Due to the topographic and geological conditions described above, three plans are compared for the penstock layout; the open plan, the tunnel plan and a combination of the open and tunnel plans.

The layout in each plan is shown in Fig. 9-11. The longitudinal section is shown in Fig. 9-12. An extension of each plan is described below. Comparing the construction costs for the three plans above, the tunnel plan of Route-2 provides the best economic factor.

	Type of	Lengt	h (m)	Total	Adit
Route	Penstock	Open	Tunnel	Length (m)	(m)
Route 1	Open	1,595	400	1,995	0
Route 2	Tunnel	0	1,693	1,693	160
Route 3	Tun, Open	450	1,225	1,675	100

(4) Turbine Type

Judging from the plan data (net head 359.4 m, maximum discharge 27 m³/s), either a Francis or Pelton turbine may be considered. As this site was selected to deal with the peak load, a Francis turbine which provides high maximum efficiency and large maximum output is advantageous as shown in Table 9-15.

9.3.4 Optimum Development Plan

The previous study regarding a development plan on the Naranjo River confirmed as follows.

- General layout of Los Llanos hydroelectric project is as shown in Fig. 9-13.
- 62 m high gate type concrete gravity dam is constructed at the downstream axis with effective storage of 653 x 10³ m³ allowing daily regulation as shown in Fig. 9-14.
- Peak running time is 5 hours.
- Maximum discharge is 27 m³/s as shown in Fig. 9-15.
- Power plant with 2 units of 42.5 MW is built on the left bank of the Paquita River.
- Compensation is estimated in the project cost in order to make up a poor African
 palm harvest owing to the decreased water caused by the project.

(1) Basic Conditions for Study

(a) Annual Cost Method

In making examinations of the study for optimum development plan, the technique of taking a standard type of thermal power station that would have been constructed if the Project did not exist as an alternative facility and considering the cost of that thermal as the benefit was used.

The alternative facility selected was a combination of gas turbine and diesel engine power plants that could be considered as an alternative to Los Llanos Power Station.

In making the examination, market prices were used with the annual surplus benefit (B-C) and the benefit-cost ratio (B/C) as indices. Cost (C) is the equalized annual cost for the service life (50 years) of the hydro power facilities and Benefit (B) is the equalized cost of the alternative thermal.

The particulars of the alternative thermal power station are given in Table 9-16.

(b) Annual Cost

The equalized annual cost of a hydropower facility consists of depreciation, interest and operation and maintenance cost. The cost is obtained by multiplying the construction cost by the annual cost factor.

Annual Cost = Annual Cost Factor x Construction Cost = Depreciation + Interest + Operation and Maintenance Cost

Depreciation + Interest = Construction Cost x Capital Recovery Factor

Capital Recovery Factor =
$$\frac{i(1+i)^n}{(1+i)^n-1}$$

where, n: service life,
civil structure
hydraulic equipment and facilities
electrical equipment and facilities
i: discount rate, 12 percent

Capital Recovery Factor:

Civil structure 12.0%

Hydraulic equipment and facilities 12.2%

Electrical equipment and facilities 12.2%

Depreciation + Interest = Construction Cost x 12%

Operation and Maintenance Cost = Construction Cost x 1%

Therefore, Annual Cost = Construction Cost x 13%

(c) Conception of Benefit

The benefit of the Project is to be the total of the overall depreciation, interest, maintenance and administration cost, and fuel cost of the alternative thermal power station. The output and energy production of the Project used for benefit calculations are obtained according to the conditions indicated below. These are respectively defined as effective output and effective electric energy. Transmission line losses are not considered in the study below.

i) The effective output is the dependable peak output less the station power ratio of 0.3 percent, accident ratio of 0.3 percent, and repair ratio of 2.0 percent. The dependable peak output is the average value of monthly minimum peak outputs during the energy calculation period (25 years).

Effective Output = $(1 - 0.003) \times (1 - 0.003) \times (1 - 0.02) \times Dependable Peak Output$

ii) The effective electric energy is the annual energy production less the station service ratio of 0.3 percent.

Effective Electric Energy = (1 - 0.003) x Annual Effective Energy

Furthermore, firm electric energy is defined as the electric energy produced during the necessary equivalent peak duration. The secondary electric energy is defined as all other electric energy.

iii) Benefit = Effective Output x kW Value + Firm Energy x Firm kWh

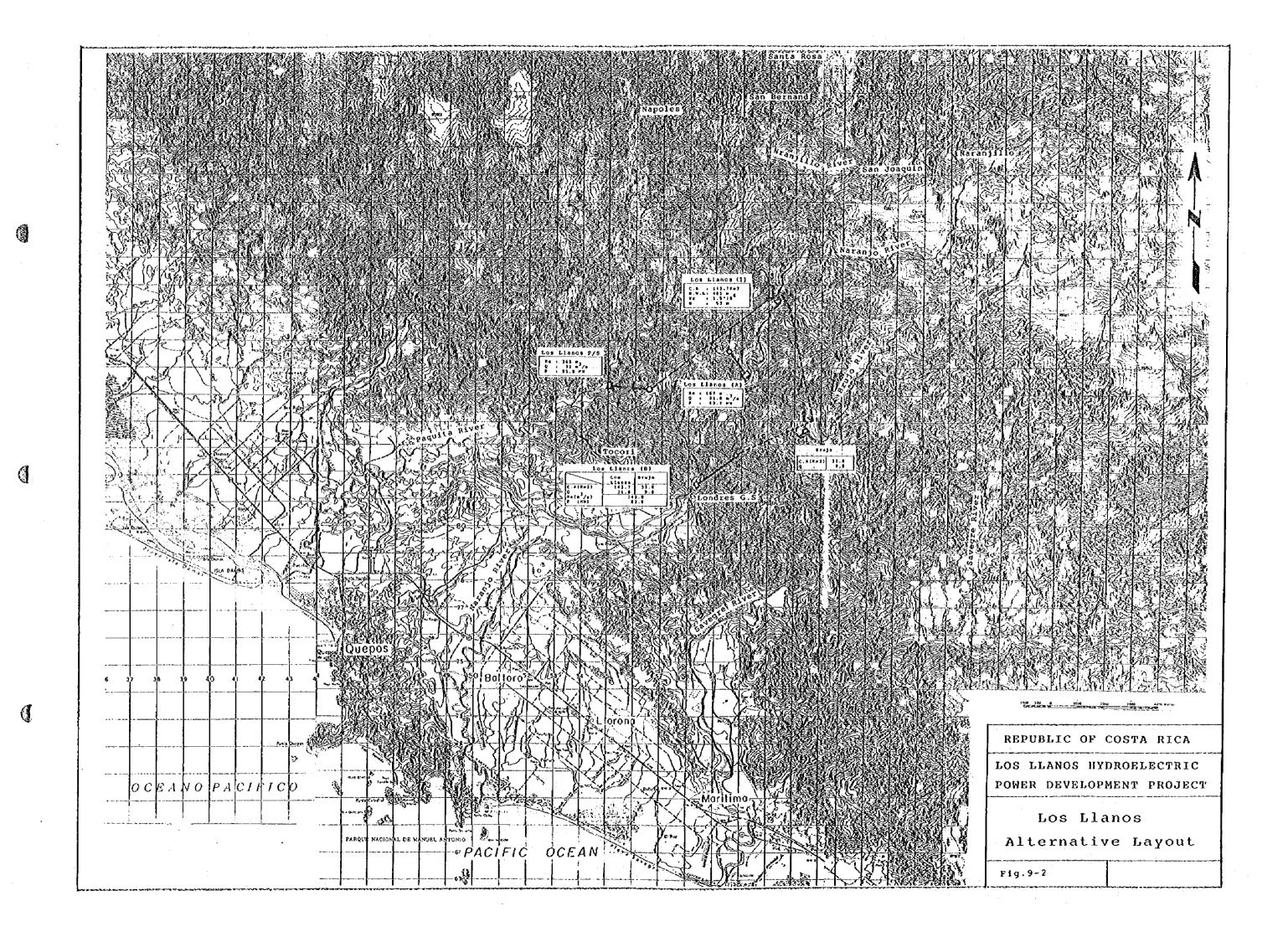
Value + Secondary Energy x Secondary kWh Value

(d) Result

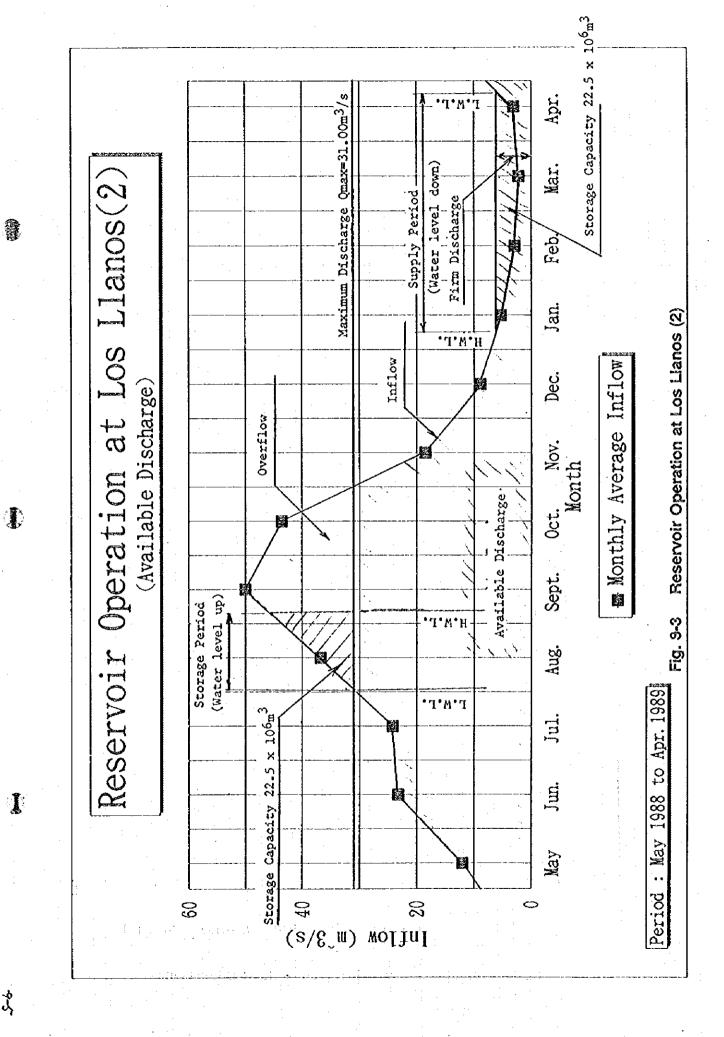
Based on project cost, firm power, firm energy and secondary energy estimated for optimum development plan, benefit cost relation (B-C) have been estimated as shown in Table 9-17. The result reveals that Los Llanos Project is feasible.

(2) Optimum Development Plan

The projected outline for optimum development plan is as follows.

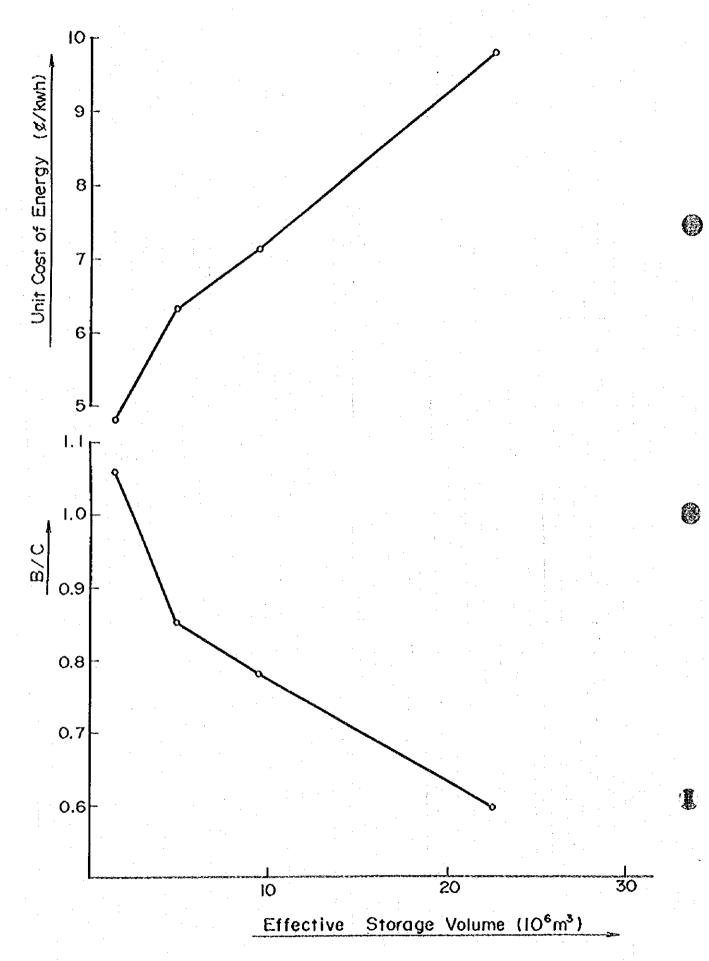
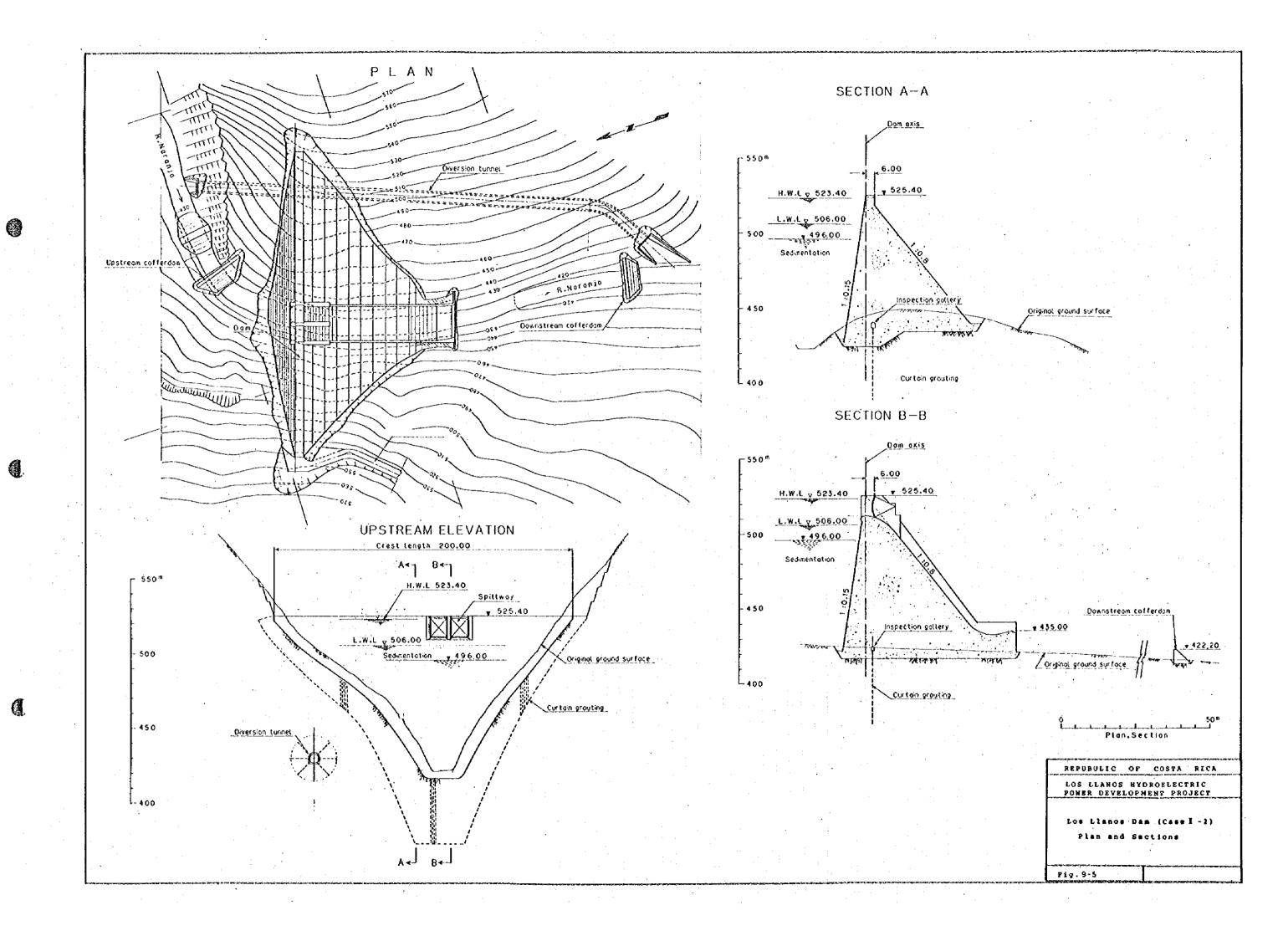
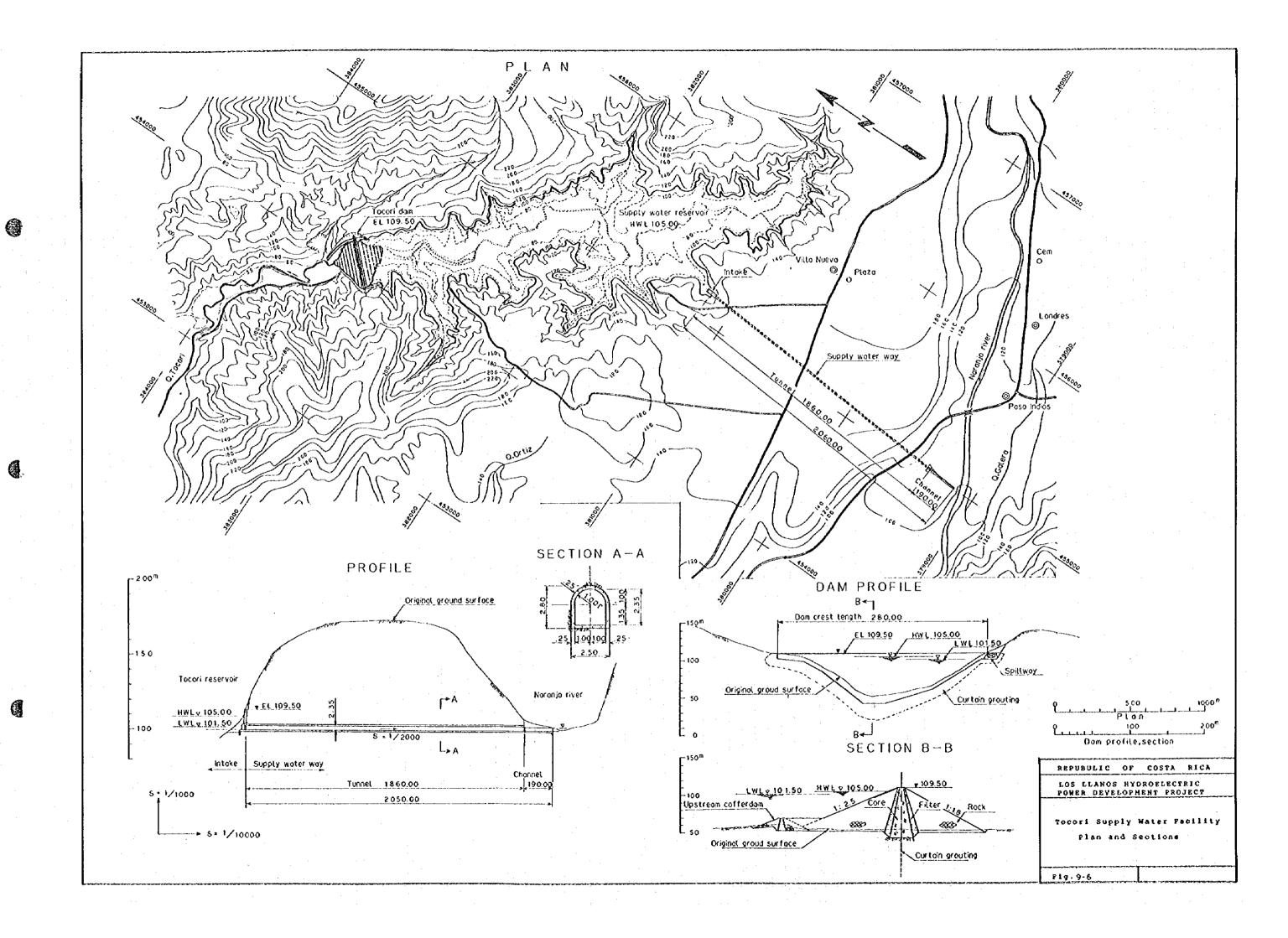
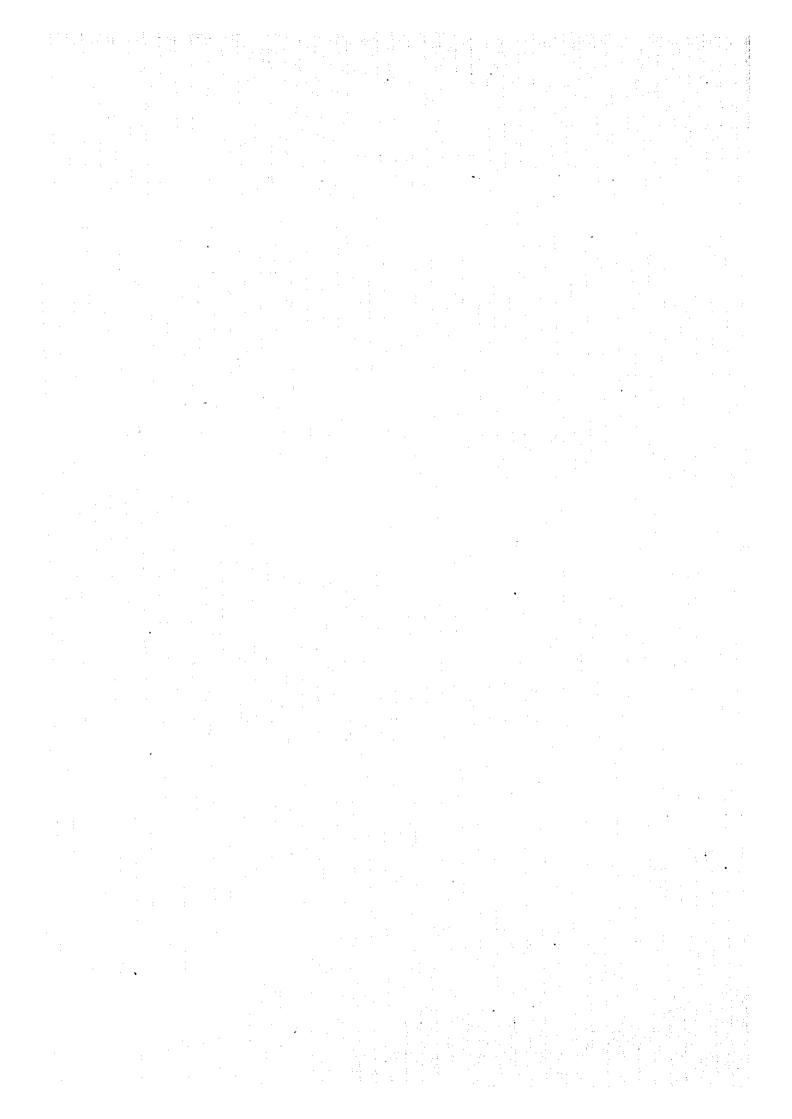

High Water Level	EL. 477.4 m
Low Water Level	EL. 470.0 m
Effective Storage Capacity	$653 \times 10^3 \mathrm{m}^3$
Tail Water Level	EL. 84.0 m
Gross Head	389.7 m
Effective Head	359.4 m
Maximum Discharge	27 m³/s
Installed Capacity	85 MW
Firm Power Output	82.7 MW
Annual Available Energy	389 GWh
Firm Energy	107 GWh
Secondary Energy	282 GWh

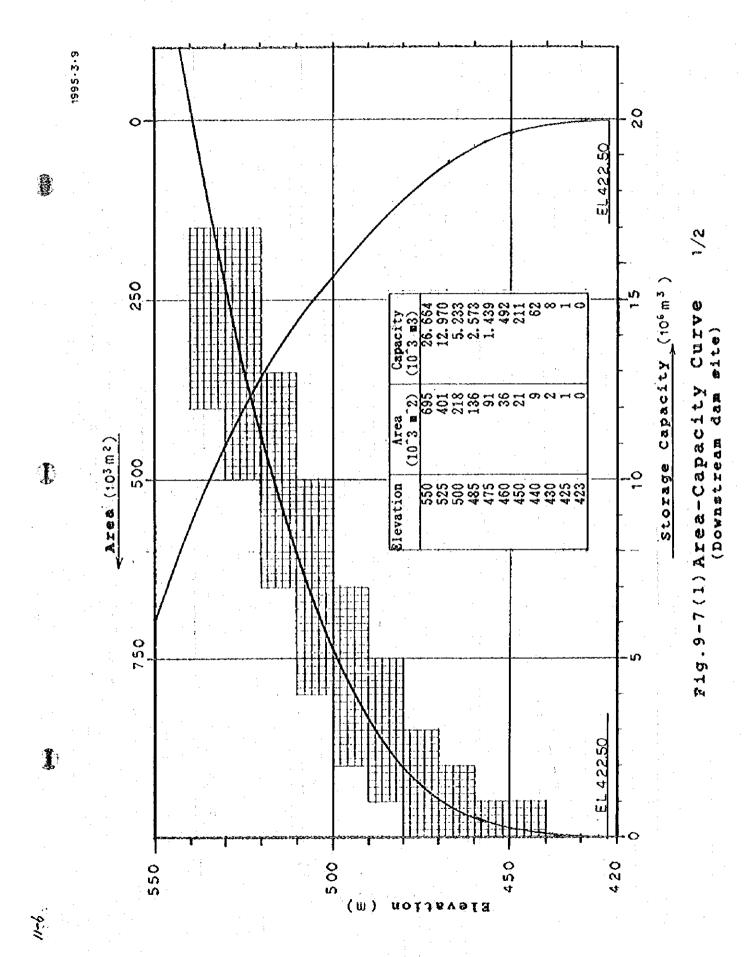
Main Facilities

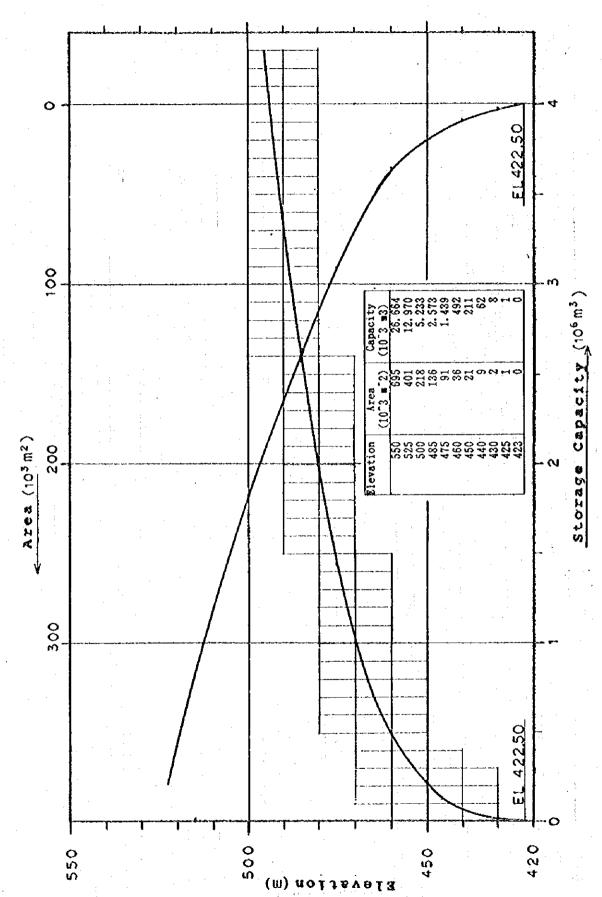
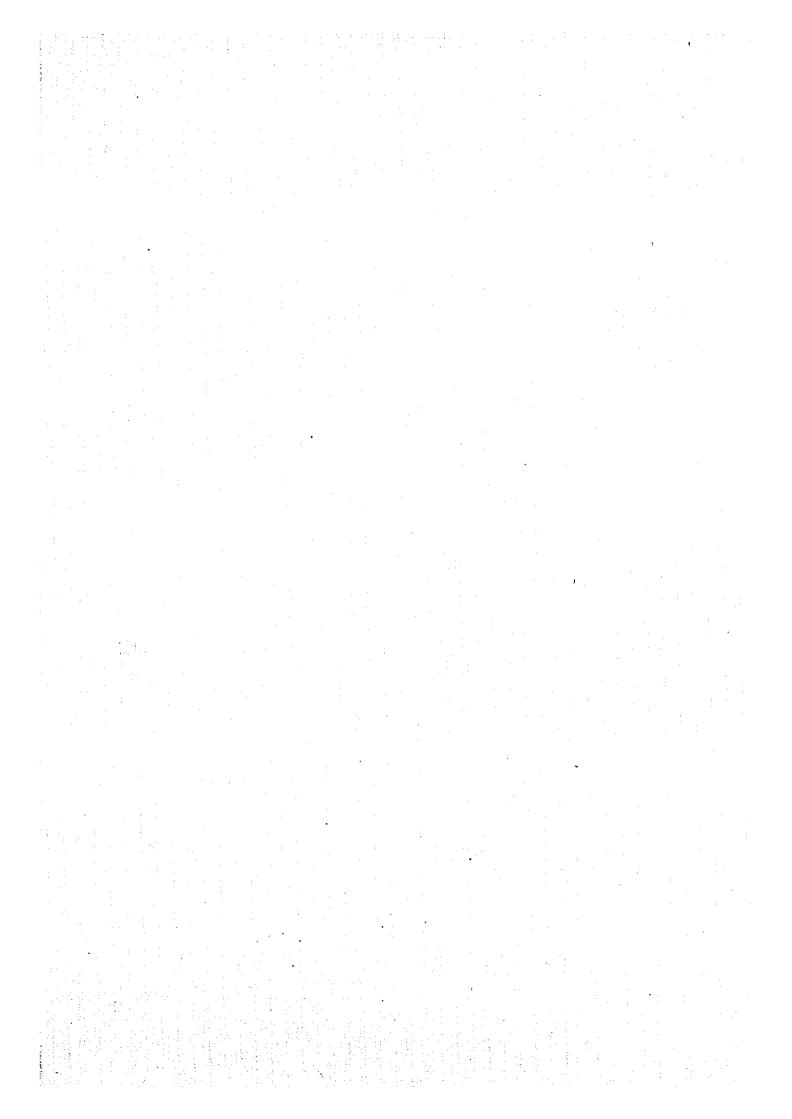

Dam	Concrete Gravity Type	62.4 m x 114 m
Headrace		3.1 m x 5,540 m
Surge Tank		8.0 m x 58 m
Penstock	Tunnel Type	3.10 m - 1.25 x 1,570 m
Powerhouse	Open Type	
	Francis Turbine	

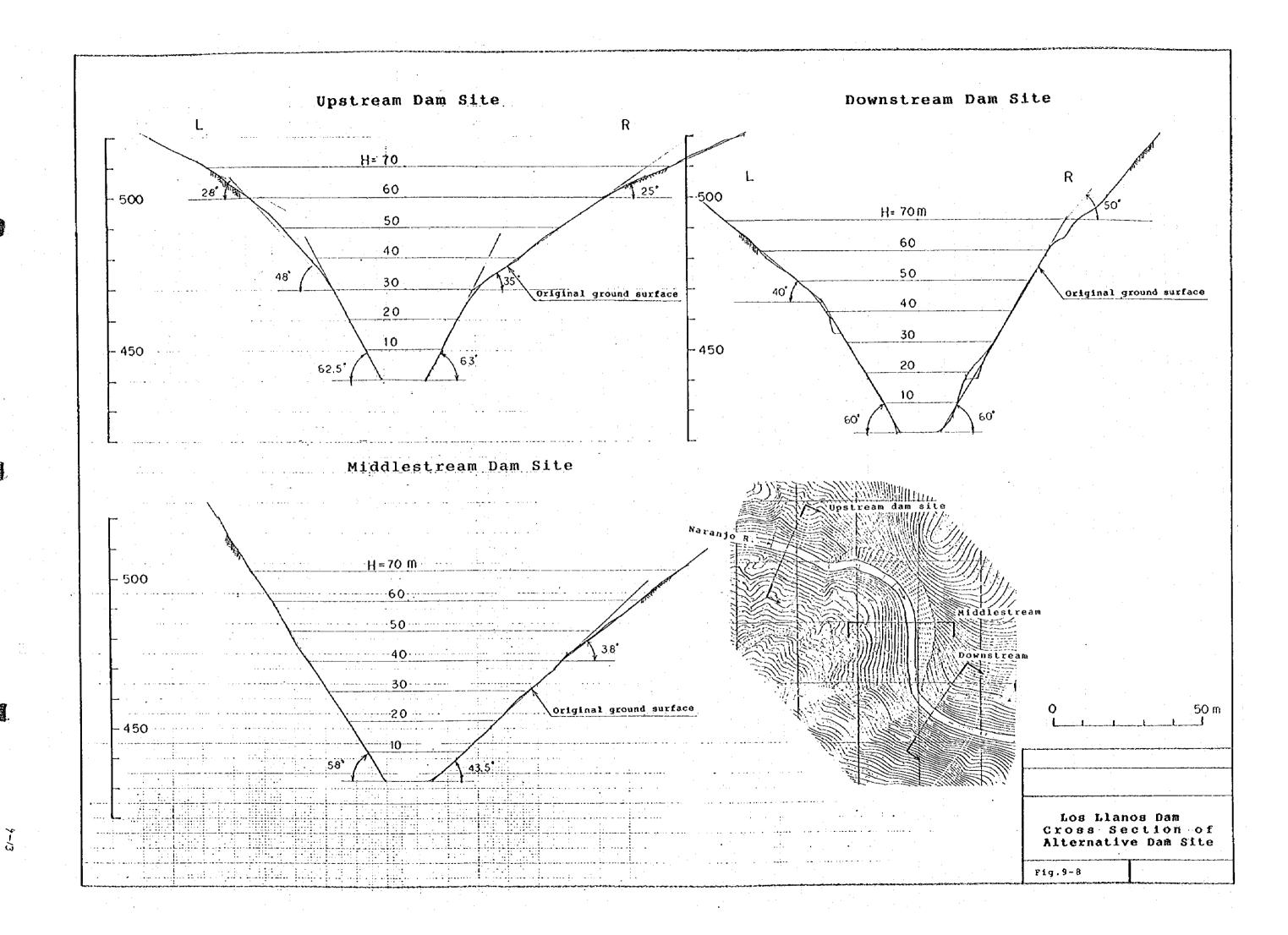
REPUBLIC OF COSTA RICA LOS LLANOS HYDROELECTRIC POWER DEVELOPMENT PROJECT OCEANO PACIFICO Naranjo River Master Plan Layout ⊸ PACİFIĞ OCEAN F19.9-1

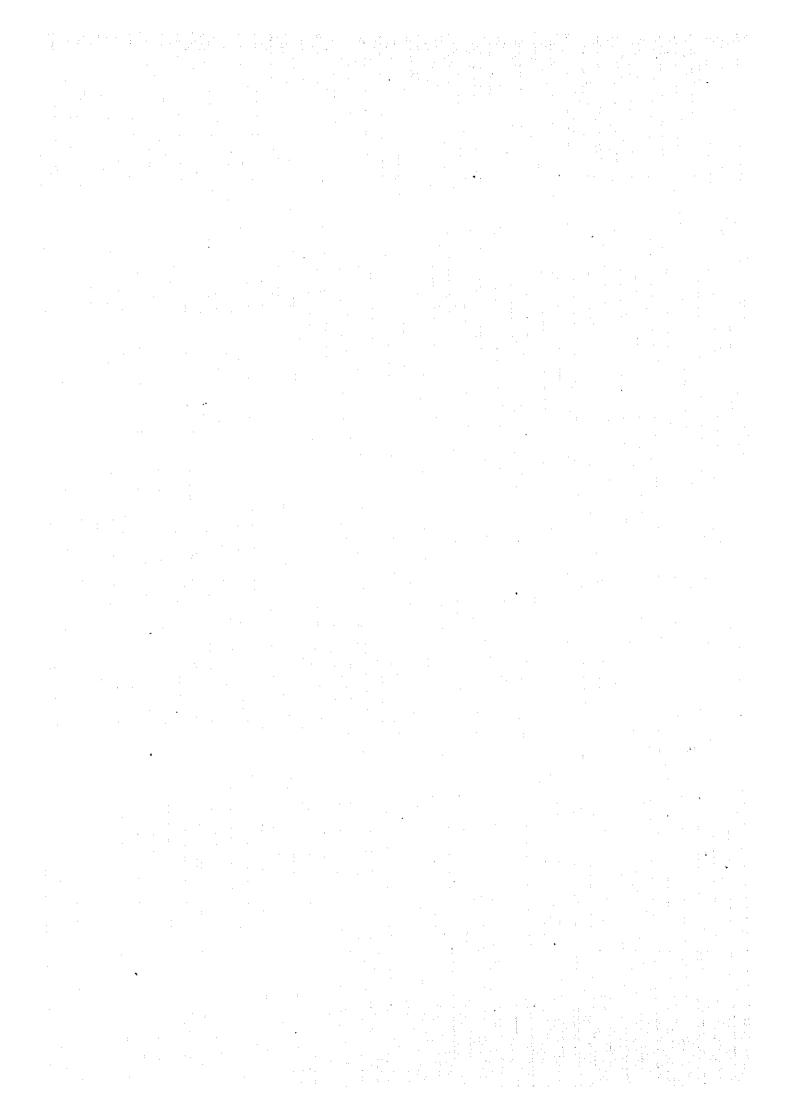
1


Fig. 9-4 Study on Reservoir Storage Volume at Los Llanos


Fig. 9-7(2) Area-Capacity Curve 2/2 (Downstream dam site)


8

4

1

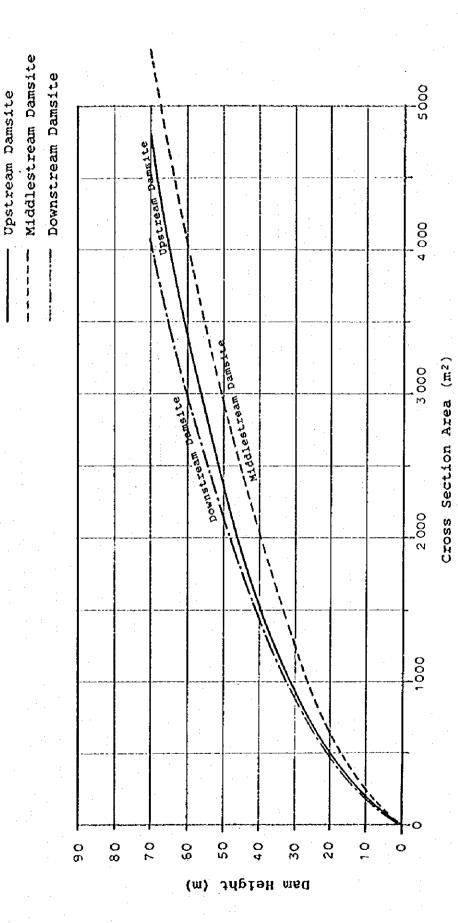
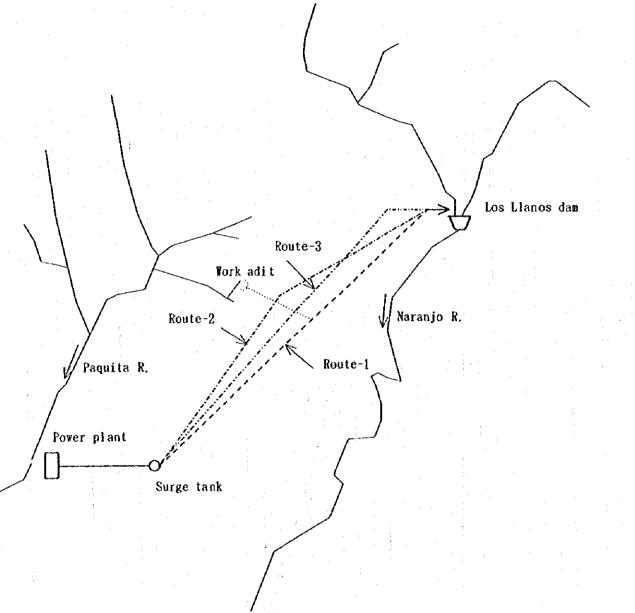
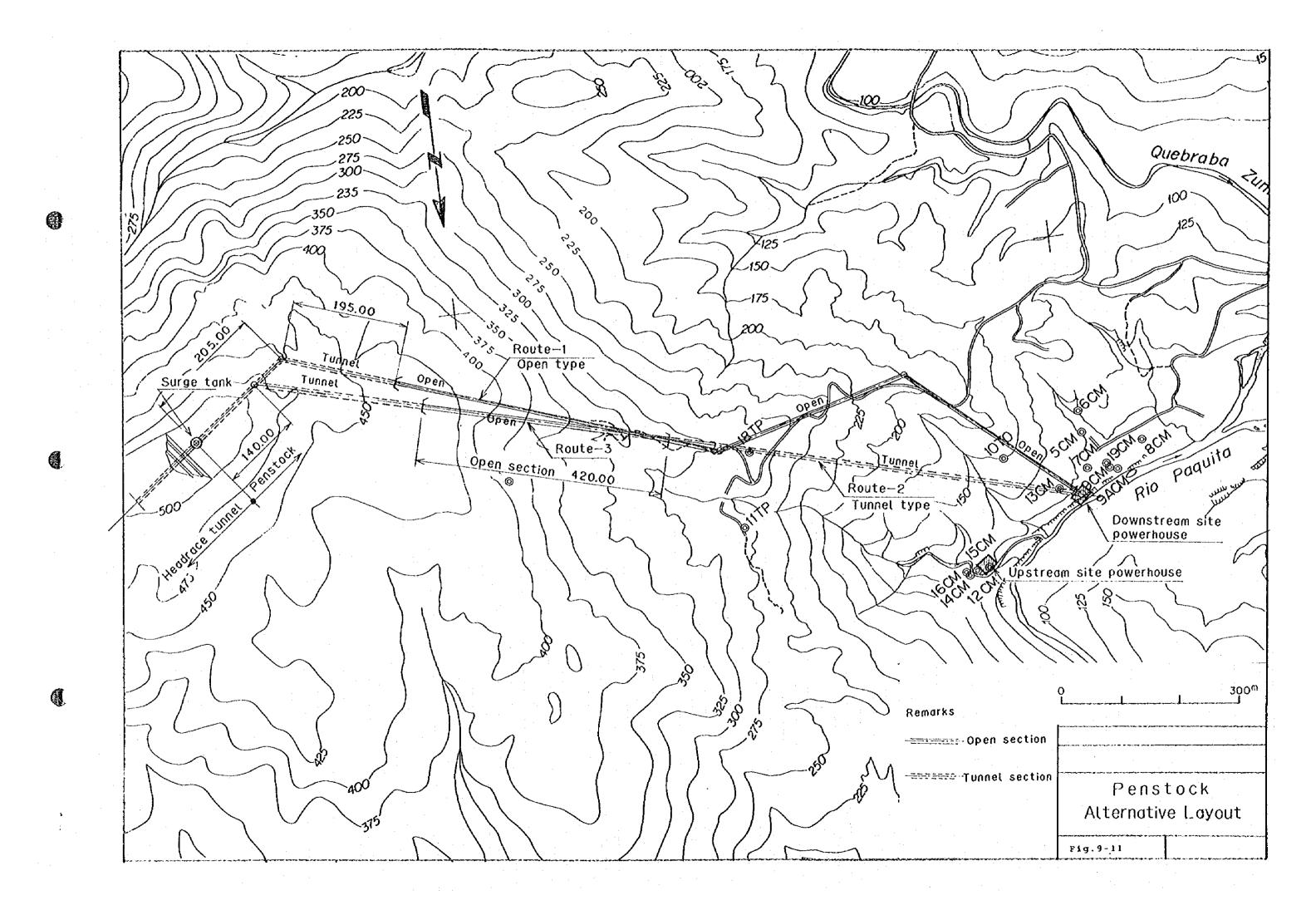
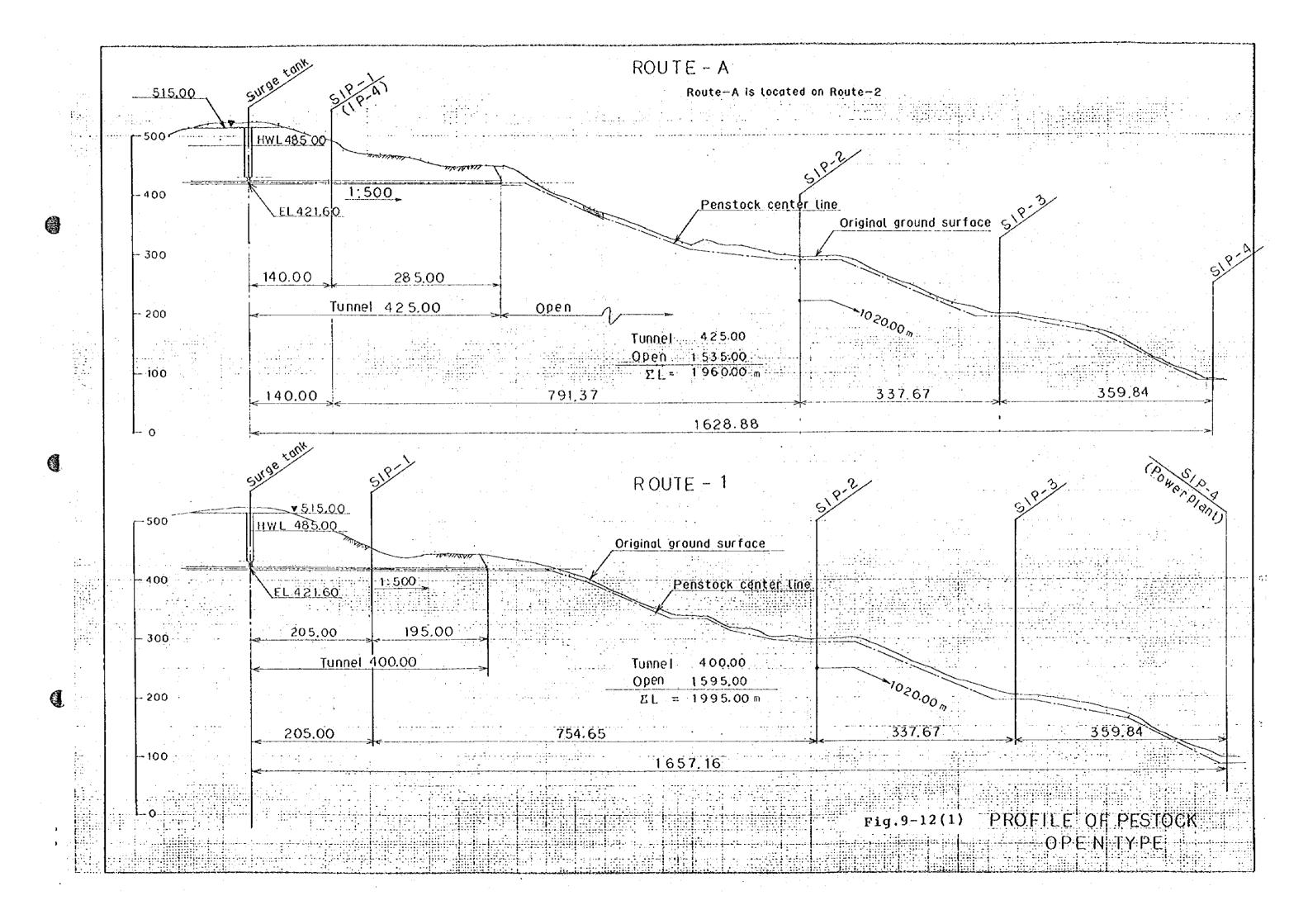
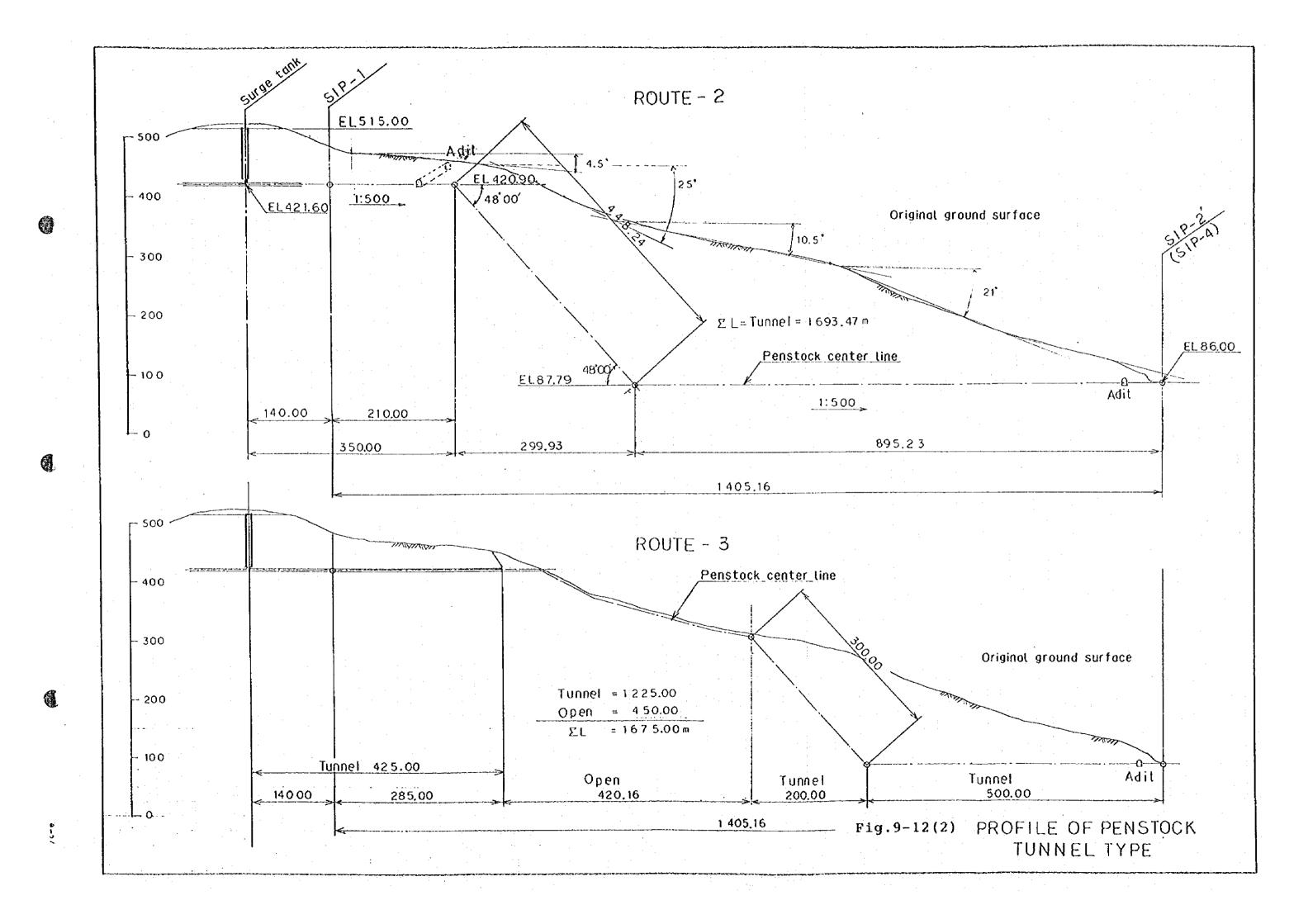
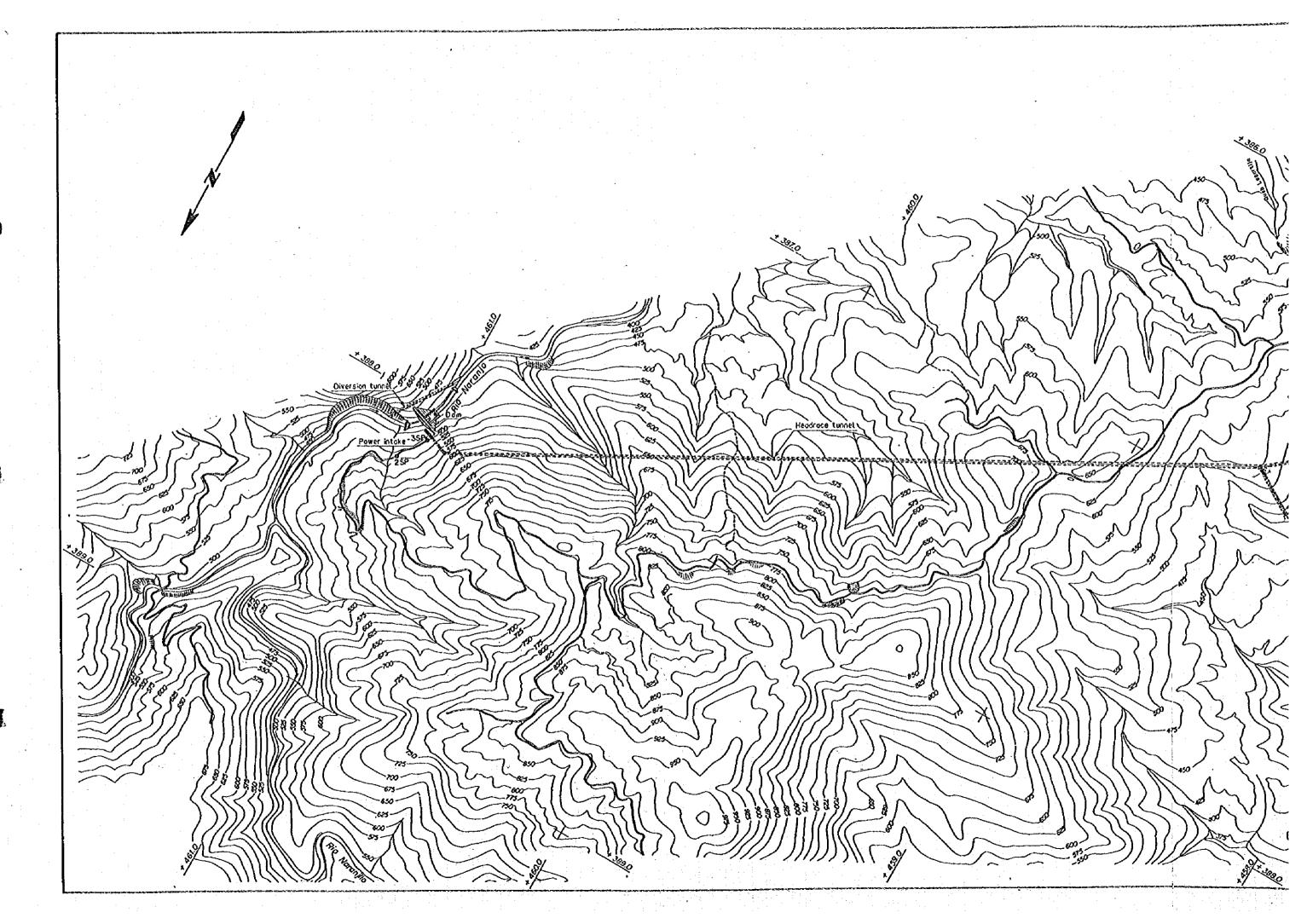


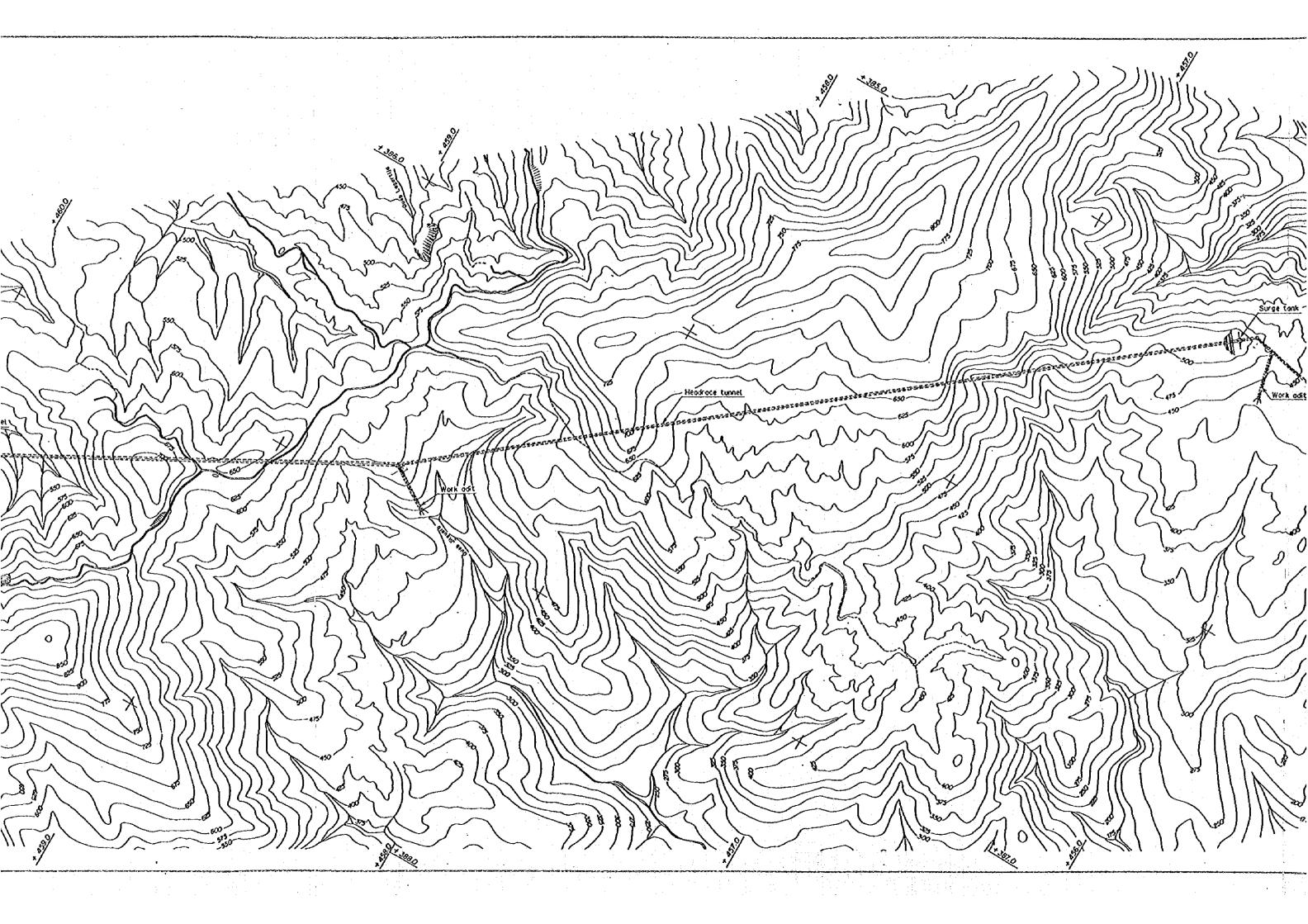
Fig.9-9 Cross Section Area~Dam Height Curve

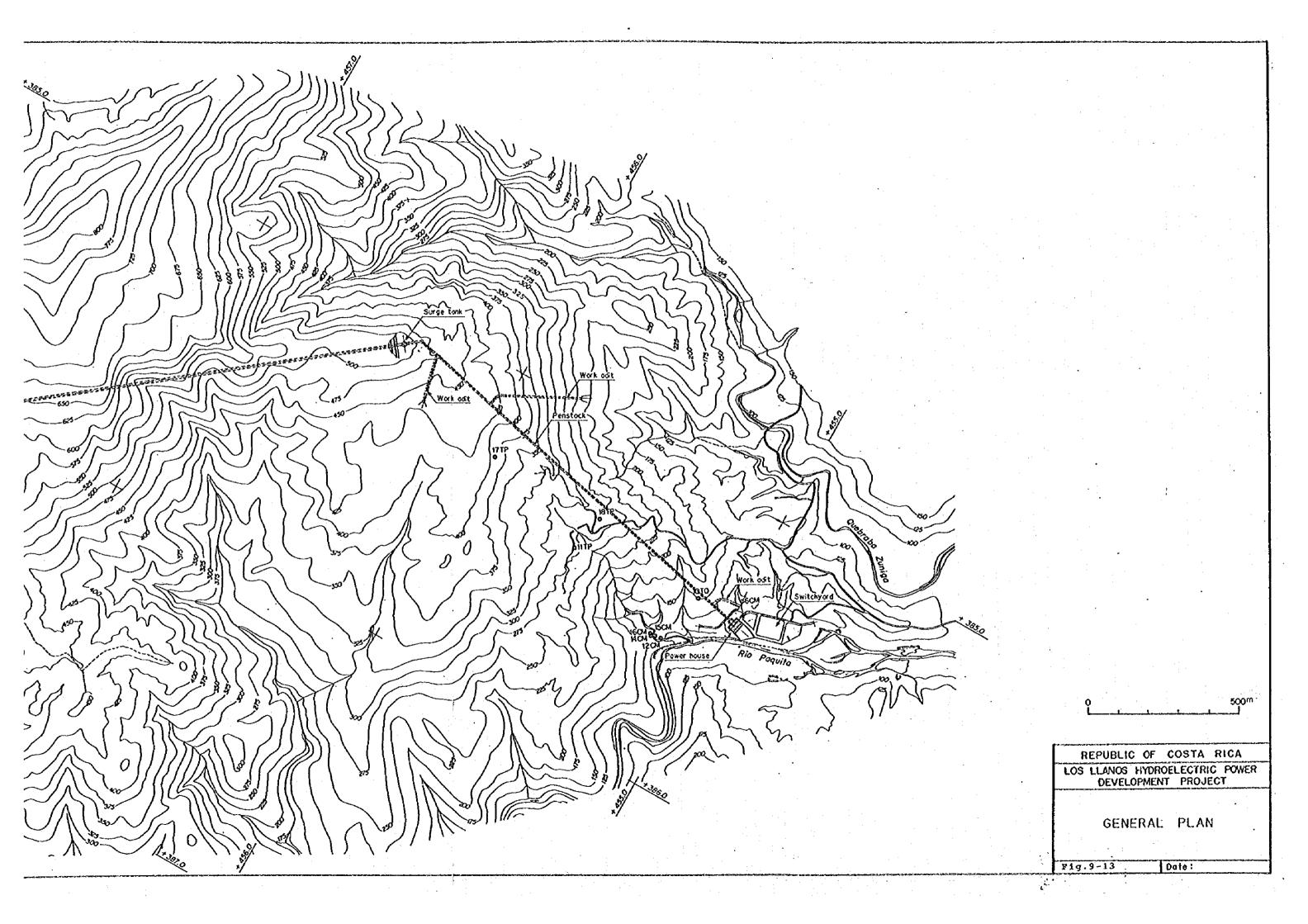
1

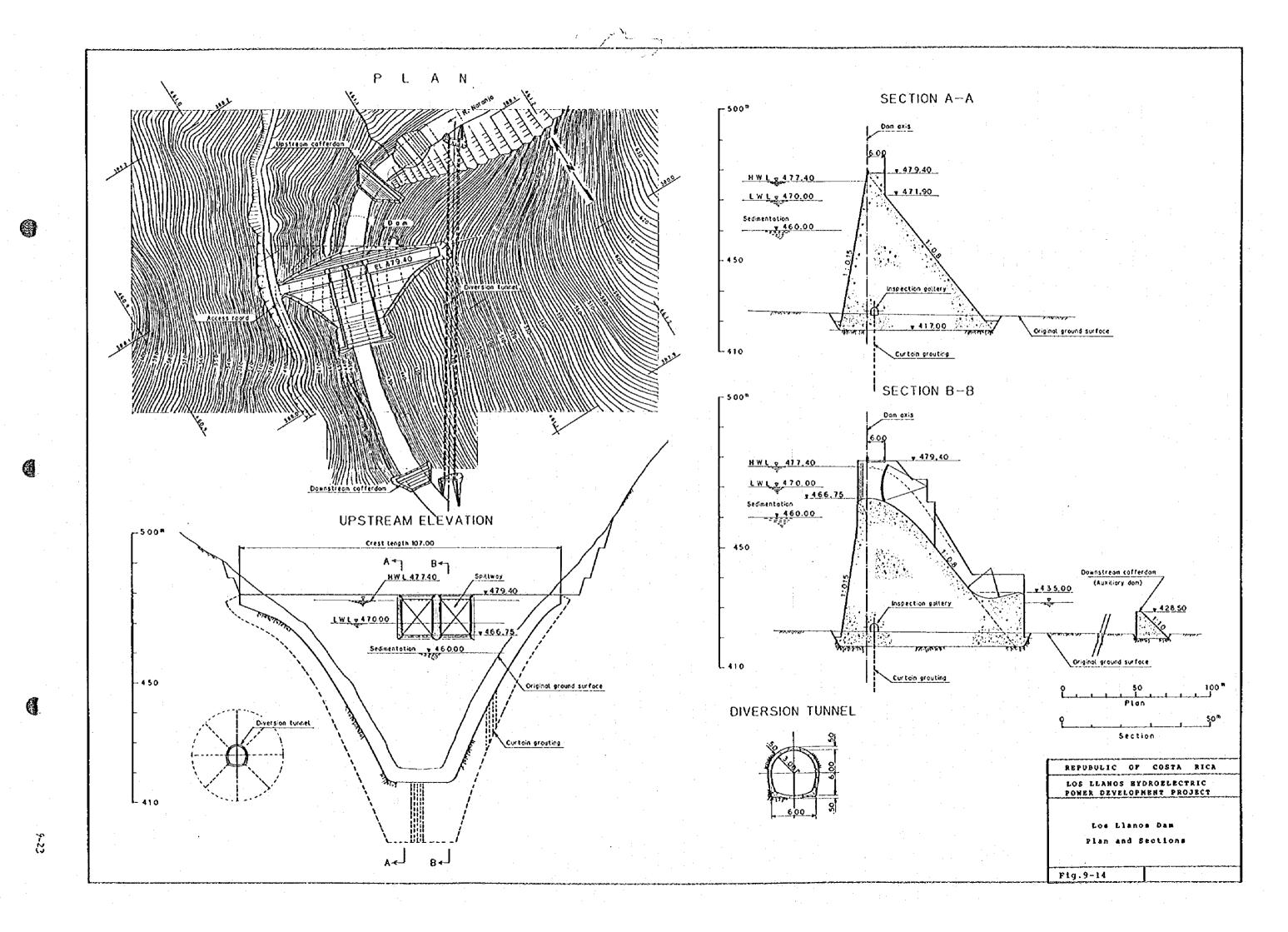
9


Fig. 9-10 Headrace Tunnel Layout






.

1

9-27

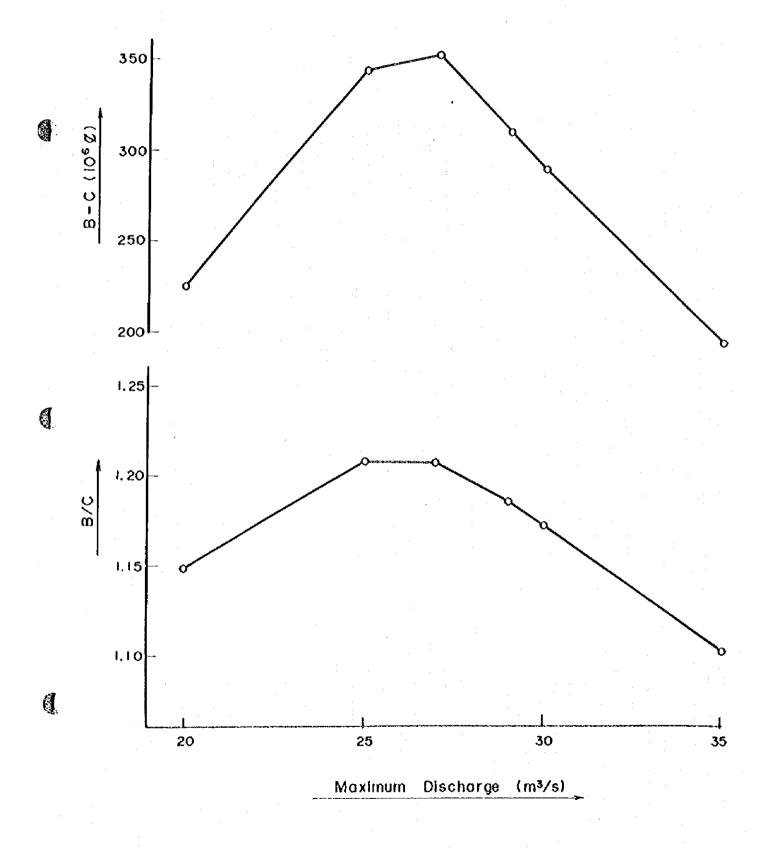


Fig. 9-15 Study on Maximum Discharge

Table 9-1 Project Outline of Naranjo River Basin

				,	
Item	Reyes	Milagro	Los Llanos	Los Llanos-A	Nara
Catchment Area (Am²)	0.89	27.0	143.7	143.7	28.0
Annual Inflow (m³/sec)	80.9	2.94	18.05	18.05	4.08
High Water Level (EL. m)	880	1,310	485	485	615
Low Water Level (EL. m)	840	1,310	475	475	615.
Effective Storage Capacity (10 ⁶ m ³)	23.8	0	1.5	2.5	. 0
Tail Water Level (EL. m)	009	690	84	300	135
Gross Head (m)	280	620	401	185	480
Effective Head (m)	255	577	365	167	432
Maximum Discharge (m³/sec)	10.8	6.3	31.0	31.0	6.2
Installed Capacity (MW)	23.3	30.8	8.36	43.7	22.7
Main Facilities					
Dam Type	Rockfill	Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity
Height x Length	113 m ж 250 m	10 m x 70 m	53 m x 105 m	53 m x 105 m	10 m × 100 m
Headrace (D x L)	2.4 m x 3,600 m	2.4 m x 4,000 m	3.2 m x 5,900 m	3.2 m x 2,400	2.4 m x 2,800 m
Surge Tank (D x H)	9.1 m x 55 m	Head Tank	8.0 m x 92 m	8.0 m × 80 m	Head Tank
Penstock Type	Open	Open	Open	Open	Open
υ×υ	1.5 m x 600 m	1.2 m x 1,100 m	2.75 m x 1,465 m	2.75 m x 1,160 m	1.2 m x 1,550 m
Powerhouse Type	Open	Open	Open	Open	Open
Type of Turbine	Pelton	Pelton	Pelton	Pelton	Pelton

Table 9-2 Estimation of Electric Energy Generation

Item	Unit	Los Reyes	Milagro	Nara	Los Llanos	Los Llanos-A
Average Inflow	m³/s-d	6.08	2.94	4.08	18.05	18.05
Maximum Discharge	m³/s	10.80	6,30	6.20	31.00	31.00
Effective Storage Capacity	10 ⁶ m³	23.80	0	0	1.50	1.50
Available Discharge	m³/s-d	6.06	2.85	3.63	16.73	16.73
Over Flow	$m^3/s-d$ $10^6 m^3$	0.02 0.6	0.09 2.8	0.45 14.2	1.32 41.6	1.32 41.6
Firm Discharge	m³/s-d	3.48	0.62	0.64	3.29	3.29
Firm Power Discharge	m³/s	10.80	0.62	0.64	13.16	13.16
Maximum Output	MW	23.3	30.8	22.7	95.8	43.7
Firm Power	MW	22.1	2.9	2.3	39.5	18.1
Annual Energy (Monthly base)	GWh	108.9	120.9	115.3	448.7	205.3
Available Energy	GWh	108.9	114.9	109.5	426.3	195.0

Note: The value of firm discharge at Los Reyes is to be regulated by reservoir operation.

Table 9-3 (1) Energy Production of Los Reyes Scheme

											•			
7 3 7	Installed Capacity: Maximum Discharge : Effective Head	Capacity: ischarge : Head :	23.3 M 10.80 m 249.00 m	MW m_3/s m	Power Effic Effective S	Power Efficiency : Effective Storage Capacity	aci ty	0.84 23.8 *	10°6 m°3					
i	Year	Hay		Jul.	Aug.	Sept.	%t:	Nov.	Dec.	Jan.	Feb	Mar.	Unit : GWh Apr.	Average
	1070		•		6			13 0	77					88.0
	200	> i	ا د خ د	⊃ ધ ં ') (;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	- 6					0
	1971		ر. د د		16.5			7.5	7.7					ついかべ
	1972		ლ დე		∞ σi			13.6	က					108.6
	1079		,		<u>.</u>			15.3	0					125. 4
	0.0) (20				10					110
	1974	က ဘ			. 71			٥ ا ا	4.					9 4
	1975	10.4	11.5	12.3	16.3			16.5	က်					127.9
	1976		99 80		7.3			တ တ	4.5					78.2
	1977	i ind	· 60	6.0	. C.			14.3	6.2					99. 7
	1078	4		19.3				1 C	(C)					116.9
	0.00		10					9 6	, t					120 4
	1919	0 4		4 0 4 5 7 7) o				- c					1001
	200			7.0	_			C -C-T	7 :					
	1981			11.8				13.2	ა გ					121.5
	1982			လ လ				7. 1	თ ი					81.8
	1983			6.2	က တ			16.5	တ တ					98.9
	1984			16.2				14.8	4,9					115.5
	1985	(C)	10.3	10.8	9	16,5	<u>9</u>	8.4	10.3	4.0	7	4.4	4.4	118.2
	1986			10.3				101	4					89, 5
	1007							-	د د					80%
	000			· ·) (⊣ บ ก๋ c	> c					
	1888			7.7				က (က (Ø .					7 6
	1989							10.2	5. 7.					100.0
	1990		12.3					13.5	7.9					116.8
	1991	7.5	11.8	11.0		12.3		10.2	6.4					93. 7
	1993		7.8		13.6			က တ	≯ ∞					98. 1
									÷					
	Total	193. 1	251.6	239. 3	284.5	320.0	348.6	276. 5	139. 0	94. 2	82.0	80.3	86.5	2395. 7
7	Average	80	11.4	10.9	12.9	14.5	15.8	12.6	ဗ	A.	3.7	လ မ	හ හ	108.9
	17.5	0	2	4	6									
	Max Max		16.5			16.5	16.5 16.5	. 91 . 5	ာ က ကို ဝို	? ∞ > 4.	- 2 - 2	. 2.	7:5	149.8

Table 9-3 (2) Energy Production of Milagro Scheme

:		Average	102.8	169.8	106.1	151.4	129.7	140.0	87.5	111.4	129.3		123.9	135. 9	91.5	110.7	129.	129.4	100					104 204 200 200 200 200 200 200 200 200 2		2660.0	120.9	87.5	
	Unit : GWhr	Apr.	5.5	∞ 4	ന	ග්	2.7	2.0	2.4	ις Γ	4. 	80 ·	n 2	4.0	5.9	က က		S (2.7	5 5 7		n d	or r	~ c	4	69.6	87 87	∞ r	
:	: :	Mar.	4.3	က (၀)	2.1	(2)	က လ		6 H	2. 1	დ ლ	2.1	9 6	ဝ က	25	က ကဲ	က ကို	oo :	 	9 ÷		., 4.	7.	; 	o .:	46.4	2.1	1.3	
		Feb.	7	ಣೆ	2.4	(0) (n)	· ~	63 i 63	2.1	2.2	2.6	3.0	O :	ი ბ	2.7	က	or 1	7.	ი -:	6.7	1.7	~ 6	က်	ဘ င လံ င))	56.2	2.6	1.7	_
		Jan.	7.6	6.7	භා තේ	9 9 9 9	* 60 60	4 5	8	3.2	တ က	တ လ	4.4	4. 0	53	4	9 6	4. W	2	ට : ෆ් :	၀ (က် ·	4.	တ် လ	44 C	ب بن	91.9	7.5	ස - ප් ර	-
10 ^{-6 m} 3		Dec																						c		157.6	7.2	က် (၁)	
0.84		Nov.							10.7														15.		7.01	314.6	14.3	8 6	
: Capacity		Oct.																								432.7	19.7	13.6	1
ency		Sept.																						- c		387.0	17.6	12.4	
Power Effici Effective St		yng.		300				3 € 1 €	ç ~			15.1			9 ဇိ ဇ်					16.8				12.4	15.2	328. 6	14.9	တ်	22.3
XX B 3/S E		Jul.	c	200	ς t~	- 7 - 2	* ×	1 6		9	13.8	12.4					18.1			13.7			14.2	12.3	* ဘ	269. 4	12.2	89	20. 1
æ. င္တ		Jun.) ((jo	ەر دە) () ()	30	တ ကြ	တ	13.6	13.6					15.6		12.1	10.4			_	13.2	∞ ∞	289. 1	E.	∞ ∞	
pacity: harge :	Head :	Kay	•	200				11.6	ດນ ເ ເນີ	5.7	_			18.4			12.1	7.0	ဝ တ	တ လ	တ ဖ	7.6	10.9	oo ;	10.1	216.9	ත ත්	4.2	19.4
	Effective He	Year	000	107.0	1070	1072	1077	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1993	Total	Average	uch.	Kax.

Table 9-3 (3) Energy Production of Los Llanos Scheme (1)

	Average	373	2,5	408	535. (473	497	340.	421.	477.	485	473	513	356.	411	487	478	88	00 00 00 00	439	426	489	407.	406	9871.	448.	340.
	Unit : GWh Apr.																							10.2	270.8	12.3	
	Har.			o co								_													180.4	8 8	4, ñ
	Feb.			* C																					218.7	6.6	ស ក ស ស
	Jan.			က ကြ																					357.4	16.2	% % 7 %
10°6 m³3	Dec.			9 9 9 9																					612.8	27.9	13.7
0.84 1.5 *	Nov.			20 G																					1195.7	54.3	31.0 60.3
ici ty	Oct.			66																					1480.6	67.3	52.8 8.08
fficiency : ve Storage Capacity	Sept.			50.7																					1367.7	62.2	48.1
Power Effic Effective S	Aug.			42.8																					1228. 8	55.9	31.5
-3/s	Jul.			8																					1037.6	47.2	26.3 26.3
95.8 K 31.00 B				35.2																					1085.9	49.4	34, 1
apacity: charge : ead :	g A			42.8																					835. 4	38.0	16.2
Installed Capacity Maximum Discharge Effective Head	Year	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1993	Total	Average	Min. Max.
P-4 24 (12)						:	•																				

Table 9-3 (4) Energy Production of Los Llanos Scheme (A)

 	. H	8,88	°3/s	\$ \$ \$	iciency : Storage Capacity	acity	1.5	* 10~6 m³3				Unit : GWh	. :
May Jun. Jul. Aug.	Jul.		Aug.		Sept.	Oct.	Nov.	Dec	Jan.	Feb.	Mar.	Apr.	Average
0 0.0 0.0 28.	0.0 28.	28.						15.3	_	_			
7 31.7 31.7 31.	31.7 31.	7 31.						13.0					
6 16.1 15.6 19.	15.6 19.	6 19.						13.9					
5 31.7 29.1 31.	29. 1 31.	1 31.						18 8					
5 31.7 22.0 25.	22. 0 25.	0 25.						9.7					
7 22.9 24.4 31.	24.4 31.	31.						14.5	_				
9 17.1 13.2 14.	1 13.2 14.	2 14.						9.0					
17.2 12.0 26.	2 12.0 26.	26.						12.4					
24. 2 24. 5 29.	24.5							12.9					
7 24.2 22.2 26.	2 22.2 26.	2 2 2 3 5 7						23. 23.					
23. 0 23. 5 23.	23.5	5.53						€ 4 6					
31.7 23.4 31.	23.4	&						10. 7		_			
5 16.9 17.1	9 17.1 17.	1 17.						တ် မှ		_			
16.1 12.3 16.	12.3							17. 1		_			
6 21.0 02.1 20. F 90.6 91.E 91	01.7	- u						0 4 0 6		_			
1 01 0 01 01.0	20.50	. c.						30	_				
7 10 5 6 6 6 71.	06 6 76 U	- 00 - 00 - 00						ာ်င					
12. 3 23. 7 24. 7 31. 7	7 24.7 31.	7			37.7	1 67	0	බ ල ශ් ජ	, n	# C	, c	ე ი იი	107
5 16.5 16.7 25.	5 16.7 25.	7 25.						18					
4 24.4 25.3 25.	4 25.3 25.	3 25.						15.7	_	_			
9 23.4 22.0 22.	4 22.0 22.	0 22.						12.7					
0 15.6 16.7 27.	6 16.7 27.	7 27.						တ်	_	_			
382. 2 496. 8 474. 7 562. 2	8 474.7 562.	7 562.			625. 8	677.4	547. 1	280. 4	163.5	100.1	82.6	123.9	4516.7
17.4 22.6 21.6 25.6	6 21.6 25.	6 25.			28.4	30.8	24.9	12.7	7.4	4.5	တ က	5.6	205.3
7.4 15.6 12.0 14.4	6 12.0 14.	0 14.			22.0	24.1	14.2	9 9 8 8	4.0	130	153	89 C	155.6
10 1:10	10 01.10 01.	.10					_	2.79		_			

Table 9-3 (5) Energy Production of Nara Scheme

Installed Capacity:	apacity:	<u>≨</u> €	3/8	Power Effic Effective S	ciency :	: pacitv	0.84	* 10 6 m 3					
Effective Head	ead	8 8) Š		200	ר י		1					
Year	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Unit : GWn Apr.	Average
1970	0.0		0.0	16.4	_		15.0						
1971	16.4	16.4	16.4	16.4			16.4				_		140.3
1972	11.5		9	11.5	_		15.9						
1973	7.3	16.4	16.4	16.4			14.3						
1974	11.4			14.8			15. 1						120.2
1975	12. 1	13.4		16.4			16.4						124. 4
1976	₩	10.0		4.						-			89. 1
1977	တ (က် (15.7									108.9
1978	% % %			16.4			_						122. 6
5/67	7.77	24.2	13.0	15.7	16.4	16.4	15.5	7.7		မျှ တ <u>ိ</u>		မ က်	125. 6
1881	o o				_								122.5
1981	16.4												129.7
1982	14.3			10.0	_		_						95.2
1983	4.			9 6	_								105.4
1984	12.6						_						123.3
1985	7.3			_	_		- 2						121. 1
1986	ტ თ			10.3	_								100.5
1987	7 6						_				-		103.0
1988	7.2				_						_		109.3
1989	7.9			15.0	-		11.9				_		111.8
1990	11.4	_			-		15.7						
1991	∞	<u>က</u>	12.8	12.9	_		11.9				_		
1993	10.5	- 1 თ		15.8	_		11.1						
•								•					
Total	219.3	282. 0	272. 7	314.9	340.3	358. 0	310.5	164.0	95.6	58.5	48.3	72.5	2536. 5
Average	10.0	12.8	12.4	14.3	15.5	16.3	14.1	7.5	4.3	2.7	2.5	හ හ	115.3
Min.	.3	5	7.0	8 4	-	77	ς: α	6					00
Kax	16.4	16.4	16.4	16.4	16.4	16.4	16.4 4.6	12.0	ာတ ပြော	- 2-	4.5		140.3

Table 9-4 Study on Project Site

Item	Reyes	Milagro	Los Llanos	Los Llanos-A	Nara
Effective Storage Capacity (10^6 m^3)	23.8	0	5°T	1.5	0
Installed Capacity (MW)	23.3	30.8	95.8	43.7	22.7
Firm Power (MW)	22.1	2.9	3.9.5	18.1	2.3
Annual Available Energy (GWh)	108.9	114.9	426.3	195.0	109.5
Investment Cost (10 ⁶ ¢)	15,613	4,971	14,139	9,866	4,472
Annual Cost (C) (10°¢)	2,030	646	1,838	1,283	581
Annual Benefit (B1) (10 ⁶ ¢)	621	368	1,839	841	374
" (B2) (10 ⁶ ¢)					
Benefit Cost Ratio (B1/C)	0.306	0.616	100.1	0.655	0.644
" (B2/C)					
Unit Cost of Energy (¢/kWh)	18.64	5.62	4.31	6.58	5.31

Table 9-5 Project Outline of Los Llanos Scheme

•				
	Item	Los Llanos	Los Llanos (A)	Los Llanos (B)
	Catchment Area (Jcm²)	143.7	143.7	143.7+31.0
	Annual Inflow (m³/sec)	18.05	18.05	
-	High Water Level (EL. m)	485	485	485
	Low Water Level (EL. m)	475	475	475
	Effective Storage Capacity (10° m³)	1.5	1.5	1.5
	Tail Water Level (EL. m)	84	300	200
	Gross Head (m)	401	185	285
	Iffective Head (m)	365	167	242
	Maximum Discharge (m²/sec)	31.0	31.0	40.0
	Installed Capacity (MW)	95.8	43.7	82.0
		-		
	Main Facilities			
	Dam Type	Concrete Gravity	Concrete Gravity	Concrete Gravity
	Height x Length	53 m x 105 m	53 m × 105 m	53 m × 105 m
	Headrace (D \times L)	3.2 m × 5,900 m	3.2 m × 2,400 m	3.2 m x 5,300 m 3.6 m x 2,400 m
	Surge Tank (D x H)	8.0 m x 92 m	8.0 m × 80 m	8.0 m x 92 m
	Penstock Type	Open	Open	Open
* .	D×T	2.75 m x 1,465 m	2.75 m x 1,160 m	3.0 m × 2,100 m
	Powerhouse Type	Open	Open	Open
	Type of Turbine	Pelton	Pelton	Pelton

Table 9-6 Basic Development Plan of Los Llanos Project

Item	Los Llanos (1)	Los Llanos (A)	Los Llanos (B)
Effective Storage Capacity (10^6 m^3)	1.5	1.5	1.5
Installed Capacity (MW)	95.8	43.7	82.0
Firm Power (MW)	66.1	30.3	39.1
Annual Available Energy (GWh)	382.8	175.1	308.6
Firm Energy (GWh)	120.7	55.2	83.0
Secondary Energy (GWh)	262.1	6.611	225.6
Investment Cost (10°¢)	14,139	9,866	17,143
Annual Cost (C) (10°¢)	1,838	1,283	2,229
Annual Benefit (B) (106c)	1,949	892	1,373
Benefit Cost Ratio (B/C)	1,060	969.0	0.616
Unit Cost of Energy (¢/kWh)	4.80	7.33	7.23

I

Table 9-7 Project Outline of Los Llanos Projects

Item	Los Llanos (1)	Los Llanos (2)	Los Llanos (3)	Los Llanos (4).
Catchment Area (km²)	143.7	143.7	143.7	143,7
Annual Inflow (m³/sec)	18.05	18.05	18.05	18.05
High Water Level (EL. m)	485	570	540	525
Low Water Level (EL. m)	475	\$0\$	475	475
Effective Storage Capacity (10 ⁶ m ³)	1.5	22.5	5.6	5.0
rail Water Level (EL. m)	84	84	84	84
Gross Head (m)	401	486	456	441
Effective Head (m)	365	447	417	403
Maximum Discharge (m ³ /sec)	31.0	31.0	31.0	31.0
Installed Capacity (MW)	8*56	117.3	109.5	105.9
Main Facilities				
Dam Type	Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity
Height x Length	53 m x 105 m	138 m x 275 m	108 m x 215 m	93 m x 190 m
Headrace (D x L)	3.2 m x 5,900 m			
Surge tank (D x H)	8.0 m x 92 m	8.0 m x 150 m	8.0 m x 150 m	8.0 m x 131 m
Penstock Type	Open	Open	Open	Open
U X T	2.75 m x 1,465 m			
Powerhouse Type	Open	Open	Open	Open
Type of Turbine	Pelton	Pelton	Pelton	Pelton

Table 9-8 (1) Energy Production of Los Llanos Scheme (1)

	Average	0 005) i	つがぎ	461.7	406, 1	49.2	6	0	354.4	407.9	409.9	395, 0	493.9	310	9 6	550. c	403. 7	405. 9	330 4	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	387.0	369. 4	413.4	\$		20%			8, 803, 8	382.8		294-3	500.9							
- - - -	Apr.	44.4	- 6		13.2	11.4	00	9 6	200	2	16.1	13.5	18.7	15.4	× :-	9 - 9	13.		10.4		1.0	- c	5 2	გქ დ	13.6	ď	, , ,	11.0	သင့် လု		283.6	12.3		00 e	18. 7							:
	Mar.	20) (о 5	11.0	10.2	· ·	9 0	o e	ക്	10.1	9.6	11.3	9	, - -	10	13.2	7.1	65 65	. 2	* 0	0 ¢	ò	10.5	9.7		o c	7 .	တ်		218.8	9, 5		က ဏ်						:		
	Feb	- 61	4 t	ი ი	တ္	7	i o	* 6 • 0	- ·	ာ တံ	10.2	11.9	11.4	11.9	9	5 u	74.5	 ∞:	ය ජ		30	ჟ. ბ:	7.1	10.7	11.4		10	n n	ဟ တ		234. 1	10.2		7.1	14.5						⊕ ⊕	
	Jan	* *6	5		32.2	13.7	- « • «	9	0 24	13.4	15.4	19.1	17.5	0		2 6	5 2	11.2	17.6	G	96.	0.71	12.8	18.4	24. 2	77.0	7 - 6-	13.1	13.6		375.9	16.3		10.1	32.2						5 hr	
* 10 6 m 3 m 3/s-d	رن کو	0 00	3 6	9.12	۲. م	20.7	200	3 5	્ર જે (25.2	26.0 26.0	26.6	28.4	3	3 7	7	97. P	20.8	8	0	ř	0.17	8. %	S	30.6	y y) ()	7.97	21.6		590.8	25.7		14.5			•				(Peak Time	
0.84 3.54 91.8	%ov.	, .	3 ¢	2.04	41.9	× 57	3	; è	\$	48.0 9.0	45.6	44.3	9	45 V	, _C	3.0	74. V	 ∞,	2.7	7.0		7 .00	3. 4.	36.6	45.4	36.5	, ,	25.0	30.5		982. 1	42.7		27.3	56.0		2	: :	Æ	Ė		
oity	%t.	. 0	ا در خ	X	68.7	57.5		30	× i	% % -	52.3	60.1	7	23	2 5		n	61.6	3	7,7		2	63.2	49.8	62.2	40,	7	57:3	49.7		1, 327, 1	57.7		43.4	.4 .4		a	0 10	262.1 Gm		66. 1. XV	
ency : orage Capacity ge	Sept.	99	9	10.	65.0	3	, t	-	42.5	49.5	S7.4	ςς 82 82	45.7	6 07	2000	- t	48. 7	53.0	0 25	20.00	36		63. O	58.7	47.5		90	20.0	57.6		1, 177. 2	51.2		88	. 96. 5		ė.		13		" ፚ:	
Power Efficiency Effective Storage Firm Discharge	Aug	1 33	30	9	S.	7 87	r t-	- c	Š	46.4	လ လ လ	46.7	42.3	Š	1 6 3 6	n t	31 /	46.0	φ() (*)	4 66	35	51.5	60.4	45.8	45.4	0.	- 6		42.5		1. 037. 0	45.1		28.6	. 96. 1	. 1	5 .		hergy		htput	
3/8	Jul.	0 70	3	30.4	49. 7	40.9	4 o	į	- i	7.7	74.1	40.5	20.6	200) c	0 0 0 0 0	7.5	9.4°9	30	200	3 c	4.00 5.00	44.3	32.3	44.6	. C	, , ,	45.	₹ 88		916.5	39.8		2.7	χ, ο	Deskare	ergy rroduction	The French	Secondary Energy		Fire Power Output	
95.8 MW 31.00 m ⁷ 365.00 m	Jun	010	9 9	30.7	53.0	3		3	2	31.5	42.]	6.12	30	, u	36	01.0	30.	47.2	37.0		r <	55. 25.	40.0	30.8	2.5	2) t	×	41.4	1	931.3	40.5	•	30.1	 	-6	Annual cher	-4 f I	. <i>v</i> s		۾.	:
pacity: harge : ad :	Жау	6 4	n in	o,	χ; 0	8	36		20.5	20.8	27.8	40.1	000	o o	,	4.	16.4	37.6	ķ	3		90.0	8.5	27.0	36.3	2	i, i	ر بر	37.8	:	729. 4	31.7		15.5		4	₹ .					
Installed Capacity Maximum Discharge Effective Read	Year	1001	1161	1972	1973	1074	20.0	760	9/61	1977	1978	1979	1980	1001	6001	2021	1983	7861	585	2001	2000	1000	1988	1989	1990	1001	1661	2861	1993		Total	Average		Kin	Kax							

Table 9-8 (2) Energy Production of Los Llanos Scheme (2)

Installed Capacity Maximum Discharge Effective Head	pacity: harge : ad :	117.3 31.00 447.00	NY 19-3/s	Power Efficiency : Effective Storage Capacity Firm Discharge	iency : torage Cap rge	açi ty	0.84 22.5 * 5.91 #	10 6 m 3 3/s-d			•		
Year	Kay	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Kar.	Unit : GWh Apr.	Average
1971	60.3	71.2	66.5	80.9	25.	79.5	61.3	32. 1	29.9	15.0	12.6		613.4
1972	44.5	37.0	37.2	44.8	49.9	66.9	56.6	33.8	17.6	11.6	11.8	16.3	428.0
1973	30.6	67.9	50.8	65. 4	79.6	27. 1	51.3	42.5	39.4	17.1	13.5		565, 4
1974	44.5	67.0	49.2	53.2	67.2	82. 7	53.7	25.3	16.7	11.5	12.5		497. 4
1975	45.7		53.7	65.7	70.6	81.2	66.5	35.2	20.5	11.5	00 on		519.8
1976	× 5	8 88 8	32.7	35.0	52.	62.3	42.4	23.7	14.7	10.7	10.8		350.4
1977		9 e	30.2	26.8	60.7	37.9	58. 7	30.9	16.4	11.1	11.6		434.0
1978	¥;	57.	54.0	62.2	70.3	76.3	25.8 25.8	31.8	18.9	12.5	12.4		499.5
1979	.⊣ . 		49.6	57.2	4.89	73. 7	54.2	32.6	23.	14.5	11.5		502.0
085		27.5	49.7	87.8	56.0	66.9	တ လူ	7.	21.4	9 9 9	13.8		483.7
1000 1000 1000 1000 1000 1000 1000 100	- i	7 6	52.0	တ (လုံ ရ	49.3	54.9	52.9	27.5	8		15.4		518.3
7887	7.00		40.2	60.3 50.3	47.4	57.8		27.0	12.3	10.6	13.6		379.7
2001	20.0	9 C	× 6	× 6	26.	72. 9	67.2	9 9 9 9	22.6	17.8	16.2	0 9 1	438.8
7001	- 0 - 0	0 C	2.70	e e e e	× 4	4.6	26.0	۲۰ ۲۰ ۲۰	7 27	က (တ <i>်</i> ;	~ ç		494.4
1990	o -	4. 4. 5.	7.04	25.0	ت. جن م	3 c	57.7		ς; 33	- · ·	2.01		497. 1
0001			9 4		न ०	- c	2	~ 6 67	24.		၁ i		404. 7
7001	- u	2 4	0 0 0 0 0	မှ ရ လူ လူ	47.9	23.2	40.7	22. 22. 3.	 	10.2	က (တိ (409.7
000	0 - 00 - 00 - 00) t	7 9 6	ກ - ທີ່ 4	- 6	e e	7.75	24.5	7	~ . ∞ <u>.</u>	- 0		470.2
1990	- u 3 ₹		0.53	ດ ດີ ນ	n c 0	07.0	44.0	2. 2. 3. 1. 3. 1.	C 22		2.5		452.4
100	000	4 6	, ·		7.00	7 6	000	0.00	6.62	γ. ••••••••••••••••••••••••••••••••••••	o ·		200
1661	9 6		オークリック		4.75	200	7 L	21.2	7 .	¢	70.4		
7661		1 0	, co	2 c	က လိုင် ရ	2.0.5	ر د ارو	32.0	16.0	n (11.3	7.5	438. 7
0000	, ,		3 · ; d	27.0	4.07	00 00 00 00	36.4	7.97	16.7	×	11.0	10.4	441.1
To+91	2 600	1 1/0 5	3 999 5	. 000		6			4			i	6
1	3	>	1. 166. 4	, ,		7 .670 17	. 502.	160.0	*00*	7.007	P . 107	541.5	10. (01. /
Average	38. 8. 8.	49. 6	48.8	55.2	62.7	70.7	52.3	31.5	20.0	12.5	11.6	15.1	468.8
Kin.	19.0	36.9	30.		47.4								360.4
Kax.	57. 1	71.2	67.2	80.9	81.4	84.1	68.5	46.5	39.7	17.8	16.2	22.9	613.4
		Annual Ene		COC		,				·		٠.	
			Firm Energy	3	# # 보설:	190.6	5 E		:			:	
			Secondary Energy	Spergy	4 . 83	^	£		:				
			Firm Power Output	Output	FF.	104.4) MA	(Peak Time	S	िस्			

Table 9-8 (3) Energy Production of Los Llanos Scheme (3)

	Average	572: 2	399.3	527.4		484.9		404.9	466.0	468.3	451.3	483.5	354.2	409. 4	461.2	465.0	377.5	227.2	4.38.	422.0	2,50	7.00	410.2	411.5	10.058.1	437.3	336. 2 572. 2		
. + ;-C		20.2	15.2	15.1	13.0	10.1	11 8	20.3	18.4	15.4	21 4	17.6	2 2 3 4	15.0	တ (လ် :	5 11.	12.5	ຫຼາ ຫ້າ	ت بار د	20 c	15.0	2 9	13.2	ာ ာ	324.0	14.1	21.4		
Ę	War.	31.8	11.0	12.6	11.7	9.2	10.1	10.8	11.5	10. 7	12.9	14.4	12.5	15. J	ı ∞ö «	ທີ່ (∞. 4. e	တ (ထံ၊	7.7	: : :	~ ()	~ ເ ວ່າ ເ	10.5 5.5		250.0	10.9	7.2		
	Feb.	14.9	10.8	15.9	10.7	10.7	10.0	10.3	11.6	13.5	13 0	12.8	တာ တော်	16.6	တ တ်	10.9 9	8) 6)		ထင်မှ	12. 2	23.0	.13.	9 0	11.0	267. 4	11.6	8.1 16.8		H)
	Jan.	27.9	16.4	35.8	15.6	19.1	13.7	15.3	17.6	21.8	20.0	21.8	11.5	21. 1	12.8	20.1	33.5	14.6	14.6	21.0	27. 6	16.2	14.0	15. 6	429.4	18.7	11. S 36. 8		λ. Tr
* 10 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Dec.	900	31.6	39.6	23.6	32.8	22. 1	8.82	29. 7	30.4	32.4	22. 7	16.6	37.2	23.8 23.8	43.4	22. 1	27.0	22.6	40.0	35.0	29. 1	29.9	24.8	675.0	29.3	16.6		(Peak Time
0.84 9.54 5.48	Nov.	57.9	000	47.9	50.1	62.0	39.5	%.	52. 1	50.6	63.9	49.3	31.2	62. 7	55.6	က က် ထ	6 45 7	တ တ	39.3	41.8	51.8	41.7	48.0	o. X	1, 122. 0	48.8	31. 2 63. 9	444	
city	Oct.	. 72	62.4	2007	77.1	75.7	285 7	67. 1	71.2	68.7	62.4	60.6	53.9	68. O	70.4	73.7	86.0	49.6	72.3	58.9	71.1	56.2	65.5	56.0	1, 516, 1	65.9	78.4	437.3 0 164.8 0 272.5 0	90.3 N
ency : orage Capacity ge	Sept.	0 37) (c	74.2	62.7	. 83 83 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	48.6	56.6	65.6	63.8	52.2	46.0	44.2	55.7	60.6	65.2	44.9	44.7	71.9	67. 1	54.3	4.0 6.6	63.9	65.8 8	1,344.9	58.5	44.2	្ត ម្នា ម្នា	F.
Power Efficiency Effective Storage Firm Discharge	Aug.	ž z) (c)	0.12	49.6	51.3	32.6	53.0	58.0	53.4	48.4	59.6	37.6	36.2	52.6	59.2	38.4	59.3	69-0	52.3	51.8	45.4	40.3	48.5	1, 184, 7	51.5	32.6 75.5	stion rgy gy Energy	Output
** 3/s	jul.	0 63	36	- 00 - 00 - 00	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.05	900	200.5	50.	46.3	46.4	48.5	37.5	28.8	62.7	45.0	43.7	50.0	50.6	36.9	51.0	46.1	51.4	43. 83.	1, 047, 1	45.5	28.2	Productal Ener	Firm Power Output
109.5 M 31.00 m 417.00 m	Jun.	7 33	* V		. 63 . 63 . 63	45.4		မ မ မ		47.9		64.6	36.1		53.9		43.9			35.2		46.9	44.2	47.3	1,064.0	46.3	34. 4 66. 4	Annual Energy Tot Fir Sec	;
spacity: sharge sad	Kay		9 C	200	3 - 3 3 - 3 3 - 3	42.5	23.2	23.8	31.7	65.0	33.7	62.6	49.6	18.7	43.0	88.88 88.88	31.8	34.9	28.4	30.9	41.5	33.5		43.2	833.3	36. 2	17.7		-
Installed Capacity: Maximum Discharge : Effective Head	Year		1/61	2767	1072	5261	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	Total	Average	Kin. Kax.		
				:																									

Table 9-8 (4) Energy Production of Los Llanos Scheme (4)

	Installed Capacity: Maximum Discharge :	apacity: charge :	105.9 ×	3/8	Power Efficiency Effective Storage		: Capacı ty	0, n	10°6 m³3				:	
	cilective ac	······································	100.00		rith viscou	Compt	00-1	a 2	2 / C	Lal		ikar. U	Vait : CWh Apr.	Average
	1	Ì		;		5	;						· •	, ,
	1971	54.4	2 25	80.0	72.9	73.4	71.7	55.3	2% 9 9	26.9	14.4	11.4	9	553.0
	1972	40.1	33.4	33.5	40.4	45.0	60.4	51.0	30.5	15.8	10.5	10.6	14.7	385. 9
	1973	27.6	58.5	ა. გ.	59.0	71.7	75.8	46.3	38.3	35.5	15.4	12.2	14.6	509. 7
	1974	40.1	60.4	44.3	47.9	60.5	74.5	48.4	22.8	15.1	10.3	11.3	12.5	448.4
	1975	41.2	43.9	48.4	59.2	63.6	73.2	60.0	31. 7	18.5	10.4	ф 80	9.7	468.6
	1976	22.4	35.1	29.5	31.5	47.0	56.1	38.2	21.4	13.3	9.6	9.7	11.1	324.9
	1977	23.0	34.8	27.2	51.2	54.7	64.8	52.9	27.8	14.8	10.0	10.4	19.8	391.3
:	1978	30.7	46.5	48.7	56: 1	63.4	88.8	50.3	28. 7	17.0	11.2	11.1	17.8	450.3
	1979	44.3	46.3	44.7	51.6	61.6	66.4	48.9	29.4	21.1	13.1	10.4	14.9	452. 6
	1980		43.1	8,4,8	46.7	50.5	60.4	61.8	31.3	19.3	12.5	12.5	20. 7	436.1
•	1981	60.5	62.4	46.9	57.6	44.4	58.5	47.7	24.8	21.0	12.4	13.9	17.0	467.3
	1982	47.9	34.9	36.2	36.3	42.8	52.1	30.2	16.0	11.1	9.5	12.2	13.1	342.3
	1983	00	67 67	27.8	35.0	80	65.7	60.6	36.0	20.3	16.0	14.6	14.5	395. 6
	1987	41.6	52. 1	60,6	80.8	မာ တို	68.0	53.7	23.0	12.4	დ დ	7.8	φ φ	445.7
	1985	27.8	00 T		57.2	63.0	1.3	52.0	6.5	19.4	10.6	6	11.5	448.2
	1986	30.7	42.4	42.2	37. 1	73.7	86	41.5	21.4	200	о 00	~; ~;	12.2	364.9
•	1987	200	37.4	200	57.3	43.2	6.27	36. 7	23.2	14.1	2 6	8	9.6	369. 4
	1988	27.5	44.2	6	85.6	6 9	65	20	6	14.2	2.9	o o	8.7	424.0
	1989	29.9	2	35.7	502	2	i.	40.4	200	20.3	11.8	11.5	15.3	407.8
	1990	707	47.0	7 67	205	7 7 7	68 7	50	60 60 60 60 60 60 60 60 60 60 60 60 60 6	26.7	2	10.7	5.0	456.5
	1991	33.7	7 S	2 77	0.67	0 27	3	40.3	28	16.7	12.7	or or	0	383.8
	1992	17.1		49.7	Ø	× 40	8	7 47	28.9	14.4	10.2	10.2	12.8	396. 4
	1993	41.7	5.7	42.4	46.9	63. 6 63. 6	9	33.	83.8	15.0	10.6	න න	7 6	397.7
		:			-		-							
٠	Total	805.4	1, 028.3	1, 012. 0	1, 144, 9	1, 299.7	1.465.2	1, 084, 3	652.3	415.0	258.5	241.6	313.2	9, 720, 4
	Average	35.0	44.7	44.0	49.8	56.5	63.7	47.1	28. 4	18.0	11.2	10.5	13.6	422. 6
	,			· ·	ä									
	Min. Max	60.5	. 25 25 25 25 25 25 25 25 25 25 25 25 25 2	57.2	72.9	73.4	75.8	51.8 1.8	9 6	35.5	16.0	14.6	20.0	553.0
				į			:							
		•	ייים יאטטייים	rgy riconcilon Total Energy	50 \$4 10 10 10 10 10 10 10 10 10 10 10 10 10	보	-	Sign.					•	
				Firm Energy Secondary Energy	S Energy	: E & H H	~ O	e e			-		:	-
					4	ž			£					
				Firm Fower Output	. Output	* *	ς α.τ.ο		Leak Line	'n	111			

Table 9-9 investment.Cost (Millions of Colones)

Xtem	Los Llanos (1)	Los Llanos (2)	Los Llanos (3)	Los Llanos (4)	Los Llanos (A)	Los Llanos (B)
1. Reservoir	16.7	136.4	66.5	55.0	16.7	16.7
2. Access	130.5	138.5	138.5	138.5	138.5	120.7
3. Temporary Installations (Main Civil Works \times 0.06)	304.6	1,090.7	663.7	544.1	219.3	379.9
4. Main Civil Works						
Diversion Works	172.8	172.8	172.8	172.8	172.8	172.8
Dam	1,665.5	13,640	6,650	5,501.2	1,665.5	1,665.5
Power Intake	298.3	846	846	323.0	296.3	298.3 + 276.4
Meadrace Tunnel	1,826.1	2,215	2,153	1,831.3	751.2	2,619.5
Surge Tenk	129.6	395	195	195.0	112.7	120.4
Penstock	245.6	245.6	245.6	245.6	194.5	434.4
Powerhouse and Switchyard	738.0	863.6	9.662	799.6	460.2	738.8
Sub-total	5,075.9	18,178	11,062	9,068.5	3,655.2	6,331.1
5. Mydraulic Equipment						
Spillway gate	149.4	149.4	149.4	149.4	149.4	149.4
Outlet works	34.2	34.2	34.2	34.2	34.2	34.2
Intake gate	34.9	34.9	34.9	34.9	34.9	34.9 + 14.3
Draft gate	6.5	6.5	6.5	6.5	6.5	6.5
Penstock	1,663.2	2,031.8	1,915.2	1,665.6	658.4	2,308.2
Bridge at Spillway	24.3	24.3	24.3	24.3	24.3	24.3
Sub-total	1,912.5	2,281.1	2,164.5	1,914.9	7.706	2,571.8
6. Electromechanical Equipment	2,440.0	2,600	2,550	2,550	1,960	2,550.0
7. Transmission Works			4	1	4	
a. Total Direction Cost (DC)	9,888.2	24,424.7	16,645.2	14,271.0	6,897.4	11,970.2
b. Engineering and ADM (0.14 x a)	1,384.3	3,419.5	2,330.3	1,997.5	9.65.6	1,675.8
c. Contingencies						
C1v11 Works (0.25 × MC)	1,269.0	4,544.5	2,765.5	2,267.1	913.8	1,582.8
Electromechanical Eq. (0.15 x EM + HE)	623.9	732.2	707.2	669.7	430.2	768.3
Engineering (0.15 x b)	207.6	390.1	349.8	299.7	145.0	251.9
Sub-total	2,129.5	5,666.8	3,822.5	3,236.5	1,489.0	2,603.0
A. Total (a + b + c)	13,402	33,511	22,798	19,505	9,352	16,249
B. Institute Expense (0.055 x A)	737	1,843	1,254	1,073	514	894
C. Grand Total	14,139	35,354	24,052	20,578	9,866	17,143
17-18-18						

Table 9-10 Basic Development Plan of Los Llanos Project

Item	Los Llanos (1)	Los Llanos (2)	Los Llanos (3)	Los Llanos (4)
Effective Storage Capacity (10° m³)	1.5	22.5	9.5	5.0
Installed Capacity (NW)	95.8	117.3	109.5	105.9
Firm Power (MW)	66.1	104.4	€*06	81.5
Annual Available Energy (GWh)	382.8	468.8	437.3	422.6
Firm Energy (GWh)	120.7	190.6	164.8	148.7
Secondary Energy (GWh)	262.1	278.2	272.5	273.9
Investment Cost (106¢)	14,139	35,354	24,052	20,578
Annual Cost (C) (10 ⁶ ¢)	1,838	4,596	3,127	2,675
Annual Benefit (3) (10°¢)	1,949	2,744	2,452	2,281
Benefit Cost Ratio (B/C)	1,060	0.597	0.784	0.853
Unit Cost of Energy (¢/kWh)	4.80	08*6	7.15	6.33

Table 9-11 Monthly Average Inflow at the Intake Channel Site (without Project)

Catchment Area

230 km²2

	Average	49.13	26.00	41.04	33.13	35.03	21.42	27.29	32.01	33.0	30.36	33.30	22. 42	27.13	31.63	32.44	24.54	24.5]	32.50	27.62	31.98	25.69	27.37	26.91	1	696.44	30 28		21.42	49.13
S	Apr. A	13.97	10.19	9.64	8.05	5.91	6.90	16.76	12.70	0.10	15.17	11.64	8.4]	9.63	5. [4	7.25	7.83	5.80	5. [3	10.32	10.07	6.29	9.38	7.69		214.05	9.31	:	5.14	16.76
Unit: m 3/s	Mar.	6.81	6.25	7.39	6.76	5.02	5.66	6.16	6.65	6.07	7.62	8.7]	7.47	9.25	4.28	5.24	4.52	4.84	(3.70)	6.93	6. 29	5.34	6.38	5.43		142.74	6.21		3.70	9. 25
n.	rep.	9.88	6.97	11.24	6. 85	6.59	6.29	6.57	7.59	8. 78 —	8.68 89	8. 28 3.	6.22	11.30	5.47		5.70	5.70	4.90		8. 70					172.04	7.48		4.90	11.30
: "	Jan.	19.73	10.23	27.78	9. 52	12. 45	8. 22	9.38	11.15	14.71	13.08	4.5	6.6	13.91	7.55	13.15	8 09	∞ .∞	8.9	13.87	9.40	10.07	9.09	8.97		279.30	12.14		6.61	27.78
	Dec.	21.52	22. 93	30.23	16.08	23.95	14.83	20. 52	21.25	21.88	23.61	17.74	10.35	28.24	16.26	34.04	14.83	16,39	15.19	30.83	25.99	20.92	21.56	15.69	 _ <u></u> - - -	484.84	21 08		10.35	34.04
-	Nov.	49.52	44.84	40.31	42.68	60.76	31.44	46.89	44.25	43.68	58. ! !	43.37	23.46	59.38	48.66	48.72	34.65	30.00	31.40	33.55	44.38	33.68	33.81	31.32		964.87	41.95		23.46	60. 76
	Oct.	74.61	55.20	91.98	81.70	69.15	51.62	61.08	69.36	69.65	52.83	50.88	44.70	59.80	61.56	74.21	56.89	39.88	73.65	47.14	66.03	46.88	56.53	54.74	ķ	1410.05	613		39.88	91.98
	Sept.	102.48	38.36	79.14	57.84	70.54	41.84	50.90	58.90	63.93	44.65	37.86	36.7	47.74	53.12	57.96	36.63	36.39	84.48	61.19	46.2	40.40	28.35	65.47	- 100	69.1721	55.29		36.39	102.48
	Aug.	85.50	32.34	72.48	41.90	53.75	23.85	44.45	48.54	44.39	38.67	51.19	28.31	27.14	42.64	51.39	29.05	49.47	62.18	42.49	42.35	36.57	30.79	44.71		1024.10	44.53		23.85	85.50
	יוםר	59.22	25.71	48.17	36.39	40.32	21.87	19.86	40.51	36.61	38.87	38.75	28.33	20.37	23. <u>18</u>	35.54	34.01	40.20	40.79	27.66	41.87	36.28	41.54	27.57	200	833.62	36.24		19.86	58. 27
	nnr.	89.36	26.58	53.45	57.43	37.84	28.27	28.36	40.06	40.05	38.02	62. 29	28.00	26.57	45.96	34.03	35.73	30.64	39.24	27.23	40.36	38.71	36.31	25.78	V. V. V.	910.27	39.58		25.78	89.36
٠	May	56.93	32.36	20.64	32.21	34.12	16.29	16.61	23.14	36.25	25.00	54.11	40.5	12.22	35.68	20.64	26.59	25.91	20.37	22.23	32.08	24. 67	11.41	29.74		649.72	28 25		11.41	56. 93
	Year	1871	1972	1973	1874	1875	1976	1977	1978	1979	1980	1881	1982	1983	1984	1985	1986	1887	388	1989	1990	1991	1992	1993		Tota!	AVPTARP		Min.	Kax.

Table 9-12 Monthly Average Inflow at the Intake Channel Site (with Project)

Catchment Area

230 km⁷2

										,	Unit : m 3/8	/S	
rear	May	Jun.	. 18	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Average
1971	30.87	58.36	32.31	54.50	71.48	43.61	26.26	9.73	8.74	3.62	2.19	5.63	28.95
1972	15.91	12.57	12.08	15.90	19.47	29.79	23.39	10.51	3.80	2.26	1.94	3.77	12.62
1973	9.24	28.70	25.42	41.48	48.14	60.98	20.64	14.67	13.26	4.29	2.45	3.51	22.73
1974	15.83		18.29	21.60	31.44	50.70	22.08	6.78	3.50	2.21	2.17	2.76	17.38
1975	16.95	19.16	20.65	28.88	39.54	38.62	33.28	80:	4.90	2.09	1. 42	1.79	18.20
1976	68.9	13.54		11.03	21.56	27.56	15.37	6.12	2.83	1.96	1.69	2.23	10.06
1977	7.06	13.59		23.15	27.11	33.48	24.64	9.17	3.38	2.08	1.90	1.14	13.46
1978	10.63	20.49		25.65	32.11	38. 75	23.03	9.57	4.25	2.55	2.12	5.03	6.24
1979	18.21	20.48	18.42	23	35.28	38.92	22.68	9.83	90.9	3.10	.87	3.73	16.82
0861	11.67	19.27		19,65	23.27	28.31	31.61	10.89	5.22	3.05	2.56	6.30	15.13
1861	29.11	34.25	19.70	27.29	19.17	27.10	22.49	7.56		3.00	3.07	4.49	16.94
1982	20.76	13.38	13.57	13.56	18.48	23.30	10.80	3.85	2.10	. 93	2.49	2.93	10.60
1983	4.78	12.56	9.09	12.89	25.16	32.67	32.41	13.52	5.64	4.32	3.32	3.50	13.32
1984	17.87	24.07	28.53	22.05	28.49	33.79	25.73	6.87	2.53	1.61	1.12		16.18
5861	9.24	16.89	17.79	27.42	31.52	43.21	25.77	16.90	5.25	2.30	1.51	2.39	16.68
1986	12.57	17.90	16.88	13.97	18.44	30.84	17.26	6.12	2.77	1.70	1.21	2.66	11.86
1987	12.19	14.91	20.57	26.23	18. 29	20.38	14.54	6.94	3.13	1.70	1.34	1.75	11.83
1988		19.39	20.93	34.18	53.48	42.65	15.35	6.31	3.16	.3	0.88	1.49	17.41
1989		12.94	13.19	21.96	33, 55	24.79	16.61	15.02	5.63	2.75	2.24	3.84	13.55
1990	15.75	20.67	21.58	21.87	24.22	36.63	23.11	12.23	8.56	3.06	. 98	3.72	16.11
1881	11.49	19.68	18.23	18.40	20.69	24.63	16.69	9.39	3.72	2.94	1.55	36	12.45
1992	4.38	18.24	21.38	12.00	32.12	30.62		9.74	3.25	2.14	2.00	38.38	13.55
1993	14.39	12.11	13, 14	23.31	36. 26	29.50	15.30	6.57	3.19	1.76	1.58	2.59	13.31
*		1 30 767		7 67 3	66 000	69 777		V . V . G		- 1	03.77	, V. O.	95.50
10.02	514. 33	474.33	461.06	543.00	103.32	/30.03	432.38	SC .8.19	10.00	S) '/C	44. 38	/8.10	333.37
Average	13.70	20.65	8.3	23.6	30.84	34, 38	21.71	9.55	78.7	2.51	1.94	3.40	5, 45
Min.	4.38	12.11	8.81	11.03	18.29	20.38	10.80	3.85	2.10	1.37	0.89	1.47	10.06
yax.	30.87	58.36		54.50	71.48	60.98	33.28	16.90	13.26	4.32		7.14	28.95

J)

Table 9-13 (1) Outline of Los Llanos Project (1)

Item		CASE I-1	CASE I-2	CASE I-3	CASE 1-4
High Water Level (F	(EL. m)	475.5	476.8	478.0	479.2
Low Water Level (E	(EL. m)	470.0	470.0	470.0	470.0
Effective Storage Capacity (1) (1	(10 ³ m ³)	484	605	726	847
Effective Storage Capacity (2) (1	(0 ³ m ³)	0		0	0
	(EL. m)	84.0	84.0	84.0	84.0
Gross Head (n	(E)	388.8	389.4	390.0	390.6
ead	(m)	353.8	354.4	354.9	355.4
Maximum Discharge (n	(m ³ /s)	20	25	30	35
Installed Capacity (A	(MM)	9	75	06	105
Firm Power Output	(MM)	9	75	78.7	78.8
Annual Available Energy (C	(GWh)	338	365	379	386
Firm Energy (C	(GWb)	102	102	102	103
Secondary Energy (C	(GWh)	236	263	277	283
Main Facilities					
Dam Type		Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity
Height x Length		60.5×107	61.8 x 108	63.0 x 109	64.2 x 110
Headrace (D x L)	•	2.8 x 5,600	$3.0 \times 5,600$	3.2 x 5,600	3.4 x 5,600
Surge Tank (D x H)		8.0×55	8.0 x 55	8.0 x 55	8.0 x 55
Penstock Type		Tunnel	Tunnel	Tunnel	Tunnel
DxL		$2.3 \times 1,650$	$2.5 \times 1,650$	2.7 x 1,650	2.9 × 1,650
Powerhouse Type	:	Open	Open	Open	Open
Type of Turbine	-	Pelton	Pelton	Pelton	Pelton

Table 9-13 (2) Outline of Los Llanos Project (II)

Item		CASE II-1	CASE II-2	CASE II-3	CASE II-4
High Water Level (E)	(EL. m)	523.0	523.4	523.8	524.2
Low Water Level (E)	(EL. m)	506.0	506.0	506.0	206.0
	(10 ³ m ³)	484	605	726	847
Effective Storage Capacity (2) (10	o³ m³)	5,000	2,000	2,000	2,000
cevel	(EL. m)	84.0	84.0	84.0	84.0
Gross Head (m)	₹	430.5	430.7	430.9	431.1
	ন	391.8	391.9	392.1	392.3
Maximum Discharge (m	(m ³ /s)	20	25	30	35
Installed Capacity (M	(MM)	99	83	100	116
	(WW)	99	83	93.7	93.7
le Energy	(GWh)	399	426	435	436
Firm Energy (G	(GWh)	120	120	120	120
Secondary Energy (G	(GWh)	279	306	315	316
Main Facilities					
Dam Type		Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity
Height x Length		108.0 x 194	108.4 x 195	108.8 x 195	109.2×196
Headrace (D x L)		2.8 x 5,520	$3.0 \times 5,520$	3.2 x 5,520	$3.4 \times 5,520$
Surge Tank (D x H)		8.0 x 77	8.0 x 77	8.0 × 77	8.0×77
Penstock Type	:	Tunnel	Tunnel	Tunnel	Tunnel
DxL		$2.3 \times 1,720$	$2.5 \times 1,720$	2.7 x 1,720	$2.9 \times 1,720$
Powerhouse Type		Open	Open	Open	Open
Type of Turbine	:	Pelton	Pelton	Pelton	Pelton

Table 9-14 Development Plan of Los Llanos Project

		!						
Item		CASE I (Regulation Type)	ulation Type)		CASE II (Reservoir Type)	servoir Type)	
	CASE I-1	CASE I-2	CASE I-3	CASE 1-4	CASE II-1	CASE II-2	CASE II-3	CASE II-4
Effective Storage Capacity (103 m3)	484	605	726	847	484 + 5000	000'5 + 509	726 + 5,000	847 + 5,000
Installed Capacity (MW)	09	75	8	105	99	83	100	116
Firm Power (MW)	09	75	78.7	78.8	99	83	93.7	93.7
	~~~~							
Annual Available Energy (GWh)	338.1	365.5	379.4	385.9	399	426	435	436
Firm Energy (GWh)	102.1	102.3	102.4	102.6	120	120	120	120
Secondary Energy (GWh)	236.0	263.2	277.0	283.3	279	306	315	316
Investment Cost (10 ⁶ ¢)	11,623 (16,124)	12,687 (17,188)	13,734 (18,235)	14,590 (19,091)	18,838	19,439	20,641	21,443
Annual Cost (C) (10 ⁶ ¢)	1,604 (2,096)	1,742 (2,234)	1,878 (2,371)	1,990 (2,482)	2,449	2,527	2,683	2,788
Annual Benefit (B) (106¢)	1,735	1,992	2,073	2,090	1,987	2,267	2,424	2,426
Benefit Cost Ratio (B / C)	1.082 (0.828)	1.144 (0.892)	1.104 (0.874)	1.050 (0.842)	0.811	0.897	0.903	0.870
(B-C) (10 ⁶ ¢)	131 (∆361)	250 (△242)	195 (∆298)	100 (△392)	∆462	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∆259	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Unit Cost of Energy (¢/kWh)	4.74	4.77	4.95	5.16	6.14	5.93	6.17	6:39
						ŕ	3. / /	2 70 4 0

Remark: ( ) means CASE I'

Table 9-15 Study on Turbine Type

Item		Pelton Turbine	Francis Turbine
Maximum Discharge	Q (m ³ /s)	27	27
Effective Head	H (m)	356.9	359.4
Installed Capacity P=9.8 QHntng	(kW)	9.8 x 27 x 356.9 x 0.884 x 0.971 = 81,000	9.8 x 27 x 359.4 x 0.922 x 0.971 = 85,000
Firm Power	(kW)	78.8	82.7
Annual Available Energy	(GWh)	371.1	389.4
Firm Energy	(GWh)	102.3	107.3
Secondary Energy	(GWh)	268.8	282.1
Investment Cost	(10 ⁶ ¢)	12,122	11,652
Main Civil Works	(10 ⁶ ¢)	4,360	4,498 (Surge Tank)
	*		138
Electromechanical Eq	(10 ⁶ ¢)	2,186	1,697
Others	(10 ⁶ ¢)	5,576	5,457
Annual Cost	(10 ⁶ ¢)	1,669	1,608
Annual Benefit	(10 ⁶ ¢)	2,053	2,155
Benefit Cost Ration	(B/C)	1.23	1.34
(B-C)	(10 ⁶ ¢)	384	547
Unit Cost Energy	(¢/kWh)	4.50	4.13

Table 9-16 Standard Alternative Thermal Power Plant

Item	Unit	Des	scription
Туре	-	Gas Turbine	Diesel (Slow Speed Internal Combustion Engine)
Installed Capacity	MW	42 MW	40 MW
Annual Plant Factor	%	30	80
Thermal Efficiency	%	27.23	34.32
Annual Energy Production	GWh	110	280
Construction Cost (Interest during Construction included)	\$	25,729,200	74,136,000
Service Life	year	15	25
Construction Period	year	2	2
Capital Recovery Factor	. <b>-</b>	0.14682	0.12750
Diesel Calorific Value	kcal/kg	10,248	<b>-</b>
Bunker Calorific Value	kcal/kg	•	10,207
Fuel Consumption Rate	kg/kWh	0.308	0.246
860 kcal / kWh Thermal EfficiencyxColorific Value			
O & M Cost	%	3.58	2.02
Unit Fuel Cost	\$/1 (1994 CIF)	0.1478 (Diesel)	0.0743 (Bunkeroil)

Туре		Gas T	urbine		esel ed Internal on Engine)
Annual Cost	Unit	Fixed Cost	Variable Cost	Fixed Cost	Variable Cost
Capital Recovery	10 ⁶ \$	3,778		9,452	•
O & M Cost	10 ⁶ \$	0.829 (90%)	0.092 (10%)	1.348 (90%)	0.150 (10%)
Fuel Cost	10 ⁶ \$	-	6.019 1)	• : ,	5.212 ²⁾
Total	10 ⁶ \$	4.607	6.111	10.773	5.362
Annual Cost at Receiving end	į		- '		
kW Cost	\$/kW	3) kW value 236.14 \$/kW		kW	
kWh Cost	\$/kWh		ergy value ary energy value	0.0313 \$/ 0.0204 \$/	

- 1)  $110 \times 10^6 \times 0.308/0.832 \times 0.1478 = 6.019 \times 10^6$ \$
- 2)  $280 \times 10^6 \times 0.246/0.982 \times 0.0743 = 5.212 \times 10^6$ \$

Adjustment Factor for kW & kWh

<u>Item</u>	<u>kW (%)</u>	<u>kWh (%)</u>	
Loss of Station Service	6	6	
Loss of Stoppage	4	•	
Loss of Repair	12	•	
Loss of Transmission	<b>0</b>	0	1 1
kW Adjustment Factor =	$\frac{1}{(1-0.06)x(1-0.04)x(1}$	(-0.12)x(1-0.0)	= 1.259
kWh Adjustment Factor =	$\frac{1}{(1-0.06) \times (1-0.0)} =$	1.064	
3) $\frac{(4.607 + 10.773) \times 10^6}{(42 + 40) \times 1,000}$	x 1.259 = 236.14 \$/kW		
(61114.5362) v 10 ⁶		•	

4) 
$$\frac{(6.111 + 3.502) \times 10^6}{(110 + 280) \times 10^6} \times 1.064 = 0.0313 \text{ S}$$

5) 
$$\frac{5.362 \times 10^6}{280 \times 10^6} \times 1.064 = 0.0204 \text{ S/kW}$$

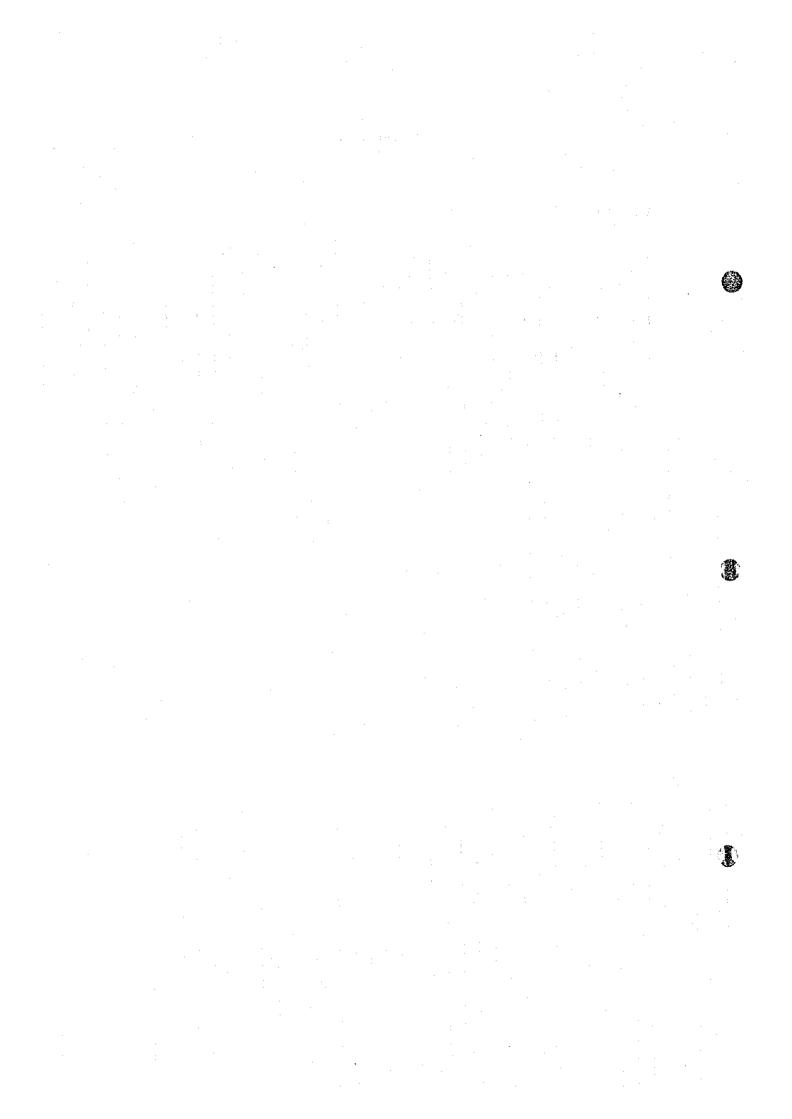
Firm energy value synthesized costs of both the gas turbine generator and the diesel engine generator. The secondary energy value was estimated from the diesel engine generator cost considering reducing the operation during high stream flow season, because in this season, the energy will be produced by the hydroelectric power stations instead of the diesel engine generator plants.

Table 9-17 Result of Optimum Development Plan

EL. 477.4 m
EL. 470.0 m
653 x 10 ³ m ³
359.4 m
85 MW
82.7 MW
389 Gwh
107 Gwh
282 Gwh
151,763 x 10 ³ US\$
19,729 x 10 ³ US\$
28,631 x 10 ³ US\$
8,902
0.05 US\$/kwh

## Chapter 10 Power Transmission Plan

Chapter 10 Power Transmission Plan


## CHAPTER 10 POWER TRANSMISSION PLAN

## Contents

10.1	Outline of	of Power Transmission System	10-1
10.2	Power T	ransmission Line Route	10-1
•	10.2.1	Project Conditions	10-1
	10.2.2	Site Survey	10-2
è	10.2.3	Selection of Transmission Line Route	10-3
	10.2.4	Power Transmission Voltage	10-6
	10.2.5	Number of Circuits	10-6
	10.2.6	Study of Transmission Line Cable Type and Number of Insulators	10-6
	10.2.7	Study of Transmission Line Steel Towers	10-7
	10.2.8	Study of Transmission Line Construction Cost	10-7
10.3	Study ar	nd Analysis of ICE System	10-7
	10.3.1	Power Flow Calculation	10-7
	10.3.2	Short Circuit Capacity	10-8
	10.3.3	Stability	10-8
	1034	Conclusion	10-9

## List of Figures

Fig. 10-1	Power Transmission System in Costa Rica
Fig. 10-2	Transmission Developing Plan Adjacent Los Llanos P.H.
Fig. 10-3	Alternatives of Transmission Line Route
Fig. 10-4	Standard Suspension Tower
Fig. 10-5	Power Flow in 2005
Fig. 10-6	Stability Study



# CHAPTER 10 POWER TRANSMISSION PLAN AND POWER SYSTEM ANALYSIS

## 10.1 Outline of Power Transmission System

The power transmission system of Costa Rica is a 230 kV system interconnected to that of Nicaragua and Panama. The system exchanges power on a mutual basis with certain neighboring countries.

The domestic power transmission system consists of 230 kV and 138 kV transmission lines. As of January 1995, the total lengths were 880 km and 704 km respectively.

The transmission system in the central mountain area surrounding the city of San Jose, which is the largest load area in Costa Rica, is a 138 kV ring system providing high system reliability.

However, there is a plan to form a large 500 kV power transmission system (SIEPAC) interconnecting five central American countries and Panama. This system is projected to come on line somewhere between the years 2000 and 2003.

The projected SIEPAC route would pass along the Costa Rican Pacific coast and connect to a substation to be installed in the San Rafael area at Parrita town near the Los Llanos Hydropower Station. It will then be linked to the metropolitan ring system via the Pirris Power Station (to start operation in 2003).

Fig. 10-1 shows the 230 kV and 138 kV power transmission system (scheduled for 2015) in Costa Rica.

#### 10.2 Power Transmission Line Route

## 10.2.1 Project Conditions

(1) The ICE plans to transmit the power generated at the Los Llanos Power Station to the metropolitan area of San Jose, the targest load center in Costa Rica, via the Pirris Hydropower Station (128 MW, scheduled for commissioning around 2003).

- (2) The 500 kV Central American Interconnected Power Transmission Line (SIEPAC) is scheduled for completion and interconnection with the Pirris Power Station via a 500 kV substation at San Rafael Sur near Parrita town, around 2003 when the Pirris Power Station is to start operation. As the Los Llanos Power Station is scheduled for commissioning in 2004, completion of the SIEPAC project is expected when the Los Llanos Power Station is in actual operation.
- (3) In this way, the power transmission line from Los Llanos Power Station will be connected to the 500 kV Substation at San Rafael (Parrita) because it is nearest to the Los Llanos Power Station Site.

The power transmission from the projected Savegre Power Station (165 MW) is also to be taken into consideration.

Fig. 10-2 shows the power transmission system in the vicinity of the Los Llanos Power Station.

#### 10.2.2 Site Survey

## (1) Power Transmission Line Route

For the transmission line route from Los Llanos Power Station to San Rafael (Parrita) Substation, there are three alternatives: One is an almost straight route crossing the Rio Paquita at the power station and traversing the mountain areas (Alternative Route A). Although the shortest, it traverses a mountain area. The other is a route running to the right of the Rio Paquita to the plains and to San Rafael (Parrita) and running parallel to SIEPAC is also conceivable (Alternative Route B).

Another possible route is one that, after arrival at the plains, would traverse the palm plantations, and run along National Highway 239 to San Rafael (Parrita) (Alternative Route C).

#### (2) Switchyard Site

As the grazing land to the left of the river downstream from the projected power station is sufficiently flat for its construction, a switchyard will be located there.

The transmission line would cross the Rio Paquita to the right bank. However, as the river is only about 100 m wide, connection of the transmission line to this station is easy and there are no topographical problems in locating the switchyard there.

## (3) Interconnection Substation Site (San Rafael Site)

Located midway between Paquita town and Damas town, this site is presently grazing. It is flat, situated approximately 10 km from the Pacific Ocean and located on the SIEPAC route. It is approximately 2 km from the trunk highway to the mountains site. For this reason, an access road will have to be repaired from that highway, but no special problem is conceivable for transporting heavy objects to the site.

Although the details remain to be determined, the substation will step down the voltage from 500 kV to 230 kV and be connected by two circuits to the Pirris Power Station (128 MW, scheduled for operation start in 2003).

## 10.2.3 Selection of Transmission Line Route

The following factors were taken into consideration In the selection of the transmission line route in view of the requirement to maintain hannony with the natural and social environments and because of the technical feasibility involved:

## a) Harmony with the natural environment

- . No damage to the natural view such as natural parks and scenic pots
- . No trespassing into the growing areas of valuable animals and plants
- . Minimization of tree felling in natural and artificial forests

## b) Harmony with the social environment

- . No trespassing into residential and public facilities
- . No trespassing into cultural properties and historic remains
- No trespassing into high-productivity land and hard to recover land
   (No trespassing into palm plantations)
- Coordination with regional development schemes

## c) Harmony with the technology

- High facility safety
- Low construction cost
- Easy construction work
- · Work completion according to schedule
- Easy maintenance
- Short line length

In view of the above factors, considering the natural and social environments along the routes, the following three alternative routes (A, B and C) were studied:

Fig. 10-3 shows the Alternative of Transmission Line Route.

## (1) Alternative Route A

This route connects the Los Llanos Power Station to the San Rafael (Parrita) Substation by a straight line.

This route almost entirely traverses steep mountain areas, and the construction involves many problems including the transport of the construction materials and maintenance after operation start.

This route provides the shortest length (approx. 20 km).

## (2) Alternative Route B

This route crosses the Rio Paquita at the Los Llanos switchyard and runs to the plains along the right bank of the Rio Paquita. After crossing the Rio Paquita, the route immediately climbs the mountain and runs through mountainous areas for approximately 6 km.

After entering the plains, it runs along the foot of the mountains to San Antonio Village via Parrita, in order to avoid traversing the palm plantation which extends into the plain, to subsequently terminate at the San Rafael (Parrita) Substation.

The route traverses the plains between Parrita and San Rafael in a straight line. These plains are farmland with no palm or banana plantations, or other objects requiring a detour. Although there is no material transport road along the transmission line route, there are many

roads allowing motor vehicle travel, so that both material transportation and maintenance after operation start of the line are considered very easy.

This alternative route provides a length for the transmission line of approximately 22 km.

## (3) Alternative Route C

With this alternative, the transmission line comes onto the plains along the same—route as Route B. However, upan reaching the plains, it leads straight to trunk highway R239 which it then runs along close to the San Rafael (Parrita) Substation for eventual connection to the San Rafael (Parrita) Substation. Since this route runs along the existing roads, it is the most advantageous for material transportation and maintenance after operation start.

However, it does traverse the palm plantation area and intersects the 500 kV transmission line. With this, its length is approximately 25 km, the longest of the three alternatives.

## (4) Comparison of the Alternatives

Comparison of the three alternative routes (A, B and C) is shown below.

	Route A	Route B	Route C
Transmission line length	⊚(20 km)	○(22 km)	△(25 km)
Traversing mountain area	Δ	O 1 1 1 1	· ©
Transmission line intersection	0	<b>©</b>	Δ
Traversing palm plantation	<b>©</b>	O	Δ
Material transportation	Δ	0	¹ ⊚
Maintenance convenience	Δ	0	. 🔘
Construction cost (relative to Route B)	Δ 1.5	◎ 1.0	O 1.0
Minimized felling of natural and afforestation trees	Δ	<b>©</b>	Δ
Short distance	<b>©</b>	0	Δ
Overall evaluation	0	<b>©</b>	Δ

## (5) Result of Study

On the basis of the overall study of the three routes, A, B and C, including the technical and economical evaluations, Route B was selected as the route for the projected transmission line.