

JAPAN INTERNATIONAL COOPERATION AGENCY J I C A

THE DETAILED DESIGN STUDY ON THE WATER TRANSBASIN SCHEMES FOR CHONE-PORTOVIEJO RIVER BASINS

GEOLOGICAL - GEOTECHNICAL INVESTIGATIONS REPORT

VOLUME IV

FEBRUARY 1994

()

()

JAPAN INTERNATIONAL COOPERATION AGENCY J I C A

DETAILED DESIGN STUDY ON THE TRANSBASIN WATER PROJECT FOR THE CHONE-PORTOVIEJO RIVER BASINS

REPORT ON GEOLOGICAL-GEOTECHNICAL RESEARCH

VOLUMEN IV

Table of Contents

Company of the	 Application of the property of th
10.	CONCRETE AGGREGATES
10.1	Purpose and Scope of the Investigations
10.2	Works Performed and Results Obtained
10.2.1	Field Sampling
10.2.2	Laboratory Analysis of Aggregates
10.2.3	Simple Compression Tests for Concrete
	Committee of the second of the
15. 4. 3. 3. 3. 3. 3. 3. 3.	APPENDIXES
11.1	Results of Laboratory Tests
11.2/1/2019	Results of Simple Compression Tests for Concrete

JAPAN INTERNATIONAL COOPERATION AGENCY J I C A

DETAILED DESIGN STUDY ON THE TRANSBASIN WATER PROJECT FOR THE CHONE-PORTOVIEJO RIVER BASINS

REPORT ON GEOLOGICAL-GEOTECHNICAL RESEARCH

10. CONCRETE AGGREGATES

10.1 PURPOSE AND SCOPE OF THE INVESTIGATIONS

One of the main objectives of this study is to determine the optimum or most recommended sources of construction materials, including concrete aggregates, analyzing their fundamental aspects such as: quality of said materials and their reserves.

Towards this end, we have performed laboratory tests on the materials from quarries or mines selected by JICA in order to determine their properties and, in turn, test several concrete mixtures starting from the proportions provided by the contractor performing simple compression tests in cylindrical test tubes prepared with said mixtures and submitted to an adequate curing process obtaining the resistances at 7 and 28 days.

10.2 WORKS PERFORMED AND RESULTS OBTAINED

10.2.1 Field Sampling

Sampling was performed at selected quarries with sufficient amounts to perform the laboratory tests indicated and the different mixtures for testing of the breaking of cylinders.

The quarries and type of material are as follows:

- Coarse aggregates from the San Carlos Quarry on the Oro River.
- Fine aggregate from the Picoaza Basalt Quarry (crushed sands).

À.

Fine aggregate from the San Pablo River in Quevedo

Fine aggregate from the San Jacinto beaches

Samples taken were sent to the laboratories of ADITEC, ADITIVOS TECNICOS ECUATORIANOS CIA. LTDA. in Quito for the performance of the different tests both on aggregates as well as mixtures.

10.2.2 <u>Laboratory Analysis</u>

The amount and type of tests performed are shown in the following table 10.1

1)

CUADRO (TABLE) 10.1

ENSAYOS DE LABORATORIO SOBRE AGREGADOS

(LABORATORY TEST FOR AGGREGATES)

TIPO DE DISAYOS	Asherdos gruesos San Carlos (Coarse Asaregate)			8 4 4 9 1 4 4 1	TOTAL		
	3/8*-3/4* G1	3/4'-1* €2	1'-1 } *	SAX PABLO QUEVEDO # 1	SAN JACINTO # 2	CANTERAS BASALTICAS # 3	
1, Granulometria (taniz) (Grain size analysis sieve)	1	: 1	í	1	1 .	1	8
2. Gravedad Específica y Absorción de agua - finos (Specific Gravity and mater absortion fine aggregate)	•	•	-	2	2	2	6
3. Gravedad específica y absorción de agua - gruesos (Specific Gravity and water absortion - coarse aggregates)	2	2	2	•	•	•	6
4. Impureza orgánica (Organic impurity)	•	•	•	2	2	2	6
5. Ensayo de desgaste al sulfato de sodio (Soundness test with sodium sulphate)	1	1	1	1		1	8
6. Ensayo de abrasión Los Angeles (Los Angeles abrassion test)	2	2	Ş	-	-	-	6
7. Ensayo de reactividad química (Chemical alkali reactivity)	1	i	í	1 .	1	1	. 6

(Ì

()

Laboratory test results for the coarse aggregates are summarized in the Table NQ 10.2.

CUADRO (TABLE) 10.2

(TEST RESU	1	- C	<u> </u>		c	
			CANTERA SAN CARLOS PASA (PASSES) (%)			
(TYPE OF TEST)	1.0	IÈVE Ze)	6-1 3/8" - 3/4"	G-2 3/4" - 1"	6-3 1" - 1 <u>1</u> "	
Granulopetria - tamiz		3'	100,00	100,00	100,00	
(Grain size analysis - sieve)		2 11	100,00 100,00	100,00	100,00	
	3/	1	100,00 98,45	98,59 42,80	40,02 6,33	
	3,	/8°	57,21 32,30 5,76	3,21 1,76 1,02	3,12 2,40 1,15	
Gravedad específica y Absorción de agua	X-1	Ge.	2,478 4,71	2,541 3,52	2,523 2,11	
(Specific gravity and water absortion)	N-2	Ge.	2,437 4,49	2,505 3,41	2,648 3,04	
Ensayo de desgaste al sulfato (Soundness test with sodium sulphate)		S	5,59	6,29	5,59	
Ensayo de Abrasión Los Angeles (Los Angeles abrassion test)	8	H-1 H-2	17,80 17,00	16,40 17,00	16,70 16,10	
Ensayo de Reactividad Química (Chemical - alkali reactivity test)			inocuo	iñocuo	inocuo	

Laboratory test results for fine aggregates are summarized in the Table No 10.3.

CUADRO (TABLE) 10.3

RESULTADOS DE (INO	
TIPO DE ENSAYOS	TAKIT		PASA (PASSES) (X)			
(TYPE OF TEST)	(SIE	. 1	NO 1 AREXAS SAN FABLO QUEVEDO	NO 2 Arejus San Jacinto	NO 3 AREAUS CANTERAS BASALTICAS	
Granulosetriá (tásiz) (Grain size ánalysis - sievé)	3/8 N2 N2 N2 N2 N2 N2	8 16 30 50	100,00 99,62 98,72 95,15 89,10 42,31 8,33	100,00 100,00 100,00 100,00 100,00 92,29 7,22	100,00 93,72 81,73 65,81 50,58 27,58 3,93	
Gravedad especifica y absorción de agua (Specific gravity and water absortion)	X-1	Ge. Ab. Ge. Ab.	2,574 2,25 2,596 2,19	2,059 1,16 2,147 1,26	2,333 3,80 2,337 3,59	
Impureza orgánica (Organic impurity) Aceptable (si o no)	1	- 1 - 2	RO RO	ie ie	18 18	
Ensayo de desgaste al sulfato (Soundness test with sodium sulphate)			8,40	8,80	6,58	
Ensayo de Reactividad Quimica (Chemical (alkali) reactivity test)			inocuo	inocuo	inocuo	

()

 $\langle ' \rangle$

10.2.3 Concrete Tests

For the study of concrete 6 types of concrete were prepared with the basic proportions provided by JICA, and each type of concrete was tested with three different fine aggregates, thus obtaining a total of 18 different mixtures.

From each mixture, 6 cylinders were prepared for resistance tests of which 3 broke seven days after curing and 3 after 28 days.

The proportions used for the different mixtures were provided by JICA as per Table NO 10.6 and readjustments based on the results of the slump test.

The number of mixtures and amounts of cylinders prepared are shown in the Table NO 10.4.

CUADRO (TABLE) 10.4

TIPO DE MEZCLA (TYPE OF MIX)	CANTIDAD DE MEZCLAS (QUANTITIES OF MIXES)			TREMPO	TOTAL	
	ARENAS QUEVEDO	ARENAS SAN JACINTO	AREMAS BASALTICÁS	7 DIAS	28 DIAS	(SAMPLES)
A - 1	6	8	8	9	9	18
A - 2	8	6	6	9	9	18
8 - 1	6	6	6	9	9	18
8 - 2	6	6	8	9	9	18
8 - 3	6	6	6	9	9	18
8 - 4	8	6	6	9	9	18

Average results of the fracture tests for the different mixtures with curing times of 7 and 28 days are shown in the summary Table NO 10.5.

CUADRO (TABLE) 10.5

TIPO DE NEZCIA	RESISTENCIA PROMEDIO A LA COMPRESION SIMPLE (Lg/ca²)						
(TYPE OF NÍX)	(AVERAGE COMPRESSIVE STRENGHT)						
grand Areas	TIPO DE AREKA (TYPE OF SAND)						
	QUEYEDO		SAN JACINTO		BASALTICA		
	1 DIAS	28 DIAS	1 DIAS	28 DIAS	1 DIAS	28 DIAS	
X = 1	87	166	113	191	91	168	
A - 2	52	108	67	108	in.	139	
B - 1	102	203	122	192	117	212	
B - 2	81	145	3 1 81 FF / 18 / 18 / 18 / 18 / 18 / 18 /	130	15	143	
8 - 3	62	135	60	93	62	125	
8 - 4	40	85	34	62	42	83	

Results of the tests are shown in Appendix NQ 11.

CUADRO (TABLE) 10.6

()

.

Mix Proportions of Concrete Test

1.6616591330		
CCG-FSP4		
	8 8	2
[335] [4] * * * * * * * * * * * * * * * * * *	v , v	6
# 5 5 5 E	3 2	X
	, ¥	'n
	v.	S
SS 25 5	<u> </u>	8
	• •	
(2) (201) .		
609 609 7.18	_ =	
	3 5	Ş
	o 50.	
	<u> </u>	Ŧ
1 2 2 2 2 E	4 . A	×
		- 1
AND THE PARTY OF T		ļ
	5 12	
	, v,	v.
		~
-1366		
		_
	· · · · · · · · · · · · · · · · · · ·	
26 00 E		- 8
3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	%	38
33 40 53	, %	38
33 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 R	38
33 40 40 55 55 55 55 55 55 55 55 55 55 55 55 55	, %	38
33 40 35 SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	, %	38
		38
52 37 40 40 52 33 33 33 34 40 55 33 33 34 55 55 55 55 55 55 55 55 55 55 55 55 55		76 38
	36	76 38
		76 38 [
25 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		76 38
		76 38
25 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		5 76 38
25 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		4.5 76 38
25 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		4.5 76 38
25 52 52 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		4.5 76 38
52 52 52 52 53		4.5 76 38
52 52 52 52 53		4.5 76 38
5.0 52 52 52 52 52 52 52 52 52 52 52 52 52		4.5 76
5.0 52 52 52 52 52 52 52 52 52 52 52 52 52		4.5 76
52 52 52 52 53		4.5 76
5.0 52 52 52 52 52 52 52 52 52 52 52 52 52		8-12 4.5 76 38
5.0 52 5.0 66 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		4.5 76
5.0 52 5.0 66 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		4.5 76
5.0 52 5.0 66 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
5.0 52 52 52 52 52 52 52 52 52 52 52 52 52		4.5 76
10-14 5.0 66 52 52 52 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10-14 5.0 66 52 52 52 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76
10 - 14 5.0 66 52 52 52 52 52 52 52 52 52 52 52 52 52		8 - 12 4.5 76

Cement: 3.15 Gravel: 2.60 (1) Specific Oravity Sand: 2.65
(2) Water reducing or nir entained agent.

Should be used to get high Air Content (4.5 - 5.0 %)

Compressive Strength # 28 - -113 + 214 CAV (kgf/cm²) (3) Finestess Modulus I;M: 2.80 (4) Compressive Strength I 28 = -

A-1(728 = 300 kgf), A-2(T28 = 210 kg), B-1(T28 = 300 kgf), B-2(V28 = 240 kgf), B-3(T28 = 210 kgf) and B-4(T28 = 170 kgf) A-1(WiC = 52 %), A-2(W/C = 66 %), B-1(W/C = 52 %), B-2(W/C = 61 %), B-3(W/C = 66 %) and B-4(W/C = 76 %)

11. APPENDIXES

B

11.1 LABORATORY TESTS RESULTS

GRAIN SIZE ANALYSIS (SIEVE)

)

6-16-18

ADITIVOS TECNICOS ECUATORIANOS

STRUCTURE: TRASVASE MANABI

DESCRIPTION: COARSE AGGREGATE G-1

9810.00

NORM: ASTH C-136

MASS OF SAMPLE:

DATE: 27-DEC-93

ORDER BY: HIDROSUELOS

TESTED BY: F. MAYANQUER

CALCULATED BY: 1. ORTEGA

APPROVED BY: Ing. E. Ortega

SCREEN ANALYSIS

SCREEN No.	GPENING	KEIGHT	ACCUMUL. WEIGHT RETAINED	RETAINED	(1) PASSING ASTN LIMITS
3*	76.1	0.00	0.00	0.00	100.00
5.	64.0	0.00	0.00	0.00	100.00
1 1/2	; 38.1	; 0.00	0.00	0.00	100.00
1"	25.4	0.00	0.00	0.00	100.00
3/4"	19.0	152.00	152.00	1.55	98.45
1/2"	1 12.7	1046.00	1 4198.00	1 42.79	57.21
3/8	9.51	2443.00	6641.00	67.70	32.30
14	4.76	2601.00	9245.00	} 94.24	5.76
PASSIKG	No 4	\$65.00	565.00		1
SU	X¦	9810.00	9810.00	•	1

REMARKS: FINENESS HODULUS:

3/4

ADDITIVES TECHNOOS ECULATI RUNOS CIA. LEDA.

0

STRUCTURE: TRASVASE MANABI DESCRIPTION: COARSE ASGREGATE G-2

13686.00

NORM: ASTH C-136

HASS OF SAMPLE:

DATE: 27-DEC-93

DROER BY:

HIDROSUELOS

TESTED BY: F. KAYANQUER

CALCULATED BY: L. ORTEGA

APPROVED BY: Ing. L. Ortega

SCREEN No.	OPENING	HEIGHT	ACCUMUL. NEIGHT RETAINED	RETAINED	(4) PASSING ASIN LINIIS
3,	76.1	0.00	0.00	0.00	; 100.00
2"	61.0	0.00	0.00	0.00	100.00
1 1/2	38.1	0.00	; 0.00	0.00	100.00
i"	25.4	193.00	193.00	1.41	98.59
3/4*	19.0	7636.00	7829.00	\$ 57.20	42.80
1/2*	12.7	5418.00	13247.00	96.79	3.21
3/8*	9.51	198.00	13445.00	98.24	1.76
84	1.76	101.00	13546.00	98.98	1.02
PASSING	No 4	; 140.00	140.00	1	1
SU	 }	13686.00	13686.00	; i	1

ADITIVOS TECNICOS

STRUCTURE: TRASVASE MANABI

DESCRIPTION: COARSE AGGREGATE 6-3

19206.00

NORM: ASTN C-136

MASS OF SAMPLE:

DATE: 27-DEC-93

TESTED BY: F. MAYANQUER

CALCULATED BY: L. ORTEGA

APPROVED BY: Ing. L. Ortega

2 1	1.4	i e a calabat			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	OPENING	PARCIAL WEIGHT RETAINED	THOTAN	RETAINED	(1) PASSING ASIM LIMITS
3"	76.1	0.00	0.00	0.00	100.00 {
2"	64.0	0.00	0.00	0.00	100.00 :
1 1/2"	38.1	0.00	0.00	0.00	100.00 {
1'	25.4	11519.00	11519.00	\$ 59.98	40.02
3/4"	19.0	1 6472.00	17991.00	93.67	6.33
1/2*	12.7	615.00	18606.00	96.88	3.12
3/8°	9,51	140.00	18746.00	97.60	2.40
14	4.76	240.00	18986.00	98.85	1.15
PASSIKG	Ko 4	220.00	220.00		1
SUN	!	19206.00	19206.00	1	

REMARKS: FINENESS MODULUS:

1 1/2"

()

1

ORDER BY: HIDROSUELOS
DESCRIPTION : SAND # 1
LOCALIZATION : QUEVEOO NINE

NORM: INEN 696

MASS OF SAMPLE:

780.00

MORK:TRASYASE MAXABI
CALCULATED BY: L. Ortega
TESTED BY: F. Mayanquar
APPROVED BY: Ing. Luis Ortega
DATE: JANUARY LITH, 1994

SCREEN ANALYSIS

SCREEN No	OPENING	į	MEIGHT	i	METERT	RE	TAINED	1	PASSES	¦ '	REQUISITO (%) QUE PASA	
3/8*	9.51		0.00	ŀ	0.00	i '	0.00	1	100.00		100	_
Ko 4	4.76	1	3.00	•	3.00	;	٥.38	!	99.62		95-100	_
ко 8	2.00	•	7.00	1	10.00		1.28	1	98.72	•	80-100	
No 16	18.0	;	20.00	1	30.00		3.85	!	96.15	1	50-85	
Ko 30	0.42		55.00	•	85.00	1	10.90	į	89.10	!	25-60	
No 50	0.25	1	365.00	;	450.00	!	57.69	1	42.31	<u> </u>	10-30	
No 100	0.149	1	265.00	;	715.00		91.67	1	8.33	;	2-10	
PASSING N	lo 100	1	65.00	·	65.00	1.		1		 -		
\$UN	l;	1	780.00	;	780.00	1		!				

REMARKS:

Sun & retained

165.77

Finaness Modulus = (Sum t retained)/100

Fineness modulus : 1.66

ADITINGS PECHICOS POLATORIANOS PIR LIVI

EIRYA AUTORIZADA

ADITIVOS TECNICOS ECUATORIANOS

ORDER BY: HIDROSUELOS

DESCRIPTION : SAND 4 2 LOCALIZATION : SAN JACINTO MINE

NORM: INEN 696

HASS OF SAMPLE:

STRUCTURE: TRASVASE MANABI CALCULATED BY: L. Ortage TESTED BY : F. Nayanquer APPROVED BY: Ing. Luis Ortaga DATE: JANUARY 11TH, 1994

	OPENING	KEEGHT	#EIGHT	PERCENT. RETAINED (4)	PASSES JAS	IN LINITS
3/8	9.51	0.00	; 0.00	0.00	100.00	100
Ko 4	1 4.76	0.00	.000	0.00	100.00 :	95-100
No 8	2.00	0.00	; 0.00	0.00	100.00 :	80-100
No 16	0.84	0.00	0.00	0.00	100.00	50-85
Ko 30	0.42	1 0.00	0.00	0.00	100.00 ;	25-60
No 50	0.25	94.00	94.00	7.71	92.29	10-30
No 100	0.149	;1037.00	{1131.00	92.78	1.22	2-10
PAS	A No 100	\$8.00	88.00	1	1	
SU	NA:	1219.00	1219.00			

REMARKS:

Sum & ratained

100.49

Fineness modulus = (sum t retained)/100

fineness modulus :

ADITIVOS TECNICOS ECUATORIANOS

ORDER BY: HIDROSUELOS
DESCRIPTION: SAND # 3
LOCALIZATION: BASALTICA MINE
NORM: IMEN 696
MASS OF SAMPLE: 926.00

ORDER 8Y:TRASVASE MAKABI CALCULATED BY: L. Ortega TESTED BY: F. Mayanquer APPROVED BY: Ing. Luis Ortega DATE: JANUARY 11TH, 1994

SCREEN ANALYSIS

SCREEN	l Ro.	-		6	METCH	ij		į	CHILATE		t passing asin linits	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
3/8	•	1	9.51	;	0.00)	0.00		0.00	100.00	100	
Ko	4	;	4.76	1	2.60)	2.60	ľ	0.28	99.72	95-100	1
Ko	8	!	2.00	;	111.00) (113.60	;	12.27	87.73	80-100	
No 1	6	*	0.84	ł	203.0)	316.60	1	34.19	65.81	\$0-85	
No 3	60	<u>}</u>	0.42	}	141.0) (457.60	1	49.42	50.58	25-60	
No S	0	;	Q.2S		213.0)	670.60	;	72.42 {	27.58	10-30	
Ko 1	00	}	0.149		219.0	0 }	889.60	1	96.07 {	3,93	2-10	
PASS1	NG I	lo	100		36.4	0 (36.40	;	;	3	1	•
	SUN		****	}	926.0	0 ;	926.00	;	1	•••••	1	

REMARKS: Sum t retained : 264.64

fineness modulus = (sum % retained)/100

Finanass aodulus :

well were

AUTORIZADA

397

()

SPECIFIC GRAVITY AND WATER ABSORTION COARSE AGREGATE

()

A D I T & C - CONCRETE LABORATORY ACUR: 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: HIDROSUELOS

DESCRIPTION: 61 (3/8" - 3/4")61

SAMPLE: 11

INF. No. 4: 8388 NORM : INEN 857 STRUCTURE: TRASVASE MANABI TESTED BY: W. AYERVE

CALCULATED BY: ING. L. ORTEGA DATE: DECEMBER 22TH, 1993

SPECIFIC GRAVITY AND AS	SORPTION OF	COARSE	AGGREGATE
-------------------------	-------------	--------	-----------

	•	
8	8	* * *
€§ : ••••••	685 =	
8 - C	8 ÷ ¢.	
•	8 - C	
6e# =	Ab :	100
A + C	A	
MASS OF SATURATED SAMPLE NITH DRY SURFACE AREA	ß :	3287.00 gr.
1932 At Avianutes and re with any assume them		-
MASS OF DRY SAMPLE	A =	3139,00 gr.
MASS OF SAMPLE SUBMERGED IN WATER	C :	2020.00 gr.
BULK SPECIFIC GRAYITY	Co :	2.478
BULK SPECIFIC GRAFIII	•	• • • • • • • • • • • • • • • • • • • •
	. :	A (A)
SPECIFIC GRAVITY SATURATED WITH DRY SURFACE AREA	Ges :	2,594
	* * *	
APARENT SPECIFIC GRAYITY	Gea :	2.805

\$ OF ABSORTION

ATTHES ACHICOS ECH PORIZADOS CIA. LTDA.

FIRESA ALITORIZADA

397

A D I T E C - CONCRETE LABORATORY ACURA 357 y 10 de Agosto. 240. Piso QUITO. TELF. 502-073, 543-684 QUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: HIDROSUELOS

DESCRIPTION: 6/ (3/8" - 3/4") 6/

SAMPLE: #2

INF. No 8: 8389 NORK : INEN 857 STRUCTURE: TRASVASE MANABI TESTED BY: M. AYERYE CALCULATED BY: ING. L. ORTEGA DATE: DECEMBER 22TH, 1993

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE

A Ges = $\frac{A}{8-C}$ Ges = $\frac{B-C}{8-C}$ Ab = $\frac{B-C}{A-C}$ Ab = $\frac{A-C}{A-C}$ MASS OF SATURATED SAMPLE WITH DRY SURFACE AREA B = 3399.00 gr.

MASS OF DRY SAMPLE R = 3253.00 gr.

MASS OF SAMPLE SUBMERGED IN MATER C = 2064.00 gr.

BULK SPECIFIC GRAVITY GB : 2.437

SPECIFIC GRAVITY SATURATED WITH DAY SURFACE AREA 685 : 2.546

APARENT SPECIFIC GRAVITY Get: 2.736

OF ABSORTION ASSTRUCTOR EGYPTOFICHOS CIA.

()

A D I T E C - CONCRETE LABORATORY Acuña 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: HIDROSUELOS

DESCRIPTION: 62 (3/4' - 1')62

SAMPLE: \$1 1MF.Mo \$: 8390 NORM : IKEN 857

STRUCTURE: TRASVASE MANABI

TESTED BY: W. AYERVE CALCULATED BY: ING. L. ORTEGA

DATE : DECEMBER 221H, 1993

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE

A	8	
€s :	Gas =	
8 - C	8 - C	
A	8 - C	100
Gea : ···································	A	•••
MASS OF SATURATED SAMPLE NITH DRY SURFACE AREA	8: 4:4:4:4:	3173.00 gr.
MASS OF DRY SAMPLE	A =	3065.00 gr.
MASS OF SAMPLE SUBMERGED IN MATER	c :	1967.00 gr.
BULK SPECIFIC GRAVITY	Ge :	2.541
SPECIFIC GRAYITY SATURATED WITH DRY SURFACE AREA	Gas =	2.631
APARENT SPECIFIC GRAVITY	Sea:	2.791
\$ OF ABSORTION	Ab:	3.52

A D I I E C - CONCRETE LABORATORY Acuña 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: HIDROSUELOS DESCRIPTION: 62 (3/4 - 1') 62

SAMPLE: 12

INF.No 4: 8391 NORM : INEN 857 STRUCTURE: TRASVASE MANABI TESTED BY: M. AYERYE CALCULATED BY: ING. L. ORTEGA DATE: DECEMBER 22TH, 1993

PECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE

A Ge = 8 - C	Ges :	
6ea = A - C	B - C Ab =	100
MASS OF SATURATED SAMPLE WITH DRY SURFACE AREA	8 =	3279.00 gr.
MASS OF DRY SAMPLE	Â:	3171.00 gr.
MASS OF SAMPLE SUBMERGED IN WATER	C :	2013.00 gr.
BULK SPECIFIC GRAVITY	Se =	2.505
SPECIFIC GRAVITY SATURATED WITH DRY SURFACE AREA	Gas :	2.590
APARENT SPECIFIC GRAVITY	604 =	2.738
OF ASSORTION	Ab =	3.41

ADITIVES PERIODS ECUS PRIAMOS CIA. LIDA

WWW JUNE

FIRMA AUTORIZADA

3 -....

A O I T E C - CONCRETE LABORATORY ACURA 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: KIDROSUELOS

DESCRIPTION: 63 (1' - 11/2')63

SAMPLE: 41

INF. No 4: 8386 HORM : INEN 857 STRUCTURE: TRASVASE MANABI TESTED BY: W. AYERYE CALCULATED BY: ING. L. ORTEGA DATE: DECEMBER 22TH, 1993

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE

68 : 688		
B - C	B - (
	8 - C	
Sea : Ab	_ :	100
A - C	A	
MASS OF SATURATED SAMPLE WITH DRY SURFACE AREA	8 =	2851.00 gr.
MASS OF DRY SAMPLE	A =	2767.00 gr.
MASS OF SAMPLE SUBMERGED IN MATER	¢ =	1806.00 gr.
BULK SPECIFIC GRAVETY	€a =	2.648
SPECIFIC GRAVITY SATURATED WITH DRY SURFACE AREA	Ges =	2.728
APARENT SPECIFIC GRAVITY	Gea :	2.879
\$ OF ABSORTION	ab :	3.04

ACITINGS TERNICOS ECUPTORIANOS CIA LTOA.

FIRMA AUTORIZADA

A D 1 T E C - CONCRETE LABORATORY ACUA: 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

ORDER BY: HIDROSUELOS

DESCRIPTION: 63 (1' - 11/2') 63

SAMPLE: \$2

INF. No E: 8387 NORM : INEN 857 STRUCTURE: TRASVASE MANABI TESTED BY: N. AYERYE

CALCULATED BY: ING. L. ORTEGA

DATE : DECEMBER 22TH, 1993

SPECIFIC	GRAYITY AND	ASSORPTION OF	COARSE	AGGREGATE

A	6es :
B - C	B - C
A	8 - C
Gea :	Ab = * 100 A

MASS OF SAMPLE SUBMERGED IN MATER B = 3565.00 gr.

MASS OF SAMPLE SUBMERGED IN MATER C = 2190.00 gr.

1822 OL SMILLE SAMMEMAEN IN MAILE

BULK SPECIFIC GRAVITY Ge : 2.523

SPECIFIC GRAVITY SATURATED WITH DRY SURFACE AREA Gos: 2.593

APARENT SPECIFIC GRAVITY 682 = 2.712

1 OF ABSORTION Ab : 2.77

ACHINES TECNICOS EDE JORIANOS SIA LTOA

i

SPECIFIC GRAVITY AND WATER ABSORTION (FINE AGREGATE)

A D I T E C - CONCRETE LABORATORY Acuña 357 y 10 de Agosto, 2do. Piso QUITO, TELF. 502-075, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

STRUCTURE : TRASVASE MANABI DESCRIPTION : BASALTICA SAND : PICOAIA NINE SOURCE

; 1 SAMPLE #

RORK INF. : INEN 856 1886

CROER BY: HIDROSUELOS TESTED BY : W. Ayerve

CALCULATED BY : Ing. L. Ortega

APPROVED BY : Ing. L. Ortoga

DATE : DECEMBER 221H, 1993

SPECIFIC	CRAYITY	AKD	ABSORPTION	OF	EIKE	ASSREGATE
----------	---------	-----	------------	----	------	-----------

500 - Na

500 the -Mark fA

165.90 KASS OF VOLUMETRIC FLASK 724.60 MASS OF: VOLUMETRIC FLASK + WATER + SAMPLE 100.00 MASS OF SAMPLE SATURAD SURFACE DRY 96.34 A: HASS OF DRY SAMPLE 458,70 Ka : MASS OF WATER ADDED TO VOLUMETRIC FLASK 2.333 BULK SPECIFIC GRAVITY 2.421 SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA Ses : 2.560 C#1 = APARENT SPECIFIC GRAVITY

& OF ASSORPTION

AUTORIZADA

A D I T E C - CONCRETE LABORATORY ACURA 357 y 10 de Agosto. 2do. Piso QUITO. TELF. 502-073, 543-684 GUAYAQUIL. 1ELF. 254-021, 254-160

STRUCTURE : TRASVASE MAMABI DESCRIPTION : BASALTICA SANO

SOURCE : PICOAIA MINE

SAMPLE # : 2

NORM : INEN 856

1KF.#

1

0

()

()

1887

ORDER BY: MIDROSUELOS
TESTED BY : W. Ayerve
CALCHATED BY : Ing. L.

CALCULATED BY : Ing. L. Ortega APPROVED BY : Ing. L. Ortega

DATE : DECEMBER 22TH, 1993

SPECIFIC GRAVITY AND ABSORPTION OF FINE AGGREGATE

165.90 HASS OF VOLUNETRIC FLASK 724.60 Have : HASS OF: VOLUMETRIC FLASK + MATER + SAMPLE 100.00 8: KASS OF SAMPLE SATURAD SURFACE DRY A : 96.53 MASS OF DRY SAMPLE 458,70 HASS OF WATER ADDED TO VOLUMETRIC FLASK 2.337 €# = BULK SPECIFIC GRAYITY 2.421 SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA Ges : 2.552 £81 : APARENT SPECIFIC GRAVITY 3.59 Ab : * OF ASSORPTION

ADITIVOS 19541000 EGO PORIANOS CIA. ETGI

STALE AUTONIZAD

A D I T E C - CONCRETE LABORATORY Acufie 357 y 10 de Agosto. 260. Piso QUITO, TELF. 502-073, 543-684 GUAYAQUIL. TELF. 251-021, 254-160

STRUCTURE : TRASVASE MAXABI DESCRIPTION : SAN JACINTO SANO

SOURCE

SAMPLE & HORM

: 1 : INEN 856

1838 IKF.#

ORDER BY: HIDROSVELOS TESTED BY : N. Ayerva CALCULATED BY : Ing. L. Ortege APPROVED BY : Ing. L. Ortega DATE : DECEMBER 221H, 1993

 $\langle \ \rangle$

SPECIFIC GRAVITY AND ABSORPTION OF FINE AGGREGATE

500 - Na

500 - Na

SOO 4No -Naka fA

HASS OF VOLUMETRIC FLASK

MASS OF: VOLUMETRIC FLASK + WATER + SAMPLE

MASS OF SAMPLE SATURAD SURFACE DRY

100.00

HASS OF DRY SAMPLE

98.85

HASS OF WATER ADDED TO VOLUMETRIC FLASK

452.00 Ma =

BULK SPECIFIC GRAVITY

2.059

SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA

2.083

APARENT SPECIFIC GRAYITY

2.110 Çes :

& OF ABSORPTION

AUSTRICATECHICES ECUSTORIANCHEIR LEGA 1.16

()

()

A D I T E C - CONCRETE LABORATORY ACURA 357 y 10 de Agosto. 260. Piso DUITO. TELF. 502-073, 543-684 GUAYAQUIL. TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI DESCRIPTION: SAN JACINTO SAND SOURCE: MINE

SAMPLE : 2

NORM : INEN 856 186.4 1889 ORDER 8Y: HIDROSUELOS
TESTED BY : W. Ayerve
CALCULATED BY : Ing. L. Ortega
APPROYED BY : Ing. L. Ortega
DATE : DECEMBER 221H, 1993

500 - Na

	and the second second					
- F & F		4 445	ABSORPTION	AΓ	CTER	ACCOLCATE
<i>PATATETO</i>	CDAWITY	am	AKSUXYIIUR	ur	rint	K65VTEU:P

A B I -----500 - Na

169.00 MASS OF VOLUMETRIC FLASI 723.00 MASS OF: VOLUMETRIC FLASK + MATER + SAMPLE Heun : 100.00 MASS OF SAMPLE SATURAD SURFACE DRY 98.76 MASS OF DRY SAMPLE 454.00 Ma : MASS OF WATER ADDED TO VOLUMETRIC FLASK 2.147 Ca : BULK SPECIFIC GRAVITY 2.174 SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA Ges : 2.206 APARENT SPECIFIC GRAVITY

* OF ABSORPTION

AUTHOR LORIDOS CONTRANOS CIÁBLICA.

1.26

A D I 1 E C - CONCRETE LABORATORY ACURA 357 y 10 do Agosto. 2do. Piso OUITO. TELF. 502-073, 543-684 CUAYAQUIL. TELF. 254-021, 254-160

STRUCTURE : TRASVASE MAKABI

DESCRIPTION : SAND QUEVEOD

SAMPLE # : 1

KORM : INEN 856

INF.4 : 1890

ORDER BY: HIDROSULLUS
TESTED BY: M. Ayerve
CALCULATED BY: Ing. L. Ortega
APPROVED BY: Ing. L. Ortega
DATE: DECEMBER 22TH, 1993

SPECIFIC GRAVITY AND ABSORPTION OF FINE ASSREGATE

885 : -----\$85 : -----\$86 - 888

157.70 MASS OF VOLUMETRIC FLASK 719.70 HASS OF: YOLUNETRIC FLASK + WATER + SAMPLE 100.00 MASS OF SAMPLE SATURAD SURFACE DRY 97.80 KASS OF DAY SAMPLE 462.00 MASS OF WATER ADDED TO VOLUNETRIC FLASK 2.574 BULK SPECIFIC GRAYITY SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA 2.632 2.752 APARENT SPECIFIC GRAVITY

& OF ABSORPTION

ACTIONS ECUSTORIANOS OF LIVE

2.2

()

A D I T E C - CONCRETE LABORATORY Acuha 357 y 10 de Agosto. 2do. Piso QUITO. TELF, 502-073, 543-684 QUAYAQUIL. TELF. 254-021, 254-160

STRUCTURE : TRASVASE MANABI

DESCRIPTION : QUEVEDO SAND

: 2 SAMPLE &

1

()

0

: INEN 856 NORA

1891 INF.4

DROER BY: MIDROSUELOS TESTED BY : W. Ayerve

CALCULATED BY : Ing. L. Driega APPROVED BY : Ing. L. Ortega

DATE : DECEMBER 2218, 1993

SPECIFIC GRAVITY AND ABSORPTION OF FINE AGGREGATE

500 - Ka

500 the -Kawa th

157.70 MASS OF VOLUNETRIC FLASK 720.00 MASS OF: YOLUMETRIC FLASK + MATER + SAMPLE Kaka : 100.00 8: MASS OF SAMPLE SATURAD SURFACE DRY A: 97.86 MASS OF DRY SAMPLE 462.30 Na : MASS OF WATER ADDED TO VOLUMETRIC FLASK 2.596 BULK SPECIFIC GRAVITY SPECIFIC GRAVITY OF SATURATED WITH SURFACE DRY AREA 2.653 Gas : APARENT SPECIFIC GRAVITY 2.752 Ces : 2.19

* OF ABSORPTION

Ab =

ORGANIC IMPURITY

0

()

ADITEC - CONCRETE LABORATORY ACURA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 547-230, 543-684 GUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MANABI

LOCALIZATION: MANABI

DESCRIPTION : QUEVEDO SAND

SAMPLE & . 1

NORM : ASTH C-40

1Mf. No. : 1882

ORDER BY: HIDROSUELOS TESTED BY: F.MAYANQUER APPROVED BY: ING. LUIS ORTEGA DATE: DECEMBER 22TH, 1993

.

ORGANIC CONTENT

COLOR:

DARK YELLOW

ACCEPTABLE

YES I

MO [X]

REMARKS: IN THE COLORIMETRIC ANALYSIS A 3 % SODIUM HIDROXIDE SOLUTION WAS USED

APPROVED BY

ADITINGS JECKIOGS ED RISHIANDS CIA LIC

ADITEC - CONCRETE LABORATORY ACUAL 357 y 10 de Agosto, 260. Piso QUITO TELF. 547-230, 543-684 CUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MAKABI

LOCALIZATION: MANABI

DESCRIPTION : QUEVEDO SAND

SAMPLE 1 : 2

NORM : ASTN C-40 INF. No. : 1883 ORDER BY: HIDROSUELOS TESTED BY: F. MAYANQUER APPROVED BY: ING. LUIS ORTEGA DATE: DECEMBER 22TH, 1993

ORGANIC CONTENT

COLOR:

REDISH YELLOW

ACCEPTABLE

YES [

NO [X]

REMARKS: IN THE COLORINETRIC ANALYSIS A 3 & SOOTUM HIDROXIDE SOLUTION WAS USED

ADDINGS THE PROVED ANTON FOR LIVE

ADTIEC - CONCRETE LABORATORY ACUA: 357 y 10 de Agosto, 2do. Piso QUITO TELF. 547-230. 543-684 SUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MANABI

LOCALIZATION: MANABE

DESCRIPTION : SAN JACINTO SAND

SAMPLE 8 : 1

()

()

NORM : ASTM C-40 INF. No. : 1880 DRDER BY: HIDROSUELOS
TESTED BY: F.MAYAKQUER
APPROVED BY: ING. LUIS ORTEGA
DATE: DECEMBER 22TH, 1993

ORGANIC CONTENT

COLOR:

CRISTALINE

ACCEPTABLE

YES [X]

KO ()

REMARKS: IN THE COLORIMETRIC ANALYSIS A 3 % SODIUM HIDROXIDE SOLUTION WAS USED

APPROVED BY ACTINGS ACCINICOS ECUSTORIANOS CIR. LTD.

FIRE AUTORIZADA

ADITEC - CONCRETE LABORATORY ACURA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 547-230, 543-684 CUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MANABI

LOCALIZATION: MANABI

DESCRIPTION : SAN JACINTO SAND

SAMPLE # : 2

NORM : ASTH C-40 INF. No. : 1881 DROER BY: HIDROSUELOS
TESTED BY: F.MAYANQUER
APPROVED BY: ING. LUIS DRIEGA
DATE: DECEMBER 22TH, 1993

ORGANIC CONTENT

color:

CRISTALINE

ACCEPTABLE

YES [X

CN CN

REMARKS: IN THE COLORINETRIC ANALYSIS A 3 % SOOTON HIDROXIDE SOLUTION WAS USED

APPROVED BY

ACITIVOS TECHICOS ECUATA LUXOS CIA

CIBLER

1. . . .

ADITEC - CONCRETE LABORATORY ACURA 351 y 10 de Agosto, 260. Piso BUITO TELF. 547-230, 543-684 GUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MARABI

LOCALIZATION: MANASI

DESCRIPTION : BASALTICA SAND

SAMPLE 4 : 1

KORM : ASTH C-40 1HF. No. : 1884 ORDER BY: HIDROSUELOS TESTED BY: F.KAYANQUER APPROVED BY: INC. LUIS ORTEGA

DATE: DECEMBER 221H, 1993

ORGANIC CONTENT

COLOR:

CRISTALINE

ACCEPTABLE

YES [X]

NO [

REMARKS: IN THE COLORIMETRIC ANALYSIS A 3 % SOOTUM HIDROXIDE SOLUTION WAS USED

APPROVED BY
ADITIVOS TECHICOS ECONTACIANOS CIR. LTOR

ADITEC - CONCRETE LABORATORY ACUAL 357 y 10 de Agosto, 2do. Piso OUITO TELF. 547-230, 543-684 GUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MAKABI

LOCALIZATION: MAXABI

DESCRIPTION : BASALTICA SAND

SAMPLE 4 : 2

MORM : ASTH C-40 INF. No. : 1885 ORDER BY: HIDROSUELOS TESTED BY: F.MAYANQUER APPROVED BY: THE. EUIS ORTEGA DATE: DECEMBER 221H, 1993

ORGANIC CONTENT

COLOR:

CRISTALINE

ACCEPTABLE

YES [X]

NO {]

REMARKS: IN THE COLORIMETRIC ANALYSIS A 3 & SOOTUM HIDROXIDE SOLUTION WAS USED

APPROVED BY

Jam Jam Jam

1

(·)

SOUNDNESS TEST WITH SODIUM SULPHATE

STRUCTURE: TRASVASE MANABI DESCRIPTION: COARSE AGGREGATE SAMPLE: G1 NORM: ASTM C-88 ORDER BY: HIDROSUELOS
TESTED BY: F.MAYANQUER
CALCULATED BY: ING. LUIS ORTEGA
DATE: JANUARY 17 TH, 1994

SULFATE ACCION DURABILITY

SODIUM SULFATE SOLUTION

% PARCIAL RETAINED = PARCIAL RETAINED WEIGHT * 100
TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100
INITIAL MASS

% PARCIAL WEAR = % PARCIAL RETAINED • % PASSES

100

# MESH SIZE		% PARCIAL RETAINED OF	MASS OF TI	HE FR	ACTIONS		MESH	% OF WEAR	•
Passing	RETAINED	AGGREGATE (*)	BEFORE ESSAY		after Essay		MORE FINE	PARCIAL	
21/5"	2"	0.00							-
2"	11/4"	0.00							-
11//"	1"	0.00							A A A
\ N	3/4"	1.55		495.00		488.00	1.41		0.02
3/4"	35"	41.24		670.00	<u> </u>	637.00	4.93		2.03
<i>1</i> /4"	3/8 ^u	24.90	The second se	330.00		303.00	8.18		2.04
3/8"	#4	26.54		300.00		283.00	5.67		1.50
									5.5
TOTAL			<u>}</u>					·	

% of the total wear = SUM(% PARCIAL RETAINED)

(*) This value is calculated in reference to the original screen analysis of the aggregate

REMARKS: The aggregate has a total wear percentage of 5.59%

It cumplys with the norm, that specifies a max percentage of Farances on Landings Processing Control of the Landings of the Landi

FIRMA AUTORIZAD

STRUCTURE: TRASVASE MANABI

DESCRIPTION: COARSE AGGREGATE

SAMPLE: G2

NORM: ASTM C-88

ORDER BY : HIDROSUELOS TESTED BY : F.MAYANQUER CALCULATED BY: ING. LUIS ORTEGA DATE: JANUARY 17 TH, 1994

SULFATE ACCION DURABILITY

SODIUM SULFATE SOLUTION

PARCIAL RETAINED WEIGHT * 100 % PARCIAL RETAINED = TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100 INITIAL MASS

% PARCIAL WEAR =

% PARCIAL RETAINED • % PASSES

# MESH SIZE		% PARCIAL RETAINED OF	MASS OF THE FR	ACTIONS	% PASSING MESH	WEAR	
Passing	RETAINED	AGGREGATE (*)	BEFORE ESSAY	AFTER ESSAY	More fine	PARCIAL	
21/5"	2 ⁿ	0.00					
2"	1%"	0.00					
11/4"	1*	1.41	1005.00	880.00	12.44	0.18	
(8	3/4"	55.79	495.00	458.00	7.47	4.1	
3/4"	1/2"	39.59	670.00	641.00	4.33	1.7	
1/2°	3/8"	1.45	330.00	298.0	9.70	0.1	
3/8"	#4	0.74	300.00	265.0	11.67	0.0	
TOTAL				3		6.2	

% OF THE TOTAL WEAR = SUM(% PARCIAL RETAINED)

(*) THIS VALUE IS CALCULATED IN REFERENCE TO THE ORIGINAL SCREEN ANALYSIS OF THE AGGREGATE

REMARKS: The aggregate has a total wear percentage of 6.29%

it cumplys with the norm that specifies a manages of 47%

STRUCTURE: TRASVASE MANAEI DESCRIPTION: COARSE AGGREGATE

SAMPLE: C3

NORM: ASTM C-88

ORDER BY | HIDROSUELOS
TESTED BY | F.MAYANQUER
CALCULATED BY ING. LUIS ORTEGA
DATE: JANUARY 17 TH, 1994

SULFATE ACCION DURABILITY

SODIUM SULFATE SOLUTION

% PARCIAL RETAINED = PARCIAL RETAINED WEIGHT * 100
TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100
INITIAL MASS

% PARCIAL WEAR=

W PARCIAL RETAINED * W PASSES

% OF % PASSING MASS OF THE FRACTIONS % PARCIAL # MESH SIZE WEAR MESH RETAINED OF PARCIAL MOREFINE RETAINED AGGREGATE (*) BEFORE AFTER PASSSING ESSAY ESSAY 0.00 2" 21/5" 0.00 2" 13/5" 2.92 4.88 956.00 1005.00 59.98 11/3" 225 6.67 462.00 495.00 33,70 3/4" in 0.28 8.81 611.00 670.00 1/511 3.20 3/4" 0.04 6.06 310.00 330.00 0.73 3/8ⁿ 1/a 0.09 7.33 278.00 1.25 300.00 #4 3/8" 5.59 TATOT

% OF THE TOTAL WEAR = SUM(% PARCIAL RETAINED)

(*) THIS VALUE IS CALCULATED IN REFERENCE TO THE ORIGINAL SCREEN ANALYSIS OF THE AGGREGATE

	LTOA
REMARKS: The aggrega	te has a total wear percentage of 5.50% countonianos cia. LTDA
lt cumplys with the norm,	that specifies a max percentage of 17,
• •	that specifies a max percentage of 12.
•	The state of the s

STRUCTURE: TRASVASE MANABI

DESCRIPTION: 12nd of river - Quere do

() SAMPLE: SAND #1 NORM: ASTM C-88 order by | Hidrosuelos Tested by | F.Mayanquer Calculated by: Ing. Luis Ortega Date: January 17 TH, 1994

SULFATE ACCION DURABILITY

SODIUM SULFATE SOLUTION

% PARCIAL RETAINED = PARCIAL RETAINED WEIGHT * 100
TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100
INITIAL MASS

% PARCIAL WEAR=

% PARCIAL RETAINED • % PASSES

100

# MESH SIZE		% PARCIAL RETAINED OF	MASS OF THE FRACTIONS			% Passing Mesh	% of Wear	
PASSSING	RETAINED	AGGREGATE (*)	BEFORB ESSAY	AFTER ESSAY		more fine	PARCIAL	
3/8"	#4	0.38	100.00	2 2	82.10	17.90	0.07	
#4	#3	0.90	100.00		85.40	14.60	Name and Address of the Owner, where the Owner, which is the O	
#8	#16	2.56	100.00		90.70	9.30	0.24	
#16	#30	7.05	100.00		94.80	5.20	0.37	
#30	#50	46.79	100.00		89.50	10.50	4.91	
#50	#100	33.97	100.00		92.10	7.90	2.68	
							<u></u>	
Pass #100		8.34						
TOTAL							8.4	

% OF THE TOTAL WEAR = SUM(% PARCIAL RETAINED)

(*) This value is calculated in reference to the original screen analysis of the aggregate

REMARKS: The aggregate has a total wear percentage of 8.40%

It cumplys with the norm that specifies a man percentage of toby fishes cis.

FIRMA AUTORIZADA

422

STRUCTURE: TRASVASE MANABI DESCRIPTION: SAN JACINTO MINE

SAMPLE: SAND #2 NORM: ASTM C-88 ORDER BY : HIDROSUELOS
TESTED BY : F.MAYANQUER
CALCULATED BY: ING. LUIS ORTEGA
DATE: JANUARY 17 TH, 1994

SULFATE ACCION DURABILITY

SODIUM SULFATE SOLUTION

% PARCIAL RETAINED = PARCIAL RETAINED WEIGHT * 100

TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100
INITIAL MASS

% PARCIAL WEAR=

% PARCIAL RETAINED + % PASSES

100

# MESH SIZE		% PARCI RETAINI		MASS OF	THEFR	ACTIONS		% PASSING MESH	% of Wear
PASSSING	RETAINED		Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, where the Owner, where the Owner, which is the Owner, whic	BEFORE AFTER ESSAY ESSAY		More fine	PARCIAL		
3/8"	#4		0.00						
#4	#8		0.00		-				
#8	#16	 	0,00		0.00		0.00	0.00	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN
#16	#30		0.00		0.00		0.00	0.00	0.0
	#50	 	7.71		100.00		89.00	11.00	0.8
#30	#100		85.07		100.00		93.00	7.00	59
#50	H100	-	Q 7.4 /			 	***************************************		
Pass#100						<u> </u>			
TOTAL	1								6.8

% OF THE TOTAL WEAR = SUM(% PARCIAL RETAINED)

(*) THIS VALUE IS CALCULATED IN REFERENCE TO THE ORIGINAL SCREEN ANALYSIS OF THE AGGREGATE

REMARKS: The aggregate has a total t	eners bescentage of 6 80%
It cumplys with the norm, that specifies	MAN A CHECAN THE CONTRACT CHE FLOR
· .	FIRMA ALTORIZADA

()

STRUCTURE: TRASVASE MANABI DESCRIPTION: BASALTICA MINE SAMPLE: SAMD # 3 NORM: ASTM C-88

1

()

()

ORDER BY: HIDROSUELOS
TESTED BY: F.MAYANQUER
CALCULATED BY: ING. LUIS ORTEGA
DATE: JANUARY 17 TH, 1994

SULFATE ACCION DURARILITY

SODIUM SULFATE SOLUTION

% PARCIAL RETAINED = PARCIAL RETAINED WEIGHT * 100

TOTAL WEIGHT

% PASSING = INITIAL MASS - RETAINED MASS AFTER ESSAY * 100 INITIAL MASS

% PARCIAL WEAR =

% PARCIAL RETAINED . % PASSES

100

# MESH SIZE		% PARCIAL RETAINED OF	MASS OF THE FF	ACTIONS	% PASSING MESH	% of Wear	
Passing	RETAINED	AGGREGATE(*)) BEFORE AFTER ESSAY ESSAY		MORE FINE	PARCIAL	
3/8"	#4	• 0.28	100.00	70.	29.80	0.08	
#4	#8	11.99	100.00	85.	30 14.70	1.76	
#8	#16	21.92	100.00	97.	0 2.60	0.57	
#16	#30	15.23	100.00	95.	5.00	0.76	
#30	#50	23.00	100.00	92.	30 7.70	1.77	
#50	#100	23.65	100.00	93.	20 6.80	1.61	
Pass#100		3.93					
TOTAL						6.5	

% OF THE TOTAL WEAR = SUM(% PARCIAL RETAINED)

(*) THIS VALUE IS CALCULATED IN REFERENCE TO THE ORIGINAL SCREEN ANALYSIS OF THE AGGREGATE

REMARKS: The aggregate has a total wear percentage of 6.56% CILL LIDAL It cumplys with the norm, that specifies a manifesteriage of ADM

LOS ANGELES ABRASSION TEST

ADITEC - CONCRETE LABORATORY Acuña 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASYASE MANABI SAMPLE: G-1 (41) NORM ASTN C 131 INF.No. 1874

()

()

()

ORDER BY: HIDROSUELOS
TESTED BY: L. ORTEGA
CALCULATED BY: ING. LUIS ORTEGA
DATE: 22-Dic-94

ABRASION TEST USIND LOS ANGELES TESTING MACHINE

C={(A-8)/A}*100

GRADATION: \$

INITIAL MASS OF SAMPLE

A: 5000.00 gr

RETEINED MASS IN # 12 MESH AFTER

8: 4110.00 gt

500 REVOLUTIONS

: 17.80

WEAR PERCENTAGE

REMARKS: The aggregates complys with the norm.

SOUTHOR DECASES ECONOMISMOS OU LIER

1

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 QUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI SAMPLE: G-1 (#2) MORM ASTM C 131 1NF.No. 1877 ORDER BY: HIDROSUELOS
TESTED BY: L. ORTEGA
CALCULATED BY: ING. LUIS ORTEGA
DATE: 22-Dic-94

ABRASION TEST USING LGS ANGELES TESTING MACHINE

C={(A-B)/A)*100

GRADATION: A

INITIAL MASS OF SAMPLE

12 00.0002 :A

RETEINED HASS IN # 12 MESH AFTER

8: 4150.00 gr

500 REVOLUTIONS

WEAR PERCENTAGE

C: 17.00

REMARKS: The aggregates complys with the norm.

ABITHES TECHCOS ECULYGRIANOS CIA LTOA

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI SAMPLE : G-2 (11) HORM ASTN C 131 1875 INF. No.

0

()

GROER BY: HIDROSUELOS TESTED BY: L. ORTEGA CALCULATED BY: ING. LUIS ORTEGA DATE: 22-Dic-94

ABRASION TEST USING LOS ANGELES TESTING MACHINE

C:{(A-8}/A)*100

GRADATION: A

INITIAL MASS OF SAMPLE

5000.00 gr

RETEINED HASS IN # 12 HESH AFTER

4180.00 gr

SOO REVOLUTIONS

¢: 16.40

WEAR PERCENTAGE

REMARKS: The aggregates complys with the norm.

AUTHORS RESINCUS CONSTITUENOS CIA LIDA

ADITEC - CONCRETE LABORATORY Acuña 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 QUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MAXABI SAMPLE: G-2 (12) HORK ASTH C 131 1878 INF.No.

OPDER BY: HIDROSUELOS TESTED BY: L. DRIEGA CALCULATED BY: ING. LUIS ORTEGA DATE: 22-Dic-94

ABRASION TEST USING LOS ANGELES TESTING MACHINE

C:((A-8)/A)*100

GRADATION: A

INITIAL MASS OF SAMPLE

RETEINED MASS IN # 12 KESH AFTER

500 REVOLUTIONS

WEAR PERCENTAGE

10 60,0005

4150.00 gr

17.00

REMARKS: The aggregates complys with the norm.

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. P QUITO TELF. 502-073, 543-684 QUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI SAMPLE : G-3 (11)

()

NORM ASTR C 131 1876 IKF. No.

ORDER BY: MIDROSVELOS TESTED BY: L. ORTEGA

CALCULATED BY: INS. LUIS ORTEGA

DATE: 22-010-94

ABRASION TEST USING LOS ANGELES TESTING MACHINE

C:{(A-8}/A)#100

GRADATION: 3

INITIAL MASS OF SAMPLE

10 00.00001 :A

RETEINED MASS IN \$ 12 MESH AFTER

10 00.0058

1000 REVOLUTIONS

¢: 16.10

WEAR PERCENTAGE

REMARKS: The aggregates couplys with the norm.

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MAKABI SAMPLE : 6-3 (42) HORM ASTH C 131 INF. No. 1879

ORDER BY: BIDROSUELOS TESTED BY: L. ORTEGA CALCULATED BY: ING. LUIS ORTEGA DATE: 22-Dic-94

ABRASION TEST USINO LOS ANGELES TESTING NACHINE

¢:((A-8)/A)*100

CRADATION: 3

INITIAL MASS OF SAMPLE

A: 10000.00 gr

RETEINED HASS IN # 12 HESH AFTER

8330.00 91

1000 REVOLUTIONS

WEAR PERCENTAGE

16.70

REMARKS: The aggregates complys with the norm, that specifies a max.percentage of 40.

()

()

CHEMICAL ALKALI REACTIVITY

ADITEC - LABORATORIO DE HORMIGONES ACURA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 547-230, 543-684 GUAYAQUIL TELF. 232-769, 254-160

STRUCTURE : TRASVASE MARABI DESCRIPTION : COARSE AGGREGATE

HORM : ASTN (C-289) - (C128-81)

GROER BY TESTED BY APPROVED BY

: HIDROSUELOS : F. MAYANQUER : ING. LUIS DRIEGA

DATE

: JAKUARY 24TH, 1994

POTENTIAL REACTIVITY OF AGGREGATES

SAMPLE	:::	ISOLYEO SILICA	ALCALINITY REDUCTION RC (milimol/1)		
COARSE A. 1	G-1	65.31	138.41		
AAUUUAP AIN E		59,42	145.72		
		60.21	156.21		
COARSE A. 2	6-2	68.30	122.31		
Vymov m s	• •	67.41	131.24		
		52.21	145,36		
COARSE A. 3	6-3	51.72	139.58		
CANDAC D. A		59.43	148.34		
		63.24	157.25		

REMARKS: This aggregates are considered innocuous because they cause an expansion in the mortar of less then 0.1 % in one year when used with a cement that contains 1,38 % of alcal

ADITIOS TECHICOS ECUATORIANOS CIA. ETDA.

STRUCTURE : TRASVASE MAKABI

DESCRIPTION : SAND

1

NORM : ASTH (C-269) - (C128-81) ORDER BY

: HIDROSUELOS

TESTED BY APPROVED BY : F. MAYANGUER

: INS. LUIS ORTEGA

DATE

: JANUARY 24TH, 1994

SAMPLE Excessive Sands		:::::	OISOLVED STLICA Sc (milimal/l)			ALCALIMITY REDUCTION RC (allimot/1)		
							·.	
ALU TIATUTA			17.98			. !	505,37	
SAN JACINTO			18.65		100		406.38	:
	·		22.64			Maria.	343.86	1
					I	. 1	441 61	
BASALTICA .		:	51.62			1.5	161.51	
		•	67.93	•			119.83	
			59.27				265.71	
QUEVEDO			33.30				354.28	
			34.63				338.65	
			34.96			1.5	270.92	

REMARKS: This aggregates are considered innocuous because they cause an expansion in the mortar of less then 0.1 % in one year when used with a cement that contains 1,38 % of alcal

Sílice disuelta en agregado mineral comprendido entre los tamices: 300 µ m y 150 µm (milimeles por life) por um solución de NaOH 1,0N (cantidad 5,).

- Agregados que causan en el mortero um explusión mayor de 0,1 %/o en un año cuando se usan con cemento que contiene 1,38 %/o de alcutis.
- O. Agregados que causan en el mortero una expansión menor de 0,1 ^Ofo en un ano hajo las mismas condiciones.
- Agregados para los crades no se dispone en étois sobre la expansión del mortero pero que son deninos según el examen petrográfico.
- er Agregados para los curlos no se dispore de clasos sobre la expansión del nvortero pero que son inocuos segun el examen perrográfico.
- Lifoca divisoria entre agregados dichores y les dicitors.

TRAIRA 2. Hostavion de G. Scissin entre agregados inoctos y definos en hase al orsay e de redución en ali dinidad.

11.2 CONCRETE TESTS RESULTS

ADITEC - CONCRETE LABORATORY Acuña 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANASI

ORDER BY: HIDROSUELOS

LOCALIZATION: SAND FROM QUEVEDO NINE

TESTED BY: W. AYERVE

HORM ASTR C 39 INF.No. 8340

0

!)

CALCULATED BY: ING. LUIS DRIEGA

DATE: 12-Jan-94

COMPRESSIVE STRENGHT IN KG/CH2

Cilind.	KOLDING DATE	DATE OF ESSAY	DAYS	KOITASIFICATION		(CH)	STRENGHT Kg	COMPRESSIVE STRENGH Kg/cm2	DIAMETER OF CIL.	AVERAGE 3 CIL.
Ĺ	31-Dec-93	07-Jan-94	: 7	A-1		14	15500	85	15.20	
. 3	31-Dec-93	07-Jan-94	7	A-1	100	14	16300	90	15.20	
5	31-Dec-93	07-Jan-94	7	A-1		14	15800	87	15.20	. 87
7	01-Jan-94	08-Jan-94	7	A-2		10	9200	51	15.20	
9	01-Jan-94	08-Jan-94	7	A-2	1.0	10	9500	52	15.20	
11	01-Jan-94	08-Jan-94	7	A-2	-	10	9600	53	15.20	52
13	01-Jan-94	08-Jan-94	7	8-1	:	10	18800	104	15.20	
. 15	01-Jan-94	.08-Jan-94	7	8-1		10	18000	99	15.20	
17	01-Jan-91	08-Jan-94	7	8-1		10	18600	103	15.20	102
19	01-Jan-94	08-Jan-94	7	B-2		12	16800	93	15.20	
21	01-Jan-94	08-Jan-94	7	8-2	7	12	16200	. 89	15.20	
23	01-Jan-94	08-Jan-94	7	8-2	5 -	12	14100	78	15.20	87
25	01-Jan-94	08-Jan-94	7	8-3		12	11600	64	15.20	
27	01-Jan-94	08-Jan-94	7	8-3		12	10900	. 60	15.20	
29	01-Jan-94	08-Jan-94	7	8-3	-	12	11300	62	15,20	62
31	01-Jan-94	08-Jan-94	7	8-4		8	6900	38	15.20	
33	*	08-Jan-94	7	8-4		8	7200	10	15.20	
35	01-Jan-94	08-Jan-94	7	8-4		8	7600	42	15.20	40

TESTING EQUIPMENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

CONCRETE MINIMO

- a) Concrete was machine mixed as prescribed in A.S.T.M Method C-192
- b) Slumptests: ASIM C-143

reharks:		Bernardian de de servicion de des actual de de servicion de de servicion de de servicion de de servicion de de	********	

Aditivos Téspicos Ecyalerianos C. L.
Laboratórios de Harmigenes

FIRMA AUTORDADA

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 QUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MAMABI LOCALIZATION: SAND FROM QUEVEDO MINE HORM ASIN C 39 INF.No. 8525 ORDER BY: HIDROSUELOS TESTED BY: W. AYERYE CALCULATED BY: INS. LUIS ORTEGA

DATE: 04-Feb-94

COMPRESSIVE STRENGHT IN KG/CM2

Cilind.	HOLDING DATE	DATE OF ESSAY	DAYS	IDENTIFICATION	SLUMP (CM)	STRENGHT Kg	COMPRESSIVE DIAMETER STRENGH OF CIL: Kg/cm2	AVERAGE 3 CIL.
. 2	31-Dec-93	28-Jan-94	5 - 28	A-1		. 44400	245 15.20	
2		28-Jan-94	28	A-1		30100	168 15.20	100
6		28-Jan-94	28	A-1		29500	163 15.20	165
R		29-Jan-94	28	A-2		20000	110 15.20	
10		29-Jan-94	28	A-2		18900	104 15.20	
12		29-Jan-94	28	A-2		19800	109 15.20	108
14		29-Jan-94	28	8-1		36400	201 15.20	
16		29-Jan-94	28	8-1		37100	204 15.20	•
		29-Jan-94	28	B-1		26800	148 15.20	203
18		29-Jan-94	28	8-2	4	26400	145 15.20	
20		29-Jan-94	28	8-2	* * * * * * * * * * * * * * * * * * *	26300	145 15.20	·
. 22	177	29-Jan-94	28	B-2	:	26100	144 15.20	145
24			28	8-3	1.1	24700	136 15.20	
26		29-Jan-94	28	8-3	1 +	22800	126 15.20	. 7
28		29-Jan-94	28	8-3	4	24300	134 15.20	132
20		29-185-94		B-4		13800	76 15.20	
32		29-Jan-94	28	B-4		15000	17 17 17 17	
		29-Jan-94	28 28	8-4		15700	- 11 August - August	82

TESTING EQUIPMENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

CONCRETE MIXING:

a) Concrete was machine mixed as prescribed in A.S.T.M Method C-192

b) Slumptests: ASTK C-143

REMARKS:	

Aditivas Tácnicos/Ecuatorianas C. L. Laboratoria de Hernizones

FIRMA AUCORIZADA

ADITEC - CONCRETE LABORATORY ACUÑA 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE NAMABI

LOCALIZATION: SAND FROM SAN JACINTO M

NORM ASTH C 39

()

IKF.No. 8342

ORDER BY: HIDROSUELOS

TESTED BY: W. AYERVE

CALCULATED BY: ING. LUIS ORTEGA

DATE: 12-18n-94

COMPRESSIVE STRENGHT IN KG/CH2

Cilind.	KOLDING DATE	DATE OF ESSAY	DAYS	IDENTIFICATION		SLUMP (CM)	STRENGHT Kg	COMPRESSIVE STRENGH Kg/cm2	OTAMETER OF CIL.	AVERAGE 3 CIL.
73	04-Jan-94	11-Jan-94	7	A-1		14	21000	116	15.20	. *
	04-Jan-94		7	A-1		14	20100	111	15.20	
	04-Jan-94		7	A-1		14	20400	112	15.20	113
	f 2	11-Jan-94	7	A-2	100	10	12200	67	15.20	
	04-Jan-94		7	Á-2		10	12700	70	15.20	
83	04-Jan-94	11-Jan-94	7	A-2		10	11900	: 66	15.20	88
		11-Jan-94	7	8-1		10	21000	116	15.20	
97	1 1	11-Jan-94	,	8-1	1 7.	01	22700	125	15.20	
89		11-Jan-94	7	8-1		10	22700	125	15.20	122
		11-Jan-94	. 7	8-2	100	12	S 15600	86	15.20	
		11-Jan-94	5 To 1	8-2	100	12	13600	75	15.20	
95	04-Jan-94	11-Jan-94	7	8-2		. 12	14700	81	15.20	. 81
		11-Jan-94	7	B-3		11	11400	63	15.20	
99	04-Jan-94	11-Jan-94	7	8-3		11	11000	61	15.20	
101	01-320-94	11-Jan-94	S 1 1 7	8-3		11	10100	56	15.20	61
103		11-Jan-94	7	8-4		12	6400	35	15.20	
	1,7, 11, 11, 11, 11, 11, 11, 11, 11, 11,	11-Jan-94	7	8-4		12	5700	31	15.20	: .
107	04-Jan-94	11-Jan-94	1	8-4		12	6300	35	15.20	31

TESTING EQUIPMENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

CONCRETE MIXING:

- a) Concrete was machine mixed as prescribed in A.S.I.M. Method C-192
- b) Slumptests: ASTN C-143

REMARKS:	

APPROVED BY
Aditivos Técnicos Ecuatorianos C. L.

Loberatorios de Harmigenes

firma autorizatia

438

()

ADÍTEC - CONCRETE LABORATORY Acuña 357 y 10 de Agosto, 2do, Piso QUITO TELF. 502-073, 543-684 QUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI

LOCALIZATION: SAND FROM SAN JACINTO N

NORM ASTH C 39 INF.No. 8524 GROER BY: HIDROSUELOS TESTED BY: W. AYERVE

CALCULATED BY: ING. LUIS ORTEGA

DATE: 4-Feb94

COMPRESSIVE STRENGHT IN XG/CH2

Cilind.	HOLDÍNG DÁTE	DATE OF ESSAY	DAYS	IDENTIFICATION		(KD)	STRENGHT Kg	COMPRESSIVE STRENSH Kg/cm2	DIANETER OF CIL.	AVERAGE 3 CIL.
: 74	04-Jan-94	01-Feb-94	28	A-L	5 .		34500	190	15.20	-
76	11.2		28	A-1			34800	192	15.20	
	04-Jan-94		28	A-1			34800	192	15.20	191
	04-Jan-94		3 13 <mark>28</mark> 11	A-2			19700	109	15.20	
	04-Jan-94		28	A-2			19500	107	15.20	
	04-Jan-94		28	A-2			19400	107	15.20	108
				8-1			35200	194	15.20	r'
	04-Jan-94		28	-	4 1		34500	190	15.20	
88		01-feb-94	28	8-1			32400	(1)9	15.20	188
90	01-Jan-91		28	8-1				124	15.20	
92		01-feb-94	28	8-2			22500	and the second second	1.00	
94		01-Feb-94	28	8-2			24600	136	15.20	178
96	04-Jan-94	01-Feb-94	28	8-2			23100	129	15.20	130
99	04-Jan-94	01-feb-94	28	8-3			17300	95	15.20	
100	04-Jan-94	01-Feb-94	28	8-3	1		17000	94	15.20	
102	04-Jan-94	01-feb-94	28	8-3			16600	91	15.20	94
104		01-feb-94	28	8-4			11100	61	15.20	
106		01-Feb-94	28	8-4			11600	64	15.20	
108		01-feb-94	28	* B-4			11100	61	15,20	62

TESTING EQUIPMENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

CONCRETE MIXING:

- a) Concrete was machine mixed as prescribed in A.S.T.M Method C-192
- b) Slumptests: ASIN C-143

	-
REMARKS:	

Aghinas de figuration C. L.
Leghinas de figuration C. L.

Fried Automization

ADITEC - LABORATORIO DE HORMIGONES Acuña 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI LOCALIZATION: BASALT - NINE SAND

NORM ASTR C 39 INF.No. 8341

1)

ORDER BY: HIDROSUELOS TESTED BY: W. AYERVE

CALCULATED BY: ING. LUIS ORTEGA

DATE: 12-Jan-94

COMPRESSIVE STRENGHT IN KG/CM2

Cilind.	MOLDING	DATE OF ESSAY	DAYS	1DENTIFICATION		SLUMP (CH)	STRENGHT Ng	COMPRESSIVE (STRENGH (Kg/ca2	DIAMETER OF CIL.	AYERAGE 3 CIL.
10	03-Jan-94	10-Jan-94	: 1	A-1		14	16800	93	15.20	
	03-Jan-94		1	A-1		14	17000	94	15.20	
	03-Jan-94		,	A-1		14	17100	94	15.20	94
	03-Jan-94		,	A-2		14	13800	76	15.20	
	03-Jan-94		,	A-2		14	13400	74	15.20	
	03-Jan-94		,	A-2		14	12900	71	15.20	74
	03-Jan-94			8-1		13	20800	115	15.20	
			7	8-1		13	22200	122	15.20	
		10-Jan-94	, ,	8-1		13	20600	114	15.20	117
	03-Jan-94		, (8-2		13	14000	17	15.20	
55		10-Jan-94		8-2		13	13100		15.20	
57		10-Jan-94	· · · · · · · · · · · · · · · · · · ·		•	13	13500	74	15.20	. 75
59		10-Jan-94		8-2			11000	61		
61		10-Jan-94	1	B-3		12	11100	61	15.20	
63		10-Jan-94	1	8-3		12		63	15.20	62
65		10-Jan-94		8-3		15	11500		15.20	Q.L
67	03-Jan-94	10-Jan-94	1	8-4		12.	7500			
69	03-Jan-94	10-Jan-94	1	8-4	- 2	12	7500	41	15.20	10
71	03-Jan-94	10-Jan-94	7	8-4		12	7800	43	15.20	42

TESTING EQUIPHENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

CONCRETE MIXING:

a) Concrete was machine mixed as prescribed in A.S.T.M Method C-192

b) Slumptests: ASIN C-143

	LEHARKS:
•	

APPROVEO BY
Adiliyas Técnicos Ecustomaios C L.
Laboratórios de Reimigenias

FIRMA AUTOXIZADA

441

(()

ADITEC - LABORATORIO DE HORMIGONES Acuña 357 y 10 de Agosto, 2do. Piso QUITO TELF. 502-073, 543-684 GUAYAQUIL TELF. 254-021, 254-160

STRUCTURE: TRASVASE MANABI

LOCALIZATION: SAND FROM BASALT MIKE

INF.No.

NORM ASTH C 39

8526

ORDER BY: HIDROSUELOS

TESTED BY: W. AYERYE CALCULATED BY: ING. LUIS ORTEGA

DATE: 04-Feb-94

COMPRESSIVE STRENGHT IN KG/CM2

Cilind.	DATE	DATE OF ESSAY	DAY	\$		IDENTIFICATION		SLUMP (CH)	STRENGHT Kg	COMPRESSIVE STRENGH Kg/cm2	DIAMETER OF CIL.	AVERAGE 3 CIL.
38	03-Jan-94	31-Jan-94		28		Á-1			30400	168	15.20	
40	2.73	31-Jan-94	- 1	28	1.	A-1			29900	165	15.20	
42	03-Jan-94	31-Jan-94		28	-	A-1			30200	166	15.20	166
- 44		31-Jan-94	٠.	28		A-2			24300	134	15.20	
46	03-Jan-94	31-Jan-94		28		A-2	100		25100	138	15.20	
	03-Jan-94			28		A-2			26200	144	15.20	139
50	03-Jan-94	31-Jan-94		28		8-1			41000	226	15.20	
		31-Jan-94	1.5	28		8-1		•	35600	196	15.20	
	03-Jan-94			28		8-1			38700	213	15.20	212
56		31-Jan-94	1.5	28	7	8-2	1 .		26000	143	15.20	
•••	03-Jan-94	and the second second	1	28		8-2			25900	143	15.20	
60		31-Jan-94		28		8-2			26100	144	15.20	143
62	•	31-Jan-94		28		8-3			22500	124	15.20	
64		31-Jan-94	11.	28		8-3			22300	123	15.20	
66	2 1	31-Jan-94		28		8-3			23300	128		125
68		31-Jan-94		28		8-4	: -		15600	86	15.20	٠
70		31-Jan-94	1	28	+ ;	8-4			14200	78	15.20	
12		31-Jan-94		28		8-4			15500	85	15.20	83

TESTING EQUIPMENT:

a) Compression testing machine: Controls S.P.A Italy - 300 In. capacity

- a) Concrete was machine mixed as prescribed in A.S.T.X Method C-192
- b) Slumptests: ASTM C-143

REMARKS:		
	•	

APPROVED BY

Aditivos Técnicos Ecuatorianes C. L. Laberatorios de Hermigenes

FIRMA AUTORIAN

11.3 CEMENT CHARACTERISTICS

€).

CARACTERISTICAS DEL CEMENTO ROCAFUERTE TIPO 18

RESIST.A LA COMPRESION: (kg/cm2)

3 dias 105 7 dias 28 dias 165 225

DENSIDAD:

3.01 gr/cm3

CONSISTENCIA NORMAL (A/C): 28 %

TIEMPO DE FRAGUADO:

METODO: VICAT

Tiempo Inicial: Tiempo Final:

....95 min 95 min 370 min

5. REQUISITOS DEL CEMENTO PORTLAND IE

5.1 Químicos. Cumplirá con los requisitos químicos, aplicables, descritos en la Tabla 2.

TABLA 2. Requisitos químicos,

PARAMETRO	Oxido de magnesio (MgO) % Máx.	Trióxido de ezufre (SO3) % Méx.	Pérdide por celcinsción %
REQUISITO	5	4	5
METODO DE ENSAYO	INEN 192	INEN 203	INEN 160

5.2 Físicos. Cumplirá con los requisitos físicos descritos en la Tabla 3.

TABLA 3. Requisitos físicos.

PARAMETRO	REQUISITO	METODO DE ENSAYO
Finura	•	INEN 489
A Commence of the Commence of		INEN 196
Expansión en autoclave % máx.	0.50	INEN 200
Contracción autoclave % máx.	0,20	
Tiempo de fraguado, Vical		1
Inicial, min. (min)	45	
final, máx, (min)	420	INEN 158
Contenido de aire del mortero,		INEN 195
% máx, de volumen 🕝	12	
Resistencia a la comptesión, mín, en MPa		INEN 488
3 d(a)	11.0	
? días	18.0	
-28 días	24.2	
Expansion del mortero ** % máx.	- • -	
-14 días f.	0.020	
8 semanas	0,060	ASTM C 22

^{*} Para revalquiera de los casos ya sea la cantidad retenida por tamizado húmedo en 45µm o la superficie específica por el aparato de permeabilidad de aire, cm²/n, deben ser informados.

1 MPa ≔ 10,1972 kg/cm²

^{**} El ensayo de expansión del mortero es un requisito opcional, aplicado solamente cuando lo requiere el comprador y no debe ser requerido a menos que el cemento vaya a utilizarse con áridos de reacción alcalina

I

CEMENTO

Marca:	Rocafuerte	Time	4 50
Hai Ca.	voraidei te	1100	15

Procedencia: C.Blanco

Fecha de Recepción:

Lab. No::

ANALISIS QUIMICO		1	CARACTERISTICAS FISICAS		
lPérdida al Fuego	3.0	, I	Retenido Tamiz 45 um(#325) 11.6		
SiOa	27.2	7 1			
Ala0s	5.2	и И ј	Superficie Específica 428 m²/		
IFe _B O _B	3.1	%	Pasta Normal (a/c) g/		
CaU	54.8	%	Inicio de Fraquado 169 mi		
MgO	1.1	% 1	Final de Fraguado 366 mi		
IKeO	0.2	z i	Falso Fraguado		
INa _B O	0.4	% !	Aire en el Mortero		
ISO ₃	2.7	%	Expansión Autoclave		
		% · [Morteros (a/c) g/g		
	•	% I	Fluidez del Mortero ;		
Alcalinos Totales (NagO+0.658KgO)		% !			
COMPOSICION POTENCI	AL.	1	EDAD RESISTENCIA A		
IC _a S		7 I	MPa		
C _B S		1 % 1	5.7		
I C ₂ A		/ // I	1 3 1 12.7		
C4AF		7 I	1 7 1 18.5		
MODULO ATTENDADO		l f	l 28 l 27.0		
MODULO HIDRAULICO		! !	11		

OBSERVACIONES

VTO.BMB.CABORATORIO

Leigulg-Cuiffe, just Uniff. Jese de Laboratorio Crairo-Ticoko-ful-linjuigia

