## List of Figures

Fig. 4-2 Electric Power System in Costa Rica (2005)
Fig. 5-4 Demand Forecast by ICE 1995-2015
Fig. 7-2 Geologic Plan of Damsite
Fig. 7-5 Gcoologic Section of Down-strean Damsite
Fig. 7-8 Geologic Plan of Waterway Alignment Route
Fig. 7-9 Geologic Secton along Headrace Tumnel Route
Fig. 7-10 Geologic Plan of Penstock Route and Power Station Site
Fig. 7-12 Geologic Section of Penstock Route (Section B-B)
Fig. 7-13 Geologic Plan of Power Station Site
Fig. 7-14 Geologic Section of Power Station Site (Section A-A)
Fig. 7-15 Location Map of Riverbed Deposits Sites and Rock Quary Sites
Fig. 9-13 General Plan
Fig. 9-14 Los Llanos Dam Plan and Section
Fig. 9-15 Study on Maximum Discharge
Fig. 10-1 Power Transmssion System in Costa Rica
Fig. 11-7 General Plan, Profile and Typical Section
Fig. 11-9 Dam Plan
Fig. 11-10 Dam, Elevation and Section
Fig. 11-16 Powerhouse, Plan and Section
Fig. 11-17 Switchyard General Plan and Profile
Fig. 12-3 Construction Schedule

## List of Tables

Table 4-1 Installed Generating Capacity
Table 4-2 Major Transmission Lines in Operation
Table 5-1 Basic Data for Demand Forecast
Table 5-2 Demand Forecast by ICE 1995-2015
Table 5-3 Demand forecast by JICA 1995-2015
Table 5-4 Construction Schedule by JICA 1995-2015
Table 5-8 Electric Power Development Plan
Table 8-7 Maximum Accelerations for Six Retum Periods
Table 14-4 Economic Evaluation
Table 14-5 Financial Evaluation
Table 15-1 Geologic/geotechnic Investigation Planning


| ARENAL <br> corceicl | 157 174 |
| :---: | :---: |
| barranca | 42 |
| ventanas-garita | 120 |
| couma | 20 |
| rio macho | 120 |
| CACH | 100 |
| Mow |  |
| miravalles | 165 |
| SANDILIAL | 32 |
|  |  |
| guayabo |  |
| Staurres |  |
| gosura |  |
|  |  |
| TEJONA |  |

6

䗉



2
$i$
$\vdots$





















Fig. 9-15 Study on Maximum Discharge


Fig. 10-1 Power Transmission System in Costa Rica







Fig. 12-3 Construction Schedule


