7. Mechanical and Electrical Equipment

7.1 Severino Pumping Station

SEVERINO PUMPING STATION INTAKE GATE AND GANTRY CRANE

1. Design Condition

Type

: Steel made fixed-wheel gate

Quantity

: Two (2) sets

Clear span

: 6.0 m

Clear height

: 3.0 m

Flood water level

: EL.69.000 m

Sill elevation

: EL.42.100 m

Design head

26.9 m

Sealing method

: 4 edges rubber scal at downstream face of gate

Maximum deflection

of main horizontal

: 1/1000 of supporting span

beams

Corrosion allowance: 1.0 mm for skin plate and main structural members

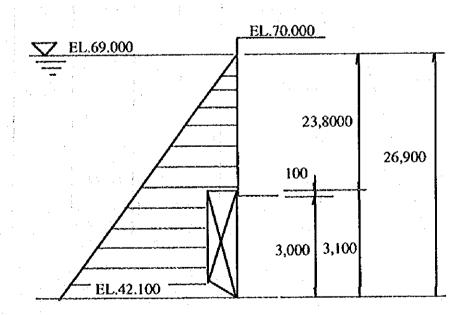
(usually asumed in air on the dogging device)

Type of hoist

: Electrically driven wire rope wound type gantry crane

Operating speed

: 1 m/min. ± 10 %


Hoisting height

: 28.5 m

Operating method

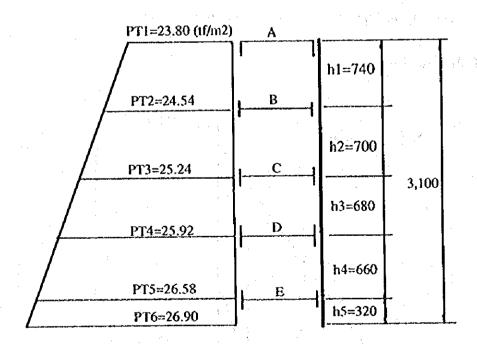
: Remote control from cabine

2. Hydraulic Load

$$P_T = \frac{1}{2} \times (H_2^2 - H_1^2) \times B \times G_W$$

P_T: Hydraulic load (tf)

H₁: Design head at gate top 23.800 m
H₂: Design head at gate bottom 26.900 m
B: Sealing span 3.100 m


Gw: Specific gravity of water 1.000 tf/m³

Thus,

$$P_T = 0.5 \text{ x} (26.9^2 - 23.8^2) \text{ x} 3.1 \text{ x} 1.0$$

= 243.614 tf

3. Main Horizontal Beams

(1) Arrangement of main horizontal beams
Six numbers of main horizontal beams are arranged as follows:

(2) Charging load on each beam

Charging load acting on each beam is calculated by the following equations:

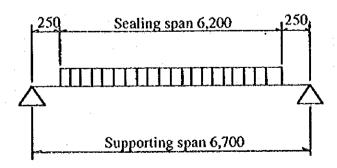
$$Beam\ A = \frac{\left(2P_{T1} + P_{T2}\right)}{6} \times h_1$$

Beam B =
$$\frac{(P_{T1} + 2P_{T2})}{6} \times h_1 + \frac{(2P_{T2} + P_{T3})}{6} \times h_2$$

Beam
$$C = \frac{(P_{12} + 2P_{13})}{6} \times h_2 + \frac{(2P_{13} + P_{14})}{6} \times h_3$$

Beam
$$D = \frac{(P_{T3} + 2P_{T4})}{6} \times h_3 + \frac{(2P_{T4} + P_{T5})}{6} \times h_4$$

Beam
$$E = \frac{(P_{T4} + 2P_{T5})}{6} \times h_4 + \frac{(P_{T5} + P_{T6})}{2} \times h_5$$


Thus, calculation result is as follows:

Beam A	Beam B	Beam C	Beam D	Beam E
8.897	17.659	17.411	17.362	17.256
				(tf/m)

(3) Bending moment and shearing force

a. Bending moment

Maximum bending moment is calculated by the following equation:

$$M_{\text{max.}} = \frac{W \times (2 \times L - B)}{8}$$

Mmax: Maximum bending moment (tf-m)

w: Design load acting on each beam (tf)

L : Supporting span 6.7 m

B : Sealing span 6.2 m

b. Maximum shearing force is calculated by the following equation:

$$S_{\text{max.}} = \frac{W}{2}$$

where,

S_{max.}: Maximum shearing force (1f)

W: Design load acting on each beam (tf)

c. Calculation result

The calculation result is as follows.

	Beam A	Beam B
W (tf)	55.163	109.487
Mmax. (tf-m)	49.647	98.538
Smax. (tf)	27.582	54.744

As maximum charging load is on Beam C, bending moment and shearing force are calculated only on Beam C

(4) Bending stress and shearing stress

a. Bending stress and shearing stress are calculated by the following equations:

$$\sigma_{\text{max.}} = \frac{M_{\text{max.}} \times 10^5}{Z}$$

$$\tau_{\text{max.}} = \frac{S_{\text{max.}} \times 10^3}{A_{\text{mi}}}$$

where,

 σ_{max} : Maximum bending stress (kgf/cm²)

M_{max.}: Maximum bending moment (tf-m)

Z: Modulus of section (cm³)

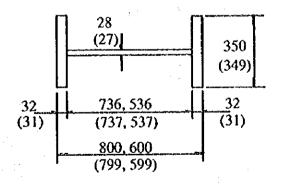
 τ_{max} : Maximum shearing stress (kgf/cm²)

S_{max}. : Maximum shearing force (tf)
A_w : Area of web at both ends (cm²)

b. Sectional property of beams

Sectional dimension

Beam A


15
(14)

200
(199)

32
(31)

736, 536
(737, 537)
800, 600
(799, 599)

Beam B

		Beam A	Beam B
Moment of inertia	I (cm ⁴)	228,734	409,310
Modulus of section	Z (cm ³)	5,725	10,246
Area of web	Aw (cm²)	75.18	144.99

(Aw: Reduced to 600 at both ends)

c. Calculation result

The calculation result is as follows.

			همستور چه از دادرس به حراری این که ماهم مستورندی و مشاه کمی به نام در می در می در می در می در در در از در این
	_	Beam A	Beam B
σ_{max}	(kgf/cm ²)	867	962
σ_a	(kgf/cm ²)		1,200
τ _{max.}	(kgf/cm ²)	367	378
τ_a	(kgf/cm ²)		700

 σ_a : Allowable bending stress = 0.5 σ_y = 1,200 kgf/cm²

 τ_a : Allowable shearing stress = 0.3 $\sigma_y \neq 700 \text{ kgf/cm}^2$

(5) Deflection

Maximum deflection of each beams is calculated by the following equation.

$$\delta_{\text{max}} = \frac{W}{48 \times EI} \left(L^3 - \frac{L \times B^2}{2} + \frac{B^3}{8} \right)$$

where,

 δ_{max.}
 : Maximum deflection of each beam
 (cm)

 W
 : Design load on each beam
 (kgf)

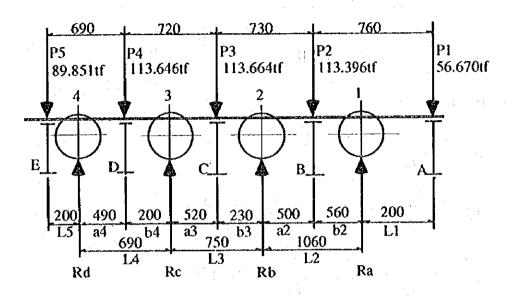
 L
 : Supporting span
 670 cm

 B
 : Sealing span
 620 cm

 E
 : Elastic modulus of steel
 2.1 x 10⁶ kgf/cm²

 I
 : Moment of inertia
 (cm⁴)

Thus,


$$\delta_{\text{max.}} = 2.0018 \times \frac{W}{I}$$

		Beam A	Beam B
W	(kgf)	55,163	109,487
I	(cm ⁴)	228,734	409,310
δ_{max}	(cm)	0.483	0.535
$\delta_{max.}/L$		1/1,388	1/1,251
Allowable	deflection:	1	/1,000

4. End Beam

(1) Arrangement of main wheels

Three main wheels are provided in each end beam of gate leaf and their arrangement is as follows:

(2) Bending moment

$$M_4 = -\frac{P_5}{2} \times L_5$$

$$L_{4} \times M_{4} + 2 \times (L_{4} + L_{3}) \times M_{3} + L_{3} \times M_{2} = \frac{P_{4} \times a_{4} \times (L_{4}^{2} - a_{4}^{2})}{L_{4}} - \frac{P_{3} \times b_{3} \times (L_{3}^{2} - b_{3}^{2})}{L_{3}}$$

$$L_{3} \times M_{3} + 2 \times (L_{3} + L_{2}) \times M_{2} + L_{2} \times M_{1} = \frac{P_{3}}{2} \times a_{3} \times (L_{3}^{2} - a_{3}^{2}) - \frac{P_{2}}{2} \times b_{2} \times (L_{2}^{2} - b_{2}^{2})}{L_{2}}$$

$$M_1 = -\frac{P_1}{2} \times L_1$$

Thus,

$$M_1 = -5.667 \text{ tf-m}$$

$$M_2 = 0.310 \text{ tf-m}$$

$$M_3 = -4.319 \text{ tf-m}$$

$$M_4 = -8.985 \text{ tf-m}$$

(3) Reaction force

$$R_a = \frac{P_2}{2} \times \frac{a_2}{L_2} + \frac{P_1}{2} + \frac{M_2 - M_1}{L_2}$$

$$R_b = \frac{P_3}{2} \times \frac{a_3}{L_1} + \frac{P_2}{2} \times \frac{b_1}{L_2} + \frac{M_3 - M_2}{L_3} + \frac{M_1 - M_2}{L_2}$$

$$R_c = \frac{P_4}{2} \times \frac{a_4}{L_4} + \frac{P_3}{2} \times \frac{b_3}{L_3} + \frac{M_4 - M_3}{L_4} + \frac{M_2 - M_3}{L_3}$$

$$R_d = \frac{P_5}{2} + \frac{P_4}{2} \times \frac{b_4}{L_4} + \frac{M_3 - M_4}{L_4}$$

Thus, distributed load on each main wheel

$$R_a = 60.718 \text{ tf}$$

$$R_b = 57.546 \text{ tf}$$

$$R_c = 57.190 \text{ tf}$$

$$R_d = 68.159 \text{ tf}$$

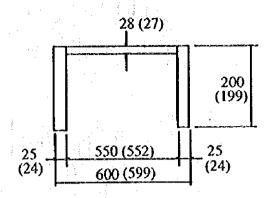
(4) Shearing force

$$S1 = 28.335 \text{ tf}$$

$$S2 = -32.383 \text{ tf}$$

$$S3 = 24.315 \text{ tf}$$

$$S4 = -33.231 \text{ tf}$$


$$S5 = 23.600 tf$$

$$$6 = -33.590 \text{ tf}$$

$$S7 = 23.233 \text{ tf}$$

$$$8 = -44.926 \text{ if}$$

(5) Sectional property of end beam

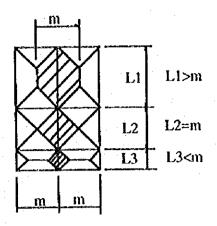
I =
$$120,339 \text{ cm}^4$$

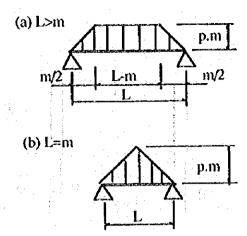
Z = $4,018 \text{ cm}^3$

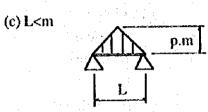
$$A_{\rm W} = 130.80 \, {\rm cm}^2$$

(6) Bending and shearing stresses

Bending stress


$$\sigma = \frac{M_{\text{max.}}}{Z} = \frac{8,985 \times 10^5}{4,018} = 224 \text{ kgf/cm}^2$$


Shearing stress


$$\tau = \frac{S_{\text{max.}}}{A_W} = \frac{44.926 \times 10^3}{130.8} = 343 \, kgf/cm^2$$

5. Vertical Girders

(1) Bending moment and shearing force
Bending moment and shearing force are calculated by the following formula.

(a) L > m

Bending moment

$$M = \frac{P \bullet m}{24} \left(3L^2 - m^2\right)$$

Shearing force

$$S = \frac{P \bullet m}{2} \left(L - \frac{m}{2} \right)$$

(b) L=m

Bending moment

$$M = \frac{P \bullet m \bullet L^2}{12}$$

Shearing force

$$S = \frac{P \bullet m \bullet L}{\Delta}$$

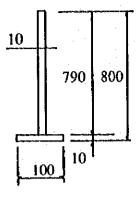
(c) L< m

Bending moment

$$M = \frac{P \bullet L^3}{12}$$

Shearing force

$$S = \frac{P \bullet L^2}{4}$$


where,

M	:	Maximum bending moment	(kgf-cm)
P	:	Mean water pressure	(kgf/cm ²)
m	:	Pitch of vertical girder	45 cm
L	:	Distance between horizontal beams	(cm)
S	:	Maximum shearing force	(kgf)

Portion	m	L	P	M	S
	(cm)	(cm)	(kgf/cm ²)	(kgf-cm)	(kgf)
i	50	76	2.418	74,696	3,083
2	50	73	2.493	70,034	2,991
3	50	72	2.565	69,747	3,014
4	50	69	2.636	64,696	2,899
5	50	20	2.680	4,467	268

(2) Sectional property

JIS G 3192 hot rolled steel section [$150 \times 75 \times 6.5/10$ and following sections are used at upper and bottom part of gate leaf.

Bottom part (Portion 5)

(A) Hot rolled section

Moment of inertia $I = 861 \text{ cm}^4$ Modulus of section $Z = 115 \text{ cm}^3$ Area of web $A_w = 8.45 \text{ cm}^2$

(B) Plate girder steel section

< Upper part >

 $\begin{array}{lll} \mbox{Moment of inertia} & I & = 56,888 \ \mbox{cm}^4 \\ \mbox{Modulus of section} & Z & = 1,422 \ \mbox{cm}^3 \\ \mbox{Area of web} & A_w & = 79 \ \mbox{cm}^2 \\ \mbox{< Bottom part >} & \end{array}$

Moment of inertia $I = 113 \text{ cm}^4$ Modulus of section $Z = 15 \text{ cm}^3$ Area of web $A_w = 6 \text{ cm}^2$

(3) Bending and shearing stresses

As the value of girder of [section is a minor than those of the plate girder sectional in all respects of its sectional properties, the calculation is limited to the [section.

$$\sigma = M/Z$$

where,

σ : Maximum bending stress (kgf/cm²)
 M : Maximum bending moment (kgf-cm)
 Z : Minor modulus of section 115 cm³

(Z=15 cm³ for Portion 5)

$$\tau = S/A_w$$

τ : Maximum shearing stress (kgf/cm²)

S: Maximum shearing forcce (kgf)

A_w: Minor modulus of section 8.45 cm²

 $(A_w=6 \text{ cm}^3 \text{ for Portion 5})$

Result of calculation

$\sigma_1 =$	650	kgf/cm ²	$\tau_1 =$	365	kgf/cm ²
$\sigma_2 =$	609	kgf/cm ²	$\tau_2 =$	354	kgf/cm ²
$\sigma_3 =$	606	kgf/cm ²	$\tau_3 =$	357	kgf/cm ²
$\sigma_4 =$	563	kgf/cm ²	$\tau_4 =$	343	kgf/cm ²
$\sigma_5 =$	298	kgf/cm ²	τ ₅ =	45	kgf/cm ²

6. Skin Plate

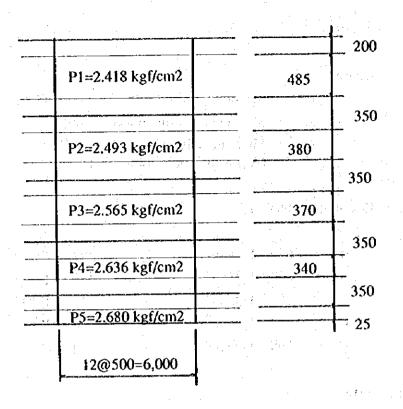
Bending stress of skin plate is calculated in accordance with following Timoshenko's formula.

$$\sigma = \frac{K \times a^2 \times P}{100 \times (t - \varepsilon)^2}$$

where,

 σ : Bending stress (kgf/cm²)

K : Coefficient by "b/a"


a : Short span of plate (cm)

b : Long span of plate (cm)

P: Mean design pressure (kgf/cm²)

t: Thickness of plate (cm)

: Corrosion allowance 0.1 cm

	No. 1	No. 2	No. 3	No. 4	No. 5
a (cm)	48.5	38.0	37.0	34.0	2.5
b (cm)	50.0	50.0	50.0	50.0	50.0
b/a	1.03	1.32	1.35	1.47	20.00
K	32.0	42.0	42.8	45.0	50.0
P (kgf/cm ²)	2.418	2.493	2.565	2.636	2.680
t (cm)	1.4	1.4	1.4	1.4	1.4
σ (kgf/cm ²)	1,077	894	889	811	5

7. Main Wheels

Main wheels are of point contact type, and their strength is calculated by the following Hertz's formula.

$$\rho = 0.418 \times \sqrt{\frac{P \times E}{B_o \times R}}$$

$$C = 1.52 \times \sqrt{\frac{P \times R}{B_o \times E}}$$

$$Z = 0.78 \times C$$

(kgf/cm²) : Hertz's contact stress

: Working loaded one wheel 82,000 kgf P

: Modulus of elasticity of wheel 2.1 x 106 kgf/cm²

Radius of roller 30 cm R : Width of roller 20 cm B_0 C : Contact width (cm)

: Depth where maximum shearing stress occurs (cm) \mathbf{Z}

Thus,

 $\rho = 7,081 \text{ kgf/cm}^2$

Z = 0.29 cm

Allowable contact stress

$$\rho_a = \frac{100}{2 \times V} \times H_B$$

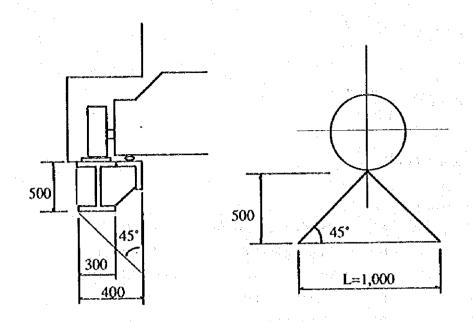
where,

Thus,

Safty factor

1.3

Brinell hardness of roller JIS SCMn2B


190 kgf/cm²

$$\rho_a = 7,308 \text{ kgf/cm}^2 > \rho$$

Thickness of track rail

 $T = 12 \, \text{mm}$

8. Strength of Concrete

(1) Bearing stress

$$\sigma_c = P / (L \times B_o)$$

where,

P: Working loaded one wheel 82,000 kgf

o: Width of roller 20 cm

Thus, $\sigma_c = 6.8 \text{ kgf/cm}^2 < 60 \text{ kgf/cm}^2$

(2) Shearing stress

$$\tau_c = P / A_c$$

where,

P: Working loaded one wheel 82,000 kgf

Ac : Shearing area of concrete 10,656 cm² (50 + 40 x 1.414) x 100

Thus,

 $\tau_c = 7.7 \text{ kgf/cm}^2 < 8 \text{ kgf/cm}^2$

9. Operation Load

(1) Weight of gate leaf Wg = 16 tf

(2) Friction force due to main wheel

$$F_W = P \times (2 \times \mu_1 + \mu_2 \times d)/D$$

where,

 $\begin{array}{lll} P & : & Design load & 243.614 \ tf \\ \mu_1 & : & Rolling frictional coefficient to main roller \\ \mu_2 & : & Rolling frictional coefficient to roller bearing \\ d & : & Mean diameter of roller shaft & 20 \ cm \\ \end{array}$

D : Diameter of main roller 60 cm

Thus,

$$F_w = 2.44 \text{ tf}$$

(3) Friction due to rubber seal

$$F_r = \mu \times (q + P \times b) \times \Sigma I$$

where,

μ: Friction coefficient of rubber seal

at starting 1.5 at sliding 0.7

q : Initial compression load on rubber seal 0.05 tf/m
 P : Mean design pressure 25.4 tf/m²
 b : Contact width of rubber seal 0.04 m
 Σ1 : Total sliding length of rubber seal 6.2 m

Thus,

a) at Raising

 $F_{rR} = 9.914 \text{ tf}$

b) at Lowering

 $F_{\rm rL} = 6.626 \text{ tf}$

(4) Buoyancy

$$F_b = \frac{W_g}{\gamma}$$

where,

CALCULATION SHEET SEVERING INTAKE GATE/GANTRY CRANE

Wg: Weight of gate leaf

16 tf

y : Specific weight of steel

7.85 tf/m³

Thus,

$$F_b = 2.038 \text{ tf}$$

(5) Total operation load

	Raising load (tf)	Lowering load (tf)
Gate weight (wg)	16	16
Friction force due to main wheel (Fw)	2.44	- 2.44
Friction due to rubber seal (Fr)	9.914	- 6.626
Buoyancy (Fb)	-	- 2.038
Total	28.354	4,896

Thus,

Operating load at

Raising

: 29 tf (including allowance)

Lowering

:: 4.9 tf

10. Wire Rope

(1) Tensile force

$$T_r = \frac{F}{N \times \eta}$$

where,

T_f: Tensile force (1f)

F: Total hoisting load 29 tf

N : Numbers of wire rope 4

η : Total efficiency of sheave 0.95

Thus,

$$T_r = \frac{29}{4 \times 0.95} = 7.63$$
 if

(2) Selection of wire rope

Type : JIS G3525 6 x 37 Galvanized Grade A

Diameter : 35.5 mmØ

Breaking strength : 62.9 tf

Safty factor

$$S = \frac{Breaking\ strength}{Tensile\ force} = \frac{62.9}{7.63} = 8.24 > 8$$

11. Wire Drum and Sheave

Each diameter of drum and sheave is calculated as follows:

$$D \ge T \times D_{\omega}$$

where,

D : Diameter (mm)

T: Coefficient

D_w: Diameter of wire rope 35.5 mm

Thus,

	<u>Drum</u>	<u>Sheave</u>
T	19	17
D_w (mm)	35.5	35.5
D (mm)	$675 \rightarrow 800$	604 → 650

12. Output of Hoisting Motor

$$P = \frac{F \times V}{6.12 \times \eta}$$

where,

P : Output of hoisting motor (kw)

F: Hoisting load 29 tf

V : Hoisting speed 1 m/min.

η : Efficiency of rake

 $\eta_d \times \eta_s \times \eta_{g1} \times \eta_{g2} \times \eta_{g3} = 0.41$

 η_d : Efficiency of drum 0.95 η_s : Efficiency of sheave 0.95 η_{gi} : Efficiency of worm reducer 0.5

η_{g2}: Efficiency of spur gear 0.95

 η_{g3} : Efficiency of spur gear 0.95

Thus,

$$P = \frac{29 \times 1}{6.12 \times 0.41} = 11.56 \text{ kw}$$

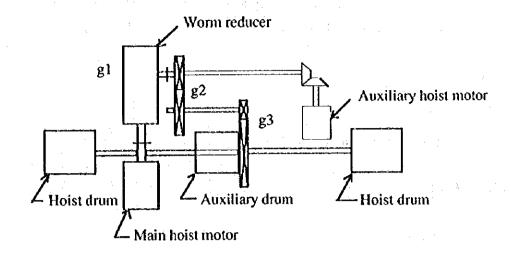
= 15 kw, 6 pole motor is used.

13. Required Number of Reduction

$$iR = \frac{N_m}{V_o / (\pi \times D_d)}$$

where,

Vo : Operating speed 1 m/min.


D_d: Diameter of drum 0.8 m

 N_{m} : Revolution per minute of motor 1,160 r.p.m

Thus,

iR = 2,914

14. Arrangement of Hoisting Unit

15. Travelling Unit

(1) Friction force due to wheel

$$F_W = (W_r + W_c) \times (2 \times \mu_1 + \mu_2 \times d) / D$$

where,

Wr	:	Dead weight of gantry crane	35 tf
Wc	:	Hoisting load	17 tf
μ_1	:	Rolling friction coefficient	0.1
μ_2	:	Bearing friction coefficient	0.02
đ	:	Diameter of wheel shaft	12 cm
D	;	Diameter of wheel	50 cm

Thus,

Fw = 0.46 tf

(2) Motor output

$$P_m = \frac{F_W \times V}{6.12 \times \eta_1 \times \eta_2 \times \eta_1}$$

where,

F_w: Operation force (including allowance) 0.5 tf V: Travelling speed 10 m/min

CALCULATION SHEET SEVERING INTAKE GATE (GANTRY CRANE

 η_1 : Efficiency of chain sprocket 0.95 η_2 : Efficiency of worm reducer 0.5 n: Number of motor 2

Thus,

 $P_{\rm W} = 0.86$

1.5 kw, 6 pole motor is used.

16. Traversing Unit

(1)Friction force due to wheel

$$F_w = (W_c + W_c) \times (2 \times \mu_1 + \mu_2 \times d) / D$$

where,

20 tf : Dead weight of trolley W٢ : Hoisting load 17 if : Rolling friction coefficient 0.1 μ_1 0.02 : Bearing friction coefficient μ_2 5 cm : Diameter of wheel shaft d : Diameter of wheel 25 cm

Thus,

Fw = 0.74 tf

(2) Motor output

$$P_m = \frac{F_W \times V}{6.12 \times \eta_1 \times \eta_2 \times n}$$

where,

Thus,

 $P_W = 1.38$

1.5 kw, 6 pole motor is used.

SEVERINO PUMPING STATION INTAKE FIXED TRASHRACKS

1.Design Conditions

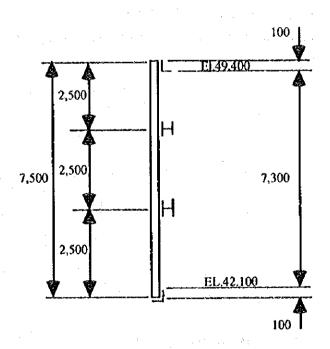
Type : Vertical type fixed trashrack

Quantity : 6 set
Clear span : 6.0 m

Vertical height : 7.5 m

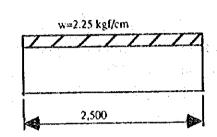
(Deck EL.49.500 m - Sill EL.42.000 m)

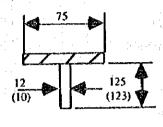
Gradient : $1:0 (\Theta = 90^{\circ} \sim 0' \sim 0'')$


Bar pitch : 75 mm (center to center)
Design head : Water head of 3.0 m

Maximum deflection of : 1/600 of supporting span

supporting beams


Corrosion allowance : 2.0 mm for bar elements and supporting beams


2.Arrangement of Trashrack

3.Bar Elements

(1) Bending moment and stress

a. Bending moment

$$M = \frac{W \times L^2}{8}$$

where,

M: Bending moment (kgf-cm)

W: Unit load on a bar

 $0.3 \text{ kgf/cm}^2 \times 7.5 \text{ cm} = 2.25 \text{ kgf/cm}$

L: Maximum distance of center to center of supporting beam 250 cm

Thus,

$$M = \frac{2.25 \times 250^2}{8} = 17,578 \, kgf - cm$$

b. Bending stress

$$\sigma_b = \frac{M}{Z}$$

where,

σ_b: Bending stress (kgf/cm²)

M: Bending moment 17,578 kgf-cm

25.2 cm³

Thus,

$$\sigma_b = \frac{17,578}{25.2} = 698 \, kgf / cm^2$$

(2) Critical stress considering horizontal buckling

$$C_r = 0.6 \times Y \times (1.23 - 0.0153 \times L/T)$$

where,

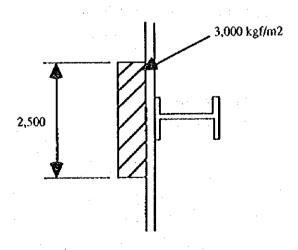
C_r: Critical stress (kgf/cm²)

Y: Yield strength of material 2,400 kgf/cm²

L: Laterally unsupporting length 30 cm

T: Thickness of bar

1.0 cm


Thus,

$$C_r = 0.6 \times 2,400 \times (1.23 - 0.0153 \times 30 / 1.0)$$

= 1,110 kgf/cm²
 $\sigma_b = 698 \text{ kgf/cm}^2 < C_r = 1,110 \text{ kgf/cm}^2$

4. Intermediate Supporting Beams

(1)Water pressure load

Water pressure load acted on each beam is as follows:

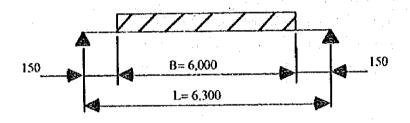
$$W_w = L \times h \times B$$

Ww: Water pressure load (kgf)

L : Distance of center to center of supporting beams 2.500 m

h : Design head

 $3,000 \, \text{kgf/m}^2$


B: Clear span

 $6.0 \, \mathrm{m}$

Thus,

$$W_w = 2.500 \times 3,000 \times 6.0$$

= 45,000 kgf

(2) Bending moment and shearing force due to water load

a. Bending moment

$$M_x = W_w \times (2L - B) / 8$$

where,

Mx: Bending moment due to water load (kgf-cm)

Ww: Water pressure load

45,000 kgf

L : Supporting span (B+30)

630 cm

- -

030 0111

B: Clear span

600 cm

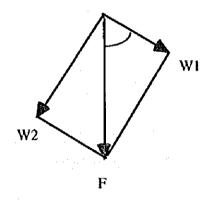
Thus,

$$M_x = 45,000 x (2 x 630 - 600) / 8$$

= 3,712,500 kg-cm

b. Shearing force

$$S_r = W_w / 2$$


S_x: Shearing force due to water load (kgf) W_w: Water pressure load 45,000 kgf

Thus,

$$S_x = 45,000 / 2$$

= 22,500 kgf

(3) Bending moment and shearing force due to own weight

The force due to own weight is distributed as follows:

 $W1 = F \cos \theta$ $W2 = F \sin \theta$

where,

W1,W2: Unit load of each direction (kgf/cm)

Thus,

a. Bending moment

$$M_1 = W_1 \times L^2 / 8$$

$$M_2 = W_2 \times L^2 / 8$$

M1,M2: Bending moment of each direction (kgf-cm)

W1, W2: Unit load of each direction (kgf/cm)

$$W1 = 0 \text{ kgf/cm}$$

W2 = 1.510 kgf/cm

L : Supporting span

630 cm

Thus,

$$M1 = 0 \times 630^2 / 8$$

$$M2 = 1.510 \times 630^2 / 8$$

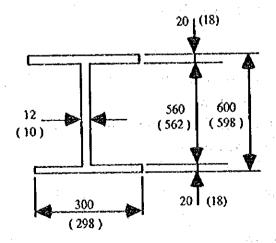
= 74,915 kgf-cm

b. Shearing force

$$S_1 = W_1 \times L/2$$

where,

S1: Shearing force due to own weight (kgf)


W1,L: Same as the above

Thus,

$$S1 = 0 \times 630 / 2$$
$$= 0 \text{ kgf}$$

(4) Bending and shearing stresses

Section properties

JIS G 3192 H-600 x 300 x 12/20 is used.

Moment of inertia

 $11x = 118,000 \text{ cm}^4$

 $Iy = 9,020 \text{ cm}^4$

Modulus of section

 $Zx = 4,020 \text{ cm}^3$

 $Zy = 601 \text{ cm}^3$

Area of web $Aw = 56 \text{ cm}^2$

a. Bending stress

$$\sigma_b = (M_x + M_1)/Z_x + M_2/Z_y$$

where,

 σ_b : Bending stress (kgf/cm³)

Mx: Bending moment due to water load

3,712,500 kgf-cm

M1: Bending moment due to own weight

0 kgf-cm

Zx: Modulus of section

4, 020 cm³

M2: Bending moment due to own weight

74,915 kgf-cm

Zy: Modulus of section

 601 cm^3

Thus,

$$\sigma_b = (3,712,500 + 0) / 4,020 + 74,915 / 601$$

$$= 1,048 \text{ kgf/cm}^2$$

$$\sigma_{ba} = 1,200 \text{ kgf/cm}^2$$

oba: Allowable bending stress

b. Shearing stress

$$\tau_c = \left(S_x + S_1\right)/A_w$$

where,

 τ_c : Shearing stress (kgf/cm²)

Sx: Shearing force due to water pressure

22,500 kgf

S1: Shearing force due to own weight

0 kgf

Aw: Area of web

56 cm²

Thus,

$$\tau_c = (22,500 + 0) / 56$$

= 402 kgf/cm² < $\tau_{ca} = 700$ kgf/cm²

 τ_{ca} : Allowable shearing stress

(5) Deflection

$$\delta = \frac{\left(W_w + W_1 \times B\right)}{48 \times E \times I_*} \left(L^3 - L \times B^2 / 2 + B^3 / 8\right)$$

where,

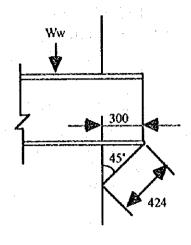
δ: Deflection of beam (cm)

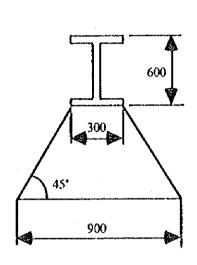
W_w: Water pressure load 45,000 kgf

W1: Unit load due to own weight 0 kgf/cm

B: Clear span 600 cm L: Supporting span 630 cm

E: Young's modulus 2.1 x 10⁶ kgf/cm²


Ix: Moment of inertia 118,000 cm⁴


Thus,

$$\delta = \frac{(45,000 + 0 \times 600)}{48 \times 2.1 \times 10^6 \times 118,000} (630^3 - 630 \times 600^2 / 2 + 600^3 / 8)$$

= 0.619 cm

$$\delta/L = 0.619 / 630 = 1 / 1,018 < 1 / 600$$

5. Strength of Concrete

(1) Bearing stress of concrete

$$\sigma_{c} = W_{w} / (2 \times A_{i})$$

where,

 σ_c : Bearing stress of concrete (kgf/cm²)

W_w: Water pressure load 45,000 kgf

A1: Bearing area of concrete $30 \times 30 = 900 \text{ cm}^2$

Thus,

$$\sigma_c = 45,000 / (2 \times 900)$$

$$= 25 \text{ kgf/cm}^2 \qquad < 60 \text{ kgf/cm}^2$$
(Allowable concrete bearing stress)

(2) Shearing stress of concrete

$$\tau_c = W_w / (2 \times A_2)$$

where,

 τ_c : Shearing stress of concrete (kgf/cm 2)

Ww: Water pressure load 45,000 kgf

A2: Shearing area of concrete 4,344 cm²

 $60 \times 30 + (30 + 90)/2 \times 42.4$

Thus,

$$\tau_c$$
 = 45,000 / (2 x 4,344)
= 5.18 kgf/cm² < 8 kgf/cm²
(Allowable concrete shearing stress)

SEVERINO PUMPING STATION PUMP TOTAL HEAD

1. Design Condition

- (1) Design flow
- 9.6 m³/s per lane (3.2 m³/s per unit)
- (2) Pipe diameter
 - Suction side
- 1,500 1,200 1,100 mm
- Discharge side
- 800 1,000 1,500 2,000 -2,400 mm
- (3) Pipe length
 - Suction side
- 9.3 m
- Discharge side
- 179.3 m
- (4) Water level
 - Suction pit
- EL. 58.50 m
- Head tank
- EL. 114.02 m

2. Calculation

- (1) Pipe Friction Loss Head
- A. Suction Pipe Friction Loss Head
 - A.1 Friction loss of channel inlet

$$h_{a1} = f_{a1} \times \frac{V_1^2}{2g}$$

where,

fal: Friction coefficient

0.25

V₁: Velocity

0.033 m/s

$$V_1 = Q_1/(H \times B) = 3.2/(16.4 \times 6) = 0.033$$

g : Gravitational acceleration

9.8 m/s²

Thus,

$$h_{al} = 0.00001 \text{ m}$$

A.2 Friction loss of channel

$$h_{a2} = \frac{n^2 \times V_1^2}{rh^{4/3}} \times L_{a2}$$

where,

: Coefficient of roughness

0.015

rh : $\frac{H \times B}{2H + B} = \frac{16.4 \times 6}{2 \times 16.4 + 6} =$

La2 : Channel length

Thus,

$$h_{a2} = 0.00000 \text{ m}$$

A.3 Hydraulic loss of trash rack

$$h_{a3} = 0.3 \text{ m}$$

A.4 Loss of culvert inlet

$$h_{a4} = f_{a4} \times \frac{{V_2}^2}{2g}$$

where,

fa4: Friction factor

V2: Velocity

0.071m/s

$$V_2 = Q_1/(H \times B) = 3.2/(7.5 \times 6) = 0.071$$

Thus,

$$h_{a4} = 0.00013 \text{ m}$$

A.5 Friction loss of culvert

$$h_{a5} = \frac{n^2 \times V_1^2}{rh^{4/3}} \times L_{a5}$$

where,

: Coefficient of roughness

0.014

 $\frac{H\times B}{2\times (H+B)} = \frac{7.5\times 6}{2\times (7.5+6)} =$

1.67 m

La5 : Channel length

0.5 m

Thus,

$$h_{a5} = 0.00000 \text{ m}$$

A.6 Loss of culvert outlet

$$h_{a6} = f_{a6} \times \frac{V_2^2}{2g}$$

where,

fa6: Friction coefficient

1.2

Thus,

 $h_{a6} = 0.00031 \text{ m}$

A.7 Loss of culvert inlet

$$h_{a7} = f_{a7} \times \frac{V_3^2}{2g}$$

where,

fa7: Friction coefficient

0.5

V₃: Velocity

0.178 m/s

$$V_3 = Q_1/(H \times B) = 3.2/(3 \times 6) = 0.178$$

Thus,

 $h_{a7} = 0.00081 \text{ m}$

A.8 Convergent loss of culvert

$$h_{a8} = f_{a8} \times \frac{V_4^2 - V_3^2}{2g}$$

where,

fa8: Friction coefficient

0.3

V4: Velocity

0.213 m/s

$$V_4 = Q_1/(H \times B) = 3.2/(2.5 \times 6) = 0.213$$

Thus,

 $h_{a8} = 0.00021 \text{ m}$

A.9 Friction loss of culvert

$$h_{a9} = \frac{n^2 \times V_5^2}{rh^{4/3}} \times L_{a9}$$

where,

n : Coefficient of roughness

0.014

rh :
$$\frac{H \times B}{2 \times (H + B)} = \frac{\frac{3 + 2.5}{2} \times 6}{2 \times \left(\frac{3 + 2.5}{2} + 6\right)} = 0.943 \text{ m}$$

La9: Channel length

1.0 m

Thus,

 $h_{a9} = 0.00000 \text{ m}$

A.10 Loss of suction pipe inlet (Dia. 1,500)

$$h_{a10} = f_{a10} \times \frac{V_6^2}{2g}$$

where,

falo: Friction coefficient

0.5

V₆: Velocity

1.811 m/s

(8)

$$V_6 = Q_1 / \left(\pi \times \frac{D_1^2}{4}\right) = 3.2 / \left(3.14 \times \frac{1.5^2}{4}\right) = 1.811$$

Thus,

 $h_{a10} = 0.08365 \text{ m}$

A.11 Convergent loss of suction pipe (Dia. 1,500 - 1,200)

$$h_{a11} = f_{a11} \times \frac{V_7^2 - V_6^2}{2g}$$

where,

Friction coefficient

0.1

Velocity

2.829 m/s

$$V_7 = Q_1 / \left(\pi \times \frac{D_2^2}{4}\right) = 3.2 / \left(3.14 \times \frac{1.2^2}{4}\right) = 2.829$$

Thus,

 $h_{a11} = 0.02411 \text{ m}$

A.12 Bend loss of suction pipe (Dia. 1,200)

$$h_{a12} = f_{a12} \times \frac{V_1^2}{2g}$$

where,

fal2 : Friction coefficient

$$f_{a12} = (0.131 + 1.847 \times (D_2/2R)^{3.5}) \times (\theta/90)^{0.5}$$

Thus,

 $h_{a12} = 0.24795 \text{ m}$

A.13 Convergent loss of suction pipe (Dia. 1,200 - 1,100)

$$h_{a13} = f_{a13} \times \frac{V_8^2 - V_7^2}{2g}$$

where,

fal3: Friction coefficient

0.15

V₈: Velocity

3.367 m/s

$$V_8 = Q_1 / \left(\pi \times \frac{D_3^2}{4}\right) = 3.2 / \left(3.14 \times \frac{1.1^2}{4}\right) = 3.367$$

Thus,

 $h_{a13} = 0.02551 \text{ m}$

A.14 Friction loss of suction pipe (Dia. 1,200)

$$h_{a14} = f_{a14} \times \frac{L}{D_3} \times \frac{V_7^2}{2g}$$

where,

fal4: Friction coefficient

0.029

$$f_{a13} = \left\{0.0144 + 9.5 / \left(1000 \times \sqrt{V_7}\right)\right\} \times 1.5$$

La14: Suction pipe length

9.3 m

Thus,

 $h_{a14} = 0.14183 \text{ m}$

A.15 Total suction loss head

$$h_a = h_{a1} + h_{a2} + h_{a3} + h_{a4} + h_{a5} + h_{a6} + h_{a7} + h_{a8} + h_{a9} + h_{a10} + h_{a11} + h_{a12} + h_{a13} + h_{a14}$$

$$= 0.00001 + 0.00000 + 0.3 + 0.00013 + 0.00000 + 0.00031 + 0.00081 + 0.00021 + 0.00000 + 0.08365 + 0.02411 + 0.24795 + 0.02551 + 0.14183$$

= 0.82452 m

B. Discharge Pipe Friction Loss Head

B.1 Friction loss (Dia. 800)

$$h_{b1} = f_{b1} \times \frac{L_{b1}}{D_4} \times \frac{V_9^2}{2g}$$

where,

fb1: Friction coefficient

0.027

$$f_{b1} = \left\{0.0144 + 9.5 / \left(1000 \times \sqrt{V_9}\right)\right\} \times 1.5$$

Lb1: Discharge pipe length

3.80 m

V₉: Velocity

6.366 m/s

$$V_9 = Q_1 / \left(\pi \times \frac{D_4^2}{4}\right) = 3.2 / \left(3.14 \times \frac{0.8^2}{4}\right) = 6.366$$

Thus,

$$h_{b1} = 0.28484 \text{ m}$$

B.2 Enlargement loss of discharge pipe (Dia. 800 - 1,000)

$$h_{b2} = f_{b2} \times \frac{\left(V_9 - V_{10}\right)^2}{2g}$$

where,

fb2: Friction coefficient

0.121

V₁₀: Velocity

4.074 m/s

$$V_{10} = Q_1 / \left(\pi \times \frac{D_5^2}{4}\right) = 3.2 / \left(3.14 \times \frac{1^2}{4}\right) = 4.074$$

Thus,

$$h_{b2} = 0.03251 \text{ m}$$

B.3 Friction loss of non-return valve (Dia. 1,000)

$$h_{b3} = f_{b3} \times \frac{{V_{10}}^2}{2g}$$

where,

f_{b3}: Friction coefficient

0.9

Thus,

$$h_{b3} = 0.76213 \text{ m}$$

B.4 Friction loss of butterfly valve (Dia. 1,000)

$$h_{b4} = f_{b4} \times \frac{V_{10}^{-2}}{2\varrho}$$

where,

fb4: Friction coefficient

0.3

Thus,

$$h_{b4} = 0.25404 \text{ m}$$

B.5 Bend loss of discharge pipe (Dia. 1,000)

$$h_{b5} = f_{b5} \times \frac{V_{10}^{2}}{2g}$$

where,

fb5: Friction coefficient

0.132

$$f_{b5} = (0.131 + 1.847 \times (D_5/2R)^{3.5}) \times (\theta/90)^{0.5}$$

 $D_{b5}: 1.0 \text{ m}$

R : 2.0 m

:90°

Thus,

 $h_{b5} = 0.11203 \text{ m}$

B.6 Friction loss (Dia. 1,000)

$$h_{b6} = f_{b6} \times \frac{L_{b6}}{D_5} \times \frac{V_{10}^2}{2g}$$

where,

fb6: Friction coefficient

0.030

$$f_{bb} = \{0.0144 + 9.5 / (1000 \times \sqrt{V_{10}})\} \times 1.5$$

Lb6: Discharge pipe length

16 m

Thus,

$$h_{b6} = 0.40654 \,\mathrm{m}$$

B.7 Enlargement loss of discharge pipe (Dia. 1,000 - 1,500)

$$h_{b7} = f_{b7} \times \frac{\left(V_{10} - V_{11}\right)^2}{2g}$$

where,

: Friction coefficient

0.281

V₁₁: Velocity

$$V_{11} = Q_1 / \left(\pi \times \frac{D_6^2}{4}\right) = 3.2 / \left(3.14 \times \frac{1.5^2}{4}\right) = 1.811$$

Thus,

 $h_{b7} = 0.07351 \text{ m}$

B.8 Friction loss (Dia. 1,500)

$$h_{b8} = f_{b8} \times \frac{L_{b8}}{D_6} \times \frac{{V_{12}}^2}{2g}$$

where,

fb8: Friction coefficient

0.03

$$f_{b8} = \left\{0.0144 + 9.5 / \left(1000 \times \sqrt{V_{12}}\right)\right\} \times 1.5$$

Lb8: Discharge pipe length

12 m

V₁₂: Velocity

3.622 m/s

$$V_{12} = Q_2 / \left(\pi \times \frac{D_6^2}{4} \right) = 6.4 / \left(3.14 \times \frac{1.5^2}{4} \right) = 3.622$$

Thus,

 $h_{b8} = 0.16061 \text{ m}$

B.9 Enlargement loss of discharge pipe (Dia. 1,500 - 2,000)

$$h_{b9} = f_{b9} \times \frac{\left(V_{12} - V_{13}\right)^2}{2g}$$

where,

fb9 : Friction coefficient

0.281

V₁₃: Velocity

2.037 m/s

$$V_{13} = Q_2 / \left(\pi \times \frac{D_1^2}{4}\right) = 6.4 / \left(3.14 \times \frac{2.0^2}{4}\right) = 2.037$$

Thus,

 $h_{b9} = 0.03602 \text{ m}$

B.10 Bend loss of discharge pipe (Dia. 2,000: I.P.1)

$$h_{b10} = f_{b10} \times \frac{V_{14}^{2}}{2g}$$

where,

fb10: Friction coefficient

$$f_{b10} = \{0.131 + 1.847 \times (D_1/2R)^{3.5}\} \times (\theta/90)^{0.5}$$

 $D_7 = : 2.0 \text{ n}$

R : 4.0 m

0 : 90°

3.056 m/s

$$V_{14} = Q_3 / \left(\pi \times \frac{D_1^2}{4}\right) = 9.6 / \left(3.14 \times \frac{2.0^2}{4}\right) = 3.056$$

Thus,

$$h_{b10} = 0.06929 \text{ m}$$

B.11 Bend loss of discharge pipe (Dia. 2,000: I.P.2)

$$h_{b11} = f_{b11} \times \frac{V_{14}^{-2}}{2g}$$

where,

fb11: Friction coefficient

0.096

$$f_{b11} = (0.131 + 1.847 \times (D_7/2R)^{3.5}) \times (\theta/90)^{0.5}$$

D₇ : 2.0 m

R : 4.0 m

A + 38° 52' 27"

Thus,

$$h_{b11} = 0.04554 \text{ m}$$

B.12 Bend loss of discharge pipe (Dia. 2,000: I.P.3)

$$h_{b12} = f_{b12} \times \frac{V_{14}^{-2}}{2g}$$

where,

fb12: Friction coefficient

0.085

$$f_{b12} = (0.131 + 1.847 \times (D_7/2R)^{3.5}) \times (\theta/90)^{0.5}$$

D₇ : 2.0 m

R : 4.0 m

θ : 30° 28' 29"

Thus,

 $h_{b12} = 0.04032 \text{ m}$

B.13 Bend loss of discharge pipe (Dia. 2,000: I.P.4)

$$h_{b13} = f_{b13} \times \frac{V_{14}^{-2}}{2g}$$

where,

fb13: Friction coefficient

0.049

$$f_{b13} = (0.131 + 1.847 \times (D_7/2R)^{3.5}) \times (\theta/90)^{0.5}$$

D₇ : 2.0 m

R : 4.0 m

0 :10° 4' 56"

Thus,

 $h_{b13} = 0.02320 \text{ m}$

B.14 Enlargement loss of discharge pipe (Dia. 2,000 - 2,400)

$$h_{b14} = f_{b14} \times \frac{\left(V_{14} - V_{15}\right)^2}{2g}$$

where,

fb14: Friction coefficient

0.191

V₁₅: Velocity

2.122 m/s

$$V_{15} = Q_3 / \left(\pi \times \frac{D_8^2}{4}\right) = 9.6 / \left(3.14 \times \frac{2.4^2}{4}\right) = 2.122$$

Thus,

 $h_{b14} = 0.00851 \text{ m}$

B.15 Velocity head loss of discharge pipe (Dia. 2,400)

$$h_{b15} = f_{b15} \times \frac{V_{15}^2}{2g}$$

where,

fb15: Friction coefficient

1.0

Thus,

 $h_{b15} = 0.22975 \text{ m}$

B.16 Friction loss (Dia. 2,000)

$$h_{b16} = f_{b16} \times \frac{L_{b16}}{D_1} \times \frac{V_{14}^2}{2g}$$

where,

fb16: Friction coefficient

0.03

$$f_{b16} = \left\{0.0144 + 9.5 / \left(1000 \times \sqrt{V_{14}}\right)\right\} \times 1.5$$

Lb16: Discharge pipe length

156 m

Thus,

 $h_{b16} = 1.11481 \text{ m}$

B.17 Total discharge pipe loss head

$$h_b = h_{b1} + h_{b2} + h_{b3} + h_{b4} + h_{b5} + h_{b6} + h_{b7} + h_{b8} + h_{b9} + h_{b10}$$

+ $h_{b11} + h_{b12} + h_{b13} + h_{b14} + h_{b15}$

= 0.28484 + 0.03251 + 0.76213 + 0.25404 + 0.11203 + 0.40654 +

$$0.07351 + 0.16061 + 0.03602 + 0.06929 + 0.04554 + 0.04032 + 0.02320 + 0.00851 + 0.22975 + 1.11481$$

= 3.65365 m

C. Total Loss Head

$$h_L = h_a + h_b$$

= 0.82452 + 3.65365
= 4.47817 m \rightarrow 4.48 m

- (2) Actual Head
- A. Weighted averaged Water Level at suction side

EL. 58.50 m

B. High Water level at Head Tank

EL. 114.02 m

C. Actual head

$$h_A = EL. 114.02 - EL. 58.50$$

= 55.52 m

(3) Pump Total Head

$$H_T = h_L + h_A$$

= 4.48 + 55.52
= 60.0 m

Q EL. 107.300 .48 30° 28' 29" 8.296 13,787 VB 10* 04' 56" PERFIL DE LA TUBERIA DE PRECION #1 V8 48* 56' 23" Ø 2000 Ø 1500 PROFILE OF #1 PENSTOCK 8.880 Valuvula Mariposa Butterfly Valve Valuvula de Retencion Non-return Valve 0000 0800 81200 7.000 00518 000.5 000.5 000.5 Q EL. 43.200 **₩ 47.000** ØDWL 58.5 Rejilla Trasluack

SEVERINO PENSTOCK WATER HAMMER

1. Design Condition

(1) Design discharge

480 m³/min (160 m³/min per unit)

(2) Water level

Suction pit (L.W.L)

EL. 47.00 m

Head tank (H.W.L)

EL. 114.02 m

(3) Actual head

67.02 m

(4) Number of pumps in operation

3 units

(5) Discharge pipeline

Dia. (mm)	800	800-	1000	1000-	1500	1500-	2000
		1000		1500	,	2000	
Length (m)	2.2	1.6	15.3	2.0	6.0	2.0	150.8
Material		· (A		3106 S 516 Gra		(0)	· .
Shell thickness (mm)	9	9	9	9	9	10	9 - 10

2. Basic Data

(1) Pump	Туре	Vertical Shaft Single Suction Volute Pump
	Bore	800 mm
	Discharge	160 m³/min
	Speed	600 rpm
	Efficiency	86 %
	Total head	69.8 m
(2) Motor	Туре	Three-phaseWound - Rotor Type
		Induction Motor
	Output	2,400 kw
	Speed	600 rpm

Frequency Voltage 60 Hz

4,160 kv

3. Calculation

(1) Pump shaft power

$$P = 9.8 \times \gamma \times Q \times \frac{H}{\eta}$$

where,

γ : Specific weight of water

Q: Pump discharge

 $2.67 \, \text{m}^3/\text{s}$

H: Total head

69.8 m

η: Pump efficiency

0.86

Thus,

$$P = 2,123.7 \text{ kw}$$

(2) Pump torque

$$M = 974 \times P/N$$

Where,

N: Speed

600 rpm

(a)

Thus,

$$M = 3,447 \text{ kg-m}$$

(3) Flywheel effect (GD²)

Motor

3,500 kg-m²

Pump

740 kg-m²

Total

4,240 kg-m²

(4) Coefficient of pump inertia

$$K = \frac{375 \times M}{GD^2 \times N}$$

where,

: Pump torque

3,447 kg-m

GD2: Total flywheel effect

4,240 kg-m²

Speed

600 rpm

Thus,

$$K = 0.51$$

(5) Average velocity in discharge pipeline

$$V = \frac{Q}{\frac{\pi}{4}D^2}$$

Pipe dia. (m)	0.8	1.0	1.5	2,0
Pipe length (m)	3.0	17.1	8.0	151.8
Flow (m ³ /s)	3.2	3.2	6.4	9.6
Velocity (m/s)	6.4	÷ 4.1	3.6	3.1

Thus,

$$V = 3.3 \text{ m/s}$$

(6) Propagation velocity of pressure wave

$$a = \frac{1,425}{\sqrt{1 + \frac{k}{E} \times \frac{D}{t}}}$$

where,

k/E: In case of Steel 0.01

D : Inside diameter of discharge pipe

t : Shell thickness of discharge pipe

Pipe dia.	D (m)	0.8	1.0	1.5	2.0
Shell thicknes	ss t (mm)	9	9	9	9 - 10

Thus,

$$a = 841.7 \text{ m/s}$$

(7) Coefficient of penstock

$$2\rho = \frac{a \times V}{g \times H}$$

where,

g: Gravitational acceleration

9.8 m/s²

Thus,

$$2p = 4.0$$

(8) Reciprocating time of pressure wave

$$\mu = \frac{2 \times L}{a}$$

where,

L: Pipeline length

180.4 m

Thus,

$$\mu = 0.43 \text{ sec}$$

(9) Ratio of penstock loss head

$$R = \frac{H - Ha}{H} \times 100$$

where,

H: Total head

69.8 m

Ha: Actual head

67.0 m

Thus,

$$R = 4.0 \%$$

4. Water Head Diagram

(1) Value of pressure variation

The values are obtained from the J.Parmakian's chart.

Position	Min. press.	Max. press.
Pump	23 %	175 %
	16.1 m	122.2 m
L/2	55 %	144 %
	38.4 m	100.5 m
3L/4	74 %	126 %
	51.7 m	87.9 m

SEVERINO PENSTOCK SHELL THICKNESS

1. Exposed pipeline

(1) Shell thickness due to internal pressure

$$t \ge \frac{H \times D}{2\sigma \times \eta_W} + \varepsilon$$

where,

H : Design head (cm)

 $H = H_1 + H_2$

H₁: Static head (cm)

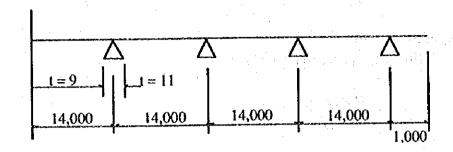
H2: Water hammer (cm)

D : Penstock inside diameter (cm)

σ : Allowable tensile stress 1300 kgf/cm²

 η_w : Welding efficiency 0.9

ε : Corrosion allowance 0.2 cm


 σ (kgf/cm²) t: Thickness Materials ≤ 40 mm SS 400 1300 JIS G 3101 1200 > 40 mm ≤ 40 mm 1300 SM 400 > 40 mm 1200 **JIS G 3106** SM 490 ≤ 40 mm 1750 > 40 mm 1650 JIS G 3106

Location	D (cm)	H ₁ (cm)	H ₂ (cm)	t (cm)	t m (cm)
1	100	67,500	36,000	0.8	0.8
2	150	67,500	34,500	0.8	0.8
3	200	67,500	32,500	1.0	0.9
7:1 4	200	17,500	16,000	0.9	0.9
5	200	7,000	0	0.9	0.9

t m : Minimum thickness

$$t_m = \frac{D + 800}{400}$$

(2) Bending stress

- Continuous beam in 3-span, dia. 2.0 m, t = 9 mm

$$W = W_t + W_w$$
$$= 3.58 t/m$$

$$W_t = 0.44 \text{ t/m}$$

 $W_w = \pi d^2/4 = 3.14 \text{ t/m}$

$$M_{\text{max}} = -0.1 \text{WL}^2$$

= -0.1 x 3.58 x 14²
= -70.17 t-m

$$\sigma = M/Z$$
= M/(π t r_m²)
= -70.17 x 10⁵/(π x 0.9 x 100.45²)
= -246 kgf/cm² < σ _a

- Max, allowable span, restricting due to max, allowable deflection of 1/350

$$\frac{\delta}{L} = \frac{5WL^3}{384EI}$$

where,

$$W = 3.58 \text{ t/m}$$

$$\delta/L = 1/350$$

$$E = 2.1 \times 10^6 \text{ kgf/cm}^2$$

$$I = \pi/64 \times (D_0^4 - D_1^4) = 2,393,533 \text{ cm}^4$$

Thus,

$$L = 31.3 \text{ m} > 14.0 \text{ m}$$

(3) Stress at half-filled condition

$$\delta_{\text{max}} = 445.2 \text{ x } r_i^3/t = 445.2 \text{ x } 100.45^3/(0.9 - 0.15)^2 = 802 \text{ kgf/cm}^2$$

(4) Critical buckling pressure due to external pressure of 2.0 m (Pressure difference at inside and outside pipeline)

$$P_k = \frac{2E}{1 - v^2} \left(\frac{t}{D_0}\right)^3 \times \frac{1}{n}$$

where,

E : $2.1 \times 10^6 \text{ (kgf/cm}^2\text{)}$

v : Poisson's number 0.3

n : SF, 2 for exposed

Thus,

 $P_k = 0.12 \text{ kgf/cm}^2 < 0.2 \text{ kgf/cm}^2$

2. Embedded pipeline

- (1) Condition
 - dia. 2.0 m, t = 10 mm concrete-filled
 - External pressure

$$EL.70 - EL.46 = 24 \text{ m}$$

(2) Pipeline having dia. 2.0 m, t = 10 mm without stiffener rings, material in $\sigma = 1,300 \, \text{kgf/cm}^2$ class, is withstood against external pressure up to 60 m by calculation of E. Amstutz formula. The design is therefore accepted.

SEVERINO PENSTOCK ONE-WAY SURGE TANK

1. Design Condition

(1) Design flow

: 9,6 m3/sec

(one penstock under operation of three pump units)

(2) Penstock inside dia.

: 1.0 - 1.5 - 2.0 m

(3) Penstock length

: 180.4 m

(4) Water level

Suction pit Head tank Surge tank

: EL. 58.5 : EL.114.02

: EL.101.0

2. Calculation

(1) Effective volume of surge tank

$$V_{e} = \frac{Q^{2}}{2g} \times \left(\frac{L_{2}}{A_{2} \times H_{2}} - \frac{L_{1}}{A_{1} \times H_{1}} \right) \times \alpha$$

where,

Q	:	Design flow	9,6 m3/sec
Lı	:	Penstock length between pump and surge tank	105.6 m
L_2	:	Penstock length between surge tank and head tank	74.8 m
A _{1.2}	:	Sectional area of penstock	3.14 m^2
- •		Actual head between water level	42.5 m

H₁: Actual head between water level 42.5 m in suction pit and surge tank

H2: Actual head between water level 13.02 m in surge tank and head tank

α : Safety factor 3

Thus,

$$V_e = 14.6 \text{ m}^3 \rightarrow 15 \text{ m}^3$$

7.2 Transmission Line

SAG COMPUTATION OF ACSR ORIOLE AND O.H. EARTHWIRE 55 SQ.MM

A. POWER CONDUCTOR

A-1. Particulars of Power Conductor

Type of Conductor

: ACSR Oriole (ASTM B-232-78)

Stranding

: Aluminium : 30/2.69mm + St: 7/2.69mm

Sectional Area

: Aluminium : $A_a = 170.5 \text{mm}^2$,

Steel: $A_s = 39.8 \text{mm}^2$,

Total : $A = 210.3 \text{mm}^2$

Diameter of Conductor

: D = 18.83mm

Unit Weight of Conductor

w = 0.737 kg/m

Ultimate Tensile Strength

: $T_u = 7,590 \text{kg}$

Young's Modulus

: Aluminium : $E_a = 6,300 \text{kg/mm}^2$

Steel: $E_s = 21,000 \text{kg/mm}^2$

Linear Expansion Coefficient

: Aluminium $\alpha a = 23 \times 10^{-6} \text{/°C}$

Steel $\alpha s = 1.5 \times 10^{-6} / ^{\circ}C$

Equivalent Span Length

: $S_e = 350m$

Wind Pressure

 $w_{\rm p} = 39 \, \text{kg/m}^2$

Minimum Factor of Safety to Tu

: 2.5 for Max. Working Tension

: 4.0 for Every Day stress

Conductor Temperature

: Maximum 60°C, Minimum 5°C,

Every Day 25°C

A-2. Composite Young's Modulus (E) of ACSR

$$m = A_a/A_s = 170.5/39.8 = 4.284$$

$$E = (m \times E_a + E_s)/(m + 1) = (4.284 \times 6,300 + 21,000)/(4.284 + 1) = 9.082 (kg/mm^2)$$

A-3. Composite Expansion Coefficient (α) of ACSR

$$\alpha = (m \times E_a \times \alpha_a + \alpha_s \times E_s)/(m \times E_a + E_s)$$

=
$$(4.284 \times 23 \times 10^{-6} \times 6,300 + 1.5 \times 10^{-6} \times 21,000)/(4.284 \times 6,300 + 21,000)$$

 $= 13.59 \times 10^{-6}$ °C

A.4. Wind Pressure and Weight of Equivalent Spans

- (a) Equivalent Span (Se) = 350m
- (b) Wind Press. W_w (350) = $S_e \times D \times 39 \times 10^{-3} \text{kg} = 350 \times 18.83 \times 10^{-3} \times 39 = 257 \text{kg}$ W_w (400) = 400 x 18.83 x 39 x 10⁻³ = 294 kg
- (c) Weight W_t (350) = $S \times_W kg = 350 \times 0.737 = 258kg$ W_t (400) = $400 \times 0.737 = 295kg$
- A-5. Loading Coefficient (for maximum wind pressure at minimum temperature)

$$S_e = 350m$$
: $q = (W_w^2 + W_t^2)^{1/2} / W_t = (257^2 + 258^2)^{1/2} / 258 = 1.41$
 $S_e = 400m$: $q = (294^2 + 295^2)^{1/2} / 295 = 1.41$

A-6. Conductor Unit Weight per Section

$$\delta = w/A = 0.737/210.3 = 3.50 \times 10^{-3} \text{ (kg/m.mm}^2\text{)}$$

A-7. Maximum Working Tension of Power Conductor (based on EDS)

EDS of the power conductor is less than 25% of the ultimate tensile strength of the power conductor (T_u) , i.e., factor of safety of EDS is more than 4.0 to the T_u .

$$f_1 = 0.25 \times T_0/A = 0.25 \times 7,590 / 210.3 = 9.022 \text{ (kg/mm}^2\text{)}$$

 $\alpha.E.t = 13.59 \times 10^{-6} \times 9.082 \times 10^{3} \times (18-25) = -0.864$
 $q_1 = 1.00, q_2 = 1.41$

$$\begin{split} K &= f_1 - (q_1.\delta)^2 \cdot Se^2 \cdot E/24 \cdot f_1^2 \\ &= 9.022 - (1.00 \times 3.50)^2 \times 10^{-6} \times 9.082 \times 10^3 \times Se^2 / 24 \times 9.022^2 \\ &= 9.022 - 0.0569 \times 10^{-3}.Se^2 \\ Se &= 350m \qquad K = 9.022 - 6.97 = 2.05 \\ Se &= 400m \qquad K = 9.022 - 9.104 = -0.082 \end{split}$$

$$M = (q_2.\delta)^2 \cdot E \cdot Se^2 / 24 = (1.41 \times 3.50)^2 \times 10^{-6} \times 9.082 \times 10^3 \cdot Se^2 / 24$$

$$= 9.22 \times 10^{-3} \cdot Se^2$$

$$Se = 350m \qquad M = 1,129$$

$$Se = 400m \qquad M = 1,475$$

Maximum working stress and tension of power conductors

$$f_2^2\{f_2 - (K - \alpha.E.t)\} = M$$

Se = 350m
$$f_2^2\{f_2 - (2.05 + 0.864)\} = 1,129$$

 $f_2^2(f_2 - 2.914) = 1,129$
 $f_2 = 11.48 \text{ (kg/mm}^2\text{)}$ Max.work.Tension: $T = f_2.A = 2,414\text{kg}$

Se = 400m
$$f_2^2\{f_2 \cdot (-0.082 + 0.864)\} = 1,475$$

 $f_2 = 11.65 \text{ (kg/mm}^2\text{)}$ Max.Work.Tension: $T = f_2.A = 2,450 \text{kg}$

Maximum working tension of the power conductor is set at 2,400kg. Factor of safety of the maximum working tension against its ultimate tensile strength is 7,590/2,400 = 3.10, i.e., more than 2.5 required.

A-8. Maximum Sag and Minimum Sag of Power Conductor

$$f_1 = 2,400 / 210.3 = 11.41 \text{ (kg/mm}^2), q_1 = 1.41, q_2 = 1.0,$$

 α .E.t max = 13.59 x 10⁻⁶ x 9.082 x 10³ x (60-18) = 5.184
 α .E.t min = 13.59 x 10⁻⁶ x 9.082 x 10³ x (5-18) = -1.604

$$K = f_1 - (q_1.\delta)^2 \cdot E \cdot Se^2 / 24 \times f_1^2$$

$$= 11.41 - 1.41^2 \times 3.50^2 \times 10^{-6} \times 9.082 \times 10^3 \cdot Se^2 / 24 \times 11.41^2$$

$$= 11.41 - 0.071 \times 10^{-3} \cdot Se^2$$

$$Se = 350m \qquad K = 11.41 - 8.70 = 2.71$$

$$Se = 400m \qquad K = 11.41 - 11.36 = 0.05$$

$$M = (q_2.\delta)^2.E.Se^2 / 24 = 3.50^2 \times 10^{-6} \times 9.082 \times 10^3.Se^2 / 24 = 4.636 \times 10^{-3}.Se^2$$

$$Se = 350m \qquad M = 467.91$$

$$Se = 400m \qquad M = 741.76$$

Conductor stress for maximum sag

Se = 350m
$$f_2^2\{f_2 - (2.71 - 5.184)\} = 567.91$$
 $f_2 = 7.533 \text{ (kg/mm}^2\text{)}$
Se = 400m $f_2^2\{f_2 - (0.05 - 5.184)\} = 741.76$ $f_2 = 7.623 \text{ (kg/mm}^2\text{)}$

Conductor stress for minimum sag

Se = 350m
$$f_2^2\{f_2 - (2.71 + 1.604)\} = 567.91$$
 $f_2 = 9.995 \text{ (kg/mm}^2)$
Se = 400m $f_2^2\{f_2 - (0.05 + 1.604)\} = 741.76$ $f_2 = 9.635 \text{ (kg/mm}^2)$

A-9. Maximum and minimum sags of power conductor

Maximum sags

$$\begin{split} D_{350m} &= \delta.q_2.S_e^2 / 8 \text{ x f}_2 = 3.50 \text{ x } 10^{-3}.S_e^2 / 8 \text{ x } .7.533 = 0.0581 \text{ x } 10^{-3} \text{ x } S_e^2 \\ D_{400m} &= 3.50 \text{ x } 10^{-3}.S_e^2 / 8 \text{ x } 7.623 = 0.0574 \text{ x } 10^{-3} \text{ x } S_e^2 \end{split}$$

Minimum sags

 $D_{350m} = 3.50 \times 10^{-3}.S_e^2 / 8 \times 9.995 = 0.0438 \times 10^{-3} \times S_e^2$ $D_{400m} = 3.50 \times 10^{-3}.S_e^2 / 8 \times 9.635 = 0.0454 \times 10^{-3} \times S_e^2$

	Maximun	Sag (m)	Minimum	Sag (m)
	Equivalent	Span (m)	Equivalent	Span (m)
participation of the second participation of the second se	350m	400m	350m	400m
50m	0.15	0.14	0.11	0.11
100m	0.58	0.57	0.44	0.45
150m	1.31	1.29	0.99	1.02
200m	2.32	2.30	1.75	1.82
250m	3.63	3.59	2.74	2.84
300m	5.23	5.17	3.94	4.09
350m	7.12	7.03	5.37	5.56
400m	9.30	9.18	7.01	7.26
450m	11.77	11.62	8.87	9.19
500m	14.59	14.35	10.95	- 11.35
550m	17.57	17.36	13.25	13.73
600m	20.92	20.66	15.77	16.34
650m	24.55	24.25	18.51	19.18
700m	28.47	28.13	21.46	22.25
800m	37.18	36.74	28.03	29.06
900m	47.06	46.49	35.48	36.77
1,000m	58.10	57.40	43.80	45.40
1,100m	70.30	69.45	53.00	54.93
1,200m	83.66	82.66	63.07	65.38
1,500m	130.73	129.15	98.55	102.15
2,000m	232.40	229.60	175.20	181.6
2,500m	363.13	158,75	273.75	283.74

B. OVERHEAD EARTHWIRE

B-1. Conditions for Sag Computation

Sag of O.H. earthwire is computed so that its sag in the equivalent span of 350m at 5°C, still air condition is 80% of sag of the power conductor in the same condition.

Sag of the power conductor in the equivalent span of 350m is 5.37m at 5°C and still air. The sag of O.H. earthwire at the condition should be around $5.37 \times 0.8 = 4.30$ m.

B-2. Particulars of Overhead Earthwire (Galvanized Steel Stranded Wire)

Stranding : St. 7/3.2mm

Sectional Area : $A = 56.29 \text{mm}^2$,

Diameter of Wire : D = 9.60mm

Unit Weight of Wire : w = 0.446 kg/mUltimate Tensile Strength : $T_0 = 4,660 \text{kg}$

Ultimate Tensile Strength : $T_u = 4,660 \text{kg}$ Young's Modulus : $E_s = 21,000 \text{kg/mm}^2$

Young's Modulus

Linear Expansion Coefficient $cos = 1.5 \times 10^{-6}$ C

Wind Pressure $w_0 = 39 \text{kg/m}^2$

Minimum Safety of Factor : 2.5 for against Tu

Earthwire Temperature : Maximum: 40°C,

Minimum: 5°C, Everyday: 25°C

B-3. Wind Pressure of Wire, Loading Coefficient and Unit Weight per

Section

Wind pressure $W_w = D \times 10^{-3} \times 39 = 0.374 \text{ (kg/m)}$

Loading Coefficient $q = (W_w^2 + W^2)^{1/2} / W = 1.305$

Unit Weight per Section $\delta = w/A = 7.923 \times 10^{-3} \text{ (kg/m.mm}^2\text{)}$

B-4. Stress of Wire at the Condition of 5°C and Still Air

 $f = \delta .q_2.S_e^2 / 8 \times d_2$

where, $d_2 = 4.30 \text{m}$ (80% of the power conductor's sag)

 $f = 7.923 \times 10^{-3} \times 1.0 \times 350^2 / 8 \times 4.30 = 28.214 \text{ (kg/mm}^2)$

B-5. Maximum Working Tension of Earthwire

$$\begin{split} &\alpha.E.t = 1.5 \times 10^{-6} \times 21 \times 10^{3} \times (18\text{-}5) = 0.410 \\ &K = f_{1} \cdot (q_{1}.\delta)^{2}.E.S_{e}{}^{2} / 24 \times f_{1}{}^{2}, \\ &M = (q_{2}.\delta)^{2}.E.S_{e}{}^{2} / 24 \\ &K = 28.214 \cdot (1 \times 7.923 \times 10^{-3})^{2} \times 21 \times 10^{3} \times 350^{2} / 24 \times 28.214^{2} = 19.76 \\ &M = 1.305^{2} \times 7.923^{2} \times 10^{-6} \times 21 \times 10^{3} \times 350^{2} / 24 = 11,459 \\ &\qquad \qquad f_{2}{}^{2} \left\{ f_{2} \cdot (K \cdot \alpha.E.t) \right\} = M \\ &\qquad \qquad f_{2}{}^{2} \left(f_{2} \cdot 19.35 \right) = 11,459 \\ &\qquad \qquad f_{2}{}^{2} \left(13.155 \right) \left(13.155 \right$$

accordingly, maximum working tension: $T = f_2.A = 1,754$ (kg)

Factor of safety of the maximum working tension against its ultimate tensile strength is more than 2.5 (4,660/1,754 = 2.66).

7.3 Conguillo Inlet

CONGUILLO INLET PIPE LOSS HEAD

1. Design Condition

(1) Design flow

18 m³/s (9 m³/s per unit)

(2) Pipeline inside dia

1,200 - 1,400 mm

(3) Pipe length

5.7 m - 26 m

2. Calculation

(1) Hydraulic loss of trash rack

$$h_1 = 0.3 \, m$$

Loss of pipe inlet (2)

$$h_2 = f_{\epsilon} \times \frac{V_1^2}{2g}$$

where,

Friction coefficient

0.15

(Bellmouth)

7.96 m/s

$$V_1$$
: Velocity
 $V_1 = \frac{9}{\pi \times 1.2^2/4} = 7.96$

Thus,

$$h_2 = 0.48491 \text{ m}$$

(3) Butterfly valve loss

$$h_3 = f_e \times \frac{V_1^2}{2g}$$

where,

fe : Friction coefficient

0.2

Thus,

$$h_3 = 0.64618 \text{ m}$$

(4) Friction loss of pipe

$$h_i = f_e \times \frac{L_i}{D_i} \times \frac{V_i^2}{2g}$$

where.

0.027

$$f_{\epsilon} = \left\{0.0144 + 2.5 / \left(1,000 \times \sqrt{V_1}\right)\right\} \times 1.5$$

L₁: Pipe length

5.7 m

 D_1 :

Pipe inside diameter

1.2 m

oʻ

Gravitational acceleration

9.8 m/s²

Thus,

$$h_4 = 0.41436 \text{ m}$$

(5) Enlargement pipe loss

$$h_5 = \frac{\left(V_1 - V_2\right)^2}{2g} \times f_e$$

where,

f_e:

Friction coefficient

0.33

$$V_2 = \frac{9}{\pi \times 1.4^2/4} = 5.85$$

Thus,

$$h_5 = 0.07513 \text{ m}$$

(6) Bend pipe loss

$$h_6 = f_e \times \frac{{V_2}^2}{2g}$$

where,

fe

Friction coefficient

-0.083

$$f_e = \left\{0.131 + 1.847 \times \left(D_2/2R\right)^{3.5}\right\} \times \left(\theta/90\right)^{0.5}$$

 $D_2 = 1.4 \text{ m}$

R = 3.5 m

 $0 = 33^{\circ} 1' 26"$

Thus,

$$h_6 = 0.14537 \text{ m}$$

(7) Bend pipe loss

$$h_7 = 0.14537$$

Butterfly valve loss

$$h_8 = f_e \times \frac{V_2^2}{2g}$$

where,

Friction coefficient

0.2

Thus,

$$h_8 = 0.34879 \text{ m}$$

(9) Butterfly valve loss

$$h_9 = 0.34879$$

(10) Friction loss of pipe

$$h_{10} = f_e \times \frac{L_2}{D_2} \times \frac{{V_2}^2}{2g}$$

where,

Friction coefficient

0.027

$$f_e = \left\{0.0144 + 9.5 / \left(1,000 \times \sqrt{V_2}\right)\right\} \times 1.5$$

Pipe length

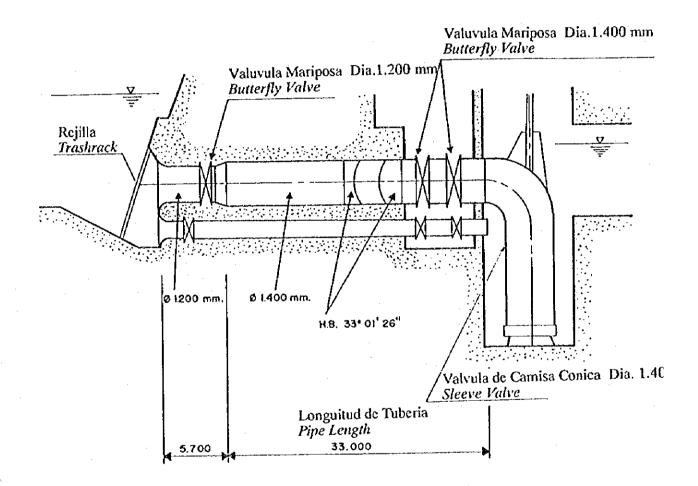
33 m

Pipe inside diameter

1.4 m

Thus,

$$h_{10} = 1.10991 \text{ m}$$


(11) Friction loss of pipe

$$h_e = h_1 + h_2 + h_3 + h_4 + h_5 + h_6 + h_7 + h_8 + h_9 + h_{10}$$

= 0.3 + 0.48491 + 0.64618 + 0.41436 + 0.07513 + 0.14537 + 0.14537 + 0.34879 + 0.34879 + 1.10991

= 3.9437 m \rightarrow 4.0 m

ARREGLO DE LA BOCA DE ENTRADA A CONGUILLO ARRANGEMENT OF CONGUILLO INLET

7.4 Poza Honda Inlet

POZA HONDA INLET INTAKE FIXED TRASHRACK

1.Design Conditions

Type : Slant type fixed trashrack

Quantity : 1 set
Clear span : 4.0 m

Vertical height : 4.1 m

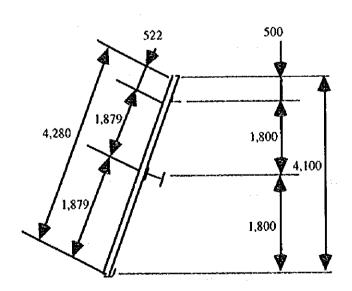
(Deck EL.95.500 m - Sill EL.91.400 m)

Gradient : $1:0.3 \ (\Theta = 73^{\circ} \sim 18^{\circ} \sim 3^{\circ})$

Slant length : 4.280 m

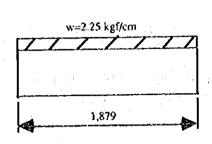
Bar pitch : 75 mm (center to center)

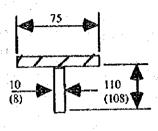
Design head : Water head difference of 3.0 m


Maximum deflection of : 1/600 of supporting span

supporting beams

Corrosion allowance : 2.0 mm for bar elements and supporting beams


(usually submerged in water condition)


2.Arrangement of Trashrack

3.Bar Elements

(1) Bending moment and stress

a. Bending moment

$$M = \frac{W \times L^2}{8}$$

where,

M: Bending moment (kgf-cm)

W: Unit load on a bar

 $0.3 \text{ kgf/cm}^2 \text{ x } 7.5 \text{ cm} = 2.25 \text{ kgf/cm}$

L: Maximum distance of center to center of supporting beam 187.9 cm

Thus,

$$M = \frac{2.25 \times 187.9^2}{8} = 9,930 \, kgf - cm$$

b. Bending stress

$$\sigma_b = \frac{M}{Z}$$

where,

 σ_b : Bending stress (kgf/cm²)

M: Bending moment 9,930 kgf-cm

Z: Modulus of section

 $15.5 \, \text{cm}^3$

Thus,

$$\sigma_b = \frac{9,930}{15.5} = 641 \, kgf / cm^2$$

(2) Critical stress considering horizontal buckling

$$C_r = 0.6 \times Y \times (1.23 - 0.0153 \times L/T)$$

where,

C_r: Critical stress (kgf/cm²)

Y: Yield strength of material 2,400 kgf/cm²

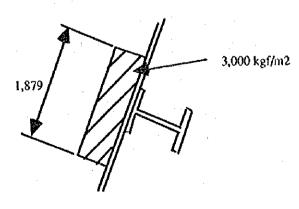
L: Laterally unsupporting length 35 cm

T: Thickness of bar

o.8 cm

Thus,

$$C_r = 0.6 \times 2,400 \times (1.23 - 0.0153 \times 35 / 0.8)$$


 $= 807 \text{ kgf/cm}^2$

 $\sigma_b = 641 \text{ kgf/cm}^2 < C_r = 807 \text{ kgf/cm}^2$

4. Intermediate Supporting Beams

(1)Water pressure load

Water pressure load acted on each beam is as follows:

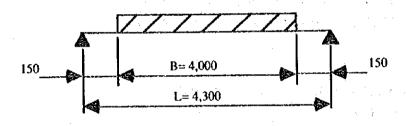
$$W_w = L \times h \times B$$

Ww: Water pressure load (kgf)

L : Distance of center to center of supporting beams 1.879 m

h : Design head

 $3,000 \text{ kgf/m}^2$


B: Clear span

4.0 m

Thus,

$$W_w = 1.879 \times 3,000 \times 4.0$$

= 22,548 kgf

(2) Bending moment and shearing force due to water load

a. Bending moment

$$M_{_x}=W_{_w}\times(2L-B)/8$$

where,

Mx: Bending moment due to water load (kgf-cm)

Ww: Water pressure load

22,548 kgf

L : Supporting span (B+30)

430 cm

B : Clear span

400 cm

Thus,

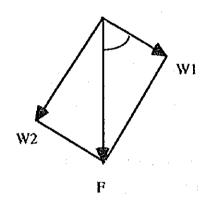
$$M_x = 22,548 \times (2 \times 430 - 400) / 8$$

= 1,296,510 kg-cm

b. Shearing force

$$S_x = W_w / 2$$

S_x: Shearing force due to water load (kgf)


Ww: Water pressure toad 22,548 kgf

Thus,

$$S_x = 22,548 / 2$$

= 11,274 kgf

(3) Bending moment and shearing force due to own weight

The force due to own weight is distributed as follows:

 $W1 = F \cos \theta$

 $W2 = F \sin \theta$

where,

W1, W2: Unit load of each direction (kgf/cm)

F: Unit load due to own weight

0.897 kgf/cm

0: Angle between "F" and "W1"

73° ~ 18' ~ 3"

Thus,

a. Bending moment

$$M_1 = W_1 \times L^2 / 8$$

$$M_2 = W_2 \times L^2 / 8$$

M1,M2: Bending moment of each direction (kgf-cm)

W1, W2: Unit load of each direction (kgf/cm)

$$W1 = 0.258 \text{ kgf/cm}$$

$$W2 = 0.859 \text{ kgf/cm}$$

L : Supporting span

430 cm

Thus,

$$M1 = 0.258 \times 430^2 / 8$$

$$= 5,963 \text{ kgf-cm}$$

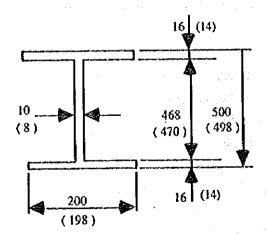
$$M2 = 0.859 \times 430^2 / 8$$

= 19,853 kgf-cm

b. Shearing force

$$S_1 = W_1 \times L/2$$

where,


S1: Shearing force due to own weight (kgf)

W1,L: Same as the above

Thus,

$$S1 = 0.258 \times 430 / 2$$

= 55 kgf

(4) Bending and shearing stresses Section properties

JIS G 3192 H-500 x 200 x 10/16 is used.

Moment of inertia

 $Ix = 47,800 \text{ cm}^4$

 $Iy = 2,140 \text{ cm}^4$

Modulus of section

 $Zx = 1,910 \text{ cm}^3$

 $Zy = 214 \text{ cm}^3$

Area of web $Aw = 38 \text{ cm}^2$

a. Bending stress

$$\sigma_b = \left(M_x + M_1\right)/Z_x + M_2/Z_y$$

where,

σ_b: Bending stress (kgf/cm³)

Mx: Bending moment due to water load

1,296,510 kgf-cm

M1: Bending moment due to own weight

5,963 kgf-cm

Zx: Modulus of section

1, 910 cm³

M2: Bending moment due to own weight

19,853 kgf-cm

Zy: Modulus of section

214 cm³

Thus,

$$\sigma_b = (1.296,510 + 5.963) / 1.910 + 19.853 / 214$$

$$=775 \text{ kgf/cm}^2$$

$$\sigma_{ba}=0.5~\sigma_y=1.200~kgf/cm^2$$

σ_{ba}: Allowable bending stress

b. Shearing stress

$$\tau_c = (S_x + S_1) / A_{\kappa}$$

where,

 τ_c : Shearing stress (kgf/cm²)

Sx: Shearing force due to water pressure

11,274 kgf

S1: Shearing force due to own weight

55 kgf

Aw: Area of web

38 cm²

Thus,

$$\tau_c = (11,274 + 55)/38$$

= 298 kgf/cm² < $\tau_{ca} = 0.3 \tau_y \neq 700 \text{ kgf/cm}^2$
 τ_{ca} : Allowable shearing stress

(5) Deflection

$$\delta = \frac{\left(W_w + W_1 \times B\right)}{48 \times E \times I_z} \left(L^3 - L \times B^2 / 2 + B^3 / 8\right)$$

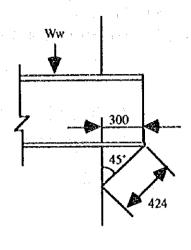
where,

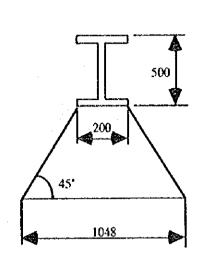
 δ : Deflection of beam (cm) W_w : Water pressure load 22,548 kgf

W1: Unit load due to own weight 0.258 kgf/cm

B: Clear span 400 cm
L: Supporting span 430 cm

E: Young's modulus 2.1 x 10⁶ kgf/cm²


Ix: Moment of inertia 47,800 cm⁴


Thus,

$$\delta = \frac{(22,548 + 0.258 \times 400)}{48 \times 2.1 \times 10^6 \times 47,800} (430^3 - 430 \times 400^2 / 2 + 400^3 / 8)$$

= 0.250 cm

$$\delta/L = 0.250 / 430 = 1 / 1,720 < 1 / 600$$

5. Strength of Concrete

(1) Bearing stress of concrete

$$\sigma_c = W_w / (2 \times A_1)$$

where,

 σ_c : Bearing stress of concrete (kgf/cm²)

Ww: Water pressure load 22,548 kgf

A1: Bearing area of concrete $30 \times 20 = 600 \text{ cm}^2$

Thus,

$$\sigma_c = 22,548 / (2 \times 600)$$

$$= 18.79 \text{ kgf/cm}^2 < 60 \text{ kgf/cm}^2$$
(Allowable concrete bearing stress)

(2) Shearing stress of concrete

$$\tau_c = W_w / (2 \times A_2)$$

where,

 τ_c : Shearing stress of concrete (kgf/cm²)

Ww: Water pressure load 22,548 kgf

A2: Shearing area of concrete 2,646 cm²

 $(20 + 104.8)/2 \times 42.4$

CALCULATION SHEET POZA HONDA TRASHRACK

Thus,

$$\tau_c = 22,548 / (2 \times 2,646)$$

= 4.3 kgf/cm² < 8 kgf/cm²

(Allowable concrete shearing stress)

POZA HONDA INLET PIPE LOSS HEAD

1. Design Condition

- (1) Design flow 4 m³/s (2 m³/s per unit)
- (2) Culvert size 2.5 x 4.0 m
- (3) Culvert length 39.3 m(4) Pipeline inside dia 900 mm
- (5) Pipe length 15.9 m

2. Calculation

(1) Hydraulic loss of trash rack

$$h_1 = 0.3 m$$

(2) Loss of culvert inlet

$$h_2 = f_{\bullet} \times \frac{V_1^2}{2g}$$

where,

- f_c: Friction coefficient 0.2 (Bellmouth)
- V_1 : Velocity 0.4 m/s

$$V_1 = \frac{4}{2.5 \times 4} = 0.4$$

Thus,

$$h_2 = 0.00163 \text{ m}$$

(3) Friction loss of culvert

$$h_3 = \frac{n^2 \times V_1^2}{rh^{4/3}} \times L_1$$

where,

- n: Roughness coefficient 0.015 V₁: Velocity 0.4 m/s
- L₁: Velocity 0.4 m/s

 L₂: Culvert length 5.8 m
 - rh : Hydraulic radius 0.77 m

$$rh = \frac{2.5 \times 4}{2 \times (2.5 + 4)} = 0.77$$

Thus,

$$h_3 = 0.00030 \text{ m}$$

(4) Transition culvert loss

$$h_4 = f_e \times \frac{{V_1}^2 - {V_2}^2}{2g}$$

where,

f_e: Friction coefficient 0.05 V₂: Velocity $V_2 = \frac{4}{\{4 \times 0.5 + \pi \times 2^2 / 2\}} = 0.48$

$$h_4 = 0.00019 \text{ m}$$

(5) Friction loss of culvert

$$h_5 = \frac{n^2 \times V_2^{-2}}{rh^{4/3}} \times L_2$$

where,

$$rh = \frac{\frac{\pi \times 2^2}{2} + 4 \times 2.5}{\frac{\pi \times 2 + 2 \times 2.5 + 4}{2}} = 1.07$$

Thus,

$$h_5 = 0.00159 \text{ m}$$

(6) Loss of pipe inlet

$$h_6 = f_e \times \frac{{V_3}^2}{2g}$$

Friction coefficient

0.15

(Bellmouth)

3.14 m/s

: Velocity
$$V_3 = \frac{2}{\pi \times 0.9^2/4} = 3.14$$

Thus,

$$h_6 = 0.07564 \text{ m}$$

Bend pipe loss

$$h_1 = f_e \times \frac{V_3^2}{2g}$$

where,

Friction coefficient f_e

$$f_{\epsilon} = \{0.131 + 1.847 \times (D/2R)^{3.5}\} \times (\theta/90)^{0.5}$$

$$R = 2.25 \,\mathrm{m}$$

$$\theta = 28^{\circ} 48' 38.84"$$

Thus,

$$h_7 = 0.03926 \text{ m}$$

Bend pipe loss

$$h_8 = 0.03926$$

Butterfly valve loss

$$h_9 = f_e \times \frac{V_3^2}{2g}$$

where,

Friction coefficient

0.2

Thus,

$$h_0 = 0.10085 \text{ m}$$

(10) Friction loss of pipe

$$h_{10} = f_{\epsilon} \times \frac{L}{D} \times \frac{V_3^2}{2g}$$

where,

Friction coefficient 0.030

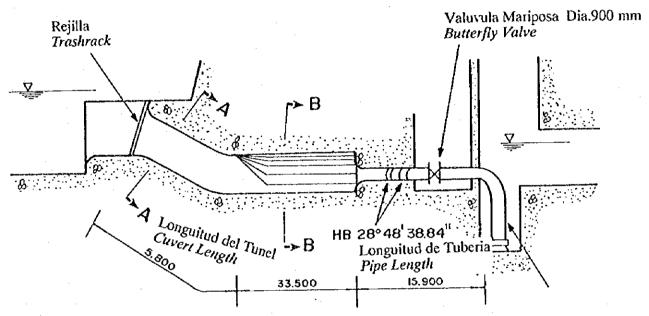
$$f_* = \left\{0.0144 + 9.5 / \left(1,000 \times \sqrt{V_3}\right)\right\} \times 1.5$$

Pipe length 15.9 m

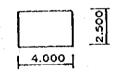
Pipe inside diameter 0.9 m D

Thus,

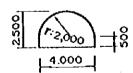
$$h_{10} = 0.26726 \text{ m}$$


(11) Friction loss of pipe

$$h_{e} = h_{1} + h_{2} + h_{3} + h_{4} + h_{5} + h_{6} + h_{7} + h_{8} + h_{9} + h_{10}$$


$$= 0.3 + 0.00163 + 0.00030 + 0.00019 + 0.00159 + 0.07564 + 0.03926 + 0.03926 + 0.10085 + 0.26726$$

$$= 0.826 \text{ m} \rightarrow 0.85 \text{ m}$$


ARREGRO DE LA BOCA DE ENTRADA A POZA HONDA ARRANGEMENT OF POZA HONDA INLET

Valvula de Camisa Conica Dia, 900 n Sleeve Valve

Seccion A - A SECTION A - A

Seccion B-B SECTION B-B

