sediments) and slopes at water depths of more than 2,500m where the sound pressure starts to rise (part of outcropping rocks). In this part, several parts of outcropping rock that divide the gently inclined taluses into two tiers, the upper and lower tiers, are recognized as steep inclines of about 100m wide and 1,000m long along the isobathymetric lines. This is considered to be the part with ore indications recognized by FDC images.

(94SSS02)

At track line 94SFDC01 on the central ridge that faces the northern ridge—on which track line 94SSS01 was established—across the central graben, ore indications were observed at several points on the slaggy lava part located on the southern ridge of the top. At track line 94SSS02, we conducted the survey along the FDC track line around the southern ridge.

Ranges presumed to be sediments with low reflexion sound pressure stretch on the eastern part of the topographic rise and the northern ridge part. A part with high reflexion sound pressure presumed to be outcropping rocks, which embraces a part with low sound pressure presumed to be sediments, is recognized as a linear part, which indicates the existence of step slopes. The distribution range of ore indications should be around this southern ridge part, but it is not clearly identified. This might be caused by the topography full of variety on which we established our towing route, which made the SSS-fish rise and fall extensively, resulting in blurred images.

From the above, the parts corresponding to the ore indications obtained by FDC observation are recognized at the fractures that are affected by the tectonic lines and at the mound-shaped structures on SSS images, but these are obtained as groups of small structures of less than 100m. Thus it is inferred that these ore indications obtained exist as an assembly of such small structures.

5-4 Characteristics of samples collected

Based on the results of FDC and SSS surveys, we conducted sampling by LC, CB and PG in three sea areas:

The 94S01 Seamount, the central part of the Erromango Basin and the 94S02 Seamount from where relatively extensive ore indications had been observed.

The LC is the same unit as we used for the Base-line Geochemical Exploration. The CB is a steel net fitted with pipes for sampling muddy substances. We collected samples by dredging the CB on the sea-floor. On the other hand, the finder mounted power grab (PG) can observe the sea-floor and collect samples simultaneously.

Some rock samples were collected from the FDC frame during the FDC survey conducted at the central part of the Vate Trough. These samples and samples collected from the three sea areas were included in our subjects for discussion.

Collected samples were listed and weighed rouguly. A portion was collected for laboratory tests (chemical analysis, powder X-ray diffraction tests and others) and the remainder was preserved.

Sampling locations, water depths, amount collected and others are shown in Appendix Table 4.

Sampling locations are shown in Annexed Figure 2; LC columnar charts are shown in Annexed Figure 3.

Samples were mainly manganese oxides, iron oxides, rocks and their altered substances. Muddy substances composed of clay, calcareous shells of foraminifera and clastic minerals were also collected at the same time.

Properties of muddy substances collected from these sea areas are already discussed in the section "Properties of samples collected" of the Base-line Geochemical Survey, so we will not discuss them here.

Properties of samples discussed by each sea area are described here.

(1) 94S01 Seamount

As chimneys and hydrothermal biotic communities on the eastern side of this Seamount had been identified by FDC, the sampling survey was conducted around this place. Ten rounds of LC (94SDLC01 \sim 07, 19 \sim 21) and five rounds of PG (94SDPG04 \sim 08) were carried out. Muddy substances were collected by four rounds of LC. Yellowish brown precipitates presumed to be iron oxides were contained in the general stratigraphic succession of these muddy substances. Most of these precipitates were in direct contact with rocks but, sometimes, brown or green sediments exist between them. Samples of 11kg and 400kg were collected by PG05 and PG07, respectively, but only rocks were collected in these two rounds. Gossan of about 0.5cm is developed on the surface of the rocks. Vitric film of about 1.5cm is concomitant under the gossan. Magnetism is normal and abundant dark gray porous, spheroidal exuviae of about from 1

to 2mm presumed to be phenocrysts are recoginzed (see Fig. 5-4-1 (1).

(2) Central part of the Vate Trough

15kg of rocks were collected from track line FDC08-1 at the central part of the Vate Trough. Only a part of these rocks is concomitant with gossan. These rocks are pillow lava usually developed with about 1cm thick, and black vitric film is developed on the surface. The inner side of these rocks is gray and compact with strong magnetism and a small amount of phenocrysts of about 3mm and a number of long columnar crystal with major axes of about 2mm are recognized (see Fig. 5-4-1 (1)).

(3) Central part of the Erromango Basin

Eight rounds of LC (94SDLC08 \sim 15) and three rounds of PG (94SDPG01 \sim 03) were conducted. Muddy substances were collected by six rounds of LC operation and the operation at PG01. General stratigraphic succession of the muddy ous substances is composed of a few centimeters thick surface layer of brown foraminiferan ooze, sometimes interlayered with about 2cm thick, black volcanic glass. Black manganese oxides of about from 3 to 20cm thick exist under the surface layer. Dark brown to light green semiconsolidated sediments develop under the black manganese oxides.

150kg and 315kg samples were collected at PGO2 and PGO3, respectively. Samples were mainly composed of black manganese oxides and semiconsolidated sediments, but rocks were also obtained. There are two kinds of manganese oxides: one is a few cm thick platy type and the other is a massive type. The surface of the platy type manganese oxides assumes fatty luster, a number of about from 1 to 2mm thick layers develop under the surface layer, and the under surface is coarse-grained.

Massive manganese oxides are, on the whole, coarse-grained and it is difficult to discern between the upper side and lower side.

Semiconsolidated sediments are not abundant, but there are brown and light green types. The surface of rocks is thinly covered with manganese oxides but not concomitant with vitric film. Magnetism is normal, and gray, compact phenocrysts (presumed to be pyroxene) of about from 1 to 2mm and long columnar crystals with about 2mm major axis are abundantly recognized (see Fig. 5-4-1 (2)).

(4) 94S02 Seamount

Three rounds of LC(94SDLC16 \sim 18) and two rounds of CB (94SDCB01 \sim 02) were

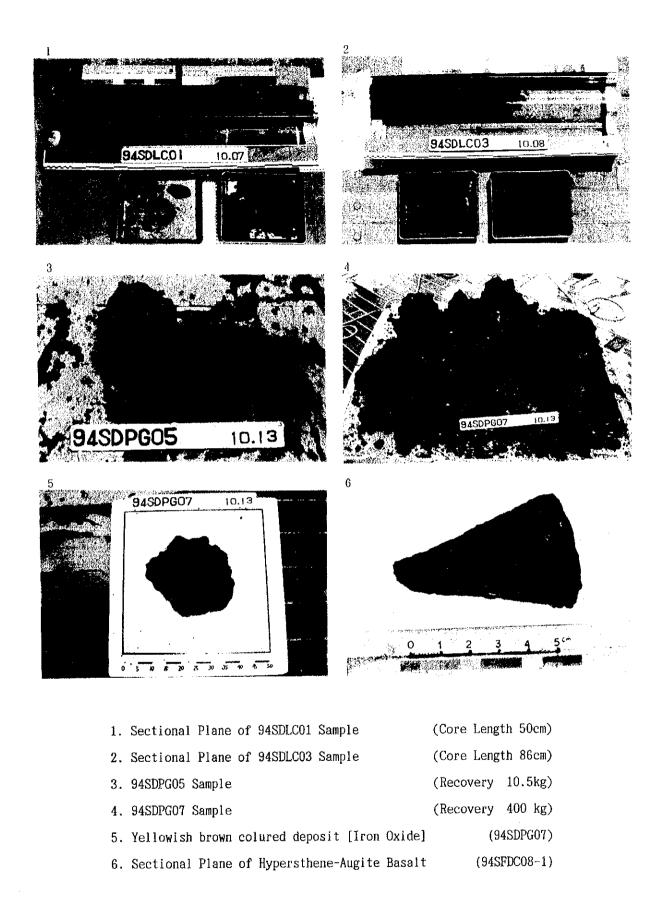


Figure 5-4-1 Photos of Samples Collected during Ore Deposit Investigation (94S01 Seamount, Central Part of the Vate Trough) (1)

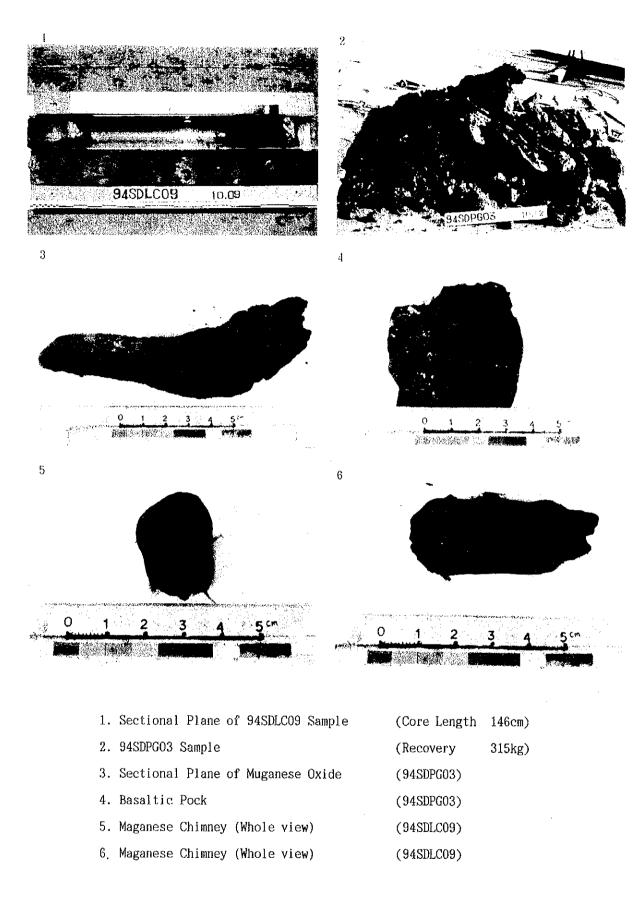


Figure 5-4-1 Photos of Samples Collected during Ore Deposit Investigation (Central Part of the Erromango Basin) (2)

conducted in this sea area. Reddish brown precipitates presumed to contain iron oxides (65cm) were collected from 94SDLC18. Precipitates assume partly green with small rock fragments at depths of more than 50cm, so the existence of rocks under this level is inferred. 59kg and 100kg samples were collected from 94SDCB01 and 94SDCB02, respectively. These samples are reddish brown, like the samples of LC18, and mainly classified into manganese oxides and rocks. Reddish brown precipitates are semiconsolidated substances with the maximum diameter of about 30cm, the surface of which is covered with thin manganese oxides (about 1mm thick). Manganese oxide veinlets (about from 1 to 2mm wide) are developed in the inner part of the substances which are fragile and can be easily broken by hand. These manganese oxides are crust with a maximum thickness of 4cm, and their inner part is filled with accidental substances like rock fragments. The surface of the rocks is concomitant with thin, reddish brown gossan (about from 1 to 2mm thick) but not vitric film.

These rocks are vesicular and assume dark gray with weak magnetism. A number of spheroidal, altered phenocrysts (presumed to be pyroxene) of about from 1 to 3mm are identified in these rocks (see Fig. 5-4-1 (3)).

<Thin section appraisal and powder X-ray diffraction test>

Thin section and X-ray diffraction on typical rock samples are discussed here. Figure 5-4-2 (1), (2) shows microphotographs. Results of thin section and X-ray diffraction are shown at the end of this report.

• (94SDLC01B)

Rock: Non-porphyritic hypersthene augite Basalt

Phenocryst is not recognized and plagioclase, glass and a small amount of hypersthene and augite are recognized in the matrix. Plagioclase assumes idiomorphic form and a moderate amount of plagioclase smaller than 0.3mm is recognized. Hypersthene and augite also assume an idiomorphic forms and a small amount smaller than 0.1mm is recognized. A great amount of glass is recognized. Glass has a large amount of pore spaces of from 0.5 to 4mm. It is very porous. It shows the variolitic or hyalopilitic texture. We did not conduct X-ray diffraction on this sample but a great amount of plagioclase and a trace amount of hypersthene and augite are detected from other samples (94SDLCO3-7) collected from the 94SO1 Seamount.

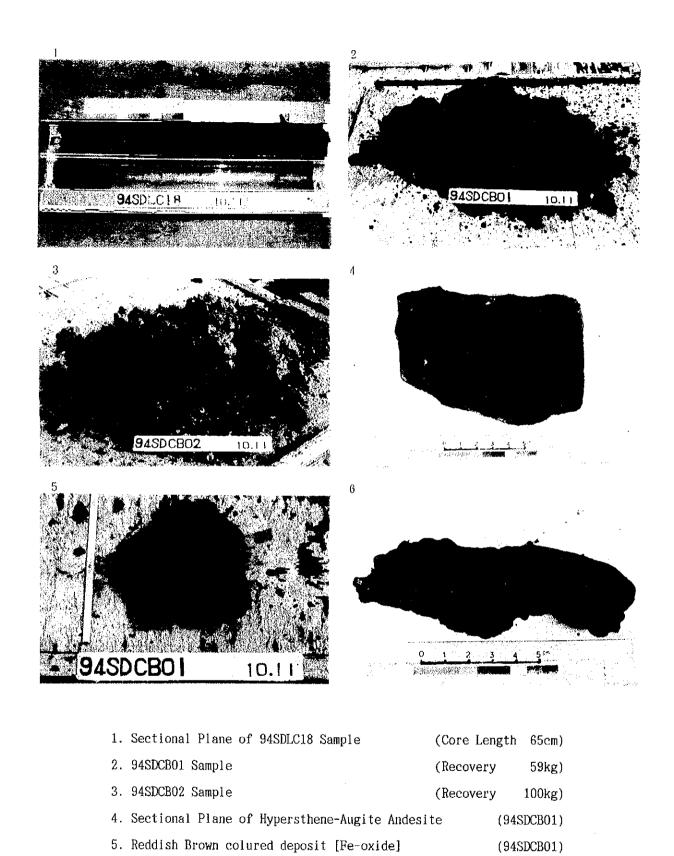


Figure 5-4-1 Photos of Samples Collected during Ore Deposit Investigation (94SO2 Seamount) (3)

(94SDCB02)

6. Section Plane of Crust-type Mngabese Oxide

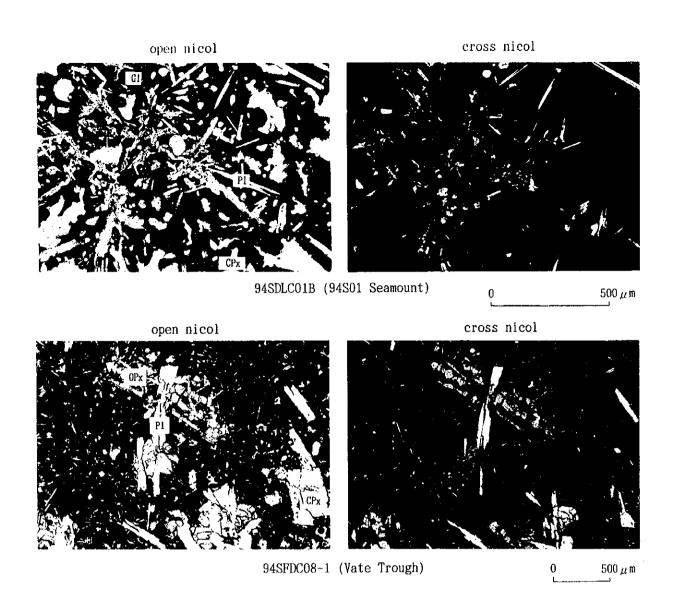


Figure 5-4-2 Microscopic Photos (Thin Section) (1)

open nicol cross nicol

OPX

OPX

OPX

94SDCB02 (94S02 Seamount)

0 500 µm

Abbreviation

1

Fo: Foraminifera

Ge : Gas cavity

 $G\ell$: Glass

I ℓ : Ilmenite

Mt : Magnetite

Pℓ: Plagioclase

Px : Pyroxene

CPx: Clinopyroxene

OPx: Orthopyroxene

Sc : Scoria

Figure 5-4-2 Microscopic Photos (Thin Section) (2)

• (94SFDC08-1)

Rock: Hypersthene augite Basalt

This is a rock collected from the central part of the Vate Trough.

Plagioclase, augite and hypersthene are recognized in its phenocryst, and a moderate amount of plagioclase and augite as well as a small amount of hypersthene and glass are recognized in its matrix. Plagioclase, hypersthene and augite in the phenocryst assume idiomorphic forms and respective sizes are from 0.25 to 2mm, from 0.1 to 1mm and from 0.1 to 0.7mm. The matrix part is smaller than 0.1mm and indicates the internal (or variolitic) texture. The same minerals are also detected by X-ray diffraction.

• (94SDPG02H)

Rock: Hypersthene augite Basalt

This rock is collected from the central part of the Erromango Basin. Plagioclase, augite and hypersthene are recognized in its phenocryst, and a moderate amount of plagioclase and glass as well as a small amount of augite and hypersthene are recognized in its matrix. Plagioclase, hypersthene and augite in the phenocryst part assume idiomorphic forms and respective sizes are from 0.3 to 1.7mm, about 0.5mm and from 0.3 to 1.5mm. The matrix part is smaller than 0.1mm and indicates the variolitic or internal texture. The same minerals are also detected by X-ray diffraction.

• (94SDCB02)

Rock: Hypersthene augite Basalt

This rock is collected from the 94SO2 Seamount. Plagioclase and augite are recognized in its phenocryst, and a moderate amount of plagioclase and glass as well as a small amount of augite and hypersthene are recognized. Plagioclase, hypersthene and augite in the phenocryst part assume idiomorphic forms and respective sizes are from 0.3 to 1mm, from 0.2 to 0.4mm and from 0.25 to 0.6mm. The matrix part is about 0.1mm except plagioclase of about 0.3mm and indicates the internal texture. The same minerals are also detected by X-ray diffraction.

<Chemical Analysis>

Analytical components and the limit of detection are as follows:

SiO₂, TiO₂, Al₂O₃, Fe₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, H₂O+, H₂O-, Co₂ (the limit of detection of above 14 components is 0.02%), Ba (1ppm), Rb (0.1ppm), Sr (1ppm), Pb (1ppm), Zr (1ppm), Nb (0.5ppm), Y (1ppm), V (1ppm), Cr (1ppm), Ni (1ppm), Cu (1ppm), Zn (1ppm) Ga (0.5ppm), S (100ppm), Sc (0.1ppm), Cs (0.1ppm), La (0.1ppm) Ce (0.1ppm), Nd (0.1ppm), Sm (0.01ppm), Eu (0.01ppm), Gd (0.1ppm), Tb (0.01ppm), Ho (0.01ppm), Tm (0.01ppm), Yb (0.01ppm), Lu (0.01ppm), Hf (0.1ppm), Ta (0.1ppm) and Th (0.1ppm).

Figures and units in the parentheses of elements other than the 14 whole rock components show the limits of detection.

The determination of samples were made by the following analytical methods:

Analytical Element	Method of Analysis
SiO ₂ , TiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, P ₂ O ₅ , V, Cr, Ni, Cu, Zn, Gd, Ho, Tm	ICP Emmission Analysis
Ba, Rb, Sr, Pb, Zr, Nb, Y, Ga, S	Fluorescence X-ray Analysis (XRF)
Sc, Cs, La, Ce, Nd, Sm, Eu, Tb, Tb, Lu, Hf, Ta, Th	Neutron Activation Analysis (NAA)
Co ₂	High Frequency Induction Heat Infrared Absorption Light Intensity Method
FeO	Neutralization Titration Method
LOI	Gravimetric Method

The above-mentioned chemical analyses were conducted on 12 rocks. Analyzed samples were 8 from the 94SO1 Seamount, one from the central part of the Vate Trough (94SFDC08-1), one from the Erromango Ridge (94SDPG02H) and 2 from the 94SO2 Seamount(94SDCB01 and 94SDCB02).

Results of the analysis are shown in Table 5-4-1. Based on the analytical results, AFM diagram, element relational charts and norm calculations were made (see Fig. 5-4-3 ~ 21).

According to the AFM diagram, rocks from the Erromango Basin and the 94S02

Table 5-4-1 Results of Chemical Analysis for Rocks

											Management	0.00	100000000000000000000000000000000000000
Sample No.		94SDLC03	94SDLC04	94SDLC06	24SI	ž.	2 2 2 2 3	ž.	SPORCES C	A CANAGE	200	100	2
10.0	ŀ	2 5	1	-						ľ			
202	\$ E	49.61	٠.										
200	8 E	000			٠								
A A CO.	<u>ا</u> ا	10.00				- '						-	
200	ار ا												
2 2	6 F	77.7											
	\$ 6	411							٠				
200	5 %	7.13	٠.										
200	5 8	3.25											
3 5	5 6	0 0		: 1					e .				
200	; ş	0.17											
100 H	, Pa	170	٠.										
2 2	6 6	4											
203	2 68	9.0	<0.01	0.16	0.26	<0.01	<0.01	<0.03	90.08	0.26	0,13	0.01	0.05
Ö	89	6.97											١
, to 10	20	21.8											
Da	ę i	37.6											
3 6		£ 05							1				
È ò		240											
5 6	11.6	4											
2 8	n dd	5							.'				
7 4	en de	3 -											
2 >	n del	: -											
- >	m i	: 8											
· (m de	10.5											
5 2		22											
Ē	1	3 3											
3 6		. 2											
17 6		3.5											
5 0	1	2000							٠.				
ກ່ປ	2 2	23.2											
3 8		99											
3 °	4	4											
i č	000	11.9											
2	0	8.7											
e v	2 6	2.76				. '							
ű	Hou	0.90											
Ü	mud.	3.29											
i e	100	0,61											
£	Hac	0.75											
Ë	100	0.41											
5		2.18									. .		
2 =	1 10	0.34											
Ť	an an	7.1											
T.	arge.	0.2											
- 5	шаа	8.0										ı	١
				l									

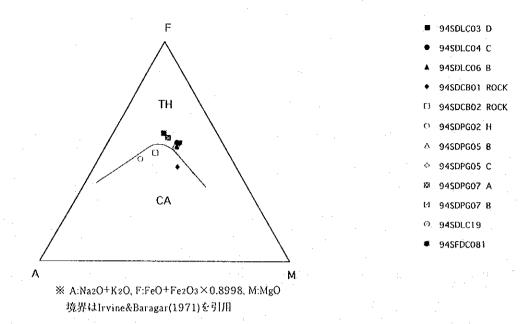


Figure 5-4-3 AFM diagram for basalts

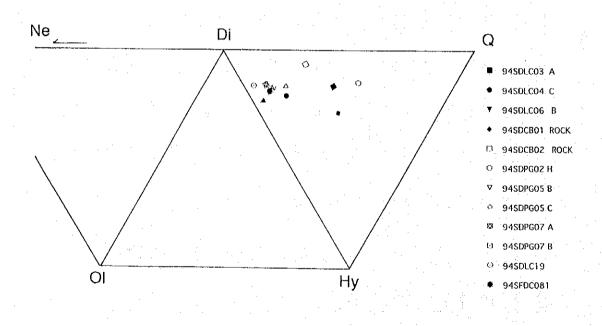


Figure 5-4-4 Diagram using Norm Di-Q-Hy-0 ℓ for basalts

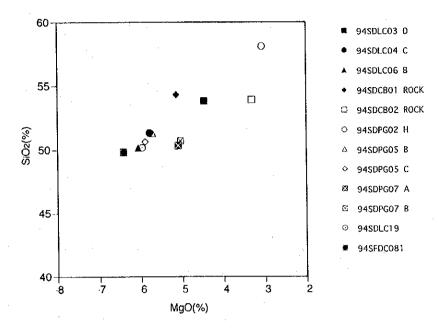


Figure 5-4-5 MgO versus SiO₂ for basalts

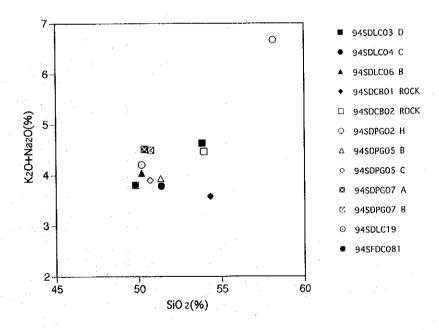


Figure 5-4-6 SiO₂ versus K₂O+Na₂O for basalts

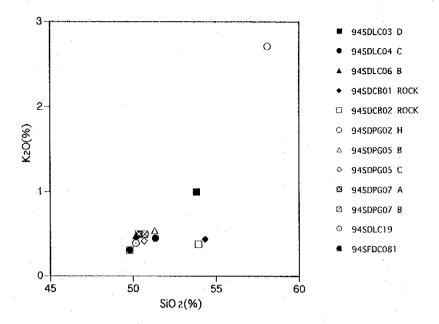


Figure 5-4-7 SiO₂ versus K₂O for basalts

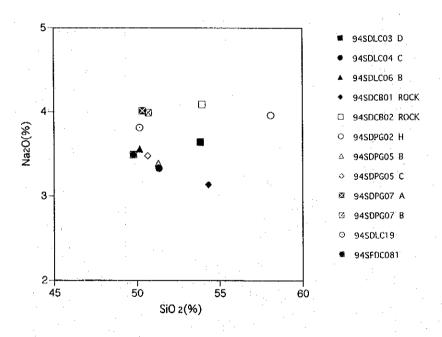


Figure 5-4-8 SiO₂ versus Na₂O for basalts

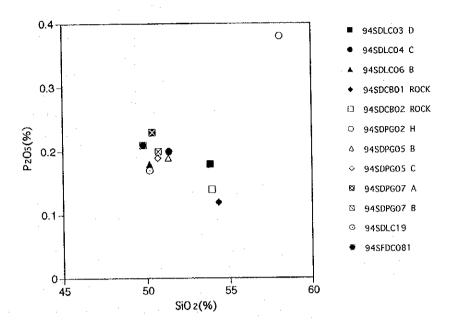


Figure 5-4-9 SiO₂ versus P₂O₅ for basalts

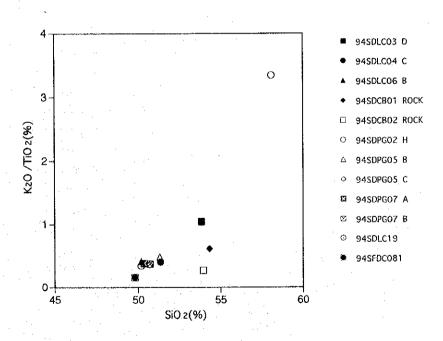


Figure 5-4-10 SiO₂ versus K₂O/TiO₂ for basalts

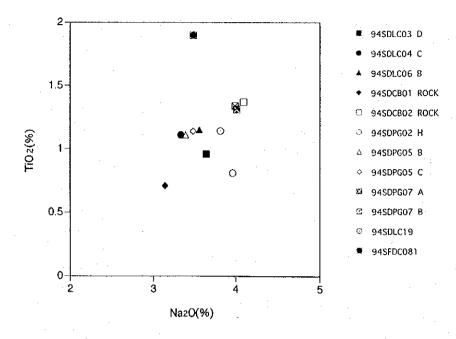


Figure 5-4-11 Na₂O versus TiO₂ for basalts

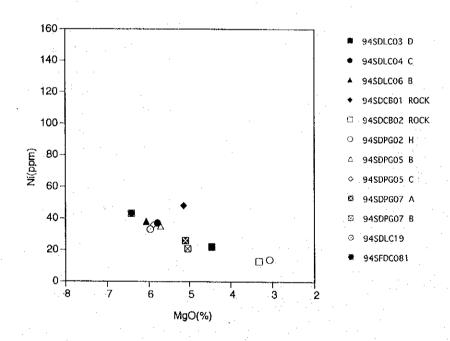


Figure 5-4-12 MgO versus Ni for basalts

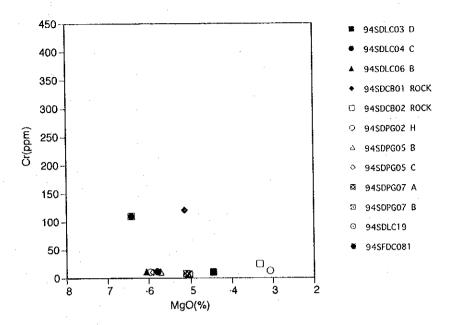


Figure 5-4-13 MgO versus Cr for basalts

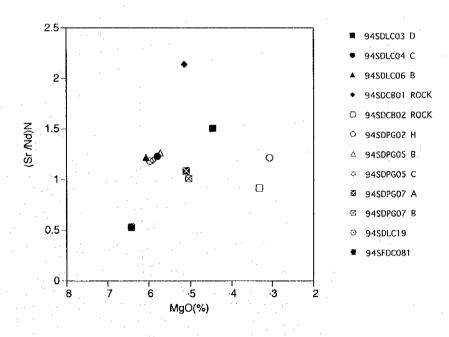


Figure 5-4-14 MgO versus (Sr/Nb)n for basalts

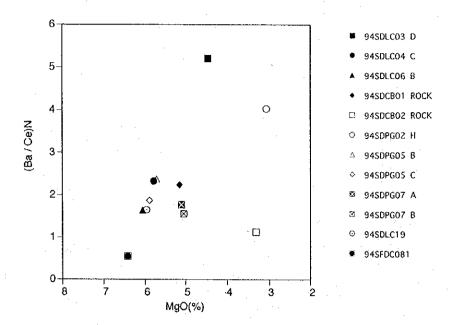


Figure 5-4-15 MgO versus (Ba/Ce)n for basalts

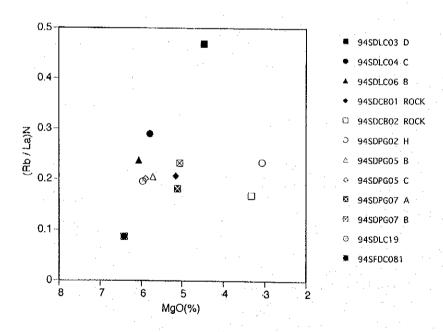


Figure 5-4-16 MgO versus (Rb/La)n for basalts

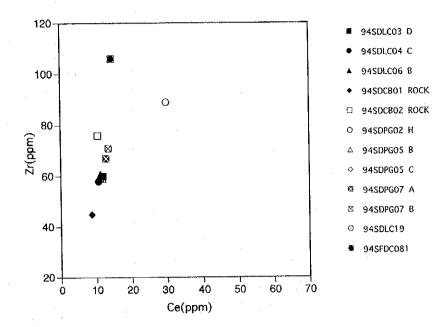


Figure 5-4-17 Ce versus Zr for basalts

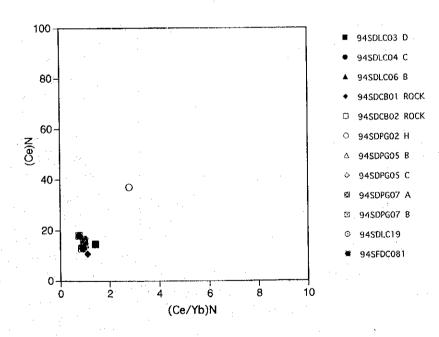


Figure 5-4-18 (Ce/Yb)n versus (Ce)n for basalts

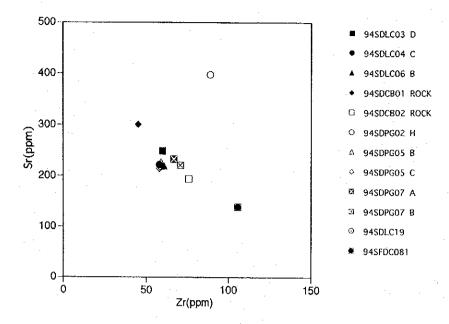


Figure 5-4-19 Zr versus Sr for basalts

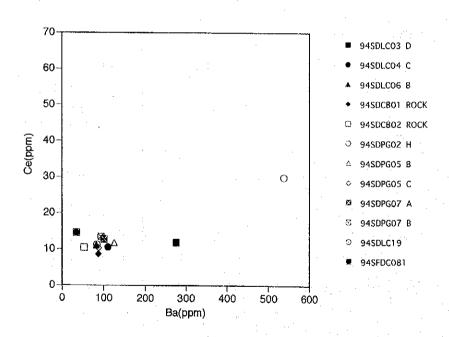


Figure 5-4-20 Ba versus Ce for basalts

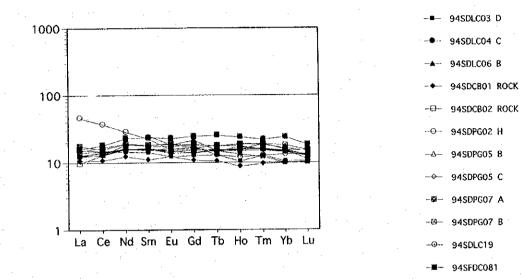


Figure 5-4-21 Chondrite-normalized rare earth element patterns for basalts

Seamount belong to the calc-alkali basalt rock series and rocks from the 94S01 Seamount and the Vate Trough belong to the tholeilte rock series. According to the classification of norm mineral combinations, all of the rocks belong to tholeilte oversaturated with silica. According to rock classification by SiO₂ versus MgO, the rocks from the Erromango Basin belong to High-SiO₂ andesite, onve of the rocks (94SDLCO3C) from the 94SO2 Seamount and 94SO1 Seamount belongs to Low-SiO₂ andesite and the other rocks from the 94SO1 Seamount and the Vate Trough belong to basalt.

Furthermore, according to the classification of SiO₂ versus K₂O+Na₂O, the rocks from the Erromango Basin and one of the rocks (94SDLCO3C) from the 94SO2 Seamount and 94SO1 Seamount belong to non-alkali andesite, and the other rocks from the 94SO1 Seamount belong to non-alkali basalt. The cassification of SiO₂ versus K₂O, Na₂O or P₂O₅ also show the same tendencies: one of the rocks (94SDLCO3C) from the 94SO2 Seamount and 94SO1 Seamount belong to lower-K₂O, and the other rocks from the 94SO1 Seamount and Vate Trough belong to higher-K₂O. From other element relational charts, one of the rocks (94SDLCO3C) from the 94SO2 Seamount and 94SO1 Seamount, and the rock from the Erromango Basin show different behavior from the other rocks of the 94SO1 Seamount and Vate Trough. Only the rocks from the Vate Trough are classified into MORB.

5-5 Ore indications

(1) 94S01 Seamount

At this seamount, oxidized alteration was identified throughout all the four FDC track lines on the eastern side and the top of the northwestern side of the seamount with a caldera in its central part. Also, chimneyes and hydrothermal biotic communities are identified on the eastern side of the seamount. Oxidized alteration and hydrothermal biotic communities were identified at one place on track line FDC10, oxidized alteration was identified at three places on track line FDC11, oxidized alteration at four places and hydrothermal communities at one place were identified on track line FDC12 and oxidized alteration was identified at one place on track line FDC13. Horizontal scale on the northwestern side is about 900m but the width in the direction of crossing the range orthogonally is inferred to be short.

The extent of the eastern place, where chimnies and hydrothermal biotic communities were identified, is 500 x 400m and the southern place is 500 x 300m. Oxidized alteration was also recognized at other places but their extents were very

small. The sampling survey was conducted only on the eastern side but the maximum vertical scale of yellowish brown precipitates presumed to contain iron oxides was 40cm.

We tried several times to collect this chimnyes by PG, but we could not even identify the chimnyes. We also tried to collect altered oxides by PG but only rocks were landed. Altered oxides must have been washed away during the landing.

According to the observation results, most of the oxidized alteration was found in cracks of pillow lava so the horizontal scale of oxidized alteration might be narrower than the results of the FDC observation (see Fig. 5-5-1 (1)).

(2) The central part of the Erromango Basin

In this sea area, oxidized alteration or black material was identified at six places in the central ridge on track line FDC01, the same was also identified on sediments on track lines FDC14 and FDC15. From 3 to 20cm thick black manganese oxides were collected by the sampling survey.

Cylindrical, brown consolidated substances, with a diameter of 2cm and length of 5cm, in the foraminiferan ooze under 4cm thick manganese oxides were found on central ridge 94SDLC09. There was a hole with a diameter of 0.5cm in the center of these consolidated substances. Black minerals presumed to be manganese oxides were crystallized (a manganese chimney?).

According to the results of FDC observation and sampling survey, foraminifera ooze often sedimented on manganese oxides, so there is a high potential that the activity has stopped at present. However, the entire 35cm were manganese oxides at 94SDLC10 and fumaroles altered in black were observed in sediments during the FDC survey. So we inferred that some places in the Basin are still in action and that a few centimeters thick manganese oxides are distributed extensively on the Basin (see Fig. 5-5-1 (2)).

(3) 94S02 Seamount

At this Seamount, oxidized alteration of about 800m long was identified on track line FDC04 in the northwestern part of the top of the seamount and oxidized alteration of about 800m long was identified on track line FDC05. Reddish brown precipitates presumed to be Fe-oxides and manganese oxides, found in the manganese survey area were collected by the sampling survey. As for vertical scale, we obtained 65cm

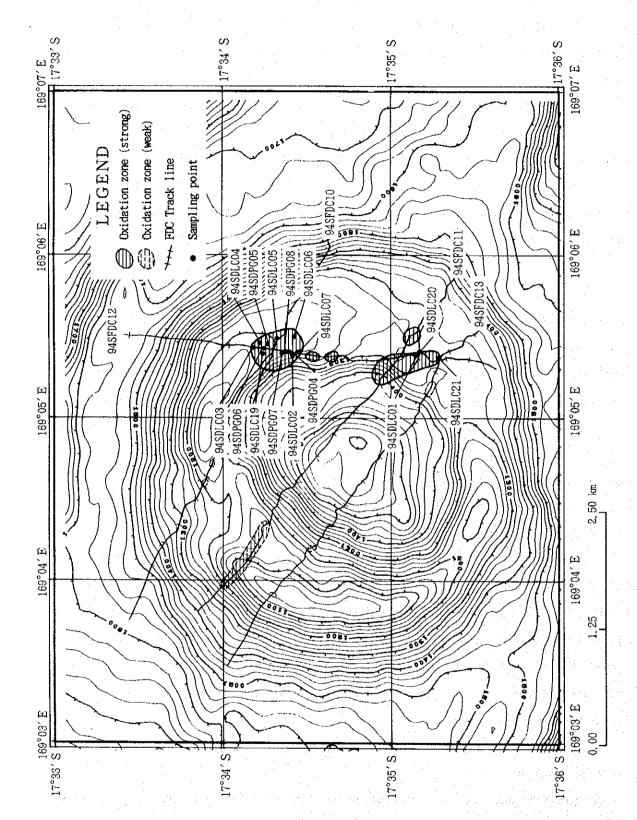


Figure 5-5-1 Ore Indication Map (94S01 Seamount) (1)

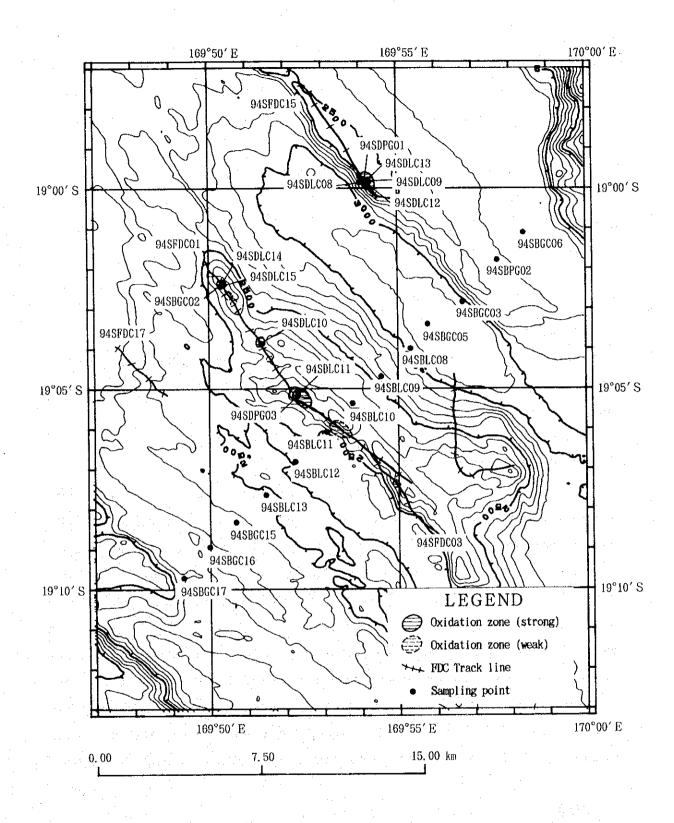


Figure 5-5-1 Ore Indication Map (Central Part of the Erromango Basin) (2)

reddish brown precipitates at 94SDLC18. As for horizontal scale, we estimated that the scope would be narrower than observed by FDC as the surface of rocks are thinly covered with oxides at some places (see Fig. 5-5-1 (3)).

<Polished thin section appraisal and powder X-ray diffraction test>

Polished thin section and X-ray diffraction on typical samples are as follows. Figure 5-5-2 (1), (2) shows microphotographs. Results of polished thin section and X-ray diffraction are shown at the end of this report.

• (94SDLC01A)

This sample is iron hydroxides collected from the 94S01 Seamount. It is partially mineralized to goethite. It developed in the shape of crust on the both sides of a hollow parts. Some of it grew radially toward the outside. Only a trace amount of clay mineral (smectite) was detected by X-ray diffraction.

• (94SDLC10A, 94SDPG03C and 94SDPG03D)

These are manganese oxides collected from the central part of the Erromango Basin. Manganese oxides with from mid to low reflective power (todorokite and birnessite?) and manganese oxides with high reflective power (todorokite?) are recognized. The manganese oxides with from mid to low reflective power assume from 1.5 to 0.1mm size nodular textures, from 2.5 to 0.5mm wide colloform crustified textures or from 3.5 to 1mm long columnar colloform textures. The manganese oxides with high reflective power assume from 2.0 to 0.8mm wide colloform crustified textures or from 2.5 to 0.1mm long columnar textures. The highly reflective power part indicates weak anisotropy under reflected light. Clastics and mineral fragments (plagioclase and augite) of basic volcanic rock origin are scattered in the manganese oxides. Birnessite and todorokite are also detected by X-ray diffraction.

• (94SDLC09)

This sample is a manganese oxide chimney collected from the central part of the Erromango Basin. Manganese oxides with from mid to low reflective power (todorokite and birnessite? $1.5 \sim 0.1$ mm thick) are generated in its inner wall. Manganese oxides with low reflective power assuming nodular textures (birnessite?) are generated toward the outside hollow parts. Birnessite and todorokite are also

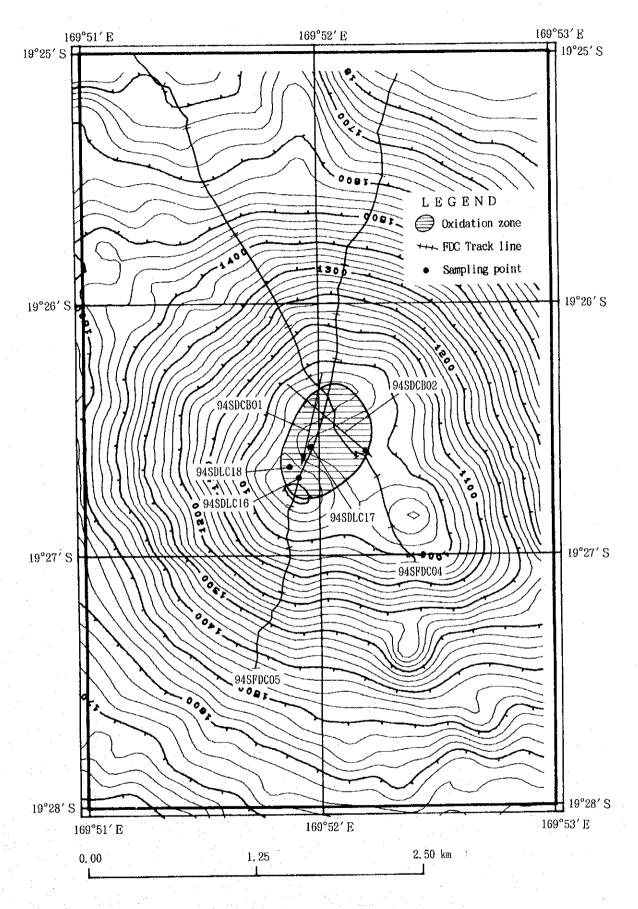


Figure 5-5-1 Ore Indication Map (94802 Seamount) (3)

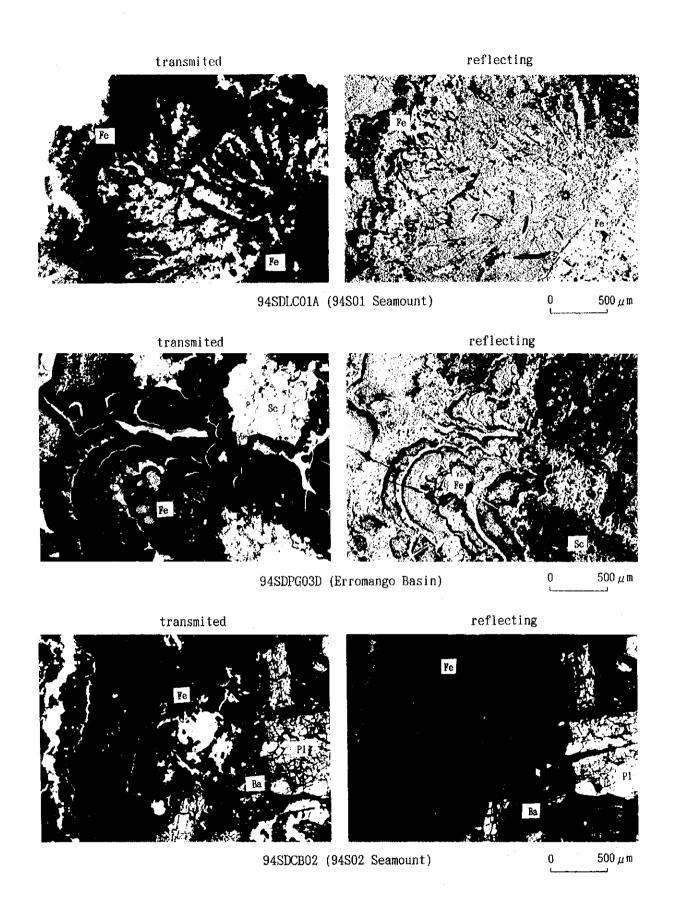
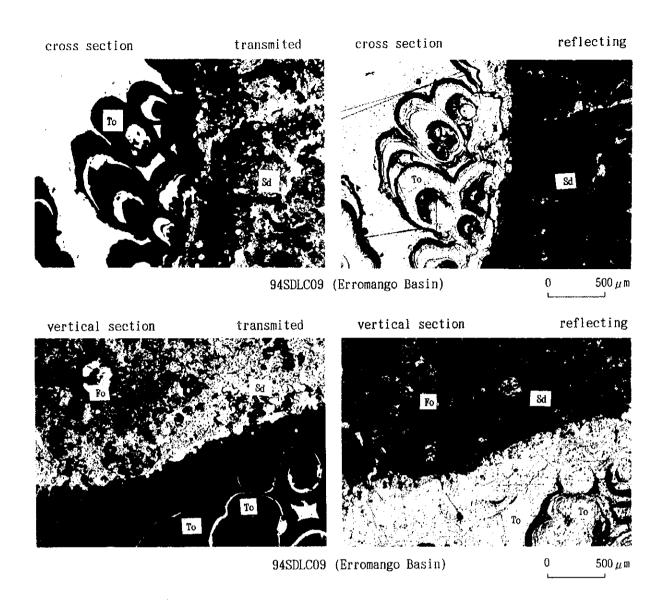



Figure 5-5-2 Microscopic Photos of Polished Thin Section (1)

Abbreviation

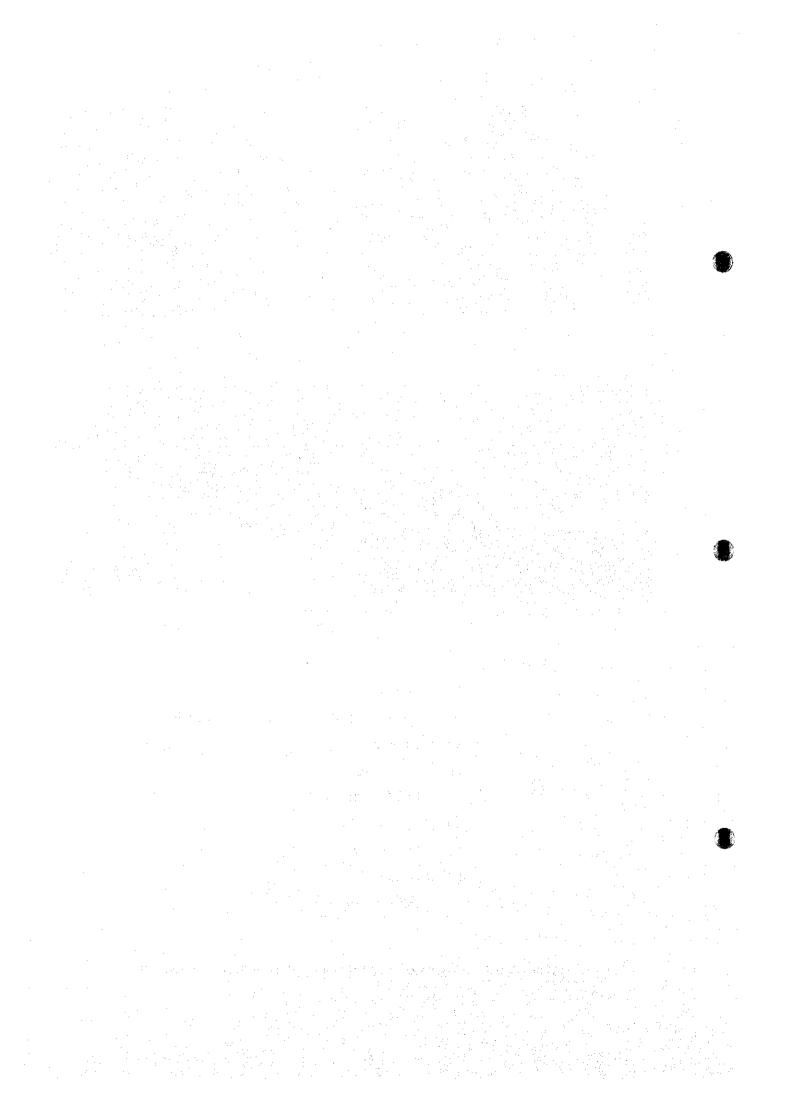
Ba : Basalt

Fe : Iron-hydroxides, oxides (including Goethite)

Fo : Foraminifera

Mn : Birnessite

Pℓ: Plagioclase


To: Todorokite

Sc : Scoria

Sd : Sediments

X : Unknown minerals

Figure 5-5-2 Microscopic Photos of Polished Thin Section (2)

detected by X-ray diffraction.

· (94SDCB02)

This sample is iron hydroxides collected from the 94SO2 Seamount. It shows growth assuming crystified textures by covering scoria and basalt fragments. A trace amount of goethite is detected by X-ray diffraction.

<Chemical Analysis>

Whole rock analysis (13 components) and trace component analysis (20 elements) were conducted on 25 samples of iron and manganese oxides. Table 5-5-1 (1), (2) shows the results of analysis.

Analytical components and the limit of detection are as follows:

 SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO, MnO, MgO, CaO, BaO, Na₂O, K₂O, P₂O₅, Co₂, LOI (the limit of detection of above 14 whole rock components is 0.01%), Au (2ppm), Ag (0.02ppm), Cu (1ppm), Pb (5ppm), Zn (1ppm), Mn (1ppm), Total-Fe (0.01%), Total-S (0.001%), Cd(0.1ppm), Bi (0.1ppm), Ni (1ppm), Co (1ppm), As (1ppm), Sb (0.2ppm), Hg (10ppb), Ba (5ppm), Sr (1ppm), Mo(1ppm), Sn (1ppm) and W (1ppm).

Figures in the parentheses of above trace components analysis (20 elements) are the limits of detection.

Methods of analysis for each component are listed below:

Analytical Element	Method of Analysis
SiO ₂ , TiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, P ₂ O ₅ , Total- Fe, Ag, Cu, Zn,n, Cd, Ni	ICP Emission Analysis
Bao, Ba, Sr, Sn, Total-S	Fluorescene X-ray Analysis (XRF)
Au, Co, As, Sb, Mo, W	Neutron Activation Analysis (NAA)
CO ₂	High Frequency Heat Infrared Absorption Light Intensity Method (LECO)
Hg	Reducing Vaporization Atomic Absorption Method
Fe0	Neutralization Titration Method
LOI	Gravimetric Method

Results of Whole Rock Analysis and Trace Level Analysis for Iron-Manganese Oxides (1) Table 5-5-1

		1		COO ACCOUNT	CACTOR CAC	Odery Cos	oveni Ota	MSDI ON	SASDI C18	94SDI C18	94SDCB01	94SDCB01	94SDCB02	94501,009	94SDLC10	94SDLC10	94SDLC11 S	94SDCB01
Sample No.	25	DICOI	TOTTOSES.	94SDICOI 94SDICOI 94SDICOI 94SDICOI	CONTRACTOR OF THE PARTY OF THE		TOTAL STATE	4				_	MDX	34.38	¥	Ø	-	
	-	K :	7 6	A 20 00	24.74	90 07	46.09	40 44	15.40		12.96	33.94		22.18	3.03	12.93	17.76	34.03
SiOS	96	29.11	25.00	90.00	1 6	037	0.63	0.12	200	0.0		0.51	0:30	0.34	0.04	0.05	0.15	0.49
2 2		77.0	10.05	V0.01			8,63	1 67	0.72					7.23	0.77	1.11	3.50	8.64
AROS	ه و	9 8	2 5	17.0		25.30	20.85	26.30	48.90	23.42	95.50	28.73	53,46	5.45		11.12	8.79	31.00
recos	9 8	70.00) č	20.00			<0.03	4.17	<0.02					10.0>		<0.01	<0.03	0.22
2 Y	Şς Ε	00.0	10.0	3 5			2	0.58	0.20					34.15	66.31	47.81	37.87	2.03
O Co	6 F	1 -	5 6	33	2.20			1.53	0.76			2.79		2.98	4.	2.18	3.85	7.
ρ Σ	9 6	Į (0,00	25.0	0.43		6.33	2.00	8.1					4.57		1.16	3.29	3.22
2 5	, e	2 :	60.0	76.0	3.30			3.49	3.42				2.18	3,48		2.10	2.27	2.91
Nazo Sazo	R 8	, ,	60.7	0.40	85		•	0.39	0.30		٠			1.02		1.49	1.15	1.66
8 8	8 (5 .	350	200				0.81	8					0.19		0.07	0.12	96'0
£ 5	9 8	5	5	0.00				28.0	061					1.05		<0.01	70.0	0.92
3	, P	- 1	74:1	77.01			Ø.	17.64	21.58	19.36		9.91	17.2	17.98	20.51	20.73	21.28	11.51
101	9 8	45 65	14.47	10,70	,-		-	-	94 28				L	95.66		100.75	100.04	98.20
LOI AL	ę.	3.70	77.64	14.0%	COOL				6					2		Q	ы	8
y a	200	7 6	7 6	7 2					0.51	0.23				<0.01		<0.01	<0.01	<0.01
	mdd		70.0	2 2					12					115		4	290	183
	ppm	Ŧ '	- 10	2 1/					٧					10	10	7	Ġ.	Ŷ
•	mdd	9 5	9 5) °				1.55						82	#	69	25	ŝ
5	udd	/7	2 6	7	, 60								•	264477	513543	370268	293287	15721
	mdd	35147	ore .	1	20.0			735						1.31	0.38	2.68	2.12	7.53
TOTAL-Fe	\$ 8	? :	0.00	7.1.2	0.50	0.537	0.743		1.210	1.057	0.733	0.797	0.823	0.653	0.343	0.310	0.103	0.613
ر - ا د - ا	Q	1777	200		100			0.29						<0.10	3.10	2.34	3.77	0.15
•	mdd	100	100	90				٠.						0.1	<0.1	0.1	<0.1	0.1
ō ā	ppm) r	,	. "	1			16						9	37	X	133	21
	bbta udd	;	7 0	, ,	٧	13.7	33.0	25.8						53.5	8.9	18.5	21.7	49.2
	aindd.	*:T7	9 9					77	24000					119	147	128	75	2110
	undd	, ,	re			0	6.0	1.3				1.2	2.5	6.0	10.2	11.9	4.0	1.1
	ppro	0 -	3	3 7			V	V						7	1	⊽	Ÿ	7
D (q dd	V	7 9	7 8		100	200	90		16		388		255%	661	3117	1017	351
o c	oudd.	2	7 5	2 5			263	288						743	305	256	436	350
'n:	mad	1 9	0 [×	,		1	77	33	51	261	156	111	261	701	336	497	421
	ntdd.	,	7 7	, ,	۲ '	7	V	7	7				7	⊽.	⊽	7	₹	_
	mdd	7 7	7 7	<i>i</i> \	<i>i</i> 7	7	7	-	Δ		⊽		7	209	-	~	S	ī
×.	mdd	₹	7	7	/													

Table 5-5-1 Results of Whole Rock Analysis and Trace Level Analysis for Iron-Manganese Oxides (2)

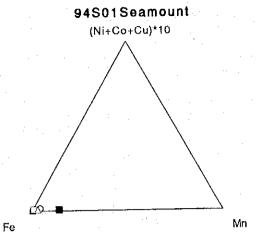
	Sample No.		94SDCB02	94SDPG01	94SDPG02	94SDPG02	94SDPG03	94SDPG03
				٥.	Н	D.	C	Д
_	SiO2	88	17.50	12.72	29.28	38.03	1.30	16.75
	TiO2	88	0.29	0.20	0.46	0.55	0.02	0.25
	AI2O3	68	6.82	4,23	9.24	10.83	0.32	4,48
_	Fe203	કર *	38.48	4.82	6.22	<0.01	0.28	3.38
	FeO	68	<0.01	<0.0>	<0.01	6.97	<0.03	<0.01
	M	68	7.92	46.84	27.06	20.33	64.89	48.96
_	MgO			239	2.82	2.41	1.30	2.01
	CaO	PE	2.96		5.53	474	2.07	3.05
	Na2O	હ			3.79	4.23	3.59	4.14
	K20	86		0.80	1.16	2,04	0.75	6 +1
	P205	₽6		0.24	0.23	0.36	50'0	0.25
	005	₽6	66.0	0.16	1.0.0	0.14	0.33	0.29
	Õ	86	18.54	20.79	14.97	10.27	26.23	15.70
	TOTAL	હશ	66.86	100.28	100.76	99.53	100.79	100.46
ښ.	Au	pLq	2	4	Q	<2	2>	4
	Ag	mdd	<0.01	<0.01	<0.01	<0.01	<0.01	40.01
	3	H.dd.	1012	193	8	139	13	88
	5	mdd	30	9	S	11	90	\$
	Zu	ppm	152	76	3	99	31	. 07
-	Mn-	mdd	61337	362756	209568	157447	502545	379174
	TOTAL-Fe		9.28	1,16	1.50	1.68	0.07	0.82
	TOTAL-S	9.8	0.653	0.270	0.153	0.343	0.187	0.397
	8	mdd	. •	0.25	0.56	0.16	0.10	0.73
	9	ppm	<0.1	0.1	5.0	<0.1	40.1	<0.1
	ź	mdd	174	185	7	27	30	43
	පි	mdd	4	7.77	20.7	22.7	4.7	9.0
	As.	mdd	2610	224	43	21	72	67
	Sp	mdd	8.01	5.1	1.6	1.2	9.9	6.2
	Hg.	qdd	7	₹	₹	⊽	⊽.	∀.
	Ba	mdd	411	1363	373	551	1130	1130
	Š	uidd	502	0.44	210	465	523	463
	Mo	mdd	249	454	388	205	689	909
	Sn	шф	⊽	⊽.	₹	Į,	₹.	₹
	W	ppm	-	197	7	₹	4	*

Among 25 samples, 7 samples were iron oxides collected from the 94S01 Seamount, 11 samples were manganese oxides collected from the central ridge of the Erromango Basin and the remaining 7 samples were iron oxides collected from the 94S02 Seamount. These samples show characteristic tendencies of each sea area. Fe is about from 15 to 30% and Mn is from 0.01 to 3.37% but mostly less than 1% at the 94S01 Seamount. Fe is from 0.2 to 23.49% but mostly less than 8% and Mn is from 0.79 to 52.20% but mostly more than 20% at the Erromango Basin. Also, Ba is higher than other sea areas. Fe is from 20.09 to 42.32% and Mn is from 0.05 to 6.24% but mostly less than 2% at the 94S02 Seamount. Also, Cu and As are higher than other areas, the maximum of Cu is 0.1% and As is 2.7%.

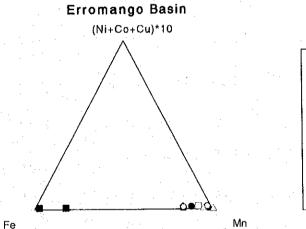
Grades of Ni, Cu and Co are low in all of the samples, so we can infer that the samples are hydrothermal iron and manganese oxides (see Fig. 5-5-3).

5-6 Temperature Anomalies

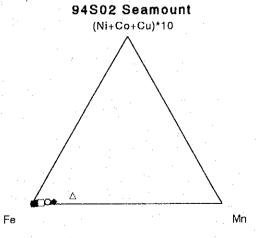
Water temperature was measured along all FDC track lines at intervals of five seconds and at cruising speeds of 1 \sim 1.5 knots (sampling intervals: about 3 \sim 4m) by a CTD sensor mounted on FDC.


Considering variations of background values of temperature and depth (topography) along each track lines, values regarded as anomaly were determined.

The details of temperature anomalies are shown in Table 5-6-1, and the temperature and depth profiles are shown in Figures 5-6-1 (1) \sim (3).

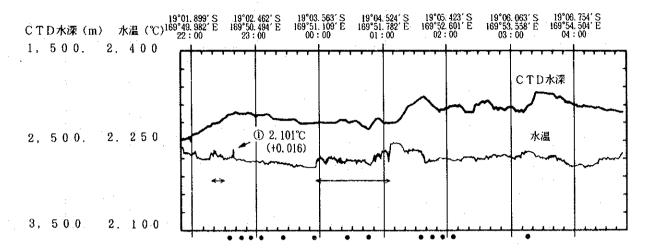

The following points can be pointed out from these profiles.

(1) 94S01 Seamount


- 1) Track line FDC11
 - \bigcirc Temperature anomalies were detected at one place. The maximum value of anomalies is 0.191° C.
 - According to the comparison with FDC results, these anomalies correspond to signs of hydrothermal activities (hydrothermal precipitates and others).
- 2) Track line FDC12
 - ① Temperature anomalies were detected at two places. The maximum values of anomalies are 0.097 °C and 0.191°C, respectively.

94SDLC01A 94SDLC01C 94SDLC03A 94SDLC03B □ 94SDLC03C O 94SDLC04A ۵ 94SDLC04B

■ 94SDPG03A,B 94SDLC09,34-38 94SDLC10A,B 94SDLC11 ☐ 94SDPG01C o 94SDPG02F,G 94SDPG03C,D Mn



94SDLC18,0-10 94SDLC18,45-50 ▲ 94SDCB01U 94SDCB01L □ 94SDCB02M O 94SDCB01 △ 94SDCB02

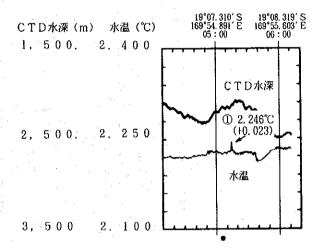

Figure 5-5-3 Mn-Fe-(Ni+Co+Cu)x10 diagram

Table 5-6-1 List of Temperature Anomalies

Line No.	Temperature Anomalies No.	Temperature(°C)	Depth(m)	Date/Time(GMT)	Position	FDC Results of Observation
FDC-01	①	2.101(+0.016)	2, 209	09/24 22:37:50	19' 02, 300' S 169' 50, 271' E	
FDC-03	(D) (Q)	2. 246(+0. 023) 2. 246(+0. 012)	2, 132 2, 456	09/26 05:14:35 09/26 06:10:45	19' 07. 569' S 169' 55. 076' E 19' 08. 478' S	Oesteichthyes Gorgonian Holothurioidea Crinoidea Gorgonian
	<u> </u>				169' 55, 822' E	
FDC-07	① ②	3.568(+0.023) 3.512(+0.102)	1,194 1,235	09/28 02:39:30 09/28 02:52:15	19' 41. 987' S 169' 48. 442' E 19' 42. 185' S	
					169' 48, 604' E	
FDC-09	1	2.744(+0.011)	2,359	09/29 23:04:20	17' 46. 324' S 169' 20, 624' E	Gorgonian Asteroidea
FDC-11	①	3.737(+0.191)	1,128	10/01 02:44:40	17' 34, 263' S 169' 04, 356' E	
FDC-12	1	3.634(+0.097)	1, 181	10/02 22:12:35	17' 34. 262' S	
· · · · · ·	②	3.621(+0.191)	1, 207	10/02 22:20:15	169' 05. 420' E 17' 34. 412' S 169' 05. 394' E	Hydrothermal communities
FDC-13	①	3.854(+0.022)	1,087	10/03 01:43:40	17' 34. 271' S	Cnidaria
	2	4,117(+0,177)	1,023	10/03 01:49:20	169' 04, 095' E 17' 34, 314' S 169' 04, 139' E	Porifera
FDC-14	①	2.218(+0.013)	2, 258	10/04 00:18:55	19° 08. 478′ S 169° 55. 822′ E	Macrura

FDC-03

FDC - 07

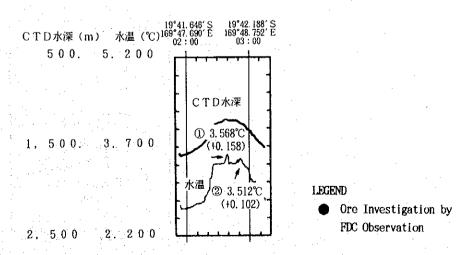
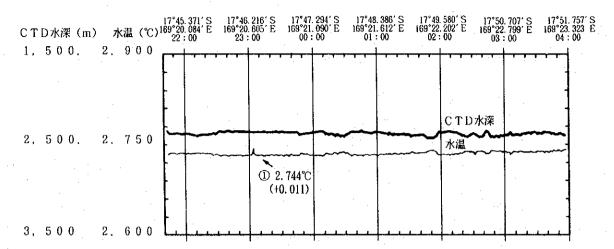
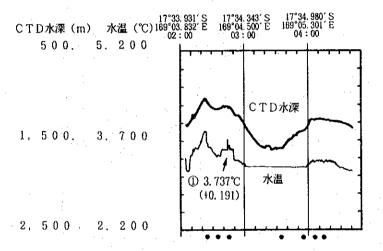




Figure 5-6-1 Temperature · CTD Depth Profiles (1)

FDC-11

FDC - 12

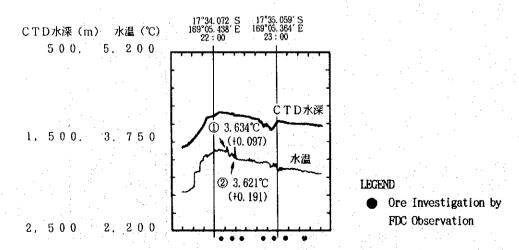
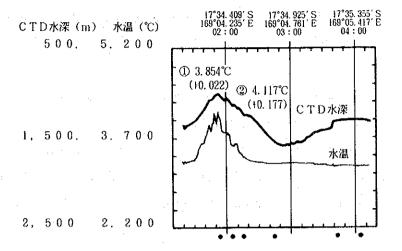




Figure 5-6-1 Temperature • CTD Depth Profiles (2)

FDC - 13

FDC-14

FDC - 15

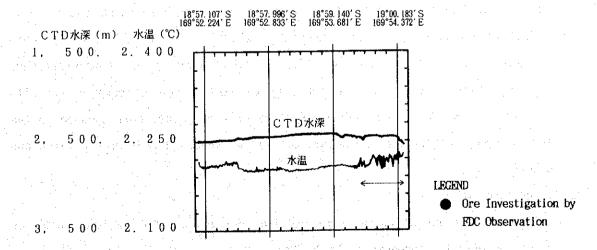


Figure 5-6-1 Temperature • CTD Depth Profiles (3)

② According to the comparison with FDC results, anomalies of water temperature correspond to signs of hydrothermal activities (hydrothermal communities, hydrothermal precipitates and others) at 17° 34.412'S.

3) Track line FDC13

- ① Temperature anomalies were detected at two places. The maximum values of anomalies are 0.022°C and 0.177°C, respectively.
- ② According to the comparison with FDC results, signs of hydrothermal activities (hydrothermal communities, hydrothermal precipitates and others) corresponding to anomalies of water temperature were not observed.

(2) Central part of the Vate Trough

1) Track line FDC09

- ① Temperature anomalies were detected at one place. The maximum value of anomalies is 0.011°C.
- ② According to the comparison with FDC results, signs of hydrothermal activities (hydrothermal communities, hydrothermal precipitates and others) corresponding to anomalies were not obeserved.

(3) Central part of the Erromango Basin

1) Track line FDC01

- ① Temperature anomalies were anomalies detected at one place. The maximum value of anomalies of water temperature is 0.016°C.
- ② According to the comparison with FDC results, temperature anomalies correspond to signs of hydrothermal activities (hydrothermal precipitates and others).
- (3) High temperature zones were observed in the vicinity of 19° 02.13'N, 169° 50.20'E and 19° 04.05'N, 169° 51.47'E. Such broad anomalies of temperature have not been observed in EPR and other area up to now but when we compared them with FDC results, we found that anomalies of water temperature corresponded to the location with signs of hydrothermal activities (hydrothermal precipitates and others).

2) Track line FDC03

Temperature anomalies were detected at one place. The maximum value of anomalies of water temperature is 0.023℃.

According to the comparison with FDC results, signs of hydrothermal activities (hydrothermal communities, hydrothermal precipitates and others) corresponding to anomalies of water temperature were not observed.

3) Track line FDC14

- ① Temperature anomalies were detected at one place. The maximum value of anomalies of water temperature is 0.011°C.
- ② According to the comparison with FDC results, signs of hydrothermal activities (biotic communities, hydrothermal precipitates and others) corresponding to anomalies of water temperature were not observed.

4) Track line FDC15

① Variation of temperature was observed broadly, as in the case of the track line FDC01. According to the comparison with FDC results, anomalies of water temperature correspond to locations with signs of hydrothermal activities (hydrothermal precipitates and others).

(4) Track line FDC07

- ① Temperature anomalies were detected at two places. The maximum value of anomalies are 0.158°C and 0.102°C, respectively.
- ② According to the comparison with FDC results, signs of hydrothermal activities (biotic communities, hydrothermal precipitates and others) corresponding to anomalies of water temperature were not observed.

Chapter 6. Discussions

⟨Survey Method and Procedures⟩

The volcanic central chain of the New Hebrides Trench exists on the western side of the survey area and the existence of submarine volcanoes around this sea area is well-known.

The possibility of generation of hydrothermal deposits at submarine volcanoes have been suggested. But up to now, neither systematic surveys nor reports of signs of hydrothermal deposits has been made in this sea area. This survey, therefore, is significant for determining the ideal method of submarine hydrothermal deposit exploration, procedures of exploration and methods of approaching an entirely new sea area.

In implementing our actual survey, we reviewed precedent methods for exploring hydrothermal deposits in other sea areas and bore in mind what sort of methods and procedures could be effective in vast sea areas.

The possibility of submarine hydrothermal deposits at ridge topography and sea knolls within back basins, seamounts concomitant with tectonic lines in the vicinity of volcanic fronts, seamounts and sea knolls with craters, regions of outcropping rocks or magnetic anomalies associated with new activities are known. We therefore covered the entire target area with a submarine topography survey and magnetic survey first. Based on the results of these surveys, we selected structures and other elements mentioned above, and established the locations for FDC submarine observation.

In ore deposit exploration, it is important to tow the vehicle as much as possible over areas with outcropping rocks to conduct the FDC survey. But it is difficult to determine such areas merely by topography maps and magnetic anomaly maps. For this year's survey, we drew up acoustic reflection image processed from MBES data. We found that the coverage of sea-floor sediments can be prospected by strength of sound pressure reflection. These maps, therefore, played an important role in identifying outcropping rocks that are important in establishing the locations for FDC track lines.

As the result of the FDC survey, we were able to discover and observe relatively extensive ore indications and altered zones at 7 track lines out of 17. For a survey in such a vast area, an area poor in existing data, we could say that this survey produced excellent results. Furthermore, in establishing sampling locations, we

conducted a comprehensive study by implementing the SSS survey at some part of the target area so as to obtain more detailed submarine topography. Results of the SSS survey also played an important role in determining sampling points by identifying the shape of mounds.

We conducted minute samplings in the center of ore indications, mounds, water temperature anomaly zones and places with signs of hydrothermal living things. As a result, we obtained samples of manganese oxides and others but we did not collect rocks concomitant with sulphide minerals and ores. We could not reach the mounds observed by FDC even by FPG. We inferred that this was because mounds concomitant with ore indications were distributed in limited narrow ranges. Although ore indications observed by FDC elongated in the direction of a major axis for a few hundred meters, such outcropping parts as mounds were lacking in continuity. Therefore, location assessment is an important issue if we wish to conduct our sampling operations at correct locations. If we take into consideration the precision of the GPS we are using now and a tendency of towed vehicles (such as FDC) to become unstable in bad oceanographic conditions, the precision of location might be about 100m. We, therefore, think that it is very difficult to reach the above-mentioned mounds precisely.

The methods and procedures of exploration we adopted during this year's survey might indicate a direction for efficient application of hydrothermal deposit exploration but the issues of towed vehicles at the final sampling stage and precise location assessment of sampling sites remain to be resolved.

Although we could not obtain data suggesting the existence of hydrothermal deposits with sulphide minerals in the survey area, we could presume a significant level of hydrothermal activity in this area.

<Topographic Survey>

The entire aspect of the Coriolis Troughs is revealed by the topographic survey using MBES and several topographic shapes suggesting tectonic movement were identified. According to a topographic map, the inner part of the Coriolis Troughs is divided in three, a small-scaled trough, a basin and so on.

A topographic shape suggesting several tectonic movements was identified at each trough or in the neighborhood of their boundaries. As the result of detailed studies of topography and a magnetic survey at the Vate Trough, we were able to detect sea

areas presumed to be currently most active regarding tectonic movement. Furthermore, areas starting to open as troughs or forms indicating the direction of spreading were identified at other troughs and provided effective data for selecting the location for submarine observations.

We spent most of the first half of the schedule for our topographic survey but it played an important role in the development of subsequent surveys, i.e. in applying methods of submarine observation and sampling. Ridge topography in troughs or seamounts concomitant with tectonic lines is assumed to be favorable environments for generation of hydrothermal deposits. It is therefore indispensable for effective exploration to identify in early stages the complicated topographic structure of sea areas lacking existing data.

<Acoustic Reflection Image>

To assist in determining sampling points, we drew up acoustic reflection image (sound pressure maps) utilizing the sound pressure of each beam received by MBES (see Fig. 3-2-3). High sound pressure reflected from the sea-floor is represented in black and low sound pressure is represented in white on the charts. Qualitatively, hard substances like rock masses are considered to exist in the high sound pressure part and soft substances like sediments in the low part. When we compared acoustic reflection image with the results of FDC observations, we found that the high reflection areas correspond to regions with outcropping rock masses and the low areas, correspond to regions where sediments are distributed, which shows that this method is effective for identifying the state of sea-floor, especially the coverage of sediments. The advantage of sound pressure image is that we can cover the same range in parallel with topographic maps. We believe, therefore, that acoustic reflection image can be effectively used in determining locations for FDC submarine observation and sampling.

<Magnetic Anomalies>

According to the Total Magnetic Force Map, the total magnetic force is within the range from 42,000 to 48,000nT and its value is generally low at the north and high at the south.

According to the Reduction to the Pole Map, the distribution of magnetic anomalies trending NNW-SSE and NW-SE are stressed on the whole, and high magnetic

anomalies are prominent in the northern part of the sea area and low magnetic anomalies are prominent in the southern part. The high magnetic anomalies zone in the northern part corresponds to the distribution of oceanic basalt (tholeilte) which indicates that the high magnetic anomalies zone reflects this distribution situation.

The distribution map of magnetization shows most of the seamounts in this sea area are normally magnetized but, on the whole, values of magnetic anomalies in this sea area are low. The reason for this may be because the deep part under the sea-floor is inversely magnetized.

Furthermore, magnetic lineation related to seafloor spreading and running parallel with axes of troughs is not clearly recognized in this sea area. This may be because the spreading rate was very small or it suggests that the spreading movement stopped at a certain period. Evidence showing that the troughs in this area are currently spreading is not apparent from the data of magnetic anomalies.

Characteristics of sediments distributed on the Coriolis Troughs show volcanic clastics mingled very conspicuously in muddy substances. This is harmonious with this sea area's characteristics, specifically that volcanic activities are active in this sea area. It is inferred that the origin of these volcanic activities is around the ridges distributed in this sea area.

Although signs of hydrothermal activities were not confirmed by this survey, manganese oxides presumed to be hydrothermal were collected by deposit survey sampling.

As for reasons why we could not identify any ore indications by the baseline geochemical exploration, we can enumerate the facts that samples were not collectable around the ridges, that the intervals of sampling points were too long (1 mile) and that the scale of ore indications in the track line direction was too small (about 100m), so that the geochemical halos did not affect the sampling points. If we conduct future surveys by the same methods, we should take some measures to narrow the intervals of sampling points.

<FDC Survey>

Most of the ore indications observed by the FDC survey are mainly composed of oxidized altered zones. Even at the 94S01 Seamount where the scale is relatively extensive (about 500m in the direction of its major axis), the main mineralization is

less than 100m. Generally, the occurrence of rocks has the tendency for rocks to transit to pillow lava, underwater autobrecciated lava, slaggy lava (or lobate lava, sheet lava) toward the center of the main mineralization. The main mineralization generally indicate mound-shaped topography but the scope is not discernible by FDC observation. From this, there are possibilities that the slaggy, lobate or sheet forms are not lava but the forms of precipitates themselves.

Although, biotic communities presumed to indicate the existence of hydrothermal activities were observed on lobate lava in the central area of the ore indications and around the pillow lava zones, relevance to the form of lava in the neighborhood was not confirmed as the number of places observed was too few.

<Rocks>

Rocks were collected only from some parts of the survey area at the 94S01 Seamount and the Vate Trough on the north side of the survey area, in the central part of the Erromango Basin and the 94S02 Seamount on the south. Olivine, the typical feature of oceanic rocks, was not detected by macroscopical observation nor X-ray diffration. These rocks do not belong to olivine tholelite.

According to the results of chemical analysis, rocks from the 94S01 Seamount and the Vate Trough, located on the north side, belong to tholeilte series, rocks from the south side of these rocks (Erromango Basin and 94S02 Seamount) belong to calc-alkali series and only rocks from further north (Vate Trough) are classified as MORB. From this, we can infer that the rocks from the 94S01 Seamount and Vate Trough are oceanic rocks but not concomitant with olivine, and that the rocks from the south (Erromango Basin and 94S02 Seamount) are rocks of island arcs or back arcs. There are possibilities that the geological structure of the Vate Trough (on the north side) differs from that of the Erromango Basin and southward.

<Ore Indications>

Although sampling surveys are conducted only 3 sites, which are a parts of the survey area, iron oxides on the 94S01 Seamount, manganese oxides at the central part of the Erromango Basin and iron oxides on the 94S01 Seamount are collected. The results of these specimens' chemical analysis plotted on a triangular diagram of Mn/Fe/(Cu+Ni+Co) x 10 is shown in Figure 6-1. The feature described above suggests that hydrothermal origin. We, therefore, infer that these suggest the possibility of

the existence of something in the survey area more than what we found.

Iron oxides were collected from the 94S01 Seamount and 94S02 Seamount in this year's survey. Properties of these iron oxides are somewhat different. Iron oxides collected from the 94S02 Seamount contained higher grade of Fe, maximum 0.1% of Cu and maximum 2.7% of As. Their native rock is island are rocks or back are rocks resembling precipitates of Epi submarine volcanoes in the north outside part of the survey area.

Most of the manganese oxides collected from the Erromango Basin are thin (only a few centimeters thick) but distributed extensively. Some of them are thicker than 35cm. Such manganese minerals as todorokite and birnessite are detected. These manganese minerals are inferred to be resembling Efate Island's manganese mine.

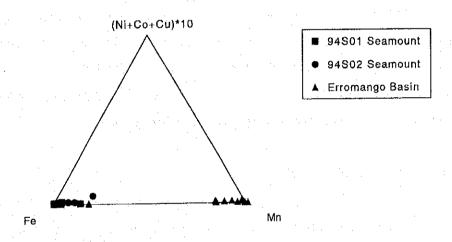


Figure 6-1 Fe-Mn-(Ni+Co+Cu) × 10 Diagram

Chapter 7. Summary

In 1994, the last fiscal year of the second phase of the five year SOPAC Program, a topographical survey and a survey related to submarine hydrothermal deposits were carried out within the exclusive economic zone of the Republic of Vanuatu on the eastern side of Efate, Erromango, Tanna and Anatom Islands, in the southern part of the New Hebrides Arc. The duration of the survey was 45 days.

The survey area is located to the west of the North Fiji Basin and the Coriolis Troughs, trending NNW \sim SSE, and is distributed nearly in the central part of this area.

The survey was composed of the topographical survey for drawing up bathymetric maps using MBES, submarine observation by FDC for a mineral deposit survey, the SSS survey and sampling using LC, GC and FPG. With the objective of estimating the geological structure, magnetic surveys were carried out in conjunction with the topographical survey and a CTD survey on water temperature anomalies caused by hydrothermal activities was carried out by a CTD mounted on FDC.

Also, with the objective of determining geological properties of sediments, baseline geochemical exploration was carried out as a background.

(Results of Topographical Survey)

In principle, track lines for the topographical survey were established at intervals of 2 miles and additional interpolation lines at intervals of 1 mile were established in the areas where water depths were shallow. The total cruising distance was 6,690.3 miles.

According to the bathymetric map obtained, detailed topographic structure of the entire survey area and the whole aspect of the Coriolis Troughs were made clear. Several topographic forms suggesting tectonic movement were also identified. The Coriolis Troughs has a major axis of about 320km and a minor axis of about 100km. The strike trends N25° W. The inner part of the Coriolis Troughs is divided by small-scaled troughs and basins. Cliffs on the both sides of the Coriolis Troughs are steep, especially the cliffs on the eastern side incline steeply. The average water depth within the Coriolis Troughs is about 2,600m, depths of which increase gradually from north toward south.

(Acoustic Reflection Image)

Acoustic reflection image were drawn using the sound pressure of each beam received by MBES.

By studing the acoustic reflection image and the results of FDC observation, we found that the coverage of seafloor sediments can be estimated to a certain extent by the strength of reflection sound pressure. We verified the general principles of rocks outcropping in high reflection sound pressure areas and seafloors thickly covered with sediments in low pressure parts. This became effective data for identifying the state of submarine conditions and determining locations for FDC observation and samplings.

(Results of Magnetic Survey)

According to the Total Magnetic Force Map, the total magnetic force is within the range from 42,000nT to 48,000nT, and, on the whole, the degree of total magnetic force gently varies (increases) from north toward south.

From the IGRF residual anomaly distribution, this sea area can be seen, on the whole, as a magnetic tranquility region.

Except for prominent, positive magnetic anomalies found in the northwestern part of the sea area, others are small-scaled anomalies.

According to the distribution of reduction to the pole, the northern part of the sea area shows high magnetic anomalies and the southern part shows low magnetic anomalies.

From the point of magnetization distribution, this sea area can be classified into a high magnetized zone distributed in the western tip corresponding to the east slopes of the Vanuatu island arc and the southeastern part, and a low magnetized zone distributed in the central part \sim southern part.

This is inferred to reflect the different geological structures between the Vate Trough and the Erromango Basin/Futuna Trough.

Also, magnetic lineation is not clearly recognized. The PGM sensor was towed a distance of 5,258.9 miles.

(Baseline Geochemical Survey)

Sampling by GC and or LC was conducted with the objective of identifying the general situation of sediments in the Coriolis Troughs.

As a result of sampling, the most conspicuous vertical variation recognized in sediments is found to be color tones.

General rules that the brown series sediments relatively distribute on the upper layer of olive series sediments are found to be true at every point. Furthermore, volcanic sediments are mingled in the above-mentioned sediments, which shows this is an area with active volcanic activities.

We could not detect signs of hydrothermal activities by this sampling.

(Ore Deposit Investigation)

In selecting target areas, we paid attention to ridge topography within the back basin, sea knolls, seamounts concomitant with tectonic lines in the neighborhood of volcanic fronts, seamounts and sea knolls with caldera and outcropping rocks or magnetic anomalies appearing to be new activities from the bathymetric map, acoustic refelction image and magnetic anomaly maps, and selected five sea areas (see Fig. 5-1-1).

During the mineral deposit survey, we extracted ore indications and altered zones during the FDC survey, then carried out sampling using FPG, CB and LC. The SSS survey was carried out on the ore indications detected by the FDC survey to identify their extent.

(FDC Survey)

As a result of submarine observation at the five sea areas selected during the mineral deposit survey, relatively extensive ore indications and altered zones were recognized at three sea areas (94S01 Seamount, the central part of the Erromango Basin and 94S02 Seamount) and temperature anomalies were recognized at two sea areas (94S01 Seamount and the central part of the Erromango Basin). Also, hydrothermal biotic communities were observed at the 94S01 Seamount. The location observed roughly coincides with the place showing temperature anomalies.

Especially, black holes appearing to be blow holes of Mn oxides are abundantly observed in the central part of the ore indications and altered zones.

Track lines were established at places with high potentials of outcropping rocks by utilizing the acoustic reflection image.

(SSS Survey)

Among three sea areas in which ore indications and altered zones were observed by the FDC survey, the SSS survey was carried out to identify detailed topography and the distribution of rocks and sediments at two sea areas (94SO1 Seamount and the central part of the Erromango Basin) where alteration was prominent or temperature anomalies were observed. As a result, mound-shaped rises, from where the generation of hydrothermal deposit could be expected, were extracted, which gave us important information for determining sampling points.

(Sampling)

Total 31 rounds of sampling, using FPG, LC and CB, were carried out at the sea areas of the 94S01 Seamount, the central part of the Erromango Basin and the 94S02 Seamount where relatively extensive ore indications and altered zones had been observed by the FDC and SSS surveys.

As a result, reddish brown precipitates appearing to contain iron oxides and a layer of manganese oxides, a few centimeters thick, appearing to be hydrothermal substances were collected from the central part of the Erromango Basin and the 94SO2 Seamount. Similar precipitates and Mn oxides were recognized by FPG observation but we were not able to collect sulphide minerals.

From the above, we found that the hydrothermal altered zones and ore indications occurring in this sea area existed around ridges and on seamounts with structural control. We were not able to identify sulphide mineral deposits in this year's survey. Even if sulphide mineral deposits existed, they must be oxidized or occurring at lower levels.

(Temperature Anomalies)

Measurement of water temperature was carried out on a line at 17 FDC track lines by CTD sensor mounted on FDC. If variation of background was considered, distinct anomalies of water temperature were detected at several places, at water depths of 2,000m. These anomaly zones roughly correspond to the locations where signs of hydrothermal activities (biotic communities, hydrothermal precipitates and others) were recognized.

(Discussions)

As for this year's survey area, hydrothermal deposits have never been reported except in the neighborhood of Epi Volcano and the area is poor in existing data. The survey, therefore, is significant for considering methods of hydrothermal deposit exploration in an entirely new area. In conducting the actual survey, we made a bathymetric map (in parallel with magnetic survey) and selected promising regions by taking into consideration the places of origin of mineral deposits already known, then decided the sampling points based on the FDC and SSS survey results. We found, from the MBES acoustic reflection image, that the situation of sediment coverage can be estimated to a certain extent. It became clear that this method will be effective in the future surveys.

The methods and procedures of exploration we adopted during this year's survey may indicate a direction as an efficient application for hydrothermal deposit exploration but the issue of the precise location of samplings remains to be resolved.

Putting all survey results together, it became clear that the ore indications occurring in this sea area exist around ridges and seamounts with structural control.

Although sulphide minerals were not collected by sampling, we can presume a significant level of hydrothermal activity in this area.

[Reference]

Akimoto, K., Hasegawa, S., 1989:

Bathymetric Distribution of the Recnt Benthic Foraminifers around Japan - As a Contribution to the New Paleobathymetric Scale -.

The Memories of the Geological Society of Japan, 32, 229-240.

Alpha, T.R., 1988:

Perspective Physiographic Diagram of Vanuatu.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 29-34.

B, A. W.H., 1977:

An Ecological Zoogeograhic and Taxonomic Review of Recent Planktonic Foraminifera.

In Ramsay, A.T.S.(ed.), Oceanic Micropaleontology. London, Academic Press, 1, 1-100.

Berggen, W.A., Kent, D.V., Flynn, J.J. and Van Couvering, J.A., 1985: Cenozoic Geochoronology.

Geol. Soc. Am. Bull., 96, 1407-1418.

Blow, W.H., 1969:

Late Middle Eocene to Recent Planktonic Foraminiferal Biostratigraphy.

Proceedings of the First International Conference on Planktonic Microfossils, 1, 199-422.

Brocher, T.M., 1985:

On the Age Progression of the Seamounts West of the Samoan Islands, SW Pacific.

Investigations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 173-186.

Brocher, T.M., 1985:

On the Formation of the Vitiaz Trench Lineament and North Fiji Basin.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 13-34. Brocher, T.M., and Holmes, R., 1985:

Tectonic and Geochemical Framework of the Northern Melanesian Borderland:

An Overview of the KK820316 Leg 2 Objectives and Results.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 1-12.

Brocher, T.M., and Holmas, R., 1985:

The Marine Geology of Sedimentary Basins South of Viti Levu, Fuji.

Investigations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 123-138.

Brocher, T.M., and Wirasantosa, S., 1985:

Regional Sedimentation Patterns along the Northern Melanesian Borderland.

Investigations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 77-102.

Buchbinder, B., and Halley, R.B., 1988:

Source-Rock Evaluation of Outcrop Sample from Vanuatu (Malakula, Espiritu Santo, Maewo, and Pentecost).

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 255-266.

Burne, R.V., Collot, J.Y., and Deniel, J., 1988:

Superficial Structures and Stress Regimes of the Downgoing Plate Accociated with Subduction-collision in the Central New Hebrides Arc (Vanuatu).

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 357-376.

Chaproniere, G.C.H., 1983:

Late Tertiary and Quaternary Foraminiferal Biostratigraphy and Paleobathymetry of Cores and Dredge Samples from Cruise KK820316 Leg 2.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 103-122.

Chaproniere, G.C.H., 1991:

Pleistocene to Holocene Planktic Foraminiferal Biostratigraphy of the Coral Sea, Offshore Queensland, Australia.

BMR J. Aus. Geol. Geophys, 12, 3, 195-221.

Chase, T.E., and Seekins, B.A., 1988:

Submarine Topography of the Vanuatu and Southeastern Solomon Islands Region.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 35-36.

Collot. J.Y., and Fisher, M.A., 1988:

Crustal Structure, from Gravity Data, of a Collision Zone in the Central New Hebrides Island Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 125-140.

Crawford, A.J., Greene, H.G., and Exon, N.F., 1988:

Geology, Petrology and Geochemistory of Submarine Volcanoes around Epi Island, New Hebrides Island Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 301-328.

Duncan, R.A., 1985:

Radiometric Ages form Volcanic Rocks along the New Hebrides-Samoa Lineament.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 67-76.

Falvey, D.A., and Greene, H.G., 1988:

Origin and Evolution of the Sedimentary Basins of the New Hebrides Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 413-442.

Fisher, M.A., 1988:

Petroleum Geology of the Central New Hebrides Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 279-286.

Fisher, M.A., Falvey, D.A., and Smith, G.A., 1988:

Seismic Stratigraphy of the Summit Basins of the New Hebrides Island Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 201-224.

Glikson, M., 1988:

Miocene Algal Reef-Derived Deposits in Vanuatu-Possible Petroleum Source Rocks.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 267-274.

Golan-bac, M., and Kvenvolden, K.A., 1988:

Hydrocarbon Gases in Surface Sediments of the South Aoba Basin, Vanuatu.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 275-278.

Greene, H.G., and Johnson, D.P., 1988:

Geology of the Central Basin Region of the New Hebrides Arc Inferred from Singlechannel Seismic-reflection Data.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 177-200.

Greene, H.G., Macfarlane, A., Johnson, D.P., and Crawford, A.J., 1988:

Structure and Tectonics of the Central New Hebrides Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 377-412.

Greene, H.G., Macfarlane, A., and Wong, F.L., 1988:

Geology and Offshore Resources of Vanuatu-Introduction and Summary.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific

Council for Energy and Mineral Resources Earth Science Series, 8, 1-28.

Holmes, M.L., 1988:

Seismic Refraction Measurements in the Summit Basin of the New Hebeides Arc.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 163-176.

Ingle, J.C.Jr., 1980:

Cenozoic Paleobathymetry and Depositional History of Selected Sequences within the Southern California Continental Borderland.

Cushman Foundation Special Publication, 19, 163-195.

Johonson, D.P., Belford, D.J., Cater, A.N., Crawford, A.J., 1988:

Petrology and Age of Dredge Sample Collected in the Central Basin, Vanuatu.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 141-162.

Johnson, D.P., and Greene, H.G., 1988:

Modern Depositional Regimes, Offshore Vanuatu.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 287-300.

Katz, H.R., 1988:

Offshore Geology of Vanuatu-Previous Work.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 93-124.

Keating, B., 1983:

Paleomagnetic Studies of the Samoan Island: Results from the Islands of Tutuila and Savaii.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 187-199.

Louat, R., Hamburger, M., and Monzier, M., 1988:

Shallow and Intermediate-depth Seismicity in the New Hebrides Arc: Constraints on the Subduction Process.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 329-356.

Macfarlane, A., Carney, J.N., Crawford, A.J., and Greene, H.G., 1988: Vanuatu-A Review of the Onshore Geology.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 45-92.

Natland, J.H., and Turner, D.L., 1983:

Age Progression and Petrological Development of Samoan Shield Volcanoes:

Evidence from K-Ar Ages, Lava Compositions, and Mineral Studies.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 3, 139-172.

Okuma, S., Makino, M., and Nakatuka, T., 1989:

Two-Layer Model Inversion of Magnetic Anomalies Using Pseudogravity and Reduction to the Pole: An Application to the Analysis of Aeromagnetic Anomalies over Izu-Oshima. Butsuri-Tansa (Geophysical Exploration), 42, 2, 82-96.

Person, L., Hawkins, J., et al, 1992:

Proc.ODP, Init. Repts., 135

College Station, TX (Ocean Drilling Program).

Price, R.C., Maillet, P., and Johonson, D.P., 1993:

Interpretation of GLORIA Side-Scan Sonar Imagery for the Coriolis Troughs of the New Hebrides Backarc.

Geo-Marine Letters, 13, 71-81.

Sinton, J.M., Johonson, Kevin T.M., and Price, R.C., 1985:

Petrology and Geochemistry of Volcanic Rocks form Northen Melanesian Borderland.

Investegations of the Northern Melanesian Borderland, Circum-Pacific Council for

Energy and Mineral Resources Earth Science Series, 3, 35-66.

Smith, G.L., Falvey, D.A., and Shaw, R., 1988:

Multichannel Data Acquisition and Processing.

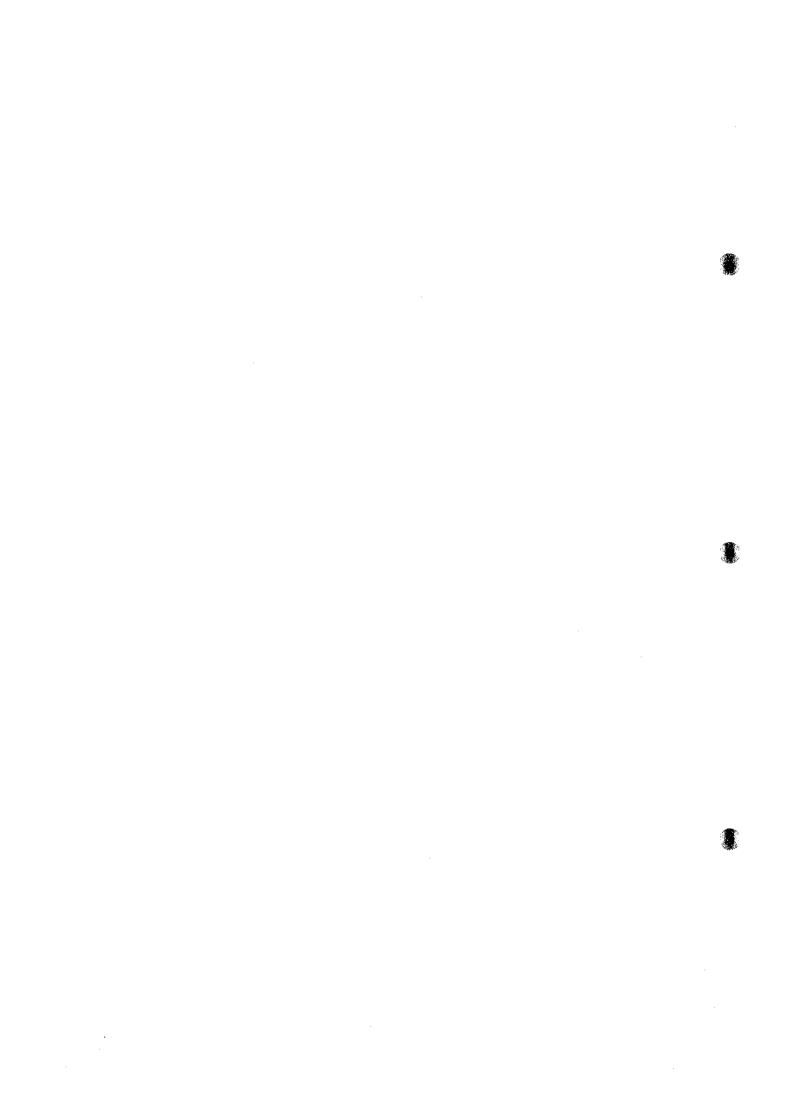
Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 39-44.

Steele, W.C., and Kinoshita, K.L., 1988:

Navigational Data Collection, Processing, and Display.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 37-38.

Tiffin, D.L., 1993:


Tectonic and Structural Features of the Pacific/Indo-Australian Plate Boundary in the North Fiji-Lau Basin Regions, Southwest Pacific.

Geo-Marine Letters, 13, 126-131.

Wong, F.L., and Greene, H.G., 1988:

Geologic Hazards Identified in the Central Basin Region, Vanuatu.

Geology and Offshore Resources of Pacific Island Arcs-Vanuatu Region, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, 8, 225-254.

[Appendix]

- 1. Sampling Results of the BaseLine Geochemical Survey
- 2. Results of the FDC Observation
- 3. List of the Ore Indications
- 4. Sampling Results of the Ore Deposit Investigation (1), (2)
- 5. List of Samples (1) \sim (4)
- 6. Results of Chemical Analysis for Sampling Sediments (1) \sim (4)
- 7. Results of Microscopic Observation (1), (2)
- 8. Results of X-ray Diffraction Analysis (1), (2)
- 9. Sea-water Sound Velocity for MBES
- 10. Weather and Sea-state Data

is herwis fo

- - erokum terres etak jikotetiin ee
- is the state of the control of the c
- - the property of the second second
 - an an the construction of the second and sufficient was
 - Table 100 carries in all appearing to

Appendix Table 1 Sampling Results of the Baseline Geochemical Survey

Sample No.	Date	Time	Latitude	Longitude	Depth	Core length	Remarks
94SBGC01	09/09	20:37105	19° 01. 293' S	169° 58. 146′ E	2,710m	5cm	
94SBGC02	09/09	23:02:50	19° 01. 856' S	169° 57. 623' E	2,685m	107cm	
94SBGC03	09/10	01:20:40	19° 02. 915' S	169° 56. 743' E	3,080m	0cm	No Sample
94SBGC04	09/10	03:46:55	19° 03, 336' S	169° 56. 047' E	3,128m	0cm	No Sample
94SBGC05	09/10	06:12:15	19° 03. 485' S	169° 55, 832' E	3,119m	153cm	Same point GC04
94SBGC06	09/10	20:29:05	19° 01. 184' S	169° 58, 285′ E	2,727m	93cm	Same point GC01
94SBGC07	09/11	22:00:35	19° 03, 920' S	169° 55. 279' E	3, 050m	0cm	Fail
94SBLC08	09/11	01:46:55	19° 04. 073' S	169° 55. 315' E	3,055m	44cm	Same point GC07
94SBLC09	09/11	04:09:30	19° 04, 776' S	169° 54, 580' E	2,594m	73cm	
94SBLC10	09/11	20:19:20	19° 05. 372' S	169° 53. 840′ E	2,339m	0cm	No Sample
94SBLC11	09/11	22:24:35	19° 06, 081' S	169° 53. 063' E	2,511m	0cm	Bit damage
94SBLC12	09/12	00:32:20	19° 06. 805' S	169° 52. 280' E	2,540m	82cm	
94SBLC13	09/12	02:40:10	19° 07. 592' S	169° 51. 509' E	2,510m	110cm	
94SBLC14	09/12	04:47:25	19° 08. 260' S	169° 50, 771' E	2,618m	0cm	No Sample
94SBGC15	09/22	21:24:00	19° 08. 245' S	169° 50. 713′ E	2,633m	70cm	Same point GC14
94SBGC16	09/22	23:36:40	19° 08, 889′ S	169° 50. 062' E	2,715m	61cm	
94SBGC17	09/23	01:51:40	19° 09. 671' S	169° 49. 294' E	2,673m	27cm	

Note:Data and Time represent the GMT, Time is Sampler on bottom. (94SBGC07 is plunging data)

Appendix Table 2 Results of the FDC Observation (1)

5	Track	Plumbing Time (a) Landing Time (b)	Location	Depth	Duration	Duration	Length	Number	Details of the Observation
3	Line No.	Taking-off Time (c) Hauling-up Time (d)	Latitude Longitude	Ê	Operation (a)∼(d)	Observation (b)∼(c)		Photos Taken	
9/24	94SFDC01	Plumbing Time (a) 21:00 Landing Time (b) 21:52 Veering 1:06 Taking-off Time (c) 4:45 Hauling-up Time (d) 5:30	19° 1.826'S 169° 49.930' E 19° 4.621'S 169° 51.867' E 19° 7.302'S 169° 55.251' E	2,504 2,318 2,193	8:30	6:53	7.5	353	Observed along a ridge in the central part of Erromango Basin for 7.5 miles in the NW-SE direction. Outcrops of rocks were prominent. Rock types main observed were sheet lava, slaggy lava and underwater autobrecciated lava. Typical pillow lava was not observed. One indication were recognized at six places.
9/25	94SFDC02	Plumbing Time (a) 20:59 Landing Time (b) 22:02 Veering 0:12 Taking-off Time (c) 1:59 Hauling-up Time (d) 2:45	13° 4.664'S 169° 56,460' E 19° 7.010'S 169° 56.066' E 19° 6.982'S 169° 58.072' E	3,057 2,339 2,241	5:46	3:57	4.3	. 85	Observed along a ridge in the central part of the Erromango Basin for 4.3 miles in the N-X, W-E directions. Sediments were prominent. Mock types observed were underwater autobrecciated lava and sheet lava. Ore indications were not recognized.
9/28	94SFDC03	Plumbing Time (a) 3:26 Landing Time (b) 4:11 Taking-off Time (c) 6:11 Mauiing-up Time (d) 7:07	19° 6.607'S 169° 54.302' E 19° 8.486'S 169° 55.826' E	2,082	3:41	2:00	2.4	71	Observed along a ridge in the central part of the Erromango Basin (Southeastern part of track line 0.5) for 2.4 miles in the NW-SE direction. Obstropps of rocks were relatively prominent. Rock types mainly observed were slaggy lava and underwater autobrecciated lava. One indications were not recognized.
9/26	94SPDC04	Plumbing Time (a) 20:56 Landing Time (b) 21:38 Taking-off Time (c) 0:52 Hauling-up Time (d) 1:18	19° 23.845'S 169° 50.680' E 19° 27.032'S 169° 52.419' E	1,841	4:22	3:14	3.6	158	Observed at a seamount on the boundary between Futuna Trough and Erromango Basin for 3.5 miles in the MW-SE direction. Outcrops of rocks were prominent. Nock types mainly observed were pillow lava, sheet lava, slaggy lava and talus. Ore indications were recognized on the top pi the seamount.
12/2	94SFDC05	Plumbing Time (a) 1:52 Landing Time (b) 2:31 Taking-off Time (c) 4:40 Hauling-up Time (d) 5:11	19° 25.113'S 169° 52.359' E 19° 27.445'S 169° 51.735' E	1,803	3:19	2:09	2.4	154	Observed at a same seamout as the track line 04 for 2.4 miles in the NNE-SSW direction. Outcrops of rocks were prominent. Rock types mainly observed were pillow lava, sheet lava, slaggy lava and tains (same as track line 04). Ore indications were recognized on the top of the seamount.
9/27	94SFDC06	Plumbing Time (a) 21:12 Landing Time (b) 21:45 Taking-off Time (c) 0:49 Hawling-up Time (d) 1:25	19° 41.693'S 169° 42.773' E	1,409	4:23	3:04	3.6	114	Observed two seamounts, where magnetic anomalies were found, on the boundary between the Futura Trough and the Erromango Basin for 3.6 miles in the W—E direction. Sediments were prominent. Black and white sediments on lutaseous substances were observed. Ore indications were not recognized.
9/28	94SFDC07	Plumbing Time (a) 1:48 Landing Time (b) 1:53 Taking-off Time (c) 3:14 Hauling-up Time (d) 3:48	19° 41.559'S 169° 47.523' E	1,567	2:00	1:21	1.6	45	Observed at a seamount (different from track line 06) on the boundary between the Frunar Trough and Erromange Basin for 1.6 miles boundary between the Frunar Trough and Erromange Basin for 1.6 miles sin the NM-AEB direction. Sediments were prominent. Black and White sediments on lutaceous substances were observed. Ore indications were not recognized.
9/28	94SFDC08-0	Plumbing Time (a) 20:57 Landing Time (b) 21:50 Taking-off Time (c) 1:07 Hauling-up Time (d) 2:03	17° 55.597'S 169° 25.000' E	2,630	5:06	3:17	3.7	106	Observed at the central part of the Vate Trough, on the north side of the survey aers, for T,4 miles in the N—S direction. Outcrops of rocks were observed for approximately 70% of entire track line. Rock types mainly observed were pillow lava, lobate lava and talus. One indications were not observed.
9/29	94SFDC08-1	Plumbing Time (a) 2:34 Landing Time (b) 3:28 Taking-off Time (c) 7:26 Hauling-up Time (d) 8:17	17° 59.002'S 169° 24.986' E	2,686	5:43	4:00	3.7	8	

Appendix Table 2 Results of the FDC Observation (2)

		rops of lava,	t the rection.	miles in k types and s.	miles in ines 10, as track our places	de of the ops of observed.	ngo Basin inent.	stern ction. ava.	y 80% of y alus.	les in the track
Details of the Observation		Observed the central part of the Vate Trough, on the north side of the survey area, for 7.3 miles in the NN-SE direction. Outcrops of the survey area, for 7.3 miles in the NN-SE direction. Outcrops of the sare prominent. Rock types mainly observed were pillow lava, lobate lava and talus. Ore indications were not recognized.	Observed at a seamount with a caldera on its top, located at the norhern part of Vate Trongh, for 2.5 miles in the NW-SE direction. Outcrops of rocks were prominent. Bock types mainly observed were pillow lays and partially slaggy lays and lobate lays. One indications and hydrothermal communities were recognized at one place.	Observed at the same seamount as the track line 10 for 2.5 miles in the NN-SE direction. Outcrops of rocks were prominent. Rock types mainly observed were pillow lava and partially slaggy lava and lobate lava. One indications were recognized at three places.	Observed at the same seamount as the track line 10 for 2.2 miles in the N-S direction (the direction intersecting with track lines 10, 11and13). Outcrops of rocks were prominent. Same rock types as track line 10 were observed. Ore indications were recognized at four places and hydrothermal communities were recognized at one place.	Observed at the same seamount as track line 10 the south side of the track line 10 for 2.5 miles in the NW -SE direction. Outcrops of rocks were prominent. Same rock types as track line 10 were observed Ore indications were recognized at one place.	Observed along the ridge in the northern part of the Erromango Basin for 3.4 miles in the NWM-SEE direction. Sediment were prominent. Rock types observed were sheet lava, Slaggy lava and talus. One indications were recognized at one place.	Observed along the same ridge as track line 14, the southeastern side of the track line 14, for 4.0 miles in the NM-SE direction. Sediments were prominent. Rock types observed were slaggy lava. One indication were recognized at one place.	Observed the southern part of the Erromango Basin for 3.1 miles in the WMM+SSE direction. Outcrops of rocks were approximately 80% of entire track line. Rock types observed were pillow lava and talus. Ore indications were not observed.	Observed the western part of the Erromango Basin for 1.6 miles in the NW+SE direction. Sediments were prominent throughout the track line. Talus were outcropping extremely rarely. Ore indications were not recognized.
Number	Photos Taken	171	176	220	235	167	120	172	84	41
Length Observed	(mile)	7.3	2.5	2.5	2.2	2.5	3.4	4.0	3.1	1.6
Duration	Observation (b)~(c)	6:12	2:56	2:35	2:11	2:53	3:07	3:09	2:49	1:34
Duration	Operation (a)~(d)	7:53	4:00	3:38	3:17	3:57	4:47	4:52	4:44	3.34
Depth	3	2,354	1,520	1,324	1,532	1,356	2,281	2,472	2,222	2,792
Location	Latitude Longitude	. 45.099'S 168° 19.956' E	17° 33.452'S 169° 3.754' E 17° 34.667'S 169° 6.072' E	17° 33.894'S 169° 3.843' E 17° 35.412'S 169° 5.856' E	17° 33.449'S 169° 5.503' E 17° 35.658'S 169° 5.303' E	。34.041'S 169° 3.485' E	'• 52.225'S 169° 45.909' E	1° 56.976'S 169° 52.111' E	19° 15.757'S 168° 58.106' E	19° 3.974'S 169° 47.612' E 18° 5.123'S 189° 48.831' E
Plumbing Time (a) Landing Time (b)	<u> </u>	Plumbing Time (a) 20:56 Landing Time (b) 21:44 17° Taking-off Time (c) 3:56 17° Hauling-up Time (d) 4:49	Plumbing Time (a) 20:57 Landing Time (b) 21:32 17° Taking-off Time (c) 0:24 Hauling-up Time (d) 0:57	Plumbing Time (a) 1:34 17° Landing Time (b) 2:05 17° Taking-off Time (c) 4:40 17° Hauling-up Time (d) 5:12	Plumbing Time (a) 20:55 Landing Time (b) 21:29 17° Taking-off Time (c) 23:40 17° Rauling-up Time (d) 0:12	Plumbing Time (a) 0:46 Landing Time (b) 1:19 17° Taking-off Time (c) 4:12 Rabling-up Time (d) 4:43	Plumbing Time (a) 20:57 Landing Time (b) 21:45 18° Taking-off Time (c) 0:52 Halling-up Time (d) 1:44	Plumbing Time (a) 2:04 Landing Time (b) 2:53 18° Taking-off Time (c) 6:02 19° Hauling-up Time (d) 6:56	Plumbing Time (a) 20:57 Landing Time (b) 21:56 19° Taking-off Time (c) 0:45 19° Hauling-up Time (d) 1:41	Plumbing Time (a) 3:25 Landing Time (b) 4:28 19° Taking-off Time (c) 6:02 Hauling-up Time (d) 6:59
Track	Line No.	94SFDC09	94SFDC10	94SFDC11	94SFDC12	94SFDC13	94SFDC14	94SFDC15	94SFDC16	94SFDC17
,	Date	9/29	9/30	10/1	10/2	10/3	10/3	10/4	10/4	10/5

Appendix Table 3 List of Ore Indications

Track	Ore Indscation					Donas	Dunntin		T 	, , , , , , , , , , , , ,		1	1
Line No.	No.		Lo	cation		Depth (m)	Duration of Observation (m:s)	Length of Observation (m:s)	Ore Indication	Living Things	Temperature Anomalies	Photo No.	Time (GMT)
94SFDC01	i-1 .	from to	19° 169° 19° 169°	2.378' 50.324' 2.427' 50.328'	SESE	2,214 2,214	02:30	91	Hydrothermal Sediments		.	35~46 (12)	22:42:5:
	1-2	from to	19° 169° 19° 169°	2.703' 50.535' 2.863' 50.694'	S E S	2,228 2,270	11:50	418	Hydrothermal Sediments		_	62~73 (12)	23:04:5 23:16:4
	1-3	from to	19° 169° 19° 169°	3.860' 51.346' 3.981' 51.385'	S E S E	2,277 2,301	06:05	235	Hydrothermal Sediments	Macrura (red) Cnidaria		102~114 (13)	0:19:1 0:25:1
	1-4	fros to	19° 169° 19° 169°	4.267' 51.629' 4.278' 51.644'	S E S E	2,374 2,362	00:45	34	Hydrothermal Sediments	. —		124~128 (5)	0:45:3 0:46:1
	1-5	from to	19° 169° 19° 169°	5.240° 52.119° 5.559° 52.798°	SES	2,032 2,111	32:50	1389	Hydrothermai Sediments	Holothurioidea Anthozea Gorgonian Macrura (red)		156~242 (87)	1:37:5
	1-6	from to	19° 169° 19° 169°	5.928' 53.281' 6.526' 54.218'	S E S E	2,151 1,998	57:40	2059	Hydrothermal Sediments	Porifera Gorgonian Brachyura	-	266~316 (51)	2:42:4 3:40:2
94SFDC03	3-1	from to	19° 189°	7.413′ 54.983′	S E S	2,153		_	Hydrothermal Sediments	→.		3-34 (1)	5:05:2
94SFDC04	4-1	from to	19° 169° 19° 169°	26.376' 52.056' 26.768' 52.293'	S E S E	931 1,039	29:00	848	Hydrothermal Sediments	Corgonian Anthozoa	<u> </u>	91~146 (56)	0:04:5 0:33:5
94SFDC05	5-1	from	19° 169° 19° 169°	26.405' 52.044' 26.847' 51.885'	SESE	926 898	20:30	870	Hydrothermal Sediments	Gorgonian Anthozoa Osteichthyes	-	50~120 (71)	3:37:1 3:57:4
94SFDC10	10-1	from	17° 169° 17° 169°	34.223' 5.191' 34.399' 5.534'	S E S E	1,285 1,208	25:00	714	Chimney Hydrothermal Sediments	Munidopsis sp. Gastropod Gorgonian Macrura (red)	-	68~141 (84)	23:15:4 23:41:4
94SFDC11	11-1	from to	17° 169° 17° 169°	33.987' 3.958' 34.290' 4.358'	S E S E	1,196 1,188	34:35	929	Hydrothermal Sediments	Brachyura Gorgonian	0.191	8~58 (51)	2:15:1
	11-2	from to	17° 169° 17° 169°	34.947' 5.228' 35.045' 5.372'	S E S E	1,421 1,301	09:40	323	Hydrothermal Sediments	Gorgonian		107~164 (58)	3:51:4
	11-3	from to	17° 169° 17° 169°	35.098' 5.453' 35.182' 5.532'	S E S E	1,276	D9:10	214	Hydrothermal Sediments	Anthozoa Holothurioidea		169~206 (38)	4:06:3 4:15:4
94SFDC12	12-1	from to	17° 169° 17° 169°	34.166' 5.442' 34.284' 5.414'	S E S E	1,176 1,185	07:50	225	Chimney Hydrothermal Sediments	Bythograea thermydron Gorgonian	+0.097	25~64 (40)	22:06:0 22:13:
	12-2	from to	17° 169° 17° 169°	34.293′ 5.402′ 34.552′ 5.376′		1,182	11:35	482	Rydrothermal Sediments	Munidopsis sp. Bythograca thermydron Gastropod Anthozoa	+0.191	70~128 (59)	22:17:3
	12-3	from	17° 169° 17° 169°	34.933' 5.330' 35.205' 5.389'	Е	1,332	22:25	515	Chimney Hydrothermal Sediments	Gorgonian		154~202 (49)	22:47: 23:09:
	12-4	from	17° 169° 17° 169°	35.262' 5.336' 35.381' 5.360'	E S	1,308	l .	225	Hydrothermal Sediments (weak)		-	210~219 (10)	23:14:
94SFDC13	13-1	from	17° 169° 17° 169°	34.549′ 4.237′ 34.583′ 4.252′	E	1,245	i	69	Hydrothermal Sectments		_	61~65 (5)	2:15:5 2:16:5
94SFDC14	14-1	from	18° 18° 18°	53.462' 48.808' 53.473' 48.823'	- E	1 2,296	i .	34	Hydrothermal Sediments	Macrura (red)		79~85 (7)	0:35:0
··· ·	14-2	from	18° 169° 18° 169°	53.489' 48.913' 53.500' 48.934'	S	2,325 2,333	1.	44	Hydrothermal Sediments			95~102 (8)	0:39:
94SFDC15	15-1	from	18° 169° 18° 169°	59.715' 54.077' 59.992' 54.268'	S	2,489		621	Hydrothermal Sediments	Asteroidea Gorgonian Holothurloidea Macrura (red)		75~164 (90)	5:28:0 5:4(:

Appendix Table 4 Sampling Results of Ore Deposit Investigation (1)

Sample No.	Date	Time	Latitude	Longitude	Depth	Core length	Remarks
94SDLC01	10/07	01:21:30	17° 35. 154' S	169° 05. 378' E	1,287m	50cm	*
94SDLC02	10/07	03:00:05	17° 34. 423' S	169° 05, 370' E	1, 212m	. 0cm	No Sample, *
94SDLC03	10/07	21:34:20	17° 34. 197′ S	169° 05, 427' E	1,160m	86ст	
94SDLC04	10/07	23:05:55	17° 34, 239' S	169° 05. 457' E	1,180m	30cm	
94SDLC05	10/08	00:43:25	17° 34, 338′ S	169° 05. 481' E	1,192m	Ост	Recovery Rock 97g, *
94SDLC06	10/08	02:25:20	17° 34, 429′ S	169° 05. 506' E	1,193m	20cm	
94SDLC07	10/08	03:47:15	17° 34. 453′ S	169° 05. 396' E	1,200m	0cm	Recovery Rock 13g, *
94SDLC08	10/08	21:50:40	18° 59. 898' S	169° 54, 068' E	2,417m	5cm	
94SDLC09	10/08	23:56:20	18° 59. 775' S	169° 54, 147' E	2,419m	146cm	
94SDLC10	10/09	02:46:45	19° 04. 928' S	169° 51. 382' E	2,303m	40cm	
94SDLC11	10/09	04:22:55	19° 05. 128' S	169° 52, 359′ K	2,056m	- 35cm	
94SDLC12	10/09	22:33:15	18° 59. 816' S	169° 54. 191' E	2, 417m	70cm	
94SDLC13	10/10	00:51:10	18° 59. 863′ S	169° 54. 203' E	2, 432m	93cm	
94SDLC14	10/10	03:16:35	19° 02. 408' S	169° 50. 340' E	2, 153m	0cm	No Sample, Ж
94SDLC15	10/10	05:17:15	19° 02, 404' S	169° 50. 377' E	2,141m	69cm	
94SDLC16	10/10	21:28:55	19° 26. 671' S	169° 51. 948' E	938m	0cm	No Sample, *
94SDLC17	10/10	22:45:05	19° 26. 557′ S	169° 51. 979′ E	980m	Ост	No Sample
94SDLC18	10/11	00:03:25	19° 26. 636' S	169° 51. 906′ R	938m	65cm	*
94SDLC19	10/14	00:17:30	17° 34. 262' S	169° 05. 395' E	1,189m	0cm	Recovery Rock 720g, *
94SDLC20	10/14	01:43:30	17° 35, 172' S	169° 05. 415′ B	1,291m	0cm	No Sample, *
94SDLC21	10/14	03:11:45	17° 35. 298' S	169° 05. 371' E	1,304m	0cm	No Sample, ※

Note:Data and Time represent the GMT, Time is Sampler on bottom.

Legend **:Bit Damage

Appendix Table 4 Sampling Results of Ore Deposit Investigation (2)

Sample No.		Date	Time	Latitude	Longitude	Depth	Recovery (kg)
94SDCB01	On Bottom Off Bottom	10/11	01:36:55 02:14:55	19° 26, 426' S 19° 26, 818' S	169° 52. 010' E 169° 51. 818' E	946m 892m	59
94SDCB02	On Bottom Off Bottom	10/11	03:39:55 04:29:25	19° 26. 375′ S 19° 26. 639′ S	169° 51. 975' E 169° 52. 281' E	903m 983m	100
94SDPG01	On Bottom Off Bottom	10/11	22:22:25 22:27:35	18° 59. 786' S 18° 59. 788' S	169° 54, 144′ E 169° 54, 137′ E	2, 427m 2, 435m	1,300
94SDPG02	On Bottom Off Bottom	10/12	01:40:40 01:43:15	19° 02. 414' S 19° 02. 437' S	169° 50. 362′ E 169° 50. 366′ E	2,147m 2,167m	150
94SDPG03	On Bottom Off Bottom	10/12	04:07:10 04:09:45	19° 05. 191′ S 19° 05. 210′ S	169° 52, 358′ E 169° 52, 371′ E	2,067m 2,066m	315
94SDPG04	On Bottom Off Bottom	10/12	22:02:15 22:16:10	17° 34. 402′ S 17° 34. 471′ S	169° 05. 398' E 169° 05. 397' E	1,237m 1,250m	· -
94SDPG05	On Bottom Off Bottom	10/13	00:26:10 00:28:40	17° 34. 280′ S 17° 34. 253′ S	169° 05. 441' E 169° 05. 435' E	1,184m 1,181m	10.5
94SDPG06	On Bottom Off Bottom	10/13	02:08:30 02:11:10	17° 34, 266' S 17° 34, 258' S	169° 05. 428' E 169° 05. 427' E	1,180m 1,181m	<u>-</u>
94SDPG07	On Bottom Off Bottom	10/13	04:58:10 05:00:55	17° 34, 366' S 17° 34, 348' S	169° 05. 391' E 169° 05. 365' E	1,190m 1,194m	400
94SDPG08	On Bottom Off Bottom	10/13	22:12:40 22:22:25	17° 34. 388′ S 17° 34. 457′ S	169° 05. 399' E 169° 05. 344' E	1,219m 1,214m	
94SFDC081	On Bottom	09/29	06:32:15	18° 02. 698' S	169° 24. 977' E	2,646m	15

Note:Data and Time the represent GMT

Latitude and Longitude are GPS Vessel position and Depth by NBS Location of towing vehicle were calculated from the winch length and depth by CTD. (94SFDC081)

List of Samples (Baseline Geochemical Survey) (1) Appendix Table 5

		8	6		Samo	5	1	Cameline Darth Sediment		Under microscopic observation	nicro	scopi	sqo	ervati	on Lo	Analysis			
Sample No	5.Lat.	. (°		Œ,	þ	BTM MED	2	Munsell No. & Color	Size	Om Dm	n Am	<u></u>	Б В	Ö	Sp Description		Fo Sp	Ts	Description
945BGC02-0-10	11—	1 855 169	57.62		0	2	5 1	10YR3/3 dark brown	clay		L	7	\cdot	V		0	x x	×	
94 SBGC02-10-20	<u>, </u>				0	20	15	15 10YR3/3 dark brown	clay	0		0	۷	⟨		×	х О	×	
94SBGC02-21-23	-	ļ.		L	21	23	22 1	22 10YR2/1 black	sand			0	\dashv		V	_	7	×	
94SBGC02-25-35				_	25	35	30 1	30 10YR3/3 dark brown	ciay	0	_	◁	◁	◁		1	7	×	
94SBGC02-35-45	:	L			35	45	401	10YR3/3 dark brown	clay	0	◁	ö	-		-		1	×	
94SBGC02-60-70	-	_			90	7.0	65 1	65 10YR5/2 grayish brown	clay	©	4	◁		4	-	_	. 1	×	
94SBGC02-70-79	 	-		ļ. 	7.0	79	75 1	75 10YR5/2 grayish brown	clay	0		0	-		•	-	1	×	
94SBGC02-80~87					90	87	84 5	5Y3/2 dark olive gray	clay	◁	4	0			•	0	-1	×	
94SBGC02-88-91		٠.	L.,	_	88	9.1	90 5	5Y2:5/1 black	clay	-	•.	·		_		\neg	7	×	
94SBGC02-91~100		ļ. 	_		5	100	96 5	5Y4/2 olive gray	clay	0	•	0	•	1			7	×	
94SBGC02-100~107		-	_	-	100 107	_	104 5		clay			0			_	0	×	×	
94SBGC05-0-10	19 3 485	5 169	55.83	3,119	!	10	5	5Y3/2 dark olive gray	clay	0		0		•	_	T	7	×	
94SBGC05-10-20		-	L		_	50	15.5	15 5Y3/2 dark olive gray	clay		-		•	٠	,	×	×	×	
945BGC05-20-30		<u> </u>			20	30	25 5	25 5Y3/2 dark olive gray	ciay	-	-	-	•	_	_	×	<u>о</u> ×	×	
94SBGC05-40-50] <u>.</u>	-			40	90	45.5	45 5Y3/2 dark olive gray.	clay	-	_	·	· ·	·		0	×	×	
945 BGC05-70-80		-	_		20	80	75 5	5Y3/2 dark olive gray	clay	©	-	0	•	•		×	×	×	
040000000000000000000000000000000000000		-		ŀ	ď	ā	ā	81 879 6/1 black	sand	-	Ļ	Ŀ		·	ļ.,	× 0	×	×	
04-00-00-00-00-00-00-00-00-00-00-00-00-0	-	$\frac{1}{1}$		-		, [2	9 5	5Y3/2 dark olive grav	clay.	-			-	ľ		0	×	×	
001 001 000 0000		+		-			105	5/3/2 dark olive grav) Cla	-	ļ.	Ŀ	H			×	× 0	×	
945BGC05-100~110		+			3		2 4	5/3/5 dark blive gray	2 2	-	<u> </u>		\vdash	ļ -,		1	×	×	
343BGC03-110-120		+	-	-	2 :		1 2	6 0 6 (4 Mag)	Pues		-	ŀ		ľ			1	Ι-	
945BGC05-146-148	-	+		+	*	9 9		21 C.37 Diack	2 2	6	+	©	 	ŀ		†	1	т	
4458GCU0-148-106	- 1		1		4 4						1		+	ľ		1	1-	1	
94SBGC06-0-20	19 1.1	1.184 169	58.29	9 2,727	ļ,	2	=	10 10 Y H3/3 dark brown	e i	5	1	1	-	1		-1-	1	1	
94SBGC06-22-23					22	2	23	5Y2.5/2 black	Sanc	+	<u> </u>	1	+	1			+	-1-	
94SBGC06-27-28					27	82	28 5	28 5Y2.5/2 black	sand		-	4	+	1		_	-†-		
94SBGC06-30-36					30	36	33	5Y2.5/2 black	clay	-		-	-	-	-	_	-		
94SBGC06-36-44		_			36	44	40 2	40 2.5 Y 4/4 olive brown	clay	0	┛	0	< 1		-	0	×	×	
94SBGC06-49-50	_				49	50	50 5	5Y2,5/1 black	sand			-	-	-		× 0	×	×	
94SBGC06-53~53.5		-	-		53	54	53 5	5Y4/2 olive gray	clay			<u>.</u>		•	-	×	×	×	
94SBGC06-54~50		-	_	-	54	9	57 5	5Y4/2 olive gray	clay	0		0				0	×	×	
94SBGC06-64-72			_		64	72	89	5Y4/1 dark gray	clay	۷		0	•			0	×	×	in the second
945BGC06-72-75					72	75	74 5	5Y4/1 dark gray	cłay	_	-		•	•	-	×	×	×	
94SBGC06-75-93		-		ļ_	75	83	84	5Y4/1 dark gray	ctay			-		-	•	×	0 ×	×	
945B1 C08-0~4	19 4.073	73 169	55.32	2 3.055	Ļ	4	2	5Y3/2 dark olive gray	clay	0	-	0				0	×	×	
94SBLC08-4~14			L		4	4	6	5Y3/2 dark olive gray	clay					٠,		×	0	×	
94 SB1 C08-14-20		H	_		14	20	17 8	17 2.5 Y 3/2 very dark grayish brown	clay	٠	-	-	•			×	o ×	×	
94SBLC08-20~30	-				20	30	25 2	2.5Y2/0 black	sand	-	_	0	•			0	×	×	
94SBLC09-0-13	19 4.776	76 169	54.580	0 2,594	0	13	7	2.5Y4/4 olive brown	clay	0	٠	٠	◁			0	의 이	×	
94SBLC09-14-15	-			-	14	15	15	5Y2.5/1 black	sand	•	-	-			-	\neg	7		
94SBLC09-18-28			_	_	18	28	23	2.5Y4/4 olive brown	clay	0	\dashv	4	0			0	~ <u>~</u> †	7	
94SBLC09-38-40		L	_		38	40	39	5Y2,5/1 black	clay	0		0	-	_		× 0	×	×	
94SBLC09-45-57		-		_	45	67	56	2.5 Y 4/2 dark grayish brown	clay	0	0	0		٥		0 0	0	×	
				1		Ì	1			١									

List of Samples (Baseline Geochemical Survey) (2) Appendix Table 5

												١	Ì		***************************************				
	S.Lat. E.Lon.	_	8	0,	amplir	ig De	Sampling Depth Sediment		Inder	micro	Under microscopic observation	ç op	Serv	ation	Analysis				
Sample No.	() ()	() ()	5	(E)	9	M.	TOP BTM MED Munsell No. & Color	Size	ĕ	Dm Am	Ø	요	R Q	Sp Description	×	a Fo	တ္တ	Ts De	Description
94SBLC09-6768		-	-		87	89	68 5Y3/2 dark olive gray	sand		•		-			×.	×	×	×	
94SBLC12-0-10	19 6.805 169	169 52.	280 2,	2,540	0	10	5 2.5 Y 3/2 very dark grayish brown (c	clay.	0			٥	0		0	0	0	×	
94SBLC12-25-35			_		25	35	30 2.5Y3/2 very dark grayish brown c	clay (0	0		◁	-		0	0	0	×	
94SBLC12-62-72			-		. 29	72	67 5Y2.5/2 black	clay			0	-	4		0	0	0	×	
94SBLC12-72-74					. 22	74	73 5Y2.5/2 black	clay	•	*	,	7	· •	· i	×	×	×	0	
94SBLC12-74-75					74	7.5	75 2.5Y3/2 very dark grayish brown o	clay	-	-	Ŀ		-	-	× O	×	x	×	
94SBLC12-75-82						82	79 2.5 Y 3/2 very dark gray sh brown of	clay (0			◁	٦		0 0	0	×	×	
94SBLC13-0-10	19 7.592 1	169 5	.512,	510	0	0	5 10YR3/3 dark brown	clay (0		7	V			0	0	0	×	
94SBLC13-23-25			-		23	25	24 5Y2.5/1 black	sand	•	•	·	-		- 1	× O	×	×	×	
94SBLC13-25-31		-	_		25	31	28 5 7 2.5/2 black	clay	-		\Box	٦	Н		0	×	×	×	
94SBLC13-31-40		-	_		31	40	36 5Y2.5/2 black	clay			·	-				0	×	×	
94SBLC13-43~50				-	43	50	47 2.5 44/2 dark grayish brown	ctay (0		Δ	Н	_		0 0	0	×	×	
94SBLC13-65-75					92	75	70 5Y3/2 dark olive gray	clay (0		◁	∀	-		0	0	0	×	
94SBLC13-100-110			_		100 110		105 5Y3/2 dark olive gray	clay (۷ ©	◁	0	-	\dashv		0		0	×	
94SBGC15-0-10	19 8.245 1	169 50	0.71 2,	2,633	0	10	5 10YR3/3 dark brown	clay (0		0	4	V		0	×	×	×	
94SBGC15-10-20					10	50	15 10YB3/3 dark brown	clay (0	Δ.	Ó	-	-		×	0	0	×	
94SBGC15-28-29					28	59	29 2.5Y3/2 very dark grayish brown	sand	-	•	·	ı	•	·	× O	×	×	×	
94SBGC15-30-31					30	31	31 2.5Y3/2 very dark grayish brown of	clay		•		•	- -	-	O	×	×	×	
945BGC15-33~35						35	34 2.5 Y 2/0 black	sand	-		,		-		х О	×	×	×	
94SBGC15-38-39						39		sand	-	1	,	-,	-		× O	×	×	×	
945BGC15-39-44					39	44	42 5Y2.5/1 black	sand	•	٠	٠	,	<u>.</u>		х О	×	×	×	
94SBGC15-38-44					38	44	41 5Y2,5/1 black	sand		•	,	,	•	-	o ×	Ö	×	×	
94SBGC: 5-44~48					44	48.	46 2.5 Y 4/2 dark grayish brown	clay	0	•	◁	0	\dashv		×	0	×	×	
94SBGC15-50~57						92	54 5Y3/2 dark olive gray	clay		,	·	,	٠		0	×	×	×	
94SBGC15-57-70				-	57	20	64 5 Y 3/2 dark olive gray	clay	<u>.</u>		0	•			×	0	0	×	
94SBGC16-0-10	19 8.889 1	169 50	.03 2,715	715	0	10	5 10Y Fig/3 dark brown	ciay ((O)	Ŀ		0	·	\(\tau \)	0 0	×	×	×	
94SBGC16-10~19					10	19	15 2.5Y3/2 very dark grayish brown of	clay	•	•	٠	-	<u>`</u>		×	0	0	×	
94SBGC16-32-33					35	33	33 5Y2.5/7 black	sand	<u>'</u>	_	-	-	ij	-	х О	×	×	×	
94SBGC16-36-49					36	49	43 5Y2.5/1 black	sand		•	•		<u>'</u>	- (0	0	×	×	
94SBGC16-49-55					49	55	52 5Y3/2 dark olive gray	clay (0		0	-			×	0	×	×	
94SBGC16-55-61					92	61	58 5Y2.5/1 black	clay	•		•			-	0.0	×	×	x	
94SBGC17-0-11	19 9.671 1	169 46	.29 2,	2,673	0	11	6 10YR3/3 dark brown	clay	③	_	◊	7	V		0	×	×	×	
94SBGC17-11~19					11	19	15 2.5 Y 3/2 very dark grayish brown	clay 2			0	-	-			0	0	×	
94SBGC17-19-24	-				19	24	22 5Y3/2 dark olive gray	clay 2	◁	•	0				0	×	×	×	
94SBGC17-24-27				_	24 2	27	26 2.5 Y 3/2 very dark grayish brown o	clay		,	$\overline{\cdot}$				х О	×	×	×	
				-	OP (cn	ddn:(u	OP(cm): Upper plane from sea floor	O.	m:Cla	ymin	Cm:Clay minerals			© :much	X:X-rs	ay diff	ractio	n.for w	Xr:X-ray diffraction for whole sedime
				ш)	TM (ca):Lo	BTM(cm):Lower plane from sea floor		m:De	trital	Dm:Detrital minerals	ŝ	: .	muipaur: O	Ca:Chemical analysis	emical	ana	Sis	
				2	ED (cu);Me	MED(cm): Medium plane of TOP and BTM	₹	m:Au	ligen	Am: Autigenic minerals	eraj.		△ :little	Fo:Fossil analysis	sian	alysis		
		:						ů.	o:For	amini	Fo:Foraminifera test	SS		rare	Sp:Mechanical analysis	chanic	al an	alysis	

Ra:Radiotaria test Di:Diatom test Sp:Sponge spicule

List of Samples (Ore Drposit Investigation) (3) Appendix Table 5

	īf.	E.Lan.	É		ng Der	th Sediment	. 02.10	is as	ar micros	Under microscopic observation Cm. Dm. Am. G. Fo. Rs. Di. St	2000	servat Ra Di	_ 0	Analysis Description Xr C	ď.	So	Pts Description	į
-	() () ()	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			CINE SEC	S SVBA				<u>*—</u>	_			0	×			
94SDLC01-A	20 +0 CC /			, 8	丄	45. Dack	sand	-	+	-		ŀ	<u> </u>	0	х	0 x	×	
94SDLC01-5	1			1_	4_	25/5Y3/2	clay		-	F		H		-	×	×	×	
	17 34.197 189	9 5.427	1.160	L.	L	5 2.5YR4/8	clay	,		ij		-	•		х	-	×	Ì
94SDLC03-B					26	33 5Y3/1	clay	۵	6	-	·	-	•	-	×	+	×	T
94SDLC03-C				_	_1	89 SY2.5/1	clay	-	+	:	\exists	+	,		×	+	×	Ţ
			_	_		80 black	rock		+	1		:	•	0 0	× ,		× ,	
	17 34.239 169	9 5.457	1.180		_1_	8 2.57R5/8	ciay	4	9		:	+			() x	< ×	 	
94SDLC04-8				c u	2 6	23 3 3 3 4 7 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Con you	. .	+	-		1		+	×	O ×	 ×	Γ
94SDLC04-C	7 24 220 100	5 483	50.	4.	4-	No Orace	y X	+	+	F	Į.	+		╌	×	├-	×	
		┸		10	<u>.</u>	3 2 5 Y B4 / 4	clay+sand	╁╌	Ť,	©	Ŀ	-	_	0	×	××	×	
94SDLC06-B		_		2 15	Ŀ	13 black	rock			F	Ŀ	:		⊢	×	O ×	×	
	17 34.453 169	9 5.398	1,200	-	-	- black	rock	•	-	·]	·	<i>'</i>			×	×	×	Ĭ
<		<u>"</u>		٥	S	3 2.5 4 3 / 2	clay	()	Ť	0	⊲	\dashv		-	×	\dashv	×	
94SDLC08-B				ın	12	10 10YR3/2	clay	(3)	1	ব ব	·	1		-	-	+	×	T
94SDLC08(A+B)				0	15	8 2.5Y3/2+10YR3/2	clay	1	+	<u>:</u> [\cdot	1		+	×	× ×	× ;	
94SDLC09-0~10	18 59.775 169	9 54.147	2.479	o	2	5 10YR3/3	clay	(3)	+	•1	ব	<u>.</u>	4	-	+	x X	»	
94SDLC09-10~20				10	50	15 10YA3/3	clay	6		ব ০	0	+		-+	o o	ж	×	Ī
94SDLC09.22-27				22		25 black	70CK	-	-	-[·	∄		+	+	×	0	
94SDLC09-34-38	_			34		36 2.574/2	clay	7	+	-[·	+		-	+	к Х	×	
94SDLC09-41-47				41.		44 5Y3/2	clay	()		্ ব	-1	+		-+	-+	x x	×	
94SDLC09-49~57					Ш	53 574/2	clay	0		ব	\cdot	-		+	4	×	×	
94SDLC09-64-74		."				69 574/2	clay	O	(c)	Ó	_+	+		-+		+	×	
94SDLC09-91~101						96 2.5YR5/2	clay	0	1		0	+	+	-+-	4.	x :	×	
94SDLC09-113-123				113 1		118 575/2	clay	0	-+		-	+		+-	- -	x 7	,	T
94SDLC09-123-133				123		128 574/2	clay	9	1	বা ব	-+	+	1	+	╁	╁	()	-
94SDLC09-136-146	.—	-+	. }	136		141 574/3	clay	0	+	<u>်</u>	ব	+		+	+	; ;		
94SDLC10-A	19 4.928 169	59 51.382	2,303	0	L	9 biack	rock	. (+	1	1	+	1		;	+),	
94SDLC10-B			- 1	ΞŤ	-ļ	27 10YR3/2+black	rock+clay	0	+	ব ভ	1	+			+	1	;	T
94SDLC11	5.128		ΝĪ		1	18 black	rock	< <u>1</u>	+	0	1	1			+	к э х э	< >	
94SDLC12-0~0.5	18 59.816 169	54.191	2.417			O black	sand+clay	• (Ω (. .		+) (< C	< >	< ×	
94SDLC12-10-20				0 8	2 2	15 2.57 4/2	clay)	+					╁	╌	+-	: >:	Ī
94501.012-20-30		-	Ī	2 5		40 2 5 5 4 7 2	G C	. † .	+.	+	t		-	+-	1	⊬	×	
9450LC (2:35-45				3 6	_!		S S S	,	†-	<u> </u>	ľ	+		┼	├	×	×	
94SDLC13-0-0.5	18 59.863 169	39 54,203	2.432	.1	┖	O black	clay	١,	+-	 	Ē	H		0	×	×	×:	
94SDLC13·10~20		_		10	_	15 2.574/2	clay	·	0	4			-	+	×	×	×	-
94SDLC13-25~30				25		28 2.573/2	clay	O	o		0	-1		+	0	×	х	
94SDLC13-35-40				35	6	38 5Y4/2	clay	0	6	ا ،	·	-	-	-+	X O	×	×	
94SDLC13-45-48				45	48	47 dark graen	clay	·	+	-:	1					×	×	
94SDLC13-62~70	-			60	2	65 SY4/1	clay	O	(i)	:		-		-1	0	x x	×	
94SDLC13.70~80				20	1	75 574/1	clay	•	-	:	·	-	-	-+	x x	× O	×	
94SDLC15-0-8	19 2.404 189	39, 50.377	2,141	0	æ		clay	©	o	0	₫	-	-		-+	4	×	
94SDLC15-8-10				8	õ	9 572,5/1	sand	1	+	:	_	:		0	+	×	×	
94SDLC15-10~17				2		14	clay	•	+	-		-		-+	-	x x	×	Ţ
94SDLC15-22-30		-		22	8	26	clay	0	0	0	₫	-			o :	× (× 7	
94SDLC15-39-41				33	$_{\rm L}$	40	sand	7	+	<u>+</u> -	1	+	1		+) 	*	
94SDLC15-41~50	+			7		46	day	7	\dagger	+	土	+	1	0 3	× 0	ж э ж :	х ,	Ţ
94SDLC15-52~62				52	62	57	clay	7	\dashv	-		$\frac{\cdot}{\cdot}$		- x	o x	×	×	

List of Samples (Ore Drposit Investigation) (4) Appendix Table 5

	1	S	S.Lat.	E.Lan.	용	Sam	Sampling Depth	Depth	Sediment		Chde	Under microscopic observation	scopi	e sqo	rvatio	Ē	Analysis	'SiS			1	
Control Cont	1			(')(')	(w)	TOP	MI8	MED	Munsell No. & Color	Size	ပ်	Jm An	ਰ		ō	- 1		Ğ				Description
51.906 936 90 10 5 9 9 9 9 9 9 9 9 9	51 906 938 0 1 5 9 9 9 9 9 9 9 9 9	Г				62				clay	- ⊢	٥.	O	4			0	Q	Н	-	×	
50 60 58 clay C C C C	10 10 10 10 10 10 10 10	6	26,636	51.	Ιi	Ш		-		clay		0		-	·		0		×	×	×	
550 60 55 Clay Cl	SSO 600 SSS Clay Clay			_		45		٠,		clay		-		\dashv					×	х		Slock
50 50 55 Clay	50 60 55 clay cla					20	_	- 1		clay		(G)		긤			0		− ł	-4	·T	graan
Control Cont	Control Cont			-	_	ည္မ	_	- 1		clay		©	·	+	∃	_	0		\dashv		-7	xie
Min-cortide F-pactride F-	Min-control Function Functi					,	٠.	,		clay		0	-	-	·	-	О	{	-	-	×	
Fe-poticide	Fe-portion Fe-			_		٠				Mn-axide	٠	-	-		•		0				×	
Science Cock Cock	Cock			-		,		•		Fe-axide	•	-		•	•		0		×	×	×	
Cock	COCK				_			•		Fe-oxide		· -	·		•		O	-			×	
COCK	COCK		-	<u> </u> -	-	•	Ŀ	,		rock	·	· ·	Ŀ		·		О				۲;	
Fe-exide	Fe-Excise Fe-E	1		-	_	,		-		rock	·	· ·	Ŀ	<u>:</u>	·		0	┖	×	├	×	
SG-154 2.427 Control of the cont	Sci 144 2,427 Control	Į.			-		Ŀ			Fe-cxide		-	Ŀ	-		_	0	l	┞	⊢	×	
Sc. 144 2,427 Control	S4-144 2-427 S4-142 S4-147 S4-147	1			-	F				Mn-oxide	ŀ	-		-	Ŀ		0	ļ	×	ļ	0	
S4-144 2,427	Sc. 14.27 2.427	ı			-	-	ŀ			rock		-	F	-	Ŀ	ļ		├	 	 	,;	
Min-carder Calay	Min-coxide] ;		ű		,	ŀ			>470	-	-	F	:	ŀ		C	⊬	 -	┼	,	-
Min-oxide Clay Cl	Min-oxide	2		5		I				100			Ţ		t) (╬	,	,	
Sc. 362 2.147 Cay	Sc. 3562 2.147	Т		-	+					Ma Avida	+	+	1	+	1) (+-	+-	; >	·
SG.362 2.147	\$0.362 2.147 day day	Į	†		+	,	٠			DOIYO- IIA		<u>'</u>	1	+	+) (+	+	╁	1	
Sp. 362 2.147 Sp. 362 2.148 Sp. 362 2.14	Sc. 362 2.147			+	+		·	•		clay		+	1	+	†				×	×	×	
Clay Color Clay	Signature Clay Cl				+	•	·		-	day	†	:	1	+	:			-+	×	×	×	
Sp. 362 2,147	Clay					•	$\overline{\cdot}$			clay		-	-	-	-	,	0		×		×	
So. 362 2.147	Society Soci					·		·		clay				-	-	-			×		×	
SQ, 362, 2, 147	Sp. 362 2.147						٠			Mn-oxide	•	-	Ξ		$\overline{}$	-	×		×	×	Ö	
Clay	Clay Color Color	۱۳.		50,	362		·	•	:	clay		•	$\overline{}$		·		0	_	×	×	×	
Clay Color Clay Color Clay Color Clay Color	Clay Color Color Clay Color						·	•		clay	·	•	·		·		O	٠.,			×	
Clay	Clay	, I					\cdot	•		clay	·	•	•	$\dot{-}$	•		O);	×	×	
Section Clay Clay	Clay	1			-		·	•		clay	,		•	-	·	,	0	1			×	
Min-oxide	Mn-oxide					·	,			clay	·			-	·	-	O		×	×	×	
Min-coxide Coxide Coxide	Min-oxide Cock Co					•	,			Mn-oxida		•	·		·		0				O	
Sc. 358 2.067	Sc. 358 2.067 Cock Co	ì				Ŀ		 -		Mn-oxide	·	ļ.	Ŀ	,		 	0	ł	×	 –	×	
Fe-oxide	52.358 2.067 Fe-oxide 1	1		-	-	-				rock	Ŀ	+	L	-	Ŀ			ł	╀	╁╌	\ \ \	- The state of the
Fe-cxide	Fe-cxide Fe-cxide	۱×	5 191	22	85					Fe-oxide			Ŀ	 	<u> </u>		C	+-	╁╌	⊬	×	
5.441 1,184	Mn-oxide	i i								Fe-oxide	Ŀ		Ŀ	ŀ	ŀ		0	┼	×	×	×	
5.441 1,184	5.441 1,184	1	-	-			ŀ			Mn-axide	ŀ	:	Ŀ	<u> </u>	ŀ	_	0	┾-	×	×	0	
5.441 1,184	5.441 1,184			<u> </u>						Mn-oxide	ŀ		Ŀ	ŀ	Ŀ		0	! —	┡	Ͱ	O	
5.391 1.130	5.391 1,184 Grock			ļ .		,	ŀ			7007			•	•	·		×	×	⊢		×	
5.391 1.190	1,190	=	34,280	'n		-	Ŀ			clay	·	· ·			•		0	١			١;	
5.395 1.1139	1190	ļ			_	·		-		rock	·	-	Ŀ	<u>'</u>	·		0		├		×	
5.391 1,130 Cock	5.391 1,1390 Cock			_		Ŀ	ŀ	•		rock	-	-		ŀ	-	ļ.,	0				у:	
Cock	5.395 1,189	12	34.366	5	391 1,190	·	Ŀ			rock	ŀ	-		-			0	-	×	×	×	
5.395 1,189	5.395 1,189	1								rock	ŀ		Ŀ	-		L	0	⊢	X Y	O	ж	
2.698 169 24.977 2.646 	2,698 169 24,977 2,646 - BLACK BLACK -	1,	34.262		395 1,189	,				rock	·	-		•	·	-	0	⊢	×	×	×	
TOP(am):Upger plane from sea floor Dm:Dertral minerals © :much Dm:Dertral minerals © :medium BTM(cm):Lower plane from sea floor Dm:Dertral minerals © :medium MED(cm):Medium plane of TOP and BTM Am-Autigenic minerals © :ittle Policy Medicum plane of TOP and BTM Am-Autigenic minerals © :ittle Policy Medicum plane of TOP and BTM Am-Autigenic minerals © :medium Am-Autigenic minerals	TOP(am):Upger plane from sea floor BTM(cm):Lower plane from sea floor BTM(cm):Lower plane from sea floor Dm:Datrial minerals C :medium Am:Autgenic minerals C :ittle Fo-Foraminifera test Ra:Padiodaria test Di:Diatom test Ra:Padiodaria test Sp:Sponge spicule	100			377 2,646	- 1	ŀ) BLA(ž	POCK	•	-	·	·		_	O		×	O	×	
Dm.Detrial minerals C. medium Am.Aulgenic minerals Δ. ilittle Fo:Fordeminifora test Pat.Redolaria test Di:Diatom test Sp:Sponge spoule	Dm:Detrial minerals C :medium Am:Auligenic minerals Δ :little Fo:Foraminifora test Ra:Radiolaria test Di:Diatom test Sp:Sponge spicule					1.	Cm):U	Joper plane	a from sea floor		S:EC	ay min	erais			G: much	×	X-ray di	ifracti	on for	whole	sediment
TIM Am:Autigenic minerals Δ: :little Po:Foraminifica test Pa:Abdiokaria test Di:Diaton test Sp:Sponge spicule	TM Am-Aulgenic minerals & :litte Fo:Foraminifora test Pa:Padiclaria test Di:Diatom test Sp:Sponge spiculia					₽ŢW.	cm):Lc	ower plane	e from sea floor		Ö:WO	etrita	minera	ais		:mediun		Chemic	ana (ac	ysis		
· rare	· rare					M M	(cm);W	Aedium pla	ne of TOP and BTM		Am:A	ilgeni	c min	erals	•	olitile ∆	Ë	Fossila	malysis			
0					:						Ş	raminit	era te			· .rara	Sp	Mechar	nical an	alysis	:	
ejnc.	ejno		: 								Ha:Fa	diclarie	1881				ő	pperate	E X	л-орег	3190	
Spirongs approach	ejnoids e6uods;ds										Di:Oia	at mot	51									
								٠.		٠	SpiSp	5 9000	picule						1			

Results of Chemical Analysis for Sampling Sediments (1) Appendix Table 6

						1	0000000000	2000000	2000000000	300000000	SUCCIONO	SUCCES	94SRGC06	94SBGC06	ASBGC06 9	SECO6	\$231C08	STREET COR	245BLC02	7	1507188 1507188
Sample No.	94SB	94SBGC02 9	94SBGC02	94SBGC02	94SBGC02	84S	94SEGC02	945BGC05	4 5 5	ž	ŧ		30.36	36.44		52-73	0-4		0-13		45-67
:		0-10	25-35	60-70	80-87	91-160	=	١		ļ	1	03 96	53 AD	36.68	43.82	53.47	46.43		39.31		35.10
205	86	39.56	39.61	41.06	50.33	44.96						900	8	5	8	0.74	0.68		09.0		0.50
105	86	0.58	0.62	19'0			•					10.0	0.00	20.00	200	15.30	13.48		12.33		11.79
AI203	<u>8</u> 8	13.87	12.76	12.67	14.33	• .	15.94					0.1	10.01	14.10	79.6	25.0	8.75		7.76		7.37
Fe203	88	2.60	7.78	8.18								54.	9 7	4 6	Ş	18.4	3.95		2.58		 3
8	略	236	2.65	2.66		3.73						707	5 6		× ×	0 17	0.32		0.37		0.26
MnO	88	0.46	0.53	0.45								7.7	3 6	3, 0	2.74	3.13	2.90		2.57		3.41
MgO	%	2.41	29.7	2.71								1 5	3 6	18 3.4	5	2 00	11.92		17.40		20.42
ုင္သ	1%	15.51	16.34	15.34	7.80							70.7	70 0	10.0	900	90.0	0.05		90.0		0.05
080	PS.	0.07	0.05	0.06								3 6	9 %	2. 6	3 4	4 52	×		2.85		2.19
Nazo	£9	3.46	3.19	3.27							•	8.5	3.0	\$ F		2 62	84		1.09		0.59
8	F6	1.33	1.02	1.19			2.34					777	3 4 6	3 5	202.0	98.0	0.29		0,29		0.21
205	86	0.32	0.26	0.27			0.37					0.33	7.	3 5	7 5 5	. 17	5.61		10.27		12.17
8	18	49.6	9,39	80 (5)	1.61	7.08	0.88					2 5	2 7	85 1.	25	3.62	58.6		15.50		18.08
<u>_</u>	. Rs	16.54	15.32	14.16			2.44	3.95	4.42	20.5	2 6	07.001	101 001	90 61	99.55	49.66	69.66	100.13	100.13	99.50	99.97
Tota	r _o	99.71	100.09	76.99	٦							2007	000	0.08	0.02	20.00	0.02		<0.02		0.02 0.02
	udd	0.02	0.02	<0.02									400	10.8	3.4	8.7	6.6		4.0		62
	uidd	11.2	10.4	10.0	15.6							1.21	07.2	105.5	142.0	116.5	71.0		4.12		85.0
5	andd	& 4	96.2	89.6								8	200	07	20	30	50		30		2
£	mdd	2	ş	8								3 2		20.5	8.5	5.0	8.5		14.0		14.0
æ	El ded	12.5	15.0	12.0								40	0.2	<0.2	0.5	<0.2	0.2		0.2		4.0
B	Hotel	<0.2	0.2	<0.2								¥	(A)	19	94	¥	39		9		23
r Z	mdd	2	53	47	٠.							210	3	200	540	530	480		SAO		420
<u>.</u>	E CCC	009	06*	520	480	280						5 5	7	\$ 60 80	0.5	0.5	0.5		<0.5		0,5
8	mad	0.5	<0.5	<0.5	oʻ	0.5						7	2	20	50	20	ผ		22		នា
8	Hod	ä	25	8	~~	21						3 2	1 2	32	8	9	28		2,		<u>5</u>
Ö	andd	4	₹	97								3630	3670	1415	1260	1185	2220		2540		1815
Ę.	e dd	3140	3660	3260	1510	1560	1215					75	12.5	, E	12	۵	53		t ₂		30
Z	Edd	20	2				17					1560	1850	1090	1280	1640	1240		1270		8
_	nicd	1370	1220	12/0		3 (134	507	969	639	538	7		692		242
ত	n dd	655	990	8.8	2/6							0.1	0.3	0.2	0.1	0.7	0.1		G.		j }
F	H	0.7	- i	- F								176	187	196	204	225	161		161		991
> '		21	2 :	3	3	3 -						11	13	01	12	Ξ	ō.		Φ.		ni
<u>.</u>		0.00	01	,	010	100001-						>10000	0008	>10000	>10000	7700	>10000		×10000		00001A
0		0000	000014	20001/								35	30	35	25	30	35		?		3 :
oo (mdd	₹ :	3 2	3 3	3 8							7.	39	7	20	31			9.0		1 6
9	al de		2 6									8.0	1.2	9.0	2.2	3.0	90		8.0		
ا د	e e	90.0	200	6200	ç	.'						0.102	0.054	0.087	0.072	0.049	0.074		20.00		000
1010	R 8	2 2	2	010		0.07						0,13	0.0	0.10	0.08	90.0	9 :		5 5		
3 8	5 F,	3	939		1.63		0.88					11.00	1.76	11.33	7.55		2.61		10.27		
3	2	Ş																			

Results of Chemical Analysis for Sampling Sediments (2) Appendix Table 6

94SBGC17	19-24	52.96	0.79	15.13	8.20	4.08	0.37	2.46	6.88	0.07	4.38	3.03	0.46	1.98	5.28	10001	0.02	4.2	101.0	30	8.0	<0.2	33	909	0.5	20	82	2560	4	2030	497	0.1	166	~	8600	45	33	1.6	0.064	0.03	1.98
94SBGC17	0-11	40.79	0.63	12.69	7.66	2.51	0.40	2.63	15.04	0.06	3.14	2	0.34	8.91	15.93	100.55	0.02	10.6	102.0	8	12.5	0.2	55	550	<0.5	22	ક્ષ	2720	20	1490	663	0.1	182		>10000	94	61	1.0	0.099	0.12	8.91
94SBGC16	55-61	50.10	0.69	15,30	8.79	4.71	0.20	3.33	9.51	0.05	3.95	2.01	0.29	2.79	5.38	09.66	0.02	4.0	98.8	8	12.5	0.2	. 53	430	<0.5	22	34	1365	11	1270	261	<0.1	122	Ó	9300	€	42	1.0	0.061	0,03	2.79
94SBGC16																																٠				45	35	1.2	0.067	0.03	1.72
94SBGC16	0-10	39.14	0.61	12.43	7,60	2,02	0.44	2.61	15.77	0.06	2.92	1,00	0.33	62.6	17.40	100,31	0.02	12.0	8.66	8	20.0	-	¥	580	0.5	4	27	3020	22	1450	929	0.3	186		>10000	45	11	0.8	0.105	0,12	9.79
94SBGC15	50-57	\$2.75	17.0	15.41	9,75	5.15	0.18	3.51	7.32	0.06	4.26	2.32	0.31	0.81	3.47	100.11	0.04	2.6	67.4	20	7.5	<0.2	39	200	0.5	25	r.	1330	9	1400	522	0.1	258	6	8500	8	28	0.1	0.043	0.03	0.81
94SBGC15		53.41										2.88				_									•									:			40	1.2	0.058	0.03	1.87
94SBGC15												1.01																							^					0,14	
94SBLC13		L																				٠																	•	0.07	i
94SBLC13												0.71																							*			0.6	0.084	0.10	11.66
94SBLC13												29.0											٠		:															0.08	10.45
94SBLC13																														1750	\$42	0.5	178	10	>10000	30	31	1.0	0.059	0.0	5.24
94SBLC13		54.23										3.04									6.0	<0.2	27	009	<0.5	21	18	1645	9	2160	497	0.2	193	11	2009	50	9	1.4	050.0	0.02	1.25
94SBLC13	0-10	37.40	0,59	11.57	6.92	1.7	0,50	2.23	11.77	0.07	2.83	1,16	0.32	11.83	18.51	28.66	0.04	13.4	100.5	8	15.0	4	2	620	<0.5	22	83	3420	72	1530	725	0.3	173	01	00001<	22	17	1.0	0.089	0.11	11.88
94SBLC12	75-82	45.61	0.65	13.57	7.50	3.15	0.34	2.85	13.18	0.07	3.5	1.80	16.0	6.42	10.24	99'66	0.02	6.0	82.2	S	8.5	9.0	35	290	5.0	22	25	2350	1	1350	639	<0.1	158	∞	0066	35	ES.	1.0	0.060	70.0	6.42
94SBLC12	62-72	44.93	0.67	13.66	8.12	3.61	0.34	2.93	12.78	0.05	3.69	1.67	0.28	5.94	10,24	96'36	<0.02	5.8	79.8	100	9.0	0.2	37	490	0.5	ล	91	2380	11	1260	684	0.1	219	0	>10000	25	61	0.6	0.060	0.06	5.94
94SBLC12	25-35	34.20	0.57	11.78	7.91	1.35	0.53	2.50	19.51	0.06	2.36	0.59	0.26	12.61	19.96	100.23	<0.02	14.8	125.0	8	24.5	<0.2	63	200	0.5	8	ล	3500	22	1150	818	0.5	179	=	>10000	3	Ξ	0.6	0.083	0.11	12.61
94SBLC12	01-0	38.47	09'0	11.76	6,91	28.	0.50	2.23	17.36	0.07	3.03	1.27	0.34	11.40	17.72	100.26	0.02	14.2	99.4	0/	18.0	0.2	53	099	<0.5	22	83	3300	22	37	969	0.3	169		>10000	35	ន	9 0	0.108	0.11	11.40
0		1%	88	88	89	FS.	%	80	£8	P6	80	PE	%	βę	69	2.6	Endd	Had	mdd	udd	bbm	mdd	E CA	add	Bod	mdd	andd	mdd	n dd	undd.	andd	mdd	H	пии	mad	E du	Hod	anda	1.6	P6	Pg
Sample No.		SC2	20 <u>1</u>	Al2O3	Fe203	P. C.	N O	MgO	ွ	Seg.	Na20	8	P205	8	<u>5</u>	Total	Į.	As	8	£	£	B	2	8	8	ී	් ඊ	Δħ	Ź	a.	Ś	F	: >:	=	Ö	ம	£	<u>n</u>	Total S	804	200

Results of Chemical Analysis for Sampling Sediments (3) Appendix Table 6

							ł	ŀ	ŀ				ŀ	ŀ	H	ŀ	H	CACTOR CAC	CIO MONO	CI D (CISTO	Stantant
(7)	Sample No.	94SDLC01	94SDLC06	%SDCC08	94SDL	94SDLC09	-		-	94SDLC09	94SDLC09	94SDLC09								45.48	
1				A+B		10-20	41-47	49-57	47.42	101-16	113-[23]	123-153	130-140	10-01	C#-CC	07-00	07-01	1000	97 03	02.03	200
(V)	302		L	36.25			46.15	\$	42.17	35.84	31.68	31.20		51.44	51.15	21.12	4	79.7	V .	26.70	20.00
-	203			0.55			0.42	0.61	0.56	0.49	0.43	0.42		0.75	0.74	0.66	0.74	0,53	99.0	0.75	9
<u> </u>	203			14.11			8.57	12.84	11.28	10.32	9.07	8.64		14.45	14.15	12.66	14.19	11.69	14.11	4.50	13.93
<u> </u>	6203		13.17	7.08		7.52	17.40	8.73	9.19	7.14	6.93	7.30		9.76	9.75	12.44	9.61	7,70	10.88	10.23	9,50
	ç			1.70			2.13	3.12	2.93	2.51	1.84	1.73		4.46	4.10	3.79	4.43	236	0.19	4. 4.	5.18
<u> </u>	3 2	_		0.71	1.05		0.22	0.24	0.19	0.24	0.52	0.36		0.21	0.50	0.58	0.29	0.53	2.76	0.19	0.18
-	Ç	. :		2.50			2.96	2.79	2,68	2.53	2.20	2.13		3.24	3.16	3.12	3.17	2.51	3.16	3.30	8
				14.21			6.23	14.05	13.81	20.00	23.31	23.06		6.97	6.07	4.59	6.46	17.46	8.6	5.81	55.
	Ş Ç			90 0		0.07	90	90.0	0.06	0.06	0.07	0.08		0.05	0.04	9.0	0. S	90.0	8	8	8
- 2	5			2.72			3.24	3.11	3.16	2.24	2.20	1.87		3.89	4.09	3.78	4.20	3,14	3.80	4.18	4.18
-	Ş			283			1.87	1.20	1.42	0.66	0.61	0.43		1.70	2.05	2.01	75	1.26	2.20	1.60	1.65
	502		0.19	0.73			0,17	0.24	0.22	0,18	0.19	0.18		0.28	92.0	0.25	0.27	0.25	0.25	0.27	0.27
<u> </u>	3			12.21			2.6	7.33	77.77	12.98	16.35	16.50		8	1.14	0.44	<u>x</u>	3.3	0.18	0,95	2.49
	õ		1.49	18.01	18.26	17.08	12.33	12.69	14.81	20.41	23.03	24.24	21.31	7.97	7.35	7.90	2.76	15.80	7 95	7.09	8.23
11	ŧ			00.00	Γ	ľ	99.60	100.63	99.55	1001	100.22	16'66		100.71	99.33	99.16	8.81	69.66	100 92	100.67	99.31
14	g			<0.02			0.02	0.03	<0.02	0.02	<0.02	0.02		<0.02	<0.05	с 2	<0.02	<0.02	<0.02	0	0.02
. 4		war.		90	-		21.0	12.4	11.4	6.0	31.8	37.2		3.4	7.0	13.2	3.6	14.0	21.4	2.2	7.0
	, , ,			0.00			65.8	23.4	79.0	107.0	27.2	58.4		8.86	88.0	50.2	4.96	88.4	79.2	106.5	86 4.
		1000	-	20			4	30	04	30	06	8		10	01	09	0	02	30	6	જ
				16.0	٠.	٠	7.0	9.5	3,30	11.5	12.0	12.5		6.5	5.0	5.0	6.0	13.5	5.0	8.5	8.0
<u> </u>	, <u>F</u>	v muxi	<0.2 0.2 0.2 0.2	0.4	0,0	0.2	0.2	<0.2	0.8	4.0	<0.2	<0.2		<0.2	<0.2	×0.2	<0.2	0.2	9.0	1.6	<0.2
		. '		4			4	44	49	75	74	130		55	.84	£	፠	45	45	Z.	S
. 01	. 9			22			380	260	280	280	620	069		410	390	330	380	510	38	00	390
u	₹			<0.5			<0.5	0.1	0.5	0.5	0.5	0.5		0.5	0.5	<0.5	0.5	<0.5	<0.5	0.5	0.
<u>, c</u>		ž		23			17	20	6.1	30	20	18		22	22	61	23	21	ឧ	21	23
		1 8		¥ .			15	22	20	27	25	22		٥	10	10	=	22	01	16	4
. =	. =			4650	0869		1525	1655	1340	1630	3390	2400		1455	3570	4010	2090	3540	710000	1300	1320
	-	шаа	18	20			Ξ	01	4	18	25	25	61	0	'n	4	<u>0</u>	19	'n	9	9
a				0601			710	1030	096	840	870	830		8	1230	1070	1200	1110	080	0,11	081
· · · ·	·			701	206	658	352	929	573	706	008	78 7		4	383	305	385	652	313	3 4	473
<u></u>	-			0.1			1.0	0.1	0.1	0.2	0.1	0.1		0.1	0.5	0.1	0.3	3	0.2	j j	- ·
	-			1891	-		144	211	194	213	148	131		57	182	164	176	176	167	198	8
		F F F		oi.		12	1	6	Ø,	٥	80	6		13	4	12	<u></u>	01	31	<u>o</u>	=
	7		2300	00001<	.^	314	>10000	>10000	>10000	00001<	>10000	>10000	۸	>10000	>10000.	916	>100001	>10000	7900	>10000	> 10000
<u>, u</u>	ī ~		15	35			115	35	54	40	35	94		34	35	70	45	4	9	Ŝ	\$
				121			37	21	14		ď	=	11	61	1.1	22	7	15	8	8	Ω
·=] =		0.4	4	8.0	0.6	0.2	9.6	9.0	0.2	0.2	0.2	4.0	0.8	9.0	0.6	8.0	9.0	9.0	0.1	0.1
	S-Isto		0.047 0.060	0.081			0.054	0.085	0.088	0.094	0.104	0.097	0.088	0.097	960.0	0.078	0.093	0.720	0.059	0.225	0.74
	ŏ			0.08			0.08	0.08	0.09	0.11	0.11	0.12	01.0	0.06	0.06	0.04 40.0	0.00	80.0	500	0.11	1170
	202	%		12.21			2.64	7.33	7.77	12.98	16.35	16.50	13.86	1.83	1.14	0.441	¥.:	5.23	0.18	Icv.u	7,43

Results of Chemical Analysis for Sampling Sediments (4) Appendix Table 6

		-					0.0.20.0	E	1.	100000000	046550001	CACTOTO	o topulation	o tondaro	o constant	a j conductor i a	OACOTOCO O	o tropodore	OACTORONO O	30.000
Sample No.	94SDLCts	SISPINATION OF STREET	S SECULIAR	CIDIOS S	CINTOSE	SO SOCIETIES	SO CONTRA		N TAPLICAN	- a	200	TO LOCK	Į.	. E		- 00	r :		. 11	- V
					60.70	- TO - NO	20.00	00 00	90 07	2 5	30 63	ļ	30 05	41 90	69 63	47 55	40.43	24 50	12.05	000
202		4			3	BOUSE	100	00.00	8 6	F	22.03		3 6	6,70			,		10.0	3
102					0.57	notics	0.08	0.26	0.62	96.0	0.35		16.0	70.0	ŧ :	O i	67.5	/c.u	3	07.0
A/203		_			14.26	notes	71.4	58.5	12.4	15.43	98.		10.57	13.39	17.68	17.79	17.65	14.66	18.65	1.36
Fe203		7.81			8.13	novss	45.70	42.03	7.	11.00	17.27		10.86	8.22	8,92	10.19	. 10.58	9.35	8.15	38.02
O		:			2.65	noutes	0.52	0.49	2.06	1.53	1.18		2.21	1.47	2.39	2.23	3.52	2.91	2,38	0.29
OUN.		0.30	9 0.29	0.21	0.20	SS/10C	20.0	1.99	0.68	2.43	0.36		0.27	1.34	98.0	0.16	0.27	0.18	6.3	0.72
Ç.	٠.				3.52	pot/ss	1.34	1.83	2.45	3.21	2.61		2.58	2.74	3.48	3.71	4.70	4.92	3.23	1.22
		15.08		10.73	13.56	307/20	2,11	3.12	15.25	6.49	10.70		15.48	14.91	8.35	9.12	9.98	12.65	10.12	1.76
2 0		0.05			200	0.0	0.03	0.02	0.07	0.00	0.0		0.05	0.05	0.04	0.02	0.02	0.02	0.02	0.02
2					3.03	SALION	3.55	1.92	3.27	3.86	2,70		2.59	3.00	3.58	3.25	3.8	2.81	3.34	2.47
Ç					1.20	novss	0.15	0.74	1.53	2.92	1.60		1,16	1.38	1.86	1.24	1.19	1.10	1.12	0.58
200		٠			0.22	pot/ss	0.30	2	0.34	2,0 2,0	0.17		0.20	0.25	77.0	0.39	0.17	0.17	0.19	1.76
8 8	- 68	8.03	7.96	8. 8.	5.76	100088	0.48	1.10	60.6	0.15	6.82		9.28	7.85	0.33	1.39	0.51	3.81	1.58	1.61
ē					10.65	notiss	19.72	16.32	15.35	3.40	16.78		16.82	13.12	2.73	6.85	28.	9.02	5,10	23.42
Total						ss/1ou	97.91	100.59	100.52	101.01	28.57		100.15	101.01	100.20	100.82	29.65	100.04	100.90	100.30
+						<0.02	<0.2	<0.02	<0.02	<0.02	0.02	1	0.02	90.0	<0.02	<0.02	<0.02	<0.02	<0.02	0.05
					٠	4100	>10000	3900	29.0	32.0	41.0		24.8	25.2	16.2	3.2	1.6	3.6	8.2	163.5
						8.0	3.0	95.6	105.5	146.5	59.0		62.8	85.4	55.0	5.771	51.2	90.4	70.2	87.8
						30	101	10	9	10	S		0	4	10	01	10	10	10	98
? at		0.40		0.9	13.5	0.4	4	5.5	11.5	3.5	11.0		15.5	10.0	0.6	0.4	2.0	8.0	3.5	21.5
•		<0.5		<0.5 20.2		0.2	4	5.8	<0.5	9.0	98.0		8.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	7
-				ß		e,	70	49	8	85	47		S	94	. 31	71	4	S	49	37
	, maa	440	300	240		8	99	140	25	260	320		440	490	330	180	200	180	180	190
				0.5		<u> </u>	<0,5	<0.5	.0.5	<0.5	1.0		0.5	<0.5	<0.5	0.5	1.0	0.5	0.5	0.5
_				38		⊽		27.	H	8	77		23	52	32	58	35	31	39	4
		39	31	26	9	88	4	94	22	21	13		22	15	80	30	37	103	18	6
•	. 7		31	1605	1405	120	300	>10000	4550	>10000	2500		1855	8740	6810	1210	2020	1285	2550	\$2
-				50	82	4	30	32	78	52	81		17	115	SI	4	17	27	4	12
-			0 920	940	750	2880	3110	4470	1580	2430	800		970	1210	1200	088	930	810	950	88
-		957 739		743	574	117	139	246	\$	499	411		609	713	282	652	691	490	269	366
				0,1	0.2	<0.0	6.1	13	9 0	9.0	0.1		.0.1	<0.1	0.1	0.1	0,1		0.2	-
			,	209	171	1990	856	317	174	318	1111		189	205	229	227	261	228	175	195
			1	Ξ	90	-	-	4	Ξ	76	œ		ō	8	7	15	4	17	6	61
<u>გ</u>		>10000 6700	>10000	8300	>10000	noves	>10000	8000	00001<	2100	>10000		>10000	0016	6200	2800	4200	9200	0009	10000
		50	55	05	45	no des	15	200	Ş	ጽ	180		27.	909	\$4	\$	8	Q	8	250
			4	81	16	ROVSS	75	4	¥	83	32		1	17	73	17	19	8	11	ð
		0.8	90	0.6	9.0	not/ss	1.0	14.2	9.0	1.0	<0.2		9.0	9.0	80	4	4.0	0.6	0.4	3.6
Total-S	· :	0.099		0.132	0.098	no Vss	0.077	0.032	0.092	0,006	0.069	0.092	0.086	0.074	0.040	0.053	0.024	690.0	0.069	0.065
804		0.09	5 0.10	0.07	0.07	BOUSS	90.0	0.03	0.11	0.03	0.07		0.07	0.07	0.01	20.0	0.02	2,0	90.0	0.07
88	80			3.04	5.76	not/ss	0.48	1.10	60.6	0.15	6.82		9.28	7.85	0.33	139	0.51	3.81	58	1.61
		-																		

"not/ss: not sufficient sample

Results of Microscopic Observation (Thin Section) (1) Appendix Table 7

		T	Scori	a ©)©	7	0									0						0	1	_	0	_		ļ	L	L			_	L.		L	_	1	1	-		: poor
18		ŀ	Clay minera	ılş	T	T				T											L							_	_	_			_			_	\perp	1	1]		
others	ļ	Ī	Foraminife	er	1.		1		T	Τ	T		Γ			Ŀ						С			0	L	L	L			L	L		_	L	<u> </u>	┸	1	_	1	_	
r	T	7	Glas	ss	T	Τ	T		Γ	T		T		İ		0)	1					<u> </u>						_			L	L	L	L		\perp	1	_	_		6
		Ì	Birnessi	te	1-	0		G) (C)	Q	(C	0	0		0	0) (C	0) (C		0	90	1	0)©	©	0	0	0	0	0	0	C) (©) (C		9	<u></u>	_	: common
			Todoroki	te •	1	1	1			1	1		T					T				_c	,L								L	_		L	L			_	_	\downarrow		0
		ľ	Fe-Oxide	es ·	1	.	T	T	T		0			T					0											_	L	_	Ŀ	<u> </u>	1	╽	1	\downarrow	_	_		Ĭ
-		1	Apati	tc	1	-		T	Ī													ŀ		1	•					L			L			_	_	_		_		날
		ass	Ilmeni	te	Ť	1		1	T				T		T	T		Ι						┙			_			L	_			_	ŀ	1	1		_	$ \downarrow $	•	ğ
1	9	Egu	Magneti	ite	•	•	٦,	•	T	T												Ŀ			1.				_			L	_	_	ŀ	⅃	ㅗ	4	_			de :
8	g g	Groundmass	Plagiocla	se (5	9	C)		T		_		7		C	7			•		C)		C	1		C			0	C	0	0			•	2	9	0	0	0
Walania rooks (fragments	7	•	Hyperthe	ne	-†		1	•		1		1	T			T	7		T	T		1	. [<u> </u> -			ŀ	ŀ		Ŀ	ŀ	C	1	ŀ	1	1		•	٠	•	
150	3		Aug	ite	. (Э		•	Ţ	1		1	1		T	1	Ī	1		$\cdot \top$	T	7	र्ग		7	7			1	1.	ŀ	.	C	<u>\ .</u>	C		•]	-	0	•	0	ľ
	2		Olivi	\rightarrow	-		1	1	1	7	T	1	1	1	1	7	Ì	1		T	7																		_	_	L	
7,10	3		Fe-oxid	-+	1	1	7	1	1	1	1	1	1	T	1		1	Ī		1			1		Т		T								1	$\cdot \mid$	٠				L	
		ţ		_	-		5	7	(o l	5	1	.†	- 7	5	5	7	5		7	5	5		7	5	Ţ	•						Œ)	2	٠			0	
1	1	Scrys	Hyperthe	-+			1	1	+	7	•	1	1	1	7	•	_	7	\cdot	1	•	1	1	_	•	-1		Ţ	T				C)			\cdot	٠			•	
İ		phenocrysts	Aug		+	1	•	+	7	-		1	7	o t	5	5	1		이	1	•	7	7	7	1		1						(•	• [5	0	٠			0	
	ļ	₽	Oliv		7	1	-†	1	+	7	7		\dagger	1	7		1	1	1	1	1	1				1	7		1												L	
ŀ	1		3		7	+	7	+	1	7	1	┪	7	+	7	7	7	7	7	7	7	1			T			T		T	T	T	T	T	T		٦				Γ	1
	-						intersertal texture		hyalopilitic texture	vitric texture	intersertal texture		intersertal texture	intersertal to hyalopilitic texture	vitric to hyalopilitic texture	intersertal texture		vitric texture	interserta to hyalopilitic texture		Annual A			vitric to hyalopilitic texture	vitric to hyalopilitic texture		intersertal texture	vitric to hyalopilitic texture	variolitic to hyalopilitic texture	variolitic to hyalopilitic texture	variolitic to hyalopilitic texture	variolitic to hyaiopilitic texture	variolitic to hyalopilitic texture	intersertal texture	intersertal texture	variolitie to intersertal texture	vitric texture	variolitic to hyalopilitic texture	variolitic texture	vesicular to hyalopilitic texture	interestal(narthy variolitic)texture	Allecourage and a second
					Besoments of basic rock and minerals	Fraements of basic rock and minerals	Ausite basalt	Eragments of basic rock and minerals	Framents of anhyric basait	framents of hasalt	Hyperthene bearing augite andesite	Fe-oxide with rock fragments	Fragments of aphyric basalt	Fraements of augite basalt	Fragments of augite basalt to andesite	Fraements of hyperthene bearing augite basalt	Framents of basic rock and minerals	Fraements of anoite basalt	Fraements of hyperthene bearing augite basalt	Fe-hydrocxide with planioclase and augite	Pimice	Scoria	Eramonte of basic rock and minerals	Aphyric basalt	Augite basalt	Fragments of basic rock and minerals	Aphyric basalt	Porous aphyric basalt	Porous aphyric hyperthene-augite basalt	Porous aphyric hyperthene-augite basalt	Porous aphyric hyperthene-augite basalt	Porous aphyric hyperthene-augite basalt	Porous aphyric hyperthene-augite basalt	Porous hyperthene-augite basalt	Hyperthene-augite basalt	Hyperhene bearing augite basalt	Hymerthene-augite andesite	D to be in the most hand-six its hasalt	Porous apayine hypermient-augue passin	Porous aphyme hypermene-augue passit	Porous aphyric hyperthene-auguse basait	Hyperthene-augite basait
					30.05	21-24	1	20.42	1				14-15	}			38.40				INDER	1	30.30	67-07		32-33	· 		m	۵	S	_	æ		 -]=		4	اد	اِن	-	æ
					3000000	1 945.DGC00		200 (dov	2 242DE-00				00 BBB 00	74000000			000 10370	S Stodered			\$1-0 Idono 2		410000000	/ 942BGC13		917575786			9 94SDLC01		L	12 94SDLC05	1	L	L.,	1	16 945DE002		- L		20 94SDPG07	21 94SDPG081

Results of Microscopic Observation (Polished Thin Section) (2) Appendix Table 7

							_					
		Scoria		0	Ŀ	ŀ	0		0	0	0	
others		Clay mineral:		L	L							ŀ
₹		Foraminifer		0	0							
		Glass										١
		Birnessite		•		0		0	0			
		Todorokite		•	•					0	0	ŀ
		Fe-Oxides	0	$\overline{\cdot}$		0	0			0	0	K
		Apatite		-				_				ļ.
_	ass	Ilmenite										
ents	ndm	Magnetite						_	-	-	-	
Volcanic rocks (fragments)	Groundmass	Plagioclase	Г		<u> </u>				-			ŀ
s (fi		Hyperthene	┢	╮				-				
rock		Augite			-							١
anic		Olivine	-	\vdash	-	-						
/olca	├	Fc-oxides	_	_					_	_		
	ŝ	Plagioclase	-	-						0		
	phenocrysts	Hyperthene			-	-	-	-	-	Ĺ	-	
	henc	Augite	 	-	 			-	-		-	
	12.	Olivine	-			-		_	-			
	L		-	-	-	_	-		_	H		
				nodular	nodular	columnar-colloform, nodular	worm-like to feather-like	nodular, colloform crustified	columnar-colloform, nodular	columnar-colloform, nodular	columnar-colloform, nodular	
			Fe-oxides(partly goethitized)	 	<u> </u>	Mn- and Fe- oxides with low refractivity	Fe-oxides	Mn-oxides with both low and high refractivity	Mn-oxides	Mn- and Fe- oxides with medium to high refractivity	Mn- and Fe- oxides with medium to high refractivity	The state of the s
			4	X-axis	Y-axis	<	Μ'n	H	1	S	Ω	
			94SDLC01	94SDLC09	"	94SDLC10	94SDCB02	94SDPG01	94SDPG02	94SDPG03	<i>"</i>	
			F	77	3	4	8	७	7	8	6	1