APPENDICES

Appendix 1 Microscopic observation of rock thin section

Sample No.		Rock Name	Texture	Phenocryst, Frasment							Groundmass, matrix					Accesary mineral								Secondary mineral								
		Pl		Kf	Opx	Cpx	Hb	Opq	Rf	Qz	P1	Cpx	Opq	G1	Ap	Zr	Sph	Ale	Sc	Se	Pr	Cb	Ch2	Ep	Act	Sme	04	Hem	G:	Sph		
	AR-004		hb-2px microdiorite	ophitic	(0)		Op	0	(0	\triangle							Δ	-			0	Δ	\triangle		0	\triangle			\triangle			
2	AR-014	cpx basait	intersranular	0			0					(0)	(0)	©	-	Δ				\triangle	Δ		0	0				Δ	0		-	
3	CR-0:0	hb-2 ${ }_{\text {px }}$ microdiorite	ophitic	(0)		0	0	(0)	\triangle		-					\triangle	\triangle			0	Δ			0	0			Δ				
4	DR-006	(cpx) basaltic andesite	intergranular	(0)			Op					(0)	\triangle	(0)		-					Δ		(0)	0	-			Δ	-	Δ		
5	DR-023	(hb) dacite	graphic	(0)				Op	0		\triangle	(0)		\triangle		Δ	Δ				-	0	\triangle	Δ	Δ		Δ	\triangle	-		\triangle	
6	ER-011	$0 p x-c p x$ andesite	intersertal	0		(2)	0					()	Δ	\triangle	\triangle	-					Δ		\triangle	0		0					\triangle	
	FR-002	ppx-cpx andesite	intersertal	0		Op	0				-	Q	0	\triangle	Δ	-					0		0	0		0					\triangle	
8	CR-012	hb-2px microdiorite	ophitic	(2)		0	\triangle	(0)	\triangle		\triangle					-	-			0	-		-	0	0			Δ			\triangle	
9	CR-024	(cpx) basalt	intergranular	(0)			Op					©	(2)	(0)	-	-					0		\bigcirc	0	\triangle						Δ	
10	HR-006	pl porphyritic basalt	intergranular	(2)					(0)			(0)		0		0					\triangle		(0)	\bigcirc					Δ			
11	HR-024	rhyolitic tuff		(0)	\triangle			$\Delta \mathrm{p}$	0	\triangle	\triangle					-	Δ			0	\triangle						Δ	Δ		Δ		
12	HR-025	rhyolitic welced tuff	eutaxitic	(c)	\triangle			Δp	0	(0)	\triangle				Op	-	Δ			0	Δ							\triangle	Δ			
13	HR-036	rhyolitic welded tuff	eutaxitic	(0)	\triangle			$\Delta \mathrm{p}$	\triangle	()	\triangle				Op	Δ	-			0	Δ				0			\triangle	Δ			
	ER-054	hb-Cpx diorite porphyry	porphyritic	(0)		Δp	0	(0)	\triangle		Δ					\triangle		\cdot	-	-		-	Δ	0	(0)			\triangle			\triangle	Abbreviation.

Qz:quartz Pi:plagioclase K : potash feldspar Opx:orthopyroxene Cpx:chinopyroxene Hb:hornblend Opq:opaque minerals
Ap: apatite Zr : zircon Sph: sphene Ale:allenite Sc:sillica minerals Se:sericite Pr:prehnite Cb:carbonate Chl:chlorite
Ep:epidote Act:actinorite Sme:smectite Hem:Hematite Gt:geothite Rf:rock fragment GI:volcanic ghass
Appendix 2 Microscopic observation of ore polished thin section

Appendix 3 Result of X-ray diffraction(1)

	Sample No.	Rock Type	$\mathrm{Oz}_{1} \mathrm{P} 1$	K!	Px	Ch	ε_{p}	'Mus	Mon	Pyr	Kas	Nac	An	Cal	Dol	Sid'	Py	Hem	600
1	AR-01	Atered Tuft	(2)			-		\triangle											
2	AR-03	Aterec Tuff	(2)					\triangle											
3	AR-06	Silicificed Tuff	©					\triangle			.								
4	AR-DX	Argitio Tufr	(0)			\|		\triangle											
5	AR-10	Atered Rhyolitic Tuff	(2) 0			,		\triangle	\triangle		,								
6	AR-11	Altered Andesite	(0) \triangle			!		\triangle	A										
7	AR-13	Aftered Tuff	© !					\triangle	.										
8	AR-18	Alicred Tuff	(0)						?										
9	AR. 19	Atured Tuff	(0)																
10	AR-20	Atered Andssite	(c) \triangle			,													
12	AR-23	Siticifiod Rock	(0)																
12	AR-24	Altered Tuff	(6)					Δ			-	I							-
13	AR-25	Altered Tuff	©			\|		Δ					-						\cdot
14	AR-26	Atered Tuff	(2)			I	1				-								-
15	AR-27	Altered Tuff	(2)					\triangle											
16	AR-2\%	Alcered Tuff	(2)			+		\triangle					\triangle						
17	AR-29	Ahercd Tuff	(6)			!		.											Δ
18	AR-33	Quarte Vein	(2)			0													-
19	AR-35	Atered Andesite	())					Δ	-		0								
23	AR.38	Altered Andesite	(2)	!	\|			Δ			,								
21	AR-39	Attered Andesite	(2)			I		Δ			,								-
22	AR-41	Altered Andesite	() !	!	,			- I			Δ			\bigcirc			+	!	
23	AR-42	Silicified Rock	(2)	,		!		-			-								\triangle
24	AR-43	Ahered Addesite	(2)	;	,	\|		\triangle							1				
25	AR-44	Andesite	(0): 0	I	I	I	1	-				1					I		
26	CR-01	Silicified Tuff	(0) 01	!	!	+		-			\triangle			\triangle					
27	CR-12	Altured Andesite	(0)	I	,				-		Δ	!					,		
2 x	CR-04	Tuff	©			i			,	!									
29	CR-06	Tuff Broccia	(6) $1 \triangle$	\|							!	,			i	\|			
30	CR-09	Silicifee Tuff	© © 0		I	\|			1		-					,	!	!	
		MBOLS						.	,	1	$\cdot 1$		i		!	1	\|		

? : Uncertain

	Sample No.	Rock Type	Qz	P1	Kf	Px	Cht	E_{p}	Mus	Mon	Pyr	Kao	Nac	An	Cal	Dot	Sid	Py	Hom	Goe
31	CR-13	Slate	©	-					\triangle			.								
32	CR-16	Atered Slate	©	-		-			\triangle			.								
33	CR-19	Tuff	(2)									\triangle								
34	CR-20	Tuff	(2)						\triangle			Δ								
35	CR-23	Siticificed Rock	(c)						Δ											
36	CR-28	Slate	(c)	\triangle					\triangle			\triangle							$?$	
37	CR-32	Silicificed Rock	©		-				\triangle				?	$?$						
38	CR-34	Silicified Rock	©						Δ											
39	CR-36	Rhyorite	(2)	-					\triangle											
40	CR-42	Silicified Rock	(c)	0					\triangle											
41	CR-44	Tuff	©	-					\triangle											
42	CR-47	Clay Altered Rock	©	!					A						\cdot					
43	CR-50	Silcified Rock	(2)																	
44	CR.56	Tuff	(2)																	
45	CR-58								Δ											\triangle
		Tuff	(0)																	
46	CR.67	Clay Atcred Rock	(6)									\triangle			©	?			?	
47	CR.70	Clay Altered Andesite	©						\triangle			.								
48	CR-71	Aftered Andesite	(2)	01	$\Delta 1$				- 1											
49	CR.75	Atered Andesite	(2)	$\triangle 1$	0				\triangle											
50	CR-79	Atited Tuff	(2)	!					0			-		-						
51	CR-80	Altured Andesite	(c)																	
52	CR-81	Atered Andwisite	©		,				\triangle	!		-								
53	CR-82	Atered Andesitc	(0)			!		1				-								
54	CR.83	Altered Andersite	(2)	i	!				Δ										\triangle	\triangle
55	CR-84	Atered Andesite	($)^{1}$!		\triangle											
56	CR-87	Ahered Tuff	©		;														\triangle	.
58	CR-90								Δ					,						
59			(-)		,				Δ			\triangle		-				-		
	CR-94	Altered Andesitu	(2)			,			Δ			\triangle				\triangle				
60	CR-101	Atered Tuff	(0)	.		\|			$\Delta 1$			0	;		.	.	1		$?$	

? : Uncertain

Appendix 3 Result of X-ray diffraction(3)

| | Sample No. | Rock Type | Qz \| P! | Xf | Px $\mathrm{Ch}^{\text {Cl }}$ | Ep \|, | Mus | Mon | Pyr | Kao | Nac | An | Cal | Dol | Sid | Py | | Goe | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | CR-107 | Alured Andesite | © | -1 | | | | | . | | | | | | | | | |
| 62 | CR-10x | Arecred Andesite | (2) | 1 | | \triangle | \triangle | | . | | | | | | | | | breviation |
| 63 | CR-110 | Altered Andesite | © 10! | $!$ | | Δ | Δ | | | | | ? | | | | | | QZ:quartz |
| 64 | CR-112 | Atered Tuff | (2) | ! | | \triangle | | | \triangle | | | \bigcirc | | | | | | pl:plagioclase |
| 65 | CR-113 | Altered Tufi | (1) ! | \% | | \triangle | - | | Δ | | | | | | | | | Kf:potash Leldspar |
| 66 | CR-114 | Alured Tuff | (2) : | I | | \triangle | | | Δ | | | | | | ? | | | cx:pyroxene |
| 67 | CR-117 | Altered Tuff | (6) 0 ! | | | Δ | | | | | | | | | | | | Ep:epidote |
| 68 | CR-120 | Attred Andesite | (2) | ! | | \triangle | - | | \bigcirc | | | | | | | | | mus:muscovite |
| 69 | CR-126 | Alered Andesite | © 10: | i | | \triangle | | | 0 ! | | | | | | | | | Mus:muscovite
 (sericite) |
| 70 | CR-129 | Atered Andesite | (2) ! | 1 | | \triangle | | \| | , | | | | | | | | | (sericite) |
| 71 | DR-01 | Atered Andexite | (2) | i | | 0 | | | - | | | | | | | | | Kon:montmorilionoite |
| 72 | DR-02 | Atered Tuff | © | - | | \triangle | . | | Δ | ! | | | | | | | | pyz:Pyrophy2iste |
| 73 | DR-11 | Atered Andesite | - | 1 | | Δ | \| | | | | | | | | | | | Kao:kaolinite |
| 74 | DR-14 | Atered Andesite | (ㅅ) ? | ! | | Δ | 0 | | \triangle | | | | | | | | | Nac:nacrite |
| 75 | DR-15 | Atered Andesite | (0) | - | | Δ | , | | 0 | | | | | | | | | An:anhydrite |
| 76 | DR-18 | Altered Andexitu | () | ! | | Δ | | | \triangle | i | | | | \bigcirc | ? | | | Ha:halloysite |
| 77 | DR-21 | Altered Andesite | (ㅇ) | \| | | \triangle | - | | Δ | | | | | | | | | Dol:dolomite |
| 78 | DR.25 | Altered Andesite | © | ! | | $\Delta 1$ | | | - | ! | | | , | | | | | Sid:siderite |
| 79 | DR.34 | Attered Andessite | © | i | | $\Delta 1$ | ! | , | ! | ? | | | ; | | | | | Pid:siderite |
| 80 | DR-42 | Altered Andesite | © 10! \triangle | , | | Δ | \| | | \triangle | - | | | I | | ? | | | Hem:hematite |
| 81 | DR-45 | Aterod Andesite | (2) ! | \| | | 0 | i | ! | ? | | | | + | | | | | |
| ${ }^{\text {x } 2}$ | ER-O2 | Altered Tuff | (0) | - | | Δ 1 | I | | ? | | | | ! | | | | | co.geothite |
| 83 | ER-10 | Altered Tuff | (0)! | 1 | | - | | \| | \cdots | , | | | | | | | | |
| 84 | ER-12 | Attered Rack | (o) | | | 01 | I | I | | 1 | | | | | | | | |
| $\times 5$ | ER-13 | Andesite | (0) | I | | Δ | \triangle | | Δ | ! | | | | | | ! | | |
| 86 | ER-14 | Andesite | () ! | | | \triangle | T | ! | - 1 | | | | , | | | | | |
| 87 | ER-17 | Andesite | (0) | | | Δ | \triangle | | \triangle | | | | | | | | | |
| 88 | ER-21 | Altered Tuff | (2) | 1 | | 0 | 1 | | | | ! | | ! | | | ? | Δ | |
| $\times 9$ | ER-22 | Altered Tuff | (2) | 1. | | \triangle | Δ | ! | | | | | ! | | | | | |
| 90 | ER-25 | Altered Andesite | © 10 : \triangle | | | Δ | | ! | | \| | 1 | | ! | | | , | | |
| | | | | | | | | | | | | | | | | | | |
| SYMBOLS© Abundant $\bigcirc:$ Common $\triangle:$ Rare | | | | | | | | | | | | | | | | | | |

Appendix 3 Result of X-ray diffraction(4)

	Sample Ni \%	Rock Type	Qz ! P1 \| K K^{\prime}													
91	FR-01	Altered Tuff	(0)		Chl	Ep \|Mus	Mon	Pyr 1. Kao	Nac	An	Cal	Doi	Sid	Py	Hem	Goe
92	FR-03	Altered Tuff	(6)			O		I							-	
93	FR-07	Altered Andesite	(0) 1			\triangle		,								
94	FR-14	Altered Andesite	(0)													
95	GR.07	Atered Andesite	(9)			\triangle						!				
96	GR-22	Atered Tuff	@1 0			\triangle		1.							+	
97	GR-25	Altered Tufír	(6)			- \triangle		1.							+	
98	GR-27	Atered Rhyolite	(0) 0 -			-1		1				!			!	
99	GR-37	Anderite	(2) 1			\triangle		?				,			!	
100	GR-38	Andesite	(0)			-		\triangle	+							\triangle
101	GR 44	Andesite	(0) (0) \triangle			\triangle		1			!	,				\triangle
102	GR-56	Tufi	(c) i -			\triangle		-			!				1	
103	GR61	Attered Andesite	(6)					\triangle i				!			\|	
104	GR-62	Altersd Tufi'	()					$\triangle 1$	1						,	
105	HR.0S	Andesite	(0) 10			0		1Δ			\bigcirc	I			!	
106	HR-08	Altered 'uuff	(0) 10			-					01	1			+	
107	HR-10	Altered Tufti	(0) :			\triangle		$\triangle 1$,	+	I	1		!	
108	HR-12	Altered Andessite	(0) 01	I	;	\triangle				-	I	\|			-	\triangle
109	HR-13	Altered Rhyolite	(c) 1 -	I				-	.	I		+	I		1	
110	HR-2X	Tufi	(6)0!					1	1	+	\%	\|	!		\|	
111	HR-23	Nrected Rhyolite	(0) $01 \Delta 1$	\|	\|	\triangle	\triangle	-	\|	!	,	!			1	
112	HR-24	Altered Tuff	(0) $101 \Delta 1$	1	!		I		I	I	I		:		!	
113	HR-35	Rhyolitic Tufi	(Q) \triangle \| \triangle	i		\triangle		1	1	I		\|	!	;	,	
114	HR-39	Altered Rock	(0) ! !	I	,	\triangle		-	I	1	1	!)		!	
115	HR-45	Altered Andesite	(3) 1	I	i	0		-	!	!		1	I		1	
116	HR-46	Andesite	01		!	\triangle		,	+	1	!	I	\|	!	,	-
117	HR-47	Anderite	0 - \triangle			\triangle		\triangle	1	!	1	!	,		1	-
118	HR-50	Altered Tuff	(9) 1	,		\triangle		\triangle	!	;	\triangle	,	I	I	1	
119	HR-51	Tuf'	(6) 1	!		\triangle		-	1	1	I	I		,		\triangle
120	HR-64	Tuff Breccia	01	1		\triangle			I	!	1	,	!	!	!	-
121	HR-6S	Ancesite	(0) 1	I					+	!	1	I				\triangle
122	HR 66	Altered Tuff	(0)	!		10		\triangle	I	1.	i	!	I			
123	HR-72	Andesite	(2)	I		\triangle		-	,	I	1	1	,		!	
124	HR-77	Altered Rock	(0) !		I			1	,	+		1	!	!		\triangle
125	HR-78	Atered Rock	(6)						,	i	,	1	!			\triangle
126	HR-79	Altered Andesite	© 1	1	I	-			+	1	I	!	i	,	.	
127	'RR-89	Andevite	(0) $0: \triangle 1$!	,	i	!	!	,		
		BOLS								I	I	i	1			

Appendix 4 Soil geochemical data in detailed survey area(1)

웅

Appendix 4 Soil geochemical data in detailed survey area(3)

Appendix 4 Soil geochemical data in detaited survey area(4)

Appendix 4 Soil geochemical data in detailed survey area(5)

 5%
Totas
0.01

Appendix 4 Soil geochemical data in detailed survey area（6）

	一号号
008080000800000000080000000000008 	¢
 	－呂
 	－32
	万宗第
 	或苟
 	人39
	$-\frac{3}{3}$
000000000000000000000000000000000 	

$1)$

Appendix 5 Soil geochemical data in semi-detailed survey area(1)

Appendix 5 Soil geochemical data in semi-detailed survey area(2) 20 20 8 0
in
0
$\begin{array}{cc}\text { Eleanent } \\ \text { Enit } & \text { A } \\ \text { Detertion } & 1 \\ \text { Emit } \\ \text { SarieNo. }\end{array}$
$-7 \begin{aligned} & 3 \\ & 3\end{aligned}$
-3
等を88

> $0 \rightarrow$ 88 $-$ Hx

Appendix 5 Soil geochemical data in semi-detailed survey area(3)

Element
Enit
Detretion
limit
No. SmpleNo.

点

()

Appendix 5 Soil geochemical data in semi-detailed survey area(5)

Appendix 6 Ore assay data of rock samples

Appendix 7 Chemical and normative compositions of rock samples

Sample No.	AR-04	AR-14	CR-10	DR-06	DR-23	ER-11	FR-02	GR-12	GR-24	HR-06	HR-24	HR-25	HR-54
SiO2(\%)	57.101	53.29	57.04	48.99	66.88	58.93	58.82	58.12	50.76	52.731	72.33	69.64	56.61
Ti02 (\%)	0.81	1.20	0.81	1.48	0.39	0.80	0.791	0.76	$\frac{1.16}{}$	1.60	0.27	0.42	56. 0.79
A1203 (\%)	16.14	16.48	16.36	16. 48	14.28	16.68	16.47	16.04	17.18	16.50	12.70	13.86	16.23
Cr203 (\%)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01
$\frac{\mathrm{Fe} 203(\%)}{\text { FeO(\%) }}$	1.87	3.65	1.78	4.18	1.79	1.52	1. 001	1.68	3.99	2.49	1. 64	4.13	1. 68
FeO(\%)	5. 27	4.98	5.35	6.24	3.10	5.20	5.75	4.89	6.891	5.62	0.21	0.21	5.35
$\mathrm{MgO}(\%)$	3, 51	0.16	0.16	0.16	0.08	0.18	0.121	0.13	0.19	0.101	0.01	0.03	0.12
$\mathrm{CaO}\left(\mathrm{m}_{\text {) }}\right.$	5.92	7. 69	5,54	9.24	0.46	3.03	3.06	3.15	4.82	1.61	0.19	0.50 !	3.87
Na20 (\%)	3.42	3.58	3.44	2.501	4.59	3.09	6. 3.04	6.03	8.83	7. 13	0.22	1.39	5.44
K20(\%)	1.62	0.63	2.15	0.74	3.13	1.33	1.41	2.91	2.40	3.77	4.08	3.27 ,	4.07
P20.5 (\%)	0.17	0.29	0.17	0.32	0.09	0.20	0.21	2. 0.161	1.02	1.24.	3.01 .	3.94	1.39
H2O+(\%)	2.861	1.91	2.67	2.40	1.26	1.54	1.88	2.35	1.84	0.79	0.041	0.08	0.16
H20-(\%)	0.201	0.17	0.20	0.22	0.08	0.10	0.12	0.14	24	2.40	0.94	1.03	2.68
LOI (\%)	2.70	2.17	2.40	4.72	1.45	1.98	1.85	2.19	1.51	31	28	0.201	0.16
TOTAL	99.25	99.15	99.34	99.41	98.94	99.41	99.24	99.05	99.82	99.981	2		2.81
Ba (pmm)	455	300	485.	280	550	470	425	4501	580		4	39.01	99. 12
Rb (pmm)	52	16	78	28.	118	36	361	86	26	68	104	,	5
Sr (0pm)	366	574	652	554	328	410	402	$47 \overline{6}$	440	592	164	8	48
Nb (pom)	10	12	10	12	26	12	12	10	6	361	22	18	,
7 r (mpm)	117	159	117	150	321	150	144	120	114	450.	330	288	117
Y (nom)	22	24	22.	281	481	26	26	22	22	56	48.	72	17
CIPW. NORM													
Q	11.3	7.7	9.56	7.21	21.46	16	15.01	12. 85	5. 96	9.21	36.44	32.04	8.16
C	-	-	-	-	-	-	-	-	-	-	2. 43	1.88	8.16
or	9.57	3.72	12.71	4.37	18.5	7.86	8. 33	14.42	6.03	7.33	17.79	23.28	8. 21
ab	28, 94	30.29	29.11	21.15	38.84	26.15	26.06	24. 62	20.31	31.9	34.52	27.67	34.44
an	23.9	27.04	22.85	31.56	9.12	27.71	26.95	23.5	33.09	24.44	0.83	6.37	21.91
di	2, 1	5.5	1.68	6. 38	0.44	0.11	0.69	2.55	4.6	2.14	-	-	1.99
hd	1. 48	1. 92	1.22	3.56	1.24	0.09	0.68	1.87	2.6	2.7	-	-	1. 32
+	7.77	8.58	8.04	6.18	0.94	7.5	7.3	6.66	9. 88	3.02	0.47	1.25	8.72
fs	6.25	3.43	6.67	3.96	3.06	7.26	8.29	5.59	6.41	4.37	-	-	6.65
mt .	2.71	5.29	2. 58	6.06	2.6	2.2	1.45	2.44	5.78	3. 61	-	-	2.44
ht.	-	-	-	-	-	-	-	-	-	-	1.64	4.13	-
11	1.54	2.28	1.54	2.81	0.74	1.52	1.5	1.44	2.2	3.04	0.48	0.51	1.5
ru	\cdots	-	-	-	-	\cdots	-	-	-	-	0.03	0.15	-
Total	0.39	0.67	0.39	0.74	0.21	0.46	0.49	0.37	0.67	1.83	0.09	0.19	0.37
Total	95.96	96. 42	96.34	94	97.14	96. 86	96.75	96.31	97.53	93.58	94.7	97.47	95.71
Felsic	73.72	68.75	74.23	64.3	87.92	77.72	76.36	75.39	65.39	72.87	92	91. 25	72.73
Matic	22.24	27.67	22.11	29.7	9.22	19.14	20.39	20. 92	32. 14	20.71	2.7	6.22	22.98

Appendix 8 Homogenization temperature of fluid inclusions(1)

sample no.	grain no.	mineral	H. $\mathrm{T} .\left({ }^{\circ} \mathrm{C}\right)$	size ($\mu \mathrm{m})$	occurrence	remarks
AR-3 3	1	quartz	139	10*3	primary	
	2	quartz	133	8*3	primary	
	2	quartz	129	9*4	primary	
	3	quartz	131	8*3	primary	
	4	quartz	150	$10^{*} 4$	primary	
	4	quartz	158	$10 * 4$	primary	
	5	quartz	92	8*3	primary	
	6	quartz	146	11*5	primary	
	7	quartz	101	8*3	primary	
	8	Quartz	154	12*5	primary	
	8	quartz	147	10*4	primary	
	9	quartz	107	10*3	primary	
	9	quartz	146	12*6	primary	
	10	quartz	144	5*3	primary	
	10	quartz	147	13*3	primary	
	11	quartz	120	$15 * 10$	primary	
	11	quartz	148	9*6	primary	
	11	quartz	153	7*3	primary	
	12	quartz	149	$13 * 10$	primary	
	12	quartz	151	13*7	primary	
	12	quartz	145	15*7	primary	
	12	quartz	165	8*7	primary	
	12	quartz	142	15*5	primary	
	13	Quartz	151	14*5	primary	
	13	quartz	142	10*4	primary	
	14	quartz	141	5*3	primary	
	14	quartz	151	13*3	primary	SiO2
	14	quartz	126	14*8	primary	

Appendix 8 Homogenization temperature of fluid inclusions(2)

Appendix 8 Homogenization temperature of fluid inclusions(3)

Appendix 8 Homogenization temperature of fluid inclusions(4)

sample no.	grain no.	minera!	4. T. $\left.{ }^{\circ} \mathrm{C}\right)$	$\sin 2(\mu \mathrm{~m})$	occurrence	remarks
CR-15	1	quartz	278	3*2	primary	
	1.	quartz	275	3*2	primary	
	2	quartz	292	3*2	primary	blackish colored in all
	3	quartz	306	3*2.5	primary	
	3	quartz	238	3*1.5	primary	
	4	quartz	158	5*1	primary	
	4	quartz	173	5*9	primary	
	4	quartz	143	3*2	primary	
	4	quartz	148	5*1.5	primary	-
	4	quartz	126	$3.5 * 2.5$	primary	
	:					
-						
						-
						\cdots -
-						
			-			
H.T. :Homogenized Temperature						

Appendix 8 Homogenization temperature of fluid inclusions(5)

Appendix 8 Homogenization temperature of fluid inclusions(6)

sample no.	grain no.	mineral	H. ${ }^{\text {P }}$. $\left({ }^{\circ} \mathrm{C}\right)$	$\operatorname{size}(\mu \mathrm{m})$	occurrence	remarks
CR-21	1	quartz	111	3*1.5	primary	
	2	quartz	139	*.5*1.5	primary	.
	2	quartz	132	3*1	primary	
.	2	quartz	124	3*2	primary	
	2	quartz	140	3*1.5	primary	
	3	quartz	113	5*2	primary	
	3	quartz	126	3.5*1.5	primary	
	4	quartz	127	4*1.5	primary	
	4	quartz	128	2.5*2	primary	
	4	quartz	123	$6^{*} 2$	primary	
	5	quart\%	117	2.5*2	primary	
					-	
.						
						- .
						- ${ }^{\text {b }}$
			.			

Appendix 8 Homogenization temperature of fluid inclusions(8)

sample no.	grain no.	mineral	H. T. (${ }^{\circ} \mathrm{C}$)	Size (从m)	occurrence	- remarks
CR-27	1	quartz	130	$5 * 3$	primary	- remarks
	1	quartz	162	6*3	primary	blackish colored in all
	2	quartz	145	5*3	primary	
	2	quartz	175	6*2.5	primary	
	2	quartz	122	6*2.5	primary	
	3	quartz	145	3.5*3	primary	Brownian movement at a normal temperature
	3	quartz	138	$3.5 * 2$	primary	Brownian movement at a sormal temperature
	3	quartz	126	5*3	primary	
						\checkmark
				-		
\square						
-			-			. .
-						
-	.					
				-		

Appendix 8 Homogenization temperature of fluid inclusions(9)

sample no.	grain no .	mineral	H. T. ${ }^{\circ} \mathrm{C}$)	size ($\mu \mathrm{m}$)	occurrence	
CR-43	1	quartz	126	6*5		remarks
	1	quartz	130	$5 * 4$	primary	Brownian movement at a pormal temperature
	1	Quartz	121	8*6	primary	Brownian wovemert at a normal temperature
	1	guartz	136	6*3	primary	
	1	quartz	117	6*4	primary	
	1	quartz	123	7*3	primary	Sroxnian movement at a normal temperature
	2	quartz	137	7*3	primary	Brownian movement st a nornal tempergture
	2	quartz	122	7*2.5	primary	Browaian movement at a normal emperature
	3	quartz	131	7*2	primary	Brownian movement at normal temperature
	3	quartz	134	5*3	primary	wnian movement at a normal temperature
	3	quartz	139	$8 * 2$	primary	-
	4	Quartz	268	7*3	primary	
	4	Quartz	122	6*2.5	primary	
	5	quartz	109	6*2	primary	
	5	quartz	250	6*3	primary	
	5	quartz	184	$8 * 1.5$	primary	
	5	quartz	132	5*2	primary	
	6	Quartz	206	$8{ }^{8 * 2}$	primary	blackish colored in all
	6	quartz	232	6*4	primary	partially shadow in the inclusion
	7	quaitz	105	6*2.5	primary	
	7	quartz	106	5*2	primary	
	7	Quartz	112	6*3	primary	
	7	quartz	137	5*3	primary	partially shadow in the inclusion
	7	Quartz	119	5*3	primary	
	7	Quartz	120	5*3	primary	
	7	quartz	94	7*3	primary	
				$5 * 3.5$	primary	

Appendix 8 Homogenization temperature of fluid inclusions(10)

App

sample no.	grain no.	mineral	H. T. $\left.{ }^{\circ} \mathrm{C}\right)$	size (km)		
CR-77	-1	quartz	249	2*2	occurrence	remarks
	1	Quartz	213	$3 * 2$	primary	
	1	quartz	210	$2 * 2$	primary	
	2	quartz	207	3*2	primary	
	3	Quartz	220	2*2	primary	
				.		
						.
	\cdots					
	,				\square	
				\cdots		

H.T. :Homogenized Temperature

()
Appendix 8 Homogenization temperature of fluid inclusions(12)

sampleno.	grain no.	mineral	H. ${ }^{4}$. $\left({ }^{\circ} \mathrm{C}\right)$	size ($\mu \mathrm{m}$)	occurrence	remarks
DR-03	1	quartz	418	10*2	primary	bubble is comparatively big
	1	quartz	133	10*2	primary	Brownian movement at a normal temoenature
	1	Quartz	134	8*5	primary	Brownian movemest at a nosmal temperature
	1	quartz	138	10*2	primary	Brownian movement at a norma! temperature
	1	quartz	126	6*6	primary	Brownian movement at a normal temperature
	1	quariz	130	8*2	primary	Brownian movement at a dormal temperature
	2	quartz	309	$8 * 5$	primary	
	2	quariz	336	5*5	primary	
	3	quartz	352	9*3	primary	
	3	quartz	357	9*3	primary	
	3	quartz	336	$8 * 2$	primary	
	3	quartz	297	8*2	primary	
	3	quartz	314	10*3	primary	
	4	quartz	352	7*4	primary	
	4	quartz	282	7*4	primary	
	4	quartz	320	$8 * 3$	primary	
	4	quartz	297	6*3	primary	
	4	quartz	306	8*3	primary	reliet is not clean
	5	Quartz	185	5*2	primary	
	5	quartz	183	6*2	primary	
	5	quartz	239	6*2	primary	
	5	quariz	304	5*2	primary	
	5	quartz	240	5*2	primary	
	6	quartz	154	6*2	primary	
	6	quartz	149	5*2	primary	
	6	quartz	133	4*2.5	primary	
	6	quartz	156	7*2.5	primary	
	6	quartz	142	5*3.5	primary	
	7	quartz	182	5*3.5	primary	relief is pot clear
	7	quartz	168	6*2	primary	relief is not clear
	7	quartz	181	6*3.5	primary	relies is not ciear
			.			

Appendix 8 Homogenization temperature of fluid inclusions(13)

(
Appendix 8 Homogenization temperature of fluid iaclusions(24)

sample no.	grain $n 0$.	mineral	H. T. $\left.{ }^{\circ} \mathrm{C}\right)$	sine ($\mu \mathrm{m}$)	occurrence	remarks
GR-05	1	quartz	134	8*3	primary	
	1	quartz	143	5*2.5	primary	
	1	quartz	139	$6 * 2$	primary	
	2	quartz	203	7*2	primary	bubble is comparatively bis
	2	quartz	214	8*2.5	primary	bubble is comparatively big
	2	Quartz	182	7*3	primary	bubble is comparatively biof
	2	quartz	200	6*2	primary	bubble is comparatively bis
	2	quartz	207	7*2	primary	bubble is comparatively bis
	3	quartz	158	10*2	primary	bubble is comparatively small
	3	quartz	136	9*3	primary	bubble is comparatively small
	3	quartz	i30	$3 * 3$	primary	bubble is comparatively smali
	3	quartz	160	$7 * 3$	primary	bubble is comparatively smali
	3	quartz	156	$6 * 3$	primary	bubble is comparatively small
	3	quartz	179	7*2.5	ptimary	bubble is comparatively small
	3	quartz	150	3.5*3	primary	bubble is comparatively small
	3	quartz	159	12*5	primary	bubble is comparatively small
	4	quartz	195	7*5	primary	
	4	quartz	156	8*3	primary	relief is not clear
	4	quartz	169	6*2.5	primary	
	4	quartz	166	$3.5 * 3$	primary	
	4	quartz	161	$8 * 4$	primary	
	5	quartz	162	6*2	primary	
	5	guartz	154	$8 * 2$	primary	
	5	quartz	173	5*3	primary	including hedite; A . ? means the temperature of
	5	quariz	185	6*3	primary	disappearapce of bubble
	5	quartz	166	6*2.5	primary	
	6	quartz	179	6*2.5	primary	
	6	Quartz	165	6*2	primary	
	6	quartz	193	5*2.5	primary	
	6	Quartz	192	$5 * 2$	primary	
	6	quartz	172	8*3	primary	

$$
\text { Appendix } 8 \text { Homogenization temperature of fluid inclusions(15) }
$$

Appendix 8 Homogenization temperature of fuid inclusions(16)

sample no.	grain no.	minera!	F. I. $\left({ }^{\circ} \mathrm{C}\right)$	size ($\mu \mathrm{m}$)	occurrence	remarks
HR-38	1	quartz	246	8*3	primary	
	1	quartz	196	5*1.5	primary	Brownian movement at a normal temperature
	1	Quartz	173	9*2.5	primary	
	2	quartz	198	5*2	primary	
	2	quartz	182	5*1.5	primary	
	2	Quartz	206	6.5*2	primary	
						\cdots
						-
						2-3
	\cdots					-
	.					.
					.	
-				.		
				-		
	\cdots					
				-		.
-				.	-	
						.
			-	\square		
			\cdots			. . ${ }^{\text {. }}$

Appendix 9 Result of K-Ar method dating

Appendix 11 Locality map of soil samples

SOIL SAMPLE LOCATION MAP
in UPPER HUAI NAM SAL. A AREA

legend

legeno
Rock Sampie OCR-02 (p,T,
\mathbf{P} : Polished Thin Section $\quad \mathrm{I}$ Thin Section
f : fifuid inclusion Tes
$\mathrm{x}: \mathrm{x}$ - roy Diffroction Test --_-_
$0: x$ - ar method Age Delerminotion-
w. whote Rock Apolys

$\mathrm{D}: \mathrm{K}$ - Af Meltod Age Defermination -
$\mathrm{M}:$ Resistivity -
o:Ore Anolysis
w: whote Pock Anolysis.

JHGR

