Table 4-1 Installed Generating Capacity
As of end of 1994
(3)

	Plant Name	Type	No. of Machine	Capacity (MW)		Gencration Engery (MWh)		CommissionYear
				Installed	Dependable Available	Average	Firm	
	La Garita	F	2	30	20	162	162	1958
	Rio Macho	P	5	120	90	501	396	1963
	Cachi	F	3	100	90	596	565	1966
	Arenal	F	3	156	156	601	601	1979
	Corobici	F	3	174	174	672	672	1982
	Ventanas Garita	F	2	100	70	434	361	1987
	Sandillal	K	2	32	32	124	124	1993
	Plantas Menores	-	6	74	37	261	180	.-
	Generacion Privada			12	6	68	20	..
	Sub Total			798	675	3,419	3,081	
	Colima	D	6	19.5	14.0	136.6	136.6	1956
	San Antonio	V-G	4	48.1	40.0	170.1	170.1	1954
	Barranca	Gas	2	41.6	30.0	109.3	109.3	1974
	Moin	D Gas	7	140.3	125.0	508.0	508.0	1977
	Pto. Jimenez	D	4	1.3	1.2	9.1	9.1	..
	Miravalles	Ge.	1	55	52.3	433.6	433.6	1994
	Sub Total			305.5	262.5	1,366.7	1,366.7	
	ESPH	-	5	2.3	1.2	..	7.3	-
	JASEC	-	4	22.7	11.3	--	69.3	\cdots
	CNFL	-	19	37.5	18.7	--	114.7	..
	Mata Moros	-	7	3.3	1.6	-	9.8	..
	Sub Total			65.8	32.8		201.1	
$\begin{aligned} & \stackrel{8}{8} \\ & 8 \\ & 88 \end{aligned}$	Varias	T	1	4	2		12.2	
	Varias	M	4	4.5	2.3		19.7	
	Sub Total			8.5	4.3		31.9	
	Total			1,177.8	974.6		4,680.7	

P	$:$	Pelton
F	$:$	Francis
D	$:$	Diese!
V-G	$:$	Vapor Gas
Gas	$:$	Gas Turbine
DGas	$:$	Diesel Gas
Ge	$:$	Geo Thermal
T	$:$	Thermal
M	$:$	

Table 4-2 Major Transmission Lines in Operation
As of end of 1994

	Voltage	Location (From ~ To)	length (km)	Conductor
烒	230 kV	Peñas Blancas (Frontera Nicaragua) ~ Liberia	77.0	DRA
		Liberia ~ Canas	42.0	DRA
		Sandillal \sim Corobici	3.0	DRA
		Miravalles ~ Arenal	42.0	DRA
		Arenal \sim Corobici	11.0	DRA
		Corobici \sim Canas	7.0	DRA
		Canas ~Barranca	70.0	GRO
		Arenal ~ Barranca (2 cct)	68.0	CON
		Arenal ~ Ciudad Quesada	83.0	2 xGRO
		Ciudad Quesada ~ Toro	30.0	2 xGRO
		Toro ~ San Miguel	50.0	2 xGRO
		Barranca ~ La Caja (2 cct)	62.0	DRA
		Rio Macho ~ San Isidro	65.0	DRA
		San Isidro ~ Rio Claro	110.0	DRA
		Rio Claro~ Progreso (Panama)	30.0	DRA
		Total	880.0	
		Guayabal ~Canas	58.2	ORI
		Canas ~ Colorado	25.0	LIN
		Canas ~Santa Rita	32.0	CAN
		Canas \sim Cempa	1.2	LIN
		Barranca ~ Ventanas Garita	34.4	LIN
		- Ventanas Garita ~ Naranjo	17.3	ORI
		Naranjo ~ Daniel Guetierrez	25.0	GRO
		Ventanas Garita \sim El Coco	19.2	GRO
		El Coco ~ La Caja	15.9	GRO
		Ventana Garita \sim La Caja	21.8	GRO
		La Caja ~ Heredia	7.9	GRO
		Heredia ~ Colima	7.1	GRO
		La Caja \sim Colima	8.5	GRO
		Colima \sim San Miguel	10.0	GRO
	138 kV	San Miguel \sim SBN	6.0	GRO
		SBN \sim Cachi	19.2	GRO
		Colima \sim El Este	8.5	GRO
		Ia Caja ~El Este	18.5	GRO
		El Este~Cachi	29.0	GRO
		La Caja ~ Escazu	3.0	GRO
		Escazu ~ Desamparados	17.0	GRO
		Desamparados \sim El Este	10.4	GRO
		La Caja \sim Alajuelita	11.6	GRO
		Alajuelita ~El Este	19.1	GRO
		El Este ~ Concavas	16.4	GRO
		Concavas \sim Rio Macho	9.1	GRO
		El Este \sim Rio Macho	25.5	GRO
		Rio Macho ~ Cachi (2 cct)	14.6	DRA
		Cachi \sim PIS	19.2	GRO
		Leesville ~ PIS	33.0	GRO
		PIS \sim Siquires	20.0	GRO
		Siquirres \sim Moin (2 cct)	41.5	LIN
		Cachi \sim Siquires	42.7	GRO
		Total	703.9	

Year			(At the price leveis and exchange rate of 1980)							
	GDP USS		Energy (Generation)		Population		GDP/Capita		Energy/Capita	
	(Million)	Rate (\%)	(GWh)	Rate (\%)	(Thousand)	Rate (\%)	(US\$)	Rate (\%)	(kWL)	Rate (\%)
1980	4,482	0.81	2,144	12.25	2,296	3.02	1,952	-2.16	934	8.98
1981	4,380	-2.28	2,291	6.86	2,365	3.04	1,852	-5.12	969	3.75
1982	4,061	-7.28	2,292	0.04	2.437	3.04	1,666	-10.04	941	-2.89
1983	4.177	2.86	2,372	3.49	2,511	3.02	1,663	-0.12	945	0.43
1984	4.513	8.04	2,568	8.26	2,578	2.68	1,751	5.17	996	5.40
1985	4,545	0.71	2,708	5.45	2,646	2.61	1,718	-1.83	1,023	2.71
1986	4,796	5.53	2.968	9.60	2,713	2.53	1,768	2.91	1,094	6.94
1987	5,025	4.77	3,246	9.37	2,781	2.53	1,807	2.32	1,167	6.67
1988	5,198	3.44	3,324	2.40	2,851	2.53	1,823	2.71	1,166	-0.08
1989	5,492	5.66	3,493	5.08	2,941	3.13	1,867	0.00	1,188	1.89
1990	5,687	3.55	3,707	6.13	3,015	2.51	1,886	1.78	1,221	2.78
1991	5,816	2.27	3,827	3.24	3,086	2.35	1,885	2.96	1,240	1.56
1992	6,240	7.29	4,079	6.58	3,132	1.49	1,992	2.29	1,302	5.00
1993	6,615	6.01	4,382	7.43	3,199	2.14	2,068	2.84	1,370	5.22
1994	6,922	4.64	4,723	7.78	3,243	1.38	2,134	3.50	1,456	6.28

Table 5-2 Demand Forecast by YCE 1995 ~ 2015

Year	Figh Case			Base Case (Middie Case)			Low Case			Population	
	Energy (GWb)	Power (MW)	$\begin{aligned} & \text { If } \\ & (\%) \end{aligned}$	Energy (GWh)	Power (MW)	$\begin{aligned} & \text { L.f } \\ & (\%) \end{aligned}$	Energy (GWh)	$\begin{aligned} & \text { Power } \\ & \text { (MW) } \end{aligned}$	$\begin{aligned} & \text { If } \\ & \text { (\%) } \end{aligned}$	(Thousand)	$\begin{aligned} & \text { Rate } \\ & (\%) \end{aligned}$
1995	5,089	925	62.8	5,046	917	62.8	5,020	912	62.8	3,651	
1996	5,477	995	62.8	5,384	979	62.8	5,323	967	62.3	3,732	2.2
1997	5,883	1,069	62.8	5,729	1,041	62.8	5,627	1,024	62.7	3,829	2.6
1998	6,309	1,146	62.9	6,082	1,106	62.8	5,933	1,079	62.8	3,917	2.3
1999	6,707	1,216	63.0	6,439	1,171	62.8	6,239	1,135	62.8	4,005	2.2
2000	7,124	1,289	63.1	6,813	1,241	62.7	6,555	1,193	62.7	4,103	2.4
2001	7,561	1,368	63.1	7,201	1,311	62.7	6,890	1,254	62.7	4,202	2.4
2002	8,021	1,449	63.2	7,602	1,384	62.7	7,237	1,317	62.7	4,312	2.6
2003	8,497	1,532	63.3	8,017	1,459	62.7	7,600	1,382	62.8	4.412	2.3
2004	8,990	1,620	63.4	8,449	1,537	62.8	7,978	1,453	62.7	4,502	2.0
2005	9,504	1,712	63.4	8,885	1,618	62.7	8,359	1,522	62.7	4,558	1.2
2006	10,023	1,803	63.4	9,320	1,699	62.6	8,735	1,592	62.7	4,587	0.6
2007	10,556	1,898	63.5	9,764	1,778	62.7	9,117	1,660	62.7	4,614	0.6
2008	11,107	1,995	63.6	10,220	1,862	62.7	9.507	1,732	62.7	4,652	0.8
2009	11,670	2,093	63.6	10,681	1,947	62.6	9,898	1,804	62.6	4,723	1.5
2010	12,251	2,195	63.7	11,153	2,031	62.7	10,295	1,875	62.7	4,794	1.5
2011	12,862	2,302	63.8	11,647	2,122	62.7	10,710	1,951	62.7	4,866	1.5
2012	13,505	2,418	63.8	12,165	2,217	62.6	11,142	2,031	62.6	4,939	1.5
2013	14,182	2,536	63.8	12,705	2,316	62.6	11,591	2,110	62.7	5.013	1.5
2014	14,895	2,660	63.9	13,272	2,417	62.7	12,060	2,197	62.7	5.088	1.5
2015	15.647	2.795	63.9	13,866	2.526	62.7	12.550	2.287	62.6	5.165	1.5

Table 5-4 Construction Schedule by ICE 1995~2015
Escenario de Demanda: Base (Abril 1995) Escenario de Combustibles: Caso Base

Table 5-8 Electric Power Development Schedule

Year	Plant Name					
	LOGOS		(HW)	by Demand Supply Program		(MW)
1995	Boca del pozo	P.G.	(5.0)	Boca del Pozo	P.G.	(5.0)
	Generación privada	P.H.	(15.0)	Generacion privada	P.H.	(15.0)
	Toro (1° etapa)	P.I.	(12.0)	Toro (1° etapa)	P.H.	(12.0)
	Daniel Gutierrez ($1{ }^{\circ}$ etapa)	P.H.	(14.0)	Daniel Gutierrez ($1^{\circ} \mathrm{etapa}$)	P.I.	(14.0)
1996	TroI (${ }^{\circ}$ etapa)	P. H .	(12.0)	Toro 1($2^{\circ} \mathrm{ctapa}$)	P.Y.	
	Gas	P.T.	(36.0)	Gas	P.T.	(36.0)
	Generación Privada	P.H.	(13.0)	Generación Privada	P.H.	(13.0)
	Generación Privada	P.I.	(6.0)	Generación Privada	P.H.	(6.0)
	Daniel Gutierrez (2° elapa)	P.	(6.0)	Daniel Gutierrez (2° etapa)	P.H.	(6.0)
1997	Toroll	P.H.	(66.0)	Toroll	P.H.	(66.0)
	Generación Privada	P.H.	(30.0)	Generación Privada	P.H.	(30.0)
	Generacion Privada	P.E.	(20.0)	Generacion Privada	P.E.	(20.0)
1998	Generacion Privada	P.H.	(27.0)	Generación Privada	P.H.	(27.0)
	Tejona	P.E.	(20.0)	Tejona	P.E.	(20.0)
	Miavalles	P.G.	(55.0)	Miravalles	P.G.	(55.0)
1999	Miravalles	P.G.	(55.0)	Miravalles	P.G.	(55.0)
	Angostura	PH.	(177.0)	Angostura	P.	(177.0)
2000						
2001	Ciclo Combinado	P.T.	(108.0)	Ciclo Combinado	P.T.	(108.0)
2002						
2003	Pirris	P.T.	(128.0)	Pirris	P.H.	(128.0)
2004	Tenorio	P.G.	(55.0)	Tenorio	P.G.	(55.0)
	Gas	P.T.	(36.0)	Gas	P.t.	(36.0)
2005	Los Llanos	P.H.	(85.0)	Los Llanos	P. H	(85.0)
2006	Ayil	P.H.	(127.0)	Ayil	P.	(127.0)
2007	Laguna Hule	P. H .	(66.0)	Laguna Hule	P. B .	(66.0)
				Motor baja	P.T.	(64.0)
2008	Pacuare	P. H .	(156.0)	Pacuare	PH.	(156.0)
2009	Gas	P.T.	(36.9)	Gas	P.T.	(36.9)
2010	Gas	P.T.	(72.0)	Gas	P.T.	(72.0)
2011	Guayabo	P. H	(234.0)	Guayabo	P.H.	(234.0)
2012	Siquirres (1 ${ }^{\circ}$ etapa)	P.H.	(206.0)	Siquirres (${ }^{\circ} \mathrm{elapa}$)	P.H.	(206.0)
	Gas	P.H.	(108.0)	Gas	P. ${ }^{\text {P }}$	(108.0)
2013						
2014	Siquirres (2 ${ }^{\circ} \mathrm{etapa}$)	P.H.	(206.0)	Siquirres (2 ${ }^{\circ} \mathrm{etapa}$)	P.	(206.0)
	Gas	P.T.	(1080)		P.T.	(108.0)
2015						

Table 8.7 Maximum Accelerations for Six Return Periods
(Unit: gal)

	Retum Period (Year)					
	Altenuation Model	50	100	200	500	1000
(1) C. Oliveira	64.5	81.9	99.2	12000	135.6	173.6
(2) R.K. McGuire	157.8	185.8	211.7	242.3	262.2	310.3
(3) Esteva \& Rosenblueth	70.6	89.6	108.4	131.5	147.2	186.6
(4) T. Katayama	125.3	148.7	169.2	191.8	205.4	234.3

$\stackrel{?}{2}$

Table h-4 EConomic evaluarion

\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{No.}} \& \multirow[t]{2}{*}{YEAR} \& \multicolumn{5}{|l|}{LOS LLANOS HYOROPOVER PROJECT} \& \multicolumn{8}{|r|}{GAS ALBETE} \& \multicolumn{3}{|l|}{PROIECT} \& \& \multirow[t]{2}{*}{(B) : (C)} \\
\hline \& \& \& Construct. Cost \& Transmssa Line Cost \& \[
\begin{gathered}
\mathrm{O}_{1} \mathrm{M} \\
\cos 1
\end{gathered}
\] \& Compen- \& TOTAL cost \& Constr. Cos: \& ORM \& \[
\begin{gathered}
\text { RBINE } \\
\hline \text { Fues } \\
\text { Cost }
\end{gathered}
\] \& Subiotal \& \[
\begin{gathered}
\text { Constr } \\
\text { Cosi } \\
\hline
\end{gathered}
\] \& \begin{tabular}{c}
O\&M \\
Cos \\
\hline
\end{tabular} \& Fut
Cost \& Subloal \& Constr. Cost \& \begin{tabular}{|c}
OkM \\
Cost \\
\hline
\end{tabular} \& Subloul \& \[
\begin{aligned}
\& \text { Tor } \\
\& \text { Cost } \\
\& \hline
\end{aligned}
\] \& \\
\hline . 1 \& \& 2000 \& 12,735 \& 0 \& \& \& 12,753 \& \& \& \& 0 \& \& \& \& 0 \& +1) \& \& 49 \& 49 \& -12,706 \\
\hline 1 \& \& 2001 \& 25,703 \& 993 \& \& \& 26,788 \& \& \& \& 0 \& \& \& \& \& 290 \& \& 290 \& 290 \& -26.497 \\
\hline 2 \& \& 2002 \& 34,090 \& 2,395 \& \& \& 36,485 \& 11 \& \& \& 111 \& \& \& \& \& 159 \& \& 159 \& 270 \& -36,215 \\
\hline 3 \& \& 2003 \& 39,842 \& 1,049 \& \& \& +0,892 \& +9,010 \& \& \& +9,010 \& 15,195 \& \& \& 15,195 \& 1,079 \& \& 1,079 \& 65,285 \& 24.393 \\
\hline 4 \& \& 2001 \& 9.929 \& 524 \& \& \& 10,453 \& 6.258 \& \& \& 6.258 \& 30,028 \& \& \& 30,028 \& 541 \& \& 54 \& 36.827 \& 26.374 \\
\hline \(s\) \& \& 2005 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \({ }^{14,72+}\) \& 13.052 \\
\hline 6 \& \& 2006 \& \& \& 1,118 \& 534 \& 1,672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13.052 \\
\hline 7 \& \& 2007 \& \& \& 1.118 \& 554 \& 1,672 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \(14.72+\) \& 13.032 \\
\hline 8 \& \& 2008 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,224 \& 13,052 \\
\hline 9 \& 5 \& 2009 \& \& \& 1.118 \& S54 \& 1,672 \& \& 354 \& 10,800 \& 11.354 \& \& 231 \& 3,108 \& 3,339 \& \& 32 \& 32 \& 14,22+ \& 13.052 \\
\hline 10 \& \& 2010 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \& 13.052 \\
\hline 11 \& \& 2011 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,72+ \& 13,032 \\
\hline 12 \& 8 \& 2012 \& \& \& 1.118 \& 554 \& 1,672 \& \& 554 \& 10.800 \& [11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13.032 \\
\hline 13 \& 9 \& 2013 \& \& \& 1.118 \& 554 \& 1.672 \& \& 554 \& 10.800 \& [11,354 \& \& 231 \& 3.1081 \& 3,339 \& \& 32 \& 32 \& \(14.72+\) \& 13.052 \\
\hline 14 \& 10 \& 2014 \& \& \& \%,118 \& 534 \& 1,672 \& \& 554 \& 10.800 \& 11,354 \& \& 234 \& \({ }^{3.1081}\) \& 3,339 \& \& 32 \& 32 \& 1,724 \& 13.052 \\
\hline 15 \& 11 \& 2015 \& \& \& 1.118 \& \(55+\) \& 1,672 \& \& 534 \& 10.800 \& 11.354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14.724 \& 13.052 \\
\hline 16 \& 12 \& 2016 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& 11.354 \& \& 234 \& 3,108: \& 3.339 \& \& 32 \& 32 \& \({ }^{1+7,724}\) \& 13.052 \\
\hline 17 \& 13 \& 2017 \& \& \& 1,118 \& \(55+\) \& 1.672 \& 111 \& 554 \& 10.800 \& 11.464 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \(1+835\) \& 13.162 \\
\hline 18 \& 1 H \& 2018 \& \& \& 1,118 \& Ss+ \& 1.672 \& 49,010 \& 554 \& 10,800 \& 60.36 .4 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \({ }^{63,735}\) \& \({ }^{62,062}\) \\
\hline 19 \& 15 \& 2019 \& \& \& 1,118 \& 554 \& 1,672 \& 6,258 \& 554 \& 10.800 \& 17.611 \& \& 231 \& 3.108 : \& 3,339
3
3 \& \& 32 \& 32 \& 20,982 \& 19,310 \\
\hline 20 \& 16 \& 2020 \& \& \& 1,118 \& \(55+\) \& 1.672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13,052 \\
\hline 21 \& 17 \& 2021 \& \& \& 1.118. \& \(55+1\) \& 1.672 \& \& 354 \& 10.800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14.724 \& 13,052 \\
\hline 22 \& 18 \& 2022 \& \& \& 1.118 \& 534 \& 1.672 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3,108 \& 3,339 \& \& 32 \& 32 \& 4, 4,724 \& 13,052 \\
\hline 23 \& 19 \& 2023 \& \& \& 1.118 \& \(55+\) \& 1,672 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3,108: \& 3.332 \& \& 32 \& 32 \& 14,724 \& 13,052 \\
\hline 24 \& 20 \& 2024 \& \& \& 1.118 \& 554 \& 1,672 \& \& 554 \& 10,300 \& 11.354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,22. \& 13,052 \\
\hline 25 \& 21 \& 2025 \& \& \& 1.118 \& 554 \& 1,672 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3,108: \& 3,339 \& \& 32 \& 32 \& 14.724 \& 13.052 \\
\hline 26 \& 22 \& 2026 \& \& \& 1.118 \& Sst \& 1.672 \& \& 554 \& 10,800 \& 11.354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13.052 \\
\hline 27 \& 23 \& 2027 \& \& \& 1.118 \& 554 \& 1.672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& \begin{tabular}{l}
3.339 \\
\hline 8.531
\end{tabular} \& \& 32 \& 32 \& 14.724 \& 13,052 \\
\hline 28 \& 24 \& 2028 \& \& \& 1,118 \& 554 \& 1.672 \& \& 554 \& 10,300 \& 11,354 \& 15.193: \& 231 \& 3.68 \& 18.534 \& \& 32 \& 32 \& 29,919 \& 28,247 \\
\hline 29 \& 25 \& 2029 \& \& \& 1,118 \& S54 \& 1,672 \& \& 554. \& 10,800 \& 11.354 \& 30.028 \& 231 \& 3.108 \& 33,367 \& \& 32 \& 32 \& +1,752 \& +3,030 \\
\hline 30 \& 26 \& 2030 \& \& \& 1,118
1,1181 \& S54. \& \begin{tabular}{l}
1,672 \\
2,665 \\
\hline
\end{tabular} \& \& 58.
584 \& 10,300
10800 \& \begin{tabular}{l}
111354 \\
11.354 \\
\hline
\end{tabular} \& \& 231 \& \({ }^{3.108}\) \& \begin{tabular}{l}
3,339 \\
\(\mathbf{3 , 3 3 9}\) \\
\hline
\end{tabular} \& +990 \& 32
32
3 \& 80
322 \& 14,723
15015
10,58 \& 13,100
123
123 \\
\hline 31 \& 27 \& 2031 \& \& \& \({ }^{1} 1188\) \& 554 \& \begin{tabular}{|l|}
1.665 \\
+068 \\
\hline
\end{tabular} \& 111 \& Sst \& 10,800 \& 11.354
11.364 \& \& 231 \& 3,108 \& 3,339 \& 159 \& 32 \& 191 \& 14,994 \& 12,34
10,927 \\
\hline 32
33 \& 28
29 \& 2033 \& \& 2, \& 1,188 \& S54 \& 2,722 \& +9,010 \& 554 \& 10,300 \& 60.364 \& \& 231 \& 3,108: \& 3,339 \& 1.079 \& 32 \& 1.111 \& 64,814 \& 62.092 \\
\hline 34 \& 30 \& 2034 \& \& 524 \& 1,118 \& 554 \& 2.197 \& 6.258 \& 554 \& 10.800 \& 17.611 \& \& 231 \& 3.108 \& 3,339 \& 541 \& 32 \& 573 \& 21,523 \& 19.326 \\
\hline 35 \& 31 \& 2035 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10.800 \& 11.354 \& \& 231 \& 3.108 ! \& 3.330 \& \& 32 \& 32 \& 14,724 \& 13.052 \\
\hline 36 \& 32 \& 2036 \& 5.073 \& \& 1,118 \& 554 \& 6,7+5 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3,108 \& 3.339 \& \& 32 \& 32 \& 14,224 \& 7.979 \\
\hline 37 \& 33 \& 2037 \& \(8.26{ }^{\text {a }}\) \& \& 1.188 \& \(55+\) \& 9,933 \& \& 554 \& 10,800 \& 11.354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& \({ }^{14.724}\) \& +,792 \\
\hline 38 \& 34 \& 2038 \& 22.623 \& \& 1.118 \& 554 \& 2+,296 \& \& \(55+\) \& 10.800 \& 11,354 \& \& 231 \& 3.108 \& 3,332 \& \& 32 \& 32 \& 14,224 \& -9,572 \\
\hline 39 \& 35 \& 2039 \& 7,54 \& \& 1.118 \& S54 \& 9.196 \& \& 554 \& 10.800 \& 11,354 \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14,224 \& 5.528 \\
\hline 40 \& 36 \& \(20+0\) \& \& \& 1,118 \& S54 \& 1,672 \& \& 554 \& 10800 \& 11,354 \& \& 231 \& \({ }^{3.108}\) \& \begin{tabular}{l}
3,339 \\
3,388 \\
\hline
\end{tabular} \& \& 32 \& 32
32
32 \& 14,224 \& 13.052 \\
\hline 41 \& 37 \& 20.11 \& \& \& 1,118 \& 554 \& \begin{tabular}{|}
1,672 \\
1 \\
1
\end{tabular} \& \& \& 10,300
10800 \& \begin{tabular}{l}
11.354 \\
11354 \\
\hline 1
\end{tabular} \& \& 231 \& \(3.108{ }^{\text {3 }}\) \& \& \& \begin{tabular}{l}
32 \\
32 \\
\hline
\end{tabular} \& 32
32

3 \& (1, 1.724 \& 13,052
13052
1

\hline 42
4

4 \&	38
39	\& $20+2$

2043 \& \& \& \begin{tabular}{l}
1.118

1.118

\hline

 \& S54 \&

1,672

1,672
\end{tabular} \& \& 554 \& 10,800

10,300 \& 11,354 \& \& 231 \& 3.108 : \& 3,339 \& \& 32 \& 32 \& 14,724 \& ${ }^{13,052}$

\hline 4 \& + 40 \& 2044 \& \& \& 1.118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& $11,35+$ \& \& 231 \& 3,108 ! \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13,052

\hline 45 \& 51 \& 2045 \& \& \& 1,118 \& 554 \& 1.672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3,108: \& 3,339 \& \& 32 \& 32 \& 14,724 \& 13.032

\hline 46 \& +2 \& 2046 \& \& \& 1.118 \& 354 \& 1,672 \& \& 554 \& 10.300 \& $11.35+$ \& \& 231 \& 3.108 \& 3,339 \& \& 32 \& 32 \& 14.724 \& 13.052

\hline 47 \& 43 \& 2047 \& \& \& 1,118 \& 554 \& 1,672 \& 111 \& 554 \& 10,800 \& 11,46+ \& \& 231 \& 3,108: \& 3,339 \& \& 32 \& 32 \& 14,835 \& 13.162

\hline 48 \& 14 \& 2048 \& \& \& 1.118 \& Sst \& 1.672 \& ${ }^{49.1010}$ \& 554 \& 10.800 \& 60.364 \& \& 231 \& ${ }^{3.108}$ \& 3.339
3
3 \& \& 32 \& 32
32
32 \& 63,735 \& 62.062

\hline 49 \& 4s \& 2049 \& \& \& 1,118 \& SSt \& 1.672 \& 6.258 \& 594 \& 10.800
10800 \& \& \& 231 \& 3.108. \& 3.339
3
3 \& \& 32 \& 32 \& 20,982 \& 19.310
13.052
18.3

\hline 50 \& (15 \& 2051 \& \& \& | 1.118 |
| :--- |
| 1,118 | \& | 554 |
| :--- |
| 554 |
| 54 | \& | 1,672 |
| :--- |
| 1,672 | \& \& Sst \& 10.800

10.800 \& 11,354
11,354 \& \& 231
231 \& 3,108

3,108 \& \begin{tabular}{l}
3.339

3,339

\hline

 \& \& $\begin{array}{r}32 \\ 32 \\ \hline\end{array}$ \&

32

32

\hline

 \&

14,724

$14,22+$

\hline 1

 \&

13,052

13,052

\hline
\end{tabular}

\hline 52 \& 2 \& 2052 \& \& \& 1,118 \& 554 \& 1,672 \& \& 554 \& 10,800 \& 11,354 \& \& 231 \& 3.108 \& 3.339 \& \& 32 \& 32 \& $1+, 72+$ \& 13.052

\hline 53 \& $3{ }^{4} 49$ \& 2053 \& \& \& 1.118 \& 554 \& - ${ }_{\text {- } 2+672}$ \& \& S54, \& 10,800
10800 \& - 11.354 \& \& 231 \& 3.108 \& 3.339

3.339 \& \& | 32 |
| :--- |
| 32 | \& $\begin{array}{r}32 \\ -675 \\ \hline\end{array}$ \& 14, 424 \& 13,052

\hline \& 4.50 \& 2054 \& -24,846 \& -1.654 \& 1.118 \& 554 \& -24,827 \& . 36.919 \& 554 \& 10.800 \& -25 568 \& \& \& \& \& . 726 \& 32 \& -673 \& .22292 \& 1,926

\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{$$
\begin{aligned}
& \text { TOTAL } \\
& \frac{\text { Present Value }}{}
\end{aligned}
$$}} \& 111,045 \& 8.270 \& 35,924 \& \[

21,700

\] \& 232.939 \& 184.597 \& 27,690 \& 539.990 \& 752.277 \& 90,46 \& \[

11,530

\] \& \[

155.40
\] \& 257.386 \& 3.532 \& 1,589 \& 5.121 \& 1,014.784 \& 781,8+5

\hline \& \& \& \multicolumn{5}{|r|}{\multirow[t]{3}{*}{99.117}} \& \multicolumn{13}{|r|}{| 141,506 |
| :--- | :--- | :--- |}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& N.P.V. \& +2,389

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& E.I.R.R. \& 20.2\%

\hline
\end{tabular}

Table 14-5 FINANCIAI, EVALUATION

Table 15-1 Geologic/geotechnic Investigation Planning (1/4)

Site/Route	Investigation Methods	General Specifications	Remarks
1. Down-steam damsite	Detailed geologic mapping	- To provide detailed engineering geologic maps to use detailed topographic maps. To cover the damsite and its vicinities	Detailed topographic map: $1 / 1000$ or more in scale.
	Core drilling and in-hoie measurements/tests	- Drillhole PHLL101SP (with all coring) Location: Aprx. EL 490m on the left bank of the down-stream site. Length: 50m or more. Water level measurements: During drilling at the full section. Lugeon tests: Covering the full section. Drillhole PFILL102SP (with all coring) Location: Aprx. EL 422m on the riverbed of the down-stream site. Length: 30n or more. Water level measurements: During drilling at the full section. Lugeon tests: Covering the full section. Drillhole PHLL103TA (with ail coring) Location: Aprx. EL 480m on the intake site of the down-stream damsite. Length: 30 m or more. Water level measurements: During drilling at the full section. Deformation tests: Two (2) points or more around the hole bottom.	A unit length of Lugeon test: 5m or less.

(6)
Table 15-1 Geologic/geotechnic
Table 15-1 Geologic/geotechnic Investigation Planning (2/4) (
Table 15-1 Geologic/geotechnic Investigation Planning (3/4)

Site/Route	Investigation Methods	General Specifications	Remarks
3. Penstock route and power station site	Detailed geologic mapping	- To provide detailed engineering geologic maps to use topographic raps $1 / 5,000$ and/or $1 / 1,000$ in scale. - To cover the surgetank site, penstock route and powerstation site and their vicinities. - Special items to be made sure; To confirm on aero photo lineament crossing the penstock route and the boundary of the conglomerate and maristone around the powerstation site.	
	Core drilling and in-hole measurements/tests	- Drillhole PHLL106TO (with all coring) - Location: Aprx. EL 510m, at the surge tank site. - Length: 70 m or more. - Water level measurements: During crilling at the full section. - Lugeon tests: Covering the lower $1 / 3$ section. - Deformation tests: Two (2) points or more around the hole bottom - Drillhole PHILL107TP (with all coring) - Location: App. EL 468 sm on the penstock route. - Length: 30m or more. - Water level measurements: During drilling at the full section. - Lugeon tests: Covering the lower half section. - Deformation tests: Two (2) points or more around the hole bottom.	A unit length of Lugeon test: 5 m or less

$s \varepsilon-5$	Table	15-1 Geologic/geotechnic Investigation Planning (4/4)	62
Site/Route	Investigation Methods	General Specifications	Remarks
(3. Penstock route and power station site)	(Core drilling and inhole measurements/tests)	- Drillhole PHLL 108 TP (with all coring) Location: Aprx EL 304m on the penstock route. Length: 50 m or more - Water level measurements: During drilling at the full section. - Lugeon tests: Covering the lower half section. - Deformation tests: Two (2) points or more around the hole bottom.	A unit length of Lugeon test: 5m or less.
4. Quarry site for concrete aggregates	Detailed geological mapping	- To provide detailed engineering geologic maps to use topographic maps $1 / 1,000$ in scale. - To cover an area around the conjunction of Rio Naranjo and Rio Nararijillo, about 700 m up-stream from the down-stream damsite. - Special items to be made sure; To confirm and trace "Layers of sandstone".	
	Core drilling	- Two (2) drillholes with all coring. - Location: Each hoie should be decided by the said geological mapping. - Length: 20 m or more (each hole).	
	Laboratory tests	- All necessary laboratory tests for concrete aggregates to use drilled cores.	

萄
J||c風

