2000年的第三人称单数

No. Li

JAPAN INTERNATIONAL COOPERATION AGENCY (VICA)
FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA
MINISTRY OF WATER RESOURCES

THE STUDY

ON

ÉLEVEN CENTERS WATER SUPPLY AND SANITATION
IN

FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA

APPENDIXES AYKEL

(Volume II-V)

J1128546(7)

FEBRUARY, 1996

KYOWA ENGINEERING CONSULTANTS CO., LTD.

	F		•	2	.11
11	í	1	٧ċ	4	464
		SŚ	JÀ), Ç	ý,
1	10	T.	Ý		
34	ه ج		J	l	1
: :	o.		χ.	ìc	
20	Y	,	V,	é C	

GOVERNMENT OF JAPAN
JAPAN INTERNATIONAL COOPERATION AGENCY(JICA)
FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA
MINISTRY OF WATER RESOURCES

THE STUDY

ON

ELEVEN CENTERS WATER SUPPLY AND SANITATION IN

FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA

APPENDIXES AYKEL

(Volume III-V)

FEBRUARY, 1996

SANYU CONSULTANTS INC.
KYOWA ENGINEERING CONSULTANTS CO., LTD.

1128546 [7]

PRRFACE

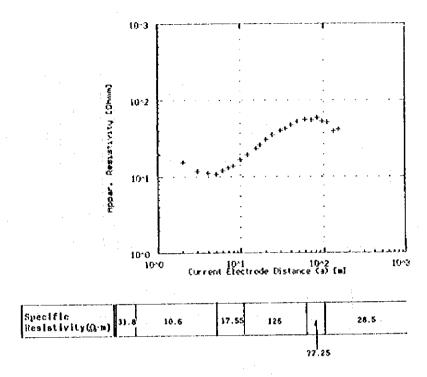
This is the Appendixes for Aykel presenting the results of the Study on Eleven Centers Water Supply and Sanitation (the Study) carried out in accordance with the Scope of Work agreed upon between the Government of Federal Democratic Republic of Ethiopia (GOE) through the Water Supply and Sewerage Agency (WSSA) of the Ministry of Natural Resources Development and Environmental Protection (MNRDEP), which was recently reorganized Water Supply and Sewerage Service Department (WSSD) under Ministry of Water Resources (MWR), on the one part and the Government of Japan (GOJ) through the Japan International Cooperation Agency (JICA) on the other part dated April 8, 1994.

The major objectives of this Study are 1) to conduct a feasibility study on the water supply system in order to improve living condition of the population in the Study area by enhancing the level of the water supply services in terms of water quantity, water quality and its accessibility, 2) to formulate a plan for sanitary education and the diffusion of sanitary facilities in order to raise peoples' awareness on hygiene and improve environmental sanitation, which will be able to prevent the contamination of water source(s) and to secure safe water supply, and 3) to transfer technologies to the Ethiopian counterpart personnel in order to strengthen the managerial aspects of water supply services.

The Study had been conducted over a two (2) Japanese fiscal year-period from 1994/95 to 1995/96 and divided into two (2) phases. The Phase I study was conducted between December 1994 and March 1995, and Phase II was conducted between May 1995 and Pebruary 1996, for a total study period of 15 months during which three (3) times of visit to Ethiopia were made.

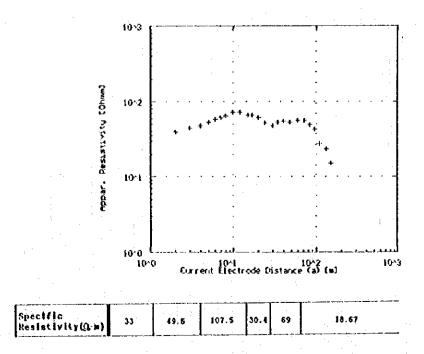
The survey items and major activities are meteo-hydrological survey, geo-electric prospecting (GEP) survey, water quality, water use condition, sanitary and health condition and people's awareness, social background, socio-economy, initial environmental examination (IEE), environmental impact assessment (EIA), sanitary education practice, and existing pump investigation.

The Study Team extends heartiest thanks to WSSD especially those assigned counterparts for their close cooperation and hard work in both office and the field, and the officers of related agencies of Japan.

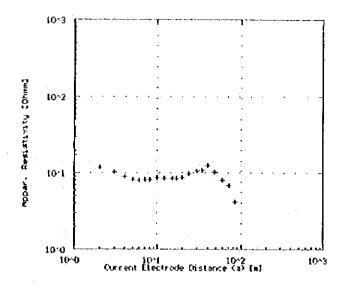

Table of Contents

Appendix-1	Resistivity Interpretation of VEP	1-1
Appendix-2	Result of Water Quality Test	2-1
Appendix-3	Social and Gender Data	3-1
Appendix-4	Summary of Group Meeting	4-1
Appendix-5	Financial and Socio-Economic Data	
Appendix-6	Result of Initial Environmental Examination	
Appendix-7	Project Cost Break-Down (Water Supply)	7-1
Appendix-8	Meteorological Data	
Appendix-9	Hydrological Data	
Appendix-10	•	10-1
Appendix-11	Calculation of Water Pipeline	11-1
Appendix-12	Geological Logs of Existing Boreholes	

Appendix - 1

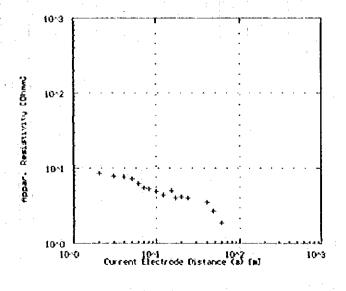

Resistivity Interpretation of VEP

VES St. No.1 -AYKEL



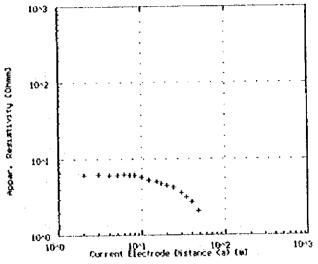
roint	887.5	à	E e e
[Me]	[80]	(m)	[១៤ន៖
ŧ	t.00	19.419	
2	2.69	15.570	
,	3.96	11.680	
- 1	1.03	11.050	
5	5.00	14.570	
5	5.80	12.051	
3	1.00	13.410	
*	9.68	16 174	
•	10.00	16.611	
19	12.00	19.229	
11	15.00	23,178	
12	17.00	25 114	
13	20.00	38.480	
14	24.00	31.424	
15	38.00	10.370	
16	36.00	12.520	
11	40.00	17.731	
11	41.08	53,858	
15	68.00	58.570	
: 20	72.00	51.711	
21	61.60	51.680	
22	96.00	53.658	
23	118.68	51.170	
24	130.00	33.197	
25	150.00	11.150	

VES St. No.2 -AYKEL


feint:	111/2	a	le:
[40]	[Nr]	[9]	fobas]
1	1.00	35,170	
2	2.48	38.511	
3	3.00	13.528	1
į.	6.80	11.988	
. 5	5.60	53.670	
5	6.00	\$7.279	
7	7.00	\$5.100	
	1.00	65,314	
,	18.00	12.850	
118	12.00	11.224	
17	15.00	11.224 65.910	
12	11.95	66.198	
. 1)	29.09	68.298	
14	24.91	51.259	
15	30.00	47.150	
16	34.01	52.539	
. 17	19.80	\$5.260	
14	11.61	53.658	
15	58.90	58.520	
28	72.44	58.010	
21	84.90	19.590	
22	95.88	12.200	
23	110.00	27.6)1	
24	132.00	23.584	
25	150.00	15.878	

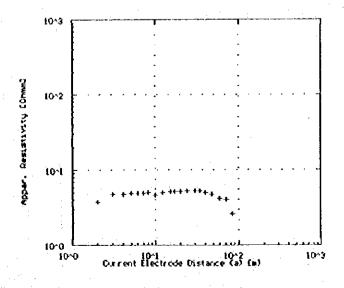
Eglet	V9/2	8	F##
(Ha)	(Br)	[1]	[ehza]
1	1.00	11.338	
2	2.48	11.11	
3	3.00	\$9.114	
l.	1.66	- 5,510	
5	5.00	4.540	
5	6.95	1.100	
1	7.00	1.270	
- 1	9,40	1.319	
•	18.00	1.730	
19	12.00	9,370	
- 11	15.00	1.118	
12	17.60	8.514	
: 13	24.00	1,710	
11	24.68	9.500	
15	18.06	18.650	
16	34.88	18.788	
- 17	48.BQ	\$2.360	
, (1	49.00	14.250	
15	\$6.00	1.950	
. 79	72.00	6,340	
21	14.CB	1.709	
22	36.80	8.686	

Specific Resistivity(Q-m)	245	81.67	176	17.54
------------------------------	-----	-------	-----	-------


VES St. No.4 -AYKEL

Faint	- KN/2	. 1	les
{#o]	[Re]	8	ohea
ì	1.00	10.939	
2	2.19	1.510	
3	3.98	7.918	
4	4.10	1.54#	
5	5.80	7.130	
\$	5.83	1.259	
7	1.13	3.50	
•	1.04	5.330	
1	10.00	4.960	
13	12.84	1.454	
11	15.00	5.611	
12	17.00	1.968	
н	29.00	1,158	
16	24.00	1,411	
15	48.86	1,570	
11	40.60	2.210	
17	48.88	1.148	

Specific Resistivity(Q-m) 14	7	1	3.43	4.8
		2.08		


VES St. No.5

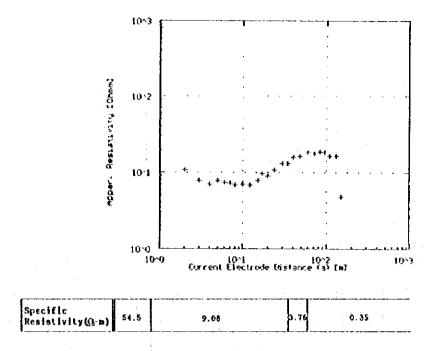
J.	10^3	
		

VES St. No.6

Specific Resistivity(Q-n

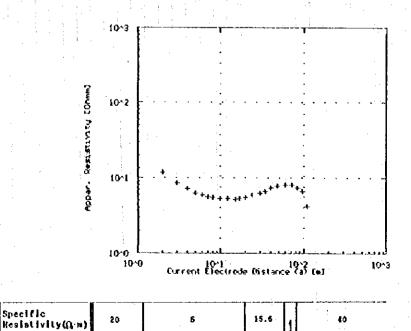
			<u> </u>		
Specific Realstivity(Q-m)	28	4,67	3.2	0.38	

#o] 	[Kr] - 04	[8]	[chan]
	1.98		
2		9.318	
	2.08	3.334	
3	3.00	1.800	
	4.00	1.120	
\$	5.60	4.841	
	\$.10	1.901	
7	7.60	1.10	
	1.00	5.020	
i	10.00	4.451	
18	12,40	5.851	
11	15.00	5.188	
12	17,43	5.22	
Ĥ	20.00	\$.150	
16	26.40	5.281	
15	34.65	5.288	
İŝ	31.00	5.311	
17	41.41	5.020	
18	15.10	1,121	
()	62.02	1.19	
19	72.10	1.071	
21	\$1.68	2.641	
22	15.10	9.699	

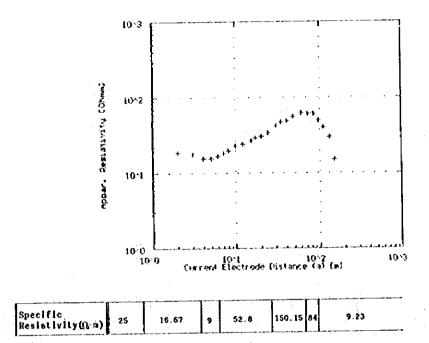

NA/2 [87]

3.00

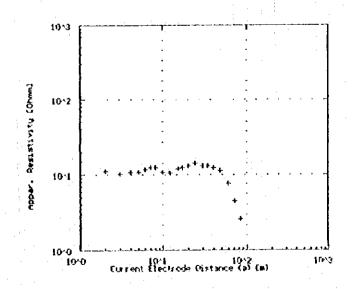
8.85 10.02 12.83 15.66 17.00 24.80 38.00 38.00 48.00 69.00

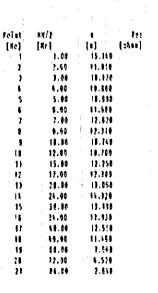

5,228 6,058 6,150 6,269 8,419 5,780 5,350 5,350 6,889 6,528

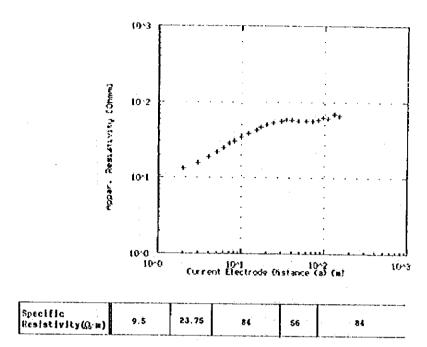
Point


Foirt	ma/a	ð	Ē45
[13]	(nr t	[1]	[ohes]
1	1.00	9,176	•
2	2.09	19.990	
• 3	3 40	2.720	
•	1.00	1.966	
5	5.00	1.720	
6	5.00	1,31	
7	1.00	7.253	
	9.19	E.730	
: 1	10.04	6.910	
. 19	12.00	5.105	
11	15.00	7.918	
12	17.58	9.858	
- 13	20.00	3.040	
16	26.09	14.850	
15	70.00	19.000	
- 15	11.00	13.030	
- 17	48.01	66.030	
13	19.04	16.590	
19	60.00	12,990	
20	12.00	17.820	
21	11.00	18,990	
12	98.00	18.892	
21	119.85	16.510	
25	194.00	18.316	
25	150.89	1.710	

VES St. No.8

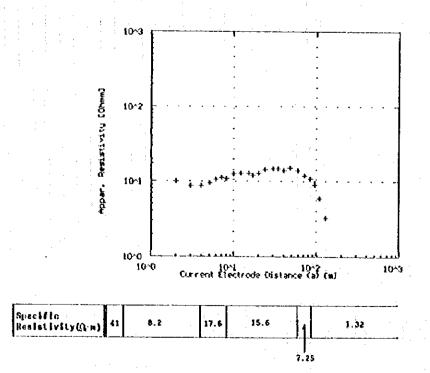

oist	X2/2	3	2:5
No	[Rr]	(1)	[ohen]
i i	1.00	13.446	•
7	2.00	11.111	
3	3.41	1.116	
- 1	6.40	2.210	
5 '	5.01	1.780	
i	5.69	5,910	
1	3.00	5.578	
1	1.14	5.510	
5	18.00	5.310	
13	12.86	5.289	
11	15.08	5.185	
- 12	13.88	5.110	
13	20.00	5.510	
11	24.00	5.511	
15	38 t f	6.220	
11	34.68	5.521	
17	11.10	7.418	
- 11	L\$.0\$	7.40	
11	60.41	9.100	
28	12.00	1.114	1
21	(1.1)	7.356	
: 22	11.11	4.424	
23	119.00	4.451	
			:

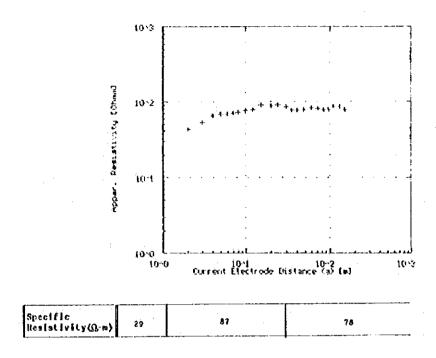

1-4



felet	10/1	3	fer
[40]	fart	[6]	[ehes]
1	1.00	21.578	
?	2.43	19.959	
3	3.00	17.900	
	6.88	15.515	
5	5.00	15.700	
\$	8.50	18.779	
7	3.68	15.610	
	9,00	20,138	
9	16.00	27.610	
13	12.00	25.128	
11	15,00	26.850	
12	17.61	29.750	
13	24.09	31,020	
16	24.00	35.529	
15	30.69	47.580	
16	34.00	\$7.830	
17	18.81	. L9.459	
12	41.04	\$5,178	
19	£0.03	61.980	
29	72.00	61:919	
21	81.00	\$ F. 156	
22	15.00	- 50.514	
23	118.80	18.768	
24	130.70	30.219	
25	156.00	15.018	

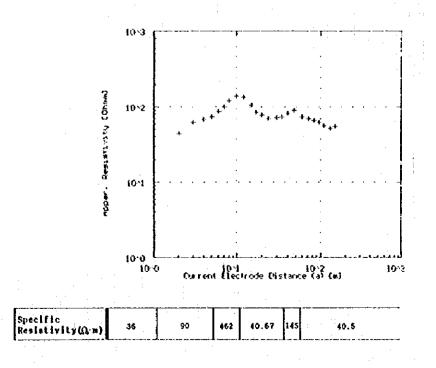
VES St. No.10 -AYKEL



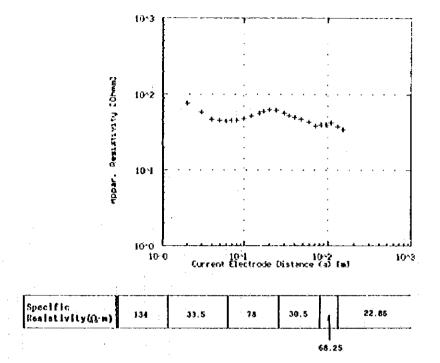


Foiet	M1/2	ı	ter
[Ho]	[#r]	{a}	(chun)
	1.80	18.495	1
2	2.00	12.858	
3	3.00	15.648	
- 1	4.49	(0.450	
5	5.08	21,358	
í	6.03	26.530	
. 1	7.41	21.118	i.
	9.62	10.110	
1	10.00	34.519	
18	12.00	32.414	
11	15.00	43.3)1	
12	17.00	16.978	
13	28.60	50.741	
16	26.08	53.518	
15	36.86	56.520	
16	36.00	\$1.448	
17	49.00	57.788	
11	11.44	55.570	
Ð	E0.00	55.770	
21	12.00	58.818	
21	£6.00	\$4.581	
22	16.60	61.398	
23	110.00	68.680	
24	110.06	10.216	
25	150.06	849.22	

VES St. No.12 -AYKEL



atnt [No]	##/2 [#r]	2	
[lo]	[4 .]	-	165
		[e] ,	[0110]
- 1	1.00	17.218	
1	5.11	9.324	
3	3.00	0.678	
k	6.00	3.799	
5	5.68	9.478	
8	6.90	10.550	
,	3.60	11.21	
ŧ	2.14	11.401	
9	11.14	12.311	
1∦	12.41	12.774	
11	15.00	15.51	
12	17.11	12.249	
1)	21.00	12.018	
11	24.98	£4.17#	
15	: 36.66	11.419	
16	14.00	0.00	
11	40.00	14.87#	
H	. 48.90	15.271	
1\$	69.05	13.254	
28 -	12.61	11.761	100
21	14.31	11.11	
21	\$6.00	9.411	
23	118.60	1.200	
21	130.58	3.21	
	i		


Frint	PR 12	ð	Pŧ;
[N:]	{9r}	fe)	() IRP
•	1.50	11,458	
:	2.50	17,290	
:	1.96	12,569	
	4.00	55.314	÷
5	5.90	67,510	
\$	5.00	97.454	
7	1.88	10.140	
3	9.61	77.354	
5	10.66	15,100	
13	12.09	79.139	
11	15.00	11.560	
. 12	10.00	81.920	
- 0	74.41	83.538	
*4	39.00	35.720	
15	34.8 0	16.970	
1\$	18.00	78.528	
U.	48.90	14,376	
12	68.69	12.134	
19	72.00	11,390	
28	61.63	77.133	
21	96.81	18.378	
22	V10.00	31.750	
-21	130.00	86.916	
35	50.00	79.139	

VES St. No.14 -AYKEL

		100	. :
- : :			
lojej	#4/?	11.11	£47
{4: }	[16]	[#]	(chua)
ı	1.95	FB-198	
2	2.07	13,159	
•	3.01	E7. 179	
•	§ . D0	E7.919	
5	5.08	73.158	
. 5	6 10	37.653	
7	7.88	100.518	
1	3.97	329.676	
•	18.42	198.159	
18	12.90	135.408	
£1	15.69	164.569	
12	17.44	15.419	
+3	20.67	12.138	
13	24.09	69.330	
15	34.00	11.590	
16	24.40	24.739	
17	49.08	82,50 6	•
1 8	10.00	13.331	
19	60.00	23,430	
29	72.14	69.628	
2 E	84.00	65.84	
??	\$5.00	53,188	
23	184.00	55.558	
24	129.89	52.258	
25	158.68	51.616	

VES St. No.15 -AYKEL

feial	K8/2	à	ře:
[80]	[87]	[1]	[seds]
i i	1,60	\$7.928	
2	2.90	15.394	
)	3.06	\$7,460	
å	1.00	15.636	
: S	5.04	44.900	
\$	5.80	11.210	
;	7.00	45.280	
,	0.00	15.721	
•	10.00	67, 538	
10	F2.00	52.000	
TI.	15.05	55.540	
12	17.45	51.121	
13	29.00	\$2.000	
11	21.00	61.041	
15	30.06	\$\$.770	
15	34,88	51.576	
17	10.48	41.580	
18	\$8.80	67.838	
15	69.00	42,209	
11	72.00	31,981	
21	84.00	35.560	
22	98.99	39,196	
23	110.00	41,458	
. 76	130.00	37.554	
25	150,89	33.918	

Appendix - 2

Result of Water Quality Test

Sample No.1

```
Date of Collection: 23/Jan./95
Date of Analysis : 08/Feb./95
Physical Characteristics
                        : Slightly turbid
 Appearance
                        : Odorless
  Odor
  Taste
  Color
                         113 Pt-Co
  Settleable Solids
                        : Present
  Floating Solids
                        : Absent
  Suspended Solids
                        : Absent
  Total Dissolved Solids: 40
```

Origin of Sample : Spring (The source)

Turbidity : 21 FTU Temperature

: 0.09 ms/cm Conductivity

General Chemical Characteristics Total Hardness as CaCO₃ 40 40 Carbonate Hardness as CaCO3 Non Carbonate Hardness as CaCO3: Nil Total Alkalinity as CaCO₃ 40 Bicarbonate Alkalinity as CaCO3: 40 Carbonate Alkalinity as CaCO3 Nil PH 7.00 Silica Sulphide as Hydrogen Sulphide Carbondioxide

Residual Chlorine Dissolved Oxygen

Ionic Contents

<u> </u>		
Cations	and the second second	Anions
NH4 * ::	·	C1- : 5.00
Na ⁺ :		$NO_2 - : 0.20$
K+ :	·	NO_3 : 4.20
Ca++ :	16.00	F_{-} : 0.53
Mg++ :	2,40	$HCO_{3}^{-}:48.80$
Fe(Total):	0.41	CO_3 : Nil
	0.05	SO4: 11.00
Cu++ :	0.27	$PO_4 =: 0.23$

Remarks; All the analyzed chemical constituents are within the acceptable range in accordance with WHO drinking water quality guidelines.

Note; Unit is mg/litre unless otherwise stated.

Sample No.2

Cu++

: 0.08

```
Origin of Sample : Islamwonz Spring
Date of Collection: 19/Jun./95
Date of Analysis : 24/Jul./95
Physical Characteristics
                          : Clear
  Appearance
  Odor
                            Odorless
  Taste
  Color
                            121 Pt-Co
                           Present (Very small)
  Settleable Solids
  Floating Solids
                          : Absent
  Suspended Solids
                          : Absent
  Total Dissolved Solids: 102
                        : 23 FTU
  Turbidity
  Temperature
                          : 19.2 °C
  Conductivity
                          : 0.17 ms/cm
General Chemical Characteristics
  Total Hardness as CaCO<sub>3</sub>
                                      80
  Carbonate Hardness as CaCO3
                                      60
  Non Carbonate Hardness as CaCO3: 20
  Total Alkalinity as CaCO3
  Bicarbonate Alkalinity as CaCO3: 60
                                   : N11
  Carbonate Alkalinity as CaCO3
  PH
                                      7.51
  Sulphide as Hydrogen Sulphide
  Carbondioxide
  Residual Chlorine
  Dissolved Oxygen
Ionic Contents
  Cations
                                 Anions
  NH4+
             0.19
                                 C1-
                                        : 25.00
  Na*
                                 NO2 -
                                        : 0.06
  K+
                                 NO<sub>3</sub> ~
                                        : 14.08
  Ca++
            : 16.00
                                        : 0.116
  Mg++
            : 9.76
                                 HCO<sub>3</sub>-
                                        : 73,20
                                 CO3 - -
  Fe(Total): 0.64
                                        : Nil
  Mn++
           : 0.10
                                 SO4 --
                                        : Nil
```

Remarks; All the analyzed chemical constituents, except Turbidity and Color, are within the acceptable range in accordance with WHO drinking water quality guidelines.

PO4---: 0.24

Note; Unit is mg/litre unless otherwise stated.

Sample No.3

Cu++

: 0.01

```
Origin of Sample : Sholaitu Spring
Date of Collection: 19/Jun./95
Date of Analysis: 24/Jul./95
Physical Characteristics
                               Clear
  Appearance
  Odor
                               Odorless
  Taste
  Color
                               34 Pt-Co
  Settleable Solids
                              Absent
                             : Absent
  Floating Solids
  Suspended Solids
                             : Absent
  Total Dissolved Solids: 72
  Turbidity
                            : 9 FTU
                            : 19.1 °C
  Temperature
  Conductivity
                           : 0.12 ms/cm
General Chemical Characteristics
  Total Hardness as CaCO<sub>3</sub>
                                         40
  Carbonate Hardness as CaCO<sub>3</sub>
                                       : 40
  Non Carbonate Hardness as CaCO3: Nil
  Total Alkalinity as CaCO<sub>3</sub>
                                        40
  Bicarbonate Alkalinity as CaCO3: 40
  Carbonate Alkalinity as CaCO<sub>3</sub>
                                         Nil
                                         7.44
  PH
  Silica
  Sulphide as Hydrogen Sulphide
  Carbondioxide
  Residual Chlorine
  Dissolved Oxygen
Ionic Contents
  Cations
                                    Anions
  NH4+
              0.15
                                            : 10.00
                                    Cl-
  Na
                                    NO<sub>2</sub> -
                                            : 0.12
  K+
                                    NO<sub>3</sub> -
                                            : 15.40
  Ca+ +
              12.00
                                    F.
                                            : 0.108
  Mq++
             : 2.44
                                    HCO<sub>3</sub> -
                                            : 48.80
                                    CO3 - -
  Fe(Total): 2.43
                                           : Nil
                                    SO4 -- : Nil
  Mn+ +
            : 0.10
```

Remarks; All the analyzed chemical constituents, except Turbidity, Color and Iron, are within the acceptable range in accordance with WHO drinking water quality guidelines.

PO4---: 0.23

Note; Unit is mg/litre unless otherwise stated.

Sample No.4

```
Origin of Sample : Hand dug well (Kebelel, Ketena3)
Date of Collection: 23/Jan./95
Date of Analysis : 07/Feb./95
Physical Characteristics
                           Very Clear
  Appearance
                            Odorless
  Odor
  Taste
                            1 Pt-Co
  Color
                            Absent
  Settleable Solids
  Floating Solids
                            Absent
  Suspended Solids
                            Absent
  Total Dissolved Solids:
                            200
                          : 1 FTU
  Turbidity
  Temperature
                          : 0.41 ms/cm
  Conductivity
General Chemical Characteristics
                                      180
  Total Hardness as CaCO<sub>3</sub>
                                    : 180
  Carbonate Hardness as CaCO3
  Non Carbonate Hardness as CaCO3: Nil
                                    : 70
  Total Alkalinity as CaCO3
  Bicarbonate Alkalinity as CaCO3: 70
                                    : Nil
  Carbonate Alkalinity as CaCO3
                                      6.00
  Silica
  Sulphide as Hydrogen Sulphide
  Carbondioxide
  Residual Chlorine
  Dissolved Oxygen
Ionic Contents
                                  Anions
  Cations
                                  Č1-
                                         : 45.00
  NH4 *
                                         : 2.10
                                  NO2 -
  Na+
                                         : 4.70
                                  NO<sub>3</sub> -
  K+
                                         : Nil
                                  \mathbf{F}_{-}
  Ca++
            : 52.00
                                  HCO<sub>3</sub> -
                                         : 85.40
  Matt
            : 11.99
                                  CO3 - -
                                        : Nil
  Fe(Total): 0.01
                                  SO4--: 1.00
```

Remarks; All the analyzed chemical constituents are within the acceptable range in accordance with WHO drinking water quality guidelines.

PO4---: 0.32

Note; Unit is mg/litre unless otherwise stated.

: Nil

: 0.08

Mn++

Cu++

Result of Faecal Coliform Test in Aykel, Sampled and Analyzed on June/19,20/195

No.	Kebele	Source	Place of Sampling	No of F.C. per 100ml	Remarks
1	-	Spring	Spring	TMTC	Sampled at spring eye boxl, The source
2	-	Spring	Spring	TMTC	Sampled at spring eye box2, The source
3	-	Spring	Chamber	TMTC	Sampled at collecting chamber of No1&No2
4	-	Spring	Spring	TMTC	Sampled at 150m upstream of No16No2
5	-	Spring	Spring	TMTC	sampled at 170m upstream of No1&No2
6	-	Spring	Sholiatu	TMTC	Not protected
7	-	Spring	Koke	TMTC	Not protected
8	-	Spring	Dildyl	TMTC	Not protected
9	_	Spring	Dildy2	TMTC	Not protected
10	-	Spring	Shola	TMTC	Not protected
11	2	Spring	Jerry-can	TMTC	Fetched at No.1 spring on the day
12	2	Spring	Jerry-can	TMTC	Fetched at No.1 spring on the day
13	2	Spring	Jerry-can		Fetched at No.1 spring on the day
14	2	Spring	Jerry-can		Fetched at No.1 spring on the day
15	2	Spring	Jerry-can		Fetched at No.1 spring on the day
16	2	Spring	Jerry-can	· ·	Fetched at No.1 spring on the day
17	1	HDW	HDW	TMTC	By Water Aid, Ph=6.5, WT=21°C,WL=-12m
18	1	HDW	HDW	TMTC	WT=25°C, WL=-11m fr GL
19	1	HDW	HDW	TMTC	Ph=6.5, WT=21°C, WL=-10m fr GL
20	1	HDW	HDW	TMTC	WT=22°C, WL=-lim fr GL
21	1	HDW	HDW	TMTC	Ph=6.5, WT=22°C, WL=-10m fr GL
22	1	HDW	HDW	TMTC	Ph=6.2, WT=21°C, WL= -9m fr GL
23	1	HDW	HDW	82	Ph=6.2, WT=21°C, WL= -8m fr GL
24	ì	HDW	HDW	TMTC	Ph=6.5, WT=21°C, Not for drinking
25	1	HDW	HDW	TMTC	Ph=6.5, WT=21°C, WL=-11m fr GL
26	1	HDW	HDW	TMTC	WT=23°C, WL=-11m fr GL
27	1	HDW	HDW	TMTC	WT=21°C, WL=-11m fr GL
28	1	HDW	HDW	TMTC	WT=23°C, WL= -9m fr GL
29	2	HDW	HDW	TMTC	WT=22°C, WL=-12m fr GL
30	2	HDW	HDW	TMTC	Ph=6.5, WT=22°C, WL=-13m fr GL
31	1	HDW	Jerry-can	TMTC	Ph=6.5, Dried up during rainy season
32	ī	HDW	Jerry-can		Not for drinking
Sar	aple No	.1:to 3 a	and No.11 to	 	r Water Committee spring.

Note; "F.C. means Faecal Coliform.

[&]quot;BH" means borehole.

[&]quot;HDW" means hand-dug-well.

[&]quot;P.Conn." means private connection.
"Y.Conn." means yard connection.

[&]quot;P.Foun." means public fountain.

[&]quot;Barrel" means Barrel-container made of steel.

[&]quot;TMTC" means too many to count.

Appendix - 3

Social and Gender Data

AYKEL - Activity Profile by gender

Activity	Gender			Time	Place
	М	F	Remarks	.	
Fetches drinking water (most use a variety of sources) Does the laundry Waters livestock Takes water from container Teaches children hygiene Disposes of solid waste Digs a compost pit Constructs a latrine Digs a drainage channel Tends a kitchen garden Disposes of animal waste Keeps latrine clean Keeps compound clean	У У У У У У У У Р П п п п	у у у у у п - - у у	mostly women and girls, some boys. mostly women mostly men all those at home very few have paid labour none have very few have very few have	am/pm	spring - if dark the men accompany spring/home
Takes sick child to clinic	У	l y	mostly women or older children		

AYKEL - Daily Schedule

Spring Users

Man	Time	Woman
	6	
Wake up, washes	7	Wakes up and washes
Works at home	8	Prepares breakfast
Eats breakfast	9	Collects water
Works at home	10	$\mathcal{L}_{\mathcal{A}}$. The second $\mathcal{L}_{\mathcal{A}}$ is the second $\mathcal{L}_{\mathcal{A}}$
(Silversmith/Jewelry maker)	11	Cleans house
n	12	Prepares lunch
Eats lunch with wife	13	Eats lunch with husband
Works at home	14:	Collects water
"	15	e e
Drinks coffee	16	Prepares and drinks coffee with family
Works	17	Spins cotton
Goes to drink tela in town	18	"
Returns home	19	Prepares supper
Eats supper with family	20	Eats supper with family
Goes to sleep	21	Cleans the home
	22	Goes to sleep
	23	

Man is disabled

Both are Christian

Collection of water takes two hours because of the queue

Well Water Users

Man	Time	Woman
Gets up, washes, goes to Mosque	T	Gets up, washes, prepares
	6	breakfast
Returns, Eats breakfast	7	Eat breakfast with family
Goes to work in town	8	Prepares/drinks coffee
(Household fuel business)	9	Collects water
n	10	Does laundry
	11	Cleans house
	12	Prepares lunch
Returns home to eat lunch	13	Eats lunch with husband
Returns to work	14	Drinks coffee with friends
n	15	Spins cotton
"	16	Does domestic chores
n .	17	tf
Goes out with friends	18	BT .
Returns home	19	Prepares supper
Eats supper	20	Eats supper with family
Talks with family	21	Cleans the dishes
Goes to sleep	22	Goes to sleep
	23	

Use public fountain and spring water as well as private well water
Both are Muslim

When the well is dry, she fetches water from the spring very early in the morning

AYKEL - Access and Control Profile

Spring/Well/Former Public Fountain Users

·				ol	·
Resources	male	female	male	female	Comments
Money for water	У	У	У	У	
Money for soap	У	У	У	у.	
Money for water container	У	У	У	У	
Money for water pot cover	У	У	У	У	
Money for building materials for					both men and
drying shelf	У	У	У		women organised
Money for building latrine	У	У	У	У	
Money for medicine	У	У	У	У	
Money for school fees		-		-	free school
Tools for digging pits	у	У	n	n.	very few have
Tools for constructing latrine	У	У	n	n	·
Seeds and tools for vegetable gardens		-	-	-	none have
Land for digging pits	n	'n	n	n	few have
Land for digging latrines	n '	n	n	n	few have
Land for digging drains	n	n	n	n	few have
Land for vegetable gardens	n	n n	n	'n	few have
	:				
Income from selling water	У	У	ĮУ	Y	•
Income from selling vegetables	У	У	Y	Ÿ	
Improved health	У.	У	Y	У	
Reduced time spent collecting water	n	У	n		mostly women
Reduced time spent caring for sick	<u>У</u>	У	<u>у</u>	<u>у</u>	mostly women

AYKEL - Needs Analysis

totuer Lapri	c Fountain/Well/Spring Users		re archie	
			der	Remarks
		М	F	
Practical ne		<u> </u>	<u> </u>	
Water	Adequate quantities of water from the water supply system each day	у	У	Rich people would like private connections, others would like public fountains. All would like the system to be reliable
	Spring water quality preferred to well water quality	у	у	Maximise water available from spring sources. People prepared to pay more for better service
	Reduced time spent for water collection	у	У	Reduced queues and reduced distance to water supply facilities
Sanitation	Improved health associated with improvements in sanitation	у	у	Community latrines for those in rented housing and those who can not afford private latrines
	Kebele to allocate areas for refuse disposal and provide training and support for the safe disposal of refuse.	ÿ	у	All groups felt that garbage disposal was an important issue to be addressed.
	Public showers at central location in town	Y	Y	Public showers could be charged at 75C to 1 Birr each time
Health education	Poorest communities need largest imputs in health education	У	У	
Strategic ne				
Water	Public fountains possible to be managed by the community with support from Authorities	У	у	Poorest community felt that they would not be able to manage their public fountain
	Additional public fountains to be constructed with the help of community labour.	У	ŢΥ	All groups could assist with labour and with transportation of materials.
Sanitation	Community latrines to be managed by the community	Y	y	All groups expressed the need to have support and even enforcement from Authorities for improvements in sanitation, including the use and management of community latrines.
	Public showers to be managed by the Authorities	у	У	Men and women from Aykel use public showers in Gondar
Health education y = Yes, n =	Support for existing health education initiatives. Increase motivation for people to improve their sanitary behaviours	У		Health awareness is relatively better in Aykel. Incidence of diarrhoea and level of sanitary behaviours worst of all Centres

AYKEL - Social and Gender Considerations

Social/Gender differences		nrajact	Possible measures to be taken
Variation in type and level of water service demanded	social and economic status	households will not be satisfied	Improvements to the water system should include both public fountains and private connections
	and well owners generate their income from cartage of water from springs and wells	water supply will take away a market for these groups Women may all	develop ways of ensuring employment or
Women fetch water most of the time and women usually do the laundry. Boys help in collection of water from springs	undertaken	benefit most from time and energy savings from having a reliable water	The project needs to help women identify how to spend any time released through improved water supply

Appendix - 4

Summary of Group Meeting

AYKEL - Summary of group meetings

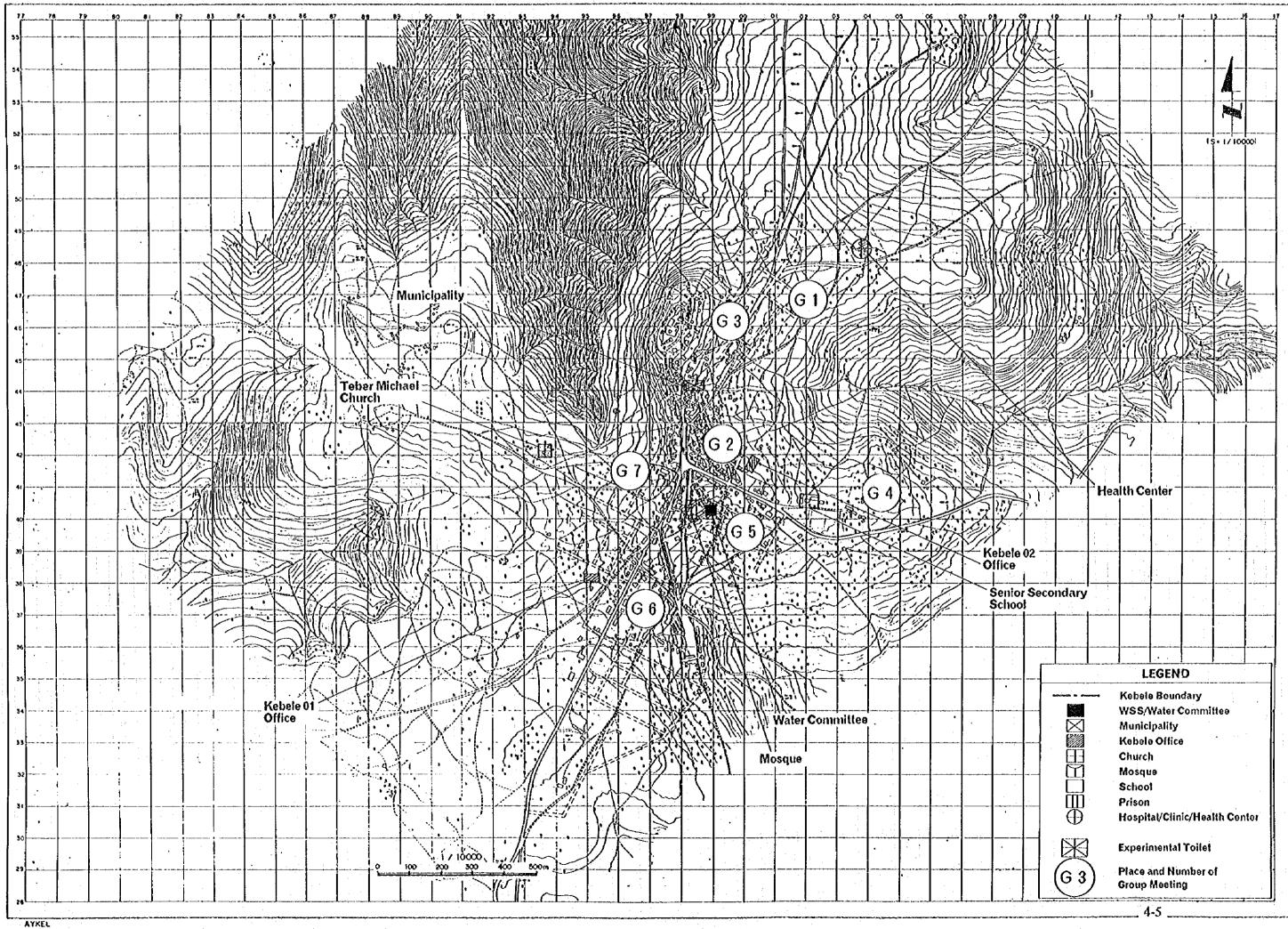
Group 1	Group characteristics	Group needs
details		
General	Amhara, Mostly Christina some	1-Water, 2-Electricity,
	Muslim, 15 women, 5 men, tela	3-Sanitation
1	makers and sellers and petty	
	traders	
Water	Former public fountain users now	People resent the public fountain
		due to the inadequate service it
	2hrs to collect water - a	provided. They would prefer to buy
		of vendors with private
		connections! Could pay more money
		for a better service and would like
	water. Women and children fetch	the springs protected and collected
		for contingencies.
Sanitation	All defaccate in open field because	Community latrines with water for
· ·	of lack of land, organisation or	washing to be shared by sex rather
1	enforcement body. Would contribute	than by family groups.
1	labour and money for community	·
i	latrines with water but need	
:	supervisory body to control and	
	enforce. Want to share latrine by	<u> </u>
	sex not family.	
Health		Health awareness is good.
	TB. Health education has been	Improvements in sanitary conditions
	attended at the health centre.	may only occur with enforcement.
	People could attend health	
L	education on Sundays.	

Group 2 details	Group characteristics	Group needs
General	Muslim, 15 women, 3 men, 5 young women, 20 children, daily labourers launders and spring water sellers.	
Water	water is inadequate, quality is good, some sell spring water	
Sanitation	from Kebele and some instruction on waste disposal.	sharing one cubicle for max 10 families. Public latrines with Govt. management would also be acceptable. Public shower would be
Health	diseases. Cause believed to be dust and poor sanitation. Children get diarrhoea also linked with poor sanitation.	Health awareness good. Sanitary education alone will not affect the sanitary conditions these people live in. Blocks seem to be lack of land for garbage disposal and for latrines at rented homes and lack of money.

AYKEL - Summary of group meetings

Group 3 details	Group characteristics	Group needs
General	Amhara, Mostly Christian, 3 women, 1 man, Preparers of food and tela, proprietors of tea and tela houses and some Government workers	1-Water, 2-Electricity, 3-Transport
Water	Well and spring users. The wells	Connections
Sanitation		
Health	Common complaints include TB,	Integrated water supply improvement programme with health education.

Group 4	Group characteristics	Group needs
details		
General	young women, 2 men and 10 children,	I - Water (children must queue for water and not able to go to school 2-Sanitation
Water	users. PF not adequate to supply demand. Long queue at spring, quality good, distance too far. Some buy spring water off sellers	PF to operate 4 hours each day, pref. 7-11am. Would pay more (up to 25C:Jar) at PF for better service time. Ready to hire guard to look after PF - up to 1 Birr/household/month.
Sanitation	No latrines, all use open field. Women go to same place as men but only go at dawn and dusk. Lack land and money for latrines. Garbage disposal not systematic - thrown anywhere.	Keen to have community managed latrines, would help in construction with labour and materials. Would share cubicles by families. Would like Kebele to allocate land for garbage disposal and to be shown how to manage this properly.
Health	Common diseases include asthma, but there is little diarrhoea.	Aware of water and sanitation related diseases.


AYKEL - Summary of group meetings

	Group characteristics	Group needs
details General	Amhara, Mostly Christian, 12 women, 3 men, laundry and handicraft activities	
Water	Spring users, collection takes hours due to large queue. Women fetch water for their families, men and women fetch water for payment for others. Laundry done at spring. Would like public fountain but unable to manage it could pay	
Sanitation	There is no problem of land availability although the housing is rented from Kebeles. Community latrines would be an option but not with water as there would be problems over nayment.	with separate facilities for men and for women.
Health	Common diseases include Pneumonia, colds and fevers. Poor awareness of cause of sanitation related diseases. Not had any health	Health centre and church based health education may not reach this portion of the community. Specialised targeting of this group may be necessary.

Group 6	Group characteristics	Group needs
details		
General	Amhara, Mostly Muslim, some Christian, 6 women, 10 men, 18 children, Business people with shops and bars and trading.	<pre>1 - Water (Private Connections), 2-Electricity, 3 - Road/Transportation</pre>
Water	PF and spring users, PF not adequate even when functioning, some private wells used for domestic chores not drinking. Laundry done with spring water at home. Men, women and children fetch water Spring quantity and quality good, but needs storage tank	Improved storage of spring system and supply PF's more and provide these people with PC's. Can afford and are registered for PC's.
Sanitation	not possible and no shortage of land, so when latrines are full they are closed and new ones are dug. Pay labourers to dig and build latrines. Garbage disposed of in open land away from their homes.	Needs are satisfied.
Health	Common diseases include asthma and TB linked with the dust	Fully aware of the links with water and sanitation to disease.

AYKEL - Summary of group meetings

Group 7 details	Group characteristics	Group needs
General	Amhara, Mixed religions, 10 women, 4 young women, 5 men, many children, selling tela and some Government workers	l-Water, 2-Electricity, 3-Sanitation
Water	Spring water users and some handdug well users. Spring takes time due to distance and queues particularly in dry season (Mar/Apr). Spring water quality good. Laundry done at stream by all. Water fetched by all. Some buy from well vendors 25C-15C:Pot	through public fountain. Would provide labour for it's construction and would manage it themselves including payment of
Sanitation	field due to lack of affordability. Community latrines would be an option, to be shared by groups of families. Would provide labour for latrine construction. Would like	would also be used and both men and women would pay to use them
Health	Complaints include Asthma and diarrhoea (especially children). Kealth awareness is high.	Health education imputs already seem to have had a significant effect. These should be strengthened.

Financial and Socio-Economic Data

Table 1 (1) Summary of Financial Aspects of WSS in Bleven Centers

		·	<u> </u>			
Item	Dupti	Mille	Bati	Werota	Aykel	Debre Tabor
1. Population	14,737	3,902	14,354	21,845	11,718	25,575
2. Water production & consumption in 1993/1994 (m3)	n.a. 35,565e		113,523 90,218		11,303e 10,173e	
*Water consumption, population/day (1		20.5	17.2	5.8	2.4e	1.0
*Leakage ratio (%)	n.a.	n.a.	20.5	20.9	10.0e	18.1
3. Income & Expenditure in 1993/1994 (birr)			131,144 132,245		50,863e 22,560e	
*Bill collection rate (%)	85.7	79.1	94.4	99.9		67.8
*Income/consumption (birr/m3)	n 1.44e	1.67	1.45	1.40	5.00e	3.21
*Expenditure/pro- duction (birr/m3)	n.a.	'n.a.	1.16	0.91	2.00e	6.57
*Income/Expenditure (%)	e 85.2	127.9	99.2	121.3	225.5e	40.0
4. No. of personnel, female, tempo-rary/contract	10 1 10	11 5 11	25 5 8	18 4 0	13 4 8	18 5 0
*Production/worker (m3)	n.a.	n.a.	4,541	3,240	3,478e	663
*Income/worker (birr)	5,126	4,438	5,246	3,592	3,913e	1,741
*Expenditure/ worker (birr)	6,019	3,471	5,290	2,961	1,735e	4,352
Average monthly salaries (birr)	129	96	204	217	70	173
 No. of house/ yard connections, public fountains, hydrants 	190(70) 8(2) 1	89 8(5) 1	852 12	· ·	5(3)	320 13(2)

Notes: 1. e = estimates or assumptions 2. n.a. = not available 3. parenthesized figure = functional

Table 1 (2) Summary of Financial Aspects of WSS in Eleven Centers

		1.0		\$ 1	
Item	Nefas Mewcha	Chagni	Bure	Bichena	Dejen
1. Population	13,726	26,823	14,742	14,629	10,250
2. Water production & consumption in 1993/1994 (m3)	42,216 31,206	74,219 55,045	66,278 55,008	17,810 15,826	46,409 41,201
*Water consumption/population/day (1)	6.2	5.6	10.2	3.0	11.0
*Leakage ratio (%)	26.1	25.8	17.0	11.1	11.6
3. Income & Expenditure in 1993/1994 (birr)	56,457 79,567	68,590 72,172	66,791 102,309	34,679 71,591	62,089 67,846
*Bill collection rate (%)	91.7	85.8	98.2	96.8	89.0
*Income/consumption (birr/m3)	1.81	1.25	1.21	2.19	1.51
*Expenditure/pro- duction (birr/m3)	1.88	0.97	1.54	4.02	1.46
*Income/Expenditure (%)	71.0	95.0	65.3	48.4	91.5
 No. of personnel, female, tempo- rary/contract 	19 5 1	17 6 2	22 7 0	20 6 2	17 3 0
*Production/worker (m3)	2,222	4,366	3,013	891	2,745
*Income/worker (birr)	2,971	4,035	3,035	1,735	3,652
*Expenditure/ worker (birr)	4,188	4,245	4,650	3,580	3,991
5. Average monthly salaries (birr)	153	143	241	170	211
6. No. of house/ yard connections, public fountains, hydrants	383 14(13)	327 12	478 13(12)	238 7	390 7

Notes: 1. e = estimates or assumptions 2. n.a. = not available 3. parenthesized figure = functional

Pinancial Condition of Water Supply Service in Aykel Table 2 (1)

1. Oficial Water Price: 10 cents/20 litre or 5 birr/m3 Note: They have public fountains only as distribution facilities. Production and Consumption of Water, 1993/94 1) Production: 11,303 m3 (assumption) 2) Consumption: 10,173 m3 (assumption) * Daily water consumption as divided by total population = 3.1 litre * Leakage ratio = 10.0% (assumption) Income and Expenditure (Mar. - May, 1994) : 12,715.78 birr 1) Income Major sources of income 12,715.78 birr (100.0%) (1) Cash water sales * Bill collection rate = not applicable * Income per unit consumption of water = 5.00 birr/m3 (estimates) 2) Expenditure: 5,640 birr Major items of expenditure 3,330 birr (59.0%) 1,680 birr (29.8%) (1) Fuel (2) Salaries for contract employees Oil Administrative and operating cost 330 birr (5.9%) 300 birr (5.3%) * Expenditure per unit production of water = 2.00 birr/m3 (estimates) * Income-expenditure ratio = 225.5% 4. Organization and Personnel 1) No. of personnel: 13 (4) [8] Financial Condition of Water Supply Service in Aykel Table 2 (2) (1) Chairman, Water Committee (2) Secretary (3) Administration 1 4 [3]

	(3) Administration 4 [3] 2 [2] guards, 1 [1] messenger,
	1 store keeper 6 (4) [4]
	1 treasurer, 1 accountant, 1 auditor, 4 (4) [4] water sellers (5) Urban water supply & sewerage 1 motor operator 1 [1]
	Notes: 1. Parenthesized and bracketed figures denote the number of female and temporary workers respectively. 2. The secretary functions as the accountant at the same time.
	* Production per worker = 3,478 m3/year (estimates)
	* Income and expenditure per worker = 3,913 birr, 1,735 birr/year (estimates)
2)	Average monthly salaries of employees: 70 birr for contract workers
	Note: Water Committee members work without remuneration.
5.	No. of Distribution Facilities Public fountains : 5 (3 functional)
	Note: 100 households have hand-dug wells.
6.	Problems and Bottlenecks
1 } 2 } 3 } 4 } 5 } 6)	Capacity of the reservoir is not enough. Shortage of public fountains. Shortage of water meters. There are cracks in the collection chamber. There are maintenance problems for the generator and pumps. Technical assistance is needed in this regard. Water Committee members have their own jobs aside from their role as the committee members. They feel overloaded. They want to transfer their positions to some professionals.

Table 3 (1) Summary of Socio-Economic Aspects of Bleven Centers

Item		Dupti	Mille	Bati	Werota	Aykel	Debre Tabor
I. A	Administrative C	ondition	าร	· · · · · · · · · · · · · · · · · · ·	 :	<u> </u>	
	of gov't	500e	336	366	322	412	1,674
*No. emp	oloyees of gov't oloyees/1,000 oulation	34	86	25	15	35	65
of	erage salaries gov't employees rr)	311	311	355	308	391	397
II. F	Population						
1. Por	oulation	14,737	3,902	14,354	21,845	11,718	25,575
tic	ninic composi- on for top two	Afa. 6	Oro.14	Oro.28		Kim.20	Amh.100
(%)	[Amh.=Amhara, A Age.=Agew]	fa.=Afai	r, Oro.=	Oromo, T	ig,=Tigr	e, Kim.=	=Kimant,
sit	ligious compo- tion, Christi- s & Moslems (%)	42 58	43 57	12 88	80 19	81 19	95 5
4. Fan	nily size	4.5	4.6	6.2	6.3	5.5	5.7
5. Are	ea (ha)	1,600e	68	260	640	322	1,402
	oulation density ersons/ha)	9.2e	57.4	55.2	34.1	36.4	18.2
III. E	Educational Cond	itions	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				
	of pupils/	3,182	457	2,500	3,817	3,944	7,950
*No.	idents of pupils/ idents per 100 oulation	22	12	17	17	34	31
2. Lit	teracy ratio (%)	70	62	48	63	806	74
	imary school rollment ratio)	62	53	53	57	85	e 75
IV.	dedical Condition	ns					
	. of medical	36	4	22	9	18	81

Table 3 (2) Summary of Socio-Economic Aspects of Eleven Centers

Item	Dupti	Mille	Bati	Werota	Aykel	Debre Tabor
*No. of medical personnel per 1,000 population	2.4	1.0	1.5	0.4	1.5	3.2
2. No. of cases for top ten diseases	14,943	1,611	11,642	18,084	13,683	21,318
*Estimated No. of cases per year as percentage of population (%)	30.4	12.4	24.3	24.8	35.0	25.0
3. Under 5 mortality rate (/1000)[n.a.=	213 not avai	154 lable]	163	95	n.a.	73
4. Life expectancy (years)	47	53	52	61	55e	64
 Households using septic tank / pit latrine (%) 	86	45	68	61	39	65
V. Economic Conditi	ons					; ; ;
1. No. of commer- cial/industrial establishments	1,105 (331)	204 (162)		812 (201)	450 (115)	1,672 (574)
[parenthesized fig	gures=No.	of hote	els/rest	aurants]		
*No. of establi- shments per 1,000	75 (22)	52	17	37	38 (10)	65 (22)
				•	1 1 2	
population						

Table 3 (3) Summary of Socio-Economic Aspects of Bleven Centers

Item	Nefas Mewcha	Chagni	Bure	Bichena	Dejen
I. Administrative C	ondition	S			
 No. of gov't employees 	541	727	845	499	378
*No. of gov't employees/1,000 population	39	27	57	57	37
2. Average salaries of gov't employees (birr)	297	368	292	374	407
II. Population					
. Population	13,726	26,823	14,742	14,629	10,250
2. Ethinic composition for top two (%)[Amh.=Amhara, AKimant, Age.=A	fa.=Afar	Age.19	Amh.94 Age. 4 romo, Ti	Oro 1	Tig. 1
Religious compo- sition, Christi- ans & Moslems (%)	94	44 56	92	67 33	65 35
. Family size	5.9	6.1	6.8	6.2	6.8
. Area (ha) *Population density (persons/ha)	648 21.2	920 29.2	1,280 11.5	200 73.1	280 36.6
II. Educational Cond	itions	ŧ .		· : :	
. No. of pupils/ students	3,743	5,339	4,388	3,465	2,661
*No. of pupils/ students per 100 population	27	20	30	24	20
. Literacy ratio (%)	70	74	61	69	61
Primary school enrollment ratio (%)	59	77	69	68	64
V. Medical Conditio	ns .				
1. No. of medical personnel	43	25	22	27	5

Table 3 (4) Summary of Socio-Economic Aspects of Bleven Centers

Item	Nefas Mewcha	Chagni	Bure	Bichena	Dejen
*No. of medical personnel per 1,000 population	3.1	0.9	1.5	1.8	0.5
2. No. of cases for top ten diseases	22,002	11,782	15,112	7,441	3,790
*Estimated No. of cases per year as percentage of population (%)	48.1	13.2	30.7	15.3	11.1
3. Under 5 mortality rate (/1000)[n.a.=	196 not avai	144 lable]	131	173	155
4. Life expectancy (years)	49	54	56	52	53
5. Households using septic tank / pit latrine (%)	58	61	58	4.5	54
V. Economic Conditi	ons				
1. No. of commer- cial/industrial establishments	860 (209)	546 (91)	246 (65)		345 (74)
[parenthesized fig	ures=No.	of hote	ls/resta	aurantsl	
*No. of establi-	63	20	17		34
shments per 1,000 population	(15)	(3)	(4)	(3)	(7)
2. Monthly household income (birr)	202	203	253	324	312

Note: e=estimates

Table 4 (1) Socio-Economic Condition of Aykel

- 1. Administrative Conditions 1. Administrative Classification: Region 3, Zone = North Gonder Government Organizations
 Agricultural Bureau
 Natural Resources Development and Environmental Protection (NRDEP)
 Weroda Administration
 Commercial Bank of Ethiopia
 Financial Bureau
 Educational Bureau
 Municipality
 Health Center
 Prison Administration
 Culture and Sports Office
 Police
 Post Office
 Telecommunications
 Weroda Attorney
 Meteorologic Bureau
 Water Supply Service (WSS)
 es: 1. Schools are not included in the above organizations.
 2. There are two NGO's, namely Red Cross and Ethiopian
 Orthodox Church. 2
- No. of Government Employees and Their Average Monthly Salaries: 412, 391 birr
 - * No. of government employees per 1,000 population: 35
- 4. No. of Kebele: 2
- Socio-Economic Conditions II.

 - 1. Population
 1) Total population: 11,718
 - 2) Ethnic composition: Amhara (73.3%), Kimant (19.8%), Tigre (6.9%)
 - 3) Religious composition: Christians (81.0%), Moslems (19.0%)
 - 4) Average family size: 5.5 persons

	Table 4 (2) Soci	o-Reonom	ie Condition of	of Aykel	
2.	Area: 322 lia * Popu	lation de	nsity: 36.4	persons/h	ia
i)	Educational Conditions No. of schools, class rooms	, teachei	s and pupils	/students	:
	Items	Kinder- garten	Elementary School	Junior High S	Senior High S.
	(1) No. of schools (2) No. of class rooms (3) No. of teachers (4) No. of pupils/students	1 2 2 95	2 21 56 1,891	1 6 10 799	1 10 26 1,159
	* No. of pupils/students pe		oulation: 34		
	Literacy ratio: 80% (observ Primary school enrollment r	•	-90% (obsorva	tion)	
	Medical Conditions				

- No. of medical institutions/establishments: 1 Health Center(4 beds), 1 private drug store
- No. of medical personnel:
 3 nurses, 13 health assistants, 1 laboratory technician,
 1 doctor . . . 18 in total

Other related personnel; I sanitarian

3) Incidence of diseases (Jul. 1993 - Jun. 1994)

```
(1) Top ten diseases
i. Intestinal parasite
ii. Skin diseases
iii. Tonsilitis
                                                                                                2,755
1,881
1,744
                                                                                                           cases
                   Upper respiratory tract infection Malaria
                    Pneumonia
Gastritis
                   Bronchitis
Skin infection
Eye diseases
                                                                                                                           to x.
```

Table 4 (3) Socio-Economic Condition of Aykel

Estimated number of cases per year as percentage of population: (13,683 x 1.5) / (11,718 x 5) = 35.0%

5 = coefficient to estimate the total number of cases, = coefficient to estimate covered population

- 4) Under 5 mortality rate: not available
- 5) Life expectancy: 50-60 years (observation)
- 6) Households more or less using septic tank and pit latrine: 39.0%
- 5. No. of Holy Places: 2 churches, 1 mosque, 1 other
- 6. Economic Conditions
 1) No. of commercial and industrial establishments

	-	Annual Income	e (birr)	
Classification	₹ 1,000	1,000 - 3,000	3,000 <	Total
1. Hotels and restaurants Hotels, restaurants and bars Tea rooms Sub-total	0 0	90 22 112	3 0 3	93 22 115
2. Shops	0	200	103	303
3. Cottage industry Oil factories Flour mills Leather factories Sub-total	.0 0 0	0 0 0	1 10 5 16	1 10 5 16
4. Butcheries	0	16	0	16
Total	0	328	122	450

Note: No. of local drink producers: 500 households

* No. of commercial and industrial establishments
per 1,000 population: 38

Socio-Economic Condition of Aykel Table 4 (4)

- Major occupations (1) Trade
 (2) Agriculture and animal husbandry
 (3) Government employees (4) Day laborers
- 3) Major products: edible oil, leather products, flour
- 4) Market
 (1) Major marketable items:
 agricultural products, livestock, household items, clothes, etc.
 - (2) Prices of major marketable items

Grains (unit: birr/100 kg)

tef	wheat	millet	maize	beans	oil	seeds
230	200	180	150	300	3!	50

Livestock (unit: birr/one)

ox	CON	sheep/goat	donkey	chicken
600	400	65	200	6

Consumers' items (unit: birr)

butter (kg) milk (litre) 18

- (3) Market days Sat. and Thu. (10,000 15,000 people gather.)
- 4) Average monthly household income: 182.0 birr

Sources: Water Committee, Woroda Council, Financial Bureau, Educational Bureau and Health Center in Aykel; Socio-Economic Sampling Questionnaire Survey by JICA; Central Statistical Authority

Result of Initial Environmental Examination

Project Description on Initial Environmental Examination in Aykel

Items	Description
Project Title	Eleven Centers Water Supply and Sanitation
Background	1. Insufficient water supply and low per-capita- consumption due mainly to high population growth , aged facilities and poor O&M. 2. Poor sanitation prevailing the Project site which could contaminate the water source(s).
Objectives	To supply domestic water which meets people's demand and to improve sanitary condition.
Location	Aykel, Chilga, Region-3
Executing Agency	Water Supply and Sewerage Service Department Ministry of Water Resource
Beneficiaries	About 11,700 of the population to be benefited.
Dimensions of the Plan	Rehabilitation of existing facilities, and new boreholes, reservoir and distribution network.
Type of Work	Rehabilitation and new construction work
Purpose	 To provide domestic water and improve sanitation facilities. To initiate people's awareness on water use and sanitation.
Water Resource	Groundwater, There are many springs outside town but not to be considered as the source because of its susceptivity to contamination.
Water Quality	Chemical aspects are within WHO guideline values Biological contamination is notified.
Main Facilities	Boreholes with pumping system.
Water Storage Facilities	Reservoir (ground tank type)
Filtration Plant	Not to be considered.
Related facilities	Distribution pipes, public fountains, drainage system and latrines
Remarks	1. Chlorine or its derivatives such as mainly calcium hypochlorite is used for disinfection in Ethiopia.

Site Description on Initial Environmental Examination in Aykel

Items	Description
Project Title	Eleven Centers Water Supply and Sanitation
Social Environment	
Residents (population, tribe, consciousness)	Population about 11,700, almost Amhara with about 75 %
Facilities related to life (electricity, etc.)	The electricity is generated.
Health and Sanitation (diseases, clinic, etc.)	O hospital, 1 health center, 1 drug store Malaria is very common in this town.
Natural Environment	
Topography, Geology and Hydrogeology	Located at northwestern margin of Lake Tana basin. Basalt and tuff are major structure.
Meteo-hydrology Groundwater/spring/river	Annual rainfall about 1670mm. There are many springs and hand dug wells. No river.
Endangered fauna and flora	Nil
Public Nuisance	
Nuisances	Water supply condition is critical in terms of both quality and quantity. During rainy season, stagnant water appear in almost center of the town but not so serious.
Regulations and Compensa- tion	Although the land is officially owned by the state, those who lose their dwelling and commercial area because of the project will be given substitute land. Also, Compensation will be made for properties such as houses and trees, which will be damaged.
Remarks	1. The present water sources are highly contaminated. 2. Because of pump failure, the water supply had been stopped for about 1 month as of July 1995.

Scoping Format for Initial Environmental Examination in Aykel

Environmental Components	Classi- fication	Description
1. Social Environment	<u> </u>	
1.1 Resettlement	В	The facilities are small and expected to give no resettlement.
1.2 Economic Activities	D	The economic activities will be enhanced by the water supply and sanitation improvement.
1.3 Facilities	В	The construction work and the facilities have little impact on existing facilities such as schools and hospitals.
1.4 Collapse of Communities	В	Nil. If a water users committee was organized by the community itself to look after the facilities especially public fountains, the community would be enhanced
1.5 Archaeological and Cultural Heritage	В	Nil
1.6 Vested Rights	С	Compensation shall be given for land and properties if these were affected by the Project. Water vendors may lose their income source by the newly supplied water.
1.7 Public Health and Hygienic Condition	D/C	Sanitary improvement will enhance the condition. Drainage system must be accompanied with the improvement of water supply.
1.8 Waste Disposal	. В	During construction works, there will be little waste disposal from the view of the small construction scale. After commissionning, no waste disposal is expected.
1.9 Accidental Damages to Facilities	С	Consideration be paid to the alignment of pipelines in order to avoid public nuisance to dwellers.
2. Natural Environment		
2.1 Geographic and Geo- logical Condition	В	No effect is expected to geographic and geological condition.
2.2 Soil Erosion	С	The earth work gives little soil erosion, judging from the construction scale.

Note) A; Advance Impact, B; Negligible Impact C; Unknown Impact D; Enhancement

to be continued.....

2.3 Surface Water Quali- ty and Quantity	B	Ni 1
2.4 Groundwater Quality and Quantity	С	Effect of overpumping be considered.
2.5 Hydrological Situa- tion	В	No effect is expected to hydrological situation.
2.6 Terrestrial Fauna	В	Nil
2.7 Aquatic Fauna	В	Ni 1
2.8 Vegetation	В	Little effect is expected to vegetation.
2.9 Climatic Conditions	В	No effect is expected to climatic conditions.
2.10 Aesthetic Condition	В	The facilities would give little change to the condition judging from the size.
3. Public Nuisance		
3.1 Air Pollution	В	Ni 1
3.2 Water Pollution	В	Nil
3.3 Soil Pollution	8	Ni1
3.4 Noise and Vibration	В	The construction works do not give rise to noticeable noise and vibration.
3.5 Land Subsidence	В	The location of new boreholes is designed away from the dwelling area. The land is composed of basalt lava mainly, giving little expectation of land subsidence.
3.6 Odour	8	Nil
3.7 Traffic Nuisance	C	In case of pipeline being laid across road the traffic will be interrupted.

Note) A; Advance Impact, B; Negligible Impact C; Unknown Impact D; Enhancement

Project Cost Break-Down (Water Supply)

Summary of Cost Estimation of Water Supply in Aykel F.C.(B) L.C.(B) Total(8) Description Target year of 2005 Civil Work 1 500.000 300,000 Mobilization and Demobilization 200,000 69,500 54,500 15,000 Excavation and Earth-work 267,190 614,070 881.260 Trench excavation 287,370 287,370 574,740 Pipe-work 117,000 117,000 234,000 Reservoir 87,984 220,032 132,048 Pumping station, R.C. pump house 1,035,000 1,480,000 445,000 Access road 67,200 112,000 44,800 Bore-hole (200mm casing) 15,000 25,000 10,000 Water purifiction unit 960,000 360,000 600,000 Booster pump and necessary works 60.000 100,000 40,000 Electric submersible pump and necessary works 111,550 112,325 223,875 Power supply 159,800 250,750 90,950 Concrete work 6,000 24,500 30,500 Masonsy work 103,460 241,400 344,860 Structure 600,652 223,037 377,615 Temporary work(10% of above total) 2,453,405 4,153,764 6,607,169 Total of civil work 8,211,716 574,820 8,786,536 Material & Equipment 4,728,584 15,393,705 10,665,121 Sub Total 1,847,245 1,847,245 3 Engineering cost(12% of sub tatal) 625,618 236,429 862,047 Contingency(5% of above cost) 18, 102, 997 13, 137, 984 4,965,013 Total(birr) 271,545,000 Total (Yen: 1birr=15yen) 993, 424 993,424 5 Buildings 381,928 381,928 WSSD's management cost 1,375,352 1,375,352 Total 380,422 1,168,701 788,279 7 Prise escalation(6%) 13,926,263 5,345,435 19,271,698 Grand Total Target year of 2010 II. 300,000 Morbilization and demorbilization 1 960,000 Rising line 2 1,200,000 Distribution network 3 1,318,000 New borehole with pumps & materials 534,000 5 Booster pump with house 170,000 6 Power supply facilities 324,000 7 Chamber and structures 843,300 Buildings 8 488,700 Others ġ 6,138,000 Sub total 613,800 Engineering cost (10%) 10 675, 180 Contingency (10%) 11 7,427,000 Total 3,119,000 Prise escalation(42%) 10,546,000 Grand Total

1/3			es of 20cm			thick	ਰੂ
	Renarks		to remove bushes, small forest and trees to remove top soil to an average depth of 20cm			150mm thick below barrel compacted in layers not more than 20cm thick	with push-in fitting and s with accessar
)05°	mt L.C.(8)	300,000	12,000	2,800 1,000 3,200 3,500	73,520	<u> </u>	40,150 9,280 27,500 166,600 43,840 43,840 87,984
year o	F.C.(B) L	200,000	2,400 8,000	1,200 500 1,400 1,500	36,760	70,840 9,000 29,000 27,020 94,570	40, 150 9, 280 27, 500 166, 600 43, 840 117, 000 132, 048
: Target	Unit-Kate		2,400	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	∞	70 11 5 16	5 8 10 17 137 1,222
Aykel	F.C.(B)		480	9 0 4 0 8	4	78287	1,834 1,834 88
ੱਖ	, Ç		8,000	88888	9,190	10,120 300 5,800 13,510 13,510	8, 830 1,160 2,750 320 130 130 72 72
quipment	Unit	LS	ba sq m		F	нвив	
& Materials/							
Cost Estimation of Construction & Materials/E	Description	Mobilization and Demobilization	ਲ਼ <u>ੑ</u>	Bulk excavation a) Earth excavation b) Excavation of weathered rock c) Soft rock excavation d) Sound rock excavation	Trench excavation Trench excavation for water pipe 1) Single pipe in trench a) 0.6~1.0m depth	b) 1.0~1.5m depth Trench, Rock excavation Back-fill with the same material Selected soil bedding Back-fill with selected material	
	8	i	22.2	რ გ	ა.წ 1-1	9 9 9 9 9 9 4 6	4.4.

		Cost Estimation of Construction & Materials/Equipment of	quipme	nt of Ay	Aykel	Target :	Target year of 2005	رير	2/3
	Š	Decription	lini t		un F.C.(B) F	Unit-Rate	Amount F.C.(B) L	it L.C.(B)	Венаткѕ
		Bore-hole							A CONTRACTOR OF THE PROPERTY O
	8-1 8-2	New driling Rehabiritation	Se ti	140	320 16,000	480	44,800	67,200	67,200 including, casing, packing and pumping test
	, o	Water purifiction unit	No.	- -	10,000	15,000	10,000	15,000	
	<u> </u>	Booster pump	Š.	9	60,000	100,000	360,000	600,000	foundation, pump, and motor with accessories
-		Electric submersible pump (for deep well)	No.	67	20,000	30,000	40,000	60,000	foundation, and pump with accessories
	12-1	Power supply Generating set High tension line	Š a	3 10,000	5,850	8,775	17,550	26,325	gererater with accessaries
	12-3 12-4	Low tension line Trensformer	# %	1,000	4,000	6,000	6,000 8,000	4,000	transformer with accessaries
7-3		පී	E E	100	250	200	25,000	50,000	including form-work, vibration and curing
	2 0		E E	150	275	642	41,250	96,300	including vibration and curing
	13-61	rorm-work Wall Reinforcement bars; Steel bars	SQ#	3,000	37	87.	3,700	8,700	
	44.	_ 월	SQB	100	09	245	6,000	24,500	24,500 up to 3m height
) - 	brick work with mortor 25cm thick	Squ	,	83	36	0	0	
	15.	Structure Construction of	Ňo.	မွ	1,580	3,680	9,480	22,080	
	5-51 15-5 15-5 14	Construction of hydrant Construction of R.C.C. aeration chamber Construction of R.C.C. valve chamber	888	ဂ္ကမဂ္ဂ	5,730 5,730 5,730	540 13,370 13,370	2,300 34,380 57,300	5,400 80,220 133,700	
		Sub-Total of Construction work			· · · · · · · · · · · · · · · · · · ·		2,230,368	3,776,149	
							:		

	TO THE CASE OF THE			riambanhamin animinan anga piga		- American and Ame		
Remarks	ે ક્શ							
	20 CIF cost x 7 %	50	69	8255	24			
Amount F.C.(B) L.C.(B)	716 574,820	716 574,820	084 4,350,969	171,900 107,184 147,070 567,270	993, 424			· · · · · · · · · · · · · · · · · · ·
1-1-1	8,211,716	8,211,716	10,442,084	24 24 01 37			· · · · · · · · · · · · · · · · · · ·	
(B) L		— : —		1,910 1,624 1,337 2,101				
Q'ty				90 66 110 270	<u>-</u>	· · · · · · · · · · · · · · · · · · ·		
Vait	: :			aps s aps ap		<u>.</u>		
		Equipment			-			
scription	Ref.table) aba 1 cost	Material &	Total		Total			
Description	Material & Equipment (Ref.tal CIF Cost at Addis Ababa Inland transportation cost	Sub-Total of Material & Equipment		Building Office Workshop Store Residence	·			
	16-2 134			17. But. 17-1 0 17-2 K 17-3 S 17-4 B				

			year of 2	unit kate	Amount
lo.	Description	Unit	Q' ty	(B)	(B)
•	Pipe material				
	including joint and accessories				
.1	PVC pipe NP-10] _m :	8,440	15	126,600
	a) DN 50mm	m	1,220	30	36,600
	b) DN 75mm c) DN 100mm	m	2,890	40	115,600
	d) DN 150mm	n	10,290	80	823,200
1.2	Suspended pressure steel pipe				
	DN 200mm W/O gilt and screw	In	340	288	97,920
1.3	Fitting cost Total cost × 20%				239,984
	The state of the s			1	
2	Pumps (Pump with electric motor/accessories) Centrifugal pumps				
2.1	a) Q= 0.7 m3/min H= 13m HP= 3.7kw	set	2	100,000	200,000
	b) Q= 0.42m3/min H=225m HP= 55 kw	set	4	800,000	3,200,000
2,2	Submersible pumps with accessories	1	}	1	
"."	a) Q= 0.12m3/min H= 100m HP=	set		130,000	(
	b) Q= 0.3m3/min H= 100m HP= kw	set	2	171,000	342,000
3	Power Supply (Materials&accessories)				
3.1	Power supply generating set	set	3	450,000	1,350,000
3.2	50 KVA Tension line	004	,		
3.4	a) High tension over head line	n:	10,000	50	500,000
	b) Low tension over head line	n	1,000	28	28,000
3.3	Plate-form mounted transformer				
	Supply of transformer wiht accessories				161.00
	Transformer 100 KVA (H-Type)	set	2	75,800	151,600
	Valve (Valve with accessories)				
44.1	Sluice valve				
7.1	a) \$50	set		1,000	(
	b) \$75	set	2		2,600
	c) \phi 150	set	4	1,700	6,800
4.2	High speed air valve			7 000	40.00
	a) ϕ 50	set	6	7,000	42,000
4.3	Check valve	1 3.4	1	10,000	10,000
	a) 100mm	set set	1	15,000	15,000
	b) 150mm	561	1 *	10,000	20,000
5	Flow meter (Meter with accessories \$150)	set	2	60,000	120,000
v					222 224
6	Reservoir equipment	set	2	100,000	200,000
_	y 12 (v. 1 1	: .			
7	Well (Materials with accessories) Casing pipe FRP				
7.1	Casing pipe FRP	h	84	2,093	175,81
7.2	Screen FRP				·
,	DN 200	m	56		319,20
7.3	Riser pipe, stainless DN 65	P3:	160	180	28,80
		1		90,000	80,00
8	Water purification unit	set	1	80,000	00,000
	Total				8,211,71

No.	Investment Cost of Target Year 2010 in Aykel Description	Unit	Q' ty	Unit Rate (B)	Amount (B)
1 2 3 4 5	Morbilization and demorbilization Rising line Distribution network New borehole with pumps and materials	LS Km Km Set	3.2 8 2	300,000 960,000 1,200,000 1,318,000	
6 7 8 9	Booster pump with house Power asupply facilities Chamber and structures Buildings Others Sub total	Set Site Set M2 LS	1 1 12 9	534,000 170,000 27,000 93,700	534,000 170,000 324,000 843,300 488,700 6,138,000
11 12	Enginering cost (10%) Contingency (10%)			. :	613,800 675,180
	Total				7,426,980
		:			
		÷			
		:			
					÷
			:	1 H	
			:		
:					:
1					

Meteorological Data

Table 1 Monthly Precipitation

Station: Aykel Unit:na Nov. Dec. Annual July Aug. Sep. Oct. June lar. Lay Year Jan. Feb. Apr. 544.8 181.0 1968 161.0 15.0 0.0 0.0 205.0 1969 22.0 0.0 292, 1 408, 5 302, 2 126.3 1980 1004.4 155.9 49.6 0.5 0.0 278.9 250, 1 70.4 151.5 0.6 0.3 45.1 1981 1.5 84.9 0.0 0.0 927.1 80.7 227. 2 199.1 132.3 76.9 0.060.6 64.1 1982 1.3 85.9 0.0 167. 2 408.5 340.9 96.7 9.1 5.2 0.0 0.0 1983 1.7 3.1 291.7 145.9 157.7 8.6 4.5 189. 4 1984 0.0 0.0 13.3 7.3 110.9 32.1 0.0 1215.9 116.6 271.8 257. 2 140.2 0.0 36.0 31.7 219.4 1985 0.0 339.8 276.7 100.2 0.7 0.0 1335.7 0.0 0.0 215.4 402.9 0.0 0.01986 0.0 279.7 0.0 15.2 26.4 1987 1.3 82. 2 10.4 0.01217.7 135.3 174.8 319.6 246.0 0.0 18.2 87.8 143.4 1989 0.0 237. 2 59.4 0.0 0.0 1004.6 207.7 32.3 52. 2 153.3 257.3 0.0 1.3 1990 3.9 139. 1 2.9 2.8 250.3 149.8 0.0 1991 0.0 0.0 0.0 0.0 0.00.0 0.049.5 1992 0.0 1.9 8.0 143: 3 112.5 1993 0.0

Table 2 Long Term Monthly Mean Potential Evapotranspiration (PET)

50.8

12. 1

1994

Unit:mm Station: Gonder 0ct. Nov. Annual Peb. Apr. Hav Tune July AUZ. Sep. Dec. Jan. Kar. 49 54 57 63 62 60 60 58 1st 10 days 44 45 47 46 52 2nd 10 days 50 45 42 42 39 39 39 39 41 59 57 42 42 43 44 45 46 47 45 43 42 3rd 10 days 41 43 143 1712 Total 145 144 142 141 141 142 144 143 141 142

272.5

214.4

Table 3 Monthly Average Maximum Air Temperature

Station: Aykel

unit: ℃

						t						
Year	Jan,	Fcb.	Yar,	Apr.	Yay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
1969	-:				-	19.6		_		16.8	14.7	_
1980						23. 1	21.0	20.4	20.5	_	26. 2	25.8
1981	26.5	28.3	30, 0	27. 7	24.5	22. 4	18. 8	19.9	20.5	22, 4	23. 7	24.3
1982	24.3	25. 1	25. 4	26. 2	24.5	22. 7	20. 2	19.0	21.3	21.9	22.6	23. 9
1983	23.8	25. 4	27. 3	28.0	:	22. 4	21.0	19, 8	21. 2	21.7	23. 9	24. 8
1984	24.6	26. 7	26.8	27.7	<u>:-</u>	21. 1	20. 3	21. 1	21.3	24. 4	25. 0	24. 2
1985	25.1	24.3	26.4	26.3	23.3	22. 1	19.5	19.6	21.5	22. 9	23.9	24. 4
1986	24.9	26.8	29.3	29. 0	25. 2	23. 0	19. 9	19.6	20.8	22. 1	24.1	23. 7
1987	23. 9	26. 0	26. 5	27. 2	24. 1	1			-			
1989	24. 0	24. 8	25. 6	26. 2	23. 4	21.8	20.6	20. 5	21.3	22.6	24.8	24. 3
1990	25. 3	25. 3	-	27.8	27.8	25. 2	21.6	21.9	22. 0	23. 7	25.8	26. 4
1991	25. 8	27. 3		_		1		22. 1	23.9	24.4	25. 9	26. 2
1992	25.8	26.5	30.3	30.3		26.3	23. 2	21. 1	23.7	23.8	25. 2	;
1993	26. 4	27. 0		<u>+</u>	-	25.8					- :	
1994	-		-			21.2	19.4	19.5	į		-	-

Table 4 Monthly Average Minimum Air Temperature

Station: Aykel

unit: ℃

Year	Jan,	Feb.	Yar,	Apr.	Yay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
1969		_				13.0	_		-	13. 0	11. 2	9. 5
1980		-		-		12.7	12.2	12.0	12.4	_	13.5	13. 4
1981	13.6	13. 7	12. 0	14.0	14.5	13.4	12. 4	12.4	12.6	12.8	12. 4	12. 5
1982	12.6	13. 4	14. 4	14.0	14.4	14.4	12.3	12.5	12.8	12.7	12. 4	12. 6
1983	11.7	13. 2	15. 2	14.6		13.6	12. 2	12.5	13, 0	12.6	12. 7	12. 4
1984	12. 1	14. 2	14.5	16. 5		12.5	11.5	11.5	11.6	13.2	13. 4	13. 0
1985	13.6	11.7	11.7	14. 1	13. 5	13.1	12.0	12. 1	13.0	12.9	13. 1	13.0
1986	13.1	14.7	15.5	16. 1	14. 0	12. 2	11.8	11.9	12.0	12.9	13. 5	12. 5
1987	13. 1	14.8	15. 2	15. 6	14. 2	-	-	- :		-		_
1989	11.0	12. 7	14. 2	14.3	13. 9	13. 0	12.5	12.3	13. 1	13.0	13.0	12. 2
1990	12.9	13.3	- 1	15. 4	15. 9	13. 9	12. 5	12. 9	12.6	13.3	13.9	13. 9
1991	13. 2	14. 4	_		-	_	. —	12. 5	13.0	13. 1	13. 4	12.5
1992	12. 7	12.5	15.7	15. 7		13. 4	12.0	12.3	12.5	12.9	12.5	-
1993	11.5	13.0		14.2	:	-	_			→ .	_	
1994			·			12. 9	12. 4	12. 3			 	_ -

Table 5 Monthly Average Air Temperature

Station: Aykel

unit: °C

1			I	<u>. </u>	1		r	1	Ī			r -
Year	Jan.	Feb.	Mar.	Apr.	lay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
1969				-	_	16. 3	_	-		14. 9	13.0	
1980						17. 9	16.6	16.2	16.5		19.9	19.6
1981	20. 1	21.0	21.0	20. 9	19. 5	17.9	15.6	16. 2	16. 6	17.6	18. 1	18. 4
1982	18.5	19.3	19.9	20. 1	19. 5	18.6	16. 3	31.5	17. 1	17.3	17.5	18. 3
1983	17.8	19.3	21.3	21.3	-	18. 0	16.6	16. 2	17. 1	17. 2	18.3	18. 6
1984	18.4	20.5	20. 7	22. 1	-	16.8	15. 9	16. 3	16. 5	18.8	19. 2	18. 6
1985	19.4	18. 0	19. 1	20. 2	18. 4	17.6	15.8	15. 9	17. 3	17. 9	18.5	18. 7
1986	19.0	20.8	22. 2	22. 6	19. 6	17.6	15. 9	15.8	16. 4	17.5	18.8	36. 2
1987	18.5	20. 4	20. 9	21. 4	19.2	_	-		1.	-	-	
1989	17.5	18.8	19.9	20. 3	18. 7	17. 4	16. 6	16. 4	17.2	37.6	19. 9	18.3
1990	19. 1	19.3		21.6	21.9	19. 6	17. 1	17.4	17.3	18. 5	19, 9	20. 2
1991	19. 5	20. 9	—	_		1		17.3	18.5	18. 8	19. 7	19.4
1992	19. 5	19.5	23. 0	23. 0	1	19. 9	17. 6	16. 7	19. 1	19. 4	18.9	
1993	19. 0	20. 0	-	-	-		_	-	_	-	_	·
1994			_	-		17. 1	16. 9	15.9		-		_

Hydrological Data

Figure 1 Probability Analysis on Annual Ground Water Recharge

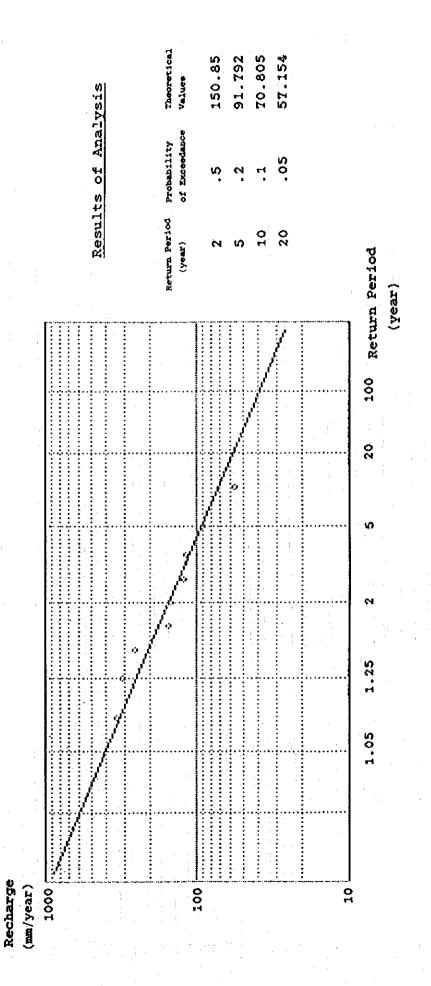


Table 1 Monthly Water Balance Sheet for Ground Water Recharge

1980					·		,	:	·- 				Unit:m
Elements	Jan,	Feb.	Mar.	Apc.	May	Јиле	July	Aug.	Sep.	0ct.	Nov.	Dec.	Annual
Р	_		_	-	-	292. 1	408.5	302. 2	126. 3		22.0	0.0	
Q	-	_	_		-	116.8	163. 4	120. 9	50.5	_	8.8	0.0	-
P - Q	_		_			175.3	245. 1	181.3	75.8		13. 2	0.0	
Efo	144	145	144	142	141	141	142	144	143	141	142	143	1, 712
ЕТ сгор	100.8	101.5	100.8	99. 4	98. 7	98.7	99. 4	100.8	100. 1	98. 7	99. 4	100. 1	1, 199, 4
ETa	-	_	_	_		98.7	99. 4	100.8	75.8	-	13. 2	0.0	
ΔS	-			1	- :	76.6	145. 7	80.5	0.0		0:0	0.0	302. 8

1981				· · · · · · · · · · · · · · · · · · ·	T							 -	Unit:mm
Elements	Jan.	Feb.	Mar.	Apr.	Хау	June	July	Aug.	Sep.	Oct.	Nov.	Déc.	Annual
P	1.5	0.6	0.3	45. 1	70.4	151.5	278. 9	250.1	155.9	49.6	0.5	0.0	1, 004. 4
Q	0.6	0.2	0.1	18.0	28. 2	60.6	111.6	100.0	62. 4	19.8	0.2	0.0	401.7
P - Q	0.9	0. 4	0. 2	27. 1	42. 2	90.9	167. 3	150. 1	93.5	29.8	0.3	0.0	602. 7
ETo	144	145	144	142	141	141	142	144	143	141	142	143	1, 712
ЕТ стор	100.8	101.5	100. 8	99. 4	98. 7	98. 7	99. 4	100.8	100.1	98. 7	99. 4	100. 1	1, 199. 4
ETa	0.9	0.4	0. 2	27. 1	42. 2	90. 9	99. 4	100.8	93. 5	29. 8	0.3	0.0	485. 5
Δs	0	0	0,	0	Ô	0	67. 9	49. 3	0	0	0	0	117. 2

1982					,							<u> </u>	Vint:mm
Elements	Jan	Feb.	¥ar.	Apr,	Kay	June	July	Aug.	Sep.	0ct.	Nov.	Dec.	Annual
P	1.3	0. 3	60. 6	64. 1	76. 9	80. 7	227. 2	199. 1	132.3	84.9	0.0	0.0	927. 1
Q	0.5	1. 0	24. 2	25. 6	30.8	32. 3	90.9	79.6	52.9	34.0	0.0	0.0	370.8
P - Q	0.8	:	36. 4	38. 5	46. 1	48. 4	136.3	119.5	79. 4	50.9	0.0	0.0	556.3
ЕТо	144	145	144	142	141	141	142	144	143	141	142	143	1. 712
ET crop	100.8	101. 5	100. 8	99. 4	98. 7	98. 7	99.4	100.8	100. 1	98. 7	99. 4	100. 1	1, 199, 4
ЕТа	0.8	0.0	36. 4	38. 5	46. 1	48. 4	99. 4	100.8	79. 4	50.9	0.0	0. 0	500.7
Δ\$	0	0	0	0	0	0	36.9	18.7	0	0	0	0	55.6

Note: - = not calculated due to missing data or distorted data

1983 Unit: ER

Elements	Jan.	Feb.	Yar.	Apr.	Kay	June	July	Aug.	Sep.	0ct.	Nov.	Dec.	Annual
P	1.7	0.0	0.0	5.2		167. 2	408.5	340. 9	96. 7	85. 9	9. 1	0.0	
Q	0.7	0.0	0.0	2.1		66. 9	163. 4	136. 4	38. 7	34. 4	3. 6	0.0	
P - Q	1.0	0.0	0.0	3. 1		100.3	245. 1	204. 5	58. 0	51.5	5. 5	0.0	
ETo	144	145	144	142	141	141	142	144	143	141	142	143	1.712
ET crop	100.8	101.5	100.8	99.4	98.7	98.7	99. 4	100.8	100. 1	98.7	99. 4	100. 1	1, 199. 4
ETa	10.0	0.0	0.0	3. 1	_	98.7	99. 4	100.8	58. 0	51.5	5. 5	0.0	
ΔS	0	C	0	0	_	1.6	145. 7	103.7	0	0	0	0	251.0

1984 Unit:nm Oct. Nov. Aug. Sep. Dec. Annual July Lay June Elements Jan. Feb. Yar. Apr. 4.5 3. 1 8.6 7.3 189.4 291. 7 145.9 157.7 **. P**. 0.00.0 13.3 1.8 1.2 58.4 63.1 3.4 75.8 116.7 5.3 2.9 Q 0.0 0.0 5. 2 2.7 1.9 87.5 94.6 113.6 175.0 P - Q 0.0° 0.0 8.0 4.4 142 143 1,712 144 143 141 142 142 141 ETo 144 145 144 141 98.7 99. 4 1100. 1 1, 199. 4 99.4 100.8 100.1 98.7 98.7 99.4 ET crop |100.8 101. 5 100. 8 1.9 5.2 27 98.7 99.4 87.5 94.6 4.4 0.0 8.0 ETa 0.0 90.5 0 14.9 75.6 0 ΔS

1985						:						,	Unit: we
Elements	Jan,	Feb,	Mar.	Apr.	X ay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
P	0.0	0.0	36.0	31. 7	219. 4	116.6	271.8	257. 2	140. 2	110.9	32.1	0.0	1. 215. 9
Q	0.0	0.0	14.4	12. 7	87.8	46.6	108.7	102.9	56. 1	44. 4	12. 8	0.0	486. 4
P - Q	0.0	0. 0	21.6	19. 0	131.6	70.0	163. 1	154.3	84.1	66. 5	19. 3	0.0	729. 5
ĒΤο	144	145	144	142	141	141	142	144	143	141	142	143	1. 712
ЕТ сгор	100.8	101.5	100.8	99. 4	98.7	98.7	99. 4	100.8	100.1	98.7	99. 4	100.1	1, 199. 4
Eľa	0, 0	0. 0	21.6	19.0	98.7	70.0	99. 4	100.8	84.1	66.5	19. 3	0.0	579. 4
ΔS	0.0	0.0	0	0	32.9	0	63. 7	53. 5	0	0	0	0	150. 1

Note: - = not calculated due to missing data or distorted data

Unit:nm

Elezents	Jan.	Feb.	Kar.	Apr.	Yay	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
P	0.8	0. 0	0.0	0.0	0.0	215.4	402.9	339.8	276.7	100. 2	0. 7	0.0	1, 335, 7
Q	0.0	0.0	0.0	0.0	0.0	86.2	161.2	135. 9	110.7	40. 1	0.3	0.0	534. 4
P - Q	0.0	0. 0	0.0	0.0	0.0	129. 2	241. 7	203.9	166.0	60. 1	0.4	0.0	801. 3
Eïo	144	145	144	142	141	141	142	144	143	141	142	143	1. 712
El crop	100.8	101.5	100.8	99. 4	98.7	98.7	99. 4	100.8	100.1	98. 7	99.4	100.1	1, 199, 4
ETa	0.0	0.0	0.0	0.0	0.0	98. 7	99. 4	100.8	100.1	60. 1	0. 4	0.0	459. 5
Δs	0	0	0	0	0	30.5	142.3	103.1	65.9	0	0	0	341. 8

1989

Unit:mm

													OHIT C: DE
Elements	Jan.	Feb.	Yar.	Apr.	May	June	July	Aug.	Sep.	0ct.	Nov.	Dec.	Annual
Р	0.0	0. 0	18. 2	87.8	143. 4	174.8	319.6	246.0	135.3	82. 2	10. 4	0.0	1, 217. 7
Q	0.0	0.0	7.3	35. 1	57. 4	69.9	127.8	98. 4	54. 1	32. 9	4.2	0.0	487. 1
P - Q	0.0	0. 0	10.9	52. 7	86.0	104.9	191.8	147.6	81.2	49.3	6. 2	0.0	730. 6
ETo	144	145	144	142	141	141	142	144	143	141	142	143	1.712
El crop	100.8	101.5	100.8	99. 4	98. 7	98.7	99.4	100.8	100.1	98. 7	99. 4	100. 1	1, 199, 4
ETa	0.0	0.0	10.9	52. 7	86. 0	98.7	99.4	100.8	81.2	49.3	6. 2	0.0	585, 2
ΔS	0.0	0.0	0.0	0, 0	0.0	6.2	92. 4	46.8	0.0	0	0	0	145. 4

1990

Unit: mm

				,									CHAT. BAR
Elements	Jan.	Feb.	Kar.	Apr.	Yay:	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
P	3.9	0.0	1.3	32. 3	52. 2	153.3	257. 3	207.7	237. 2	59. 4	0.0	0.0	1, 004, 6
Q	1.6	0.0	0.5	12.9	20.9	61.3	102.9	83. 1	94.9	23.8	0.0	0.0	401. 9
P - Q	2.3	0. 0	0.8	19. 4	31.3	92.0	154. 4	124.6	142, 3	35.6	0.0	0.0	602. 7
ЕТо	144	145	144	142	141	141	142	144	143	141	142	143	1.712
ET crop	100.8	101.5	100.8	99. 4	98. 7	98.7	99. 4	100.8	100.1	98. 7	99. 4	100.1	1, 199. 4
ETa	2.3	0.0	0.8	19. 4	31.3	92. 0	99. 4	100.8	100.1	35. 6	0.0	0.0	481. 7
ΔS	0.0	0.0	0.0	0.0	0.0	0.0	55. 0	23.8	42. 2	0	0	0	121. 0
			1		L							L	L

Appendix - 10

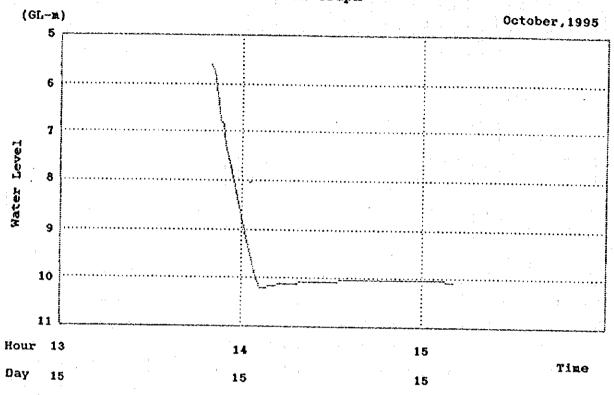
Result of Pumping Test

1. General

The pumping test was conducted at the hand dug well located in the compound of Orthodox Church Aid Office in October, 1995. The dimensions of the well have been reported as stated hereunder.

- Well Depth : 11.5 m
- Casing Type and Dlameter : Concrete ring, 1.3 m

The diameter of the well is not measured but it is estimated at 1.3 m because the concrete ring is a standard type. The well does not equip slots and ground water enters from the bottom of the well. Little is known about the aquifer. Most probably it is a unconfined aquifer and consisted of tuffs which are predominant in the area. The static water level was observed at 5.6 m below ground level. However, it was about 10m below in June 1995. For the test, a 4" submersible pump was installed at 11m below ground level. The well depth was measured and it was 11.5 m deep. The test was initially planned to include the followings.


- Preliminary pumping test with 10 steps
- Step drawdown test with 5 steps
- Contineous discharge test for 24 hours and recovery observation

2. Preliminary Pumping Test

The test is aimed to know about the well, measuring the water level with different pumping rates. The pumping started at the rate of 0.58 l/s. In 16 minutes, the drawdown of 4.6 m was made and the water level reached 0.8 m above the pump position. Then, the pump was shut off in order to avoid further drawdown. The recovery was observed and it recovered 18.5 % within one hour. See Figure 1 for the variation of water level.

It is obvious that the pumping rate must be reduced for the next step. However, the pump is not designed for smaller discharge. So that the test was terminated. From this test it has learnt that the performance of the well and the efficiency of the aquifer is very low.

Figure 1 Pumping Test Time Water Level Graph

PRELIMINARY TEST PUMPING STAGE

DATE 15/10/95		COND	UCTED BY WWDE
WELL NO.	SWL	5.60 m	STEP 1
LOCATION AYREL	PUMP TYPE	Submersible	NOTCH (H) mm
OWNER Orthodox Church	HEAD	100 m	DISCHARGE 0.581/s
WELL DEPTH 11.50 m	CAP.	5 1/s	50.1 m3/day
WELL DIA. 1.3 m	POSITION	11.0 GL-m	Hand Dug Well

TIVE	TIME SINCE PUMPING STARTED (min.)	WATER LEVEL (GL-n)	DRAVDOVN (10)	REMARKS
13:50	0	5. 60	0.00	0.58 lt/sec.
	0.5	5. 65	0.05	
13:51	1.0	5. 76	0.16	
	1.5	5. 93	0.33	
13:52	2.0	6. 23	0.63	
	2.5	6, 57	0.97	
13:53	3.0	6. 75	1. 15	
	3.5	6. 86	1. 26	0.58 lt/sec.
13:54	4.0	6, 87	1.27	
	4.5	6. 90	1.30	
13:55	5.0	7, 29	1.69	0.58 lt/sec.
13:56	6.0	7. 54	1.94	
13:57	7.0	7.83	2. 23	0.58 lt/sec.
13:58	8.0	8. 14	2.54	:
13:59	9.0	8. 49	2.89	
14:00	10.0	8. 76	3. 16	
14:02	12.0	9. 28	3.68	
14:04	14.0	9.82	4. 22	
14:06	16.0	10. 20	4.60	

PRELIMINARY TEST RECOVERY

DATE 15/10/95	•		COND	UCTED BY	MMDR
WELL NO.	SWL	5.60	m		
LOCATION AYREL	PUMP TYPE	Submers	ible	DISCHARGE THE FINAL	
OWNER Orthodox Church	HEAD	100	m	0.58	1/s
WELL DEPTH 11.50 m	CAP.	5	<u>l/s</u>	50.1	m3/day
WELL DIA. 1.3 m	POSITION	11.0	GL-m	Hand Due	well

TIVE	TIME SINCE PUMPING STOPPED (min.)	VATER LEYEL (GL-11)	DRAVDOVN (n)	REVARKS
14:08	0	10. 20	4.60	
	0.5	10. 16	4.56	
14:09	1.0	10. 16	4.58	
	1.5	10. 16	4.56	
14:10	2. 0	10. 16	4.56	
	2.5	10. 16	4.56	
14:11	3.0	10. 16	4.56	
	3.5	10. 14	4.54	
14:12	4.0	10. 13	4.53	
	4, 5	10. 13	4. 53	
14:13	5. 0	10. 13	4.53	
14:14	6.0	10. 12	4.52	
14:15	7. 0	10.11	4.51	
14:16	8.0	10. 10	4.50	
14:17	9.0	10. 10	4.50	
14:18	10.0	10.10	4, 50	
14:20	12.0	10.09	4. 49	
14:22	14.0	10.09	4.49	
14:24	16. 0	10.09	4.49	
14:26	18. 0	10. 07	4. 47	
14:28	20. 0	10.07	4.47	
14:33	25. 0	10.05	4. 45	
14:38	30. 0	10.04	4.44	
14:43	35. 0	10.03	4. 43	
14:48	40. 0	10.03	4, 43	
14:53	45. 0	10.02	4, 42	
14:58	50. 0	10.02	4. 42	
15:03	55. 0	10.01	4. 41	
15:08	60. 0	10.06	4. 46	

Appendix - 11

Calculation of Water Pipeline

Output data on distribution network for Aykel Case: Ordinary, 2005

Remarks				
Velocity Coefficient	0000		0000	0000000
Loss of Flead (m)				4040040 404040 404040
Hydraulic Gradient (m/1000)				000000000000000000000000000000000000000
Velocity (m/sec.)				0000000 800000000000000000000000000000
Flow (liter/sec.)			0-88.0 8.27.9 8.21.04.0	00000110 00041040 700010040
Pipeline Length(m)	220 320 320 320 320	2000 2000 2000	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 H H F 8 C C C C C C C C C C C C C C C C C C
Dia. (mm)	200 150 75	1200 1200 1200 1200 1200 1200 1200 1200	1200 1200 1200 1200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fumber End	01 to 41	ω → ∞ n	984 90 94 90	40000000
Nord Number Start End	H00	4 4 0 0) & A H &	
Pipeline Number	наю	4 N O F	- & & O O H H H	40000000000000000000000000000000000000
Serial Number	H ମ ମ ମ	4 W @ t-	् . ळ ७ ० स स	20 4 2 0 C C

Output data on distribution network for Aykel Case: Fire Fighting, 2005

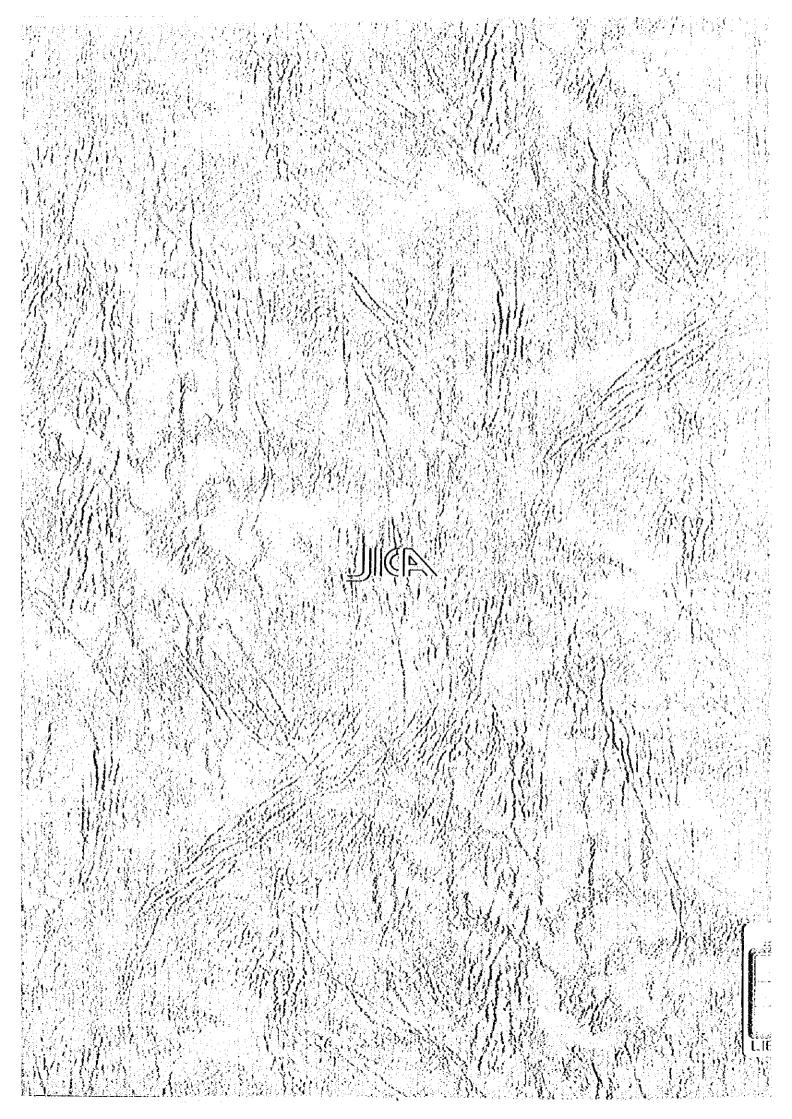
	l												-		٠				
Remarks																			
Velocity Coefficient	110	110	011	110	110	110	C T	110	110	0 [년	110	110	110	011	0 () (-	> < -) 	110
Loss of Head (m)		•	•		-0.03			-				_	0.01				9 6	٠	•
Hydraulic Gradient (m/1000)				•	-0.00			•					_				_	_	
Velocity (m/sec.)		•		•	-0.03	•	•	•		1.24	•	•	. •	•	0.08	•	•	•	٠
Flow (liter/sec.)	23.67																		
Pipeline Length(m)	285	220	335	180	220	170	280	230	130	360	ທ ຕ ດ	460	100	190	760	30	315	C 5 U	040
Dia. (mm)	200	150	75	7	73	120	150	120	150	150	120	150	720	150	150	150	75	, i) () ()
Nord Number Start End	87.6	თ [,]	4	ഗ -	ω	<u></u>	∞ •	m	rd rd	ത	۲ ۲	4	n N	(°) ⊷I	17	12	16	Q,	o - ∔
Nord N Start	H (N (4	4	ဖ	က္ (00	N,	러 '	တ	ത	14	77	ტ ლ	ස	12	Ġ	4
Pipeline Number	ਜ⊀≎	N (.	寸 ' ।	ស (ن و	<u>.</u> - 0	× •	ກຸ	0 . 10	F-4 -	12	က က	4	15	16	17	00	· 1
Serial Number	-4€	N 6	· (r	4.1	ι ύ (⊙ (0	·- (» «	J. (C	0	H :	25	ກ ຕຸ	4	ન હ	16	17	00) 1

Output data on distribution network for Aykel Case: Ordinary, 2010

Serial	Pipeline Number	Nord Numbe Start End	fumber End	Dia. (mm)	Pipeline Length(m)	Flow (liter/sec.)	Velocity (m/sec.)	Hydraulic Gradient (m/1000)	Loss of Head (m)	Velocity	Remarks
-	,		,	200	285		1 .			110	
1 6	1 67	1 (7)	; e3	150	220	5.19	0.29	0.24	60. H	011	
က	က	က	4	75	335					110	
4	4	4	ហ	7.5	180	-			-	110	
Ŋ	ເນ	4	ဖ	73	220				-	110	
ဖ	అ	ဖ	7	150	170		•	•		110	
۲	1	ဖ	00	150	280					513	
00	∞	œ	Ċ	150	230			•		110	
တ	Ø	ત્ય	금	150	130		•	•		110	
	10	러		150	360		4	•		110	
	· 다			150	535		•	•		110	
	, 13	တ		150	460		•	•		110	
	හ ස	다 4		150	100		•	•	•	110	
	구 4	1.4		150	190	-	•	•		110	
	15	73		150	760					110	
	16 16	13		150	30	4	•	. •		110	
17	17	12	16	75	315	•		•		110	
	8	12		150	540		•		•	110	

Output data on distribution network for Aykel Case. Fire Fighting, 2010

l			l														1			
Domostic	Nemers																	•		
Velocia	Coefficient		110) (0 0 0	0) (; ; ;) ()) C	2)) ({) (O d r. d r.) C) (1 r) (O C) (000
Toes of	Head (m)			• .	1.08	• •	•	000	•	•	•	+	•	•	1000 1000 1000 1000	•	· <	٠	•	11.39
December	Gradient	(m/1000)	٠ ١	•	0.38	•	-0.28	• . •	-0-04	•	•	•	0 (0	•	0	•	•	•	900	6.15
Velocity	(m/sec.)		,	•	0.19	•	•	0.0							0.06		60	•	0 0	•
) II	(liter/sec.)			•	0.83	•	•	٠	-1.82	•					1.01			٠. ١	0	
Pineline	Length(m)		285	220	335	180	220	170	280	230	130	360	535	460	100	06.1	760	30	315	540
Ċ	(mm)		200	150	75	75	35	150	150	150	150	150	150	150	150	150	150	150	75	150
Nord Number	End		64	ന	4	Ŋ	ဖ	1-	œ	c)	11	ଉ	0.1	14	ម្ភ	ტ ლ(17	12	16	18
Nord	Start	. :	H	es S	ന	4	4	ဖ	ဖ	တ	Ċ.	' 근	တ	თ	14	ц 4	13	⇔	12	12
Pineline	Number		н	63	က	4	ហ	ဖ	۲-	જ	တ	10	11	12					17	
Serial	Yumber		ᆏ	ed.	က	4	ល	ဖ	! ~	∞	တ	10	77	12					11	


Appendix - 12

Geological Logs of Existing Boreholes

Borehole No.1 in Aykel

<u>Depth</u> .	Lithology
_0 - 4 m	Clay: black, basalt fragment
4 - 14 m	Clay: sandy, basalt fragment
14 - 80 m	Basalt: weathered and fresh , gypsum fragment
80 - 89 m	Sand:cemented, weathered basalt fragment
89 - 96 m 96 - 99 m 99 -101 m	Agglomerate:brown, clay matrix Basalt: angular, weathered Clay: volcanic fragment
101-165 m	Basalt: angular fragment weathered and clayey matrix
165-186 m	Basalt: fragment are less weathered and clay content decrease
 Location:	About 5km east of the town center
Source :	from "AYKEL GEOLOGICAL LOG BOREHOLE #1

EWRA" by J. TAYLOR 1980

