10.8.3 Design of Special Bridge (Thai Binh River Bridge)

(1) General

1) Definition of Special Bridge

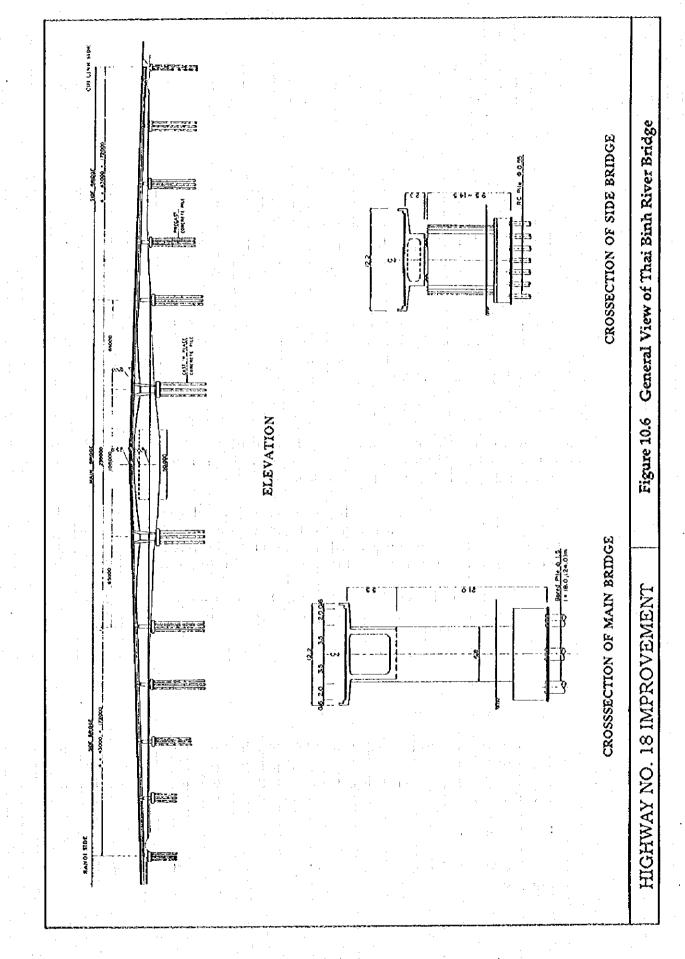
"Special Bridge" is the terminology for the stypical Thai Binh river bridge which is depicted in Figure 10.5, consisting of eleven (11) spans. This bridge can be divided into two distinct portions when viewed in terms of structural characteristics :

- One (1) prestressed concrete continuous box girder bridge (65 m + 105 m + 65 m) for main spans with effective width of 11.0 meters; and
- Two (2) prestressed concrete simple box girder bridges $(4 \times 43.0 \text{ m} + 4 \times 43.0 \text{ m})$ for approaches each with an effective width of 11.0 meters.

It should be noted that the above-mentioned Thai Binh River Bridge will constitute an integral part of Pha Lai Bridge. The Pha Lai Bridge consists of the Thai Binh bridge and two types of viaducts to avoid flooding. The overall length will be 1,433 m (575 m + 858 m).

2) Background

Preliminary design of the Pha Lai bridge was carried out by TEDI in 1994. The study team collected relevant data and analyzed the technical problems conceived in the preliminary design. TEDI's design is systematic involves answers for the matters to be clarified in the feasibility study stage. However, the study team carried out a review of TEDI's design in the light of the following conditions.


Adopted design standard;

- Results of supplemental surveys (i.e. soil investigations);
- Ease of construction and construction economy;
- Bridge aesthetics.

(2) Site Conditions

1) Terrain and Hydrological Conditions

The Thai Binh River, which the special bridge crosses, is approximately 550m wide and has dikes on both sides. The river course is almost straight at the proposed bridge site. At a point about 1 km north of the proposed bridge site, the Thuong River and the Cau River flow into the Thai Binh River. In the south, the Thai Binh River meets the Duong River, which carries the water from the Hong River (Red River), at a point 5 km

10 - 45

· _

downstream of the proposed bridge site. The location of the bridge was selected due to the complicated nature of these tributaries.

In the rainy season from June to August, the water level of the Thai Binh River rises nearly to the top of the dikes and the water depth reaches approximately 13 m. In the dry season, the water level comes down to approximately 5m water depth and the width of the water surface becomes approximately 230m.

Flood water level and discharge at 100 years frequency are given as follows:

-	Flood Water Level	:	+7.94 m
~	Discharge	:	4,860 m ³

At present, as there is no bridge crossing for the Thai Binh River and a ferry is being operated at a place 500 m upstream of the proposed bridge site. Thai Binh River is relatively busy, as there is a large scale coal thermal power plant on the east bank upstream.

2) Geological and Soil Conditions

According to the soil investigations carried out by the study team and the information from TEDI's Feasbility Study, geological conditions at the proposed bridge site are shown as follows:

- The bearing stratum, which consists of sandstone, is located approximately 15 - 20m below the existing ground level near the dikes. The bearing strata incline toward the center of the river and the depth from the ground level reaches 30 m at the middle of the river.

- The layers above the sandstone consist of several loose layers of sandy soil and silty soil with N-values ranging from 3 to 6.

(3) Design Conditions

1) Design Load

a. Design Live Load

Design live load to be applied is 125% of HS 20 - 44 (Truck loading) or 125% of HS 20 - 44 (Lane loading) whichever produces the maximum stress. These live loads slightly exceed Vietnamese standard H30 or XB 80.

b. Seismic Force

As shown in Paragraphs 7.3.2, an acceleration coefficient of 0.07 is applied.

c. Other Design Loadings

Other design loadings follow the standards mentioned in Paragraph 7.3.1.

2) Design Flood Water Level

a. Frequency of Design Flood

In accordance with the government standard the design frequency of 100 years is applied (refer to Paragraph 7.4.1 for further descriptions).

b. Design Flood Water Level

According to the data from Ministry of Water Resources, the design flood water level of 7.94m (100 years frequency) is applied.

3) Navigation and Flood Clearance

a. Navigation Clearance

In accordance with TCVN -5664 -1992, the Thai Binh River is classified as Class III and navigation clearance is specified as follows :

- Horizontal Clearance : 50 m

- Vertical Clearance

7 m (from + 7.05 of flood water level at 20 years frequency)

b. Flood Clearance

Provided clearance between design flood water level and the lower surface of girder is at 0.5 m in accordance with the government standard (refer to Paragraph 7.4.2).

4) Cross Section of Bridge Decks

See Figure 10.7 for the recommended typical cross section.

a. Highway Class	:	Class III in flat terrain
b. Number of Traffic Lanes	:	2 - lane 2 - way
c. Lane Width	:	3.5 m
d. Shoulder/Bicycle Lane	:	2.0 m

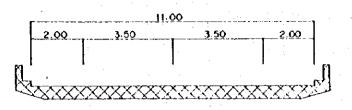


Figure 10.7 Cross Section of Bridge Deck, Special Bridge

- (4) Bridge Length and Span Arrangement
 - 1) Bridge Length

The total bridge length is 579 m to clear existing dikes.

2) Main Spans and Approach Bridges

The width of water surface in the Thai Binh River fluctuates from 230 m to 550 m annually as mentioned before. Therefore, the bridge is divided into a main bridge and two approach bridges. The main spans are required to provide navigation clearances.

3) Factors Governing the Span Arrangement of Main Spans

The factors governing the determination of span arrangement of the main spans are as follows:

- The center span must have sufficient width to ensure navigation clearance and the fluctuation of channel must also be taken into account;
- Navigation clearances should be maintained during the construction period of approximately 3 years;
- Future change of the position of main flow of the river must be taken into account if the expensive dredging work to maintain navigation channel should be avoided;
- Construction cost including substructures and foundations, is also an important factor to determine the span arrangement because the bearing strata are found at a depth around 30 m.

4) Factors Governing Span Arrangement of Approach Bridges

The approach bridges are planned on the sections where the river bed is exposed in the dry season. Therefore, span length of approach bridges has no limitation from the view point of navigation clearance. However, considering the obstruction ratio by piers to the sectional area of the river and harmony with the main spans, span length may vary from 30 m to 50 m. The span arrangement of side bridges is recommended in Paragraph 8.7.3. (5) because it is necessary to consider construction cost.

(5) Design of Special Bridge

1) Superstructure

Based on the relationship between span length and normal bridge types, the superstructure types for the main spans and approach bridges are selected as follows:

Main Spans:PC Continuous Box Girder TypeApproach Bridges:PC Simple Box Girder or PC I- Girder Type

In order to determine the span arrangement for the main spans and the approach bridges, three alternatives with different span arrangement were compared, from the view points of ease of construction, construction cost and period, aesthetics, navigation safety, and maintenance (Table 10.24).

Alt. - A : 31 m x 5 + (40 m + 63 m x 3+40 m) + 31 m x 5Alt. - B : 39.5 m x 5 + (50 m + 80 m + 50 m) + 39.5 m x 5Alt. - C : 43 m x 3 + (65 m + 105 m + 65 m) + 43 m x 3

As a result of the comparison, Alternative-C is recommended because of superior navigation safety, maintenance and ease of construction and is flexible to the change of the position of main flow of the river.

The study team recommends an adoption of double walled piers for the center span of 3-span continuous bridge to mitigate negative maximum bending moment.

The PC box girder type is adopted for the approach bridges for the aesthetics which are superior compared to PC I-girder type in constant girder depth and design.

2) Substructure

a. Abutment

The height of the abutments will be 10 m to 12 m (at the east bank). Therefore, the reversed-T type is adopted.

Table 10.24 Comparison of Alternatives, Special Bridge

Description	otion		Alterrative - A			Alternative - R		∆ 140mm nitro _ C	
Profile		Main Bades				I TIVITIAN C			
		Approach	 Jopan Communications (Ageneration 40m) 40m 5 Span Simple girder 5 x 30; 	s x 30m 5 x 30m 5 x 30m	Main Bridge Approach	: 5 Span Continuous Night Frame Som + 80m + 50m : 5 Span Simple grider 5 × 39.5 : 5 Span Simple grider 5 × 39.5	A Frame 5 x 39.5m	Main Bridge : 3 Span I win wai Kiga Frame 65m + 105m + 65m Approach : 4 Span Simple grider 4 x 43m	
		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	110000		570	mc.ve x c	o opario mipre graner 7 40111	
					5 801 5 E DI		2001-22-200	43754177 65 134 65 43	43*4=17
1. Ease of Construction (point 5)	onstruction 5)		Many piers in the water	· · · · · · · · · · · · · · · · · · ·		Many piers in the water	ter	Smaller number of piers in the water	
•		· · · ·	Poor	25		Poor	2	Sec.	Q
2. Economy (point S0)	. îs	-							
			Lower cost	0 x		Normal cost	0	Higher cost	22
3. Aesthetic (point 15)	[2)		Too many piers					Twin wall gives slender design good appearance.	-1
	•	• <u>.</u>	Poor	7.5		Fair			j j
vi	Construction period (point 10)		Longer construction period		1	Nursual construction period		Shorter construction period	
eredu		:		5.0			0		0 O
L	 Navigation Clearance (point 10) 								
			Poor	5.0		Fair	0	8 8 8	0 S
6. Maintenance (point 10)	ance O						4		4
			Poor	5.0	•	Fair	0		0
Recommended Priority	d Priority		2 (75.0)			3 (73)		1 (75) Rocummended	
					:		Š	Scores : 00% 	

.

a ga sa sa

^{10 - 50}

b. Piers

The wall type is adopted for piers to provide smooth flow of water.

3) Foundation

a. Main Spans

The depth to the bearing layer ranges from 15m to 30m. Therefore, a type of pile foundations is adopted. Caisson type will not be suitable because of excessive economical and expeditious horizontal forces. It is also inferior in terms of construction cost compared with pile type foundations.

In case of the superstructure with a long span and larger dead weight, utilisation of large diameter pile is preferable, as it would save construction cost and time. This is considering that the current, cast-in-place RC piles (Dia. 1.5m) are adopted

b. Footing Type for Main Spans (Figure 10.8)

As the water depth in the dry season is around 5m, the following alternatives are compared.

Alternative - A : Footings below the river bed Alternative - B : Footing above the water level in dry season

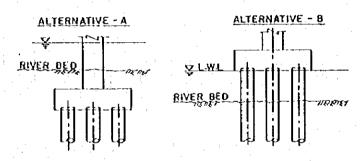


Figure 10.8 Footing Type for Main Spans

Alternative-B is superior in ease of construction because the construction of sheet pile cofferdams are not required, however the Study Team recommends Alternative - A based on the following reasons;

Alternative - B requires fender systems to protect footings from collision by ships;

 Alternative - B is inferior in the aesthetic aspect due to the footings exposure above water level in dry seasons;

- Cost-saving is negligible in Alternative - B.

c. Approach Bridges

The precast RC pile is adopted considering the nature of superstructure, construction cost and ease of construction. This type is widely utilized in Vietnam.

(6) Construction Plan

1) Construction Method and Procedure

a. Superstructure

The adoption of precast block erection method is recommended for the erection of PC box girders to shorten the construction period.

b. Substructure and Foundation

The piers for main spans will be built in a cofferdams after piling from pontoon is completed. The piers of side bridges will be built when the river bed is exposed during the dry season.

2) Construction Period

The construction period of the special bridge is estimated at approximately 28 months based on the construction method mentioned above.

10.9 Preliminary Pavement Design

10.9.1 Design Conditions

The pavement layers and their thickness should be determined based on the following factors governing the design (flexible pavement design) :

- Traffic;
- Strength of subgrade; and
- Construction materials adopted to the pavement layers.

In most of the prevailing pavement design guides, traffic is expressed in terms of the cumulative single axle loads of 8,200 kg (18-kip), over the design life of the road. The number of equivalent axles is computed mainly based on the number of commercial vehicles, in particular, heavy vehicles such as buses and trucks.

The truck factor per vehicle computed from the equivalent single axle is assumed to be 1.0 up to the year 2000 since an axle load of 6.0 tons is generally the acceptable maximum on Vietnamese roads, and a total vehicle weight of more than 13 tons is allowed only by permission of MOT. It is expected that these limitations will be revised to adopt larger axle load limit by the year 2000 to meet the improvement of roads and bridges. The truck factor will also be increased to 3.0 by the year 2015. A value of 2.5 for truck factor has been applied for the computation of cumulative 18-kip equivalent single axle loads (ESAL). In case of bus factor, 0.7 has been used for the computation.

The strength of subgrade will govern the thickness design of pavement. Commonly the strength is expressed by California Bearing Ratio (CBR) value determined by laboratory testing. A CBR value of 4.0 to 6.0% is adopted in the computation of pavement thicknesses.

As for the pavement surface, asphalt concrete is employed in the pavement design, since bituminous surface treatment is only applicable for the roads which have less traffic, that is, those carrying less than 0.5 million equivalent single axle loads over the road lifetime.

There are three types of materials suitable for the base course, i.e., asphalt treated, cement treated and graded crushed-stone base courses. Asphalt treated base course is applied in this study. River gravel is usually used for the subbase course.

10.9.2 Design Features

Based on the above discussion, AASHTO (1972 and 1986) and Japan Road Association standards have been used to design the thickness of the pavement layers. The design condition is indicated as follows:

- Desi	en life	:	20 years
	onal factor	•	5 (Roadbed materials wet)
	ninal serviceability index	:	2.5
	k factor	:	2.5
- Bus		:	0.7
	of Subgrade		4~6%
	ulative 18-kip equivalent		
	le axle loads	:	12.5 x 10 ⁶

The result of the computation requires the pavement thickness as shown in Figure 10.8.

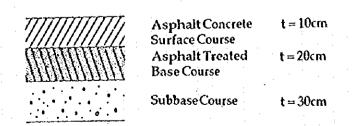


Figure 10.9 Recommended Pavement Layer Thicknesses

Chapter 11 **CONSTRUCTION PLANNING**

CHAPTER 11 CONSTRUCTION PLANNING

11.1 General

The construction planning study is mainly comprised of i) establishment of construction method and ii) preparation of construction time schedule. The result of the study will be utilized in the construction cost estimates and further reflected in the establishment of a project implementation schedule.

11.2 Basic Conditions of Construction Planning

(1) Stage Construction

Since the project necessitates large scale construction work, it is desirable both economically and technically to phase the construction over a period of time. Stage construction approach has been exercised in the early stage of the study, in case of Noi Bai - Bac Ninh section. As the result of the study, the development of a new highway between Noi Bai and Bac Ninh has been planned in two stages in order to optimize the investment schedule :

Initial Stage : Construction of a 2-lane 2-way highway for the entire length.

Final Stage : Widening from 2-lane to 4-lane for the entire length to attain higher speed and greater capacity.

There are three alternative methods to widen the initial 2-lane carriageway to the final 4-lane carriageway as shown below.

	PO-SURVEY STATE	A CONTRACTOR
METHOD - 1	METHOD - 2	METHOD - 3

Method -1 : Both earthwork and paving executed only for 2-lane crosssection in the initial stage. Future widening of earthwork and pavement on one side.

Method - 2 : Both earthwork and paving executed only for 2-lane crosssection in the initial stage. Future widening of earthwork and pavement on both sides.

Method - 3 : Initially earthwork for the final stage construction and 2-lane pavement at the center. The future pavement widening to outer lanes.

Among these 3 methods, Method - 3 has the higher degree of completion in the initial stage construction, but the initial investment would be too large and difficult to attain a reasonable economic return.

When the forecast traffic volume in the initial stage is at a modest level, Method-1 or Method-2 is normally adopted. Considering the following advantages compared with Method-2, it was concluded to adopt Method-1.

- Elimination of bridge widening difficulty in adverse subsoil conditions;
- Enhancement of traffic safety during final construction stage; and
- Less demolition and reconstruction of slope protection facilities.

(2) Framework of Construction Planning

Construction planning is developed in the framework of the following constructions taking into account the Highway No.18 improvement strategy.

Section No.	Section	Construction Phase
1	Noi Bai - Bac Ninh	Initial Stage
2	Bac Ninh - Chi Linh	Initial Stage
3 and 3 and 5 and	Hong Gai - Cua Ong	Initial Stage
4	Cua Ong - Tien Yen	Final Stage
5	Tien Yen - Bac Luan	Final Stage

(3) Quantities of Major Work Items

Selection of construction method is based on the actual work quantities and site conditions.

(4) Road Network for Hauling Materials

The construction involves the hauling of a large quantity of embankment/ pavement materials. Basically the project area is provided with a sufficient road network. However, the pavement conditions of the existing local roads sometimes lack strength. Pavement strengthening/repair will be necessary but construction of new roads is unlikely.

In the Noi Bai - Bac Ninh section, the construction should be executed in sequence in order to use the new road as a pilot to so that it may be utilized in transportation of materials, also using the parallel provincial highways in order to expedite the construction.

11.3 **Construction Method**

11.3.1 Equipment Intensive Construction

To attain construction economy and to realize the improvement with a shorter construction period, the equipment intensive construction method will be adopted.

11.3.2 Earthwork

(1) Major Equipment

The use of the following major earthwork equipment is considered in the planning (Table 11.1).

	Equipment			
Main Works	Hauling distance	Hauling distance more		
	less than 100m	than 100m		
Clearing and Grubbing	В	ulldozer		
Excavation	Bulldozer	Tractor Shovel		
Loading		Tractor Shovel/Payloader		
Hauling	Bulldozer Dump Truck			
Spreading	Bulldozer/ Motor grader			
Compaction	Tamping Roller/ Tire Roller			

Earthwork Equipment Table 11.1

Outline of Earthwork Planning (2)

Table 11.2

Table 11.2 shows the sources of embankment materials for the improvement. The hauling distance is generally not more than 7 km.

Borrow Material Sources

Section	Section		Sources
No.		1	

No.	Jethon	a data a contrasta da contrasta d
1	Noi Bai - Bac Ninh	Ca Lo River, Ngu Huyen Khe River and their tributaries (river sand).
2	Bac Ninh - Chi Linh (bypasses)	Neighboring hills, Thai Binh River and Duong River (river sand).
3	Hong Gai - Cua Ong (bypasses)	Neighboring hills and excavated materials from roadway improvement.
4 & 5	Cua Ong - Bac Luan	Neighboring hills, existing rivers (sandy gravel) and excavated materials from roadway improvement.

11.3.3 Paving Work

(1) Main Equipment

The use of the following equipment is considered (Table 11.3).

Table 11.3		Paving	Work	Equi	pment
------------	--	--------	------	------	-------

Main Work	Equipment		
Subgrade Preparation	Motor Grader, Tire Roller, Macadam Roller		
Sub-base	Motor Grader, Tire Roller, Macadam Roller		
Prime/Tack Coat	Asphalt Distributor		
ATB/Surface Course	Asphalt Mixing Plant, Asphalt Finisher,		
and a blink of Plana state and a state of a last blink state of a s	Macadam Roller, Tire Roller		

Note : ATB denotes Asphalt Treated Base Course.

(2) Material Sources

The sources of paving materials are shown in Table 11.4.

Table 11.4Sources of Paving Materials

Materials	Location of Quarry	Remarks
Gravel and Sand	Trung Gia	Deposit : 500,000m ³
Sand	Bat Cap	Deposit : 250,000m ³
Coarse Aggregate	Dong Tieu	Limestone
Coarse Aggregate	Trang Kenh	Limestone
Coarse Aggregate	Yen Cu	Limestone

(3) General Descriptions of Materials

1) Sub-base Course Materials

Sub-base course materials from the existing rivers will require processing for gradation control, considering the nature of deposit.

2) Base Course Materials, Coarse and Fine Aggregate

11 - 4

A number of aggregate producers are in operation in the north of Noi Bai -Bac Ninh corridor. The contractor will be able to establish his own quarries and gravel pits and to operate his own crushing/screening plant.

3) Asphalt Mixture

Procurement of hot-mix asphaltic concrete is possible for the construction of asphalt treated base course and surface course.

11.3.4 Bridge and Viaduct Construction

(1) Main Equipment

The equipment used for bridge construction is shown in Table 11.5.

Main Work	Equipment
Foundation	Diesel Pile Hammer, Pile Driver, Truck Crane,
	Floating Crane (TBB), Reverse Circulation Drilling Machine. (TBB)
Structure Excavation	Clamshell, Dump Truck, Barge (TBB)
Substructure	Transit Mixer, Concrete Pump Truck
Superstructure	Crawler Crane, Erection Truss, Launching Girder (TBB)
Superstructure	Floating Crane (TBB)

 Table 11.5
 Bridge Construction Equipment

Note: TBB denotes Thai Binh River Bridge.

(2) Construction of Thai Binh River Bridge

Cofferdams with steel sheet piling in the water will be required for the substructure construction. Cast-in-place concrete piling will be executed by a reverse-circulation-drill method. The adoption of cantilever erection is recommended for continuous main spans. Erection truss method will be applied for the erection of simple PC box girders (refer to Volume II : Drawings for Schematic Explanations).

(3) Other Bridges and Viaducts

No major problems are anticipated in the construction of bridge foundations and substructures. PC I-girders will be erected by means of conventional crane erection method or erection girder method.

11.4 Construction Time Schedule

11.4.1 Conditions for Scheduling

(1) Maximum Construction Period

Taking into account the scale of the construction and the urgency of the Highway No. 18 improvement, the maximum possible construction period was set at 2.5 years.

(2) Weather Conditions

According to rainfall data, the number of working days for earthwork and the construction of pavement was estimated as shown in Table 11.6.

Item	Dry Season Nov Apr. (6 months)	Rainy Season May - Oct. (6 months)	Annual
Number of rainy days	10.1 days/month	14.0 days/month	145 days
Working efficiency on a rainy day	65%	35%	52.5%
Number of holidays	5.0 days/ month	4.3 days/ month	60 days
Number of working days	21.5 days/month	16.6 days/month	229 days
Working efficiency	72%	55%	63%

Table 11.6 Number of Working Days

11.4.2 Time Schedule

The construction time schedule for each construction section was prepared based on the conditions described in Subsection 11.4.1 above, as shown in Fig 11.1.

11.5 Implementation Schedule

The project implementation schedule has been prepared for both initial and final stages of the Highway No. 18 improvement. The detailed design for the initial stage improvement will be begun by the beginning of 1997 for 1.0 - 1.5 year period, and construction will be executed in 2.0 - 2.5 years from the beginning or middle of 1998. The beginning of the final stage construction is dependent on traffic requirement and the optimization policy of project costs investment (refer to Figure 11.2).

Ytam				-					Month							
	·	0	10	े न	ંજ	8 IO I2 I4 I6 I8 20 22 24 26 28 30	. н о	н 19	4		Q	3	54	38	প্ল	8
Preparatory Work														_		
Earthwork		<u> </u>						11200		1 A 1				<u> </u>		
Bridge Construction							1	n Press, na shut n					- Area 2-1 4 2 4	-	 	╂╍┈
Ditch and Culvert	-							1.00	يومني دياري	والمعرفين والمراج						┨
Pavement Construction	• ;		: 													╂
Miscellancous																8

Section 2 (Bac Ninh - Chi Linh : 36.4km)

Item		-	1	• :		,		Month	벾			· .	•	•		
-	<u> </u>	5 0	4	9	8	10	12	14	16	18	20	33	10 12 14 16 18 20 22 24 26	26	প্থ	30
Preparatory Work										. 		·				
Earthwork												 				
Bridge Construction																
Ditch and Culvert															_	Į
Pavement Construction				· · · · ·			-		<u> </u>							Į
Miscellaneous		<u>-</u>				<u> </u>		<u> </u>		<u> </u>	<u> </u>					

Construction Time Schedule

Figure 11.1 (1)

HIGHWAY NO. 18 IMPROVEMENT

30 8 Final Stage Final Stage 8 * **Construction Time Schedule** 8 58 4 2 ង ដ 8 8 18 81 16 16 Month Month 14 14 n 1 1 ង Figure 11.1 (2) ទ ទួ 8 s 9 v Section 3 (Hong Gai - Cua Ong : 38.7km) Section 4 (Cua Ong - Tien Yen : 43.5km) ৳ 4 2 **C**3 HIGHWAY NO. 18 IMPROVEMENT 0 Ò **Pavement Construction** Pavement Construction Drainage / Sidewalk **Bridge Construction** Bridge Construction Item Item Preparatory Work Preparatory Work Ditch and Oulvert Miscellaneous Miscellaneous Earthwork Earthwork

Section 5 (Tien Yen - Bac Luan : 86.9km)	u, t	an :	86.9	Ran)											E.	Final Stage	age
Item			· .						Month	ਸ਼							
		0	~	4	. 9	8	5	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	4	16	18	20	3	54	8	8	30
Preparatory Work														ļ	┣	-	<u> </u>
Earthwork				a Stichard													
Bridge Construction											╞	┼╏					
Ditch and Oulvert										╷╻							+ 1
Pavement Construction						Ŀ							_				+

11 - 9

Miscellaneous

Construction Time Schedule

Figure 11.1 (3)

HIGHWAY NO. 18 IMPROVEMENT

Section 1 : Noi Bai - Bac Ninh (Initial Stage)

Description	1997	1998	1999	2000
Detailed Design Land Acquisition/Resettlement Construction	90 50	50 10	50	40

Section 1 : Noi Bai - Bac Ninh (Final Stage)

Description	2009	2010	2011	2012
	90	10		
Detailed Design		10	50	40
Construction				
			· .	

Section 2 : Bac Ninh - Chi Linh (Initial Stage)

Description	1997	199	8	1999	2000
Detailed Design	90	10			
Land Acquisition/Resettlement	50	50	10	50	40
Construction					*****

Section 2 : Bac Ninh - Chi Linh (Final stage)

Description	2003	2004	2005	2006
Detailed Design Land Acquisition/Resettlement Construction	80 50	50 10	50	40
Construction	4			

Section 3 : Hong Gai - Cua Ong (Final Stage)

Description	1997	1998	1999	2000
	90	10		
Detailed Design Land Acquisition/Resettlement	50	50		
Construction		10	50	40
Consulation				

HIGHWAY	NO. 18
IMPROVE	MENT

Figure 11.2 (1)

Implementation Schedule

Section 4 : Cua Ong - Tien Yen (Initial stage)

Description	1997	1998	1999
Detailed Design Construction	100	40	60

Section 4 : Cua Ong - Tien Yen (Final Stage)

Description	2007	2008	2009
Detailed Design Land Acquisition/Resettlement Construction	100 100	40	60

Section 5 : Tien Yen - Bac Luan (Initial Stage)

Description	1997	1998	1999
Detailed Design Land Acquisition/Resettlement	100		
	100	40	60
Construction			

Section 5 : Tien Yen - Bac Luan (Final Stage)

Description	2006	2007	2008	2009
Detailed Design Land Acquisition/Resettlement	90 90	10		
Construction		10	50	40

HIGHWAY NO. 18 IMPROVEMENT

Figure 11.2(2)

Implementation Schedule

Chapter 12

MANAGEMENT AND MAINTENANCE PLAN

CHAPTER 12 MANAGEMENT AND MAINTENANCE PLAN

12.1 General

The study of the management and maintenance for Highway No. 18 is broadly divided into four main categories:

- a. Present Situation of Highway Maintenance and Management
 - Present organization;
 - Highway management and maintenance;
 - Present work forces of RRMU No. 2
- b. Basic Principles of Highway Maintenance
 - Minimum interference with Traffic;
 - Importance of correcting basic cause of failures;
 - Categories of maintenance work.
- c. Maintenance Inspections
 - Pavement;
 - Drainage;
 - Cut and fill slopes; and
 - Bridges

d. Management and Maintenance Plan

- Organization;
- Management systems; and
- Maintenance work.

12.2 Present Situation of Highway Maintenance and Management

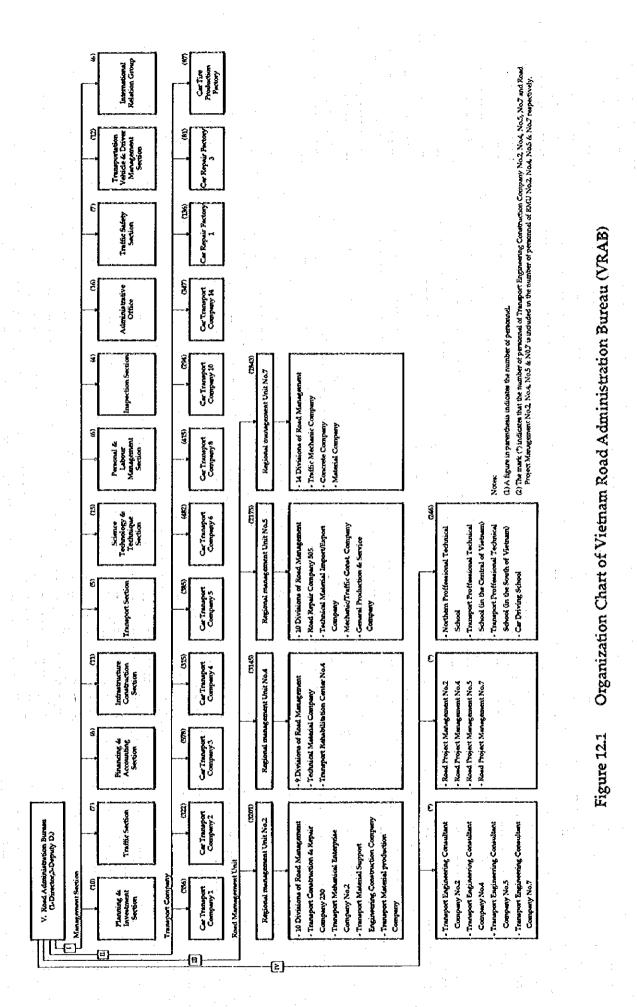
12.2.1 Present Organization

Road administration exists within the jurisdiction of the Ministry of Transportation (MOT). MOT consists of 5 Vice Ministers, 7 Departments, 5 Bureaus and 4 Institutions, including the Vietnam Road Administration Bureau. Under the Government Decree No. 07, the Road Administration Bureau (RAB) was formed on 30 January 1993 and commenced operation on 26 May 1993.

The VRAB has four levels of administrative groups as shown in the following:

- Management section;
- Transport companies;
- Road management units.

The management is divided into 9 offices:


- Planning and Investment Section;
- Traffic Section;
- Financing and Accounting Section;
- Infrastructure Construction Section;
- Transport Section;
- Science, Technology and Technique Section;
- Personnel and Labor Management Section;
- Inspection Section;
- Administrative Office;
- Traffic Safety Section;
- Means of Transport & Driver Management Section;
- International Relations Group.

The comprehensive organization of the VRAB is shown in Figure 12.1 together with the number of employees for each group.

Transportation companies have taken charge of the previously state-owned property and assets of MOT, but salaries for the employees and operation costs of the companies have not been subsidized from the state budget since 1993.

Regional Road Management Unit No. 2 (Figure 12.1), is responsible for road management and maintenance of national highways in the northern part in Vietnam, and has the following divisions:

- 10 divisions of road management;
- Equipment and Materials Company;
- Materials Production Company;
- Mechanical Enterprise;
- Transport Rehabilitation Center No. 2.

12.2.2 Highway Maintenance Management

RRMU No. 2 is located in Ha Noi and is at present mainly responsible for the maintenance of the following national highways:

National Road No.		Length (km)
1	- 	285.0
2		289.0
3	· · ·	33.5
4 E		46.0
5		94.0
6		379.0
15		20.0
70		190.0
183	•	24.0
279		116.0
Total		1,476.5 km

RRMU 2 presently is comprised of 10 Road Management Divisions and 4 autonomous enterprises as mentioned above. Road Management Divisions (RMD) are responsible for the routine maintenance of various lengths of national highway and receive an annual budget allocation from the MOT.

Many bridges have suffered from lack of maintenance and repair work. Severe defects include damaged bridge surfaces, concrete handrails and expansion joints. Most of the steel structures have not been painted to protect against corrosion for a long time. Steel bridge members are rusted and corroded. The RRMU 2 is not functioning properly in terms of bridge maintenance.

12.2.3 Present Work Forces of RRMU No. 2

(1) Organization

The organization of RRMU No. 2 is shown in Table 12.1.

Function	Organization units	Staff	No. of units	Note
RMU No. 2	1. Traffic Management Dept.			
Management	2. Planning Economic Dept.			
Departments	3. Financial Accounting Dept.			
	4. Science and Technology Dept.	70	8	· · ·
	5. Personnel and Labor Dept.			
	6. Administrative Dept.			
	7. Traffic Safety Dept.			
	8. RMU No. 2 Engineering Center	Annual March 1997		

Table 12.1Organization of RRMU No. 2

Function	Organizational Units	Staff	Section	Team	Length
Production	1. Transport Construction and Repair	283	4	4	-
	Company 230		·		
Repair	2. Transport Mechanical Enterprise No. 2	122	3	. 3	-
and	3. Transport Material Support	213	3	3	-
	Engineering Construction Company	150	_		
Business	4. Transport Material Production Company	457	5	4	-
Road	1. Road Management Division (RMD)	241	4	7	173
	No. 222				
Management	2. RMD No. 224	246	4	9	224
	3. RMD No. 226	257	4	5	136
Division	4. RMD No. 232	249	4	6	198
	5. RMD No. 234	387	4	4	20,6
(RMD)	6. RMD No. 236	302	4	6.	270
	7. RMD No. 238	137	4	5	148.5
	8. RMD No. 240	131	4	4	117
	9. RMD No. 242	300	. 4	5	210
	10. Management Division of Bridge and	180	4	4	6 standby
	Ferry on Red River				ferries
Health Education	1. Transport Rehabilitation Center	41	2	3	
Research	No. 2				

(2) Budget Allocations

In the case of RRMU No. 2, only routine maintenance budget has been allocated to RMD and the other budgets for medium and large scale maintenance/repair has been allocated mostly to the Transport Construction and Repair Company (refer to Table 12.2).

Category of	Allocated Budget (million Dong)			
Maintenance/Repair	1994	1995		
Routine Maintenance	12,886	16,136		
Medium Scale Repair	23,712	24,484		
Large Scale Repair	14,912	17,327		
Notes 1) Routine Maintenance lane markings, weeds 2) Medium Repair:		les, drainage, signs, ay (2 cm ~ 4 cm),		
163 km/year 3) Large Scale Repair: 29 km/year	Pavement overla	ny (15 cm ~ 20 cm),		

Table 12.2 Allocated Budget for Maintenance and Repair

(3) Vehicles and Equipment Presently Possessed

1) Transport Construction and Repair Company

Transport construction and repair company possesses the following vehicles and equipment for road maintenance and repair (refer to Table 12.3).

Table 12.3Vehicles and Equipment Possessedby Transport Construction and Repair Company

Type of Equipment			· · ·	Amou	unt		
Concrete mixing pland				1			
Heavy truck, 10 tons				10			
Steel wheel roller	1.11	÷	· .	1		:	
Tire roller			•	1	- -	. ·	
Macadam roller	•	;		3			:
Passenger Car				3			N

2) RMDs

RMDs suffer from lack of routine maintenance equipment. In most cases, available equipment consists only of a grader, pick-up truck, and roller.

12.3 Basic Principles of Highway Maintenance

(1) Purpose

The purpose of maintenance activity is to keep the roadway, surfaces, bridges and other installations in as usable and as safe a condition as situation permits. Certain basic principles and ideas can help to achieve this purpose.

(2) Minimum Interference with Traffic

In conformance with the idea of keeping surfaces usable, maintenance activities should interfere as little as possible with the normal flow of traffic at the facility.

When it does become necessary to close the facility to all traffic, alternate facilities, such as a detour route, should be selected, and all haste should be made to reopen the facility as soon as practicable.

(3) Importance of Correcting the Basic Cause of Failures

Any maintenance job should involve a investigation to find the cause of the particular damage or deterioration which is to be corrected. That cause must be remedied before the repair is made. To ignore the cause of the damage is to invite prompt reappearance of the damage. This is wasteful, and justifiable only when making temporary repairs to meet immediate minimum needs under urgent conditions.

(4) Categories of Maintenance Work

Categories of highway maintenance can be divided into routine maintenance, periodic maintenance and incidental maintenance.

Routine maintenance is based on routine (daily) inspection of the condition of pavement, cut and fill slopes, drainage, bridges and other structures and facilities to monitor any defects and damages to them. The results of routine inspection should be promptly reported to the maintenance office for follow-up maintenance works as required.

Periodic maintenance is based on detailed inspection to be performed at certain time intervals such as weekly, monthly or yearly depending on the type and kind of facilities, including checking and testing the condition of various structures and facilities. Defects and damages must be reported for repairs or remedies. Periodic maintenance also covers such works as maintenance of road marking and painting.

Incidental maintenance is basically the work to be carried out to restore the highway and the related facilities to their normal operating condition after they are damaged by road accident or natural causes.

12.4 Maintenance Inspections

12.4.1 Purpose

The purpose of maintenance inspections is to detect early evidences of defects before actual failure occurs. Frequent inspections and effective follow-up procedures prevent minor defects from becoming serious and casing major repair. Special vigilance must be exercised during rainy seasons, and after every heavy storm or flooding.

12.4.2 Pavement Inspections

Surface defects can usually be attributed to poor subgrade or base condition, inadequate drainage, or both. An inspection of surface defects should include a careful inspection and investigation of the causes of those surface defects. No surface repair is profitable unless the cause is first corrected. Another reason for surface defects is the excessive load or use to which a particular area may be subjected.

12.4.3 Drainage Inspections

Inspections of drainage systems should assure that all drainage channels and structures are unobstructed by debris of any sort. Culverts should be checked for structural damage. Checkdams should be inspected for debris and excessive erosion conditions. The reasons for water pounding on, or adjacent to, the surfaced areas should be determined. Drainage inspections should be made during or following every storm.

12.4.4 Cut and Fill Slopes Inspections

Due to the adverse soils and weather conditions prevailing in the area, the frequent inspections of cut and fill slopes are extremely important. At major landslide areas, sometimes observation using transit and other surveying equipment and tools will be necessary to identify the potential landslide at an early stage.

12.4.5 Bridges Inspections

Generally, bridge inspection is carried out in various categories, according to the situation and purpose.

(1) Routine Inspection

All bridges are included in the routine inspection, which is conducted in conjunction with the routine road inspection. This is for early discovery of any defects and is conducted as a solely visual inspection.

(2) Periodic Inspection

All bridges are included in the periodic inspection, which is conducted at regular intervals of time to ensure overall structural safety. This is chiefly a visual inspection but sometimes includes the use of simple tools or instruments.

(3) Emergency Inspection

An emergency inspection is necessary when any bridge experiences an earthquake, a heavy wind (typhoon), unusual flooding or other incident; or if such is predicted. When an emergency situation has been detected in the process of routine or periodic inspection, a special check-up is required to confirm the safety of the bridge in question.

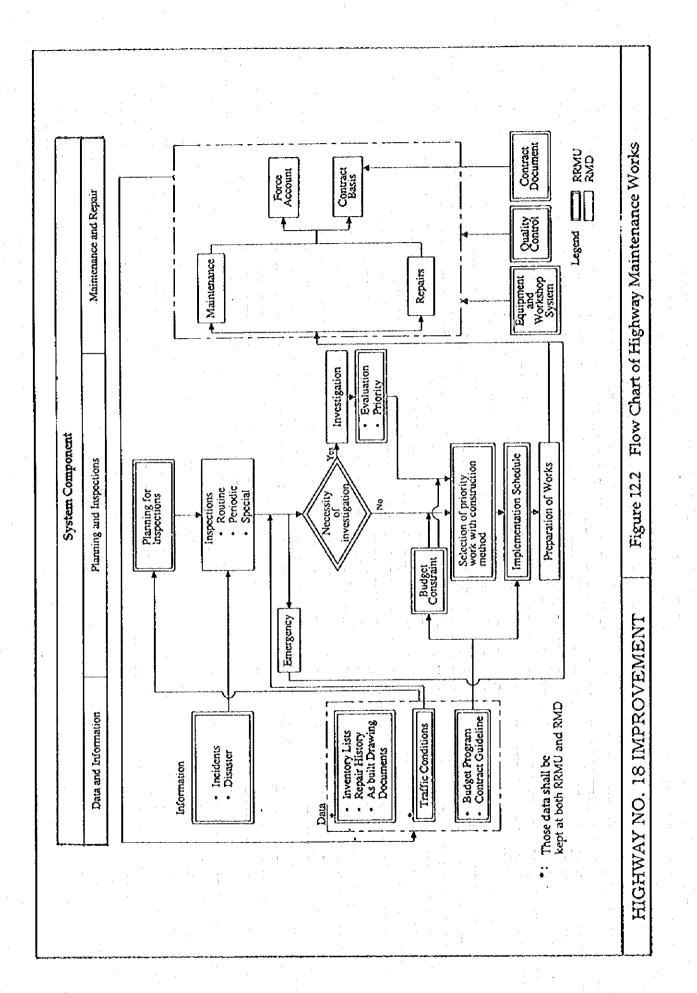
12.5 Management and Maintenance Plan

12.5.1 System to Operate Highway Maintenance

(1) General

Basic principles of highway maintenance and the outline of maintenance inspections were discussed in Sections 12.3 and 12.4, including the categories of maintenance work (Paragraph 12.3 (4)).

The following describes i) Overall system of highway maintenance, ii) Maintenance operation system, iii) Equipment workshops, iv) Data base and management system, keeping in mind the present organization situation mentioned above in Section 12.2.


(2) Overall System of Highway Maintenance

In order to attain proper highway management and maintenance, all systems of highway maintenance have to be carried out orderly and in a proper manner, and established organization must be consistent with the requirement of work components and needed capacities. Figure 12.2 shows the general flow chart of the recommended overall highway maintenance works.

(3) Maintenance Operating System

Highway maintenance covers various activities related to inspections, maintenance and repairs, which require quick response and are appropriate to keep the highway open to traffic.

RRMU should be responsible for the following activities of highway maintenance by force account or on contract basis, depending on the nature of the work:

- a. Inspections by maintenance patrol unit;
- b. Road surface cleaning;
- c. Vegetation control;
- d. Repairs of traffic safety and management facilities;
- e. Pavement maintenance and repairs;
- f. Maintenance and repair of bridges;
- g. Maintenance and repair of other structures;
- h. Disaster prevention and restoration; and
- i. Others.

The following matters must be specified to implement the above operations:

- Communications system (instruction, response, duty, decision and coordination) between headquarters of RRMU and RMD; and
- Extent of activities and responsibility of each agency.

Due to budget constraint for RRMU staff and workers, maintenance on a contract basis should be gradually increased to cope with an increase of such work to promote technical advances of contractors and/or concession companies. The following should be considered to encourage the use of contractors to carry out highway maintenance activities :

- Maintenance activities based on a monthly and annual program;
- Clarification of working criteria of maintenance and repairs;
- Formulation of contracts, supervision and acceptance system for highway maintenance work;
- Establishment of a contract system between RRMU and private firms (including road repair companies) to rent RRMU's equipment;
- Provision of guidance to the contractors as to the significance of highway maintenance.
- (4) Equipment and Workshops

1) Equipment

The types and number of maintenance equipment required at each RRMU and maintenance divisions (RMUs) are closely related to the intended service levels of the highway, the weather conditions, the types of major road structures (bridge, pavement type, etc.) and the traffic volume. Consideration whether the work will be done by force account or on a contract basis is also necessary for such determination.

2) Workshops and Depots

Workshops and depots will be located at each RRMU. However, they might be of small scale since major maintenance and repair work will be done by contractors under the supervision of RRMU.

(5) Data Base and Management System

Data base and management system is indispensable for highway maintenance. One of the most important activities is to collect reliable data, in particular, to collect and keep as-built drawings and documents including design reports and specifications, construction record, and historical repair records. These records must include inspector's observation of a non-routine incident, the related work carried out due to it, and the interference to traffic, particularly in relation to vehicular accidents and the causes of their occurrence. This function is to determine any previous incident that may relate to the present condition. Various inventories for road structures, bridges and road furnishings will be developed to maintain the highway properly.

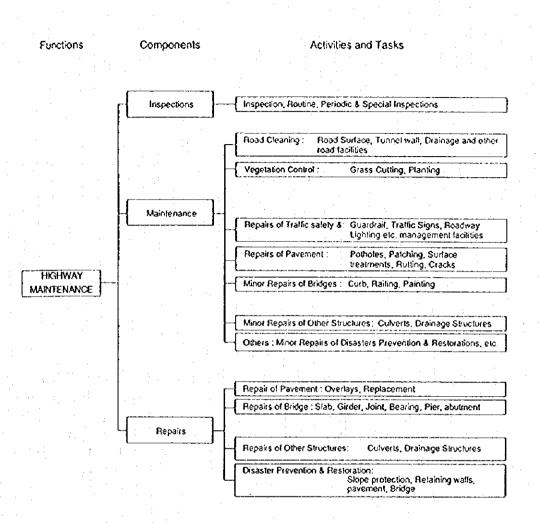
12.5.2 Planning to Operate Highway Maintenance

Highway maintenance consists of many types of work for which the scope and scale are involved, but at the same time ambiguous. Therefore, it is important to prepare a detailed work plan for each category of work in advance so that the implementation of similar works can be carried out effectively. Since inspections, maintenance and repairs are performed on the highway open to public traffic, it is necessary that the coordination should be effectively handled between RMD and RRMU headquarters. It is also necessary that a notice should be forwarded to the police office in advance and that public announcement activities are made to highway users and residents along the highway.

12.5.3 Activities and Tasks of Highway Maintenance

The activities and tasks of the highway maintenance are shown in Figure 12.3. A brief description of each activity of highway maintenance is given in three (3) components; inspection, maintenance and repairs:

(1) Inspections


Inspections are performed to identify the needs of maintenance and repair works so that timely maintenance and repairs could be made and highways be free from traffic hindrance.

(2) Maintenance

Maintenance consists of the following activities :

1) Road Cleaning

Road cleaning involves removing dirt and trash from the road and adjacent facilities to eliminate traffic obstructions.

Figure 12.3 Activities and Tasks of Highway Maintenance

2) Vegetation Control

Vegetation control consists of planting new growth, maintaining established vegetation, and removing old or objectionable vegetation to the end that grass, plants and trees may be well maintained to provide a pleasing ambiance for users.

3) Repairs of Traffic Safety and Management Facilities

Traffic safety and management facilities are directly related to traffic safety and management. The following are the facilities to be maintained and repaired:

- · Guardrail and guard post
- Traffic markings
- Kilometer post
- Roadway lighting

Traffic signs

4) Minor Repairs of Pavement

Pavement maintenance consists of pothole repair, crack sealing and patching of small area of damaged pavement and adjustments of gaps on roadway surface.

5) Minor Repairs of Bridges

Minor repairs to bridges include curbs, railings, and necessary repainting.

- 6) Others (Maintenance)
 - Maintenance of buildings, machinery, and electrical equipment as well as communication facilities is required to operate the highway maintenance activities in a proper manner.
 - Small scale repairs of disaster prevention and restoration work.

(3) Repairs

1) Repairs of Pavement

Asphalt overlay or replacement will be required when identified severe cracking and rutting caused by heavy traffic and asphalt deterioration is identified. Overlay and replacement may entail the patching and pothole repairs. An evaluation method shall be established to determine the required thickness of overlay, based on a survey and analysis of the existing pavement roughness, cracking ratio and depth of rutting.

2) Repairs of Bridges

Repair of superstructures and substructures is needed due to the damage caused by heavy traffic, accidents, weathering, scouring, etc.

Replacement and strengthening of bridge slabs, expansion joints and bearings based on the identification and evaluation of causes and defects are also required due to the damage caused by heavy traffic, accidents, etc.

3) Repairs of Other Structures

Repair of special ditches and other drainage facilities will be needed to protect the road structures.

The repairs and restoration of slope failures in cut-and-fill sections are accomplished by execution of slope protection such as construction of retaining walls, concrete cribs, mortar spraying, anchorage, vegetation, etc.

4) Disaster Prevention & Restoration of Damages Caused by Disasters

Slope failures, and pavement and structure damages can be caused by heavy rainfall, earthquakes and boat collision (in the case of navigable rivers). Slope failures are normally related to heavy rainfall, inadequate surface drainage, or water seepage. Work includes both prevention and restoration.

12.5.4 Maintenance Operations

(1) System for Operating Highway Maintenance.

Basic plan for the system was discussed in Subsection 12.5.1. The system is also applicable to the 10 concerned maintenance divisions. Within the formulated system, the following matters are emphasized to achieve efficient and economic highway maintenance.

- The force account activities of the highway maintenance (medium repair) shall be reduced gradually in scope and volume, in consideration of the technical capability of contractors. However, RRMU must undertake information collection & dissemination as well as activities requiring quick response.
- A data-base and management system is the major component for planning any maintenance work, as it is the source of all historical knowledge concerning any road structure or facility. It is also important to collect as-built drawings and documents including engineering design documents.
- Training of inspectors is important to keep the optimum highway maintenance levels. The inspectors should be trained to be responsible for inspections, recording observations and preparing inspection reports in an efficient manner.

(2) Planning of Highway Maintenance

Provided herewith is a breakdown of the planning, implementation methods, inspections, maintenance and repairs.

1) **Programming**

Highway maintenance programs will be made on annual, monthly and weekly bases, considering job priority, available resources, past work records, road inventories, road structure inventories, traffic volumes, meteorological data, etc.

2) Annual Program

Annual program will be planned to allocate the scope and scale of monthly work. The following matters will be included based on the annual budget:

- Appropriate monthly activities for inspection, maintenance and repairs will be planned based on the characteristics of the work and

traffic conditions. The volume of work shall be allocated carefully so as not to concentrate on a certain period;

- Personnel, equipment and materials will be assigned properly.
- The programming will consider local meteorological conditions (temperature, rainfall, etc.);
- Maintenance and repairs of pavement will be undertaken before damage become serious. Cracks, potholes and corrugation should be repaired before the rainy season, since these worsen with rainfall;
- For the drainage system to function properly the cleaning and repairs of drainage facilities shall be conducted at an appropriate time.

3) Monthly Program

A monthly program will be planned to allocate daily maintenance and repairs. Changes to the programs can be made flexibly in case a particular repair work is judged to have a higher priority during the actual implementation of the plan.

A monthly program will be established based on the annual program, considering the following:

- Appropriate daily activities for inspection, maintenance and repairs will be assigned throughout the month.
- Appropriate traffic control will be arranged for the maintenance and repairs, considering the characteristics of the work, month, date and time-frame.
- Coordination with other jobs will be made to ensure smooth operation.

4) Weekly Program

Weekly program will be planned to allocate and adjust daily activities for inspections, maintenance and repairs. A weekly program will be made based on the monthly program, considering the following:

- Monthly activities will be broken down into weekly and daily activities;
- The amount of the previous weeklies work accomplishment will be checked and reflected in the following week;
- The accumulated amount of weekly work accomplishment in a month will be reviewed for updating the weekly program of the following month.

(3) Implementation of Highway Maintenance

1) General

Highway maintenance will be conducted, in careful consideration of traffic regulations, traffic safety and circumstances along the highway.

2) Safety During Maintenance and Repairs

Attention should be paid to the following items during maintenance and repairs:

- Personnel in charge of traffic control will be assigned on-site for the safety of workers and motorway users;
- Guide signs and traffic markings will be installed to clearly mark lanes restricted to highway users.
 - Lighting facilities will be provided during night maintenance and repairs.
 - Equipment, facilities and materials will be neatly located in the work area for efficient and safe work operations.
- Excavated and excess materials will be disposed of immediately so that the highway surface is always free from obstacles during the work activities.

Personnel in charge of traffic control will be assigned during the maintenance and repairs. They will ensure smooth and safe traffic flow and worker's safety.

(4) Traffic Control Measures

The date, time-frame, construction methods and proposed traffic control measures will be analyzed for the highway maintenance activities based on traffic volumes, number of traffic lanes and detours.

12.6 Recommendations

12.6.1 Organization

(1) Presently maintenance of Highway No. 18 is excluded from the national highways which RRMU No. 2. No is responsible. No appropriate division exists for Highway No. 18 and provincial department of people's committee has been undertaking maintenance.

It is recommended that a new RMD appropriate to the maintenance of the Highway No. 18 should be set up at an early date to enable the technical transfer and on-the-job training concerning highway maintenance through the execution of the Highway No. 18 improvement.

- (2) The force account activities of highway maintenance (medium and large repair) will be reduced in scope and volume, in consideration of the technical capability of contractors. However, RMU must undertake information collection & dissemination, and activities requiring a quick response.
- (3) A data-base and management system is the major component for planning any maintenance work as it is the record of all past experience concerning all road structures and facilities. It is also important to collect as-built drawings and documents including engineering design documents.

12.6.2 Required Vehicles and Equipment for Maintenance Operations

(1) Required Vehicles and Equipment

Maintenance and minor repairs will normally require the following vehicles and equipment (refer to Table 12.4).

Table 12.4 Required Vehicles and Equipment for Maintenance and Minor Repai	Table 12.4	 Required V 	vehicles and	Equipment for	r Maintenance	and Minor Repair
--	------------	--------------------------------	--------------	---------------	---------------	------------------

Highway maintenance	Vehicles and equipment required		
1. Inspections	•Inspection car (land cruiser type) • Sedan		
2. Road cleaning	Truck •Sprinkler truck		
3. Vegetation control	•Truck • Mower		
4. Asphalt pavement and shoulders	•Grader •Kettle •Generator •Vibration roller •Loader •Compressor •Steel wheel roller •Truck •Pavement breaker •Asphalt distributor •Compactor		
5. Bridge	•Truck with small crane •Truck • Welding machine		
6. Cut slopes and disaster	•Bulldozer • Loader • Truck		

(2) Number of Vehicles and Equipment

Table 12.5 shows the recommended type and number of vehicles and equipment for the routine maintenance and minor repairs of RMU No. 2 which has ten (10) road maintenance divisions.

\$78.04m	Vehicles and Equipment	Amount
1.	Sedan	22
2.	Inspection Vehicles (Land Cruiser Type)	12
3.	Pick up Truck	10
4.	Truck	20
5.	Sprinkler Truck	5
6.	Asphalt Distributor	5
7.	Steel Wheel Roller	10
8.	Loader	10
9.	Tamper	20
10.	Generator	2
11.	Bulldozer	5

Table 12.5 Vehicles and Equipment for RRMU No. 2

12.6.3 Training of Inspectors and Engineers

- (1) Training of inspectors and engineers for the maintenance is important to keep optimum highway maintenance levels. The inspectors and engineers should be trained to be responsible for inspectors, recording observations, preparing inspection reports planning maintenance works and managing operations in an efficient manner.
- (2) To upgrade management capability of PMU No. 18, efforts are required to develop expertise in budget planning and management, as well as in project planning and realization. To alleviate the present conditions, hiring of professionals and staff training will be necessary.

Chapter 13

PROJECT COST ESTIMATE

CHAPTER 13

PROJECT COST ESTIMATES

13.1 General

The estimate of the project cost was based on the results of preliminary engineering design, quantity take-off of each work item, and the studies on construction method and operation and maintenance of Highway No.18 as described in the preceding chapters.

The project cost discussed in this chapter consists of the following items.

- Initial Investment Cost
 - Construction;
 - Land Acquisition and Resettlement;
 - Engineering Services;
 - Supervision Services; and
 - Physical Contingency.

Additional Investment Cost

- Overlay.

The basic premises in estimating the project cost are as follows :

- 1) All the construction work will be executed by contractor(s) to be employed for the highway improvement.
- 2) The unit cost of each cost component was determined based on the economic conditions prevailing in January 1996 (USD 1.0 = 10,950 Dong).
- 3) Engineering services cost is assumed to be 4% of the construction cost and land acquisition and resettlement cost.
- 4) Supervisory service cost is assumed to be 6% of construction cost.
- 5) Physical contingency is estimated to be 10% of the total of construction cost, land acquisition and resettlement cost, engineering services cost and supervisory services cost.

The project cost is estimated in financial cost.

13.2 Construction Cost

13.2.1 Unit Cost of Construction Works

The unit cost of construction works are analyzed based on the labor cost, material costs, equipment cost, overhead and profit for chief work items. The analyzed unit cost are compared with current bid prices and adjusted as required to obtain the most realistic prices.

(1) Unit Cost of Labor

Table 13.1 shows the unit cost of labor applied in the construction cost estimate, which include such allowances as social benefits, insurance, etc. and are based on an eight-hour work day.

Classification	Unit Cost per Hour (Dong)
Senior Field Engineer	32,300
Junior Field Engineer	19,700
Foreman	22,700
Driver	10,800
Equipment Operator	14,700
Skilled Labor	21,000
Unskilled Labor	9,000

Table 13.1Unit Cost of Labor

(2) Unit Cost of Materials

Table 13.2 shows the unit cost of major construction materials. The cost of imported materials is based on the CIF Hai Phong including port handling and clearance charges and import duties. The cost of local materials is based on the market prices in Ha Noi area.

Table 13.2 U	Init Cost -	of Maioı	Materials
--------------	-------------	----------	-----------

Description	Unit	Unit Cost (Dong)	Tax/Duty Component (Dong)
Portland Cement	kg	900	90
Asphalt	ton	2,400,000	240,000
Reinforcing Steel	ton	3,5000,000	350,000
Prestressing Strand	kg	26,700	2,670
Gasoline	liter	3,300	330
Diesel	liter	2,800	280
Fine Aggregate	cu.m	54,000	5,400
Coarse Aggregate	cu.m	70,200	7,020
Timber	cu.m	2,100,000	210,000

(3) Unit Cost of Equipment

Table 13.3 shows the unit cost of major construction equipment. The costs of imported equipment are based on the CIF Hai Phong including port handling and clearance charges and import duties.

Equipment	Capacity	Unit Cost (Million Dong)	Import Duty (Million Dong)
Dump truck	8 ton	968	88
Dump truck	10 ton	1,441	131
Truck crane	8 ton	1,320	120
Crawled crane	20 ton	4,818	438
Concrete pump truck	80m3/hr	3,619	329
Transit mixer	6m3	1,441	131
Back hoe	1.2m3	2,409	219
Motor grader	3.6m	1,804	164
Macadam road roller	10 ton	1,441	131
Asphalt finisher	3.5m	5,423	493
Asphalt mixing plant	40 t/hr	8,437	767
Concrete mixing plant	30m3/hr	4,213	383
Floating crane	60 ton	18,040	1,640

 Table 13.3
 Unit Cost of Major Equipment

(4) Overhead and Profit

Overhead and profit were estimated as 25% of the sum of labor, material and equipment costs (i.e., direct cost).

(5) Unit Cost for Major Construction Work Items

Table 13.4 shows unit cost for major construction work items based on the unit cost mentioned above.

Table	13	.4
Table	10	.4

3.4 Unit Cost for Major Construction Work Items

	Item	Unit	Unit Cost (Dong)
1.	Earthwork		
	Soil Excavation	cu.m	18,000
	Embankment (Borrow Material)	cu.m	60,000
2.	Pavement	:	
	Aggregate Subbase Course	cu.m	100,000
÷	Asphalt Treated Base Course	cu.m	750,000
	Asphalt Concrete Surface (t = 10 cm)	sq.m	110,000
- 	Overlay (t = 10 cm)	sq.m	130,000
3.	Drainage Structures		
	Pipe Culvert (D = 1.0 m)	l.m	1,200,000
	Box Culvert (3.0 x 3.0)	l.m	10,300,000
4	Bridges		
	RC Slab Bridge (L < 10 m)	sq.m	6,000,000
	RC Slab Bridge (with Piling)	sq.m	8,000,000
	RC T-Beam Bridge (10 m < L < 20 m)	sq.m	8,000,000
	RC T-Beam Bridge (with Piling)	sq.m	10,000,000
	PCI-Beam Bridge (20 m < L)	sq.m	11,000,000
	PCI-Beam Bridge (with Piling)	sq.m	13,000,000

13.2.2 Estimated Construction Cost

The summary of estimated construction cost by each construction section and by each construction stage is shown in Table 13.5.

Section	Section	Initial Stage	Final Stage
No.		(Million Dong)	(Million Dong)
1	Noi Bai - Bac Ninh	517,789	488,516
2	Bac Ninh - Chi Linh	432,063	-
3	Hong Gai - Cua Ong	610,797	-
4	Cua Ong - Tien Yen	51,212	173,619
5	Tien Yen - Bac Luan	122,144	363,352

 Table 13.5
 Summary of Estimated Construction Cost in 1996 Prices

See Appendices 13.1 and 13.2 for the breakdowns of estimated construction cost and estimated land acquisition and resettlement cost respectively.

13.3 Land Acquisition and Resettlement Cost

Land acquisition and resettlement cost is estimated based on the area of required land acquisition estimated in the preliminary engineering design and the estimated number of resettled families in the environmental study.

Unit costs are estimated in accordance with the following criteria :

- a) Unit costs of land acquisition are decided based on the "Regulating Price Frame of Various Kinds of Land", Decrees No.87/CP, August 17, 1994.
- b) Resettlement costs are estimated based on discussion with PMU 18 and houses up to 7.0m from the toe of embankment or upper edge of cut were counted.
- c) Compensation cost for production is based on the following criteria :

2 kg paddy/sq.m/year x 1,800 dong/kg x 2 years = 7,200 dong/sq.m

d) Other compensation (cost for preparing new house lots, paying 3 months subsistence allowance, relocating house materials to new site, providing training for one person of each household) is estimated as follows :

(Number of households) x 6,000,000 dong/each

Unit costs of land acquisition and resettlement are shown in Table 13.6, and the summary of estimated land acquisition and resettlement cost by each section

and by each improvement stage is shown in Table 13.7. Refer to Appendix 13.2 for the breakdown of estimated land acquisition and resettlement cost.

	Description	Unit	Unit Cost (Dong)
(1)	Land Acquisition/Compensation	. t.	
1	Inhabited Land along Existing Road	sq.m	150,000
· .	Inhabited Land in Rural Area	sq.m	19,400
	Rice Field/Cultivated Area	sq.m	12,100
	Forest Area	sq.m	8,920
(2)	Crop Compensation		
	Rice	sq.m	7,200
(3)	Resettlement/Compensation		
:	Permanent House	sq.m	1,300,000
	Temporary House	sq.m	400,000
		· .	
(4)	Other Compensation	·	1
:	Cost Relevant to Relocating House	nos.	6,000,000

Table 13.6	Unit Costs for Land Acquisition and Resettlement

13.4 Estimated Project Cost

13.4.1 Estimated Project Cost in the Initial and Final Improvement Stages

The summary of project cost in 1996 prices is shown in Table 13.8 together with foreign and local currencies of financial cost shown in Table 13.9. The project cost is expressed in terms of financial cost and is divided into the investment cost in initial and final stages by each highway improvement section.

13.4.2 Additional Investment Cost

Table 13.10 shows summary of additional investment cost of each section. The additional investment costs are the cost of pavement overlay which is to take place every 6 years after the completion of construction.

<u>13 - 6</u>

Table 13.7Summary of Estimated Land Acquisition and
Resettlement Cost (Cost in Million Dong)

Section 1: Noi Bai - Bac Ninh		
Description	Initial Stage	
(1) Land Acquistion/Compensation	23,880	
(2) Crop Compensation	8,322	
(3) House Resettlement/Compensation	870	
(4) Other Compensation	18	
Total	33,090	

Section 2: Bac Ninh - Chi Linh

Description	Initial Stage	Final Stage
(1) Land Acquistion/Compensation	3,060	20,293
(2) Crop Compensation	321	1,731
(3) House Resettlement/Compensation	3,980	3,729
(4) Other Compensation	192	240
Total	7,553	25,993

Section 3: Hong Gai - Cua Ong

Description	Initial Stage
(1) Land Acquistion/Compensation	36,180
(2) Crop Compensation	325
(3) House Resettlement/Compensation	46,047
(4) Other Compensation	2,208
Total	84,760

Section 4: Cua Ong - Tien Yen

Description	Final Stage
(1) Land Acquistion/Compensation	2,384
(2) Crop Compensation	220
(3) House Resettlement/Compensation	5,709
(4) Other Compensation	0
Total	8,313

Section 5: Tien Yen -Bac Luan

Description	Initial Stage	Final Stage
(1) Land Acquistion/Compensation	1,161	6,529
(2) Crop Compensation	397	1,442
(3) House Resettlement/Compensation	1,103	3,276
(4) Other Compensation	90	264
Total	2,751	11,511

Table 13.8 (1)

Summary of Project Costs in 1996 Prices

	Description	Financial Cost
		(Million Dong)
(1)	Construction	517,789
(2)	Land Acquisition and Resettlement	33,090
(3)	Engineering Services	22,035
(4)	Supervision Services	31,067
(5)	Physical Contingency (10%)	60,398
	Total	664,379

Section 1 : Noi Bai - Bac Ninh (Initial Stage)

Section 1: Noi Bai - Bac Ninh (Final Stage)

	Description	Financial Cost (Million Dong)
(1)	Construction	488,516
(2)	Land Acquisition and Resettlement	0
(3)	Engineering Services	19,541
(4)	Supervision Services	29,311
(5)	Physical Contingency (10%)	53,737
	Total	591,105

Section 2 : Bac Ninh - Chi Linh (Initial Stage)

	Description	Financial Cost (Million Dong)
(1)	Construction	432,063
(2)	Land Acquisition and Resettlement	7,553
(3)	Engineering Services	17,585
(4)	Supervision Services	25,924
(5)	Physical Contingency (10%)	48,313
	Total	531,438

Table 13.8 (2)

Summary of Project Costs in 1996 Prices

	Description	Financial Cost (Million Dong)
(1)	Construction	415,923
(2)	Land Acquisition and Resettlement	25,993
(3)	Engineering Services	17,677
(4)		24,955
(5)	Physical Contingency (10%)	48,455
	Total	533,003

Section 2 : Bac Ninh - Chi Linh (Final Stage)

Section 3 : Hong Gai - Cua Ong (Initial Stage)

-	Description	Financial Cost
		(Million Dong)
(1)	Construction	610,797
(2)	Land Acquisition and Resettlement	84,760
(3)	Engineering Services	27,822
(4)	Supervision Services	36,648
(5)	Physical Contingency (10%)	76,003
	Total	836,030

Section 4 : Cua Ong - Tien Yen (Initial Stage)

	Description	Financial Cost (Million Dong)
(1)	Construction	51,212
(2)	Land Acquisition and Resettlement	0
(3)	Engineering Services	2,048
(4)	Supervision Services	3,073
(5)	Physical Contingency (10%)	5,633
		61,966

Table 13.8 (3) S

Summary of Project Costs in 1996 Prices

	Description	Financial Cost		
•		(Million Dong)		
(1)	Construction	173,619		
(2)	Land Acquisition and Resettlement	8,313		
(3)	Engineering Services	7,277		
(4)	Supervision Services	10,417		
(5)	Physical Contingency (10%)	19,963		
		219,589		

Section 5 : Tien Yen - Bac Luan (Initial Stage)

	Description	Financial Cost
		(Million Dong)
(1)	Construction	122,144
(2)	Land Acquisition and Resettlement	2,751
(3)	Engineering Services	4,996
(4)	Supervision services	7,329
(5)	Physical Contingency (10%)	13,722
	Total	150,942

Section 5 : Tien Yen - Bac Luan (Final Stage)

	Description	Financial Cost
		(Million Dong)
(1)	Construction	363,352
(2)	Land Acquisition and Resettlement	11,511
(3)	Engineering Services	14,995
(4)	Supervision Services	21,801
(5)	Physical Contingency (10%)	41,166
;	Total	452,825

Table 13.9 Summary of Project Costs of Foreign and Local Currency in 1996 Prices

	. · · · · ·			(Unit: Mill	ion Dong)
			Financial Cost		
	·. [Total	Foreign Currency	Local Cu	rrency
Section I : Noi Bai - Bac Ninh	Initial Stage	664,379	382,629	281,750	(75,338)
	Final Stage	591,105	360,037	231,068	(70,993)
Section 2 : Bac Ninh - Chi Linh	Initial Stope	531,438	318,664	212,774	(62,776)
Section 3 : Hong Gai - Cua Ong	Ininal Stage	836,030	452,768	383,262	(89,135)
Section 4 : Cua Ong - Tien Yen	Initial Stage	61,966	37,743	24,223	(7.436)
	Final Stage	219,589	128,213	91,376	(25,253)
Section 5 : Tien Yea - Bae Luan	Initial Stage	150,942	90,105	60,837	(17,750)
	Final Stage	452,825	268,145	184,680	(52,820)

Note : () Tax amount included in Local Currency.

Table 13.10 Summary of Additional Investment Cost

	Description	Assumed Year	Financial Cost
		of Construction	(Million Dong)
(1)	Section 1		
	Overlay for 2-Lane	2006	16,608
		2012	16,608
	Overlay for 4-Lane	2018	33,261
(2)	Section 2		
	Overlay for 2-Lane	2006	17,109
•	Overlay for 4-Lane	2012	31,081
		2018	31,081
(3)	Section 3		a de la companya de l La companya de la comp
	Overlay for 4-lane	2006	33,302
		2012	33,302
		2018	33,302
(4)	Section 4		
	Overlay for Existing Road	2005	9,667
	Overlay for 2-Lane	2015	17,468
(5)	Section 5		
	Overlay for 2-Lane (B.P.)	2005	3,184
		2011	3,184
	Overlay for 2-Lane	2015	29,108
	Overlay for 2-Lane (B.P.)	2017	3,184


Chapter 14

ECONOMIC PROJECT ANALYSIS

14.1 Estimation of Economic Project Cost

The costs estimated in Chapter 13 are based on the market prices. Here these will be corrected to the economic price (shadow price) in order to compare costs and benefits.

Structure of Project Evaluation

Economic costs were calculated by correcting distorted prices. (Refer to Table 14.1). Thus the current actual value of resources is expressed for imported materials, domestic materials, labors and right-of-way. This makes possible comparisons for optimum use of domestic resources.

		a war war war war and a state of the
Resources	Market Price Distortion	Correction to Economic Price
1. Cost not related to project	Miscellaneous cost not related to project consumption such as taxes and subsidies	activities
2. Foreign materials	Official foreign exchange rate and tariffs are distorted	determined by international competitive market
3. Domestic materials	Price is distorted by regional difference, monopoly and partial competition	on exports, to make price closer to international free competitive market.
4. Laborers	Wage is distorted by minimum wage, the unemployed, and labor union.	unskilled laborers to bring the wage closer to real value of workers.
5. Right-of-Way	Land price and ground rent distorted by speculation and policies.	To calculate marginal productivity in order to bring the price closer to free competition.
6. Capital market	Unsuitability of interest rate and financing for enterprise with good conditions limits selection of optimum capital investment.	rescues by capital opportunity cost.

Table 14.1 Items to be Corrected to Economic Price from Market Price

(1) Elimination of Cost of Unrelated Items of the Project

Taxes, construction fund interest, and subsidies, etc., are not direct costs (not direct consumption of resources): they simply represent money transfers and thus are eliminated from cost and benefit.

Vietnam's economic renovation program, which covers all the major sectors of the economy, began in 1989 and was accelerated in 1989. In December 1989, it was decided by Congress to implement import and export tax, real estate tax, special sales tax, individual income tax and others. Since then some additional taxes have been added. Tax rate differs depending on construction material and construction-related transactions.

Amount to be Deducted from Financial Cost as Tax

12 % of r	naintenance	e cost and of	construction	cost
<i>,</i> .	12 % of	engineering	cost	•
•		supervision		

The 10% figure is based on recent data provided by MOT from the tender document for Highway No. 5, and on the recent estimate from the World Bank's appraisal report of highway rehabilitation report.

(2) Economic Cost of Foreign Costs

Foreign fund of construction cost in Chapter 13 is converted to dong at 1 US = 10,950 dong. At construction cost estimation of the project, domestic and foreign ratio is estimated at 40:60. The real price of dong is calculated in Table 14.2. There is not much deference between the actual exchange rate and the shadow price.

Table 14.2 Correction Index of Economic Price of Foreign Materials

				(million dong)			
Items	1990	1991	1992	1993	1994		
(1). Total Import	2,752.4	2,338.1	2,540.7	3,924.0	5,000.0		
(2). Total Export	2,404.0	2,087.1	2,540.7	2,985.2	3,600.0		
(3). Total Import Tax	81.8	67.3	175.2	-			
(4). Total Export Tax	39.7	48.3	170.4	-	- i -		
(5). Export Subsidies							
(6). (1) + (2)	5,156.4	4,425.2	5,121.4	6,909.2	8,600.0		
(7), $(6) + (3) - (4) + (5)$	5,198.5	4,444.2	5,126.2	-	-		
(8). (6) + (7)	0.992	0.996	0.998	-	-		
(9). Foreign Exchange Rate	5,018	9,080	11,209	10,950	10,950		
(dong)							

(Source : Statistical Year Book 1994 by Statistical Publishing House)

Foreign funds are expressed in domestic currency

			w Exchang		9	DUNAL SPECE
÷	10,950 Dong	x	1 / 0.998	= 1	1.060 Dong	

(3) Economic Cost of Domestic Materials

In order to express values of domestic materials in currency, they are corrected into shadow price which is determined by the international free market. In this study, however, local materials are considered as economic cost after tax is exempted. Shadow price of domestic materials will be covered by the difference of plus and minus of the sensitivity cost.

	Delo	e of domestic mater	dei l
	<u>1 110</u>	e of domestic mater	1415
and the second		m ć x.	
	Market price =	Transfer Items =	Economic Price I
a man in the state of the local life of the local life of the state of	มหลายมูลแหน่ง และการการที่มีและการการการการการการการการการการการการการก	a sector a supervise provide a supervise a supervise the supervise for an	

(4) Economic Cost of Laborers

Labor cost consist of two factors: (a) unskilled labor cost for the project (8 % of construction cost in this study), and (b) skilled labor cost of engineering services (4% of construction cost).

grand in the contract sector of grand sectors and a contract sectors

In this study, as adopted in an ordinary feasibility study, shadow price is not applied to costs of foreign engineers or domestic engineers, as their fees will be determined by competitive market.

	-		
		Economic Cost of Engineers	· · · · · · · · · · · · · · · · · · ·
			and the second
Value of Engineere		Free Market Competitive price	 Economic Price
value of Engineers			Leononne i nee

Usually, as these unemployed people come from agriculture regions, the opportunity cost of unskilled labor is considered equal to per capita income of agricultural sector.

Income Per Capita in Agricultural Sector

Labor force (populati	ion)	1
Income		
Per Capita Income	· .	

29,998,000 30,333,000 Million Dong 580,000 Dong

This is approximately equal to 0.25 % of the ordinary wage.

Shadow Wage of Unskilled Labor	
Labor Cost \times 0.25 = Economic Cost	

(5) Economic Cost of Right-of-Way Cost

In principle, the economic cost of right-of-way is calculated by productivity of right-of-way. For example, in the case that rice production was stopped for road construction, the cost is calculated as an added value of the production of a rice field. In the case of using public land, there will be no acquisition involved, but the economic cost is calculated at estimated value of productivity of the land for economic project analysis.

Table 14.3	Cost of Right-of-Way	and Percentage Occupied in
•	Construction Cost	

Section	Construction Stage	Land Acquisition Cost	%
Section 1	Initial stage	33,090	5.0 %
	Final stage	0	
Section 2	Initial stage	7,553	1.4 %
2.1 	Final stage	25,992	4.8 %
Section 3	Initial Stage	84,760	10.1 %
	Final stage	8,313	3.8 %
	Initial stage	2,751	1.8 %
occubit o	Final stage	11,259	2.5 %
			•

Land acquisition cost is compensated at resettlement cost which is equal to the land productivity. This study, therefore calculated as follows:

Land Acquisition Cost of Market Price = Resettlement Cost = Economic Cost

(6) Estimation of Total Economic Cost of the Project

Table 14.4 shows economic cost corrected from project capital cost at market price. In the next subsection, benefit - cost comparison analysis is used to find this economic cost. Annual allocation of costs will be calculated according to construction plan in Chapter 10.

Table 14.4 Elliquiciai and Economic Cost	Table 14.4	Financial and Economic Cos	ł
--	------------	----------------------------	---

Section	Initial Stage		Final Stage	
	Financial Cost	Economic Cost	Financial Cost	Economic Cost
Section 1: 2 + 2 lanes	664,379	554,082	591,105	487,210
Section 2: 2 + 2 lanes	531,438	439,509	533,003	444,408
2 lanes	531,438	439,509	-	-
Section 3: 4 lanes	836,030	705,676	-	-
Section 4: Overlay + 2	61,966	51,075	219,589	182,620
lanes	$(A_{i},A_{i}) = (A_{i},A_{i}) + (A_{i},A_{i})$			
Section 5: Overlay + 2	150,942	124,950	452,825	375,488
lanes				

14.2 Estimation of Economic Benefit

14.2.1 Road Users and Road Benefits

(1) Effects of Constructing Project Road

Table 14.5 Effects by Constructing Project Road

 The project increases work for construction companies, construction material companies and truck transport companies.---Positive effect
 Driving time and cost will decrease.---Direct user effect
 Traffic accidents and casualties will decrease.---Prevention of loss

- 4. Decrease of road maintenance cost; abandonment of ferry crossing.---Saving of capital
- 5. Driving will be more comfortable.---Increase of Comfort
- 6. Rice production, mining exploitation and tourism development will be enhanced.---Development effect
- Increase of employment, improvement of social level of life, enhancement of equitable income distribution, and increase of foreign currency.---Social and economic effect
- 8. Decrease of rice production by the use of land for roads.---Negative economic effect on production

9. Increase of air pollution and vibration due to increased traffic.---Negative environmental effect from pollution

- 1) The positive effect is indirect. Indirect effect is not estimated due to lack of input output table.
- 2) The direct users' effects constitutes the greater part of benefits analysis of the present study.
- 3) Prevention of loss is measurable. However the amount is so small that it was not included in the calculation.
- 4) As for saving of capital cost, the road maintenance cost is so small that it was not included here. Only the capital saving of Pha Lai ferry is accounted in project section 2.
- 5) Driving comfort is not calculated.
- 6) As for effects from development, increase from development-related traffic volume is included in the calculation.
- 7) Social and economic effects are considered in sensitivity analysis.
- 8) Negative effects on production are taken into account as land cost in benefit cost analysis.

9) Negative effects from road environmental pollution are calculated in cost estimation for installing cost of noise pollution prevention facilities.

(2) Beneficiaries and Types of Benefits of Highway Project

Accordingly, measurable effects of the road project are called "benefits" hereafter. Measurable benefits will be calculated according to (1) the beneficiaries, and (2) benefit units. The relationship between (1) and (2) is as the Table 14.6.

1.	Normal Traffic :	
	Without project	Slow running speed, High running cost
	With project	High running speed, Lower running cost
	Types of Benefits	Saving in driving time and cost
2.	Diverted Traffic :	
-	Without project	Use of other road, of railroad, or ship
	With project	Less distance, faster, less cost
	Types of Benefit	Difference of saving compared with detour
		route
		Difference of saving compared with railroad
		and ship
3.	Generated and Induced	
	Traffic :	
	Without project	Bicycles and pedestrians, could not use the road
	With project	New potential users of road
	Types of Benefit	Additional half of the normal traffic benefit
4.	Development Related	
	Traffic :	
	Without project	Resources remain undeveloped
	With Project	Production and development realizable
	Type of benefits	Development benefits
5.	Ferry boat user:	
	Without project	Not time-economic
	With project	Time-economic
	Type of benefits	Saving of ferry boat cost

Table 14.6 Types of Benefits of Highway No. 18 Project

- 1) The benefits to normal traffic in regards to running time and cost saving are explained more fully in following passages on vehicle unit cost estimation.
- 2) Out of diverted traffic benefits, the saving benefit of detouring is calculated in benefits costs analysis of section 1, Noi Bai Bac Ninh and section 2, Bac Ninh Chi Linh. Saving benefits from railroad and ship is included in the OD (Origin Destination) traffic volume estimate among 33 zones of normal traffic, in "Transport Modeling and Demand Forecasts" of Chapter 5.

- 3) Generated and induced traffic benefits are calculated as a half of the normal traffic benefits in section 3, Hong Gai Cua Ong, section 4, Cua Ong Tien Yen, section 5, Tien Yen Bac Luan,
- 4) Benefit of development-related traffic is calculated including estimation of origin/destination volume of normal traffic among 33 zones.
- 5) Saving benefits of ferry are calculated for Pha Lai ferry in section 2.

14.2.2 Passenger Time Cost Saving

Improvement of the project road will enhance driving speed, and save time for passengers of all vehicles. When saved time is used productively, it can be considered as a benefit brought about by the project.

(1) Annual income per passenger

Time value differs according to income of passengers. Passenger time value is a function of the wage rate. Thus, annual income per worker is calculated as 1,290,446 dong by dividing the wage per passenger of the study area by number of workers.

Table 14.7	GDP per	: Worker of	the Study	y Area

Items	GDP and Worker
GDP of the Study Area 1994	5,197,000 Million Dong
GDP Growth Rate 1994 - 1995	10.93%
GDP in the Study Area 1995	5,765,032 Million Dong
Population of the Study Area 1995	9,927,714
Percentage of Workers	45%
Number of Workers 4,467,471	4,467,471
GDP per worker of the study area	1,290,446 Dong

Source : Chapter 4 of this report

(2) Time Value Based Upon Annual Income per Passenger

Time value of car and bus passengers was calculated separately according to their differing incomes. Based upon the "Statistical Data on Labor and Social Affairs 1994", the average income of the wealthier classes who are car users amounts to 4.53 times more than the average income (Appendix A - 14.1). Thus this class of people is considered as car passengers.

Average income of motorcycle users is considered in between car passengers and bus passengers. Accordingly the time value of income per hour for annual working hours of 1,800 is as in Table 14.8.

	and the second second second	
Items	Income/Year	Time Value/Hour
Income level of car passenger	5,845,722 Dong	3,248 Dong
Income level of bus passenger	1,290,446 Dong	717 Dong
Income level of motor cycle passenger	3,568,084 Dong	1,982 Dong

Table 14.8 Time Value Based on Income

(3) Time Value of Trips by Type of Vehicles

The time value of trips ought to be deferent from time value of working hours. Time value of trips is estimated in accordance with trip purpose. In general, business trips are normally valued 100 % of wage rate for all vehicles while other bus trips are valued at 60 % in this study.

	Trip Purpose		Va	Value Composition Ratio of Tri		of Trips	
	Work	Non-leisure	Leisure	Work	Non leisure	Leisure	Total
Passenger car Bus		50 % 65 %	15 % 20 %		50 % 39 %	0% 0%	85 % 54 %
Motorcycle	1	50 %	15 %	35 %	50 %	0%	85 %
	1						Care and a sub-

Table 14.9	Value	Composi	ition of	Trip Time

Drivers of passenger cars and motorcycles are considered as passengers. In the case of bus drivers, they are excluded from passengers as they are included in vehicle operating costs as crew cost under restriction. Trip time value based on income and trip purpose is calculated.

Table 14.10 Time Value of Trips by Vehicle Types

Vehicle	No. of passengers	/hour	/minute
Passenger car	2.80	7,730 Dong	128.8 Dong
Bus	29.30	11,344 Dong	189.1 Dong
Motorcycle	1.06	1,685 Dong	28.1 Dong

Time value is assumed to be the same throughout the project life. The future growth rate of GDP is a factor of traffic increase.

14.2.3 Vehicle Operating Cost Saving Benefit

14.2.3.1 Introduction

(1) Types of Benefits Resulting from Savings in Vehicle Operating Cost

There are ten types of vehicle operating cost (V.O.C) benefits (Refer to Table 14.11). V.O.C for project benefit calculation can be divided into two main groups; fixed and variable. Running cost is complied into the unit cost per travel distance (1 km), which fixed cost into the cost per running hour. The

fixed cost does not vary according to the travel distance and speed, in short, this can be called a kind of "Property Possession Fee".

Variable costs saving	(1)	Fuel cost saving benefit
(Running costs)	(2)	Lubricant oil cost saving benefit
	(3)	Tyres cost saving benefit
	(4)	Maintenance (spare parts) cost saving benefit
	(5)	Maintenance (labor) cost saving benefit
	(6)	Depreciation (distance related) cost saving
	•	benefit
Fixed costs saving	(7)	Depreciation (time related) cost saving benefit
`	(8)	Interest cost saving benefit
	(9)	Crew cost saving benefit
	(10)	Overhead cost saving benefit

Table 14.11 Types of Benefits of V.O.C Saving

(2) Selection of Typical Vehicle

The grounds for V.O.C. computation can be divided into two categories: factors which are unique to the locality (in this case, Vietnam), and factors which are universal. Factors of the former group include: available vehicle types, fuel, tires, parts and their respective prices, as well as personnel expenses. Factors of the latter group include: car longevity, amount of kilometers driven, car mileage, and number of wheels per vehicle. The most important factor of the first group is vehicle type and cost, which dictate running expense to a large degree.

There are different kinds of cars : imported cars, cars of local production and assembly, cars produced by different manufacturers, cars of various models, new cars, etc. The prices, of course, are also varied, as does vehicle operating cost.

The fourteen (14) types of vehicles used as the basic data for the study area are in accordance with vehicle, registration classification and classification ratio and with Registration Tax Department classification (See Appendix A-14.2)

Seven (7) types of vehicles were selected for the basic data for base speed, which is considered to represent V.O.C. Therefore V.O.C of medium-size trucks represent trucks under 1 ton, trucks of 1 - 3 tons, and those of 3 - 5 tons (See Appendix A - 14.2).

Types of vehicles presently prevalent in Vietnam were mostly manufactured in the former Soviet Union: UAZ automobiles, Xarosa buses, ZIL 130 mediumsize trucks, Kamaz large-size trucks. Motorcycles mostly consist of Honda and other Japanese makers, while at present all types of vehicles of European or Japanese origin are on the increase.

A hearing was conducted with Ha Noi dealers, but due to the high number of vehicle types, widely varying prices, and differing importers, appropriate data was unobtainable, so vehicle types and prices as registered by the Ha Noi Vehicle Taxation Department were adopted. This registration class is revised every two years and can be considered as representing the correct financial cost as it is the foundation of automobile taxation.

Four (4) types of vehicles used for V.O.C estimation of different speeds are based upon actual traffic composition of the field study of the area.

Particularly motorcycles are common in the area. Accordingly V.O.C calculation was undertaken for motorcycle separately.

Basic Data	Base Speed	Traffic Estimation	V.O.C Estimation
(1) Passenger car	Passenger car	a mana marana mana ana tana marana ang sana ang	
(2) Van	Van	Passenger car	Passenger car
(3) Under 12 seats (4) 12 - 36 seats (5) Over 36 seats	Medium Bus Large Bus	Bus	Bus
(6) Under 1 ton (7) 1 - 3 ton (8) 3 - 5 ton	Medium Truck	Truck	Truck
(9) 5 - 7 ton (10) 7 - 10 ton (11) Over 10 ton	Heavy Truck		
(12) Honda Dream (13) 70 cc (14) Under 50 cc	Motorcycle	Motorcycle	Motorcycle

Table 14.12 Selection of Typical Vehicle for V.O.C
--

ote: Refer to Appendix A-14.2. Vehicle Price for Vehicle Operation Cost Calculation

(3) Division of Market Price and Economic Price of Vehicle Operating Cost

Vehicle operating costs are calculated in two parts : economic vehicle operating cost and financial vehicle operating cost. Economic V.O.C is artificially derived by eliminating all the transfer items from the financial V.O.C expressed at the market price. All the taxes are deducted from the market price of materials concerned, and subsidies are added to the market price.

This economic V.O.C reflects real cost of vehicle travel and is equivalent to marginal productivity of each market.

14.2.3.2 Unit V.O.C by Base Speed

Table 14.14 and 14.15 show unit V.O.C of 7 vehicle types according to base speed.

Vehicle Classification	Base Speed
1. Passenger car	70 km/hour
2. Van	60 km/hour
3. Small Bus	50 km/hour
4. Large Bus	45 km/hour
5. Medium Truck	50 km/hour
6. Heavy Truck	40 km/hour
7. Motor Cycle	40 km/hour

Table 14.13 Base Speed for Unit V.O.C Calculation

For each vehicle type, annual mileage and life span have been estimated for a "base speed", and for a flat, tangent and paved road in good condition. The "base speed" must be interpreted as the average year-round speed. When this speed decreases, the annual mileage will decrease as will the life-span mileage; speed increase will have similar increasing effects. However, linear proportionality does not exist.

- 1) Table 14.15 shows unit V.O.C per vehicle per km calculated based upon the data of Table 14.14. Calculation method of each item is shown in Appendix A 14.3.
- 2) The running unit cost is calculated as running cost per km per vehicle, and as fixed cost per vehicle per hour.
- 3) For the data of fixed cost, the total running cost was calculated at base speed.

In this study many different sources have been used in order to arrive at a reliable and moderate base value. Table 14.5 is based upon the following data; also hearings with vehicle dealers, transport companies, and from users.

- 1) Transport Cost, National Transport Sector Review of Vietnam (UNDP project, prepared by BCEOM)
- 2) Feasibility Report for National Road Route No.18 and No. 1 prepared by consultant.
- 3) Research Papers prepared specially by the World Bank.
- 4) Data from several organizations within the Vietnamese government.

 Table 14.14
 Input Data for Unit Vehicle Operating Cost Calculation by Base Speed

			<u>с</u>				Unit : Dong
1535	Passenger Car	Van	Med-Bus	Large Bus	Medi. Truck	Hvy. Truck	Motor Cycle
Vehicle Price(excl. Tyres)Fin-Dong	214,000,000.00	236, 300, 000, 00	0.00	000	00 277, 200, 000. 00 5	000, 000, 00	19, 760, 000.
Vehicle Price(excl. Tyres)Econ-Dong	173, 205, 000, 00	200, 855, 000, 00	227, 939, 000, 00			680, 000. č	17, 629, 500, 00
Vehicle Life-Years	8,00	8, 50	8 20	8.00	8, 00		ہ م
Vehicle Life Km	104,000.00	255, 000, 00	382, 500, 00	320, 000, 00	224, 000, 00	00 00 00	150,000,00
Vehicle Annual Km	13.000.00	30,000,00	45,000.00	40, 000, 00	28,000,00	ő ő	15,000.00
Vohicle Life Onerating Hours	4,000,00	10.200.00	12, 750, 00	800.	9, 600, 00	11, 250, 00	3, 600, 00
Vehicle Annual Operating Hours	500.	1, 200, 00	500.	1, 600, 00	1, 200, 00	1, 500, 00	600.000
This Price Fin-Dong/Liter		3. 300. 00	2. 700, 00	700.	2, 700. 00	700.	3, 300, 00
Enel Price Fron-Dong/Liter	2. 337, 00	2, 337, 00	2, 025, 00	2, 025, 00	2, 025. 00		2, 337. 00
Rial Consumption - Liter/Km		0	o	0	0.27	0.30	0.03
True Unit Price Fin-Done/Piece	4	855,460,00	-		2, 334, 321, 00	2, 334, 321, 00	460.
True Unit Price Fron-Dong/Piece	777, 691, 00	691.	1.823.400.00	122.	2, 122, 110. 00	2, 122, 110. 00	777, 691. 00
Number of Tures	4.00	4 00	4.00		6. 00	10.00	4
Tvre Life -Km	30,000,00	30, 000, 00	30, 000, 00	40, 000, 00	40, 000, 00	40, 000, 00	30, 000, 00
Lubricants Price Fin-Dong/Liter		9,417.00	13, 320, 00	20, 038. 00	9, 417.00	18, 067, 00	3, 300, 00
Lubricants Price Econ-Dong/Liter	2, 310, 00	6, 592, 00	9, 324. 00	14, 026, 00	6, 592, 00	13, 550, 00	2, 310, 00
Tubri Oil Consmotion-Liter/100km		1.30	2.00	2.20	3.00	3.40	0.20
Vaintenance Snares/Yeat-%	7.00	8.00	8.00	10.00	8.00		3.00
Maintenance Labor-Hour/1000km	3, 00	7.00		15.00	12.00	15.00	2.00
Maintenance Labor Cost Fin-Dong/Hour	10, 293, 00	10, 393, 00	11, 837.00	10, 837. 00	13.381.00	20, 586, 00	
Maintenance Labor Cost Econ-Dong/Hot	တ်	1.4	9, 469, 00		10, 705, 00	16, 468, 00	8, 234, 00
Depreciation. Distance Related-%	÷	70.00	80.00		70.00	70.00	60.00
Depreciation Time Related-%	40.00	. 30, 00	20.00		30.00		40.00
Opportunity Cost of Capital-%	12.00	12.00	12.00	12.00			
Real Rate of Interest of Capital-%	8.00	8.00	8.00	8,00	8,00	8, 00	8.00
Overhead Cost /Annum Fin-Dong	0.00	3, 285, 000. 00	7, 391, 250. 00	000.	000.	750.	0.00
Overhead Cost /Annum Econ-Dong		3. 285. 000. 00	7, 391. 250. 00	570, 000.	3, 066, 000, 00	7, 062, 750, 00	00 0
Crew-Number (Driver)		1.00	1.00	1.00	1.00	1.00	0.00
(Crew-Number (Assistant)	0.00	ੋ	÷		rt	1,00	0.00
Crew Unit Cost Fin-Dong /Hour	000	9,112.00	9, 112, 00	00 478.00	10,478,00	10,478,00 9 430 00	000
LIEW UNIT LOST FCON-DONG/ JUNE	- VV:			100 100			

Table 14.15 Unit Vehicle Operating cost Per Km by Base Speed

	Passenger Car	Van	medium Bus	Large Bus	Medi. Truck	Hvv. Truck	Moto Cvcle
Basic Financial Running Costs							
Fuel Costs	429.00	462.00		675.00	729.		66
Lubricant Costs	3.96	12.24		44. 08			ਂ
Tyre Costs	114.06	114.06	221.02	350.15	350.	583.58	57.
Maintenance Spares Costs	144.04	74.13		295.31	- <u>6</u> 6.		с, С
Maintenance Labor Costs	30.88	72.75	177.56	162.56	160.		20.79
Depreciation Costs	1, 234, 62	648.67		2, 510, 16	866.25	1.211.16	-62
Total Costs/vehicle-km	1, 956, 55	1, 383, 85	1, 513, 98		2, 233, 22		260.
Basic Financial Fixed Costs							-
Capital Costs (Depreciation-Time rel	21, 400, 00	950.	4, 109, 80	074	8.662.	14, 880, 00	195
Long Term Interest Costs	51.360.00	23, 630, 00	20,960.00	70,875,00	27, 720, 00		3, 952, 00
Overhead Cost	0. 00	737.	927.	106.	2, 555.	708.	0
Crew Costs	00 0	112.	224.	956.	20,956.	956	0.0
Fixed Costs, All	72, 760, 00	429.	48, 221, 30	011.	59, 893.	85, 184, 50	6, 147, 5
Factor	0.50	o	ਂ	ċ	0	0	Ó
Total Costs/Vehicle-hour	36, 380, 00	29, 700. 65	33, 754. 91	74, 908, 03	41, 925.		
Costs/Vehicle-km	519.	424.	482.	070.	598.		61.4
Total Financial Cost/Vehicle-km	2, 476, 27	1, 808, 15	1, 996. 20	5, 107. 37	2, 832. 16	3, 965, 22	321.94
Basic Economic Running Costs						-	
Fuel Costs	303, 81	327 18		506 95	546	EAT EA	
Lubricant Costs	2.77			30.86	0	46.07	
Tyre Costs	103.69			318.32	318	530.53	
Maintenance Spares Costs	116.58			256.92	06	125.44	
Maintenance Labor Costs	24.70	57.64	142.04	142.04	128.	247.02	
Depreciation Costs	999.26			2, 183, 83	788.	097.	
Total Costs/vehicle-km	1, 550, 82	1, 111.46	1, 292, 71		1,4	2, 654, 16	212.93
Basic Economic Fixed Costs Capital Cost(Depreciation-time relation-	320	- COP	. L L	624	698	¥0¥	010
Opportunity Cast of Capital	41 569 20	282			i u S S S		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Overhead Cost		737.	027.	106.	រ រ ប		
Crew Costs	00.0	8. 200. 00	16, 600, 00	18, 860, 00	18,860,00	18,860,00	S C
Fixed Costs, All	58, 889, 70	930.	338.	261.	523.	507.	5, 484, 7
Factor		°.	0.70	0	0.70	0. 70	
Total Costs/Vehicle-hour	29, 444, 85	25, 851, 35	30, 336, 69	65, 983, 39	38, 166, 15	54, 255. 39	3, 839. 3)
Cost/Vehicle-km				942.62	545.	775. 08	
Total Fconomic Costs/Vahiclo-km	1 071 AC	1 100 72	00 304 I	60 V06 Y			

•

14.2.3.3 Estimate of V.O.C by Type of Vehicles and by Speed

(1) Factors and Their Relation to Vehicle Operation Cost Calculation

Vehicle operating costs are determined by various factors, the most important of which are the following:

1. Road :	alignments, surface type and condition
2. Traffic :	volumes in relation to capacity, traffic composition
3. Vehicle :	type, age, general condition, load
4. Driver :	skill, mentality, mood
5. Climate	temperature, humidity

These factors mentioned above are closely related to each other. For example, the speed is often used as a main variable in V.O.C calculation and is then related to fuel consumption, tire wear, maintenance, capital costs, etc. Improvement of a road may then result in higher average speed, and thus lead toward a higher annual mileage. However, another problem consequence of this is also the shortening of the lifetime of vehicle, although this is not completely proportionally inversed. Thus, when the influence of individual variable is estimated, possible interrelations should be identified.

Table 14.16 shows economic V.O.C by vehicle type and by driving speed. Fuel consumption, lubricant oil consumption, tire wear, maintenance costs (parts, labor, depreciation, interest, crew wage, and overhead cost) are all related to driving speed. See Appendix A - 14.3 as to the relevant formula of vehicle types and driving speed and V.O.C

				(Dong)
Km/Hour	Passenger Car	Bus	Truck	Motorcycle
10.00	4,081.02	5,328.61	5,780.43	394.98
15.00	3,746.12	4,955.83	5,267.57	367.69
20.00	3,436.94	4,620.32	4,803.32	344.56
25.00	3,153.49	4,322.09	4,387.69	325.57
30.00	2,895.76	4,061.13	4,020.67	310.74
35.00	2,663.76	3,837.45	3,702.27	300.05
40.00	2,457.48	3,651.04	3,432.48	293.52
45.00	2,276.93	3,501.91	3,211.31	291.13
50.00	2,122.10	3,390.05	3,038.75	292.90
55.00	1,993.00	3.315.47	2,914.81	298.81
60.00	1,889.62	3,278.16	2,839.48	308,87
65.00	1,811.97	3,278.13	2,812.77	323,09
70.00	1,760.04	3,315.37	2,834.67	341.45
75.00	1,733.84	3,389.89	2,905.19	363.97
80.00	1,733.36	3,501.68	3,024.32	390.63
85.00	1,758.61	3,650.75	3,192.07	421.45
90.00	1,809.58	3,837.09	3,408.43	456.41
95.00	1,886.28	4,060.71	3,673.41	495.53
100.00	1,988.70	4,321.60	3,987.00	538.79

 Table 14.16
 Composite Unit V.O.C (Economic)

14.3 Economic Cost Benefit Analysis

The result of the economic cost and benefit calculation is as shown in the following table.

			(NPV = Mi	llion Dong)
Section	Project	IRR	NPV	B/C
Section 1	2 lanes + 2 lanes	15.11	387,194	1.70
Section 2	2 lanes + 2 lanes	17.36	611,026	2.02
	2 lanes	15.42	274,826	2.00
Section 3	4 lanes	20.64	720,926	2.28
Section 4	Overlay + 2 lanes	19.74	183,501	2.67
Section 5	Overlay + 2 lanes	18.34	339,567	2.47

 Table 14.17
 Summary of Benefit Cost Comparison Analysis

NPV and B/C were calculated based on a discount rate of 10 % p.a.

14.3.1 Section 1: Noi Bai - Bac Ninh

(1) Result of Benefit Cost Analysis

The result is as shown in Table 14.18. IRR is higher than the opportunity cost of capital. Thus investment of 1,041.3 billion dong as the project cost is economically feasible.

Table 14.18 Result of Benefit Cost Analysis

an a	Investment Indicator
Internal Economic Rate of Return (IRR)	15.11 %
Net Present Value (NPV)	387,194 Million Dong
Benefit Cost Ratio (B/C)	1.70

(NPV and B/C were calculated by discount rate of 10%)

(2) Road for Benefit Cost Comparison

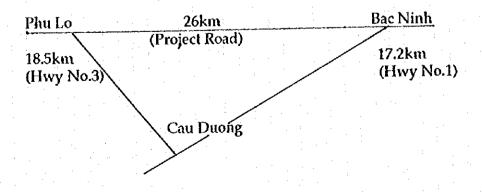
The existing 31.3 km road runs parallel with the project road; therefore the distance is similar. The average driving speed on the existing road in the year 2000 is assumed to be 19 km/h. In absence of the project, it would be 11 km/h when traffic volume approaches capacity in the year 2010.

The first stage project road with two lanes will exceed capacity in the year 2012, with traffic demand of PCU 15,263. The second stage project (addition of two more lanes) will also be over capacity in the year 2020. The average driving speed will decrease to 52 km/h, and there will be no more increase in benefit.

(3) Traffic Volume Used for Benefit Cost Calculation

Traffic volume (and driving speed) estimated for the project road is based upon Chapter 5 "Transportation Modeling and Demand Forecast". Annual increase rate of traffic volume for the last ten years of the project life is forecast as follows:

Passenger car		· .								4.9 %
Bus							÷	•	÷	4.9 %
Truck				÷		1			:	3.4 %
Motorcycle			÷			·	•			3.8 %


 Table 14.19
 Expected Traffic Volume (Average Daily Vehicle)

the second s	See Strategy and the second	10 miles 10	COST OF THE DAY OF TAXABLE				0005
Traffic	1995	2000	2005	2010	2015	2020	2025
Normal	125	225	408	652	1044	1664	1860
		165	809	1316	2144	3003	3814
	104	174	292	486	809	1112	1413
		105	456	802	1410	2020	2566
L · · ·	193	252	330	443	595	786	898
		162	558	803	1154	1404	1690
	1769	3812	8219	13978	23782	33037	38352
Diverted		0	0	0	0	0	0
	Traffic Normal Diverted Normal Diverted Normal Diverted Normal Diverted	Normal 125 Diverted 104 Diverted 103 Diverted 193 Diverted 1769	Normal 125 225 Diverted 165 Normal 104 174 Diverted 105 Normal 193 252 Diverted 162 Normal 1769 3812	Normal125225408Diverted165809Normal104174292Diverted105456Normal193252330Diverted162558Normal176938128219	Normal125225408652Diverted1658091316Normal104174292486Diverted105456802Normal193252330443Diverted162558803Normal17693812821913978	Normal1252254086521044Diverted16580913162144Normal104174292486809Diverted1054568021410Normal193252330443595Diverted1625588031154Normal1769381282191397823782	Traffic199520002005201020152020Normal12522540865210441664Diverted165809131621443003Normal1041742924868091112Diverted10545680214102020Normal193252330443595786Diverted16255880311541404Normal176938128219139782378233037

Normal traffic means future traffic volume which will increase "without project". Diverted traffic means diverted traffic "with project" (Refer to Table 14.19).

(4) Benefit on the Project

Normal traffic benefit is produced from savings in driving cost and time when comparing existing Highway No. 18 and 31.3 km project road. Diverted traffic benefit is calculated from savings in driving cost and time when comparing the 26 km project road with 18.5 km National Highway No. 3 bypass, and with National Highway No. 1 (17.2 km). Motorcycle use is assumed only on the project road, supposing that the bypass will not be used even if the road is congested.

- Bac Ninh	11771
Dag	2
Not Dat	а
2	
•	-
of Contion	ICT-ICE
ş	5
tnalveie	
Banafs+	I T TOUROT
Chet]	3
00 21 4	07"EF
Tahle	TODT

15.11% 111ion Dong		Benefit	Present Value	00	00	17, 983	19. 220	21, 787	23, 100	20, 564	19, 915		16.575	20.799	19,858	17. 752	16, 223	14, 867 13, 559	12. 269	11, 036	8. 750	7, 857	6. 239	5, 565		3, 999	2 953	2, 566	2, 229	429.195
	B/C Analysis	Cost	Present Value	32, 461 52, 806	162,724	252	219	165	143	108	76	8.972	28, 658	21,461	06	89	59	1.647	68	34	25	22	170	15	13		304		G	429.114
IERR : Unit :		Discount	Factor	്റ്	0.656		0.430	්ර්	ďď	jđ	0.185	d d	6	d'	00	60	c' .	0. 052 0. 045	d		0. 026									
· ·		Total		0.	õč	36, 343	44, 712 54, 665	67, 157	996 T8	96, 681	107.781	127, 191	136, 820	197.626	217, 199	257, 279	270, 638	285, 486	312, 193	323, 241	339, 586	351, 016	369, 301	379, 225	374. 978	252 222	353, 323	353, 323	525, 323	7.646.486
		Saving	Diverted Traffic	00	00		3, 102		6.925		7.577	7.837	8, 058	12. 797	13.744	15, 962	16, 594	14. 361	18.615	19, 733	19.855	20, 544	21, 362	21.670	21, 131	19.321	18, 250	18, 250	18, 250	451, 542
	Benefit	ė	Normal Traffic	00	00	4, 999	6.217	9, 740	12. 329	16.720	20, 634	25, 358	31.353	36, 150	40, 081	49, 148	52, 209	58, 827	61. 543	66. 556	69, 224	71,886	77, 509	80.639	80, 639	80. 639) 80. 639)	80, 639	80. 639	20. 0.52	1, 565, 257
	8	VOC	Diverted Traffic	0	00	11. 708	15, 675	26, 630	34, 974	36, 619	38, 680	40, 848	43, 174	79, 799	94, 905	101, 905	110, 653	114, 874	118, 233	124, 322	123. 697	127. 484	130, 507	131, 309	127, 593	102, 820	108, 820	108.820	105. 520	2.723,506
. 5			Normal Traffic	0	00	17, 312	19, 717	25, 555	33, 389	36, 082	40.890	50, 148	54. 235	68, 879	82.510	90. 265 20	206 .06	107.966	113, 802	122, 605	126.811	131.101	139.923	145.607	145.615	145, 615	145.615	145, 615	CT0 *C*T	2. 906. 1811
2 Lane + 2 Lane 31 3 km		Total		37, 366 69, 969	248. 194 198. 554		509	509	18, 194		509	64, 339		203, 916	686	686	200	36. 406	686	686 6	989	36 406	686	686	686	686	36, 406	686	200 0	1, 207, 194
	Cost	Mainte-	nance	0	00	509	503	509	508 208	509	509	509	509	509	989	686	805	989	989	686	686	989	686	989	686	686	686	686	202	25, 888
Case Design length :		Capital		37, 366 69, 969	248, 194 198, 554	0	00	00	17, 685	0	00	63, 830	236.050	203, 407	20	00	> c	35, 417	00	> <>	00	35 417		0	50	<u> </u>	35.417	00	>	1, 181, 306
		year	-	1997	1999	2001							_				-							_				2031		Total
	her simila			-0	(1) -(1) (1)	- CO	- 1 C	00 C	·		22	* 7	Ť	<u> </u>			2	38	či č	38	20	20	いだ 	8	55 6 	3 M	2	an in	ŏ	

•

(5) Composition of Benefit

			Billion Dong
	Normal Traffic	Diverted	Total
		Traffic	
V.O.C Saving Benefit	2906	2723	5.629 (73 %)
Time Cost Saving Benefit	1565	451	2016
	4471	3174	7646 (100 %)
			Contraction of the second second

Table 14.21 Composition of Benefit

14.3.2 Section 2 : Bac Ninh - Chi Linh

(1) Result of Benefit Cost Analysis

Result of benefit cost analysis is shown in Tables 14.22, 24 and 25. All alternatives resulted in IRR higher than the opportunity cost of capital. Therefore they are all economically feasible.

Table 14.22 Result of Benefit Cost Analysis

Investment Indicator	Case - 1	Case - 2
Internal Economic Rate of Return (IRR)	17.36 %	15.42 %
Net Present Value (NPV = Million Dong)	611,026	274,826
Benefit Cost Ratio B/C	2.02	2.00

(NPV and B/C were calculated by discount rate of 10%)

(2) Road for Benefit Cost Analysis

Two basic alternatives are as shown according to considerations of different stage construction.

Table 14.23 Project Alternatives for Benefit Cost A

Case	Stage	Condition
Case - 1	1st stage	Improvement of existing road to two-lane;
-		The construction will start in 1998 open in 2001
	2nd stage	Widening of two-lane road to four-lane road;
·		The construction will start in 2004 open in 2007
Case - 2	1st stage	Improvement of existing road to two-lane;
	.	The construction will start in 1998 open in 2001
•		Under the condition that the construction of the
		alternate four-lane highway will take place between 2004
		and 2007.

Bac Ninh - Chi Linh Cost Benefit Analysis of Section 2 : **Table 14.24**

5

11:00 Done		Di comptod	Benefit	ľ	S C			21.250	18, 503	19.261	21. 797	22, 338	22. 194	22, 483	23, 792	23, 656	23, 981	22, 907	21, 144	20, 124	18, 285	16, 889	15, 370	13, 698	12, 361	11.245	9, 938	8, 871	7, 904	7.020			4, 801		491 582
X	2/C Analysis	Dicomntadi Dicomntadi	Cost	10 920	27 756		140. 200	210	179	10.184	17.732	52.034	42, 839	158	134	114	97	8	2, 882		51	44	37	32	1,103	23	20	21	14	12	422	6	00		491 489
TRR.		lihi scout	Factor	0 2591	0 7960		0070 0	50	0	0	ۍ ا	ं	්	0	් 	<i>ं</i>	0	0.0906	<u> </u>	്	0	්	്	0	റ്	0	്	്	ď	Ċ	0	0, 0096	o		
· . · ·		Total						47.311	48, 345	59, 064	78, 443	94, 347	110.012	130.793	162, 433	139. 540	225. 497	252, 792	273, 852	305, 876	326, 183	353, 568	377, 633	394, 972	418, 313	446, 596	463, 222	485, 251	507.451	529.645	551, 619	573, 118	584, 729		7 990 607
· · ·		Ferry Cast	Saving	C		Ċ	, ,		5,470		11.402	10.214	14, 826	16, 232	11, 598	12, 684	18.296	16, 982	16, 738	26, 000	21. 732	22, 824	27.716	25, 328	28, 260	35, 712	31, 084	31.550	32.024	32, 504	32, 991	33, 486	33.989		570, 712
		Savine	Diverted Traffic	c		<u> </u>	<u>, o</u>	630	916	1.285	1.711	2, 158	2.452	2, 563	3, 900	4, 731	5, 754	6, 579	7, 151	7.743	8, 401	9, 077	9, 601	10.112	10, 670	11,204	11. 744	12, 285	12, 820	13, 340	13, 836	14.294	14.697		199, 656
	Benefit	Time	Normal Traffic	C	ō	C	0	1, 757			3, 354	4, 150	5,109	7, 196	8, 784	10, 748	13, 187	16, 221	18, 143	20.288	22.681	25, 350	27, 405	29, 618	31, 996	34, 551	37, 291	40, 226	43, 364	46. 712	50.276	54, 058	54, 057		611, 436
		Saving	Diverted Traffic	0	0	0	0	17, 439	25. 029	34, 951	46, 853	60, 618	67, 379	71.767	100,067	117.491	137, 687	154, 782	167.422	180, 873	195.241	210, 478	221, 471	232, 725	244, 320	256, 088	268, 027	280, 062	292, 100	304, 030	315, 718	327, 009	337, 723		4, 667, 351
2 Lanes 4 km		V. O. C S	Normal Traffic	ō	0	0	o	12, 300	14, 636	14, 370	15, 122	17, 208	20, 247	33, 035	38, 084	43, 885	50, 573	58, 228	64. 348	70, 972	78, 128	85.840	91, 440	97, 190	103, 067	109, 041	115, 076	121. 128	127, 144	133, 059	138, 798	144.271	144, 263		1, 941, 453
2 Lanes + 2 L 36.4 km	-	бели т	Total	21, 395	52, 003	227, 813	182.250	468	468	31, 228	63, 813	219, 770	212, 345	916	816	916	916	916	37. 321	816	916	916	616	916	57.321	OTA	916	916	916	916	37, 321	916	916		1, 139, 092]
	Cost	Mainte-	Dance	0	0	0	0	425	425	425	425	425	425	3	3		ŝ	3	38	8	33	38	222	22 22 23 23 23	38	38	3	88	33	3	223	8			19, Z10
Case - 1 Design length		10	Capital	19, 450	47, 275	207,103	165,682	0	0	27, 964	57.587	199,366	192,616	5	5,	5	3	0 00	680 6 2		5,	5 0	0	0 15	55. USD	Э с) (5.	;	Ō	33, 095	0	0		1, UID. 328
1			Year	1997	1998	1999	2000	2001	2002	2003	2004	2002 2002	2002	7002	2002	6002	0102	102	2702	2102	5102	CT07	-								2024	2025	2026		10121
ļ		-	-		2	(7) (7)	4	نہ	φ ι	- (>> (====	רי די רי	2j	= ;	21	· · ·	α"ι. −Γτ	<u>, </u>	10	~• ¢ ⊣ •	<u>0</u>	2 6	3	1 2	38	32	7 10	S é	0 E	38	38	R a	3	ľ	

: Benefit Analysis of Section 2 : Bac Ninh	1	
Benefit Analysis of Section 2:	Ninh	
Benefit Analysis of	Bac	
Benefit Analysis of	••	
Benefit Analysis of	3	
Benefit Analysis	Section	
Benefit	Ч,	
• •	Analysis	
	t Benefit	

Linh

.г

Cost

Table 14.25

Nainte- Mainte- Dance 0 52,003		7d							
Total 0 21.395 0 52.003 0 007 010		5	Benefit				9	B/C Analysis	
Total 0 21.395 0 52.003 0 52.003	V. O. C.	Seving	Tille	Saving F	Ferry Cost		Discout	Cost	Benefit
0 21, 395 0 52, 003 007, 019	Normal D Traffic	Diverted Traffic	Normal Traffic	Diverted Traffic	Saving	Total	Factor	Present Value	Vresent Value
0 52,003 007 510	Ċ		0	0	0	0		18. 537	Ç
010 010	Ċ		Ö		0	ō	0. 7507	39, 036	0
		c	0	0	0	Ö	0.6504	148, 162	õ
010 122 010			0	Ö	0	ō	0. 5635	102, 694	0
195 104. 468		17.439	1, 757	630	15, 184	47, 311	0.4882	228	23, 097
	14, 636	25, 029	2, 295	916	5, 470	48. 345	0.4230	198	20, 449
-			2, 621	1, 285	5, 836	59.064	0. 3665	171	21. 645
		46. 853	3, 354	1, 711	11.402	78, 443	0, 3175	148	24, 906
		60, 618	4 150	2. 158	10, 214	94, 347	ਂ	129	25.954
	anner	67. 379		2.452	14, 826	110.012		111	26.220
425 20.506		36, 361	2, 878	1, 415	6, 493	60, 546	0	4, 234	12.502
		40, 204	3, 513	1.544	4, 639	65, 339		22	11. 690
		47.171	4, 298	1. 870	5, 074	76, 194	o'	22	11, 811
495 468		55.245	5, 272	2, 271	7, 318	50, 588		8	12.166
	-	62, 086	6. 485	2, 594	6. 793	101. 530	ਂ	2	11.813
	27.	67.063	S, 007	2, 803	6, 715	111. 710	0	47	11.261
20		72, 408	11, 031	3, 019	10, 400	129.330	o'	I''''	11, 290
		78, 177	13.840	3, 259	8, 693	141, 291	o' ·	33	10, 692
		84, 366	15, 533	3, 505	9.130	153, 802	් ·	5	10, 084
	44,	88, 941	16.869	3, 695	11.086	164.935	0. 0568	12	9.369
425 468	49,	93, 726	20, 639	3, 830	10, 131	177, 916	් ·	22	8. 700 0. 700
	8	98, 776	22, 415	4, 087	11. 304	189.844	0.0426	20	080 %
20.		104.053	24, 344	4, 288	14, 285	204, 249	o'	SC.	0.000
	61.	109, 590	26, 440	4, 497	12. 434	214, 576	്	5	6, 808
	66.	115, 398	28, 717	4, 714	12, 620	227.747	്	2	6.316
	11.	121. 489	31, 190	4, 939	12, 809	241, 781	0		5.803
	76.	127, 873	33, 878	5, 171	13, 002	256, 737	0	OT I	5. 344
	8 82, 713	134, 562	36, 797	5.411	13, 197	272, 680	0	0	4, 918
20,	8	141.567	39, 970	5, 659	13, 395	289, 677	0.0156		170 *
425 468	39.	148, 399	39, 969		13, 595	297.459	0.0135	9	4, UZ /
	-				ĺ	A XXC YCY		517 NOT	217 1ED
11,050 575,771	1	1. 064. 127 2. 080. 224	411.371	\$3, 588	200, 044	3. 903. 434		100.110	174 - 170

Cost Benefit Analysis of Section 2: Bac Ninh - Chi Linh Infomation Table

Ŕ	214121 11412	•										
1	O	Cost			<u></u>	Benefit					3/C Analysis	
1		Mainte-		V. O. C	Saving	Time	Saving	Ferry		Discout	Cost	Benefit
	Capital	nance	Total	Normal Traffic	Diverted Traffic	Normal Traffic	Diverted Traffic	Cost Saving	Total	Factor	Present Value	Present Value
1	19, 450	ō	19, 450	Ō	0	0	0	0	0	0, 8693	16.907	0
	47.275	0	47, 275	0	0	0	0	0	0	0. 7556	35, 722	0
	207,103	0	207, 103	0	0	0	0	0	õ	0.6568	136. 032	0
	165, 682	0	165, 682	0	0	Ō	0	0	0	0.5710	94. 598	Ö
	16,602	425	17.027	12, 300	17, 439	1. 757	630	15, 184	47.311	0. 4963	8. 451	23.481
	16.602	425	17.027	14, 636	25, 029	2, 295	916	5.470	48, 345	0.4314	7.346	20.858
	38, 700	425	39, 125	14.370	34, 951	2, 621	1, 285	5, 836	59, 064	0. 3750	14, 673	22, 150
	128, 030	425	128.455	15, 122	46. 853	3, 354	1.711	11.402	78, 443	0.3260	41, 876	25, 572
	488, 156	425	488.581	17, 208	60, 618	4, 150	2.158	10.214		0. 2834	138, 451	26, 736
	423, 647	425	424, 072	20.247	67, 379	5, 109	2.452	14, 826	110,012	0. 2463	104,460	27.039
Ļ	0	1, 425	1.425	33, 498	90, 904	7, 194	3, 538	16, 232		0. 2141	305	32. 411
	0	1, 425	1.425	38, 597	100, 510	8, 782	3, 861	11, 598		0.1861	265	30.404
2009	o	1, 425	1, 425	44, 454	117, 928	10.744	4, 675	12, 684	190, 486	0. 1618	231	50.820
-	0	1.425	1. 425	51,205	138, 112	13.180	5, 677	18.296	226, 471	0.1406	200	31.851
	Ö	1, 425	1, 425	58, 929	155, 215	16.212	6, 486	16, 982	253. 824	0. 1223		31.031
2012	18, 217	1, 425	19.642	67, 804	167.657	20, 017	7, 008	16, 738	279.274	0, 1063	2, 087	29, 679
2013	o	1, 425	1, 425	81, 180	181.021	27, 577	7, 546	26,000	323. 324	0.0924	132	29. 868
2014	Ö	1.425	1, 425	93, 306	195. 443	34, 600	8, 147	21.732	353, 229	0, 0803	114	28, 365
		1, 425	1.425	103, 168	210, 915	38, 834	8, 764	22, 824	384. 504	0.0698	8	26. 839
	90, 368	1. 425	91, 793	110, 858	222. 352	42, 173	9, 237	27, 716	412.336	0, 0607	5, 570	25, 019
Ŀ	0	1, 425	1, 425	123, 849	234, 314	51, 598	002 '6	25, 328	444. 790	0. 0527	75	23.460
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18, 217	1, 425	19, 642	133, 156	246,940	56, 038	10, 217	28, 260	474, 611		106	21.760
2019	0	1,425	1, 425	143, 199	260, 131	60, 861	10, 721	35, 712	510, 623	0, 0399	57	20, 351
2020	0	1. 425	1, 425	154,040	273, 974	66, 100	11.243	31, 084	536, 441	0.0346	49	18, 584
2021	0	1.425	1, 425	165, 744	288, 496	71, 792	11, 785	31, 550	569, 366	0.0301	6 <del>3</del>	17, 146
2022	0	1, 425	1, 425	178, 383	303, 723	77. 975	12, 347	32, 024	604.451	0. 0262	37	15, 823
2023	0	1, 425	1.425	_	319, 683	84, 694	12, 928	32, 504	641, 843	0.0228	32	14.605
	18,217	1, 425	19, 642	206, 782	336. 405	91, 993	13, 523	32, 991	681, 700	0.0198	688	13, 484
		1, 425	1. 425	-		99, 924	14.147	33, 486	724. 192	0. 0172	25	12.452
2026	90, 368	1, 425	91, 793			99, 922	14, 785	33, 989	743, 648	0.0149	1, 372	11, 115
			1					· · · · · · · · · · · · · · · · · · ·			••••••	
L	1 702 201:		ALVE GEV P									

# (3) Traffic Volume Used for Benefit Cost Analysis

Estimation of traffic volume to use project road is based upon Chapter 5 "Transportation Modeling and Demand Forecast". Annual traffic volume increase rate after the year 2015 is assumed as 70% of the previous ten years increase rate, as shown below.

Passenger car	5.9 %
Bus	6.3 %
Truck	5.6 %
Motorcycle	8.1 %

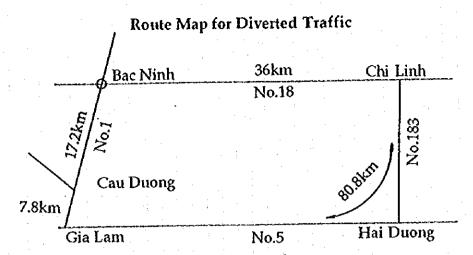
In Case 1 the road will reach its capacity in the year 2026, the last year of the project life. In Case 2, users of the alternate highway would not be required a toll fee. In all cases, expected traffic volume is estimated to be the same.

"Normal traffic" indicates future traffic volume estimated in the absence of the project. "Diverted traffic" indicates traffic estimation considering implementation of project, in which ferry traffic is diverted (or generated) to road traffic by construction of the bridge.

Table 14.26	Traffic Volume Used	l in B.C. Analysis	(Average Daily Vehicle)
-------------	---------------------	--------------------	-------------------------

and the second secon	Traffic	1995	2000	2005	2010	2015	2020	2025
P.Car	Normal	134	219	356	619	1076	1596	2369
	Diverted		226	1179	1708	2455	3108	3898
Bus	Normal	-95	137	196	371	698	1104	1746
ж.	Diverted		. 179	851	1242	1783	2263	2824
Truck	Normal	213	: 306	436	618	875	1117	1425
	Diverted	and the second	452	2242	3339	4962	6548	8639
M.Cycle	Normal	978	2136	4664	8233	14518	21718	32506
	Diverted	н -	197	911	1458	2342	3159	4216

(4) Benefit of the Project


# Table 14.27 Types of Project Benefits

Benefits	Remarks
1) Benefits of normal traffic:	Saving of running cost and time comparing existing Highway No.18 (without project), and the project road (with project)
2) Benefit of diverted traffic:	Saving of running cost and time of the project road section, comparing the total 80.8 km of National By-pass No. 5 and provincial road No. 183, with the total 61 km of the project road and
3) Pha Lai ferry investment cost saving:	National Highway No. 1 The investment scale of ferry boat proven economically feasible, consists of V.O.C and time saving benefit of normal traffic and diverted, as a benefit for bridge. (See Table 14.28)

											· · · · · · · · · · · · · · · · · · ·	1000 0001
	Section	2 : Bac	Ninh - Chi Li	Linh							IRR :	22. 28%
 					Maiting Hc	our Saving F	lood Stop	Saving				
Year		Ferry	Other Costs	Total	Nomal T.	21	Nomal Tr	<b>fraffic</b>	tal	hiscount	Discouted	Discounted
					Time	Time	VOC	Time	S	Factor	Cost	Benefit
1 2, 000	2	8,400	Ϋ́		2,	1, 572	904	56	350	0.8178		4, 375
2 2, 001	<del>б</del> і		с,	ີ່ເ	3.084	2, 262	1,010	65	6, 420	0.6688	3, 658	4,294
3 2, 002	11	2,400		•	-	3, 149	1,132	76	7.738	0.5469	3, 192	4, 232
<u>N</u>	14		· ~			4, 305	1, 274	38	9, 375	0. 4473	5, 100	4, 193
5 2, 004	17	3.600	9	10, 214		5, 805	1,441	104	11, 425	0.3658	3, 736	4, 179
6 2, 005	22	6, 000	×		4, 483	7, 747	1, 638	122	13, 990	0.2991		4, 185
7 2, 006	24		Ģ		4, 961	8, 379	1,847	141	15, 328	0.2446	3, 971	3, 750
8 2, 007	26	4,400	· ·			9, 057	2, 090	162	16, 809	0.2001	2, 320	3, 363
92,008	28	4,400	လံ့	12,	6, 101	9, 787	2, 370	190	18, 447	0. 1636	2,075	3.018
0 2. 009	<u>6</u>	6. 600	11,	18, 296	6, 771	10, 573	2, 666	217	20, 227	0. 1338	2.448	2,706
12,010	34	6, 600	10.	16, 982	7.519	11,418	3,008	253	22, 198	0.1094	1, 858	2,429
ณ์	36	7,400	9, 388	16, 788	8, 349	12, 330	3, 360	287	24, 326	0.0895	1,502	2.177
32,012	40	13, 800	12,	26,000	9, 276	13, 312	3, 730	327	26, 645	0.0732		1, 950
<u>~i</u>	44	S, 800	ั เริ่า เ	21, 732	10,310	14, 368	4, 136	367	29, 181	0.0598	1,301	1,746
N)	48	8, 800	14.	22, 824	11,465	15, 502	4, 597	419	31, 984	0.0489	1, 117	1, 565
N	52	10, 800	16.	27, 716	12,756	16, 721	5, 102	471	35, 050	0.0400	1, 109	1,403
<u> </u>	SS :	9, 600	15, 728	25, 328	13, 772	17.618	5.510	520	37.420	0.0327	829	1, 225
N.	59	11, 800	16.	28, 260	14,	18, 560	5, 938	565	39 934	0.0268	756	1, 069
N	63	17,800	. 17,	35, 712	16,	19, 547	6, 416	625	42, 653	0.0219	782	934
202,019	67	12, 800		31, 084	17,	20, 583	6, 918	679	45, 536	0.0179	556	815
~i	11	12, 900	18	31, 31,		21, 668	7,439	738	48, 600	0.0146	462	712
22 2, 021	76	12, 500	19.	32.	20, 275	22, 804	8,001	108	51,881	0.0120	383	621
3 2. 022	81	12, 800	19	32,	21,921	23, 993	8, 608	870	55, 393	0.0098	318	542
0	86	13, 300	19, 691	32, 991	23, 707	25, 237	9, 264	945	59, 153	0.0080	264	474
<u>ni</u>	91		19,486	33, 486	25, 644	26, 539	9.972	1, 026	63, 181	0.0065	219	414
26 2, 025	67		19, 889	33, 989	27,		10, 766	1, 115	67, 525	0.0054	182	362
7 2, 026	104		19.	34, 498	о́с	- 1	+		72, 181	0.0044	151	316
	202											

Cost Benefit Analysis of Pha Lai Ferry (Economic Price)

Table 14.28



Presuppositions of benefit-and-cost calculation : The alternative highway in case 2 will make speedier driving possible. However at the present vehicle competency level, higher speed will increase running cost. And the following speed level was used as economic speed in the analysis.

Passenger car	82 km/h
Bus	66 km/h
Truck	65 km/h
Motorcycle	47 km/h

Benefits Cost calculation was carried out assuming 36.4 km for case 1 and 37.5 km for case 2. For comparison under the same conditions, traffic allocation between the project road No. 18 and the alternative highway was not undertaken.

# (5) Composition of Benefit

In the two cases the completion year differs. This influences statistics on driving speed, and benefits differ. IRR will also differ, due to the fact that investment time varies, present net value differs, and IRR varies. In all cases, ferry boat users of diverted traffic are the same. Accordingly, the benefits will be the same.

 Table 14.29
 Comparison of Benefit of Two Cases

**Billion** Dong

	<u>V.O.C</u>	Benefit	<u>Time</u>	<u>Benefit</u>		
Case`	N.Traffi	D.Traffic	N.Traffi	D.Traffic	Ferry	Total
	ta C		с		1990 - Ale 1	4 - L
Case 1	1941	4667	611	199	570	7988
Case 2	1064	2080	411	83	266	3904

## 14.3.3 Section 3 : Hon Gai - Cua Ong

## (1) Result of Benefit Cost Analysis

The result of benefit-and-cost is shown in Table 14.30 and 14.31. IRR is higher than the opportunity cost of capital. Thus investment of 705.7 billion dong as the project cost is economically feasible.

# Table 14.30 Result of Benefit Cost Analysis

Internal Economic Rate of Return	Investment Indicator 20.64%
(IRR) Net Present Value (NPV) Benefit Cost Ratio (B/C)	720,926 Million Dong 2.28

(NPV and B/C were calculated by discount rate of 10%)

## (2) Road for Benefit Cost Analysis

The project road runs parallel with the coast; the distance being almost the same as that of the existing road (38.5 km). By the year 2004, the existing road is to reach capacity. Analyzing from the expected traffic volume, the project road needs 4 lanes from the beginning.

Capacity of 4 lane road is PCU 61,500 (in case urbanization progresses more rapidly, it will be PCU 52,275) and it is estimated that traffic will not reach capacity until the year 2020, 20 years after completion. Average driving speed is estimated at 56 km/h at the beginning of the operation, and at 42 km/h, 20 years later.

(3) Traffic Volume Used for Benefit Cost Analysis

In the year 2000, the first year of completion, the estimated traffic volume is 7,595: 700 passenger cars, 1,078 buses, 1,482 trucks and 4,336 motorcycles (See Chapter 5 Transportation Modeling and Demand Forecast) (Refer to Table 14.31).

****	Traffic	1995	2000	2005	2010	2015	2020
P.Car	Normal	423	665	1103	1566	2349	3614
	Induced		35	58	174	261	402
Bus	Normal	671	1024	1645	2314	3434	4817
 	Induced		54	87	257	282	535
Truck	Normal	604	1408	3460	5124	8294	11364
	Induced		74	182	579	992	1263
M.Cycle	Normal	1615	4119	11066	15152	21908	29318
	Induced		217	582	1684	2434	3258

Table 14.32 Traffic Volume Used in B/C Analysis (Average Daily Vehicle)

· .	20.64% Million Dong	i ]	Benefit	Present Value	14 0	0			21.	30, 959	34, 554	36.528	ខ្លែ	24 31, 597	Ŕ	63 25. 453	22	19.	11,	92 15. 329	13.	20 11.550	17 9.953	14 8, 809	12 7, 797	ġ	8 6.110	7 5.409		33 394.602
59 59	Rate: :1	B/C Analys	Cost	Present Value	58.70	74.11	166.768	C NIT	982					5.52						1, 79	:					ۍ ۲				419,293
- Cua Ung	Discount Unit		Discount	Factor	0.829	0.687	0.5/0	0.472	0.391	0.324	0	ਂ	<u>.</u>	Ċ	0	°	0	0	0 		0 	0	0		***	്	°	਼		
HODG Gai			Total		0		0		69, 422	95, 417	128, 472	163.836	189.463	206.244	222, 037	241, 779	260, 080	272.446	292.452	308, 376	323, 361	338. 154	351.522	375.321	400, 755	427.939	456, 995	488, 054		5.612.122
			ing	Genergated Traffic	0		00		165	236	336							1				- <b>-</b> -			2.213					26, 226
f Section		Benefit	Time Saving	Normal Traffic	0		<b>.</b> .		4, 835	6, 983	10, 070	13.556	15, 530	16, 763	17, 982	19, 413	20, 823	21.149	22, 665	24, 092	25, 077	26.564	28, 081	29,910	31, 859	33, 935	36.148	38, 506		443.940
Benefit Analysis of			ng I	Generated Traffic	0		0		1.652	2, 262	3, 027	3, 842	4.447	4, 844	5.217	5, 685	6, 117	13, 149	14, 117	14.875	15, 608	16, 303		18.071	19.299	20, 612	22, 016	23.518		231, 583
<b>1</b> .2	Ę		VOC Saving	Normal Traffic	0	0	0		62, 771	85, 938	115.039	145.992	168.979	184.088	198, 249	216,045	232, 458	236.687	254, 106	267, 750		293, 453			347.384		396, 295			4.910.373
1. 31 Cos	4 Lane 38.7		Total		70, 818	107.862	292.775	234. 221	600	600	600	600	600	36, 060	600	009	-600	600	600	36.060	600	600	600	600	600	36, 060	600	009		824.056
Table 14	th th	Cost	Mainte-	nance					600	600	600	600	009	600	009	600	600	009	600	600	600	600	609	009	600	600	600	600		12.000
	Case Design Lengh		Capital	•	70, 818	107.862	292.775	234.221		0		0		35.460	0	0	0	0	0	35.460	• •	0 :	0	0		35,460	0	0	-	1 812.056
	: ; ;		year		1 1997	3 1998	1999	2000	5 2001	5 2002	7 2003	3 2004	9 2005	0 2006	1 2007	2 2008	3 2009			6 2012	2				21 2017					Total
					Ĺ						-			-			_							_						

• • •

- Cra Cha Hono Coi

Table 11 21 Prot Ranafit Inslucie of Santion 2.

# (4) Benefit of the Project

The benefit of the project is the saved running costs and time yielded from the difference between driving on the existing road at an average speed of 30 - 20 km/h and on the projected road at 56 - 42 km/h. In B/C calculation the traffic consists of normal traffic and induced traffic, which makes up 5% of normal traffic during the first ten years and 10 % during the last ten years.

## (5) Composition of Benefit

Composition of the total benefit (unit: billion dong) shows V.O.C saving at 91%, with time saving at 9%. Whether the project is undertaken or not, benefit of normal traffic increase by the development of coal resources, sightseeing, and industries in the region, amounts to 95%, the greatest benefit of the project.

# Table 14.33 Composition of Benefit

	Normal Traffic	Diverted T	raffic	
V.O.C Saving Benefit	4910		231	5141(91 %)
Time Cost Saving Benefit	443		26	469
	5353(95 %)		257	5610(100 %)

Benefits of trucks resulting from to coal resources are the greatest.

# Table 14.34 Benefit Composition by Vehicle Types

	P.Car	Bus	Truck	M.Cycle	Total
V.O.C (Normal	619	848	2702	764	4936
Traffic)	(12 %)	(17 %)	(54 %)	(17 %)	(100 %)

#### 14.3.4 Section 4 : Cua Ong - Tien Yen

(1) Result of Benefit Cost Analysis

The result of benefit-and-cost analysis for this section is shown in Table 14.35 and 14.36. IRR is higher than the opportunity cost of capital. Thus, investment of 233.7 billion dong as the project cost is economically feasible.

# Table 14.35 Result of Benefit Cost Analysis

	Investment Indicator
Internal Economic Rate of Return (IRR)	19.74%
Net Present Value (NPV)	183,501 Million Dong
Benefit Cost Ratio (B/C)	2.67

(NPV and B/C were calculated by discount rate of 10%)

•	19.74% ion Dong		Benefit	Present Value	0	0	0	1, 282	1, 315	1. 513	T. IZU	1211.1	1. 042	6 571	2 617	2.649	2, 775	2, 789	2, 795	2. 707	2, 886	2. 871	5.000 9.000	0 207	2, 162	1.968	1, 838	1. 675	I. 431		2222	203	000	486	57, 379
Yen	ate : : : Million	B/C Analysis	Cost	Present Value	1. 656		18, 364	20	77		2	210	2, 040	9 997	7. 670	9,606	00	15	13		<b>6</b>	614	φ	0 4	*. <del>\</del>		208	2	~		-4	12			57.332
- Tien	Discount Rate Unit		Discount	Factor		0.6975	් 			o <	3 °	<b>3</b> •	0.15/0	; c	30		0. 0803					0. 0326	0.0212			6	-	ਂ	0		0.0045			0.0026	
Cua Ong			Total		0	0		2, 635	3, 238	4,460	110.0		372 A	12 TT	10 01	27 555	34, 566	41, 592	49, 914	57.877	73, 889	88. 025 25	196 76	100 081	136, 244	148, 497	166, 097	181, 198	185, 452	4	105,449	011 101	100, 443 185, 449	185, 449	2, 718, 678
n 4 :				Generated Traffic	0	0	Ö	00	0	0,	<b>t</b> r			30	103		7	5 C	9	0	11	2	4.0	01	22	26	8	35	202	20	ភ្លួ		22	50	574
s of Section		Benefit	Time Saving	Normal (( Traffic	0	0	0	238	285	379	455	280	100					3, 430		5. 024		S. 254			15.090		20, 393			23. 779	23. 1/9	044 66	23. 779	23. 779	315, 817
Analysi	÷.,		700	enerated Traffic	0	0	õ	C) ·	4	n o	× ç	21	25	200	36	46	52	69	14	66	112	129	747	121	995	212	235	254	305	315	010	910		315	4, 274
Cost Benefit Analysis	ka			Normal Traffic		0		2,395		4, 076		0. 914 0. 814	8, 5U3	17 996	20.954	25, 365	31, 715		45, 629	52, 753	67, 033	79, 630	020°20		120, 937	130, 877	145, 438	1	161.318		101 305	1	•	161.305	2, 398, 013
	Improvemen 43.5		Total		l∹	21.020	<u>,</u>	24	22		5.	145 C	10. 347	16 929	66, 632			225	225	225		18, 825	222	1966	225		18, 825	225	225	225	222	10 005	10, 023	225	308, 286
Table 14.36	: 2 Stage :	Cost	Mainte-	nance	0	0	0	54	54	24	40	40	40 U		54	54	225	225	225	225	222	225	272	166	225	225	225	225	225	222	222	100	225	225	5, 040
- - - -	Case Design Length		Capital		I. 983	21.020	31, 528	0		ö			10° 283	16 179	66. 578	99,866	0		0	0		1S, 600				0	18.600	0		00		002.01	ő –	0	303, 246
· ·			year	-2400 x 900-	1997	1998	1999	2000	2001	2002	2002	2004	C002	2004	2008	2009	2010	2011	2012	2013	2014	2015	0117 0117	2010	5102 5102	2020	2021	2022	2023	2024	20202	0000	2028	2029	Total
· .						~	e	41	5	نې 	- (		ב ָת 					5	97		2 2	61	28			24	25	26	12	22	82 G	26	58	33	
• • •					•	· .			:				:			•		14	- 2	29.	•														

•

## (2) Road for Benefit Cost Analysis

The distance of the project road is the same as the existing road; 43.5 km. The project road runs parallel with the existing road. The project road will reach capacity in the year 2023. The average running speed will decrease to 40 km/h.

(3) Traffic Volume Used for Benefit Cost Analysis

The expected traffic volume used for B/C analysis in the first year of operation, is 852 vehicles in total; 140 passenger cars, 211 buses, 258 trucks and 245 motor cycles.

<b>Table 14.37</b>	Traffic Volume	Used in	<b>B/C</b> Analys	sis (Average	Daily Vehicle)

Year	1995	2000	2005	2010	2015	2019	2025
P.Car	84	140	236	415	733	1035	1243
Bus	· 120	211	370	681	1254	1644	. 1978
Truck	83	258	800	1372	2351	3014	3607
M.Cycle	84	245	724	1045	1512	1909	2250
Total	371	852	2130		5850	8456	9028

(4) Benefit of the Project

The benefit of the project is the saved running cost and time yielded by the difference between driving on the existing road at an average speed of 39 - 15 km/h; and on the project road at 46 - 40 km/h. There is no benefit of shortened distance. Saving cost of road maintenance cost is so small that it is not considered as a saving.

### (5) Content of Benefit Composition

Composition of the total benefit shows V.O.C saving at 88%. Benefit of time saving is only 12%, because there is little difference in driving speed between the existing road and the project road.

#### Table 14.38 Composition of Benefit (Unit : Billion Dong)

ſ	an a	Normal Traffic	Generated Traffic	Total
	V.O.C Saving Benefit	2398	4	2402 (88 %)
	Time Cost Saving Benefit	315	0.5	316
		2713(99 %)	5	2718(100 %)

Benefit composition by vehicle types shows trucks as receiving the greatest benefit.

Table 14.39         Benefit Composition by Vehicle Type	Table 14.39	Benefit Com	position by	/ Vehicle Type
---------------------------------------------------------	-------------	-------------	-------------	----------------

The full line of the Collins of the first state of the Collins of the first state of the Collins of the first state of the firs	P.Car	Bus	Truck	M.Cycle	Total
V.O.C (Normal Traffic)	378	600	1387	32	2398
	: (16 %)	(25)	(58)	(1 %)	(100 %)

## 14.3.5 Section 5: Tien Yen - Bac Luan

## (1) Result of Benefit Cost Analysis

The results of benefit-and-cost analysis for this section is shown in Table 14.40 and 14.41. IRR is higher than the opportunity cost of capital. Thus investment of 500.4 billion dong as the project cost is economically feasible.

	Investment Indicator	1
Internal Economic Rate of Return (IRR)	18.34 %	1
Net Present Value (NPV)	339,567 Million Dong	-
Benefit Cost Ratio (B/C)	2.47	

### Table 14.40 Result of Benefit Cost Analysis

(NPV and B/C were calculated by discount rate of 10%)

### (2) Road for Benefit Cost Comparison

In light of the fact that the existing road at present has extra capacity, traffic congestion is not yet serious, and the road surface is well maintained well enough for traffic for the time being, the construction will basically be carried out in stages.

Second stage of construction: to undertake the second investment to widen the road to 2 lanes at the time it reaches capacity. The project road extends over 86.9 km parallel with the existing road. And the distance does not differ greatly. As a basic plan, the second investment period is suggested for the year 2007 - 2009.

## (3) Traffic Volume Used for Benefit Cost Analysis

The traffic volume capacity of the project road will reach its capacity in the year 2025, 16 years after completion of the second stage construction. After that, the benefit will not increase.

Traffic volume up to 2015 for the project road is based upon Chapter 5, "Transportation Modeling and Demand Forecast". Annual increase rate of traffic after year 2015 is set as: passenger cars, buses, and trucks at 7 % and motorcycles at 5 %.

Induced traffic is estimated at 2 % of the total traffic.

 Table 14.42
 Traffic Volume Used in B/C Analysis (Average Daily Vehicle)

	Year	1995	2000	2005	2010	2015	2019	2025-2029
.	P.Car	83	139	235	407	705	989	1387
	Bus	152	256	432	747	1292	1812	2542
	Truck	56	192	666	1168	2051	2877	4035
	M.Cycle	230	624	1696	2451	3542	4521	5770
	Total	521	1211	3029	4773	7590	10199	13734

Table 14.41 Cost Benefit Analysis of Section 5: Tien Yen - Bac Luan

.1 1	-		ः 	-								-	: meter			-	-	-						-	-	-			-	-						- 21	
18.34% 110n Dong		Benefit	Present Valu	0	0	0	2. 834	3, 214	2, 957	3, 380		4.308	4, 260			4, 819		6, 998		6, 926			6, 674			5, 019			3, 990			3, 165	2, 675	2, 260	1.910	1, 614	135.361
t Rate : Unit: 1 Mil	B/C Analysis	Cost	Present Valu		33, 446	42, 394	19	52	44	37	31	122	4, 559	5, 909	23, 104	15.621	54	309	32	12	23	1, 284	16	-113	12	10	60	467	9	41	4	4	3	021	27	15	135, 259
Discount Rate Unit Unit:		<b>1</b>	Discout Factor	0.845	-	0. 603				0.308								0.080		0.057									0.013						0.005		
	2 2	Total		0		0	5, 559	7. 459	8, 121	10.985	15, 566	19.608	22, 945	26, 817	36, 948	43.020	68 347	37.486	104. 193	121, 263	144, 036	181, 430	193, 658	203, 112	217, 156	241. 346	268, 019	286, 540	317, 987	352, 691	377.050	418, 012	418.061	418, 061	418.061	418, 061	5.451.600
:		ing.	Generated Traffic	0	0	0	9	89	8	10	14	18		. '		41	•	80		:		, 1 , 1 , 1					•••		337			475	475	475	475	475	5.777
	8enefit	Time Saving	Normal Traffic	0	0	0	572	742	775	11.011	1.407	1.720	2, 045	2, 429	3. 379	3, 996	5, 995	7, 838	9.421	11, 117	13, 358	17, 397	18.542	19,484	20, 768	23. 697	27.087	28.874	33, 072	37, 968	40, 473	46, 583	46, 590	46, 590	46.590	46.590	566.109
		ing Saving	Generated Traffic	0.5	0	0	50	68	74	101	143	181	211	246	339	394	620	804	956	1.111		1, 947							2, 875		3, 396			3, 747	3, 747	3, 747	49.582
ement Ka		Vehicle Operat	Normal Traffic	0	0	0	4, 931	6. 642	7, 263	9, 864	14.002	17.690	20.668	24.117	33, 196	38.590	61 669	78. 764	93.719	108.921	129, 223	161, 909	173, 160	181, 576	194, 195	215, 211	238, 224	254. 773	281, 703	311, 161	332, 769	367.206	367. 248	367.248	367, 248	367, 248	4, 830, 133
Stage Improvement 86.9 km	r	Total		7. 855	46, 839	70.258	120	120	120	1201	120	3.510	24.559	37.667	174. 286	139.454	1771	3, 867	) ব	477	477	31.472	477	3, 867	477	477	477	31,472	477	3, 867	477	477	117	31.472		3, 867	621.113
°2 	Cost	Mainte-	nance	0	0	0	120	120	120	120	120	120	120	120	120	120	144	477	111	477	477	477	477	477	477	477	427	477	• .				ţ	477	477	477	10.740
Case Design length		Capital		7, 855	46. 839	70. 258	0	0	0	2		3, 390	24, 439	37.547	174, 166	139, 334		3, 390		:	0	30. 995	0	3, 390	0	0		30, 995	ō	3, 390	0	0	0	30, 995		3, 390	610, 373
		year		1 2661	1998	6661	2000	2001	2002	2003	2007	2005	2006	2007	2008	2009		2011	2015	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total
	L			~	2	(C)	4	ഗ	9	r-1	- 00	о сл	, <u>0</u>	1		123	:>		14	<u>}</u>	3	5	20	2	83	ន	2	ង	8	5	8	ຊ	8	3	8	8	

## (4) Composition of Benefit

As for the ratio of total benefit and cost over the 30 years of assumed project life, saving of V.O.C will amount to 90 % of the total benefit. As for the vehicle-type benefit composition, trucks shows the most benefit (Refer to Table 14.43).

**Billion** Dong

an a			Dinion Dong	
	Normal	Generated	Total	
	Traffic	Traffic		
V.O.C. Saving Benefit	4830	50	4880 (90%)	
Time Cost Saving Benefit	566	5	571	
	5396 (99%)	55	5451 (100%)	í

#### Table 14.43 Composition of Benefit

Benefit composition by vehicle types shows trucks as receiving the greatest benefit.

## Table 14.44 Benefit Composition by Vehicle Types

1	in a the second s	P.Car	Bus	Truck	M.Cycle	Total
:	V.O.C (Normal Traffic)	712	1222	2767	128	4830
		(15 %)	(25 %)	(57 %)	(3 %)	(100 %)

#### 14.4 Sensitivity Analysis

#### 14.4.1 Selection Criteria for the Project

In order to select or prioritize a project in supposition of a certain amount of budget, there are three indicators: (a) Internal Rate of Return (IRR), (2) Net Present Value (NPV), (3) Benefit Cost Ratio (B/C).

1) IRR is an indicator of benefit ratio to investment capital (cost). However no matter how different the investment amount, the rate may result in the same figure.

For example, a project of 1000 dong scale, a project of 150 billion dong scale, and also a project of 20 million dong scale could all show an IRR of 15 %.

- 2) NPV indicator is usually used to analyze the amount of benefit exceeding the investment cost. For the selection of projects, in order of the amount of benefits, this NPV comparison is used.
- 3) On the other hand, even if NPV is small and project scale is small, some projects show high efficiency. These are expressed in benefit-and-cost ratio. That is, high B/C ratio means high benefit in relation to small investment cost. This is similar to IRR indicator.

NPV indicator and IRR indicator show different results depending upon which discount rate is to use, 10% or 12%. In the case of public facilities such as a road project, high benefit is not always necessary to decide investment priority.

IRR which can obtain the indicator (%) automatically by the calculation is used as project selection and priority indicator in this report.

#### 14.4.2 Analysis of Investment Feasibility of Base Case

	Section	Base	Cost	Benefit	Combination
	Jection	Plan	+10 % up	-10 % down	+1010 %
	Noi Bai - Bac Ninh	15.11	14.07	13.97	13.03
Section 2.	Bac Ninh - Chi Linh			:	· · · · ·
	Case - 1 2 + 2	17.36	16.25	16.13	15.07
	Case - 2 2	15.42	14.38	14.26	13.28
Section 3.	Hon Gai - Cua Ong	20.64	18.50	18.37	17.14
Section 4.	Cua Ong - Tien Yen	19.74	18.69	18.58	17.55
	Tien Yen - Bac Luan	18.34	17.37	17.27	16.33

# Table 14.45 Sensitivity Analysis by Using IRR (%)

Cases were analyzed to find IRR for 10 % increase of cost, for 10 % decrease of benefit, and for the combination of 10 % increase of cost and 10 % decrease of benefit. The result is seen in Table 14.45.

In order to decide investment feasibility, opportunity cost of capital is used as an indicator. Opportunity Cost of Capital shows high figure when economic growth is high and when there is high investment demand of social infrastructure. Opportunity cost of capital in Japan is about 5 %, while Vietnam is 10 - 12 %. IRR is higher than opportunity cost of investment of all case that were proven as economically feasible. The later the undertaking of the highway improvement project, the higher the IRR and Benefit Cost will become.

## 14.4.3 Sensitivity Analysis of Positive Alternatives

Sensitivity analysis of positive alternatives is discussed as follows (Refer to Table 14.46):

- Base case plans to add the second stage construction when the traffic volume reaches road capacity. As a result the IRR was comparatively high. Thus some more positive alternatives were studied.
- When construction is undertaken sooner, section 1, 2 and 5 showed IRR of less than 12 %, thus not economically feasible when considering the cost increase and the benefit decreases. This is due to the fact that the discounted present value of cost in comparison with benefit becomes more than the Base Case.
- Construction of alternate highway of Section 2: it is difficult to conclude early stage construction of the toll highway for the following reasons :
  - 1. This project basically presupposes a toll-free road.
  - 2. For capital recovery, it will be necessary to study the case of toll road, in which another traffic volume estimate is required.

# Table 14.46 Sensitivity Analysis of Positive Alternatives

Section	Condition	Construction Period	<b>(</b> B <b>)</b>
Section 1. Noi Bai	1 stage improvement	1997 - 2000	10.94 %
- Bac Ninh Section 2. Bac Ninh	(4 lane) Overlay + Alt. Highway	1998 - 2003	13.23 %
- Chi Linh Section 4. Cua Ong	1 stage improvement	1997 - 1999	11.23 %
- Tien Yen Section 5. Tien Yen	(2 lane) 1 stage improvement	1997 - 1999	10.95 %
- Bac Luan	(2 lane)		

Noe: All calculations are listed in Appendix A - 14.5

#### 14.5 Conclusions

Results of benefit cost analysis according to the sensitivity statement are as follows:

- (1) Section 1 Noi Bai Bac Ninh
  - 1) 2-lane road to be completed for use by the year 2001
  - 2) Additional 2 lanes to be completed for use by the year 2013.
- (2) Section 2 Bac Ninh Chi Linh
  - 1) In the first stage, 2-lane (widening of the present road) road to be completed by the year 2001, giving consideration to construction timing to connect both ends of the road.
  - 2) The alternate highway is to be constructed by the year 2007, following a detailed feasibility study.
- (3) Section 3 Hon Gai Cua Ong

4-lane road construction will be undertaken from the outset of initial stage to be open in the year 2001.

(4) Section 4 Cua Ong - Tien Yen

Construction for stage 1 and stage 2 is to be undertaken separately.

- Stage 1 is to complete overlay and construction of presently-dangerous bridges by the year 2000.
- Stage 2 is to complete widening to 2-lane road and remaining works by the year 2010.
- (5) Section 5 Tien Yen Bac Luan

Construction is to be undertaken in the same manner as section 4.