.9	Regulator	24V,20A	1
	(DC Generators)		
11.10	DC Generator	2 kW	. 1 .
11.11	DC Generator	3 kW	1

(Cutaway Model for All Courses)

No.	Item	Specification	Nos.
12.1	Pre-Cleaner	for general construction machine	1
12.2	Air Cleaner	for general construction machine	1
12.3	Muffler Assembly	for dozer	1
12.4	After Cooler	for dozer	1
12.5	Steering Clutch	for dozer	1
12.6	Transmission	sliding selectin type for dozer	1
12.7	Swing Moter	for excavator	1
12.8	Transmission Control Valve	for dozer	1
12.9	Hydraulic Tank	for dozer	1
12.10	Hydraulic Cylinder		1

Table 2.21.6	Equipment	Schedule
--------------	-----------	----------

No.	(Cutaway Model for All Courses) Item	Specification	Nos.
12.13	Torque Converter	for dozer	1
12.12	Steering System	for vehicle	1
12.13	Transmission	for dozer	1
12.14	Steering Assembly	for motor grader	1
12.15	Universal Joint		1
12.16	Propeller Shaft	hollow type and soil type	1 set
12.17	Turbo-Charger		1

(Video Film for All Courses)

No.	Item	Specification	Nos.
13.1	Trouble Shooting for Gasoline Engine		1 set
13.2	Function of Calibrator		1 set
13.3	Trouble Shooting for Electrical Component		1 set
13.4	Transmission	for planelary gear	1 set
13.5	Multi Disc Clutch	for dozer	1 set
13.6	Hydraulic Control Valve	for dozer	1 set
13.7	Differential		1 set
13.8	Torque Converter	for dozer	1 sei
13.9	Hydro Shift Transmission	for dozer	1 set
13.10	Steering Control	for dozer	1 set

(Mechatronics Simulator for All Courses)

No.	Item	Specification	Unit
14.I	Mechatronics Simulator	for hydraulic excavator	1
14.2	Electronics Governor Controlling System	for hydraulic excavator	1
14.3	Automatic Idling Controlling System	for hydraulic excavator	1
14.4	Hydraulic Pump Controlling System	for hydraulic excavator	1
14.5	Mechatronics Function Checker		1 set
14.6	Mechatronics Device Parts and Cutaway Model	for general construction machine	1 set
14,7	Function Assessment Tool		1 set
14.8	Electric Measuring Implement	table type	1 set

2 - 45

.

Table 2.21.7 Equipment Schedule

	(Miscellancous for All Courses)		
No.	Item	Specification	Nos.
15.1	Overhead Projector	common type	5
15.2	Overhead Projector	direct type	10
15.3	Photo Copier		4
15.4	LCD Display Panel		1
15.5	Multimedia Products for Technical Training		4

2) Vehicles

No.	Item	Specification	Nos.
16.1	Microbus	27 - 30 seats	1
16.2	Service Car with Machine & Diagnostic Tools		2
16.3	Mobile Workshop Lorry with Crane & Winch	6 ton	1
16.4	Water Bowzer	8 - 10 kl	1
16.5	Fuel Tanker	8 - 10 kl	1

3)	Spare	Parts fo	or Training	Aid Eaui	pment and	Vehicles
/				, a site sorque	prito in turo	A CHICKN

No.	Item	Specification	Nos.
17.1	Periodical Maintenance Parts	approx. 5 years use	1 set
17.2	Repair Kits	approx. 5 years use	l set
17.3	Consumable Parts	approx. 5 years use	1 set

Equipment	Specification	Country	Reason
Construction Equipment and Vehicle		· · · · · · · · · · · · · · · · · · ·	
Bulldozer (with ripper)	285 - 305 HP	Japan and Third Countries	Equipment numbers high is Pakistan
Bulldozer	200 - 250 HP	Japan	•
Hydraulic Excavator	0.7 m ³	Japan	
Hydraulic Excavator	0.5 m ³	Japan	
Hydraulic Excavator	0.09 - 0.36 m ³	Japan	1. A.
Hydraulic Excavator with Super Long		Japan	
Boom			:
Wheel Loader	3.5 m ³	Japan	· · ·
Wheel Loader	1.7 m ³	Japan	
Motor Grader	130 - 140 HP	Јарал	
Motor Grader with Scarifier	140 - 155 HP	Japän	
Vibration Roller	9.5 - 11 ton	Japan	
Vibration Compactor	5 HP	Japan	
Landfill Compactor	200 - 250 HP		Equipment numbers high i Pakistan
Tyre Roller	10 - 12 1	Japan	
Asphalt Finisher	6 m max.	Japan	
Mobile Hammer	125 - 130 HP	Japan	
Power Splitter	100 - 150 HP	Japan	
Pile Driver	125 - 135 HP	Japan	
Pipe Layer	300 - 350 HP	Japan and Third Countries	Equipment numbers high i
•		-	Pakistan
Automatic Curber	4 - 5 m³/h	Japan	
Air Compressor	3.5 m ³ /min	Japan	
Generator	5 kVA	Japan	
Rough Terrain Crane	30 ton	Japan	
Dump Truck (on read)	6 x 4 13 - 14 t	Japan	
Dump Truck (off road)	20 - 23 1	Japan and Third Countries	Equipment numbers high i Pakistan
Micro bus	27 - 30 seats	Japan	
Service Car		Japan	
Mobile Workshop	6 t	Japan	
Water Bowzer	8 - 10 kl	Japan	
Fuel Tanker	8 - 10 kl	Japan	· · · · ·
Testing Equipment		Japan	
Welding Equipment		Japan	
Workshop Equipment		Japan	
Electric Systemboard		Japan	
Electrical Component		Japan	
Cutaway Model		Japan	
Training Video Film		Japan	
Mechatronics Simulator		Japan	
Overhead Projector	· .	Pakistan	Procurable in local market
Photo Copy Machine		Pakistan	Procurable in local market
LC Display Panel		Pakistan	Procurable in local market
Multimedia Equipment		Japan	

Table 2.22 Procurement Plan

CHAPTER 3. Implementation Plan

Chapter 3 Implementation Plan

3.1 Implementation Plan

- 3.1.1 Implementation Concept
 - (1) Project Implementation Agency

In case the Project is implemented on the basis of Japan's Grant Aid, the overall structure of the Project will be as shown in Fig. 3.1.

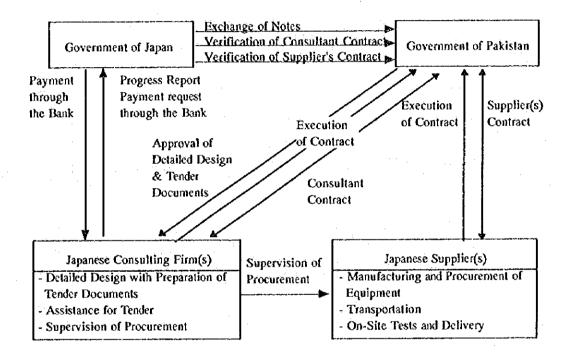


Fig. 3.1 Overall Structure of the Project

Implementation agency of the Project is the Ministry of Communications of Pakistan.

In accordance with Japan's Grant Aid system, Japanese consulting firm(s) will undertake the detailed design and supervision of the Project based on a contract between the Government of Pakistan and the said firm(s), and Japanese general trading company(ics) will undertake the equipment supply based on the contract(s) between the Government of Pakistan and the said company(ies).

(2) Consultant(s)

In accordance with Japan's Grant Aid system, Japanese consulting firm(s) will be employed for engineering services for the Project.

Soon after Exchange Notes (E/N) between the Government of Japan and the Government of Pakistan, the Ministry of Communications will conclude the contract with the Japanese consulting firm(s).

The said firm(s) will provide engineering services for the procurement of equipment which includes detailed design, preparation of contract documents, assistance for tender(s) and contract(s) and supervision of procurement, in accordance with the contract until completion of hand-over of the equipment under the Project.

(3) Supplier(s)

The Ministry of Communications will conclude the contract(s) between the Japanese general trading company(ics) who is(are) awarded the tender(s) in open competitive bidding from the viewpoint of technical capability and cost competitiveness.

The said company(ics) will execute the procurement, transport, installation, initial operation within a period and to the satisfaction of the Ministry of Communications, in accordance with the contract(s).

3.1.2 Implementation Conditions

The port of disembarkation for the equipment procured from Japan and the third country(ies) will be Karachi. The place of hand-over of the equipment will be CMTI, Islamabad.

Any trouble during inland transport of the equipment by road from Karachi to Islamabad (approximately 1,000 km) shall be avoided.

3.1.3 Scope of Works

Construction of the buildings and facilities and procurement of construction material under the CMTI Expansion Plan shall be the responsibility of the Government of Pakistan.

3.1.4 Consultant Supervision

(1) Principles

In case the Project is implemented by Japan's Grant Aid, the consultant must thoroughly understand the background of the Project, contents of the Basic Design Study Report, Japan's Grant Aid system and the contents of the Exchange Notes (E/N) between the Government of Japan and the Government of Pakistan.

1) Scope of the Consulting Services

Scope of the consulting services is as follows:

1. Detailed Design

- Detailed design and preparation of tender documents
- Preparation and explanation of the specifications and tender and contract documents for the Government of Pakistan
- Assistance for tender(s), evaluation for tender(s) and witness of contract(s) for equipment supply
- Confirmation of the obligations of the Pakistan side
- 2. Procurement of Equipment
 - Issue of notice to proceed
 - Preparation of inception report

- Discussions with the parties concerned prior to the commencement
- Factory(ies) inspection

- Pre-embarkation inspection
- Preparation of monthly progress report throughout the contract period
- Inspection of final hand-over
- Preparation of final report
- 3. Initial Operation of the Equipment

Initial instruction and training for operation, preventive maintenance, routine maintenance by the supplier(iers) under the control of the consultant are required.

2) Basic Points to Note

- Conformity with the Basic Design

Design conditions set out in the Basic Design Study shall be confirmed. It is important to check whether the specifications of equipment in the Basic Design Study comply with the conditions.

- Tender and contract documents shall be in accordance with Japan's Grant Aid system. During the field survey of the Detailed Design, the documents shall be thoroughly examined and explained to the Pakistani side for its approval.

3.1.5 Procurement Plan

Procurement plan for the equipment from Japan, third countries and local market in Pakistan is as follows:

Equipment procured from Japan

Regarding construction equipment and vehicles, the products of Japanese makers have predominant share in the Pakistani market. Thus, operators and mechanics are familiar with these products. Also, capabilities of local agents of the Japanese makers are sufficient from the viewpoint of maintenance techniques and spare parts supply. Regarding maintenance equipment, workshop equipment and training aids equipment, almost all of the CMTI's existing equipment are products of Japanese makers.

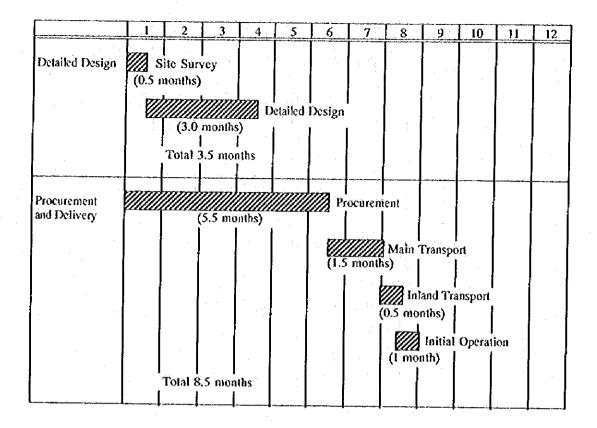
Port of disembarkation is Karachi. For transport from Karachi to CMTI Islamabad National Highway No.4 via Lahore will be used.

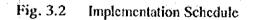
Equipment procured from Japan or third countries

For several items of construction equipment of large capacity, the products of makers of OECD DAC countries are used in Pakistan. Local agents of these makers have sufficient maintenance capabilities, thus, the following equipment can be procured from third countries.

Bulldozer	285 - 305 HP
 Land fill compactor 	200 - 250 HP
• Dump truck (off the road)	20 - 23 t
Pipe layer	300 - 305 HP

Delivery route for the equipment from third countries is the same as for the equipment from Japan, i.e. the port of disembarkation is Karachi, then road transport from Karachi to CMTI Islamabad on National Highway No.4 via Lahore.


Equipment from local market in Pakistan


The following training aid equipment of makers of OECD DAC countries can be normally procured from the local market in Pakistan.

- Overhead projector
- · LC display panel
- Photocopy machine

3.1.6 Implementation Schedule

Implementation programme of the Project is shown in Fig. 3.2.

3.1.7 Obligations of Recipient Country

Necessary measures to be taken by the Government of Pakistan in case Japan's Grant Aid is executed.

- (1) To secure the site for the Project.
- (2) To undertake every construction works programmed under the CMTI Expansion Plan, and incidental outdoor works such as grading, fencing, gates and exterior lightning in and around the site.
- (3) To secure stockyard and storage facilities prior to delivery of the equipment to be supplied.
- (4) To provide facilities for distribution of electricity, water supply, telephone, drainage, sewage and other incidental facilities to and within the Project site, which include but are not limited to:
 - 1) Electricity distribution line
 - 2) Water distribution line
 - 3) Drainage line
 - 4) Telephone line and the main distribution panel
 - 5) General furniture such as carpets, curtain, tables, chairs and others
- (5) To ensure prompt unloading and customs clearance at port of disembarkation in Pakistan and internal transportation of the products purchased under the Grant.
- (6) To bear the following commissions to the Japanese foreign exchange bank for the banking services based upon the Banking Atrangement.
 - 1) Advising commission of Authorisation to Pay (A/P)
 - 2) Commission for the Payment
- (7) To exempt Japanese nationals involved in the Project from custom dutics, international taxes and other fiscal levies which may be imposed in the Islamic Republic of Pakistan with respect to the supply of the products and services under the verified contracts.

3 - 7

- (8) To accord Japanese Nationals whose services may be required in connection with the supply of products and services under the verified contract such facilities as may be necessary for their entry into the Islamic Republic of Pakistan and stay therein for the performance of their work.
- (9) To maintain and use properly and effectively the facilities constructed and equipment purchased under the Grant.
- (10) To bear all the expenses other than those to be borne by the Grant, necessary for construction of the facilities as well as for transportation and the installation of the equipment.

3.2 Operation and Maintenance Plan

3.2.1 Maintenance System

A maintenance system will be established based on the present system which has worked effectively. The outline of the system is as follows:

(1) Routine Maintenance

Sub Instructors responsible for routine maintenance check every equipment filling in the check sheet in Appendix 12-1. Check items are mileage, cooling water, engine oil. Check sheets filled in will be reported to the Instructor, and Chief Instructor.

(2) Periodic Maintenance

Instructors responsible for periodic maintenance check equipment routine maintenance records, then report to Chief Instructor. The Chief Instructor orders workshop engineer to execute periodic maintenance.

(3) Maintenance Procedure

- Maintenance Request

Instructors responsible to check water, fuel and oil. If leakage or abnormal consumption observed, request workshop engineers to check and fill in request sheet in Appendix 12-2. - Maintenance Table

Workshop engineers responsible for repair examine the cause of trouble, prepare repair schedule which includes repair method, necessary parts and time schedule, then submit to workshop sub-engineer to execute repair. In the case that specific spare parts are needed, request spare parts, filling in parts request sheet.

Workshop engineers responsible for execution of repair, check the equipment and the maintenance table, then order the mechanics to execute the works.

After repair the mechanics prepare the repair record filling in the sheet in Appendix 12-3 and 12-4, then report to sub-engineers, engineers of workshop and Chief Instructor.

(4) Spare Parts Control

Inventory sheet which includes parts code, name of parts, stock, stocking place, is used for inventory control. The present inventory sheet control is being replaced by a computerised control system. (Refer to Appendix 12-5).

Necessary spare parts are summarised as follows:

- Spare parts for routine maintenance/elements, filter, corrosion register, etc.
- Abrasive parts/ blade cutting edge, end bit, ripper point, sprocket, segments, bolt, nut, break lining, etc.
- Water, oil/O-ring, gasket, grease fitting, oil seal, etc.
- Consumable/V-belt, lamp, valve, hose, fuel nozzle, fuse, switch, meter, etc.
- Necessity for spare parts for engine cylinder and piston ring is very low, thus keeping a stock seems unnecessary, but a secured channel of supply to be maintained.

In conclusion, since the equipment is used for training purposes only, the anticipated work load will be smaller than for usual construction works, therefore the amount of spare parts can be minimized.

3-9

3.2.2 Maintenance Cost Estimation

Based on CMTI's annual running costs for the last three years, additional running costs to be borne by the expansion are estimated. Main components which affect the cost increase are; allowance for staff, fuel and lubricant for equipment operation practice, equipment maintenance and fuel and lighting for facilities. Thus, cost estimates were made on the above three items.

(1) Pay and Allowance

Average monthly allowances of CMTI staff are as follows:

Position	Monthly allowance Rs/month	Average Rs/month
Instructor	9,000 - 12,000	10,000
Sub Instructor	3,000 - 5,000	4,000
Supporting staff for construction equipment	1,000	1,000

Increment of the above staff and allowance for it required for the expansion are calculated as shown in Table 3.1.

Position	No. to be Increased	Additional Cost Rs/month
Instructor	13	130,000
Sub Instructor	49	196,000
Supporting staff for construction equipment	20	20,000
Total of additional cost per month		346,000
Total of additional cost per year		4,152,000

Table 3.1 Cost Estimates for Allowance

As the budget for staff for the 1995/96 fiscal year is at 6,583,000 Rs, a total of 10,735,000 Rs (63% increase) will be required.

(2) Fuel and Lubricant for Training Equipment

Fuel consumption for operation practice of construction equipment and vehicles occupy most of the fuel and lubricant cost. Details of the estimation is shown in Table 3.2, where conditions of the estimates are as follows:

Market price of diesel oil	6.5 Rs/l (September 1995)
Average daily operation hours	2.5 hours (OP Course)
Average annual operation days	120 days (40 days x 3 semesters
Fuel consumption rate per equipment	40% of usual operation
Lubricant	Lubricant 0.5% of fuel cost

3 - 11

Equipment		Нр	No.	Fuel Consu	mption	Annual Costs Rs
				1/HP∙h	1/h	
Bulldozer	300 HP	300	1	0.055	17	32,292
Bulldozer	250 HP	250	5	0.055	69	134,550
Hydraulic Excavator	0.7 m ³	130	2	0.055	14	27,986
Hydraulic Excavator	0.5 m ³	° 90	2	0.055	10	19,375
Hydraulic Excavator	0.09 m ³	32	1	0.055	2	3,444
Hydraulic Excavator with	0.5 m^3	90	1	0.055	5	9,688
Super Long Boom						
Wheel Loader	3.5 m ³	250	3	0.046	35	67,275
Wheel Loader	1.7 m ³	110	1	0.046	5	9,867
Motor Grader	140 HP	140	2	0.032	9	17,690
Motor Grader	155 HP	155	1	0.032	5	9,793
Vibration Roller	10 i	130	1	0.046	- 6	11,560
Vibration Compactor	5 HP	0.9	1	0.060	0	106
Landfill Compactor	2650 HP	250	1	0.034	8	16,380
Tyre Roller	10 t	96	1	0.030	3	5,616
Asphalt Finisher	6 m	⁵ 90 -	1	0.046	· 4	8,003
Mobile Hammer	130 HP	130	1	0.055	7	13,993
Power Splitter	150 HP	150	1	0.055	8	16,146
Pile Driver	135 HP	135	1	0.055	7	14,531
Pipe Layer	350 HP	350	1	0.055	19	37,674
Automatic Curber	5 m ³	9	1	0.068	1	1,193
Air Compressor	3.5 m³/m	34	1	0.062	2	4,111
Generator	5 KVA	10	1	0.051	1	991
Rough Terrain Crane	30 t	286	1	0.031	9	17,177
Dump Truck (off the road)	23 t	296	1	0.025	7	14,545
Dump Truck (on the road)	12 t	335	1	0.016	5	10,452
Service Car	3,000 cc	80	2	0.015	2	4,618
Mobile Workshop	6 t	-110	1	0.016	2	3,432
Water Bowzer	10 kl	335	1	0.016	- 5	10,452
Fuel Tanker	10 kl	335	1	0.016	5	10,452
Total of Annual Costs for Fuel						533,393
Total of Annual Costs for Fuel a	and Oil					533,660

 Table 3.2
 Cost Estimates for Fuel and Lubricant

As the budget for fuel and lubricant for 1995/96 fiscal year is 350,000 Rs a total of 883,660 Rs will be required.

(3) Maintenance Cost of Equipment

For 1995/96 fiscal year a total of 250,000 Rs is allocated for equipment maintenance cost. Of this cost, the cost of spare parts for construction equipment is negligibly small, because most of the spare parts required were fully secured by procurement under Japan's Grant Aid Assistance in the past. Accordingly, appropriate spare parts provision should be made under the Project considering such stock.

The vehicles under the Project are used on the training field only, thus the requirement for spare parts is not so frequent. With appropriate spare parts preparation under the Project, need for additional procurement will be small for the following four to five years.

(4) Fuel and Light Costs for Facilities

Considering the expansion in area, a 50% increase is anticipated.

(5) Anticipated Total Operation Cost

In conclusion, total operation cost will be shown in Table 3.3.

Item		Amount thousand Rs
Pay and Allowance	Fuel and Lubricant	10,735
Emergency and Others	Fuel and Lubricant	885
	Electricity	1,275
	Gas	150
	Others	575
Sub Total		2,885
Maintenance for Facilities and	Vehicles	50
Equipment	Equipment	200
	Buildings	600
	Facilities	75
Sub Total		925
Total		14,545

 Table 3.3
 Anticipated Total Operation Cost

For 1996/97 fiscal year a total of 9,774 thousand Rs is allocated as CMTI running cost, thus 50% increase of the present cost will be required.

CHAPTER 4. Project Evaluation and Recommendations

Chapter 4 Project Evaluation and Recommendation

4.1 Project Effect

The Project will enable CMTI to supply a total of 840 construction machinery operators, mechanics, associate engineers and engineers annually to the construction industry as compared to the present 360, answering, thus, to the recent increase in applicants for the training (900) as well as to the increased demand for the graduates from both public and private sectors to which the CMTI have supplied 1,068 and 1,699 respectively since its establishment.

The increase of the number of skilled manpower in the civil engineering and mechanical engineering fields will enable the construction industry to accelerate mechanisation of the execution of construction work.

Effective operation and maintenance of the equipment through upgrading the technical level will prolong equipment life and save operation costs, which will contribute to improve the financial situation of the construction industry. Consequently, the government's road development programme will be significantly accelerated.

The Project also contributes to minimize unemployment among young workers and to reduce the number of construction workers from third countries, consequently reducing the drain on foreign currency.

The trainces dispatched from the local governments are expected to upgrade the technical level of construction work on rural development programmes and contribute to stimulate socio-economic activities in rural areas.

Regarding the indirect effects of the Project, the following is expected.

- To stimulate economic activities by providing reliable road facilities, thus saving transport cost.
- To realize price stability by saving distribution cost.
- To facilitate the access of the rural population to social services such as medical, education, etc. services.
- To promote settlement in rural areas.

The present situation and problems of the road sub-sector, the measures to be taken under the Project and the positive impacts and extent of the Project are summarised in the following Table.

	Present situation	N	feasures to be taken under the	F	Positive Impacts and extent of the
			Project		Project
0	Under the 8th Five Year Plan,	1)	The government has been	1)	CMTI's annual output of
ľ′	improvement and upgrading of	•,	promoting mechanisation of	' '	engineers, associate engineers,
	4,000km of high type roads and		the construction industry		construction machinery operators
1	3,000km of low type roads have been		through tax measures and		and mechanics at 100, 40, 300 and
	implemented. To accelerate the		improvement of the system of		400, which represents 51%, 15%,
	progress of the road programmes,		payment for construction		19% and 60% of the nationwide
	mechanisation of the construction		work to strengthen the		
	industry is urgently required.		financial condition of the	20	requirement, will be realized.
5				2)	Starting the welding course and
2)	The nationwide annual requirement		industry. Also, promoting		electricians course, CMTI's
	for engineers, associate engineers,		manpower development to		training programme will cover the
	construction machinery operators and		meet the mechanisation by		complete technical fields of
	mechanics for road works are		implementing the CMTI		construction machinery
	estimated at 190, 270, 1615 and 665,	-	expansion plan.		management, operation and
		2)	Provide necessary training		maintenance.
ļ	capacity of CMTI, which is an unique		equipment for the CMTI	3)	Mechanisation of the construction
	agency to provide training on		expansion plan. The		industry will be accelerated,
	construction machinery engineering		equipment includes		consequently progress of road
	in Pakistan, is limited to 60, 40, 120		construction machinery,		programmes will be accelerated.
	and 40.		testing equipment, workshop	4)	The Project will contribute to
3}	The CMTI expansion plan which was		equipment, training aid		reduce the number of construction
	implemented under the 8th Five Year		equipment and vehicles for		workers from third countries,
	Plan, programmes to increase its		transport.		consequently the drain on foreign
ĺ	annual output of engineers, associate		·		currency.
	engineers, construction machinery			5)	The Project will contribute to
	operators and mechanics to 100, 40,				minimize unemployment of
	300 and 400, respectively.				young workers.
	Construction of facilities under the			6)	Provide more equal opportunities
	expansion plan is in progress, but				for economic development and
	there is not adequate training				access to social services.
	equipment at present and necessary			7)	Resolve regional disparities.
	equipment for new courses (welding			8)	Realise sound economic growth.
	course and electricians course) is				
L	completely missing.	<u></u>			

Summary of the Project Effects

As described above, significant positive effect is expected from the Project. The Project also contributes to the upgrading of the basic human needs of the residents. Regarding management of the Project, the Pakistani side has sufficient capabilities for its execution. In conclusion, it is strongly recommended to implement the Project by Japan's Grant Aid Assistance.

4.2 Recommendation

It is confirmed that there will be no problems for operation and maintenance of the CMTI by the Pakistani side after completion of the Project. However, considering the priority of road development and manpower development programmes of the country, it is recommended that CMTI's expansion plan will be extended to the following courses:

Techniques on rock excavation work of road construction is 1) Drilling course/ particularly required in the northern area, such as Lahore-Islamabad Highway Construction Project. Several tunneling projects are going to be implemented such 2) Tunneling course/ as, Kohat Tunnel Construction Project and Lowari Tunnel Construction Project. There is no agency to date which can provide training in tunneling techniques. Bridge course/ Demand for bridge construction is extremely high all over the 3) country. There is no agency to date which can provide training in bridge construction techniques.

CMTI will start a programme from January, 1996, which accepts trainees from developing countries in Asia, Africa and Middle East such as Bangladesh, Bhutan, Central Africa, Ethiopia, etc. From the viewpoint of supporting this programme, early implementation of the Project by Japan's Grant Aid is recommended.

APPENDIX

Appendix 1	Member List of the Survey Team
Appendix 2	Survey Schedule
Appendix 3	List of Parties Concerned in Pakistan
Appendix 4	Minutes of Discussion
Appendix 5	Cost Estimation Borne by Pakistani Side
Appendix 6	Road Development Programmes by the Federal Government
Appendix 7	Estimates of Required Manpower for Road Works
Appendix 8	Number of Vacancies and Applicants/Employment of Trainees
Appendix 9	Buildings and Facilities Expansion Plan
Appendix 10	Status of Training Courses
Appendix 11	Situation of Local Agents of Foreign Makers
Appendix 12	Equipment Maintenance Proforma
Appendix 13	Condition of the CMTI's Existing Equipment
Appendix 14	References

Appendix 1 Member List of the Survey Team

Basic Design Study		
Mr. Toshio Hinoshita	Leader	Deputy Director Second Maintenance Department Second Operation Bureau Honshu-Shikoku Bridge Authority
Mr. Hisashi Matsui	Project Coordinator	Second Basic Design Study Division Grant Aid Study & Design Department Japan International Cooperation Agency (JICA)
Mr. Yoichi Higaki	Project Manager	Construction Project Consultants Inc. (CPC)
Mr. Takayasu Kase	Facility Planning	Yachiyo Engincering Co., Ltd. (YEC)
Mr. Hiroyuki Sasaki	Equipment Planning	Construction Project Consultants, Inc. (CPC)
Mr. Tamio Shinada	Procurement Estimation	Construction Project Consultants, Inc. (CPC)

Basic Design Study Draft Final Report Explanatory Survey

Mr. Toshio Hinoshita	Leader	Deputy Director Second Maintenance Department Second Operation Bureau Honshu-Shikoku Bridge Authority
Mr. Noriaki Nishimiya	Project Coordinator	Deputy Resident Representative & Chief Engineer Pakistan Office Japan International Cooperation Agency (JICA)
Mr. Yoichi Higaki	Project Manager	Construction Project Consultants Inc. (CPC)
Mr. Hiroyuki Sasaki	Equipment Planning	Construction Project Consultants, Inc. (CPC)

A - 1

Appendix 2 Survey Schedule

Basic Design Study

No.of Days	Date	Movement	Accommo- dation	Activities
1	Oct. 2 (Mon)	Depart from Tokyo 12:00 (PK753) Arrive to Islamabad 20:00	Islamabad	Travelling
2	Ocl. 3 (Tue)		Islamabad	Courtesy call on: Embassy of Japan (EOJ) and Ministry of Communications Discussions with JICA and relevant officials
3	Oct. 4 (Wed)		Islamabad	Site visit at CMTI Discussions with the relevant officials
4	Oct. 5 (Thu)	an a	Islamabad	Road construction site visit
5	Oct. 6 (Fri)		Islamabad	Internal meeting Preparation of the Minutes of Discussions (Draft)
6	Oct. 7 (Sat)		Islamabad	Discussions with the relevant officials
7	Oct. 8 (Sun)		Islamabad	Sign for the Minutes of Discussions Report to the EOJ and JICA
8	Oct. 9 (Mon)	Official members depart from Islamabad 10:30 (PK778)	Islamabad	Site visit at CMTI Discussions with the relevant officials
9	Oct. 10 (Tue)		Islamabad	- ditto -
10	Oct. 11 (Wed)		Islamabad	- ditto -
11	Oct. 12 (Thu)		Islamabad	- ditto -
12	Oct. 13 (Fri)		Islamabad	Internal Meeting
13	Oct. 14 (Sat)		Islamabad	Road condition survey for main roads Islamabad-Peshawar
14	Oct. 15 (Sun)		Islamabad	Site visit at CMTI Discussions with the relevant officials Data collection
15	Oct. 16 (Mon)		Islamabad	- dillo -
16	Oct. 17 (Tue)		Islamabad	- ditto -
17	Oct. 18 (Wed)		Islamabad	- ditto -
18	Oct. 19 (Thu)		Islamabad	- ditto -

A - 2

No.0 Day	i	Movement	Accommo- dation	Activities
19	Oct. 20 (Fri)		Islamabad	Internal meeting Preparation of technical memorandum
20	Oct. 21 (Sat)		Islamabad	Signing of the technical memorandum
21	Oct. 22 (Sun)		Islamabad	Report to the EOJ and JICA
22	Oct. 23 (Mon)	Consultant members depart from Islamabad 10:30 (PK779) Arrive to Bangkok 19:25	Bangkok	Travelling
23	Oct. 24 (Fue)	Depart from Bangkok 11:00 (TG640) Arrive to Tokyo 19:00		Travelling

	No.of Days	Date	Movement	Accommo- dation	Activities
	1	Nov, 11 (Mon)	Depart from Tokyo 12:00 (PK753) Arrive to Islamabad 20:00	Islamabad	Courtesy call on: Embassy of Japan (EOJ) and Ministry of Communication:
	2	Nov. 12 (Tue)		Islamabad	Explanation of Draft Final Report
• .	3	Nov. 13 (Wed)		Islamabad	Explanation of Draft Final Report
. 11	4	Nov. 14 (Thu)		Islamabad	Explanation of Draft Final Report
	5	Nov. 15 (Fri)		Islamabad	Preparation of the Minutes of Discussions (Draft)
:	6	Nov. 16 (Sat)		Islamabad	Construction site visit NLC, Mangla dam
	7 -	Nov. 17 (Sun)		Islamabad	Discussion on the Draft Minutes of Discussion
	8	Nov. 18 (Mon)		Islamabad	Sign for the Minutes of Discussion Report to the EOJ and JICA
•••	9	Nov. 19 (Tue)		Islamabad	Supplementary survey
	10	Nov. 20 (Wed)		Islamabad	Supplementary survey
	11	Nov. 21 (Thu)			Supplementary survey Report to the EOJ and JICA
	12	Nov. 22 (Fri)	Depart from Islamabad 00:45 (PK792)	Islamabad	
			Arrive to Bangkok 08:40		
			Depart from Bangkok 11:10 (TG640)		
			Arrive to Tokyo 19:00		

Basic Design Study Draft Final Report Explanatory Survey

Appendix 3 List of Parties Concerned in Pakistan

Mr. Shahid Humayun

Mr. Arshad Sultan

Mr. Ghulam Yazdani

Mr. Mohammed Iqbal

Mr. Wilayat Shah

Mr. Masud Hussain

Mr. Shafqat Hayat Raziq

Mr. Zahid Rashid

Mr. Ammar Haider Bukhari

Mr. Iftikhar Hussain

Mr. Anjum Majid

Mr. M. A. Farouk

Mr. Munir Ahmed Khokhar

Mr. Viqar Ul Haq Khan Khalid

Mr. Ijaz Rasoul

Deputy Secretary Economic Affairs Division

Section Officer Economic Affairs Division

Joint Secretary Ministry of Communications

Deputy Secretary Ministry of Communications

Section Officer Ministry of Communications

Director CMTI Ministry of Communications

Administrator Officer CMTI Ministry of Communications

Chief Instructor CMTI Ministry of Communications

Chief National Transport Research Center (NTRC)

Deputy Secretary Manpower & Overseas Pakistanis Wing

Director General Frontier Works Organisation

Project Manager Islamabad-Lahore Expressway Construction Project National Logistic Cell (Engineer)