While associated extension services shall be provided to individual farmer to establish farmer's organization such as WUA and farmer's cooperative. These farmer's organization would provide the following extension services:

Provision and operation of agricultural credit

Procurement of agricultural inputs such as seeds, fertilizers, chemicals, agricultural equipment and man power

Sales promotion of agricultural products

5.4.9 Water Demand at Intakes

Irrigation water demand at intake in 2020 for the irrigation service area of $1,500 \times 10^3$ ha including existing and proposed projects is estimated at 16,750 MCM comprising water demand of 13,470 MCM in public sector and 3,280 MCM in private sector as shown in Table 5.4.5 and 5.4.6, and as summarized below.

	Exi	sting	Prój	posed	То	tal
Sector	Area (10 ³ ha)	Demand (MCM)	Area (10 ³ ha)	Demand (MCM)	Area (10 ³ ha)	Demand (MCM)
Public	320	3,650	800	9,820	1,120	13,470
Private	150	1.310	230	1,970	380	3,280
Total	470	4,969	1,030	11,790	1,500	16,750

5. 4. 10 Implementation Program

(1) Rehabilitation Works in the Existing Public Canal System

Rehabilitation works in the existing canal system covering a service area of 70,000 ha will be carried out by the RBDAs. The works are planned to be completed by the year 2000.

5.71

(2) Additional Construction Works in On-Going Public Sector Projects

There exists on-going public sector projects covering a total service area of 250,000 ha. Of this, about 100,000 ha comprising of individual project with service area of more than 3,000 ha each have not formulated their irrigation plan or construction plan. Proper feasibility study and detailed design work for these irrigation systems are required prior to their construction. It takes seven to eight years to complete the irrigation system taking into account two years for the feasibility, two years for the detailed design, one year for tendering work and four years for construction. Consequently, the construction work will be implemented during the year 2001 to 2005.

ed F/S and D.D.	Projects re	equired D.D.
Area to be studied (ha)	Project	Area to be studied (ha)
5,300	Bakolori	17,000
11,200		3,200
5,000		3,000
12,000	Savannah	6,000
12,000	Mokoloki	2,900
4,000		3,000
4,200		7,000
53,700	Total	42,100
	Area to be studied (ha) 5,300 11,200 5,000 12,000 12,000 4,000 4,200	Area to be studied (ha)Project5,300Bakolori11,200Tada Shonga5,000Doko12,000Savannah12,000Mokoloki4,000Igbere4,200KRP I

The remaining on-going projects covering 150,000 ha mainly comprise of individual projects with a service area of less than 3,000 ha, and those which have their construction plans worked out could be implemented immediately during the period from 1996 to 2000.

(3) New Public Projects

The service area of newly proposed public projects reaches 800×10^3 ha and these projects will be implemented after the implementation of the existing projects including large-scale projects which require large investment. The projects with dams, primary pumping stations and coastal creek system shall be implemented in the following manner;

> - The proposed irrigation projects are classified in accordance with the size of service area in large, medium and small-scale. These service areas are defined at more than 3,000 ha, 500 to 3,000 ha and less than 500 ha respectively. Among the projects with dams

covering a service area of 705×10^3 ha, about 45 percent of the whole area belong to medium and small scale projects. For the quick yield of the irrigated agriculture outputs, the medium and small scale project will be implemented prior to large scale irrigation project during the period of 2001 to 2010. After the completion of medium and small scale projects, when the detailed feasibility studies are completed and the pre-conditions to start the projects inclusive of overcoming of the various problems as stated in para. 5.3.5 are met, the implementation of large-scale projects could be started.

The proposed dam projects with main objective of wetland irrigation will take a multipurpose function to upgrade the rural infrastructure for future development in conformity with National Perspective Plan including the objectives to achieve the rural water supply, mini-hydropower and fisheries.

The projects with primary pump and coastal creek system will be implemented only after the year 2001 with an average development rate of 30,000 ha during the succeeding five years.

The implementation program is shown in Table 5.4.7.

(4) Private Irrigation Programs

9

5

1

Under the private irrigation programs, the service area of 600×10^3 ha is proposed. This program shall be implemented with the appropriate coordination between the FMWRRD and the FMANR and will be commenced in 1996 at a development rate of 20,000 to 30,000 ha per year. The project area will be converted to the public irrigation schemes with priority. The implementation program is shown in Table 5.4.8.

5. 4. 11 Future Overview in Irrigated Agriculture

It may be noted that the irrigation projects can contribute greatly to the increased incomes and agricultural production as compared with the rainfed agriculture. In addition, the irrigation is more reliable and allows for a wider and more diversified choice of cropping patterns as well as high-valued production, in other words, irrigation can help make yield-increasing innovations a more attractive investment proposition, but this does not guarantee the crop yield increase. As is examined in para.5.3, the overall performance of existing irrigation projects has been disappointing because of poor scheme conception, inadequate construction and implementation, and ineffective management. The mediocre performance of the irrigation sector is also contributing to many socio-economic and environmental problems; however, these problems are neither inherent in the technology nor inevitable as is often argued. 8

簋

As is stressed in para. 2.6.3 of Chapter 2, Sector Report, the water resources sector in Nigeria is currently in the "Expansionary" phase, and it is anticipated that in line with the NWRMP, the positive implementation of meidum-and small-scale irrigation projects will be carried out; as a result, the water resources sector in many river basins may enter into the "Mature" phase towards the end of NWRMP period, the year 2020, and thereafter. In this future, as high levels of the costly inputs are added to farmland to sustain the yield increases, the security and efficiency of irrigated agriculture will become more important to the farming in Nigeria. Water will no longer be plentiful and cheap, and it will be scarce, expensive to develop and maintain and valuable in use. the high-cost water, however, will be an incentive to use water more efficiently, because the single most important factor limiting the adoption of proven irrigation and drainage technology is the low cost of water. Moreover, if farmers have the opportunities for high-value uses and can make profits, both of the Government and the farmers will invest in irrigation.

This water dilemma to produce more in a sustainable way with less water may point to the need for demand management mechanisms to reallocate existing supplies, encourage more efficient use and promote more equitable access. In future, the competition among agriculture, cities and industry for limited water supplies will constrain the development efforts in Nigeria. Despite the water shortages, the misuse of water will be widespread: small communities and large cities, farmers and industries will also mismanage the water resources. Surface water quality will be deteriorating and groundwater will be polluted with the aquifer overdraft; cities will be unable to provide adequate drinking water and sanitation facilities; waterlogging and salinization will be diminishing the productivity of irrigated lands; the decreased water flows will reduce the hydro potential, pollution assimilation, and fish and wild habitats. At first glance, most of these water problems will not appear to be directly related to the agricultural sector. As the competition, conflicts, shortages, waste, overuse and degradation of water resources grow, the policy-makers will look increasingly to agriculture as the system's safety valve.

)

In general, the agriculture is not only the largest water user in terms of volume, it is also a relatively low-value, low-efficiency and highly subsidized water user. These facts may force the Government to rethink the economic, social and environmental implications of large-scale public funded and operated irrigation projects. Once established, the irrigation projects become some of the most heavily subsidized economic activities. Despite these huge investments and subsidies, the irrigation performance indicators are falling short of the expectations for yield increase, area irrigated and technical efficiency in water use. It is usually said that as much as 60 percent of the water diverted is wasted, and this excess water is causing the waterlogging and salinity. Moreover, the stagnant water and poor drainage is escalating the incidence of water-related diseases. In future, the agriculture will often be unable to compete economically for the scarce water. The urban cities and industries can afford to pay more for water and earn a higher economic rate of return from a unit of water than does agriculture. Under this circumstance, the agriculture will be obliged to give up water for the conversion of high-value uses in the urban and industry sectors. In this occasion, the irrigators in some areas will be asked to pay for the water they receive including the full cost of water delivery and payment for polluting the water resources.

The irony is that the irrigated agriculture is expected to produce much more for the food security in future while using less water than it uses as it is, in other words, encouraging the innovations in water-saving technology. In the water resources sector, various demand-side policy measures can help shape the decisions that encourage the water-use efficiency; however, while appropriate policies and regulations are necessary for the improved water productivity, a variety of additional water-saving measures are required in the irrigation sector, an essential component of the sustainable agricultural development. Some water-saving measures involve taking more advantage of the scientific, engineering and technological advances in soils, plants and irrigation practices, as is examined in para. 5.4.5 of this Chapter. Other measures focus on administrative and managerial reforms to improve efficiency, including the decentralization of public irrigation agencies and a

5.75

greater reliance on the farmer-owned and-operated irrigation, both of which are examined in para.12.2 of Chapter 12 of the Sector Report.

ŝ

Para. 2.6.3 of Chapter 2 of the Sector Report indicates that the current emphasis on macroeconomic policy reforms and economic liberalization in Nigeria would have several important implications for the irrigation sector. One of the most important is that the era of large direct and indirect subsidies will be nearly over, and moreover, the recognition of the value of water and the high cost of turning of a water source works into a service delivered to a farm will make the water sector a prime target for further policy reforms; nevertheless, the irrigation sector will remain a resource-hungry one in this transitional period, and the irrigation to be successful will consume large quantities of the capital and foreign exchange and tie up the scarce skilled personnel.

Like many of the public sector personnel, the irrigation managers should take a fine line between the tighter control of finance, the need for more positive and active leadership and the better planning of resources allocations, on the one side, and the contradictory need for more ideas from participating farmers, on the other. While the financial pressures are likely to be the dominant influence, the irrigation sector as a public agency will still rely upon the budget allocations to obtain the financing for project implementation. As the private sector disciplines may be applied in the irrigation sector, the policymakers will find that: (1) the agencies become more supportive of the farmers' own efforts and less inclined to make all key decisions before informing the farmers or their groups accordingly; (2) the management seeks more consensus or priorities, more information about the basis of decisions and a common view of external factors affecting management; (3) the irrigation schemes seek and receive more autonomy; (4) the financial responsibility and accountability of irrigation managers increase; and (5) the managers shift focus from their government depending upon the amount of finance generated by irrigation service fees.

Following are some of the issues to emerge in the "Mature" phase:

The national water resources politics will be shifting from "Projects" to "Policies", and this trend is likely to continue and even accelerate.

- Water may become a test-bed for the economic reform, liberalization and accountability.
- Given the water scarcity and its value to urban societies and industries, the water resources sector will be less dominated by irrigation, and its multipurpose use will be more widely acknowledged.
 - Irrigation is a service with users; it is not a production industry.
 - At the level of the irrigation scheme, the process of water policy formulation, assessment and appraisal needs to include more open groups that are the representatives of political, technical, managerial and most importantly water users associations.
 - These policy groups will be consulted before the policy selection and then provide the feedback and adjustment in the light of their experience.
 - The policy groups will identify the options consistent with the national policy framework, as opposed to the measures to protect and satisfy special irrigation interests.
- The goal is to identify a broader range of the water policy options, to have less "policy by crisis" management and more resilience in the face of outside pressures.

In conclusion, the irrigation that is an essential component of the sustainable agricultural development and faces the challenges confronting the public and private sector economic activities will allow for the better and more diversified choices in cropping patterns and the cultivation of high-value crops. Successful irrigation is a crucial determinant of the future development in Nigeria because of its influence on the supply and price of food. As the debate over the water policies sharpens, it is increasingly important that the agricultural policy-makers help shape the nature of the debate and influence the policy decisions.

5 77

I

5.5 NATIONAL WATER MASTER ACTION PLAN TOWARDS THE YEAR 2000

5. 5. 1 Preparation and Implementation of BMR Program for Existing Public Sector Systems

The water management in existing canal system is not well operated due to the defective facilities and poor institutional arrangement of public agencies and farmers. The rehabilitation works including inventory work of existing canal facilities, preparation of detailed design and construction plan, provision of construction equipment and the implementation will be achieved by the year 1998. On the other hand, the improvement program of water management in canal system including that at on-farm level shall be progressed with a sufficient coordination between the FMWRRD and the FMANR. Work schedule for the above study is as follows:

	Item		1996	1997	1998
1.	Rehabilitation Work		«		≯
		•		 -	
(1)	Inventory Survey				
(2)	Design/Construction plan				
(3)	Provision of Const. Equip.)::	
(4)	Execution of Work				<u>, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1</u>
		14 - 14 - 1	an an the state		
2.	Improvement Program of Water Management				

5. 5. 2 Implementation of On-going Public Sector Projects

(1) Implementation Method

The service area of on-going public sector projects reach 250,000 ha. Out of which, medium and small scale projects with a service area of less than 3,000 ha cover 90,000 ha. These projects shall be implemented urgently after completing the detailed design. The remaining 160,000 ha belonging to large scale project such as Middle Rima Valley, Zauro Polder, Ilushi, Middle Ogun, Lower Ogun, KRP II, Gari, etc. shall be progressed into the detailed design stage after completion of their feasibility studies.

(2) Work Schedule

)

121

Work schedule for the study and implementation of above projects will be as follows:

Item	1996	1997	1998	1999	2000	2001~ 05	Service Area (ha)
()())							90,000
1. Medium/Small-scale Project	$q_{\rm eff} = 10^{-1}$						30,000
Detail Design	No. and a star					1 . · ·	
Construction					a tu		
		, in the second s	- 				
2. Large-scale Project	<				>		
a) With Pump/others	the states of the second se		5. 19			+ 2 -	
Feasibility Study		19 ¹ - 19			· ·		60,000
Detailed Design		र करें है		1		the second se	
Tendering		e dia	└ ──•. ``		1 v.		
Construction			·		· · ·		
b) With Dam	~						
Feasibility Study							100,000
Detailed Design					1		,
			ł				
Tendering			· ·		1901		
Construction			<u> </u>			1	1

5. 5. 3 Preparation of Public Sector Projects

(1) Preparation Method

The medium and small scale irrigation package program with reservoir dam, diversion dam and pumping station as a water source facility will be prepared by the year 2000 aiming to implement the program after the year 2000. One model river basin with priority for the preparation of the program will be firstly selected by each RBDA, although the JICA Team proposes tentatively selected basin at each RBDA, such as Danzaki, Gbako Awun, Kilange, Katsina-Ala, Mamu, Upper Ogun, Osse and Aya basins as described in para. 4.4.4 of this Sector Report. The preparation work of the program after selection of the model basin will be carried out by recruiting the consultants.

(a) Pre-Feasibility Study

The pre-feasibility study for the basin with a catchment area of about 10,000 sq.km will be made for the following purpose prior to the feasibility study:

Analysis of the potential surface water resources.

- Identification of a number of the proposed water source facilities and summarization of their outline.
- Study of the potential water resources and the available water to be developed by the proposed water source facilities.
- Study of potential irrigation projects and summarization of their outline.

- Selection of the representative irrigation projects with different scale for the consecutive feasibility study.

Formulation of survey and study items for the feasibility study.

(b) Feasibility Study

The feasibility study of representative projects selected through the pre-feasibility study will be carried out. The representative projects will be composed of three to five projects with the service area of medium and small scale, less than 3,000 ha. The study will be made with the international feasibility level including hydrological analysis, water source facility plan, preliminary design, cost estimation, environment impact assessment, project evaluation, etc.

(c) Formulation of Package Program

9

In accordance with the feasibility study result, the package program is formulated with the following manner;

- Outline of all potential irrigation projects identified in prefeasibility study will be reviewed based on the data of the feasibility study for the representative projects.
- Irrigation projects to be implemented with priority are selected based on the above reviewing result and taking into account the project and budget size, project economy, urgency of each subproject, etc.

Package program will be implemented with budget scale of 600 to 800 million Naira, which will cover the medium and small scale projects of 10 to 15 units and irrigation area of 8,000 to 10,000 ha in total.

Package program will be classified and sub-divided into the subpackage program consisting of three to five projects. The implementation period of the sub-package program will need three years.

(2) Work Schedule for the Study

Item	1996	1997	1998	1999	2000
1. Study of Model Basin with Priority	▲ 1				
(1) Pre-Feasibility Study					
Data collection and review	2 (1) (<u>1) (1) (1)</u> (1)		an an Artista Artista		
Site Survey		.	4 M .	1	1. A.
Analysis and Study	•				
(2) Feasibility Study					
Topo-Survey					
Soil survey	응 사망 가지?	- 1972 <u>- 197</u>	영화 이 문		
Socio-economic survey	n de la constante References				
Analysis and study					
(3) Preparation of Implementation					
		$\{x_i,y_i\}_{i\in \mathbb{N}}$		ningen sekter. Na sekter	Strain an Ar
2. Additional Basin Study	1.1.1	14. WALLS		<u></u>	

Work schedule for the study of the package program are given below:

5. 5. 4 Preparation and Implementation of NFDP Expansion

The expansion of NFDP will be made to the existing rainfed area in the wetlands. The FMANR has a responsibility for the development of this private sector program and will carried out the following preparation for the expansion with a campaign for irrigated agriculture to stimulate farmers participation to the program:

(1) Hydrological and Hydro-geological Survey in the Proposed Area

Maximum water level of related river and continuous inundation period

Fluctuation of groundwater level and yield of groundwater

- (2) Standardization of Project Facilities
 - Intake facilities, distribution canal and on-farm facilities Tubewell and pump

(3) Guidance to related Farmers

Operation method of project facilities

- Establishment of Fadama Users Association (FUA)

The implementation of the program will commence at the beginning of the year 1996 since above preparation may be set up previously by the FMANR, and will continue by the year 2020 with a development rate of 20,000 to 30,000 ha per annum.

5. 5. 5 Guideline for Irrigation Planning and OM of Public Sector Projects

The rehabilitation works under OM office and planning of the proposed irrigation package program will be mainly carried out by the year 2000. In order to carry out the above study and works smoothly and properly, the guideline is prepared as shown in Appendix 5.2 and 5.3. It is necessary that the NWRI in Kaduna shall emphasize to formulate the more detailed guideline for the planning and design and to level up the irrigation engineering through staff training. It is also needed to request the foreign technical aid to fulfill the above work in the NWRI.

5.5.6 Implementation Program

The implementation program for the study and works by the year 2000 is summarized in the chart given below:

Item	1996	1997	1998	1999	2000	2001~ 05
n n i tura ata Manba						
l. Rehabilitation Works	· .		-			
2. Implementation of On-going Public Sector Projects						
(1) Medium/Small Scale Pro.						
(2) Large-scale Pro. with Pump(3) Large-scale Pro. with Dam	· · · · · · · · · · · · · · · · · · ·					
(b) Darge scale i io. with Dam						
8. Preparation of Public Sector Program	a de la composition de la comp					
 Model Package Program Second Package Program 		1			1	
(2) Second Package Program						
4. Preparation and Implementation of NFDP Expansion						

Medium / Small scale irrigation project shall be referred in para.4.5.2 of Chapter 4.

5. 5. 7 Priority Programs for Consideration by External Agencies

Careful consideration has been made for the needs and categories to be assisted by the external agencies, and the priority has been given to two programs on the technical cooperation basis which should be implemented at an early period of the National Water Master Action Plan period by 2000. Provisional Terms of Reference on two programs are given below: (1) Water Resources Management Program in the Upper Hadejia

Ref. para. 2.3.2 (2) (a), of Chapter 2, and 3.2.2 (2) (b) & 3.3.2(1) of Chapter 3 of this Sector Report.

6)

34

(2) Preparation of Medium / Small Dams Package Programs

Ref. para.: (3) of 3.2.2 of Chapter 3 of this Sector Report.

TABLE 5.1.1 PLANNED IRRIGATION AREA EVALUATED BY JICA IN EXISTING PUBLIC PROJECTS

Ç

)

	-					
Hydrological Area (HA)	Water Works	Number of Project	Collected Data in Evaluated NWRIS (ha) by JIC	Evaluated Area bv JICA	Area (ha) Achieve Rati	Achievement Ratio
	Dam	10	58.900	52,000	6,000	2 L
	Pumn/Others	6	000'2	8,000	2,000	25
	Subtotal	61	65,900	60,000	8,000	13
	Dam	13	26,300	23,000	2,000	5
	Pump/Others	26		32,000	10,000	31
1	Subtotal	39		55,000	12,000	22
	Dam	9	56,700	000'61	8,000	42
	Pump/Others	2			2,006	33
	Subtotal	13	63,300	25,000	10,000	40
	Dam	4	4,100	4,000	0	0
M	Pump/Others	13	10,700		2,000	18
	Subtotal	17	14,800		2,000	1:
	Dam		300	0	0	1
Δ	Pump/Others	15	19,900	20,0	5,000	25
	Subtotal	16			5,000	
	Dam	11	35,400	38,000		
5	Pump/Others	13				29
	Subtotal	24			-	
	Dam	Ċ		2,000	0	
M	Pump/Others	16	7,300		3,000	
	Subtotal	61			3,000	
	Dam	18	92,000	58,000	16,000	28
M	Pump/Others	17			11,000	34
	Subtotal	35	190,000	90,000		
	Dam 19	99	276,200	196,000	33,000	
Total	Pump/Others	116	191,800	124,000		30
		120	468,000	320.000	70.000	22

		Water Source	Available		I	rrigation A	rea
HA :	Project	Facility	Reservoir Water		Agency	JICA Estimated	JICA
			(MCM)	(m³/ha)	(ha)	(ha)	(ha)
IA-I	Jibiya	Jibiya Dam	37	9,600	3,500	· · · · · · · · · · · · · · · · · · ·	3,000
'	Zobe	Zobe Dam	50	9,600	8,200	5,200	5,200
	Bakolori Middle Rima Valley	Bakolori Dam	227	9,600	23,000	23,600	23,00(
	Wurno/Zauro Polder	Goronyo Dam	170	9,600	17,000	17,700	17,700
	Swashi Valtey	Kubuli Dam	42	9,600	2,700	4,400	2,70(
IA-11	Kontagora	Kóntagora Dam	141	11,400	11,200	12,400	12,400
	Guzan	Guzan Dam	10	11,400	1,500	900	900
:	Kpada	Kpada Dam		11,400	1,500	700	700
	Kangimi	Kangimi Dam	22	11,400	1,600	1,900	1,900
	Tungan Kawo	Tungan Kawo Dam	13	11,400	800	1,100	800
IA-III	Savannah	Kiri Dam	182	13,400	12,000	13,600	9,600
	Dadin Kowa	Dadin Kowa Dam	900	13,400	38,000	67,200	4,000
	Balanga	Balanga Dam		13,400	4,000	2,800	2,800
IA-IV	Doma	Dóma Dam	12	11,600	2,000	1,000	1,000
IA-VI	Middle Ogun	Ikere Gorge Dam	300	14,600	12,000	20,500	12,000
÷.,	Lower Ogun	Oyan Dam	175	14,600	12,000	12,000	12,000
	Sepeteri	Sepeteri Dam	51	14,600	400	400	400
IA-M	Gari	Gari Dam	40	9,600	4,100	4,200	4,200
. :	Tomas	Tomas Dam	22	9,600	1,100	2,300	2,300
	Jakara	Jakara Dam	19	9,600	2,000	2,000	2,000
1.4	Challawa	Challawa Dam	120	9,600	12,500	12,500	12,500
	Watari	Watari Dam	18	9,600	1,700	1,900	1,900
n an the The	Tiga	Tiga Dam	250	9,600	40,000	26,000	26,000
	Galala	Galala Dam	14	9,600	2,500	1,500	1,500
	Baga	Pump			20,000		1,000
	South Chad	Dumm		1		************	*****

EVALUATION OF IRRIGATION AREA IN EXISTING MAJOR PUBLIC PROJECTS TABLE 5.1.2

8

_

67,000

1

22,000

, and a

South Chad

Pump

DISTRIBUTION OF EXISTING IRRIGATION PROJECTS **TABLE 5.1.3**

· •

Þ

		Large	Large Project		C	Medium/Small Project	nall Proje	ţ	1.	Ĥ	Total		Achievement	
Hydrological		Irrigatic	Irrigation Area (1,00	(ad 000		Irrigatio	Irrigation Area (1,000 ha)	,000 ha)	2	Irrigatic	Irrigation Area (1,000 ha)	,000 ha)	Ratio	
Area (nA)	ź	ΡA	D.A.	I.A.	.NO.	P.A.	D.A.	I.A.		ÛP.A.	@D.A.	©LA.	(%) () (%)	
1	6	56	6	7	10	4	F-1	F	19	60	IO	00	13	
Π	16	46	10	თ	33	თ	4	က	6 8	55	14	12	22	
	6	8	10	თ	9 9	6		F 4	13	25	11	10	40	
IJ	2	12	νò	F	10	<i>м</i>	H	74	17	15	ග	43	13	
V	2	18	2	4	6	5		-	16	5 0	Q	9	25	
М	т Т	40	2	ß	13	م ر	F -1	1- 4	24	45	တ	8	2	
М	8	<u>مر</u>	F-1		16	5	61	67	61	10	8	ŝ	30	
ЛШИ	15	80	40	25	20	10	4	63	35	06	44	27	30	
Total	22	280	8	28	107	40	15	12	182	320	97	- 02	22	

Developed Area (area with completed irrigation canal system) Planned Area (planned net irrigation area)

Actual Irrigated Area (area carrying out irrigated agriculture)

1) P.A.: 2) D.A.: 3) I.A.:

Remarks:

TABLE S.1.4 EXISTING AND PROPOSED PRIVATE SECTOR PROGRAMS IDENTIFIED BY FACU

F						_			. · · · · ·	_	e			v																				
	Remarks	-	- D.P. : Direct pumping	- D.W.§			washborc	- Phase I : 1993-1996			Data Source : FACU		********	新闻的 建量量化合金 医骨髓下骨骨的 骨膜 医骨毛孔 圣道 化医硫化 医原生素 卡尔德亚 医外子属 网络外球 计排字系统		出点 化合电压化 医皮肤 骨皮 骨上骨 骨骨骨胳 費 化氯化盐 医侧骨炎 不善者 医化学学不可变 化化化学		· · · · · · · · · · · · · · · · · · ·	医脊气的 学习学习学生学会 医马劳氏 法法学生 上頭 開展 医外侧周的 可达 可进入 网络加索姆 医马马马氏				一日子 圣皇帝是是一帝,王子子王帝,王子子子,王子帝,王子子,王子子,王子子,王子子,王子子,王子子									*** ***************	****	
	E	Tenor.	12,500	17,000	3,800	20,000	21,000	10,000	9,900	32,500	2,500	2,500	6,300	2,500	4,500	2,500	2,500	6,300	3,100	750	750	750	550	750	750	750	: 750	750	550	750	750	1,000	550	169,550
		Sub-Total	7,500	10,000	3,200	13,500	12,500	8,300	8,300	17,500	2,500	2,500	5,100	2,500	3,500	2,500	2,500	5,000	2,500	750	750	750	550	750	750	750	750	750	550	750	750	1,000	550	119,550
Proposed Area in NFDP (ha)	se II	T.W.&W.B.			1,200			6,000	6,000		1,500	1,000	1,700	1,800	1,000	1,950	1,950	2,500	950	450	450	450	450	450	450	450	450	450	350-	450	450	006	350	34,100
posed Area i	Phase II	D.W.&C.F.	1,000	2,000		1,000	3,500	100	100	1,000	1	I	200	150	1	1	:)	I	l	I		1	1	1	I	1		1	I	1	1	1	1	9,050
J.T.		D.P.	6,500	8,000	2,000	12,500	9,000	2,200	2,200	16,500	1,000	1,500	3,200	550	2,500	550	550	2,500	1,550	300	300	300	100	300	300	300	300	300	200	300	300	100	200	76,400
	Phase I	T.W.&W.B.	5,000	2,000	600	6,500	3,500	1,700	1,600	15,000	0	0	1,200	0	000°T	0	0	1,300	600	0	0	0	0	0	0	0	o	0	0	0	0	0	o	50,000
	Total		21,000	8,900	5,000	30,500	33,200	2,000	2,200	33,800	6,000	170	2,500	1,000	1	1	I	3,000	I	I		• • •	1	1			1,300	1,300	I	- 006 	600	1	200	(153,570)
rea (ba)	T.W.&W.B.		11,300	4,500	1,800	2,000	4,000	2,000	2,200	9,500	1	70	2,500	1	I	I	1	3,000	1	1	I	1	1	1	1		1	. .	8		-	1	1	42,870
Existing Area (ba)	D.W.&C.F.		200	ľ	1,600	1	3,200	1	1	I	5,600	1	1	1	1	I	ł	1	•	I	3	1	1	1	1	1	1,300	1,300	l	006	600	1	200	15,400
-	. D.P.		9,000	4,400	1,600	28,500	26,000	1	1	24,300	400	100	1	1,000	1	I	1	1	1	1	1	1	1	1	1	ł		: :	-	1		1	1	95,300
Potential	Wetland	(ha)	100.000	7 190,000	20,500	53,000	000,67	125,000	125,000	181,000	200,000	230,400	75,000	150,000	19,900	350,000	360,000	66,500	57,000	26,800	ΝA	25,900	N.A.	18,500	74,000	100,000	55,000	40,000	10,000	12,200	NA	NА	55,000	2,689,700
	State	-	Sokoto	Kebbi	Katsina	Kano	Jigawa	Yobe	Borno	Bauchi	Niger	Kwara	Kaduna	Kogi	Abuja	Adamawa	Taraba	Plateau	Benue	°%	Ogun	Oshun	Lagos	Ondo	Edo	Delta	Anambra	Ino	Rivers	Enngu	Abia	Akwa Ibom	Cross River	Total
			MN		*	Ê	3	*	*		ы Ко	*	*	\$	~	8		*	*	SW SW	*	*	н *	*			B			я	A	4		

5-88

5 ⁻

TABLE 5.2.1 DIVERSION WATER REQUIREMENT OF IRRIGATION PROJECT

<u>) P</u>	ublic Irriga		ويستحدث فتحفظ ومستعيد فيترا		<u> </u>				
НА		Net Irri Requirem		Crop In (9	tensity 6)	Seasonal Net Irri.		ersion We equirement	
II A	Season	Rice	Other Cereal	Rice	Other Cereal	Water Req. (mm)	Wet (mm)	Dry (mm)	Total (mm)
I	Wet	664	116	10	90	170			
	Dry	-	610	0	50	310	340	620	960
П	Wet	141	0	30	70	40			
	Dry	913	540	25	55	530	80	1,060	1,140
Ш	Wet	225	13	30	70	80			
	Dry	1,002	614	25	55	590	160	1,180	1,340
N	Wet	140	19	30	70	60		· .	1
	Dry	909	529	25	55	520	120	1,040	1,160
V	Wet	50	0	90	10	50			
	Dry	852	464	70	10	640	100	1,280	1,380
М	Wet	151	0	90	10	140			, i
	Dry	786	422	70	10	590	280	1,180	1,460
VI	Wet	26	0	90	10	20			
	Dry	853	471	70	10	640	40	1,280	1,320
. VI	Wet	683	137	10	90	190			
1	Dry	-	587	0	50	290	380	580	960

a) Public Irrigation Projects

)

9

B

b) Private Irrigation Projects

на	Season	Net Irri Requirem	. Water ient (mm)	Crop In (9		Seasonal Net Irri		ersion Wa equiremen	
na	Season	Rice	Other Cereal	Rice	Other Cereal	Water Req. (mm)	Wet (mm)	Dry (mm)	Total (mm)
1	Wet	664	116	10	70	150			
	Dry		610	0	50	310	300	620	920
11	Wet	141	0	80	0	110			
	Dry	913	540	0	50	270	220	540	760
Ш	Wet	225	13	80	0	180			
	Dry	1,002	614	0	50	310	360	620	980
N	Wet	140	19	80	0	110			
	Dry	909	529	0	50	260	220	520	740
V	Wet	50	0	80	0	40			
	Dry	852	464	0	50	230	80	460	540
VI	Wet	151	0	80	0	120			
	Dry	786	422	0	50	210	240	420	660
M	Wet	26	0	80	0	20	_		
	Dry	853	471	0	50	240	40	480	520
WI	Wet	683	137	10	70	160			
	Dry	- 1	587	0	50	290	320	580	900

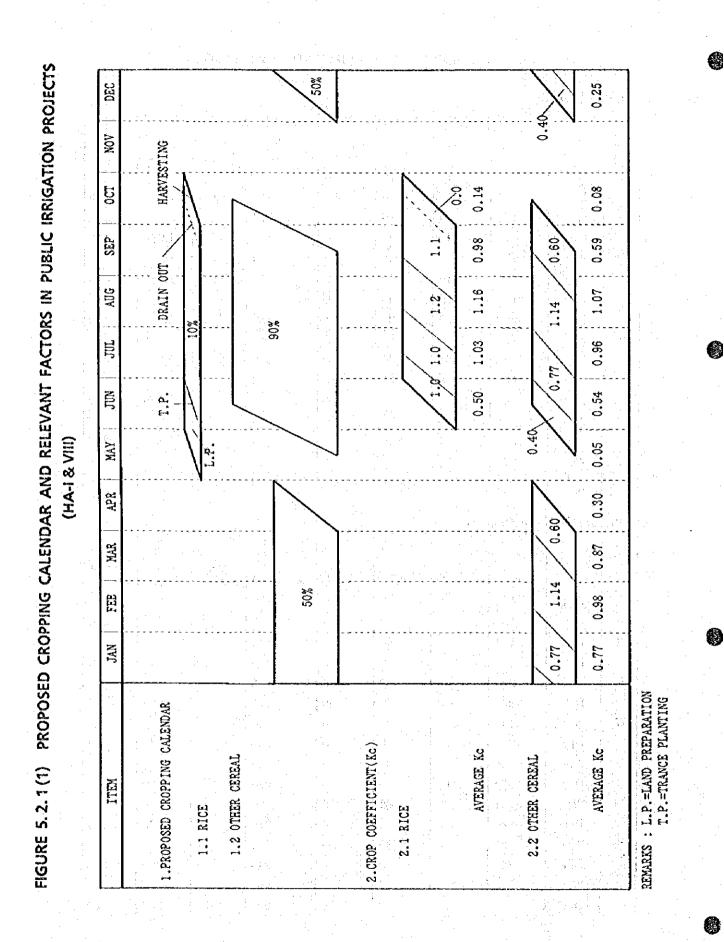
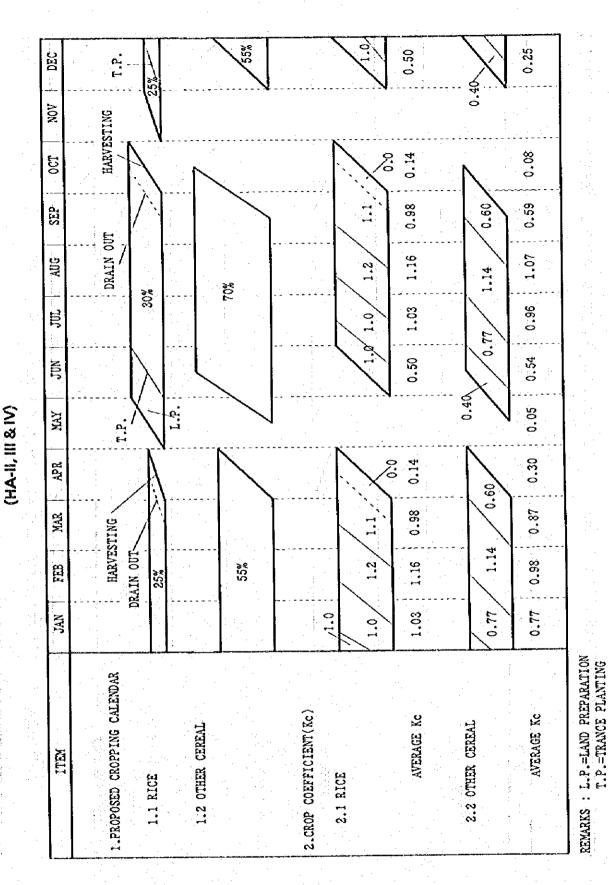
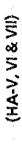
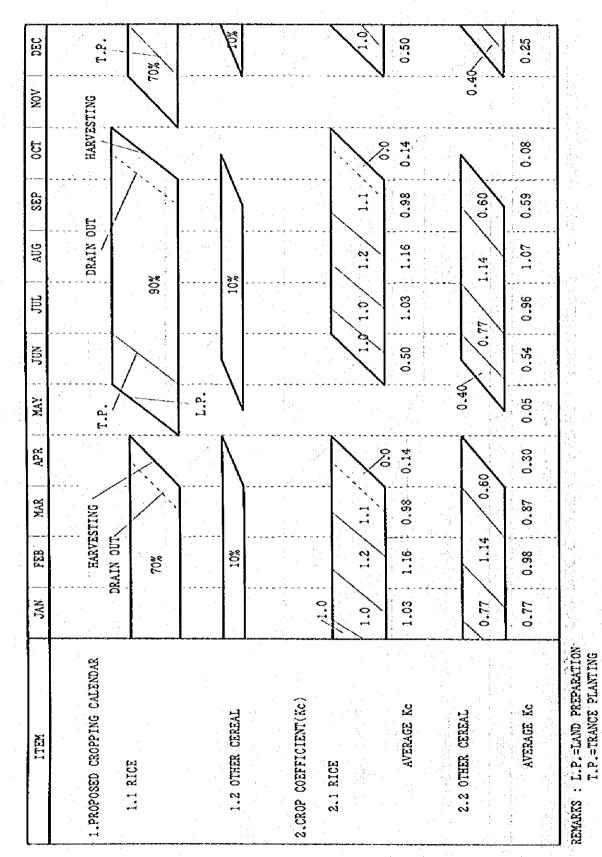



FIGURE 5. 2. 1 (2) PROPOSED CROPPING CALENDAR AND RELEVANT FACTORS IN PUBLIC IRRIGATION PROJECTS




5-91

)

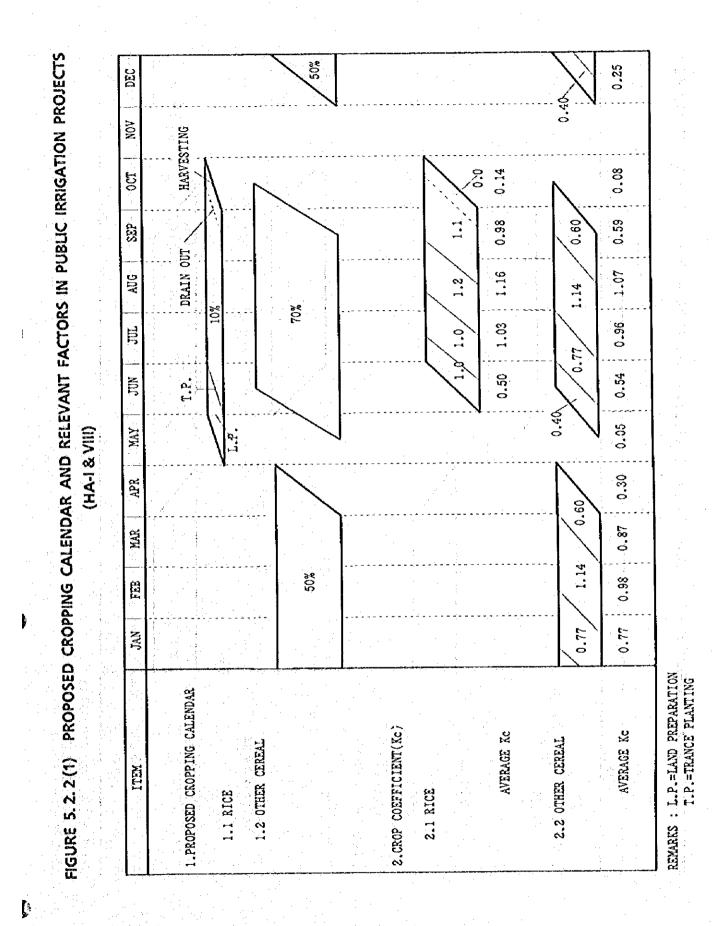
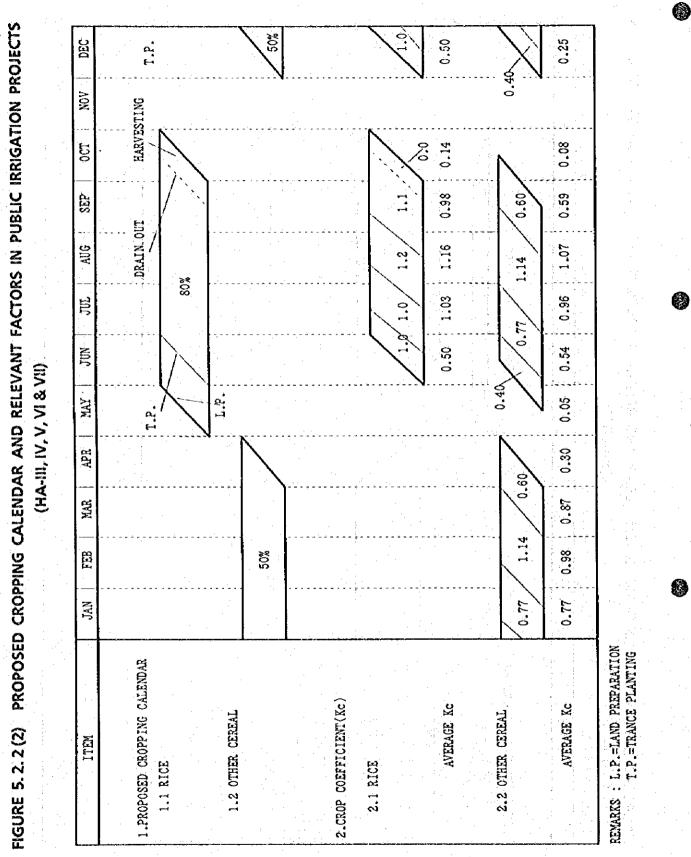

)

FIGURE 5. 2. 1 (3) PROPOSED CROPPING CALENDAR AND RELEVANT FACTORS IN PUBLIC IRRIGATION PROJECTS



0

5-93

....

5-94

·

Ê

	Annual Unit	Facilities (Completed	On-g	oing	To	tal
НА	Water Rep. (m ³ /ha)	Area (1,000 ha)	Demand (MCM)	Aréa (1,000 ha)	Demand (MCM)	Area (1,000 ha)	Demand (MCM)
I	9,600	8	80	52	500	60	580
Π	11,400	12	140	43	490	55	630
Ш	13,400	10	130	15	210	25	340
N	11,600	2	20	13	150	15	170
V	13,800	5	70	15	210	20	280
VI	14,600	3	40	42	620	45	660
W	13,200	3	40	7	90	10	130
VI	9,600	27	260	63	600	90	860
Total	-	70	780	250	2,870	320	3,650
%		22	21	78	79	100	100

TABLE 5.2.2 (1) IRRIGATION DEMAND OF EXISTING PUBLIC IRRIGATION PROJECTS

TABLE 5.2.2 (2) IRRIGATION DEMAND OF EXISTING PRIVATE IRRIGATION PROJECTS

72.4	Annual Unit	Exis	sting
HA	Water Rep. (m ³ /ha)	Area (1,000 ha)	Demand (MCM)
I	9,200	35	320
Π	7,600	10	70
Ш	9,800	0	0
IV	7,400	3	20
V	5,400	1	10
٧I	6,600	0	0
VI	5,200	3	10
W	9,000	98	880
Total		150	1,310

.

	Public	Sector	Private	Sector	To	tal
НА	Area (1,000 ha)	Demand (MCM)	Area (1,000 ha)	Demand (MCM)	Area (1,000 ha)	Demand (MCM)
I	60	580	35	320	95	900
Π	55	630	10	70	65	700
Ш	25	340	0	0	25	340
Ŋ	15	170	3	20	18	190
V	20	280	1	10	21	290
VI	45	660	0	0	45	660
Ŵ	10	130	30	10	40	140
VII	90	860	98	880	188	1,740
Total	320	3,650	150	1,310	470	4,960

TABLE 5.2.3 IRRIGATION DEMAND OF EXISTING IRRIGATION PROJECTS

TABLE 5.3.1 CAPITAL COST OF MAJOR EXISTING PUBLIC IRRIGATION PROJECTS

Project	Irrigation Area (ha)	Water Source Works	Mode of Irrigation	Project Cost (\$/ha)	Evaluated Term
Bakolori	23,000	Dam	Gravity (8,000ha) and Sprinklers (15,000ha)	24,500	1990
KRPI	14,000	Dam	Gravity	12,200	1990
Balanga	1,800	Dam	Gravity	3,700	1990
Kontagola	11,000	Dam	Piped Network	6,200	1988
LAIP	3,850	Pump	Primary pumping with gravity	8,500	1987

Data Source; Irrigation Sub-Sector Review, FAO/WP-CP, 1992

	• •									
				Hye	drolog	ical A	rea (II	ΙΛ)		
Proposed Projects	Unit	1	П	Ш	Ŋ	V	VI	M	VII	Total
1. Number of Projects										
1.1 Under Dam										
Large/Medium Dam		15	75	40	50	10	40	30	0	260
Small Dam	**********	50	230	110	160	35	100	115	20	820
Sub-Total		65	305	150	210	45	140	145	20	1,080
1.2 Under Pump and Others				-						
Primary Pump	*****	15	35	15	35	50	35	100	0	285
Coastal Creck		_		—	.—	35) 	35
Sub-Total	••••	15	35	15	35	85	35	100	0	320
1.3 Total		80	340	165	245	130	175	245	20	1,400

2. Service Area	· · · · · · · · · · · · · · · · · · ·									
2.1 Under Dam										
Large/Medium Dam	1000 ha	40	170	100	70	15	30	35	0	460
Small Dam	1000 ha	15	70	30	50	10	30	35	5	24
Sub-Total	1000 ha	55	240	130	120	25	60	70	5	70
2.2 Under Pump and Others			1							
Primary Pump	1000 ha	б	10	5	10	15	10	30		8
Coastal Creek	1000 ha	-	-	-	-	10			-	1
Sub-Total	1000 ha	5	10	5	10	25	10	30		9
2.3 Total	1000 ha	60	250	135	130	50	70	100		5 80

۹. P

þ

TABLE 5.4.1 NUMBER AND AREA OF PROPOSED PUBLIC IRRIGATION PROGRAM

: : : :

an ser a

		<u>.</u>	· ·	Hydrold	ogical A	rea (H/	b		·;
· · · · ·	I	11	Ш	Ŋ	v	VI.	VI	VII	Total
1. Available Water for Irr	igation	(MCM)		,					
Large/Medium Dam	430	1,930	1,310	800	200	500	470	0	5,640
Small Dam	135	830	395	575	140	405	465	55	3,000
2. Unit Irrigation Require	ment (1	03 m3/	ha)		e e e tegene	· .			
	9.6	11.4	13.4	11.6	13.8	14.6	13.2	9.6	
3. Proposed Irrigation Are	 ea (10 ³	na)	•						
Large/Medium Dam	· 40	170	100	70	15	30	35	0	460
Small Dam	15	70	30	50	10	30	35	5	245
Total	55	240	130	120	25	60	70	5	705
4. Number of Project			:	2	• .				
Large/Medium Dam	15	75	40	50	10	40	30	0	260
Small Dam	50	230	110	160	35	100	115	20	820
Total	65	305	150	210	45	140	145	20	1,080

TABLE 5.4.2 IRRIGATION AREA UNDER PROPOSED MEDIUM AND SMALL DAMS PROJECTS PROJECTS

TABLE 5.4.3 MAJOR BASINS TO BE DEVELOPED IN PROPOSED IRRIGATION PROJECTS WITH DAMS VITH DAMS

Region	Major Basin/Area to be developed	Remarks
North West	Gulbin Ka, Danzaki and Malendo	Southern river basins
North East	Yedesaram	Southern river basins
Central West	Oshun, Awun and Gbako, Karami and Galma	Tributaries of Niger and Kaduna rivers
Central East	Mayo Ine, Belwa, Kilange, Hawal, Mada, Shemankar, Ankwe and Katsina-Ala	Tributaries of Benue river
South West	Ogun and Oshun	Upper basins of both rivers
South East	Aboine and Aya	Tributaries of Cross river

5-98

TABLE 5.4.4 PROJECT COST FOR PUBLIC IRRIGATION PROJECTS

į

		-			Hydrologica	ا ف ا	Area (HA)	•		
Water Source Facility	Creat	н	Ш	Ш	- N -	\mathbf{h}	M	M	ş	Total
1 Service Area										
1.1 Existing Project										
(1) Completed	1000 ha	8	12	10	2	λŪ.	ŝ	Ċ	27	02
(2) On-going										
Under Pump and Others	1000 ha	9	22	4	6	12	ŝ	۵	77	/2
Under Dam	1	46	2	11	4	0	37	67	42	163
Sub-Total	1000 ha	52	43	15	13	15	42	~	63	250
1.2 Proposed Project										
IInder Pump and Others	1000 ha	20	10	S	10	25			0	95
Under Dam	1000 ha	55	240	125	125	55		70	\$	705
Sub-Total	1000 ba	60	250	130	135	50	20	+-1 	Ω,	800
	1000 P.S.	120	305	155	150	20		110	95	1,120
14.0 AUGU										
2 Unit Development Cost	***									
1	N1 000/ba	9	9	9	e	9		ç	9	
(9) Canal System	N1.000/ha		31	31	31	31	31	31	5	
(3) Pum and Others	N1.000/ha	30	30	30	30	30		30	30	
3 Project Cost										
3.1 Existing Project									~~	007
(1) Rehabilitation		48	22	පි	12	30		21	162	924 013
2) Canal System		1.612	1,333	465	403	465	-1	217	1,953	7,750
(3) Pump and Others		180	660	120	270	450	150	150	630	2,610
Total	Mel N	1,840	2,065	645	685	945		385	2,745	10,780
3.2 Proposed Project								•••••		
(1) Canal System	Mell N	1 860	7,750	4,030	4.185	1,550	ର -	3,100	31	24,800
(2) Pump and Others	MII N	150	300	150	300	750		-006	Ö	2,850
Total	N IN	2,010	8,050	4,180	4,485	2,300	~	4,000	155	27,650
						270 0	010 0	1 205	000 6	28 420
3.3 Ground Total (3.1+3.2)	Mil N	3,850	10,115	072'5	1014.6	\$	0,440	vov.*	202,2	222.022

TABLE S. 4. 5 IRRIGATION WATER DEMAND TOWARD THE YEAR 2020

320 800 1,120 230 150 380 3,650 16,750 9,820 3,280 13,47(11.790Total 5 95 5 90 92 190 285 9.6 860 50 910 9.0 880 830 2,620 880 710 巨 001 2 4 0 0 0 1,500 13.2 5.2 10 120 320 450 360 g 125 45 70 115 6.6 0 0 0 1,750 14.6 660 80,030 680 060 Hydrological Area (HA) 5 6 0 F 08 2 20 20 13.8 280 690 970 5 4 50 60 1,030 740 15 135 150 7.4 20 90 110 12 3 165 11.6 170 ,740 1,850 1.660 ≥ 30 30 185 13.4 25 130 340 1,740 2,080 9.8 0 290 290 2,370 2.030 Ħ 345 345 345 345 55 250 305 7.6 70 300 11.4 8000 3,480 3,780 2,850 3.080 60 120 9.2 320 870 690 35 40 75 195 9.6 580 580 160 1,850 950 1000 m^{3/ha} MCM MCM 1000 m³/ha MCM (000 ha 1000 ha 1000 ha 1000 ha 000 ha 1000 ha 1000 ha MCM MCM MCM Unit MOM MOM irrigation Area Irrigation Water Deman (3) Total Water Demand Description **Unit Requirement** Private Irrigation Unit Requirement Existing Demand **Existing Demand** Proposed Demand Public Irrigation Proposed Deman Public Irrigation (4) Proposed Total I Sub-Total Sub-Total Private Irrig Sub-Tota Sub-Tota Existing. Proposed Proposed Existing Total ----...... ਸ ਨ ତ E ତ୍ତି

Answer Propersion Answer Propersion Answer Propersion Texas of Texas transmentation Texas of Texas of Texas transmentation Texas of T	(1/3)		Total	Demand O-O+O	(WCM)	35	191	170	178	130	162	104	200	85	0	94	1 850		08	10	500	266	114	346	312	001	284	240	08	642	323	144	3,780	******	244
Answer Private Friedure Answer Private Friedure Answer Private Friedure Friedure Paulity Friedure Friedure Paulity Friedure Friedure Paulity Friedure Friedure Paulity Friedure				Demand O X O	(MCM)	28	55	83	1	110	46	28	46	28	0	46	069	 	0	0		1	0	38	38	\$7.	2 2 2		8	38	15	53	300		
Ansa of Public Friguedon Ansa of Public Friguedon Subject Assa of Public Friguedon Total	ion Demand	Duinoto Luio	Unit Unit	Demard C C C C C C C C C C C C C C C C C C C		92	9.2	9.2	9.2	9.2	26								1.6	1.6	24	2.6	7.6	2.6	7.6	- Q* L	2 - L	24	7,6	7.6	7.6	7.6			
Area of Pollet irrigation Area of Pollet irrigation Area of Pollet irrigation Total Area of Pollet irrigation Complete Complete Complete Complete Total Total Total Total Total Complete Complete Complete Complete Complete Complete Complete Total	Tour				CM) (M)		106	115	67	19	105	14	154	58	0	48	1.160		80	57	194	251	114	308	-274	121	90	266	22	604	308	16	3,480		
Areas of Public Arregation Areas of Public Arregation Total Areas of Public Arregation Complexed 0 <t< td=""><td></td><td>D 11 - 1</td><td>51</td><td>10.11</td><td></td><td>9.6</td><td>9.6</td><td></td><td></td><td></td><td>9.6</td><td>9.6</td><td>9.6</td><td>9.6</td><td>9.6</td><td>0 0 0</td><td></td><td></td><td>11.4</td><td>11.4</td><td>11.4</td><td>11.4</td><td>11.4</td><td>11.4</td><td>11.4</td><td>5.1.4</td><td></td><td>Y</td><td>114</td><td>11.4</td><td>11.4</td><td>11.4</td><td></td><td></td><td></td></t<>		D 11 - 1	51	10.11		9.6	9.6				9.6	9.6	9.6	9.6	9.6	0 0 0			11.4	11.4	11.4	11.4	11.4	11.4	11.4	5.1.4		Y	114	11.4	11.4	11.4			
Areas of Public Arregation Areas of Public Arregation Total Areas of Public Arregation Complexed 0 <t< td=""><td></td><td>TUON</td><td>1</td><td></td><td>1,000 ha) (1,0</td><td>3</td><td>9</td><td>Ŷť</td><td>12</td><td>12</td><td>1 64</td><td>0 m</td><td>10</td><td>9</td><td>0</td><td><u>, v</u></td><td>75</td><td>1</td><td>0</td><td>0</td><td>0 6</td><td>1 61</td><td>0</td><td>5</td><td>- 64</td><td>M</td><td></td><td>a c</td><td>4 (**</td><td>140</td><td>61</td><td>E-</td><td>÷0</td><td></td><td></td></t<>		TUON	1		1,000 ha) (1,0	3	9	Ŷť	12	12	1 64	0 m	10	9	0	<u>, v</u>	75	1	0	0	0 6	1 61	0	5	- 64	M		a c	4 (**	140	61	E-	÷0		
Area of "bublic frigetion Area of "bublic frigetion Completed Opening Sub-Total Formal Formal Total Completed Sub-Total Mediant Family Fund Sub-Total Total Completed Completed Sub-Total Mediant Fund Fund Sub-Total Total Completed Completed Completed Completed Completed Completed Sub-Total Total Large Data Data Completed Constal Sub-Total Total Large Data Data Constal Sub-Total Sub-Total Total Large Data Data Data Data Data Data Large Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data	1	Frivate Irrig	Proposed				4	4	و د	9	C1 (2	2	-1	0	2			0	0	0	1 61	0	61	4				10	1	2	1-	30		
Area of Public Irrigation Area of Public Irrigation Total Completed Organics SubTrotal Small Frequent Frequent Completed Organics SubTrotal Marea of Public Irrigation Total Completed Organics SubTrotal Marea Small Dam Dam Completed Organics SubTrotal Marea Small Dam Option I.000 has I.000 has <td></td> <td>Area of</td> <td>Existing</td> <td>9</td> <td></td> <td></td> <td>1 61</td> <td>2</td> <td>9</td> <td>9</td> <td>3</td> <td>2</td> <td>1.00</td> <td>5</td> <td>•</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>° '</td> <td></td> <td>0</td> <td>e 2</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>0</td> <td>3</td> <td>2 10</td> <td></td> <td>:</td>		Area of	Existing	9			1 61	2	9	9	3	2	1.00	5	•				0	0	° '		0	e 2				2			0	3	2 10		:
Area of Public frigation Dompleted Onepleted Perposed Projects Completed Onepleted Sub-Total Larger Dam Constant Sub-Total Sub-Total Completed Onepleted Onepleted December Larger Dam Constant Sub-Total Sub-Total Completed Onepleted Concerval Larger Dam Constant Sub-Total Sub-Total Completed Constant Conochal			Total	0-0-0	(1,000 ha)	6	11	12		. 61	1	2 OC	9	9	O			 		0	11	22		2	2	57					2				
Area of Public Lrigation Existing Projects Area of Public Lrigation Existing Projects Dam Proposed Projects Completed On-going Sub-Total Medium Frequest Dam Proposed Project Current Current Current Sub-Total Medium Frequest Dam Diam Diam <thdiam< th=""> Diam Diam<td></td><td></td><td>Sub-Total</td><td>0-0-0</td><td>(1,000 ha).</td><td>6</td><td></td><td>11</td><td>• ¢</td><td>5</td><td>0</td><td>(7) (0)</td><td>15</td><td>4</td><td>0</td><td>t- 10</td><td>3 03</td><td></td><td>\$</td><td>\$</td><td>9</td><td></td><td>6</td><td>24</td><td>15</td><td>R</td><td>2</td><td>0</td><td></td><td></td><td>3</td><td></td><td>250</td><td></td><td>_</td></thdiam<>			Sub-Total	0-0-0	(1,000 ha).	6		11	• ¢	5	0	(7) (0)	15	4	0	t- 10	3 03		\$	\$	9		6	24	15	R	2	0			3		250		_
Existing Projects Existing Projects Existing Projects Sub-Total Me (1,000 ha) (1,000 ha) (1,000 ha) (1,100 ha) (1,000 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,000 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,101 ha) (1,000 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) </td <td></td> <td></td> <td>ects Coastal</td> <td>o see</td> <td></td> <td></td> <td>, o</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0.0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>Ó</td> <td>•</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			ects Coastal	o see			, o	0		0	0	0.0		0	0	0			Ó	•	0		0	0	0	0									
Existing Projects Data Existing Projects Sub-Total Me Complexed On-going Sub-Total Me (1,000 ha) (1,000 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,000 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,100 ha) (1,100 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,100 ha) (1,11 ha) (1,11 ha) (1,100 ha) (1,100 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,11 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha) (1,12 ha)		igntion	oposed Proje	Diver				2		2	0		2	0	0	2		 	5	5	5		5	5	5	5	5	~		0	5	0	ā o		
Satisfing Projects Existing Projects Existing Projects Completed On-Total Me (1,000 ha) (1,000 ha) L (1,000 ha) (1,000 ha) (1,000 ha) (1,000 ha) (1,1) 1 L 0 0 O 0 0 1 1 L 0 0 O 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th< td=""><td></td><td>of Public Lrr</td><td>Pr Small</td><td>1.1</td><td>0 (1,000 ha</td><td></td><td>200</td><td>6</td><td></td><td>0</td><td>0</td><td>01</td><td>6</td><td>-</td><td>0</td><td>4</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>5</td><td>4</td><td>6</td><td>60</td><td>6</td><td>0</td><td></td><td>0.0</td><td>2</td><td>151</td><td>6</td><td>701</td><td></td><td></td></th<>		of Public Lrr	Pr Small	1.1	0 (1,000 ha		200	6		0	0	01	6	-	0	4			0	0	0	5	4	6	60	6	0		0.0	2	151	6	701		
Existing Project Existing Project Completed On-going Completed On-going (1,000 ha) (1,000 ha) (1,100 ha) (1,100 ha) (1,110 ha) (1,110 ha) (1,12 h	•	Area	Š		1 (1,000 he		9	T	2	0		0	1	61	0	1			64	0	12	12	14	8	6	1	1		0	10	0	0	1 22		-
Omplet 00001 00000 00000 000000 000000 000000 000000							9			0	11	0	1	4	0	1	59		64	0	11	6	1	2	-00	1	-1	1	0		0	0	43		_
Omplet 00001 00000 00000 000000 000000 000000 000000			Existing Pri-	e	A) (1,000 h		10	0	1	• 0	0	0	0	T.	0	0	+ 0	 	0	0		9	0	1	1	0	0	0		> m	0	0	12		_
SHA SHA.1 3)HA.1 3)HA.1			SHA Complet		(1,000 /		102	103	105	106	1 m H L -	103	110	111	112	113		 	201	202	203		206	207	208	209	210		212	214	215	216	otal		

6-102

0

۱<u>h</u>

SHA Extisting Projects 5 SHA Completed On-going 5 600 0 0 0 601 (1,000 ha) (1,000 ha) 0 603 0 0 0 0 603 0 0 0 0 603 1 0 0 1 603 0 0 0 0 0 603 1 1 0 1 0 0 604 0	ng Projects Medium negoing Sub-Total Medium negoing Sub-Total Medium 0 1 Dam Cooha 1 1 1 0 0 0 1 1 2 1 1 2 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 2 1 1 2 1 1 0 1 1 2 1 1 2	ts Sub-Total <u>N</u> 0.000 hal 0 (1,000 hal 0 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0	Medium/ Large Dam © (1,000 ha)	Area VI r BUILLII I BRUNI						Them of a reader of the second s	100000	•				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Pronoend Projects							Public Irrigation	igation	Privato	Irrigation	
	0 - 0 - 1 - 0 - 0	0 - 0 0 0 0 0 0 0 0 0 0		I'en al	2	Coastal Oreek	o-Total	Total 0-0-0	Existing	Proposed		Unit Demand	Total Demand (a = (9) x 63	Unit Demand (i)	Total Demand M= @× 0	Demand Demand
	0 (hab) (1,0(2 2 1,1) 2 2 1,1 2 1 1 2 2 1,1 2 1 1 1 1 1 1 1 1 1 1 2 2 1,0 2 1 2 1,0 2 1 2 1,0 2 1,0 1	00 00 00 00 00 00 00 00 00 00 00 00 00		0	9	Ð	9	1 200 5		1.4 000	1 (cd 000 1)	2	(MCM)	(1.000m ³ /ha)	(MCM)	(WCW)
83 83<	Φ N 0 0 1 0 0 0 N N N	N H H Q Q H H Q Q H H N Q Q H H N Q Q A H H N Q Q A H H Q Q A H H Q Q A H H Q A H H A H A	2 Q V	(1,000-ha)	(T 000 Ha)	(an 000 1)	(1 000 ha	000 000			0	14.6				131
	φ 1 0 1 1 φ 1 0 1 0 1 1	60 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1	9 0	2	1		-		> <		2	14.6	2	6.6		218
90000000000000000000000000000000000000	ψ N 0 0 1 0 0 0 N	н <mark>о о н н 9</mark> о н о о о н	c	2	2	0	ST			1		14.6		0.0	0	146
	φ N 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	6	101			> ¢	2 1		6.6		98
	0 n 0 0 n 0 0 n 0	0 0 2 0 2 0 0 0 0 0	0	ŝ	8	0	\$	6	0	1	2	0.1				651
	0 0 0 0 0 0 0 0 0 0 0	22 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	Ŷ	-1	o	10	ទ	0	1	7	14.0				¥ .
	42 H	6 1 1 1 1 1 1 1 1 1 1	0	0	0	0	0	Ţ	0	0	0	14.6		6.6		
	42 0 0 0 0	• • • • • • • • • • • • • • • • • • •			0	0	ę	4	10		-	14.6	50	6.6	******	
	4 2 0 0 0 1 1	<u>, 0800</u>		02		0	70	115	0	10	01	1	1,680	ł	20	~1,750
	010010	0 0 0 0	2	2												
	010010	0800														
	0010	800			0	0	16	16	0	0	0	13.2	12	5.2	0	21
	H O O H Ø	N 0 0) ¥		1.6	23	0	1	T	13.2	304	ari		
83 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0049	0	0		, <		10				3	13.2	277	5.2	-	293
83 2 3 1 5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 4 0	2								č		13.2	40	5.2	16	й
83 82 82 82 82 82 82 82 82 82 82	r 4		0				9 ¢			6		13.2	251	5.2	16	26
83 82 82 82 82 82 82 82 82 82 82 82 82 82	\$	73	2						·		0	13.2	304	5.		ខ្ល
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9	2					3				2.51		5.2	0	99
0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0							×.	<u>.</u>		1.450	1	50	1.50
00 00 00 00 00 00 00 00 00 00 00 00 00	2	9	35				001	071	~							
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
6 4 0				······							c	96	0	0.6	0	
0 19	0	0	0	0				· · · · · · · · · · · · · · · · · · ·		·		с	<u></u>	0.6	180	25
803 0	ف	ŝ	0	· · · · · · · · · · · · · · · · · · ·	0				21	0			50			¢-
	53	ŝ	0		<u>)</u>					4				o	66	32
804 14	6	23	•		2 2			27	0							27
805 0	e	5	0	~	0		0	0	15							2
806 0	0	0	0		0		0	•	8							
807	19	20	0		0		0	20	25	25	20	A				
803	0	0	0	~	0 0		0	0	0	0	0	9.1				
0 000	1	I	0		0	,	0		25	25	50	6	10			
810	0	Q	0)	0	•	0	0	Ł	\$	12	6	6			
1	6	•	0		0		0	3	0	0	.	9.6	6 29	5	0	
8	2	2	0		0	<u> </u>	0	23	0	•	0	9.6	2			77
813	~	e	0) (0	\$	• 1	5 9.6	6 29	6	2	
		e	0		5		-	00	12	5	a)	9.6	6	0.6	40	77
Sub-Total 27	63	06	0)			6	3 8	32	190		- 010	<u></u>	1,710	2,62
															000 0	
Total 70	250	320	160	N	45 85	-	800	1.120	150	230	380				107.0	

5-103

)

)

TABLE 5.4.7 IMPLEMENTATION PROGRAM FOR PUBLIC IRRIGATION PROJECTS

			Imp	lementat	ion Sche	dule	
Project Program	Unit	1996- 2000	2001- 2005	2006- 2010	2011- 2015	2016- 2020	Total
Implementation Area				· · · ·			
1 Existing Project							
(1) Rehabilitation	1000 ha	70		- 1	-		7
(2) Canal System	1000 ha	150	100	-	-		25
(3) Water Source Facilities							******
Under Pump and Others	1000 ha	87		-	······	· · · · · · · · · · · · · · · · · · ·	8
Under Dam	1000 ha					· · · · · · · · · · · · · · · · · · ·	
2 Proposed Project							•••••
(1) Canal System	1000 ha	-	140	180	220	260	80
(2) Water Source Facilities		I		[[******
Under Pump and Others	1000 ha		5	30	30	30	
Under Dam	1000 ha	-	135	150	190	230	7(
3 Service Area						••••••••	•••••
Imple. Area in Sub-Period	1000 ha	220	240	180	220	260	1,1
Service Area		• • • • • • • • • • • • • • • • • •			••••••		
at End of Sub-Period	1000 ha	220	460	640	860	1,120	· • • • • • • • • • • • • • • • • • • •
Unit Development Cost	N1,000/ha					÷	
(1) Rehabilitation	6					2 	
(2) Canal System	31						
(3) Pump and Others	30						
							· • • • • • • • • • • • • • • • • • • •
Project Cost							
1 Existing Project		.					
(1) Rehabilitation	Mil. N	420					4
(2) Canal System	Mil. N	4,650	3,100	1 			7,7
(3) Water Source Facilities		.					
Pump and Others	Mil N	2,610				_	2,6
Total	Mil. N	7,680	3,100	0	0	0	10,7
.2 Proposed Project	••••••••••••••••••			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • •
(1) Study	Mil. N	100	400	560	670	780	2,5
(2) Implementation	Mil. N	1	4,080				
Sub-Total	Mil. N	100		de fasas fasas fa			
				1	1,000	0,930	41,0
.3 Ground Total (3.1 + 3.2)	Mil N	7,780	7,580	6,450	7,690	8,930	38,4

5-104

÷.,

.0

	Unit	Iniplementation Schedule						
Service Area and Project Cost		Pre- sent	1996- 2000	2001- 2005	2006- 2010		2016- 2020	Total
I. Implementation Area							:	
1.1 Existing Project			1. S. S.					
Present Service Area	1000 ha	150	-	-	-			

1.2 Proposed Project]			
New Provision Area	1000 ha		100	150	150	100	100	60
]			
1.3 Inclusion in Public Projects]	.		
	1000 ha	—	50	60	100	80	80	37
1.4 Service Area				[
at End of Sub-Period	1000 ha	150	200	290	340	360	380	
······································								ļ
2. Unit Development Cost	N1,000/ha							<u>.</u>
Lift/Tubewell Irrigation	13							
					1.10			ļ
3. Project Cost	Mil N	- 1	1,300	1,950	1,950	1,300	1,300	7,80

)

TABLE 5.4.8 IMPLEMENTATION PROGRAM FOR PRIVATE IRRIGATION PROJECTS

APPENDIX 5-1 ESTIMATION OF DIVERSION WATER REQUIREMENT

1

(1) Potential Evapo-transpiration

Potential evapotranspiration (ETo), generally recognized as fairly reliable index in calculating consumptive use, can be determined by a number of methods, such as the evaporation measurement with evaporation pan and the application of empirical formula based on the climatological data. In the project, the ETo values are estimated on the monthly basis, based on the climatological data obtained from The National Atlas prepared by FGN in 1978 by applying Penman Method.

The Penman Method is the most complete theoretical approach, showing that consumptive use is inseparably connected to incoming solar energy. The formula representing the potential evapotranspiration is shown below;

 $ETo = CW. Rn (1 - W) \cdot f(u) \cdot (ea - ed)$

radiation term aerodynamic term

Where;

ЕТо	=	potential evapotranspiration in mm/day
W	Ξ	temperature-related weighting factor
Ru	=	net radiation in equivalent evaporation in mm/day
f(u)	==	wind-related function
(ea-ed)	=	difference between the saturation vapour pressure at mean air temperature and the mean actual vapour pressure of the air, both in mbar
C	=	adjustment factor to compensate for the effect of day and night weather conditions

According to the above equation, the monthly ETo valves are calculated and its result is tabulated in Table A.1.1.

(2) Cropping Pattern

According to NWRIS, major crops in Nigeria are sorghum, millet, oil crops, maize, rice, wheat, etc. in North zone, maize, sorghum, rice, oil crops, millet, etc. in Central zone, and maize, sorghum, rice, etc. in Southern zone. Among such crops, rice, maize wheat, and vegetables such as chillies, tomato, onion are irrigated crops. Rice / rice and rice / other cereal and vegetable are the predominant cropping pattern. For the estimation of irrigation water demand in NWRMP, rice and maize are adopted as a representative one of other cereal, and the zonal cropping patterns, cropping intensity and average crop coefficient considering cropping calendar are assumed as below table:

			Public P	rogram			Private	Scheme	
		WetS	easón	Dry S	eason	Wet S	eason	Dry S	èason
Zone	НА	Rice	Other Cereal	Rice	Other Cereal	Rice	Other Cereal	Rice	Other Cereal
North	1 & M	10	90	0	50	10	70	0	50
Central	П,Ш, Г	30	70	25	55	80	0	0	50
South	V,VI,MI	90	10	70	10	80	0	0	50

Cropping Pattern and Cropping Intensity

(3) Diversion Water Requirement and Water Demand

Diversion water requirements are estimated by the following equation:

DWR=(ET crop + Pe + LP-Re)/IE

where;

DWR	å.	diversion water requirement
E'l' crop	•	crop evapo-transpiration
Pe	•	percolation loss
Re	:	effective rainfall
IE	•	irrigation efficiency
LP		water for land preparation

The estimated annual net requirement are shown in Table A.1.2 and the diversion requirements are shown in Table 5.2.1.

TABLE A.1.1 (1) REFERENCE CROP EVAPOTRANSPIRATION (SOKOTO)

_	State	Item	Total	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	ср Хср	ti O	Nov.	Dec.
Dutsin-Ma	Sokoto	Lat 11.5							1						
		Rainfall (1/2)	754		ы	4	14	73	95	181	51	141	12	0	
		E-Rainfall	527	0	7	က	6	51	67	126	162	100	8	0	
	Data	Mean Tempera. (F)		75		85	8			80	78		82	80	
-		Mean Tempera. (C)		24	<u> </u>	29	32			\$	26	26	28	27	
-	Data	n (Sunshine hour)		Сл	:	6	8			б С	9		10	01 I	
	Data	<u></u>		20		20	33			75	80	73	57	32	
	Table 5		(E)	29.8		40.1	47.6	4	•••	35.7	33.6	33.6	37.8	35.7	~
			(3)	6.0	:	8.0	15.2	હે		26.8	26.9	24.5	21.5	8.9 8	
	Fix	f (u2)	(<u>3</u>)	0.5	<u>:</u>	0.5	0.5			0.5	0.5	0.5	0.5	0.5	
	Table 9	Ŵ	(4)	0.73	<u>:</u>	0.77	0.8			0.76	0.75	0.75	0.77	0.76	0
	Table 10		(5)	12.8	<u> </u>	15.1	15.7	H		15,5	15.6	15.2	14.4	13.3	-
			(9)	6.1	-	12	6.8			9.9	5.8	6.6	7.3	6.S	
		Ral	S	29	3.0	2.8	2.0	15	1.5	12	1.0	1.3	1.9	2.9	
-	Table 11			11.6	-	12	12.3	H		12.6	12.4	12.1	11.8	11.6	-1
	Table 13			15.4	<u>:</u>	16.5	17.2	H		16.1	15.9	15.9	16.3	16.1	15.
				02	<u>:</u>	0.2	0.2			О	01	10	0.1	0.2	_
				0.8	<u>.</u>	0.8	0.7			2.0	0.5	0.7	0.9	0.9	
		Rn	(8) = (6) - (7)	3.3	-	4.3	4.8			5.4	4 8	5.3	5.4	3.9 2	
	Table 16	o	(6)	0.86	0.91	16.0	0.95	1.03	1.06	1.06	1.04	1.06	1.06	0.91	
				8 8 8	8.8 8.8	4 .6	0.6	9.5	9.4	8.8 8	22	80	9.7	1.9	8.0
		RHmax		80	23	30	4	78	60	113	120	110	86	38	
	Fix	Ud/Un	•	1.0	1.0	1.0	1.0	1.0	1.0-1	10	1.0	0.1	0.1	1.0	
	Fix	Ud		15	15	цў г	1.5	5	1.5	ю Н	15	1.5	1, 5, 1	1.5 1	
														-	
<u> </u>		ETo (mm/day)	(01)	4 8	5.7	6.4	6.7	7.0	6.5	5.5	46	5.4	6.4	5.6	
			000 0	U T	С Г Г	Ş	500	0000	ò	191	120	63-	101	169	

Remarks) Estimation of reference crop water requirement is based on "Crop Water requirements" of FAO Irrigation and Drainage Paper 24. Table 5, 9, 10, 11, 13, 16 come from the same paper.

5-1-3

REFERENCE CROP EVAPOTRANSPIRATION (KANO) TABLE A.1.1 (2)

1.0 Estimation of reference crop water requirement is based on "Crop Water requirements" of FAO Irrigation and Drainage Paper 24. Table 5, 9, 10, 11, 13, 16 come from the same paper. 4.71 0.51 71 25 9 6 6 6 6 0.91 8.1 3 jo l 2.00 က က D S S S S 5.3 00 77 25 9 25 31.7 0.50 13.3 6.4 11.5 15.6 ŝ 2 16.0 Nov. 1.90.1 0.5 0.76 14.4 0 0 0 6.1 183 119 1109 22 15 27 27 35.7 18.9 19 5 к; О 1.06 8.8 5.4 162 96 67 0.0 % 1.0 Sep. 4.5 241 169 60 36 12.5 15.6 7.6 ġ ຊ Aug. 49 78 26 7 7 7 7 7 7 7 7 7 8 6 1 15.5 15.5 15.5 12.7 12.7 0 ¥) H H **4**8 182 127 15.9 1.02 14 80 Jul . 18 18 6.0 6.3 93 65 8 Jun. 1.03 9.5 6.8 203 86 30 50 50 50 50 50 0.5 12 15.7 11.7 11.7 0 0 41 29 May 3 6.6 86 0.95 9.0 0 00 Apr Mar 00 00 6.0 8 00 0.91 . 75 24 9 9 20 20 20 6.0 0.5 0.5 13.9 13.9 13.9 13.9 11.7 11.7 Feb. 4 8 16.0 70 24.9 0.70 0.5 0.70 0.70 132 5.7 11.5 0.85 Jan. 4.4 00 છે: 684 479 958 Total (1) = (6) - (7)(6) ----n) + 3005085 (0 E) . 6 Mean Tempera. (F) Mean Tempera. (C) n (Sunshine hour) ea ed Raal Raal Raal f (u22) f (u22) f (u22) f (u22) f (u22) f (u22) ETo (mm/month) Lat 12.0 Rainfall (1/2) ETo (mm/day) C Rs RHmax Ud/Un Ud E-Rainfall RHmean Item Data Table 5 Table 11 Table 13 Table 16 Kano able 10 Table 9 Fix ------Fix 10 1.1 0 1.0 0 1.0 0 1.0 1 State Data Data Kano Met. Station

5-1-4

Remarks)

REFERENCE CROP EVAPOTRANSPIRATION (NIGER)

TABLE A.1.1 (3)

Station	State	Item	Total	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec
Kontagora	Niger	Lat 10.5		. 	1										
		Rainfall (1/2)	1.112	-1	ŝ	26	50	136	160	198	249	211	73	67	
		E-Rainfall	778	-	61	18	35	95	112	138	174	148	51	63	1
		*********	*											·	
	Data	Mean Tempera. (F)		74	<i>LL</i>		83	62	76	74	74	75	22	75	73
		Mean Tempera. (C)		3	25	28	8	26	24	23	23	24	25	24	23
	Data	n (Sunshine hour)		თ	6		<u>ر</u> -	00	2	ъ	4	ý	00	თ	ი
	Data	RHmean		20	20		52	202	80	80	8	80	65	42	25
	Table 5	ea	(1)	28.1	31.7	31	37.8	33.6	29.8	28.1	28.1	29.8	31.7	29.8	28.1
		ed	(3)	5.6	6.3	12	19.7	23.5	23.8	22.5	22.5	23.8	20.6	12.5	7.0
	Pix	f(u2)	(3)	0.5	0.5	0	0.5		0.5	0.5	О О	0.5	0.5	0.5	0.5
	Table 9		(†)	0.72	0.74	0	0.77		0.73	0.72	0.72	0.73	0.74	0.73	0.72
	Table 10	Ra	(5)	13.2	14.2	5	15.7	15.5	15.3	15.3	15.5	15.3	14.7	13.6	12.9
		Ras	(9)	6.3	6.7	9	6.3		6.0	Ц С	4	5.7	6.5	6.5	6.2
		Rai	Ċ	2.9	2.8	1.9	1.4	1.4	1.1	6.0	0.8	1.1	1.6	2.3	2.7
	Table 11		•	11.6	11.8		12.3	12.6	12.7	12.6	124	121	11.8	116	11.5
	Table 13	f(T)		15.2	15.6	97	16.3	15.9	15.4	15.2	15.2	15.4	15.6	15.4	15.2
			•	0.2	0.2	o	10	0.1	0.1	1.0	0.1	1.0	0.1	0.2	0.2
	*	f(nN)		0.8	8.0 0	0	0.6	0.7	0.6	0.5	7 0	0.5	r.0	80	0.8
		Rn	(2) = (6) - (7)	3.5	3.9	4	4.8	5 2	4.9	4.2	4	4.7	4.9	42	С. С.
	Table 16	o	(6)	0.86	16.0	0.92	1.03	1.06	1.02	0.98	0.98	1.02	1.06	1,00	0.85
		Rs		84	0.6	6 8 8	8.4	80 80	8.0	6.9	6.4	7.6	8.7	8.7	8.3 8.3
		RHmax		30	30	-09	78	105	120	120	120	120	36	63	SS SS
* * * * * * * * * * * * * * * * * *	FX	Ud/Un		0.1	1.0	0.1	1.0	1.0	1.0	1.0	1.0	0.1	0.1	1.0	1.0
	Fix	nd		15	1.5	2 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	ι¢ Ι
* * * * * * * * * * * * *															
		ETo(mm/day)	(01)	4.8	5.6	8.9 2.8	6.0	5.5 2	4.5	00 07	3.6	4.3	5.4	5.4	4.6
				1		22,	001	100	101	0	100	001	62.4		001

5-1-5

Remarks) Estimation of reference crop water requirement is based on "Crop Water requirements" of FAO Irrigation and Drainage Paper 24. Table 5, 9, 10, 11, 13, 16 come from the same paper.

REFERENCE CROP EVAPOTRANSPIRATION (ADAMAWA)

TABLE A.1.1 (4)

Table 5.4 0.95 8.4 8 33.6 10.8 0.75 6.3 6.3 2.5 C ç. D 5.9 176 0 2 8 8 12 o 14 <u>ي</u>. Nov. 11 16.3 8 1.0 5.9 0 23 105 8 92 64 0 O C t 4.6 80 6 6 77 857 857 153 153 153 153 153 153 153 11.0 12.1 16.1 7.6 0 5 202 142 Sep. 0.1 4.2 227 7.0 117 00.1 Aug. 1.01 7 4 117 4.5 136 1.0 204 Jul. 113 5.0 150 8.0 154 108 Jun. 6.2 187 123 86 5.3 0.1 May 9.0 66 1.5 0 66 6.7 202 54 8 Apr. 6.5 196 <u>61</u> 00 Mar. 6.1 183 0.8 9.0 5 0 2 20 20 00 Feb. 4 0.95 8.5 5.6 168 લ 0 Jan. 1,069 (8) = (6) - (7)2.004 ********* (01) Total 3005005 9 ea ed ed ed ea Ka Ra Ra Ra Ra N N Mean Tempera. (F) Mean Tempera. (C) n (Sunshine hour) ETo (mm/month) ETo (mm/day) Rainfall (1/2) RHmax RHmean 0 Lat 9.2 E-Rainfal UdVDn EZZ Item â Data PX Table 10 Table 11 Table 16 Table 13 Table 9 Adamawa Table 5 Data Data State Х Ц Fix ------------................ Station Yola

Estimation of reference crop water requirement is based on "Crop Water requirements" of FAO Irrigation and Drainage Paper 24. 5, 9, 10, 11, 13, 16 come from the same paper. Remarks)

TABLE A.1.1 (5) REFERENCE CROP EVAPOTRANSPIRATION (OSHUN)

Station	State	Item	Total	Jan.	Feb.	Mar.	Apr.	Way	Jun.	יותר	Aug.	Vep.	ii C	Nov.	Dec.
Oshogbo	Oshun	Lat 7.8			1 .										
		Rainfall (1/2)	1,327	3	31	80	117	182	201	158	159	216	145	30	
		E-Rainfall	929	0	61 62 73	56	82	127	141	111	111	151	101	21	ŝ
	Data	Mean Tempera. (F)		62	81	ន	3	80	78	76	15	22	00 2	62	6
	· · · · · · · · · · · · · · · · · · ·	Mean Tempera. (C)		26	27	28	27	27	36 26	2	24	25	26	26	ন
	Data	n (Sunshine hour)		2	8	۲	Ö	Q	ø	4	က	4	છ	2	
	Data	÷		78	72	77	82	83	∞	85	80	6	88	8	t
	Table 5		(1)	33.6	35.7	37.8	35.7	35.7	ത	29.8	29.8	31.7	33.6	33.6	
			ର	26.2	25.7	29.1	29.3	29.3	28.6	25.3	23.8	28.5	27.9	27.9	26
*****	Fix	f(u2)	(3)	0.5	:0	0.5	0.5	0 0	0	0.5	20 0	0.5	2 0	0.5	-
	Table 9	M	(4)	0.75	· •	0.77	0.76	0.76	0.75	0.73	0.73	0.74	0.75	0.75	
	Table 10		(5)	13.6	14.5	15.3	15.6	15.3	-	15.1	15.4	15.3	14.8	13.9	13
			(9)	5.6	ίιń	6.2	5.8	5.6	5	4.7	4 0	4.8	5.6 2	5.7	
		Ral	C	12	13	1.0	6.0	60	0.9	0.7	9.0	1.0	6.0	11	
	Table 11			11.7	11.8	47	12.3	24	12.5	12.4	12.3	12.1	11.9	11.7	
	Table 13	f(T)		15.9	16.1	16.3	16.1	16.1	15.9	15.4	15.4	15.6	15.9	15.9	15.9
		44		0.1	10	0.1	0.1	10	1.0	0.1	0.1	0.1	1.0	1.0	0
		f (DN)		0.0	2.0	0.6	0.5	\$ 0	0.5	4.0	0.3	0.4	9.0 0	0.6	ō
		Rn	(2) = (6) - (7)	4.4	5.1	5.2	4.9	4	4	0.0 0	0.7 0	4.1	4.6	4.6	4
	Table 16	o	(6)	1.02	1.06	1.04	1.04	1.02	1.02	0.98	0.98	0.98	1.02	1.03	0 1
		Rs	*	7.5	8.5	8,3	7.7	7.5	7.4	6	5.7	6	7.4	7.6	7.3
		RHmax			108	116	123	123	128	128	120	135	125	125	Ħ
	Fix	UdVn		1.0	0.1	1.0	1.0	о. Г	0.1 1	1.0	1.0	1.0	0.1	1.0	-4
	Ъў.	Cd		15	1.5	1.5	15	15	1.5	1.5	15	1.5	1.5	1.5	٦
		ETo(mm/day)	(10)	4	5.4	5.2	4.7	4.5	4.2	3.4	3.4	3.4	4.3	4.3	4.3
		ETo (mm/month)	1.538	130			140		125	102	103	102	128	129	125

. -.

6

1

REFERENCE CROP EVAPOTRANSPIRATION (ENUGU) TABLE A.1.1 (6)

141 Table 00 0.23 4 0.5 0.75 13.7 13.7 13.7 13.7 13.7 13.7 13.7 0.1 0.6 4.3 5 101 33.6 62 ģ 5 ç Q 35.7 27.5 27.5 14.2 14.2 14.2 14.2 14.2 14.2 11.1 11.9 4.6 139 1.2.2 116 0 20 8 0.6 16 25 K Nov. 10.1 4.0 6.9 123 79 26 28 28 28 27.6 0.5 15 15 12 0.5 27.6 0.5 12 12 15.9 0.1 Ŷ 117 ъ О 11 1.0 6.4 1.0 8 3.7 8 296 207 Sep. • 3.5 106 0.98 5.7 120 1.5 260 182 Aug 241 169 78 26 4 4 80 80 80 80 0.5 0.5 14.9 14.9 14.9 14.6 15.9 15.9 15.9 0.98 6.1 1.0 1.0 3.7 Jul 207 79 26.9 0.75 0.75 0.75 0.75 14.7 14.7 15.0 15.0 15.0 15.0 6.6 1.0 1.5 4.0 119 8 Jun. 4.6 1.02 7.5 117 0.1 228 160 May 4.8 144 1.02 7.6 116 0 1) 1 1 106 74 Apr. 84 29 6 6 72 72 72 15.4 15.4 15.4 12 16.5 ŝ 57 40 1.02 5.1 0.6 5 Mar. 5.4 163 1 5 1 5 82 288 288 65 65 65 0.5 0.5 0.5 0.7 148 148 148 148 11.9 11.9 11.9 0.0 1.04 8.1 တ်ဖ Feb. ! 63 33.6 33.6 13.9 13.9 13.9 14 118 118 118 118 4 9 4 9 7.6 0.6 4 3 **0**4 79 26 7 Jan. (10) (2)=(9)=(8) (6) 1,593 Total 3007005 Mean Tempera. (F) Mean Tempera. (C) n (Sunshine hour) . ETo (mm/month) Lat 6.5 Rainfall (1/2) E-Rainfall ETo (mm/day) C Rs RHmax Ud/Un RHmean Ŋ Item Table 16 Data Data Table 9 Table 10 Fix Table 11 Table 13 Table 5 ------***** Data Enugu State Ľ. Х. Д Enugu ************* Station

5-1-8

Estimation of reference crop water requirement is based on "Crop Water requirements" of FAO Irrigation and Drainage Paper 24. 5, 9, 10, 11, 13, 16 come from the same paper. Remarks)

IA- 1							
	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)		194	164	139	162	191	••••
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	•••••
① ETerop		97	169	161	154	27	
② Percolation		60	120	120	106	14	
③ Land preparation	75	75				· · · · · · · · · · · · · · · · · ·	
(1) =(1)+(2)+(3)	75	232	289	281	260	41	1,17
⑤ Effective rainfall	51	67	126	162	100	8	
6 Net irrigation Requirement	24	165	163	119	160	33	66
2) Other Crops		1917 - 1917 - 1917 1917 - 1917					
ETo (Reference Crop Evaporation)	209	194	164	139	162	191	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① Ечегор	10	105	157	149	96	15	
Ø Per-Irrigation	40	40				·····	• • • • • • • • • •
③=①+②	50	145	157	149	96	15	61
④ Effective rainfall	51	67	126	162	100	8	*******
S Net irrigation Requirement	0	78	31	0	Ó	7	11

TABLE A.1.2 NET IRRIGATION REQUIREMENT (1)

						na di Gali dan s	
	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)			******			*******	
Kc (Crop coefficients)				****	••••••••••••••••••••••••••••••••••••••		
① ЕТсгор			***				
② Percolation					*********		
③ Land preparation			*****	*****	******		· • • • • • • • • • • • • •
() = () + () + ()					*******		•••••••
S Effective rainfall		*****			••••••		
Net irrigation Requirement			· ·		********	*******	
2) Other Crops							
ETo (Reference Crop Evaporation)		148	145	170	192	201	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	•••••
① ЕТсгор		37	112	167	167	60	*******
© Per-Irrigation		80	••••••••••••••••••••••••••••••••••••••		······		
③=①+②	·····	117	112	167	167	60	623
Effective rainfall		0	0	1	3	9	· · · · · · · · · · · · · · · · · · ·
⑤ Net irrigation Requirement		117	112	166	164	51	610

TABLE A.1.2 NET IRRIGATION REQUIREMENT (2)

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
I) Rice (Wet)				6.			
ETo (Reference Crop Evaporation)		134	113	108	129	162	
Kc (Crop coefficients)	•••••	0.5	1.03	1.16	0.98	0.14	
① ETcrop		67	116	125	126	23	
② Percolation		30	60	60	53	7	
③ Land preparation	75	75		-	· · · · · · · · · · · · · · · · · · ·		
@=0 + @ + 3	75	172	176	185	179	30	81
⑤ Effective rainfall	95	112	138	174	148	51	
(6) Net irrigation Requirement	0	60	38	11	31	0	14
2) Other Crops							
ETo (Reference Crop Evaporation)	165	134	113	108	129	162	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① ЕТсгор	8	72	108	116	76	13	
② Per-Irrigation	40	40		-	-		
3=0+2	48	112	108	116	76	13	47
Effective rainfall	95	112	138	174	148	51	
(5) Net irrigation Requirement	0	0	0	0	0	0	

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)		139	145	169	173	180	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ЕТстор		70	149	196	170	25	
② Percolation		30	60	60	53	7	
③ Land preparation	75	75			—		
@=0+@ + ③	75	175	209	256	223	32	
⑤ Effective rainfall	2	1	1	2	18	35	
6 Net irrigation Requirement	73	174	208	254	205	0	
2) Other Crops							
ETo (Reference Crop Evaporation)		139	145	169	173	180	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	
① ЕТегор		35	112	166	151	54	
② Per-Irrigation		80	-	-	-	-	
③=①+②		115	112	166	151	54	
Effective rainfall	1.111 1.149	1	1	2	18	35	
S Net irrigation Requirement		114	111	164	133	19	

5-1-10

)

ALC: N

TABLE A.1.2 NET IRRIGATION REQUIREMENT (3)

	May	Jun.	Jul.	Aug	Sep.	Oct.	Total
I) Rice (Wet)							
ETo (Reference Crop Evaporation)		150	136	127	139	176	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	•••••••
① ЕТсгор		75	140.08	147.32	136.22	24.64	
② Percolation		30	60	60	53	7	
③ Land preparation	75	75		<u></u>	<u> </u>		
() = () + () + ()	75	180	200	207	189	32	883
⑤ Effective rainfall	86	108	143	159	142	64	
6 Net irrigation Requirement	0	72	57	48	47	0	225
2) Other Crops							
ETo (Reference Crop Evaporation)	187	150	136	127	139	176	
Kc (Crop coefficients)	0.05	0.54	0,96	1.07	0.59	0.08	
① ЕТсгор	9	81	131	136	82	. 14	
② Per-Irrigation	40	40	-			·•••••••••••••••••••••••••••••••••••••	
3=0+2	49	121	131	136	82	14	533
④ Effective rainfall	86	108	143	159	142	64	
S Net irrigation Requirement	0	13	0	0	0	0	13

			·				
	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)		163	168	183	196	202	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
Ф КТегор		82	173	212	192	28	
② Percolation		30	60	60	53	7	******
③ Land preparation	75	75	-	—		-	*******
() =()+()+()	75	187	233	272	245	35	1,047
⑤ Effective rainfall	1	0	1	0	8	38	••••••
⑥ Net irrigation Requirement	74	187	232	272	237	0	1,002
2) Other Crops							
ETo (Reference Crop Evaporation)		163	168	183	196	202	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	
① ЕТсгор		41	129	179	171	61	• • • • • • • • • • • • • •
② Per-Irrigation		80	—		······································	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •
3=0+0		121	129	179	171	61	661
④ Effective rainfall		0	1	0	8	38	
S Net irrigation Requirement		121	128	179	163	23	614

5-1-11

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
) Rice (Wet)							
ETo (Reference Crop Evaporation)		134	113	108	129	162	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ETcrop		67	116.39	125.28	126.42	22.68	
② Percolation	2. P	30	60	60	53	7	
③ Land preparation	75	75		-			
④ = ① + ② + ③	75	172	176	185	179	30	81
S Effective rainfall	95	93	148	170	162	57	
6 Net irrigation Requirement	0	79	28	15	17	0	14
) Other Crops		Ι					
ETo (Reference Crop Evaporation)	165	134	113	108	129	162	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① ЕТстор	8	72	108	116	76	13	
② Per-Irrigation	40	40	-		-		
③=①+②	48	112	108	116	76	13	47
Effective rainfall	95	93	148	170	162	57	
6 Net irrigation Requirement	0	19	0	0	0	0	1

TABLE A.1.2 NET IRRIGATION REQUIREMENT (4)

)

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)	÷	139	145	169	173	180	
Kc (Crop coefficients)	••••	0.5	1.03	1.16	0.98	0.14	
① ETcrop		70	149	196	170	25	
⁽²⁾ Percolation		30	60	60	53	7	
③ Land preparation	75	75			-		1
@=0 + 0 + 3	75	175	209	256	223	32	970
6 Effective rainfall	2	0	0	4	22	42	I
6 Net irrigation Requirement	73	175	209	252	201	0	909
2) Other Crops		1					
ETo (Reference Crop Evaporation)		139	145	169	173	180	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	
() ETerop		35	112	166	151	54	
② Per-Irrigation		80	-	-	-		
③=0+ <i>@</i>		115	112	166	151	54	597
④ Effective rainfall		0	0	4	22	42	
(5) Net irrigation Requirement		115	112	162	129	12	529

TABLE A.1.2	NET IRRIGATION REQUIREMENT (5)

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
) Rice (Wet)				· · · · · · · · · · · · · · · · · · ·			and and a second se
ETo (Reference Crop Evaporation)	137	119	111	106	111	121	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ETcrop		60	114	123	109	17	
② Percolation		30	60	60	53	7	• • • • • • • • • • • •
③ Land preparation	75	75	÷-	_			
() =()+(2)+(3)	75	165	174	183	162	24	78
S Effective rainfall	127	130	175	167	211	115	
S Net irrigation Requirement	Ó	35	0	16	0	0	5
2) Other Crops							
ETo (Reference Crop Evaporation)	137	119	111	106	· 111	121	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① ЕТегор	7	64	107	113	65	10	•••••
② Per-Irrigation	40	40		····		1	
③ = ① +②	47	104	107	113	65	10	- 44
④ Effective rainfall	127	130	175	167	211	115	- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
⑤ Net irrigation Requirement	0	0	0	0	0	0	• • • • • • • • • • •

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
) Rice (Wet)							
ETo (Reference Crop Evaporation)	139	141	147	163	153	144	-111444
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ETcrop		71	151	189	150	20	
② Percolation		30	60	60	53	7	
③ Land preparation	75	75	· · · · · · · · · · · · · · · · · · ·		·····		• • • • • • • • • • • • • • •
() = () + (2) + (3)	75	176	211	249	203	27	941
⑤ Effective rainfall	11	0	4	6	40	74	• • • • • • • • • • • •
6 Net Irrigation Requirement	64	176	207	243	<u>ः</u> 163	0	852
2) Other Crops			[
ETo (Reference Crop Evaporation)	139	141	147	163	153	144	• • • • • • • • • • • • • • • • • • •
Kc (Crop coefficients)	• • • • • • • • • • • • • • • • • • • •	0.25	0.77	0.98	0.87	0.3	
① ETcrop	•••••	35	113	160	133	43	
② Per-Irrigation		80	а на бала у на селото на селот Селото на селото на с Селото на селото на с	. دې د وله د وله د وله د وله د وله د وله د د هم د وله	·····	, <u>66, 16, 16, 16, 16, 16, 16, 16, 16, 16, </u>	
③=①+②		115	113	160	133	43	564
Effective rainfall		5	3	8	41	51	*******
S Net irrigation Requirement	****	110	110	152	92	Ö	464

5-1-13

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)		125	102	103	102	128	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ETerop		63	105	119	100	18	
② Percolation		30	60	60	53	7	
3 Land preparation	75	75			-	—	
@=0+@+3	75	168	165	179	153	25	76
5 Effective rainfall	127	141	111	111	151	101	
6 Net irrigation Requirement	Ò	27	54	68	2	0	15
2) Other Crops							
ETo (Reference Crop Evaporation)	134	125	102	103	102	128	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
() ETerop	7	68	98	110	60	10	
② Per-Irrigation	40	40	-	-	-	-	
③=①+②	47	108	98	110	60	10	43
Effective rainfall	127	141	111	111	151	101]
S Net irrigation Requirement	0	0	0	0	0	0	

TABLE A.1.2 NET IRRIGATION REQUIREMENT (6)

)

Ì

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
1) Rice (Wet)							· ;
ETo (Reference Crop Evaporation)	· · · · · · · · · · · · · · · · · · ·	128	130	161	155	= 140	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
(1) ЕТсгор		64	134	187	152	20	
② Percolation		30	60	60	53	7	
③ Land preparation	75	75					
@=0 + 2 + 3	75	169	194	247	205	27	916
S Effective rainfall	21	3	2	22	56	82	
6 Net irrigation Requirement	54	166	192	225	149	0	786
2) Other Crops							
ETo (Reference Crop Evaporation)		128	130	161	155	140	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	
① ЕТегор		32	100	158	135	42	
@ Per-Irrigation		80	-			-	
③ = ① +②		112	100	158	135	42	547
Effective rainfall		3	2	22	56	82	
(5) Net irrigation Requirement		109	98	136	79	0	422

÷

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
) Rice (Wet)							
ETo (Reference Crop Evaporation)	137	119	11	106	111	121	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
① ETcrop		60	114	123	109	17	
Percolation		30	60	60	53	7	
③ Land preparation	75	75				—	
@=0 + @ + 3	75	165	174	183	162	24	783
⑤ Effective rainfall	160	145	169	182	207	117	
6 Net irrigation Requirement	Ö	20	5	1	0	0	26
2) Other Crops							
ETo (Reference Crop Evaporation)	137	119	111	106	111	121	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① ЕТстор	7	64	107	113	65	10	
② Per-Irrigation	40	40		:			
③=①+②	47	104	107	113	65	10	44(
④ Effective rainfall	160	145	169	182	207	117	
S Net irrigation Requirement	0	0	0	0	0	0	
	0	0	0	0	0	0	
	0 Nov.	0 Dec.	0 Jan.	0 Feb.	0 Mar.	0 Apr.	L
③ Net irrigation Requirement	1	,	· · · · · · · · · · · · · · · · · · ·			·	Total
③ Nét irrigation Requirement	Nov.	,	· · · · · · · · · · · · · · · · · · ·			·	L
 Net irrigation Requirement 1) Rice (Wet) 	Nov.	De¢.	Jan.	Feb.	Mar.	Apr.	
 S Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) 	Nov.	De¢. 141	Jan. 147	Feb. 163	Mar. 153	Apr. 144	
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) 	Nov.	Dec. 141 0.5	Jan. 147 1.03	Feb. 163 1.16	Mar. 153 0.98	Apr. 144 0.14	
 S Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Ke (Crop coefficients) ETcrop 	Nov.	Dec. 141 0.5 71	Jan. 147 1.03 151	Feb. 163 1.16 189	Mar. 153 0.98 150	Apr. 144 0.14 20	L
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation 	Nov. 139	Dec. 141 0.5 71 30	Jan. 147 1.03 151	Feb. 163 1.16 189	Mar. 153 0.98 150	Apr. 144 0.14 20	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Ke (Crop coefficients) ETcrop Percolation Land preparation 	Nov. 139 	Dec. 141 0.5 71 30 75	Jan. 147 1.03 151 60	Feb. 163 1.16 189 60	Mar. 153 0.98 150 53	Apr. 144 0.14 20 7	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation Land preparation = 0 + 2 + 3 	Nov. 139 75 75	Dec. 141 0.5 71 30 75 176	Jan. 147 1.03 151 60 	Feb. 163 1.16 189 60 249	Mar. 153 0.98 150 53 	Apr. 144 0.14 20 7 - 27	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation Land preparation =0+2+3 Effective rainfall 	Nov. 139 75 75 11	Dec. 141 0.5 71 30 75 176 0	Jan. 147 1.03 151 60 - 211 4	Feb. 163 1.16 189 60 249 6	Mar. 153 0.98 150 53 203 40	Apr. 144 0.14 20 7 7 27 27 74	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation I.and preparation I.and preparation = 1 + 2 + 3 Effective rainfall Net irrigation Requirement 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0	Jan. 147 1.03 151 60 - 211 4	Feb. 163 1.16 189 60 249 6	Mar. 153 0.98 150 53 203 40	Apr. 144 0.14 20 7 7 27 27 74	Total
 S Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) B ETcrop Percolation Land preparation I.and preparation Effective rainfall Net irrigation Requirement 2) Other Crops 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0 176	Jan. 147 1.03 151 60 - 211 4 207	Feb. 163 1.16 189 60 249 6 243	Mar. 153 0.98 150 53 203 40 163	Apr. 144 0.14 20 7 7 27 74 0	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation I.and preparation I.and preparation = 1 + 2 + 3 Effective rainfall Net irrigation Requirement 2) Other Crops ETo (Reference Crop Evaporation) 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0 176 141	Jan. 147 1.03 151 60 211 4 207 147	Feb. 163 1.16 189 60 249 6 243 163	Mar. 153 0.98 150 53 203 40 163 153	Apr. 144 0.14 20 7 27 27 74 0 144	Total
 S Net irrigation Requirement Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation Land preparation = 1 + 2 + 3 Effective rainfall Net irrigation Requirement Other Crops ETo (Reference Crop Evaporation) Kc (Crop coefficients) 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0 176 141 0.25	Jan. 147 1.03 151 60 211 4 207 147 0.77	Feb. 163 1.16 189 60 249 6 243 6 243 163 0.98	Mar. 153 0.98 150 53 203 40 163 153 0.87	Apr. 144 0.14 20 7 7 27 74 0 144 0.3	Total
 S Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Ke (Crop coefficients) Thereop Percolation Land preparation I.and preparation I.and preparation Effective rainfall Net irrigation Requirement 2) Other Crops ETo (Reference Crop Evaporation) Ke (Crop coefficients) ETo (Reference Scop Evaporation) Ke (Crop coefficients) ETo (Reference Scop Evaporation) Ke (Crop coefficients) ETo (Reference Scop Evaporation) 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0 176 0 176 141 0.25 35	Jan. 147 1.03 151 60 211 4 207 147 0.77	Feb. 163 1.16 189 60 249 6 243 6 243 163 0.98	Mar. 153 0.98 150 53 203 40 163 153 0.87 133	Apr. 144 0.14 20 7 7 27 74 0 144 0.3 43	Total 94 85
 S Net irrigation Requirement 1) Rice (Wet) ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETcrop Percolation Land preparation = 0 + 2 + 3 Effective rainfall Net irrigation Requirement Other Crops ETo (Reference Crop Evaporation) Kc (Crop coefficients) ETrop Per-Irrigation 	Nov. 139 75 75 11 64	Dec. 141 0.5 71 30 75 176 0 176 0 176 141 0.25 35 80	Jan. 147 1.03 151 60 211 4 207 147 0.77 113 	Feb. 163 1.16 189 60 249 6 243 163 0.98 160 	Mar. 153 0.98 150 53 203 40 163 153 0.87 133 	Apr. 144 0.14 20 7 7 27 74 0 144 0.3 43	L

TABLE A.1.2 NET IRRIGATION REQUIREMENT (7)

1

	May	Jun.	Jul.	Aug.	Sep.	Oct.	Total
1) Rice (Wet)							
ETo (Reference Crop Evaporation)	203	181	148	136	162	183	
Kc (Crop coefficients)		0.5	1.03	1.16	0.98	0.14	
Ф ЕТсгор		91	152	158	159	26	
② Percolation		60	120	120	106	14	
③ Land preparation	75	75		-		—	
@=0 + @ + 3	75	226	272	278	265	40	1,155
⑤ Effective rainfall	29	65	127	169	67	15	
© Net irrigation Requirement	46	160	145	109	198	24	683
2) Other Crops							
ETo (Reference Crop Evaporation)	203	181	148	136	162	183	
Kc (Crop coefficients)	0.05	0.54	0.96	1.07	0.59	0.08	
① ЕТсгор	10	98	142	146	9 6	15	
② Per-Irrigation	40	40	<u> </u>		-	-	
3=0+0	50	138	142	146	96	15	586
④ Effective rainfall	29	65	127	169	67	15	
S Net irrigation Requirement	21	73	15	0	28	0	137

				· · ·
			ta a c	
TABLE A.1.2	NET IRR	IGATION	REOUIREN	1ENT (8)
		• • • • • • • • •		

ı

+

)

C

	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Total
) Rice (Wet)							
ETo (Reference Crop Evaporation)							
Kc (Crop coefficients)							
① ЕТсгор							
Percolation							
③ Land preparation							
@=0 + 2 + 3							
⑤ Effective rainfall						·	
Net irrigation Requirement							
?) Other Crops							
ETo (Reference Crop Evaporation)		142	132	163	180	198	
Kc (Crop coefficients)		0.25	0.77	0.98	0.87	0.3	
O ETerop		36	102	160	157	59	
② Per-Irrigation	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	80		<u></u>			
③=①+②		116	102	160	157	59	593
Effective rainfall		0	0	1	0	6	
(5) Net irrigation Requirement	[· · · · · · · · · · · · · · · · · · ·	116	102	159	157	54	587

APPENDIX 5-2 GUIDELINE FOR PLANNING OF IRRIGATION PROJECT

1. PRE-FEASIBILITY STUDY

Pre-feasibility study shall be performed at the model river basin with the priority at each RBDA.

63

(1) Data to be Collected

- (a) Aerial photograph and the map of 1 to 50,000 scale
- (b) Hydrological data in the basin or the adjacent basin
- (c) Socio-economic data including administrative boundary, number of villages, total population and household, farmers' population and household at present and their movement on the LGA basis.
- (d) Soil and land use
- (e) Agricultural data including crop area, cropping intensity of major crops and yield of crops per unit area on the LGA basis.
- (f) Existing water resources projects including location and outline
- (g) Crop water requirement, diversion water requirement and drainage requirement per unit area based on the existing irrigation project report.
- (h) Construction cost for the irrigation and drainage canals and on-farm work from the existing irrigation project report.
- (2) Preparatory Work for the Study in the Office
 - (a) Division of the basin into the several tributary basins with the catchment area of 1,000 to 2,000 km² on the map of 1 to 50,000 scale and measurement of their catchment area.
 - (b) Study for the basin salient feature such as the basin topography and geology, tributary system, land use, socio-economy, etc.
 - (c) Study for hydrological condition such as aerial rainfall and evaporation, annual average runoff, sediment transport, peak flood

discharge, etc. Preparation of the guideline for the specific yield of annual average runoff (num), peak flood discharge (m³/see/km²) and sediment transport (m³/km²) in order to estimate approximate available surface water.

- (d) Study for water demand in service area and present water use under the existing water resources projects.
- (e) Finding of the proposed water source facilities such as dam, pumping station, etc. and service area on the map of 1 to 50,000 map.
- (f) Measurement of catchment area on the map of 1 to 50,000 scale.
- (g) Approximate estimation for the river runoff at proposed water source facility site based on the catchment area and the specific runoff yield.
- (h) Approximate estimation for the available river runoff at the proposed site.
- (i) Drawings of the location, catchment area, reservoir area, damsite, etc. for the existing and proposed projects on the map of 1 to 50,000.
- (3) Site Survey Work

}

The following survey is carried out for the downstream service area where the proposed water source facilities such as dam and pumping station have a possibility to be constructed. The survey is made on the basis of a map of scale 1:50,000 and aerophotos.

- (a) Topographical and geological condition at water source site
- (b) Hydrological condition by observation and interview to local people
 - Water level and runoff fluctuation at water source site
 - Flood and inundation damage in the service area
- (c) Present water utilizing conditions at the farm land by rainfall inundation and streams
- (d) Selection of canal alignment and location of the weir and pumping station to be related with the reservoir

(e) Consideration of the irrigation method newly introduced at the terminal

圝

(f) Soil and present land use

The survey at the representative places in the service area is only made in accordance with collected data. When the unsurveyed soil is found at the field survey, such soil conditions are assumed by observation survey.

(g) Village socio-economic survey at the service area by questionnaire

The interview with the chief of the village and farmers will be made at a representative village in each sub-hydrological area. Subjects to be interviewed consist of history of village, relationship of village people, socio-economic conditions, agriculture, livestock and fishery conditions, problems and difficulty in villages, and necessity of development. The information collected in the interview will help the selection of the proposed project with the first priority.

- (h) Selection of gaging station site for the surface water observation
- (i) Beneficial intention survey for the project
- (j) Environmental survey in the related area
- (4) Data Analysis and Study in the Office Work based on Collected Data and Site Survey
 - (a) Hydrological analysis for monthly rainfall, evaporation and runoff at water facility site and the service area
 - (b) Study of the dimension of water source facility
 - (c) Water demand study in the service area

Water demand for irrigation is estimated based on crop water requirement, effective rainfall, percolation rate and irrigation efficiency. The standard water demand at each region shall be prepared taking into account the following items.

Crop Water Requirement

Crop water requirement is estimated by the crop to be introduced and evapotranspiration estimated by the modified Penman formula based on the meteorological data such as temperature, mean humidity, mean maximum humidity, mean wind velocity, mean wind velocity in daytime and night and mean cloudiness.

Effective Rainfall

The value of effective rainfall differs by crop water requirement in paddy/upland crop field, field conditions, and rainfall amount/intensity in the cropping calender. The effective rainfall shall be estimated on the daily basis and it will range from 70 to 80 percent of monthly rainfall.

Percolation Rate

Percolation is divided into two types, namely horizontal and vertical. Their percolation rates are affected by many factors, such as texture of soil, depth of top soil, groundwater level, etc. In principle, percolation rate should be determined by actual measurement.

Irrigation Efficiency

The irrigation efficiency consist of the following three kind efficiencies :field irrigation efficiency (Ea), efficiency on-farm ditches (Eb) and water delivery efficiency (Ec). Total efficiency is obtained by multiplication above three efficiencies ranging from 50 to 90 percent in accordance with adapted water distribution system and skillfulness of water management.

- (d) Available runoff water for the service area
- (e) Potential irrigation area by the proposed water source facility

Potential irrigation area is estimated by the available water at the water source facility site and unit water demand in service area.

(f) Land Use and Agro-Economy

The following items shall be analyzed on the small sub-hydrological area basis to clarify the necessity and urgency of irrigation development taking into consideration the relation between the existing irrigation area and proposed area:

- Land use and population: all areas, area of paddy field, upland crops and other land, population and its density, population growth, farm population and household, average cultivation area per unit household, farm population density, etc.
- Annual change of land use: all areas, area of paddy, upland and other lands of the specified past years and recent year, and annual changing ratio of land use.

Relation between land use and land classification: land classification of paddy field (5 classes), present land use for paddy and upland crops and their comparison, and the comparison of cultivation area and aerial rainfall in the small sub-hydrological area.

Productivity of major crops: cropped area, farm household, cropping intensity, harvested ratio and yield per unit area.

(g) Selection of Service Area

The following area shall be selected with priority:

- Area where the implementation of irrigated agriculture is strongly requested by farmers
- Area with a suitable tenure arrangement for irrigated agriculture
- Area to be located near the water source facility
- (h) Approximate project cost based on the acreage of service unit
- (i) Project evaluation
 - Economic and financial analysis of project economy
 - Environment impact

(5) Selection of the Representative Projects for the Feasibility Study

In accordance with the above study, four to five representative projects will be selected for the feasibility study with the following conditions:

Projects consisting of the medium and small scale as the representative size

Projects with priority from view point of the project economy

Projects without environmental problem

Projects with easy condition for the survey and study such as accessibility to project site

2. FEASIBILITY STUDY

9

The feasibility study shall be performed for the above selected representative projects based on the international standard. In the implementation of feasibility study, the particular attention shall be paid for the following items:

(1) Survey and Investigation Works

- (a) Preparation of aerial photo map of 1:10,000 scale covering the water source facility site and service area
- (b) Hydrological observation of rainfall and river discharge in the service area and at water source facility site with a installation of hydrological station.
- (c) Soil survey at the area which has been indicated as the area with soil problem in the pre-feasibility study.
- (d) Survey of present land use and land classification in each sub-project based on the map of scale 1:10,000 newly prepared
- (e) Detailed agro-economical survey in terms of items studied in prefeasibility study.

(2) Hydrological Analysis

- (a) Runoff analysis on daily basis by preparation of the runoff model at proposed water source facility site.
- (b) Design flood capacity analysis for spillway of dam and weir based on the unit hydrograph

5-2-6

- (3) Irrigation Water Demand Study
 - (a) Formulation of cropping pattern including crops to be introduced, cropping calender and cropping intensity.
 - (b) Estimation of irrigation water requirement on 10 days basis taking into account potential evapotranspiration, crop factor, effective rainfall, soil percolation rate and irrigation efficiency.
- (4) Water Source Facility Plan
 - (a) Water operation study on 10 day basis for more than 20 years.
 - (b) Formulation of water operation rule of water source facility.
 - (c) Estimation of available river runoff in wet and dry season and also in wet and dry year.
- (5) Preliminary Design of Canal and Appurtement Structures
 - (a) Definition of proposed irrigation area
 - Establishment of irrigation division such as service unit, block and zone.
 - Formulation of irrigation water diagram
 - (b) Hydraulic and structural analysis
 - (c) Construction plan and cost estimation
 - Construction method and schedule on the contractor basis for medium-scale project or force account basis of RBDA for smallscale project
 - Cost estimation preparing the bill of quantity

(6) OM Plan

(a) OM organization, equipment and OM cost in public agency

5-2-7

(b) OM organization of WUA for beneficiary

(7) Environment Impact Assessment (EIA)

(a) Resettlement problem in the related area

(b) Other ecological problem by the construction of project facilities The procedure of EIA may be referred to Chapter 11 of the Sector Report for detail

(8) Project Evaluation

È

ţ

- (a) Economical and financial analysis for the project cost
- (b) Evaluation of farmer income generation and job creation

5-2-8

(c) Evaluation of environment impact

APPENDIX 5-3 GUIDELINE OF OPERATION AND MAINTENANCE OF IRRIGATION CANAL SYSTEM

1. OPERATION OF IRRIGATION CANAL SYSTEM

(1) Establishment of Division of Irrigation Service Area

Irrigation project area is subdivided into the following areas in accordant with their acreage of irrigation area for the operation of canal system:

	Area (ha)	Responsible OM Staff
Service Unit	20 to 40	Water Master (WM)
Irrigation Block	200 to 400	- ditto -
Zone	1,500 to 3,000	Zonal Officer

The OM office under a manager will carry out the water management of irrigation canal system by OM staffs such as Water Masters (WMs) who control farm turnout at the head of service unit and Zonal Officers who control a several WMs in their jurisdiction.

While, Farmers Irrigation Groups (FIGs) are established as a farmers' organization at each service unit and the terminal facilities in service unit are consolidated by them. Water users Association is also farmers' organization and comprises several FIGs.

(2) Request and Allocation Procedures of Irrigation Water

The present procedures of request and allocation of irrigation water are not properly made because of the reasons that i) Irrigation area and schedule to be requested by the farmers can not be estimated accurately by Water Master (WM), ii) Estimation of irrigation water by Irrigation Blocks and Zones can not be made quickly and accurately, iii) Exact allocation of irrigation water on the weekly basis at each check and head gate is very hard, and iv) Allocation of irrigation water at each block and zone in considering an effective rainfall is not properly made. And these facts have caused shortage of irrigation water and inundation in the downstream area.

In order to execute proper water management for supplying irrigation water to the service area, the followings are proposed to improve the procedures for request and allocation of irrigation water.

(a) Preparation

)

The irrigation flow diagram in the canal system shall be prepared and te Irrigation Block (IB) covering about 10 service unit shall be formulated in taking into account the area commanded by major check and head gates and division/zone boundary.

The service area to be irrigated is accurately estimated on the turnout basis, Farmers Irrigation Group (FIG) basis, by using cadastral maps and summarized on the IB basis. This work will be made by the Water Master (WM) coordinating with WUA, FIG and farmers. This area becomes the base for request and allocation of irrigation water.

(b) Plan for Request and Allocation

The request and allocation plan of irrigation water shall be prepared about one month before starting cropping season in each main canal system. WUA shall prepare the irrigation area and make schedule by FIG or the member farmers to submit to the Water Master (WM). WM shall check the schedule to make adjustment and shall arrange the schedule by WUA and summarize it on the IB basis.

The irrigation area and schedule on the IB basis shall be submitted to OM Office by WMs. OM office shall estimate promptly and accurately the irrigation requirement on the IB basis for the major check and head gates by using computer. The OM office shall adjust the estimated irrigation requirement taking into account the available effective rainfall and storage water conditions in reservoir, diversion dam and pumping station before starting cultivation.

In accordance with the above estimation and adjustment, the OM Office manager shall determine the allocation plan of irrigation water supply to IB and outflow from reservoirs, diversion dams and pumping stations, and give instructions to each District manager or Zonal officer. This allocation plan is prepared on the weekly basis.

The District manager or zonal officer shall give instructions to WM and WUA so as to keep the above allocation of irrigation water according to the expected irrigation schedule in the cropping season.

(c) Actual Operation for Request and Allocation

Actually, the procedures for request and allocation of the irrigation water shall be followed in the manner as specified in the plan on the weekly basis.

The operation may be revised slightly to the plan because of some differences in conditions by actual irrigation area, delay in irrigation schedule by farmers, delay in irrigation water to reach farm areas due to defect of irrigation canals or misoperation of in gate operation, conditions of rainfall available, storage condition in the reservoir, etc.

These variable factors are carefully studied on the weekly basis by OM office with collected data and information available, and then the final water allocation will be made by OM Office manager and given to each District manager or zonal officer.

The control of irrigation water supply will be practiced by check and head gate keepers under WM according to the instruction on the water allocation.

(d) Estimation Method

- The estimation of irrigation water allocation will be made by computer.

(3) Operation of Canal System

Irrigated agriculture would not be realized without adequate operation of canal system. The proper allocation and delivery of water can be achieved by adopting the following activities:

To practice the correct discharge measurement,

- To set the gate opening rate in corresponding to programmed diversion requirement, and
- To execute monitoring and checking of canal flow.

(a) Check of Water Flow

)

Following distribution control of irrigation water in the canals is very important works for the OM Offices;

- To schedule gate operation works,

To compare discharges between programmed and measured at the specific points in the canals, and

To adjust the gate opening rate at the problem sites with large difference in flow rate.

The discharges measurement for gate operation will principally be practiced by automatic water level recorders or staff gages, and periodical calibrations also are needed to maintain the correct relationship between water level and discharge.

(b) Water Distribution Control

As a general rule, the water distribution control by setting the gate opening rate should be done in taking into account its stream characteristics, and weekly irrigation water requirement at the check and head gate points in corresponding to farming activities on lateral basis should be decided and instructed to the operators in advance by OM Offices. And then, the gate operators can adopt easily correct opening rate for the designated gates.

(4) Water Management at On-farm Level

Water management at on-farm level should be practiced under the chief of FIG and WUA to conform with the proposed distribution schedule and irrigation rule. The basic rule for water use at the on-farm level is shown as follows;

- Executions of irrigation water supply in accordance with the planting stage of crops,
- Strict observance of the rotational irrigation schedule,

In connection with the improvement of water management at on-farm level, the existing on-farm facilities such as farm ditches, farm drains and farm roads should be improved under the support by the OM Offices.

2. MAINTENANCE OF IRRIGATION CANAL SYSTEM

Maintenance and repair works of irrigation system are inseparable from operations activities. It embrace basically, some major elements of irrigation system management. Without maintenance, operation cannot be efficiently implemented.

Most of failure in the irrigation system, especially in the implementation of water management can be attributed to poor maintenance of irrigation facilities. Eventually, these lead to low water utilization and to a loss of expected benefits from huge government investments.

As much as possible, the original design capacity of canals must be retained. To do this, plan for repairs, needed improvements and other related activities shall be undertaken properly. However, some activities like routine maintenance may be done during irrigation season. Along this, the guideline or procedures for maintenance and repair works is necessary in bringing out better irrigation services to farmer clienteles. If the importance of maintenance and repair works is brought to the concern of the beneficiaries, the problem on the preserving longer the useful life of the irrigation system's facilities could be minimized.

(1) Inventories and Drawings for System Facilities

To prepare the inventories of system facilities is very important for the operation and maintenance in the irrigation system. At the same time, the lay out map of service area about 1/50,000 indicated stations, type and size of structures or gates are very useful on the execution of maintenance works. The following inventories and drawings for system facilities shall be arranged:

- Inventories of system facilities by each kind of structure in every canal system
- Canal system diagram for planning and designing of canal and related structures.
- Canal layout basic map with a scale of 1 to 50,000
 - Road layout map with a scale of 1 to 50,000

(2) Routine Inspection of System Facilities

The system facilities shall be periodically inspected. The result of inspection is arranged and tabulated by the following items, then it will be used for basic data of maintenance plan.

- Water source fasility
- Canal system
- Gate

(3) Maintenance of System Facilities

System maintenance may be classified according to the nature of the work, namely:

- (a) Maintenance of water source facility
- (b) Maintenance of canal
- (c) Maintenance of structures and mechanical facilities
- (d) Maintenance of service/access road
- (e) Maintenance of system drain
- (f) Maintenance of pump
- (g) Maintenance of farm level facility

Personnel of the O & M, such as the Ditchtender, Gate Keeper, and WM are directly involved in these activities. It shall be their responsibility that irrigation facilities such as farm ditches, irrigation canals, drainage ditches/canals, appurtenant structures, measuring devices, gates, access/service roads, etc., in their respective coverage are properly maintained. On the other hand, pump facilities and its appurtenances shall be in order for effective operation. Farm level facilities, as well, shall be maintained by farmer-users with the motivation of the WM concerned.

Prior to irrigation water releases, all these facilities much be in good shape. Once irrigation commences, farmer-users shall not be allowed to draw water from the canal unless farm ditches are properly cleaned and ready to receive irrigation water. This procedure will oblige the end-users to do their part in the maintenance of the irrigation system.

(4) Repair and Improvement Work

Repairs usually undertaken consists of earthworks, replacement of R.C Pipes, lubricating gate lifting devices, painting, rip-rapping, desalting and others. the repairing and improvement work will be carried out the following procedures:

- Inspection of defective facilities and reporting to zonal officer/district manager by WM
- Preparation of the inspection report and repair and improvement plan by zonal officer/district manager and submittance them to the OM offices
- Preparation of budgetary plan and implementation of repair and improvement work by the OM offices on force account basis

5-3-7

APPENDIX 5-4 REFERENCES

- 1) De-Crown (WA) CO., LTD., 1993. Regional Technical Water Resources Inventory Survey (South West Region) - Final Report. Prepared for Japan for Japan International Cooperation Agency Study Team. February.
- 2) Enplan Group, 1993. Regional Technical Water Resources Inventory Survey (North West Region) - Final Report. Prepared for Japan International Cooperation Agency Study Team. February.
- 3) Isu Associates (NIG), Ltd., 1993. Regional Technical Water Resources Inventory Survey (South Central Region) - Final Report. Prepared for Japan International Cooperation Agency Study Team. February.
- 4) T.C. International Associates (TCI), 1993. Regional Technical Water Resources Inventory Survey (North Central Region) - Final Report. Prepared for Japan International Cooperation Agency Study Team. February.
- 5) Water and Dam Services Company (WADSCO), 1993. Regional Technical Water Resources Inventory Survey (North Region) - Final Report. Prepared for Japan International Cooperation Agency Study Team. February.
- 6) World Bank FAO, dp, 1992. Nigeria: Irrigation Sub-Sector Review. February.
- 7) World Bank, 1989. Nigeria: Strategy for Agriculture Growth. December
- 8) Federal Agricultural Coordinating Unit (FACU), ADPs in Nigeria: A Decade and Half Later
- 9) World Bank, 1992. National Fadama Development Project, February.
- 10) World Bank, 1992. National Agricultural Technology Support Project, February.
- 11) KNARDA, 1993. Second Phase National Fadama Development Project, Kano.
- 12) Akinade O. Sanda, 1988. Corporate Strategy for Agricultural and Rural Development in Nigeria.
- 13) A. O. Sanda, 1992. Managing Irrigation Project in Nigeria.

- 14) Federal Ministry of Water Resources, 1990, Irrigation Policy for Nigeria, August.
- 15) Federal Ministry of Agriculture, Water Resources and Rural Development, 1988, Agricultural Policy for Nigeria: Implementation Strategies and Programmes, January.