A - 7 GROUNDWATER DEVELOPMENT PROPOSAL

A-7-1 Well Yield

Based on specific capacity obtained by the exploratory and existing wells, optimum well yield for respective hydrogeological units is evaluated as following Table A-7-1. Table shows that specific capacity is applied for a calculation of well yield. Depth of proposed well is optimally determined based on results of the borehole loggings and geologic well logs from the exploratory wells of the Study and RDD. The optimum well yield is finally calculated based on the standard well specifications that includes screen with 20 m and drawdown with 10 m in minimum.

(1)

(1) Well Yield of Lake Manyara Beds

The Lake Manyara Beds overlying the Basement occurs in the southern part of the Study Area. Four villages; Oltukai, Mswakini, Naitolia and Makuyuni; are located on the Beds. In Table A-7-2, Naitolia and Oltukai village are excluded due to low potential and inferiority water quality in high electrical conductance. The possible well yield by one production well in Makuyuni and Mswakini are calculated at 135 and 144 ml/day by 10 hours pumping duration.

(2) Well Yield in Colluvial Beds

A large scale colluvial beds is underlain in Monduli Juu Caldera. The possible well yield by one production well in Emaireti village is calculated at 36 m/day by 10 hours pumping duration.

(3) Well Yield in Younger Extrusive

Three major volcanic mountains is underlain by the Younger Extrusive. It is unclear geologic boundary to the Plateau Lava in northern edge of the Ardai and Eluanata Basins. Exploratory well, EX-11 in Tarosero was initially programed in the younger extrusivo, but it encountered dry caves in cavern lava, so that encountered volcanic rocks is probably belong the Plateau Lava.

(4) Well Yield in Plateau Lava

Groundwater potential in this volcanic rocks vary in place and lithology. One of major problem for the development, especially rural area, is deeper static water

level which couldn't rift by a manual pump. A possible well yield by one production well in/near Meserani Bwawani is calculated at 24 m²/day by 10 hours pumping time.

(5) Well Yield in Basement Rocks

٩

(1)

The potential in basement rocks vary in thickness of weathered part of the basement. A possible well yield by one production well in Naitolia, east of Lake Manyara Beds is calculated at 12 m³/day by 10 hours pumping time.

(6) Well Yield in Engare Volcanic Rocks near Arusha Airport

Seven existing well data were collected to evaluate well yield (see Table A-6-2, Data Summary of Exploratory Wells in Engare Olmotoni). An averaged possible well yield by one production well in Engare Olmotoni, north of Arusha Airport is calculated at 630 m³/day by 10 hours pumping time.

A-7-2 Groundwater Development Plan

(1) Groundwater Supply Planning Criteria

Basic idea of groundwater development criteria of the Study is as follows:

<Rural Water Supply>

- Point sources by borehole shall be allocated to rural communities
- Pumping system shall be by manual pump if static water level is above 30 mbgs, otherwise power generating system shall be equipped, but discussion is required for affordability of operation and maintenance cost.
- Although 30 l/person of water demand is recommended by ARWMP, it shall be modified by well yield and pumping capacity. Minimum water demand should be 10 l/person which recommended by WHO
- Distance to a source from village shall be located based on source potential.
- · Source quality shall meet the health standard
- Borehole shall be primarily allocated on public compound, such as school, health spot, village office, etc.

<Monduli Town>

- Groundwater sources shall be of supplemental and conjunctive sources

for existing system

Total well yield by multi-borehole shall be fulfilled water demand of 30 \(\ell \)
/person for the projected population.

()

A-7-3 Implementation of Groundwater Supply Scheme

(1) Production Well

Table A-7-2, summarizes well yield for potential villages and Monduli Town which are Monduli, Makuyuni, Naitolia, Mswakini, Emaireti and Engare Olmotoni. The last one is located out of the Study Area, but it would be of an alternative well field for Monduli Town.

Number of required wells to meet water demand for each proposed village and town is tabulated in Table A-7-2.

- Monduli Town -

Table shows that Monduli Town requires two (2) boreholes in Engare Olmotoni well field for total population in year of 2014 (see Figure A-7-1 Proposed Production Well Site in Engare Olmotoni).

- Emaireti, Monduli Juu -

For Emaireti in Monduli Juu requires three (3) boreholes for water demand of 10 ℓ /cap. and nine (9) boreholes for water demand of 30 ℓ /cap. Although the exploratory well, EX-7 can be converted to a production well, one more well shall be located in the caldera to meet water demand of 10 ℓ /cap. On the basis of groundwater recharge capacity, second production well shall be located in lower part of EX-7, near the existing reservoir (see Figure A-7-2, Proposed production well sites in Monduli Juu).

- Mswakini -

An existing well is under operating for Phosphate Factory in Minjingu, but no outlet for villagers of Mswakini from this well. One production well shall be allocated to villagers in near village center. Proposed well site shows in Figure A-7-3. Proposed Well Site for Mswakini.

- Makuyuni -

Two production wells are operating for potable use of Makuyuni village. Makuyuni is only one village equipping power driven pumping facilities and distributing water by pipe. Pumps and distribution pipes were installed on 1950.

Two existing diesel driven pumps and distribution pipe shall be replaced to new pumps and distribution pipes.

(2) Pumping Facilities

()

Although manual pump is recommendable for rural water supply because of affordability of operation and maintenance cost, static water level in proposed villages indicate more than 30 mbgs which wouldn't meet operation of manual pumps.

Diesel driven power pumps should be installed in the production wells, however, electrical interruption must be taken into consideration to meet the demand.

The specification of pumps is summarized in Table A-7-3, Summary of Pump Specifications.

A-7-4 Design of Production Well

(1) Depth and Diameter

The well design is the process of specifying the physical material, dimensions and water requirement for a well. An possible yield can be determined by the specific capacity and/or transmissivity in relation to screenable length of aquifers. It is essential to construct production well by proper drilling technique and optimal locating of well screen.

The diameter must be chosen to satisfy water requirement. In this connection, the entrance velocity of water into screen is calculated based on each pumping discharge. Results indicates that the velocities in well diameter of 150 mm and 250 mm are 0.1 cm/sec. and 0.4 cm/sec. respectively (see Table A-7-4). It has been proposed based on field experience and laboratory test that an average entrance velocity of water to avoid sand extraction should not exceed 3.0 cm/sec. (Driscoll, 1987).

Taking this results into consideration, entrance velocity into screen for proposed area is calculated as follows:

0

(1)

Calculated entrance velocity is within the limitation of 3.0 cu/sec.

(2) Well Drilling Method

Selection of drilling method depends on the geologic conditions. The air percussion drilling method is proper technique in hard compacted volcanic area, however the Ardai basin and Engare Olmotoni are underlain by pyroclastic rocks with cavern rocks above water level. So that the rotary drilling with mud circulation is more safety in the most proposed area. Taking the regional geological conditions into consideration, most economical method should be taken into the project drilling.

(3) Material of Casing and Screen

Standard design procedures involve choosing the casing diameter and material, estimating well depth, selecting the length, diameter, and material for the screen, determining the screen slot size, and choosing completion method. Regarding to the material of casing and screen, assessment of water quality is essential to prevent corrosion and incrusting. The general idea of a combination of chemical items and limit of concentration which will causes corrosion and incrusting is listed as Table A-7-5.

Table shows that quality problems arises in Mswakini village where concentration of Mn exceed the in crusting limitation.

It is advisable to use FRP casing if Fe and Mn concentration exceed the limitation.

Table A - 7 - 1 EVALUATION OF WELL YIELD FOR DEVELOPMENT PLAN

0

Formation	Proposed Aquifer S.W.L	Aquiter	S.W.L	Specific	Possible	Well Yield	ield .	Evaluated	Major Constraint
/Village	Well Depth Thickness	Thickness		Capacity	Drawdown			Wells	
	(m)	(m)	(szqm)	(mpgs) (1/min/m)	(田)	(1/min)	(m³/d)		
Lake Manyara Beds									
Makuyuni	001	20	တ္တ	15	15	225	135	10/52,23/68	none
Mswakini	120	20	30	12	20	240	144	110/79,82/79	E.C.=1,400 µ S/cm
								74/79	Fluorite= $9.54 \text{mg/l(limit.} = 8.0)$
Colluvial Beds	the control of the control of		:						
Emaireti	150	25	7.5	υ •	10	09	36	EX-7, 107/79	Small recharge area
								87/79	
Younger Extrusive									
Monduli Town	100	20	30	4	0.7	40	24	3/36	
Basement								:	
Naitolia	200	20	30	8	10	20	12	54/55	Deep SWL & low potential
Engare Volcanics				*					
Engare Olmotoni	150	52	40	20	15	1,050	630	75/76,70/77	Densely drilled production
		-						37/80,47/80	wells for private estates
				: .:	·			08/96'08/62	

Remark: Well yield in m/d is calculated based on 10 hrs pumping per day

Table A-7-2 SUMMARY OF GROUNDWATER IMPLEMENTATION SCHEME

Name of Town Population	Population	Source	Name of	Well	Poss	Possible Population	Mation	Require	Required Nos of Well	Vell
/Village	1994	Demand	Well Field	Vield		to Moet Demand		to Meet	to Meet Demand on 2014	2014
	2014	(m3/day)		(m3/day)	10 1/cap	20 I/cap	30 1/cap	10 I/cap	m3/day) 10 1/cap 20 1/cap 30 1/cap 10 1/cap 20 1/cap 30 1/cap	30 L/cap
Monduli Urban	18,210		Mondul i	24		ž.	0			
	34,884	1,046	1,046 Engare Olmotoni	83			21,000		-	
Smaireti	4,674	201	Monduii Juu	क्ष	3,600	08.1 08.1		2.8	5.7	က က
	10,241	30 30 30 30 30 30 30 30 30 30 30 30 30 3		0	၁ဝ	00	00	<u></u>		
Mswakini	2,391	ኤ ቪ	58 Mswakini Ge	144	14,400	7,200	ας, ας ο	0.4	0.7	::
	5,239	157		0	0	00	00	•		
Makuyuni	3.63 20.63	25 25 25 25 25 25 25 25 25 25 25 25 25 2	45 Wakuyuni 83	135	13,500	6,750	4,500	0.3	9.0	6.0
:	4, 134	124		•	0	0	0	:		
Naitolia	1,259	95	Basement	12	1.200	039	400	1.2	2.4	3.6
	1,444	3 5						÷		

Remark: Source demand is based on 10, 20 and 30 lit/cap, showing upper, middle and lower figures Well yield is calculated based on 10 hrs pumping duration per day

0

Table A - 7 - 3 SUMMARY OF PUMP SPECIFICATION

()

Name of	Well Design	Design		Well Data		Pu	Pump Specification	u.
Village/town	Depth	Diameter	SWL	Yield	Drawdown	TDH	ප	Power
		(mm)	(mpgs)	(m³/hr)	(m)	(m)	(m³/hr)	(kw)
Makuyuni	100	150	30	₹ [15	55	17	9
Mswakini	120	150	30	. 31	20	09	18.	2
Emaireti / Enguil	150	150	75	4	10	96	ည	က
Engare Olmotoni	150	250	40	63	15	65	7.6	33

Remark: TDH = Total dynamic head - SWL + Drawdown + Height ofTank(10 m)

 $Q = Yield \times 1.2$

Table A-7-4 ENTRANCE VELOCITY BY DISCHARGE

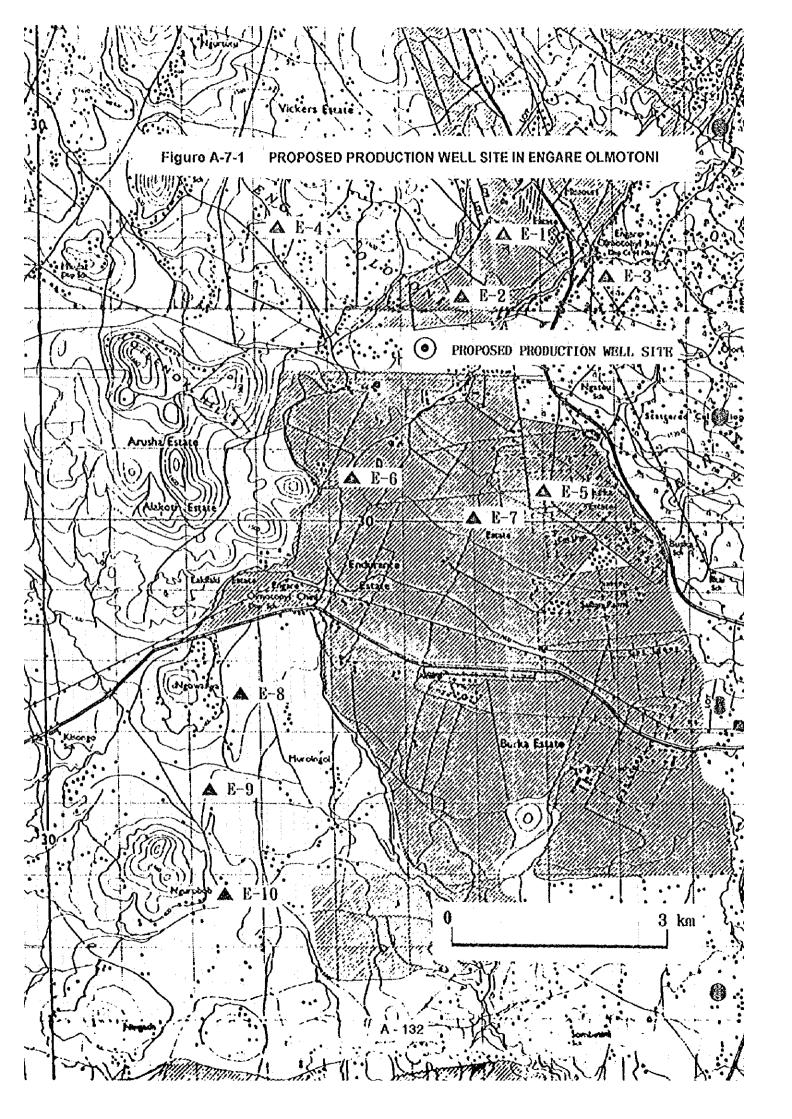
Proposed Area	Discharge (m/hr)	Screen Diameter (nn)	Entrance Velocity (cm/sec.)
Emaireti	5	150 mm	0.1
Mswakini, Makuyuni	15	150 mm	0.2
Engare Olmotoni	65	250 mm	0.4

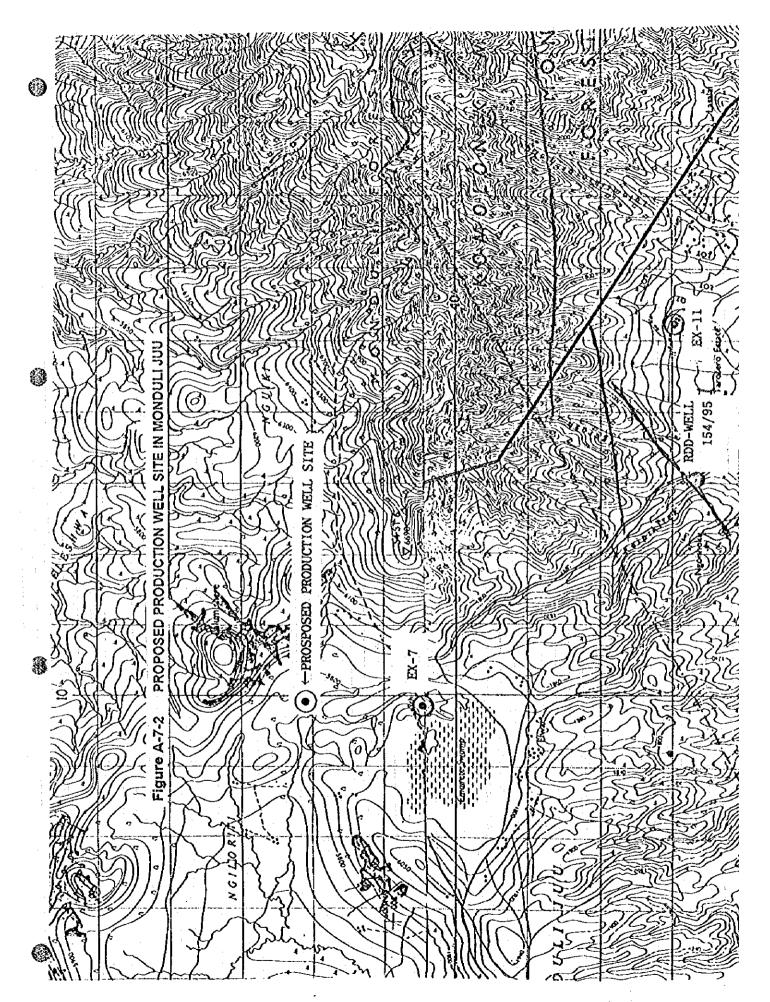
Remark: Required velocity is based on 20 m screen length Screen opening is 12%

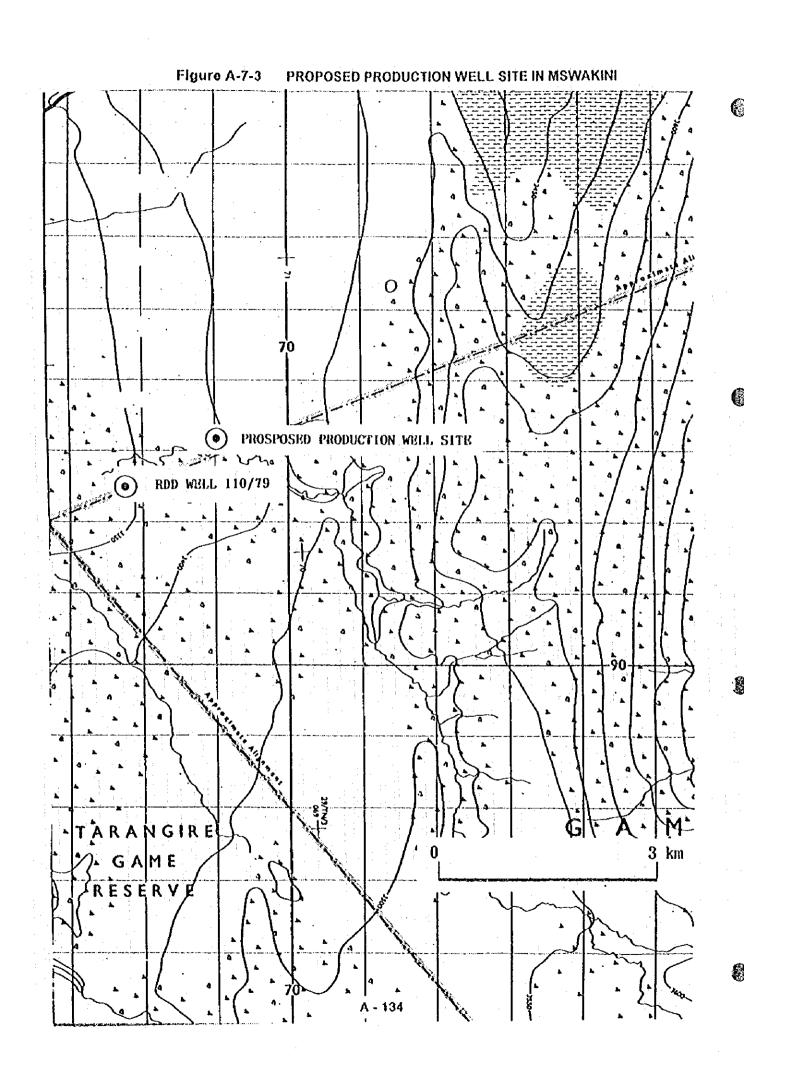
Table A-7-5 QUALITY LIMITATION FOR CORROSION AND INCRUSTING IN mg / @

	pН	CO_{i}	Fe	Mn	Hard's	DO	TDS	Cl
Corresion	7.0>	50<		•		2.0<	1,000>	500<
Incrusting	7.5<		0.5<	0.2<	300<	· .		

Table A-7-6 PROPOSED WATER SOURCES DEVELOPMENT PLAN


Varie of Town	Popula'n	Water	Existing So		Present	Development Pl.	Yield
/Village	1994	Demand	Гуре	1)Supply	Constraint	Proposed Sources	. 13618 (m²/da)
	2014	(x³/day)		(m³/day)		AND SHEET TOTAL	
Mondali	18210	1016	Army Pipe	'2) 45	Sources shortage	1)Drill New BH	63
Town	34854		Kitimani &	130		at Engare	
			Rasharasha Sp.	20		2)Develop Spring	27
				1		at Mferegi	
			<u></u>	ļ		3)Construct new dam	77
Arkatan	1895	314	Namja Dam	26780	Turbitity	1)Control turbidity	11
	3786		Nadosoito Dam	3620	Turbitity	in existing dams	
•			Nongilih Dam	3200	Turbitity	and install handpump	
			Ardai Ranch Dam	0	Broken in	for drinking purpose	
					Embankement		
Emairete	4674	307	Spring	6	Source short.	1)EX-7 install pump	3
3.115831240	10241		Mon, Juu Dam	2700	Turbidity	2)Drill new BH w/pump	3
*	10241	1	Soimineri Dam	7700	Turbidity	3)Improve turbidity	23
			SOUTHIGHT Date	/**	1 11010101	in existing dams	"
			ļ				10
	-			ļ <u> </u>		4)Construct new dam	
Enguik	4090	269	Spring	66	Source short.	1)Existing spring	6
	8961		Emaireti Dam	510	Turbitity	2)Improve existing dams	20
			ļ	ļ	<u> </u>	3)Construct new dam	59
Lendikinya	2873	189	Ardai Dam	. 0	Dam broken	1)Improve existing dam	9
	6295		Spring		Source short.	2)Construct new dams	S
1			Mrandawa Dam	150	Turbitity		
Lepurko	3042	200	Lepurko Dam	1690	Turbitity	1)Improve existing dam	15
	6665		KKitasho Dam	400	Turbitity	2)Construct new dams	
Lolkisale	4397	289	Spring-1	35	Source short.	1)Existing springs	1(
201013BIE	9634	1	Spring 2	69	Source short.	2)Construct dams	18
	3,03	!		"			1
l cociminata	1720	113	Essimingor Dam	0	Dam broken	1)Repair existing dam	
Lossimingor] 113	1	0	Dam broken	2)Construct new dams	10
	3769	1	Rasha Rasha Dam	1	FAM DIOKEU	2 Jeoustroet new dams	1 "
			DIT 1		P - 11	111-111	13
Makuyuni	3604	124	BH-1	135	Pump old	1)lastall new pumps in	10
	4134	1	BH-2	0	Pump broken	existing two pumps	
	. :		Makuyuni Dam	850	Turbitity	2)Construct new dams	
			JKT Dam,1,2	780	Turbitity	3)Improve existing dam	
			Lemiyoni Dam	160	Turbitity		ļ
Naitolia	1259	43	Naitolia Dam	230	Turbitity	1)Construct new dams	1 4
	1444		Nguvukazi Dam	15400	Turbitity		
			v				
Mbuyuni	3700	243	Mboyuni Dam 1	1020	Turbitity	1)Construct new dams	24
	8107		Mbuyuni Dam-2	130	Turbitity		
-	l 5.3.		1				
Meserani	1151	76	Naalarawi Dam	970	Turbitity	1)Improve existing dam	1
		"	Onjapatwa Dam	60	Turbitity		l
Bwawani	2517	l	1 '				
	<u> </u>		Meserani Dam	0	Broken	1571(4 -:	
Meserani	2985	196	TMA pipe	43	Source short.	1)TMA pipe	4
Juu	6540	<u> </u>	Ngoi Kumen Dam	770	Turbitity	2)Construct new dams	15
Moita	3934	259	Noviele Dam	610	Turbidity	1)Construct new dams	25
Bwawani	8619		Kilimatinde Dam	100	Turbidity		<u> </u>
Moita	1685	111	Ekivuk Dəm	1780	Turbidity	1)Construct new dams	11
Kiloreti	3692	1.	Orngarwa Dam	950	Turbidity		1
· .			Emao Ekivuk Dam	670	Turbidity		L
Mswakini	2391	157	MIPCO BH	75	High Fluoride	1)Drill two BH	15
A Part of Security	5239	-*'	Dam	1 0	Broken		1
	0.00		-	ľ			
Tut!	1641	101	Spring	11	Source short.	1)Construct new dams	10
Tukesi	1541	101	Spring	1	1.	TAYOUNSTRUCT NEW USING .	``
:	3376	I	River	77	Source short.		1
	ļ <u></u>	 	l <u> </u>		 	ļ <u></u>	}
Oltokai	691	22	Dug Pit	1	Source short.	1)Repair existing dam	4
	726		Dam	0,	Embak, borken	ĺ	
	.		<u> </u>	ļ	<u> </u>		
Nengungu	1586	91	TMA pipe	20	Source short.	1)TMA pipe	2
	3036		Hamsini Dam	120	Turbidity	2)Construct new dam	7
	1	1	Levi Dam	1010	1	I	I


Remark: Demand is based on 30 lit/day/cap, consumtion by livestosks is not counted.


Current supply in river and spring is based on measured discharge on Sep., 1995.

*1)Existing monthly source supply by dam is based on 30 % of storage capacity.

^{*2)} TMA agreed to supply 450 m /day to Monduli according to A Water Right

