1.2 Superstructure

1.2. SUPERSTRUCTURE

1.2.1 Pump House

(1) Structural System

Design of superstructure is made in accordance with the following structural system.

(a) Layout

The pumping station is divided in two main parts which are the erection bay and the pump/motor bay.

(b) Expansion joint

The pumping station is separated into two blocks by an expansion joint.

(c) Roof

Roof is a reinforced poured-in-place concreted slab which is supported by the framing of reinforced concrete beams and girders.

(d) Crane girder

The crane girder for overhead travelling crane is of reinforced concrete, and is supported by the brackets of columns.

(e) Framing plan

Framing plan of pump house is shown in Fig. No. 4.1.

(2) Design Conditions

(A) Loads

(1) Unit weight of material

Materials	Unit weight	
Concrete, plain	2.30 ts/m ³	
Concrete, reinforced	2.40 ts/m^3	
Mortar	2.00 ts/m ³	
Steel	7.80 ts/m ³	

(b) Dead Load

Dead load is the self weight of the structure.

(c) Seismic force

Seismic force acting on the structure is calculated by the following formulae:

where:

F : Seismic load t

ΣW: total dead load

kh : coefficient for horizontal earthquake = 0.15

(B) Factored Loads

The structures and structural members were designed according to the following factored loads: dead D and live L for ultimate strength.

$$U=1.4 D + 1.7 L$$

For seismic analysis, including the seismic force E, the most critical conditions of the following combinations were used:

(3) Structural Analysis and Design

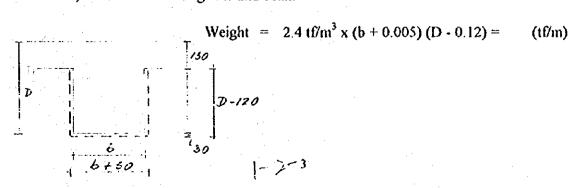
The structural analysis was made for each block of the pumping station with the computational program SAP 90.

(A) Loads assumption

(a) Dead load of roof and floor

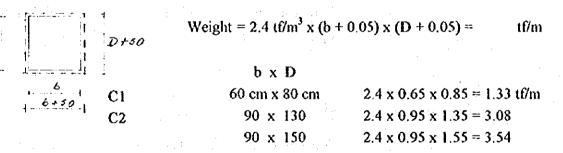
a) Roof

20000	- Plain Concrete 10 cm average thickness		230	
2/2007/2007/2007	- 3 ply built-up roofie	ng .	20	
CARTINETE STATE	- Base Mortar	3 cm	60	
	- Concrete slab	15 cm	360	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			670	kgf/m²

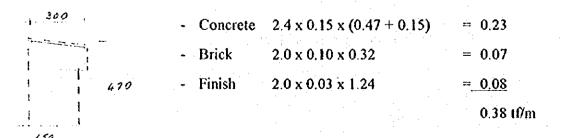

b) 2nd floor slab

	- Cement mortar	3 cm	60 kgf/m²
67000	- Concrete slab	15 cm	_360
	•		420 kgf/m²

c) Dead load of reinforced concrete walls


W 150	Thick	150 mm	
	- Concrete wall	15 cm	360 kgf/m ²
	- Mortar	2 cm	40
	÷		400 kgf/m²
W 200	Thick	200 mm	:
	- Concrete wall	20 cm	480 kgf/m²
	- Mortar	2 cm	<u>40</u>
			520 kgf/m ²

d) Dead load of girder and beam



•		
Element	b x D	Weight
RG 1	45 cm x 80 cm	$2.4 \times 0.5 \times 0.68 = 0.82 \text{ tf/m}$
RG 2		and the space of a stage of the space of the
2G 2	40 x 80	$2.4 \times 0.45 \times 0.68 = 0.74$
2G 3		
2G 1	50 x 80	$2.4 \times 0.55 \times 0.68 = 0.90$
	基础 50g 15 4 15 1 2 6 1 1	
RG-3	70 x 150	$2.4 \times 0.75 \times 1.38 = 2.48$
RG4	90 x 130 Ave	$2.4 \times 0.95 \times 1.18 = 2.69$
2G 4	100 x 150	$2.4 \times 1.05 \times 1.55 = 3.91$ without slab
CG 1	40 x 60	$2.4 \times 0.45 \times 0.48 = 0.52$
RB I	en e	
RB 2	30 x 70	$2.4 \times 0.35 \times 0.58 = 0.49$
2B 1		
2B 2	30 x 60	$2.4 \times 0.35 \times 0.48 = 0.40$

e) Dead load of column


f) Dead weight of parapets

232

- Concrete $2.4 \times 0.15 \times (0.57 + 0.15) = 0.26$
- Brick $2.0 \times 0.10 \times 0.42$ = 0.09
- Finish $2.0 \times 0.03 \times 1.44 = 0.09$
- Concrete $2.4 \times 0.15 \times 0.37$ = 0.13
- Finish $2.0 \times 0.03 \times 0.95 = 0.06$

0.63 tf/m

- Concrete 2.4 x 0.15 x 1.47
- = 0.53
- $2.4 \times 0.10 \times 0.15$
- = 0.04

- Brick
- $2.0 \times 0.10 \times 0.70$
- = 0.14

- Finish 2.0
- $2.0 \times 0.03 \times 3.24$
- = 0.20

0.91 tf/m

0

- Concrete $2.4 \times 1.20 \times (0.40 + 0.20) = 0.86 \text{ tf/m}$
- Finish 2.4 x 0.03 x 2.0
- = 0.151.01 tf/m

(b) Live load

Roof

180 kgf/m²

2nd floor slab

300 kgf/m²

(B) Structural Analysis

The structural three dimensional analysis for each block that conforms the pump house superstructure, was made with the computer program SAP90.

(a) Block No. 1

The block No. 1 is a building of one floor with three spans longitudinally and one transversally.

The roof slab is supported on beams and girders and all of them supported on columns.

The structural model has 32 joints, 26 frame type elements and 15 shell bending type elements.

Because of symmetry in both directions the structure was studied for the following load combinations:

- 1. 1.4 D + 1.7 L
- 2. 1.05 D + 1.275 L + 1.4 E Y
- 3. 1.05 D + 1.275 L + 1.4 E X
- 4. 0.9 D + 1.43 E Y
- 5. 0.9 D + 1.43 E X

The structural model is shown in Figure B1-1, the joints in Figure B1-2, frame elements in Figure B1-3, shell type elements in Figure B1-4, joints displacements for load combination No.1 in Figure B1-5, joint displacements for load combination No.2 in Figure B1-6, joint displacement for load combination No.4 in Figure B1-7, bending moments for toad combination No.1 in Figure B1-8 and shear forces for load combination No.1 in Figure B1-9.

The structural design was made by the computer program SAPCON, a postprocessor program of SAP90, for reinforced concrete design.

The concrete design was made in accordance to the ACI 318 - 89 Code.

The computer autputs for the estructural analysis and design are in a separate appendix.

(b) Block No. 2

The block No.2 is an asymmetric building with four spans longitudinally and where one span has two floors. One and span is part of the maintenance pump house block.

The roof slab is supported on beams and girders and all of them on columns.

The maintenance block has a bridge crane with a capacity of 32tf supported on rails on top of concrete girders of $1.0 \times 1.5 \text{ m}$. The main columns are $0.9 \times 1.5 \text{ m}$ in section.

The structural model has 96 joints, 139 frame type elements and 30 shell bending type elements.

Due to its lack of symmetry the structure was studied for the following load combinations:

- 1. 1.4 D + 1.7 L
- 2. 1.05 D + 1.275 L + 1.4 E Y
- 3. 1.05 D + 1.275 L + 1.4 E X
- 4. 0.9 D + 1.43 E Y
- 5. 0.9 D + 1.43 E X
- 6. 1.05 D + 1.275 L 1.4 E Y
- 7. 1.05 D + 1.275 L 1.4 E X
- 8. 0.9 D 1.43 E Y
- 9. 0.9 D 1.43 Sismo X.

The structural model is shown in figure B2-1, the joints in Figure B2-2, the frame type elements in Figure B2-3, the shell type elements in Figure B2-4, joints displacements for load combinations No.1, No.2, No.3, No.6 and No.7 in Figures B2-5, B2-6, B2-7, B2-8, B2-9, bending and shear for load combination No.1 in Figures B2-10 and B2-11.

The structural design of the frame type reinforced concrete elements beams and columns was made by the computer program SAPCON.

The concrete design was made in accordance to the ACI 318 -89 Code.

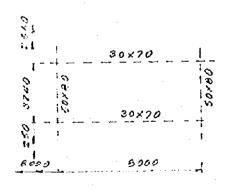
The computer out puts for the estructural analysis and design are in a separate appendix.

(C) Check the assumed slab depth

The minimum depth of slabs in two directions shall be computed by:

$$h = \frac{Ln (800 + fy/1.5)}{36,000 + 5,000 \beta [\alpha m - 0.5(1 - \beta s)(1 + 1/\beta)]}$$

where:


Ln : larger clear span

fy : yield strength of reinforcement

β : relation of long to short spans

 αm : average value of α

βs : ratio of continuous edges to panel perimeter

$$= 750 \text{ cm}$$

$$Lc = 3.24 - 2 \times 15$$

$$= 294 \text{ cm}$$

$$\beta = \frac{750}{294} = 2.55$$

$$I_1 = \frac{1}{12} 50 \times 80 = 2,133,3333 \text{ cm}^4$$

$$I_2 = \frac{1}{12} 30 \times 70^3 = 857,500$$
 cm⁴

$$I_{s1} = \frac{1}{12} 800 \times 15^3 = 225,000$$
 cm⁴

$$I_{s2} = \frac{1}{12} 295 \times 15^{3} = 82,969$$
 cm⁴

$$I_{s3} = \frac{1}{12} 287 \times 15^3 = 80,719$$
 cm⁴

$$\alpha_1 = \frac{2,133,333}{225000} = 9.48$$

$$\alpha_2 = \frac{857,500}{82,969} = 10.36$$

$$\alpha_3 = \frac{857,500}{80,719} = 10.62$$

$$\alpha_m = \frac{9.48 + 10.36 + 10.62}{3} = 10.15$$

$$h = \frac{7,500 (800 + 420/1.5)}{36,000 + 5,000 \times 2.55 [10.15 - 0.5 (1-1)(1+1/2.55)]} = 49 \text{ mm}$$

but shall not be less than

$$h = \frac{\ln (800 + fy/1.5)}{36,000 + 5,000 \beta (1 + \beta s)}$$
$$= \frac{7,500(800 + 420/1.5)}{36,000 + 5,000 \times 2.55(1 + 1)} = 132 \text{ mm}$$

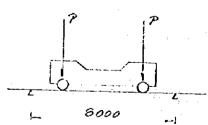
and does not need to be larger than

$$h = \frac{\ln (800 + fy/1.5)}{36,000}$$

$$= \frac{7500(800+420/15)}{36000}$$

= 225 mm

The assumed depth was 150 mm which is between the limits defined, so it is adequate.


- (D) Crane Girder Analysis
- (a) Crane load and reaction

Loading conditions

Crane self weight	24 tf

Horizontal impact factor

$$P = 22 \times 1.2 = 26.4 \text{ tf}$$

$$a = 4.40 \text{ m}$$

$$1 = 8.0 \text{ m}$$

Mmax =
$$\frac{P}{8I} (2I - a)^2$$

= $\frac{26.4}{8 \times 8.0} (2 \times 8.0 - 4.4)^2 = 55.506 \text{ if } -m$

$$Q = P = 26.4 \text{ tf}$$

Qmax = P
$$\left(1 + \frac{l-a}{l}\right)$$

= 26.4 $\left(1 + \frac{8.0 - 4.4}{80}\right)$ 38.28 tf

(b) Check the Girder depth

Depth required

$$d > \frac{1}{\sqrt{\frac{Cc}{\alpha} \cdot \frac{b}{Wo}}}$$

Ref. Japanese Code of Practice

where:

Cc: 6 kg/cm² for rectangular section

 α : 1/8 for simple supported beam

1 : 800 cm

d : required depth

Wo: average uniform load on girder

$$Wo = 39.1 + \frac{38280}{400} = 134.8 \ kg/cm$$

$$\sqrt{\frac{Cc}{\alpha} \cdot \frac{b}{Wo}} = \sqrt{\frac{6}{1/8} \cdot \frac{100}{134.8}} = 5.967; d > \frac{800}{5.976} = 134 cm$$

Assumed 150 cm

(c) Check the Deflection

$$de = d1 + d2$$

where:

de : inmediate deflection

d1 : deflection by crane load

d2 deflection by girder dead load

The effective moment of inertia according to the code.

$$le = \left(\frac{Mcr}{Ma}\right)^3 lg + \left[1 - \left(\frac{Mcr}{Ma}\right)^3\right] lcr < lg$$

where:

$$Mer = \frac{fr}{yt} Ig$$

fr =
$$2\sqrt{f'c} = 2\sqrt{210} = 29.0 \, kgf / cm^2$$

$$Ig = 100 \times \frac{150^3}{12} = 0.28125 \times 10^8 \text{ cm}^4$$

yt =
$$\frac{150}{2} = 75cm$$

$$Mcr = \frac{29}{75} 0.28125 \times 10^8 = 108.75 \ tf - m$$

Md =
$$\frac{WI^2}{8}$$
 = 3.91 x $\frac{8.0^2}{8}$ = 31.28 if -m

Live load is considered to be 50% sustained.

$$Ma = Md + 0.5 Ml$$

$$MI = 55.506 \text{ tf-m}$$
 (See page 10)

$$Ma = 31.28 + 0.5 \times 55.506 = 59.03 \text{ tf} - \text{m}$$

Ec =
$$W^{15}$$
 0.14 $\sqrt{f'c}$
= 2300¹⁵ 0.14 $\sqrt{210}$ = 223,784.2 kgf / cm²
n = $\frac{Es}{Ec}$ = $\frac{2.039}{0.222378}$ = 9.11

Moment of inertia of cracked section Ici

B =
$$\frac{b}{n As}$$
; As assumed = 0.0033 bd
As = 0.0033 x 100 x 144 = 47.52 cm²

$$B = \frac{100}{9.11 \times 47.52} = 0.231$$

r =
$$\frac{(n-1)}{n A s} A^t s$$
 A's = 0.001 x 100 x 144 = 14.4 cm²
= $\frac{(9.11-1) 14.4}{9.11 \times 47.52} = 0.27$

a =
$$\left[\sqrt{2dB\left(1+r\frac{d'}{d}\right)+\left(1+r\right)^2} - \left(1+r\right)\right]\frac{1}{B}$$

= $\left[\sqrt{2 \times 144 \times 0.231\left(1+0.27 \times \frac{6}{144}\right)+\left(1+0.27\right)^2} - 1.27\right]\frac{1}{0.231}$
= 30.433 cm

Icr =
$$\frac{6a^3}{3} + n As (d-a)^2 + (n-1) A's (a-d')^2$$

= $\frac{100}{3} \times 30.433^3 + 9.11 \times 47.52 (144 - 30.433)^2$
+ $(9.11 - 1) 14.4 (30.433 - 6)^2$
= $939535.17 + 5,583,404.81 + 69,716.72 = 6,592.66 \times 10^3$

$$\frac{\text{lg}}{\text{lcr}} = \frac{28,125 \times 10^3}{6,592.66 \times 10^3} = 4.266$$

$$\frac{\text{Mer}}{\text{Md}} = \frac{108.75}{31.28} = 3.477 > 1.0$$

then (Ie)d = Ig

$$\left(\frac{\text{Mor}}{\text{Ma}}\right)^3 = \left(\frac{108.75}{59.03}\right)^3 = 6.253$$

$$le = \left(\frac{Mcr}{Ma}\right)^3 lg + \left[1 - \left(\frac{Mcr}{Ma}\right)^3\right] lcr$$

=
$$6.253 \times 0.28125 \times 10^8 + (1-6.253) \times 6,592.66 \times 10^3$$

= $141,234.38 \times 10^3 \text{ cm}^4 = 1.4123 \times 10^8$

(1)

Ie > Ig

then take Ig

The inmediate deflection shall be:

$$\delta e = \frac{5}{48} k \frac{\text{Ma } 1^2}{\text{Ec Ic}}$$

where, k = 1.0

$$\delta e = \frac{5}{48} \times 1.0 \times \frac{59.03 \times 800^2 \times 10^2}{223,784.2 \times 28,125,000}$$

= 0.0625cm

the long term deflection

$$\delta t = \delta e . \lambda = \frac{\delta e \xi}{1 + 50 \rho}$$

where:

 $\xi = 2.0$ for more than five years

$$\lambda = \frac{2.0}{1 + 50 \times 0.001} = 1.905$$

$$\delta t = 1.905 \times 0.0625 = 0.119 \text{ cm}$$

$$\frac{\delta t}{I} = \frac{0.119}{800} = \frac{1}{6722} < \frac{1}{400}$$
 OK

according to the Japanese Code of Practice.

$$\delta u = \frac{\Psi}{\alpha y} \, \delta c$$

where:

$$\frac{\Psi}{\alpha y}$$
 = increasing ratio of long term deflection = 7.5 for outside span

$$\delta c = 0.0625 \text{ cm}$$

$$\delta u = 0.0625 \times 7.5 = 0.47 \text{ cm} > \delta t$$

$$\frac{\delta u}{I} = \frac{0.47}{800} = \frac{1}{1,702} \le \frac{1}{400}$$
 OK

The inmediate and long term deflections are loss tham the allowable.

d) Bracket design

Loading conditions

-	Crane self weight	24 tf
. •	Crane capacity	32 tf
	Total of wheels	4 nos
•	Vertical impact factor	1.2
, -	Horizontal impact factor	
	• Transversal	0.1
	• Longitudinal	0.15

1) Compute the factored shear force

$$Vu = 1.4 D + 1.7 L$$

=
$$1.4x \frac{24}{4} + 1.7x \frac{32}{2} = 35.6t$$
 35.6tf per wheel

2) Compute the shear by friction reinforcement area Avf

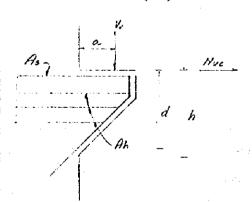
$$Avf = \frac{Vu}{\Phi fv \mu}$$

where,

Φ : stress reduction factor

fy : yield strength of reinforcement

μ : friction coefficient = 1.4


Avf =
$$\frac{35600 \times 2}{0.85 \times 4200 \times 1.4}$$
 = 14.3 cm²

3) Compute the reinforcement to resist moment Af

$$Af = \frac{Mu}{\Phi \text{ fy } Z}$$

$$Z = 0.9 d$$

$$Mu = Vu a + Nuc (h-d)$$

where:

h : total depth

d effective depth

Nuc: tension factored force

a : shear length

Mu : factored moment

Nuc = $0.1 \times 35.6 \times 2 = 7.12 t$

$$Mu = 35.6 \times 2 \times 0.45 + 7.12 (2.10 - 1.95)$$

= 33.11 t - m

Af =
$$\frac{3311000}{0.85 \times 4200 \times 0.9 \times 195}$$
 = 5.3 cm²

Compute the tensile force reinforcement An

An =
$$\frac{\text{Nuc}}{\Phi \text{ fy}}$$

= $\frac{7,120}{0.85 \times 4200}$ = 2.0 cm²

5) Compute the primary tension reinforcement

As
$$\geq$$
 Af + An

whichever is greater

As
$$\geq 2 \text{ Avf} + \text{An}$$
3

As
$$\geq 5.3 + 2.0 = 7.3 \text{ cm}^2$$

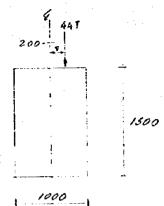
As
$$\geq 2 \times 14.3 + 2.0 = 11.5 \text{ cm}^2$$

$$\rho min = 0.04 \quad \frac{f c}{f y} = 0.04 \text{ x } \frac{210}{4200} = 0.002$$

Asmin =
$$0.002 \times 90 \times 195 = 35.1 \text{ cm}^2 > 11.5$$
 $8 \oplus 25$

6) Compute the reinforcement for parallel shear Ah

$$Ah = 0.5 (As - An)$$


=
$$0.5 (35.1 - 2.0) = 16.6 \text{ cm}^2$$
 8 Est Φ 12 (18.1 cm²)

<u>OK</u>

Check:
$$As + Ah \ge Avf + An + Af$$

$$35.1 + 16.6 \ge 14.3 + 2.0 + 5.3$$

(e) Check the crane girder to torsion

$$Tu = (1.4 \times 6 + 1.7 \times 16) 0.2$$
$$= 7.12 \text{ t.m}$$

if
$$Tu < \Phi(0.13 \sqrt{fc} \sum x^2 y)$$

the torsion effect may be neslected

$$\Phi (0.13 \sqrt{fc'} \sum x^2 y) = 0.85 (0.13 \sqrt{210} \times 100^2 \times 150)$$

= 2,401,946 kgf- cm
= 24.02 tf- m > 7.12

then torsion is neslected

(E) Slab reinforcement

From the structural analysis the maximum bending moment for the slab element No.4 is 1,545.4 kg - m at joint No. 27 for load combination No. 1.

$$Mu = 154540 \text{ kgf-cm}$$

$$kn = \frac{154540}{0.9 \times 210 \times 100 \times 12^2} = 0.0568$$

$$\rho = 0.00295 < 0.0033 = \frac{14}{\text{fy}}$$

Check with coefficient for one single direction.

$$M_{(\cdot)} = \frac{W \ln^2}{10}$$

$$WD = 670 \quad \text{kgf/m}^2$$

$$WL = 180 \quad \text{kgf/m}^2$$

$$\frac{\ln}{1c} = \frac{7.5}{2.94} = 2.55 > 2.0$$

(2)

Wu =
$$1.4 \times 670 + 1.7 \times 180$$

= $1,244 \text{ kgf/m}^2/\text{m}$

$$ln_1 = 3.24 - 0.15 \times 2 = 2.94 \text{ m}$$

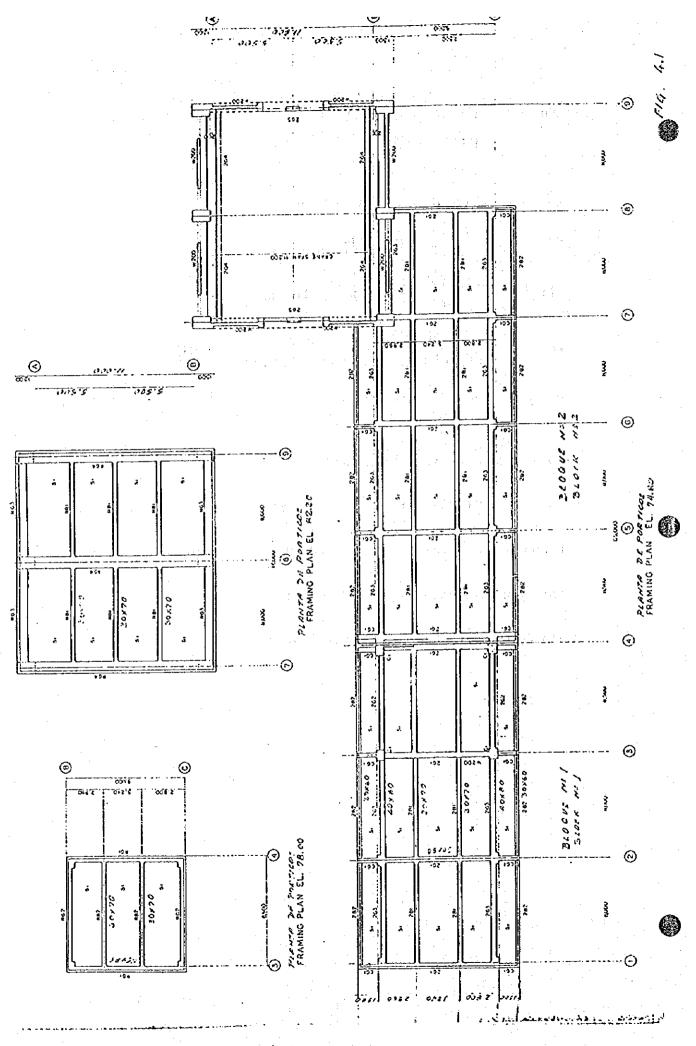
$$ln_2 = 2.66 - (0.15 + 0.20) = 2.31 \text{ m}$$

$$\ln = \frac{2.94 + 2.31}{2} = 2.625 \text{ m}$$

Mu =
$$\frac{1244 \text{ x}}{10} = \frac{2.625}{2.625} = 857.2 \text{ kg - m}$$

$$kn = \frac{Mu}{\Phi f c b d^2} = \frac{85720}{0.9 \times 210 \times 100 \times 12^2} = 0.0314$$

$$\rho = 0.0016 < 0.0033$$


So assumed the minimum reinforcement

As =
$$0.0033 \times 100 \times 12$$
 = 3.96 cm^2

For positive reinforcement
$$5 \Phi 10$$
 bottom

For negative reinforcement
$$5 \Phi 12$$
 top

The distribution reinforcement assumed the same.


```
SUPERESTRUCTURA BLOQUE 1 - ANALISIS TRIDIMENSIONAL
SYSTEM
1.=4
JOINTS
1 X=10.2 Y=0.0 Z=0.0
           0.8=Y
           Y=16.0
4
           Y=24.1
           Y=0.0
  X=1.8
           0.8=Y
           Y=16.0
7
           Y = 24.1
  X=12.0
          Y = 0.0
                   Z=4.5
           0.8=Y
10
           Y=16.0
11
12
           Y=24.1
13 X=10.2
          Y=0.0
           0.8=Y
14
           Y=16.0
15
           Y = 24.1
16
17 X=7.7
           Y=0.0
           Y = 3.0
18
19
           Y = 16.0
20
           Y=24.1
21 X=4.46
           Y=0.0
           Y=8.0
22
           Y = 16.0
23
           Y=24.1
25 X=1.8
           Y=0.0
           0.8 = Y
26
27
           Y=16.0
           Y = 24.1
2ô
29 X=0.0
           Y = 0.0
           Y=3.0
30
           Y=16.0
31
           Y = 24.1
32
RESTRAINTS
1,8,1 R=1,1,1,1,1,1,1
FOTENTIAL
9,32,1 P=180,180
                            :Unidades kg / m2
FRAME
                      Y=0,0,0.15,0
                                     Z=-1.0
NM=7 X=0.0.0.0.15
1 SH=R T=0.6,0.3 E=2.1E9 W=1030
                                           :carga muerta
                                 W=490
                                           :carga muerta
2 SH=R
        T=0.7,0.3
                                 W = 740
                                           :carga muerta
3 SH=R
        T=0.8,0.4
                                 W = 900
                                           :carga muerta
        T=0.8,0.5
4 SH=R
                                 W=1340
                                           :carga muerta
5 SH≈R
        T=0.8.0.5
                                 W=1330
                                           :carga muerta
6 SH=R
       T=0.6.0.8
                                 W=520
7 SH=R T=0.6.0.4
                                           :carga muerta
C COLUMNAS
         M=6 RE=0,0.8 G=3,1,1,1 LP=2,0
1,1,13
         N=6 RE=0.0.8 G=3,1,1,1 LP=2.0
5.5.25
C VIGAS
         M=1 RE=0.25,0.25 RZ=0.5 LP=3.0 G=2,1,1,1
9,9,10
12,13.14 M=3 RE=0.25,0.25 RZ=0.5 LP=3.0 G=2,1,1,1
15,17,18 M=2 RE=0.25,0.25 RZ=0.5 LP=3,0 G=2,1,1,1
18.21.22 M=2 RE=0.25.0.25 RZ=0.5 LP=3.0 G=2.1,1.1
21,25,28 M=3 RE=0.25,0.25 RZ=0.5 LP=3.0 G=2,1.1.1
24,29.30 M=1 RE=0.25.0.25 RZ=0.5 LP=3,0 G=2,1.1.1
27,9,13 M=7 RE=0.15,0.15 RZ=0.5 LP=2.0
23,13,17 M=5 RE=0.15,0.15 RZ=0.5 LP=2.0 G=2,1.4,4
31.25,29 M=7 R8=0.15,0.15 RZ=0.5 LP=2.0
```

```
32.10.14 M=7 RE=0.15.0.15 RZ=0.5 LP=2.0
33.14.18 M=4 RE=0.15.0.15 RZ=0.5 LP=2.0 G=2.1.4.4
36.26.30 M=7 RE=0.15.0.15 RZ=0.5 LP=2.0
37.11.15 M=7 RE=0.15.0.15 RZ=0.5 LP=2.0
38.15.19 M=4 RE=0.15.0.15 RZ=0.5 LP=2.0 G=2,1.4.4
41,27,31 M=7 RE=0.15.0.15 RZ=0.5 LP=2.0
42.12.16 M=7 RE=0.15,0.15 RZ=0.5 LP=2.0
43.16.20 M=4 RE=0.15.0.15 RZ=0.5 LP=2.0 G=2.1.4.4
46.28.32 M=7 RE=0.15.0.15 RZ=0.5 EP=2.0
SHELL
M=1 X=0.0.0.0.15 Y=0.0.0.15,0 Z=-1.0 P=0,-1.0
1 E=2.1E9 U=0.15 W=3340
1 JQ=10.14.9.13 ETYPE=2 M=1 TH=0.15.0.15 LP=0
2 J0=11.15.10.14
3 JQ=12,16,11,15
4 J0=14,13,13,17
5 J0=15,19,14,18
6 JQ=16,20,15,19
7 JQ=18,22,17,21
8 JQ=19.23.18.22
9 JQ=20,24,19,23
10 JQ=22,26.21.25
11 JQ=23,27,22,26
12 JQ=24,28,23.27
13 JG=26,30,25,29
14 JQ=27,31,26,30
15 JQ=28,32,27,31
CCMBO
                           :1.4 CM + 1.7 CV
1 C=1.4.1.7
                           :1.05 CM + 1.275 CV + 1.4 SY
2 C=1.05.1.275.1.40
                           :1.05 CM + 1.275 CV + 0 SY + 1.4 SX
3 C=1.05.1.275,0.1.40
                           :0.9 CM + 0 CV + 1.43 SY
4 C=0.9.0.1.43
                           :0.9 CM + 0 CV + 0 SY + 1.43 SX
 5 C=0.9,0,0,1.43
```

END

1.2.2 Generator House

(1) STRUCTURAL SYSTEM

The structure is a tridimensions frame conformed by beams and columns. The roof is a reinforced concrete slab supported on beams.

(2) DESIGN CONDITIONS

(A) Loads

(a) Unit weight of materials

Materials	Unit Weight
Concrete, plain	2.30 tf/m ³
Concrete, reinforced	2.40 tf/m ³
Mortar	2.00 tf/m ³
Steel	7.80 tf/m ³

(b) Dead Load

Dead load is the structure self weight.

(c) Seismic Force

Seismic force acting on the structure was computed by the following formulae:

$$F = \sum W \cdot kh$$

where:

F = seismic load

 $\sum W = total dead load$

kh = coefficient of horizontal earthquake = 0.15

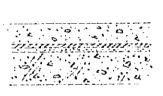
(B) Factored Loads

The structure and its members were analyzed according to the following factored loads: dead load D and live load L for ultimate strength design.

$$U = 1.4D + 1.7L$$

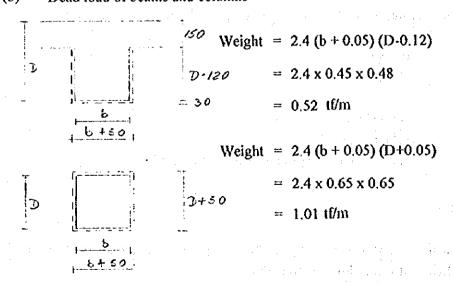
Including seismic force E.

$$U = 1.05 D + 1.275 L + 1.87 E$$

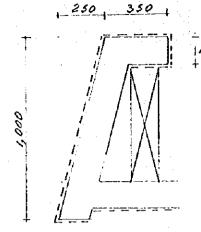

$$U = 0.9 D + 1.43 E$$

(3) STRUCTURAL ANALYSIS AND DESIGN

The structural analysis was made with the computer program SAP90 and the design with the program SAPCON.


(A) Load Assumption

(a) Roof dead load



- Concrete 8 cm thick 184 kgf/m²
- 3 ply built-up roofing 20 "
- Base mortar 3 cm 60 "
- Concrete slab 15 cm thick 360 "
 624 kgf/m²

(b) Dead load of beams and columns

(c) Parapets dead weight

- Concrete

2.4 x 0.15 x 1.03

0.47 tf/m

- Concrete block 2.0 x 0.2 x 0.4

= 0.16

- Finish

 $2.0 \times 0.03 \times 16$

0.10 "

0.73 (f/m

Roof live load

 180 kg/m^2

(B) Structural Analysis and Reinforcement

The structural model for the analysis has 10 joints, 11 frame type elements and 2 shell bending type elements.

Enclosed are the computer outputs for the structural analysis and the concrete design.

(C) Foundation Design

The foundation allowable bearing capacity was assumed as 15 tf/m²

For seismic analysis was accepted and increment of 30%.

For plinth design.

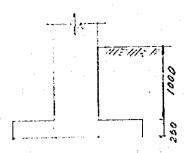
$$Pu = 21.6 T$$

$$P = 14.4 T$$

$$M_{u1} = 1.06 \text{ T-M}$$

$$M_1 = 0.91 \text{ T-M}$$

$$M_{u2} = 4.47 \text{ T-M}$$


$$M_2 = 2.98 \text{ T-M}$$

Including seismic force.

$$P_{i} = 17.97 \text{ T}$$

$$M_1 = 7.31 \text{ T-M}$$

$$M_2 = 3.43 \text{ T-M}$$

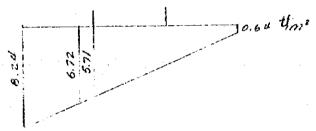
- backfill
$$1.0 \times 1.7 = 1.70 \text{ tf/m}^2$$

- concrete
$$0.25 \times 2.4 = 0.60$$

 2.30 tf/m^2

$$-qa = 15 - 2.30 = 12.70 \text{ tf/m}^2$$

$$si bxh = 1.8 x 1.8 m$$


$$\sigma = \frac{14.40}{1.8^2} \pm \frac{(0.71 + 2.98)6}{1.8^3} = 4.44 \pm 3.80$$

$$0.64 \text{ tf/m}^2$$

$$\sigma = 8.24 < 12.70 \text{ OK}$$

$$\sigma_s = \frac{17.97}{1.8^2} \pm \frac{(7.31 + 3.43)6}{1.8^3} = 5.55 \pm 11.05 = 16.6 \text{ tf/m}^2$$

$$\sigma_{s} = 16.6 \approx 12.70 \times 1.3 \ OK.$$

Sid = 20 cm

Check for shear

$$V = 6.79 \frac{(1.8 + 0.8)}{2} 0.5 = 4.41 \text{ tf}$$

$$vc = \frac{Vu}{\phi bd} < 1.06 \sqrt{fc}$$

$$vc = \frac{4410 \times 1.5}{0.85 \times 80 \times 20} = 4.86 \text{ kgf/cm}^2 < 15.36 \text{ OK}$$

Compute the reinforcement.

$$M = 5.71 \times \frac{0.6^{2}}{2} + 2.53 \times \frac{0.6^{2}}{3}$$

$$= 1.33 \text{ T-M/M}$$

$$kn = \frac{Mu}{\phi \text{ f c bd}^{2}} = \frac{133,000 \times 1.5}{0.9 \times 210 \times 100 \times 20} = 0.0264$$

$$\rho = 0.00135 < \rho \text{min}$$

Asmin = $0.0033 \times 100 \times 20 = 6.6 \text{ cm}^2/\text{m}$

1 Ø 12 @ 150 each direction.

1.3 Utility

SEVERINO PUMPING STATION

CONDUCTOR CALCULATION

LIGHTING PANEL "A"

TOTAL(VA)LOAD = 37,680 VA

$$I = \frac{37,680 \text{ VA}}{\sqrt{3} \times 220 \text{ V}}$$
$$= 98.9 \text{ Amp}$$

From "CABLEC" Catalog, we need a

 $2 \times (4 \times 4 \text{ AWG})$ cable or $4C \times 22 \text{ mm}^2 \times 2$ cable

Voltage drop:

$$\Delta V$$
 (%) = K x KVA x L (m)

(See next table)

$$K_{220} = K_{440} \left(\frac{440}{220}\right)^2 = K_{440} \times 4$$

$$\Delta V$$
 (%) = $\frac{4.69}{2}$ x 10⁻⁴ x 4 x 37.68 KVA x 26 m

= 0.92 % (The 4 AWG conductor is OK)

2. LIGHTING PANEL "B"

Total (VA) load = 14,240 VA

$$I = \frac{14,240 \text{ VA}}{\sqrt{3} \times 220 \text{ V}} = 37.4 \text{ Amp.}$$

From "CABLEC" Catalog, conductor

4 x 4 AWG Cable or 4C x 22 mm² Cable

	4407 - Sistema To 60 Hz		1 230 ADINU P.	
AUBILE	CONDUCTORES.		\$1	os coens
N C 11/2	Veuren	subtenevieo	(50,c)	SUDJETITIONS O (THW 76°C)
88,2	,		1 12,8,10"4	12,16,10-4
6/13,30	10,38 ×10-4-	A	7,94,10-4	7,63,10-4
4/2115	2,21,10-4		4,69,10-4	4,38,10-4
5/3/3	4,8,10-4		\$ 155×10-4	5'85 × 10-4
41.41	3,911.10-11		2,7,410.4	2,3 x10-4
1/0/118	3, 25 4 10-4		2,27,10-H	71 83 × 10 - 4
2/0/11/	2,31×10-4	•	1,94,10-4	1,5 410.4
3/0/85,1	2,28×10-4		7,66.410-4	1,24,10,
4/0/07.	T'43 x 10_1		1,44×10-4	1,05,10-4
250/24				0,75,10-4
300	***************************************	A Record		0,66210-4
350/11/				0,59,10-4
400	1			0,54 (10-4
500	3			0,47 210-4
000	- K . KVA . L (n	٠).		0. 2455x104
	10 (V)2.	Кучо =	K208 x (0.22)	K480= K440 x/190)

Voltage drop

$$\Delta V$$
 (%) = 4.69 x 10⁻⁴ x 4 x 14.24 KVA x 27 m
= 0.7 % (The AWG Conductor is OK)

3. LIGHTING PANEL "C"

Total (VA) load = 4,500 VA

$$I = \frac{4,500 \text{ VA}}{\sqrt{3} \times 220 \text{ V}} = 11.8 \text{ Amp.}$$

From "CABLEC" Catalog, conductor 4 x 14 AWG

but shall use 4 x 12 AWG Cable

or 4C x 3.5 mm² Cable

Voltage drop:

$$\Delta V$$
 (%) = 30.4 x 10⁻⁴ x 4 x 4.5 KVA x 7 m
= 0.38 % (The 12 AWG conductor is OK)

4. OUTDOOR LIGHTING

400W Mercury luminaires: (450 VA each)

Voltage drop:

$$\sum KVA \times 1 = KVA \text{ virtual } \times 1_5$$

$$KVA \text{virt.} = \frac{10 \times 450 + 23 \times 450 + 41 \times 450 + 59 \times 450 + 81 \times 450}{21}$$

$$= \frac{450 \times 214}{81} = 1,189 \text{ VA}$$

For 10 AWG conductor:

$$K = \left(\frac{440}{220} \times \sqrt{3}\right)^2 = 12$$

$$\Delta V$$
 (%) = 18.37x 10⁻⁴ x 12 x 1.19 KVA x 81 m
= 2.12 % (the 10 AWG conductor is OK)

Then, it shall be used: 2 x 10 AWG Cable

or 2C x 5.5 mm² Cable

SEVERINO PUMPING STATION

LIGHTING DESIGN

Lighting system is designed to obtain the functional and economical features as well as easy maintenance. From these points, locations of lighting fixtures and arrangement of circuit are determined adequately for both normal use system and the emergency system required in the pump station.

1. CONTROL ROOM

- Illumination level: 500 lux

Area: $10.7 \times 8.1 = 86.7 \text{ m}^2$

Mounting height = 3.40 m

Luminaire, Type D-1: Ceiling flush mounted fluorescent light with acrylic cover, 40 W x 2 (see drawings)

The minimum recommended illumination level, agree with the IES, Illuminating Engineering Society, for Central Station Indoor Locations, in the case of Control Rooms, vertical face of switchboards (Single or Section of duplex facing operator) for Type A-Large centralized control room at 66 inches above floor is 500 lux.

Type B-Ordinary control room at 66 inches above floor is 300 lux.

We shall use, 500 lux at 66" above floor, then:

Room Ratio =
$$\frac{\text{Width x Length}}{\text{Work plane to mountain height (Width + Length)}}$$

$$= \frac{8.1 \times 10.7}{(3.40 - 1.67) (8.1 + 10.7)}$$

$$= 2.66$$

* From: IES LIGHTING HANDBOOK
WESTINGHOUSE LIGHTING HANDBOOK (Westinghouse Electric Co. USA
1978).

For:

Ceiling reflectance

80%

Walls reflectance

50%

Floor reflectance

10%

We get from tables for the above luminaire the COEFFICIENT OF UTILIZATION (CU);

CU = 0.6, and

Maintenance Factor = 0.7

Then:

Required Lumens

Desired Illumination x Area

Coefficient of Utilization x Maintenance Factor

$$= \frac{500 \times 86.70}{0.6 \times 0.7}$$

= 103,214 lumens

Number of lamp = Req uired Lamp Lumens
Rated Initial Lamp Lumens **

** From OSRAM Catalog for 40W Lamp, 1.2 m length, cool white, 38 mm bulb diameter: 3000 lumens.

Number of lamps =
$$\frac{103,214}{3,000} =$$

$$=34.4$$
 (35)

Number of luminaires = 18 luminaire of 40 W x 2

2. OFFICE ROOM

- Illumination Level

: 200 lux

Area =
$$7.2 \times 6.3 = 45.36 \text{ m}^2$$

- Mounting height = 3.0 m
- Luminaire, Type D-1, 40 W x 2

$$RR = \frac{6.30 \times 7.20}{(3.0 - 0.76)(6.3 + 7.2)} =$$
= 1.5

From tables:

Maintenance factor = 0.7Coefficient of utilization = 0.45

Required lumens
$$= \frac{200 \times 45.36}{0.45 \times 0.7}$$
$$= 28,800 \text{ lumens}$$

Number of lamps
$$=\frac{28,800}{3,000} =$$
 $= 9.6 \text{ (use 10)}$

Number of luminaires = 5 (Use 6 for a better arrangement) 6 luminaire 40W x 2

3. CONFERENCE ROOM

- Illumination level : 200 lux
- Area = $5.3 \times 6.2 = 32.86 \text{ m}^2$
- Mounting height = 3.0 m
- Luminaire, Type D-1, 40 W x 2

$$RR = \frac{5.3 \times 6.2}{(3.0 - 0.76) (5.3 + 6.2)}$$
$$= 1.28$$

From tables:

Maintenance factor = 0.7 Coefficient of utilization = 0.42

Required lumens
$$= \frac{200 \times 32.86}{0.42 \times 0.7}$$

= 22,345 lumens

Number of lamps
$$= \frac{22,354}{3,000} =$$

= 7.5 (use 8)

Number of luminaires = 4 luminaire 40 W x 2

4. MANAGER ROOM

- Illumination level : 200 lux

- Area =
$$3.6 \times 5.4 = 19.44 \text{ m}^2$$

Luminaire, type D-1, 40 W x 2

$$RR = \frac{3.6 \times 5.4}{(3.0 - 0.76)(3.6 + 5.4)} =$$
$$= 0.96$$

From tables:

Maintenance factor = 0.7

Coefficient of utilization = 0.43

Required lumens $= \frac{200 \times 19.44}{0.43 \times 0.7}$

= 12,917 lumens

Number of lamps $=\frac{12,917}{3,000} = 4.3$ (use 4)

Number of luminaires = 2 luminaire 40 W x 2

5. STORAGE ROOM

- Illumination level : 200 lux
- Area = $4.6 \times 14.0 = 64.4 \text{ m}^2$
- Mounting high = 3.5 m
- Luminaire, type A-2, pipe pendant fluorescent light, 40 W x 1 (see drawings)

$$RR = \frac{4.6 \times 14.0}{(3.5 - 0.76)(4.6 + 14.0)} =$$
= 1.26

From tables:

Required lumens
$$= \frac{200 \times 64.4}{0.532 \times 0.7}$$
$$= 30,263 \text{ lumens}$$

Number of lamps =
$$\frac{30,263}{3,000}$$
 = 10.08 (use 10) luminaire 40 W x 1

6. LOW TENSION SWITCHGEAR ROOM AND HIGH TENSION SWITCHGEAR ROOM

- Illumination level; Front of panels: 200 lux

Rear of switchboard panels: 100 lux

- Area front of panels = $2.3 \times 24.4 = 56.12 \text{ m}^2$
- Mounting height = 3.5 m
- Luminaire, type A-1, pipe pendant fluorescent light 40 W x 2 (see drawings)

$$RR = \frac{2.3 \times 24.4}{(3.5 - 0.76)(2..3 + 24.4)} =$$

From tables:

Required lumens
$$= \frac{200 \times 56.12}{0.38 \times 0.8}$$
$$= 36,921$$
Number of lamps
$$= \frac{36,921}{3,000} = 12.3 \text{ (use 12)}$$

Number of luminaires = $6 \text{ luminaire } 40 \text{ W} \times 2$

Area rear of panels =
$$2.3 \times 24.4 = 56.12 \text{ m}^2$$

- Mounting height = 3.5 m
- Luminaire, type A-2, 40 W x 1

$$RR = \frac{2.3 \times 24.4}{(3.5 - 0.76)(2..3 + 24.4)} = 0.77$$

From tables:

Required lumens
$$= \frac{100 \times 56.12}{0.38 \times 0.8}$$
$$= 18,461$$
Number of lamps
$$= \frac{18,461}{3,000} = 6.15 \text{ (use 6)}$$

Number of luminaires = 6 luminaire 40 W x 1

7. REPAIR SHOP

- Illumination level : 250 lux
- Area repair shop (1) = Area repair shop (2) = $6.0 \times 6.2 = 37.2 \text{ m}^2$
- Mounting height = 3.5 m
- Luminaire, type A-1, 40 W x 2

$$RR = \frac{6.0 \times 6.2}{(3.5 - 0.76)(6.0 + 6.2)} =$$
= 1.11

From tables:

Maintenance factor = 0.8Coefficient of utilization = 0.491

Required lumens $= \frac{250 \times 37.2}{0.491 \times 0.8}$ = 23,676Number of lamps $= \frac{23,676}{3,000}$ = 7.9 (use 8)

Number of luminaires = 4 luminaire 40 W x 2

8. MOTOR FLOOR

- Illumination level : 200 lux
- Area = $10 \times 47 = 470 \text{ m}^2$
- Mounting height = 18 m
- Luminaire, type G, Pipe pendant mercury light with open industrial dome reflector, 400 W x 1 (See drawings).

$$RR = \frac{10 \times 47}{(18 - 0.76)(10 + 47)} = 0.478$$

From tables:

Required lumens
$$= \frac{200 \times 470}{0.31 \times 0.55}$$

$$= 511,320$$
Number of lamps
$$= \frac{551,320}{23,000 *}$$

= 23.9 (use 24) luminaire 400W x 1

* From OSRAM catalog.

9. PLATFORM

- Illumination level : 250 lux
- Area = $7.1 \times 11.0 = 78.1 \text{ m}^2$
- Mounting height = 10.4 m
- Luminaire, type G, 400 W x 1 mercury light

$$RR = \frac{7.1 \times 11.0}{(10.4 - 0.76)(7.1 + 11.0)}$$
$$= 0.448$$

From tables:

Required lumens
$$=\frac{250 \text{ s}}{0.29 \text{ s}}$$

$$= 122,414$$

Number of lamps
$$=\frac{122,414}{23,000} = 5.3$$
 (use 6)

Number of luminaires = 6 luminaire 400 W x 1

10. ERECTION BAY

- Illumination level : 250 lux

- Area = $6.8 \times 11.0 = 74.8 \text{ m}^2$

- Mounting height = 25.4 m

- Luminaire, type G, 400 W x 1 mercury light

$$RR = \frac{6.8 \times 1.1}{(25.4 - 0.76)(68 + 11.0)}$$

$$= 0.17$$

From the tables is not possible to get by interpolation the coefficient of utilization because the Room Ratio is too low. So, because this area is very similar to the Platform area, shall use also 6 luminaires, mercury light 400 W x 1.

11. 138 KV SWITCHYARD

- Illumination level: 20 lux

- Luminaire, type H, Mercury light pole mounted, 400W x 1

- Pole height: 8.0 m Mounting height, (see drawings)

- Bracket length: 1.2 m

The luminaire layout in the switchyard is:

We are going to calculate the spacing, the coefficient of utilization and the uniformity.

The equation for average illumination is:

$$fc = \frac{(LL) (MF) (CU)}{(W) \times (S)}$$

fc = Illumination in lux

LL = Rated initial lamp lumens

MF = Maintenance factor

CU = Coefficient of utilization

W = Street width

S = Spacing of luminaires

Where:

$$fc = 20 lux$$

LL = 23,000 lumens*

* From OSRAM catalog for 400W mercury light.

$$MF = 0.7$$

$$W = 26 \,\mathrm{m}$$

Ratio - Street side (SS)

$$\frac{\text{Transverse distance}}{\text{Mounting height}} = \frac{26-1.2}{8} = 3.1$$

Ratio-House Side (HS)

$$\frac{\text{Transverse distance}}{\text{Mounting height}} = \frac{1.20}{8} = 0.15$$

From the utilization curve (see next page "The Photometric Data for Roadway Lighting Luminaires" that we assume for the luminaire.

Then:

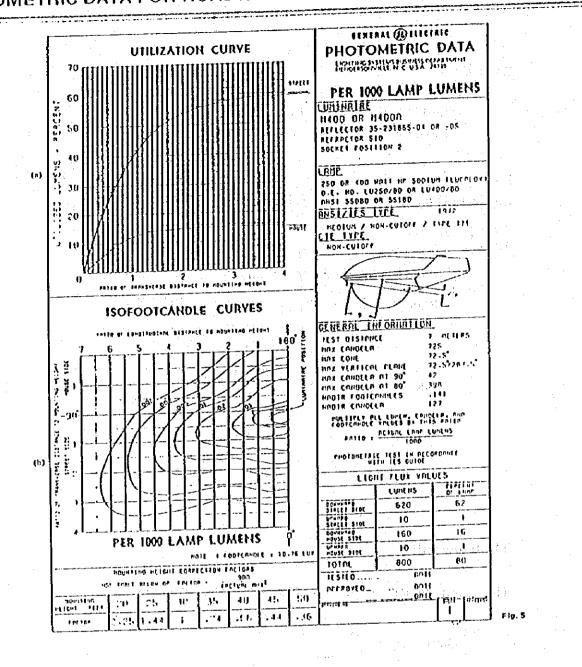
Ratio 3.1 street side, corresponds to
$$CU = 58\%$$

Ratio 0.15, house side, corresponds to $CU = 2\%$
Total $CU = 60\%$

The spacing
$$S = \frac{\text{(LL) (MF) (CU)}}{\text{(fc) (W)}}$$
$$= \frac{23.000 \times 0.7 \times 0.6}{20x26}$$
$$= 18.6 \text{ m}$$

The uniformity

The uniformity of illumination is expressed in terms of a ratio of:


Uniformity =
$$\frac{\text{Average fc}}{\text{Minimum fc}}$$

The minimum value of the illumination can be found by studying the isofootcandle diagram and taking into account all luminaires that are contributing significant amounts of light.

Illumination contributions will be considered from luminaires labeled A, B, C and D as shown above in the figure. Prints on the switchyard labeled P₁, P₂, P₃, P₄ and P₅ will be checked for a minimum footcandle (lux) value.

First, determine both transverse and longitudinal ratios of distance -to- mounting height relative to each of the luminaires.

PHOTOMETRIC DATA FOR ROADWAY LIGHTING LUMINAIRES

(g)

0

The light contributed by each fixture is cumulative at the point in question.

In the above chart, using the Distance/Mounting height ratios tabulated as coordinates, corresponding illumination values can now be read from the isofootcandle curve and are also tabulated in the chart.

CONTRIBUTING		DISTANCE/MOUNTING HEIGHT RATIOS FOR TEST POINTS							ILLUMINATION AT TEST POINTS						
LUMINAIRES	TRANSVERSE RATIO				LONGITUDINAL RATIO										
	P ₁	Pz	P ₃	P4	P ₅	Pi	P ₂	P3	P4	P ₅	Pı	P ₂	P ₃	P ₄	P ₅
A	-0.15	3.1	3.1	3.1	1.5	1.12	1.12	2.35	0	1.12	0.1	.0011	.0008	.001	.015
В	-0.15	3.1	3.1	3.1	1.5	1.12	1.12	0	2.35	1.12	0.1	.0011	.001	.0008	.015
c	3.1	-0.15	-0.15	-0.15	1.5	1.7	1.75	2.9	0.5	1.75	.0008	.07	.012	.2	.015
D	3.1	0.15	-0.15	-0.15	1.5	2.3	2.25	1.1	3.4	2.25	.0008	.022	.05	.006	0.13
						 		1	TOTAL	5	.2016	.0942	.0638	.2078	.058

Note: Negative transverse ratios signify "House Side".

The lowest total footcandle value is chosen from the chart. This value is 0.058 and is located at P5, then:

Femin = Minimum point footcandles

fc = Total value from the chart

LF = Lamp factor

MF = Maintenance factor

CF = Mounting height correction factor

Where:

fc = 0.058 footcandles

Mf = 0.7

LF: because the values on the photometric curve have been adjusted to represent a lamp producing 1,000 lumens inside the luminaire, so we have the ratio:

$$LF = \frac{Actual Lamp Lumens}{1,000} = \frac{23,000}{1,000} = 23$$

CF : Also the values on the photometric curve are for a mounting height of 30 feet.

$$CF = \frac{900}{\text{(Actual MH)}^2} = \frac{900}{(8/0.3048)^2} = 1.306$$

FCmin =
$$0.058 \times 23 \times 0.7 \times 1.306$$

= 1.22 footcandle

FCmin =
$$1.22 \times 10.76$$

= 13.13 lux

Then:

Uniformity =
$$\frac{20 \text{ tux}}{13.13 \text{ lux}}$$
$$= 1.52$$

12. MAIN TRANSFORMERS YARD

- Illumination level : 20 lux
- Luminaire, type H, Mercury light pole mounted, 400W x 1
- Pole height: 8.0 m, Mounting height (See drawings)
- Bracket length: 1.2 m

The luminaire layout in the transformers yard is:

Ratio - Street Side (SS) =
$$\frac{15 - 1.2}{8}$$
 = 1.725

Ratio - House Side(HS) =
$$\frac{1.20}{8}$$
 = 0.15

Maintenance Factor = 0.7, and from the "utilization curve"

Ratio 1.725 (SS), corresponds to CU = 52%

Ratio 0.15 (HS), corresponds to CU = 2%

Total CU = 54%

The spacing:

$$S = \frac{(LL)(MF)(CU)}{(fc)(W)}$$

Then:

$$= \frac{23,000 \times 0.7 \times 0.54}{20 \times 16}$$

 $=27 \, \text{m}$

(20 m is OK.)

The uniformity: (using the isofootcandle curve of the photometric data)

CONTRIBUTING		DISTANCE/MOUNTING HEIGHT RATIOS FOR TEST POINTS								ILLUMINATION OF TEST POINTS			
LUMINAIRES	TRANSVERSE RATIO					LONGITUDINAL RATIO							
	P ₁	P ₂	P _s	Pe	P ₁	P ₂	P3	P4	P ₁	P ₂	Pj	₽4	
A	-0.15	1.75	1.75	1.75	3.8	0	2.5	3.8	0.004	0.01	0.003	0.007	
В	-0.15	1.75	1.75	1.75	1.25	2.5	0	1.25	0.05	0.008	0.01	0.009	
c	-0.15	1.75	1.75	1.75	1.25	5	2.5	1.25	0.05	0.003	0.008	0.009	
							TOTAL	s	0.104	0.021	0.026	0.025	

$$FCmin = (fc) (LF) (MF) (CF)$$

fc
$$= 0.021$$

$$LF = \frac{23,000}{1,000} = 23$$

$$MF = 0.7$$

$$CF = \frac{900}{(8/0.3048)^2} = 1.306$$

Femin =
$$0.021 \times 23 \times 0.7 \times 1.306$$

= 0.442 footcandles

$$FCmin = 0.442 \times 10.76$$

= 4.76 lux

Then:

Uniformity =
$$\frac{20 \text{ lux}}{4.76 \text{ lux}}$$

= 4.2

SEVERINO PUMPING STATION

EARTHING SYSTEM

1. SHORT CIRCUIT CALCULATION

From information supplied by INECEL (Instituto Ecuatoriano de Electrificación) from their load flow and short circuit studies, done in September 1994 for the horizontal year of 2010; in which the Daule-Peripa power house was included in maximum demand condition.

The values given by INECEL for a short-circuit in the 138 kV bus at Daule-Peripa substation are:

$$Z_1 = 0.0878 \left[84.56^{\circ} \right]$$
 and

$$Z_0 = 0.0456$$
 88.05°

in a 100 MVA base and 138 KV base system.

The one line diagram of this Project is the following:

a) System impedance

$$Zs = 0.0878 [84.56^{\circ}]$$

$$Z_S = 0.00832 + j 0.0874$$

b) Transmission line

- 138 KV
- 32 km
- Conductor: Oriole, 336.4 MCM, 170 mm², 18.83 mm diam.

GMD =
$$\sqrt{6.135 \times 6.135 \times 4.0}$$

$$= 5.32 \, \text{m}$$

$$X_L = Xa + Xd$$

$$= (0.445 + 0.346)$$
 ohm/mile

= 0.491 ohm/km

$$X_L = j 15.712 \text{ ohm} ; z(pu) = \frac{z \text{ (ohm) } x \text{ KVA}_B}{(\text{KV}_B)^2 \text{ x } 1000}$$

$$X_L pu = \frac{15.712 \times 100.000}{(138)^2 \times 1000}$$

$$X_{L} pu = j 0.082$$

c. Main transformers

- 10 MVA, 138/4.16 KV
- $-X_{TR} = 10\%$

$$X_{TR} = j \ 0.1 \times \frac{100}{10}$$

$$X_{TR} = j 1.0 (pu)$$

d) Service transformers

- 300 kva, 4160 220/127 V
- $-X_{ST}=5\%$

$$X_{ST} = j 0.05 \times \frac{100}{0.3}$$

= j 16.7 (pu)

e) Motors

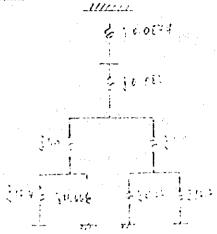
- 2400 kW, 3217 HP, 4.16 KV
- Xd" = 20%

$$X_M = 1.5 \text{ Xd}^n$$

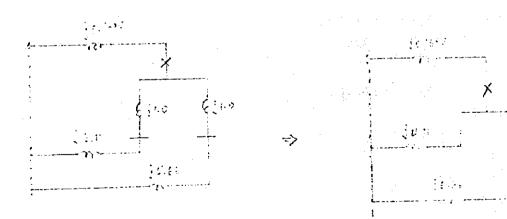
$$X_M = 1.5 \times 0.2 \times \frac{100}{3.217}$$

(The capacity of the motor shall be the power in HP)

$$KVA = (1.0) \times (HP)$$


$$X_M = j 9,325 \text{ (pu)}$$

The motors shall operate three in one bus and two in the other bus. One motor always will be in stand-by.


Then:

$$X_{M1} = j \frac{9.325}{3}$$
 $X_{M1} = j 3.111 \text{ (pu)}$
 $X_{M2} = j \frac{9.325}{2}$
 $X_{M2} = j 4.66 \text{ (pu)}$

Then, the reactances diagram:

1.1 Short-circuit on Severino s/s in 138 KV Bus

$$Xeq = \frac{4.11 \times 5.66}{4.11 + 5.66} = 2.38$$

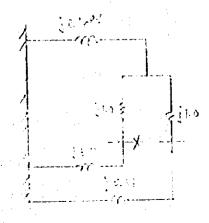
$$Xeq = \frac{2.38 \times 0.1694}{2.38 + 0.1694} = 0.1581$$

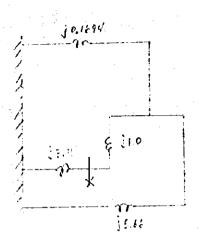
MVA sc
$$3\Phi = \frac{100.0}{0.1581} = 632.5 \text{ MVA}$$

I sc $3\Phi = \frac{1.0}{0.1581} = 6.325 \text{ (pu)}$

I (AMP) = I (pu) x I_B

I_B = $\frac{\text{MVA}_{\text{B}}}{\sqrt{3} \text{ KV}_{\text{B}}}$


I(AMP) = 6.33 x $\frac{100.000}{\sqrt{3} \text{ x } 138}$


= 2646 Amp

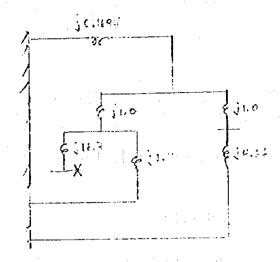
I _{138kV} = 2.6 KA //

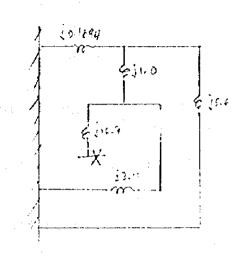
1.2 Short-circuit on 4.16 KV Bus

The reactances diagram shall be:

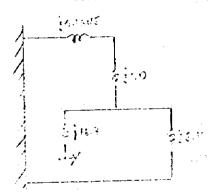
$$Xeq = \frac{5.66 \times 0.1694}{5.66 \times 0.1694} = j \ 0.1645$$

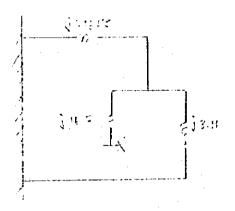
$$Xeq = \frac{3.11 \times 1.1645}{3.11 + 1.1645} = j \ 0.847$$

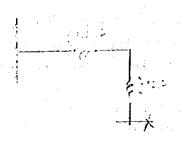



$$MVA sc 3\Phi = \frac{100.0}{0.847} = 118.1 MVA$$

$$I \sec 3\Phi = \frac{1.0}{0.847} = 1.18 \text{ (pu)}$$


I (AMP) =1.18
$$\frac{100.000}{\sqrt{3} \times 4.16}$$
 = 16.377 Amp \approx 16.4 KA //


1.3 Short-circuit on 220 V Bus



$$Xeq = \frac{5.66 \times 0.1694}{5.66 + 0.1694} = 0.1645$$

$$Xeq = \frac{3.11 \times 1.1645}{3.11 + 1.1645} = 0.847$$

MVA sc
$$3\Phi = \frac{100.0}{17.547} = 5.47$$
 MVA
I sc $3\Phi = \frac{1}{17.547} = 0.057$
I (AMP) = $0.057 \frac{100.000}{\sqrt{3} \times 0.22} = 14.956$ A ≈ 15 KA //

Then, the maximum short-circuit current is on the 4.16 KV bus.

2. GROUNDING MESH CALCULATION

From: ANSI/IEEE STD 80 - 1986 (IEEE 80 GUIDE)

"IEEE GUIDE PR SAFETY IN AC SUBSTATION GROUNDING"

The SVERAK formula:

$$A \text{ (mm}^2) = I \times \sqrt{\frac{\frac{\text{tc } \alpha r \ \rho r \times 10^4}{\text{TCAP}}}{\ln \left(1 + \frac{\text{Tm} - \text{Ta}}{\text{Ko} + \text{Ta}}\right)}}$$

Where:

I = rms current in KA

A = Conductor cross section area in mm²

Tm = Max. allowable temperature in welded connections (°C)

Ta = Ambient temperature (°C)

Tr = Reference temperature for materials constants (°C)

αr = Thermal coefficient of resistivity at Tr temperature

or = Resistivity of mesh conductor at Tr temperature (uohm/cm³)

 $K_0 = 1/\alpha_0$; o $(1/\alpha_r)$ - T_r

α₀ = Thermal coefficient of resistivity at 0°C

tc = Time that the current is following (sec)

TCAP= Thermal capacity factor (J/cm³/°C)

Then:

$$Tm = 450 \, ^{\circ}\text{C} \text{ (Std. 80 pg. 69)}$$

$$Ta = 40 \,^{\circ}C$$

$$Tr = 20 \, ^{\circ}C$$

$$\rho r = 1.7774 \text{ at } 20^{\circ} \text{C}$$

$$Ko = 242; \frac{1}{0.00381} - 20$$

$$tc = 1.0 sec$$

$$TCAP = 3.422$$

A mm²= 16.4 x
$$\sqrt{\frac{\frac{1.0 \times 0.00381 \times 1.7774 \times 10^{4}}{3,422}}{\ln\left(1 + \frac{450 - 40}{242 \times 40}\right)}}$$

$$= 16.4 \sqrt{\frac{19.79}{\ln 2.4539}} = 16.4 \sqrt{22.05}$$

$$A = 77 \text{ mm}^2$$

85 mm² is 3/0 AWG Use 4/0 AWG or 100 mm² //

Verification with Ordendonk formula:

A (KCM) =
$$I/\sqrt{\frac{1}{33s}} Ig_{10} \left(1 + \frac{Tm - Ta}{234 + Ta}\right)$$

= $16.4/\sqrt{\frac{1}{33 \times 1.0}} Ig_{10} \left(1 + \frac{450 - 40}{234 + 40}\right)$
= $16.4/\sqrt{\frac{Ig_{10} 2.4964}{33.0}} = \frac{16.4}{0.10973}$

$$A (KCM) = 149.5 KCM il$$

$$1 \text{ MCM} = 0.50671 \text{ mm}^2$$

$$A = 75.7 \text{ mm}^2$$

Use 4/0 AWG or 100 mm²

Note: The compression connectors we assume have the same temperature rise than the welded connections.

3 GROUNDING MESH RESISTANCE

$$r = \sqrt{\frac{A}{\pi}}$$
 and $R = \frac{\rho}{2\pi r} + \frac{\rho}{L}$

From: "Cálculo de Sistemas de Tierra" (Grounding Systems Catculation) CFE, Mexico.

Where

r = Radius of the equivalent conduction semisphere (m)

A = Total external area of the mesh (m²)

R = Resistance of the mesh ground connection(ohms)

 ρ = Resistivity (ohms-meter)

L =Total length of the grounded conductor.

3.1 Pumping Station

 $A = 6483 \text{ m}^2$ (Grounding mesh area that cover the structure of the pump station)

 $\rho=90$ ohm-m (Assuming that the grounding mesh conductor shall be embedded in the concrete the maximum possible length).

p concrete = 30 ohm-m to 90 ohm-m (Std 80 - IEEE)

L = 2270 m

Then:

$$r = \sqrt{\frac{6483}{\pi}} = 45.43 \text{ m}$$

and
$$R = \frac{90.0}{2\pi \times 45.43} + \frac{90.0}{2270}$$

$$R = 0.35 \text{ ohm } //$$

3.2 138 KV Switchgear Yard

$$A = 32 \times 62 = 1984 \text{ m}^2$$

 $\rho = 120$ ohm - meter (JICA Report March 1994)

$$L = 786 \text{ m}$$

Then:

$$r = \sqrt{\frac{1984}{\pi}} = 25.14 \text{ m}$$

and
$$R = \frac{120.0}{2\pi \times 25.14} + \frac{120.0}{786}$$

$$R = 0.91 \text{ ohm } //$$

3.3 Main Transformers Yard

$$A = 18 \times 47 = 846 \text{ m}^2$$

 $\rho = 120$ ohm - meter

$$L = 368 \text{ m}$$

Then:

$$r = \sqrt{\frac{846}{\pi}} = 16.4 \text{ m}$$

and
$$R = \frac{120.0}{2\pi \times 16.4} + \frac{120.0}{368}$$

$$R = 1.49 \text{ ohm } //$$

Note: The resistance of the connection to ground of the mesh of both yards will improve because of the interconnections of their grounding mesh with the pump house mesh. Besides the 120 ohm-m value, looks too high and also could be lower.

SEVERINO PUMPING STATION

VENTILATION AND AIR CONDITIONING

1. GENERAL DATA

1.1 Localization:

Latitude:

0° 58' S

Local Meridian:

80 ° 02 w

Orientation:

SE 0.44 rad (main front of building)

Altitude

70 m over sea level

2. **VENTILATION PROJECT**

2.1 Space to be ventilated description

Subterranean machine house, 55 m x 16,5 m extreme sizes and 25,5 m height. It has five plants, two lower plants are occupied with the valves, pumps and motors. The other plants are side wall galleries where auxiliary systems, switchgear control panels and high tension cables are located.

The heat load of the mechanical and electrical equipment prepared by JICA, are indicated in the next table.

ELEVATION LEVEL	FLOOR	EXTERNAL SIZES m	HEAT LOAD KW
65	Cable gallery	55 x 16,5 x 5	11,2
60	Low tension switchgear	55 x 16,5 x 5	40.2
55	Higth tension switchgear	55 x 16,5 x 5	49.4
50	Motor	47 x 16,5 x 5	34.5
45	Valve	47 x 16,5 x 5	6.7

Design 2.2

General Criterion 2.2.1

This study has the purpose and is based on the heat load withdrawing because it is the most critical topic. However, other ventilation requirements as air required to provide necessary oxygen content, air required to prevent CO2 concentrations from rising above 0.5 per cent, air required to remove objectionable body odors, are controlled too.

2.2.2 Flow rates

The next formulas are used to prepare the flow table.

Valves

Heat load	$= (kw) \times 864$		kcal/hour
Flow Q	$= 3.44 \frac{\text{(Kca)}}{\text{A}}$	1/ho) P°C	СМН
ELEVATION LEVEL	FLOOR	HEAT LOAD	FLOW
65	cable gallery	9677	5992
60	low tension switchgear	34733	21507
55	High tension switchgear	42682	26429
50	Motors	29808	18457

This flow shall be suplied by two independent systems each one with a 38,000 CMH VENTILATION fan.

5789

3585

2.2.3 Air intake sizing

for 2.5 m/s frontal velocity V

Area =
$$\frac{Q}{V}$$

50

45

$$A = \frac{10.5 \, \text{m}^3 / \text{s}}{2.5 \, \text{m/s}} = 4.22 \, \text{m}^2$$

Intake louvers size: 1800 x 2400 (mm x mm).

2.2.4 Duct Sizing

The Static Regain Method is used in the system duct sizing, exepting the duct sections limited for the trajectory free space. Next tables give the calculations and supporting summary. See the ventilation draws for section numbers assigned to the duct system.

2.2.4 V1 Ventilation System 1

SECTION	AIR	LENGTH	EQUIV-	1/Q RATIO	VELOCITY	AREA	SIZES	LOSSES
SECTION	FLOW	LD(10111	LENGTH	(LOSSES)	M/S	M ²	mm x mm	mm we
V · A	37980	5,0	54.0	(0.12)	10.00	1,055	1100 x 1000	6.40
	24000	5,0	27,0	(0.12)	9.72	1.000	1.100 x 950	3.24
A - B	34980		8,0	0.08	9.00	0.748	1100 x 720	
B-C	24240	5,0	5,0	0.08	8.30	0.369	875 x 450	
C-D	11040	5,0	11,5	0.50	6.05	0.083	450 x 200	
D - 25	1800	8,0	3,0	0.16	5.30	0.079	425 x 200	
25 - 26	1500	3,0	5,0	0,30	4.40	0.076	400 x 200	1
26 - 27	1200	5,0	3,0	0.21	3.90	0.064	335 x 200	
27 - 28	900	3,0	5,0	0.45	3.20	0.052	275 x 200	1
28 - 29	600	5,0		0.40	2.60	0.032	250x 200	
29 - 30	300	3,0	3,0	0.40	2.00	0.032	20011200	
D - 19	9240	3,0	10,0	0.18	7.20	0.356	840 x 450	
19 - 20	7700	3,0	3,0	0.06	6.80	0.315	740 x 450	
20 - 21	6160	4,0	4,0	0.09	6.30	0.272	720 x 400	
21 - 22	4620	4,0	4,0	0.11	5.75	0.223	600 x 400	Ì
22 - 23	3080	4,0	4,0	0.14	5.20	0.165	580 x 300	
23 - 24	1540	4.0	4,0	0.20	4,50	0.095	325 x 300	
		20	10,0	0.15	7.85	0,467	1000 x 500	
C - 13	13200	3,0		0.13	7.40	0.413	875 x 500	4
13 - 14	11000	4,0	4,0	0.07	6,90	0.354	740 x 500	
14 - 15	8800	4,0	4,0	0.07	6.40	0.286	740 x 400	
15 - 16	6600	4,0	4,0	0.11	5.80	0.210	550 x 400	1
16 - 17	4400	4,0	4,0	0.17	5.15	0.119	350 x 350	
17 - 18	2200	4,0	4,0	0.17	5.15	"""	350 % 350	1
B - 7	10740	2,0	5,0	0.08	8.95	0.333	900 x 400	
7-8	8950	3,0	3,0	0.055	8.45	0.294	780 x 400	1
8-9	7160	4,0	4,0	0.08	7.80	0.255	675 x 400	
9 - 10	5370	4,0	4,0	0.10	7.20	0.207	550 x 400	1
10 - 11	3580	4,0	4,0	0.12	6,50	0.153	550 x 300	
11 - 12		4,0	4,0	0.19	5.65	0.088	300 x 300	
			2.5	0.12	8.95	0.093	400 x 250	1
A - 1	3000	2,0	3,7	0.12	8.10	0.086		ļ
1 - 2	2500	3,0	3,0	0.11	6.95	0.080		
2 - 3	2000	4,0	4,0	0.19	6,00	0.069		
3 - 4	1500	4,0	4,0	0.20	5.00	0.009	•	
4 - 5	1000	4,0	4,0	0.26		0.035		
5-6	500	4,0	4,0	0.40	3.95	0.033	2.00 X 200	

2.2.4 V2 Ventilation System 2

Section	AIR FLOW	LENGTH	EQUIV. LENGTH	L/Q RATIO (LOSSES)	VELOCITY M/S	AREA M²	SIZES mm x mm	LOSSES mm we
V - E	37950	5,0	60.0	(0.12)	10.00	1.055	1100 x 1000	7.2
172 172	34040	5,0	5,0	0.04	9.60	1,013	1,100 x 960	
E-F	34940	10,0	40,0	(0.14)	9.98	0.675	1200 x 600	5.6
F-G	24230	6,0	6,0	0.061	9.40	0.660	1200 x 600	"
G-H	22340	4,0	4,0	0.041	9.00	0.630	1200 x 550	
H - I	20450	3,0	3,0	0.034	8.70	0.593	1200 x 530	
I - J	18560		17,0	0.240	8.50	0.360	850 x 450	1
J-K K-L	11000	8,0 8,0	8,0	0.370	6.50	0.077	420 x 200	
K-L	1000	0,0	0,0	1 4.570			:	
L - 24	1200	1,0	3,0	0.170	5.65	0.059	250 x 250	
24 - 25	900	4,0	4,0	0.280	4.70	0.053	250 x 220	
25 - 26	600	5,0	8,0	0.700	3.40	0.049	250 x 200	
26 - 27	300	3,0	3,0	0.400	2.70	0.037	250 x 150	
L - 28	600	5,0	7,0	0.600	4.60	0.036	250 x 150	
28 - 29	300	3,0	3,0	0.400	3.70	0.023	250 x 150	
22 32 1	0200	3,0	7,0	0.120	7.60	0.336	790 x 450	
K-Kl	9200 7360	4,0	4,0	0.080	7.10	0.288	750 400	
K1 - 19		4,0	4,0	0.096	6.50	0.236	700 x 360	
19 - 20	5520 3680	4,0	4,0	0.130	5,80	0.176	650 x 290	ŀ
20 - 21	1840	4,0	4,0	0.190	5.10	0,100	425 x 250	
21 - 22 K1 - 23	1840	4,0	7,0	0.220	6.40	0.080	425 x 200	
K1 - 23	1010	1,0	1,5**	7				
J - 15	7560	2,0	2,0	0.040	8,40	0.250	670 x 400	
15 - 16	5670	3,0	3,0	0.070	7.80	0.202	600 x 350	
16 - 17	3780	4,0	4,0	0.120	7.10	0.147	450 x 350	
17 - 18	1890	4,0	4,0	0.180	6.20	0.085	350 x 250	
.	10710	10	10,0	0.160	8.30	0.358	960 x 400	
F-8	10710	4,0		0.110	7.60	0.336	900 x 400	
8 - 9	9180	6,0	6,0	0.080	7.10	0.299	900 x 360	
9 - 10	7650	4,0	4,0 4,0	0.090	6.55	0.260	800 x 350	
10 - 11	6120	4,0		0.030	6.00	0.213	650 x 350	
11 - 12	4590	4,0	4,0	0.110	5.40	0.157	550 x 300	1
12 - 13	3060	4,0	4,0	0.140	470	0.090	300 x 300	
13 - 14	1530	4,0	4,0	0,200	1,0	0.070	300 2 300	
E - 1	3010	4,0	7,0	0.240	8.20	0.102	350 x 300	
1 - 2	2580	6,0	6,0	0.220	6.80	0.105	350 x 300	1
2 - 3	2150	4,0	4,0	0.170	6.00	0.099	350 x 290	
3 - 4	1720	4,0	4,0	0.190	5,20	0.092	350 x 270	
4 - 5	1290	4,0	4,0	0.240	4.40	0.081	350 x 240	
5 - 6	860	4,0	4,0	0.300	3.70	0.064	300 x 220	1
6 - 7	430	4,0	4,0	0.420	3.00	0.040	250 x 200	<u></u>

2.2.5 Register Selection

Registers are sized for 2.5 m/s outlet velocity. Results are presented in the table.

PATH	AIR FLOW	TRHOW	SIZE	QUANTITY
	СМН	M/S	mm x mm	
A	500	2.5	500 x 200	6
A B	1790	2.5	850 x 300	6
\mathbf{c}	2200	2.87	900 x 300	6
D - 19	1540	2.5	900 x 250	6
D - 25	300	2.5	300 x 200	6
E	430	2,5	400 x 200	7
F	1530	2.5	730 x 300	7
G	1890	2.5	900 x 300	7
K	1840	2.5	900×300	5 11 11
L	300	2.5	300 x 200	6

2.2.6 Fan Selection

2.2.6.1 Maxim Total Pressure Required

H = he + hf + hv + hd + hr + hda

H = Total pressure, milimeters of water column mm

he = Entry losses

hf = Filters losses

hv = Velocity pressure

hd = Duct losses

hr = Outlet operating pressure

hda = Fire and volume dampers losses mm

۷I

H = (2.5 + 6 + 6.1 + 9.72 + 3 + 19) mm

H = 46.32 mm

$$H = (2.5 + 6 + 6.1 + 12.8 + 3 + 19) \text{ mm}$$

 $H = 49.4 \, \text{mm}$

2.2.6.2 Power Input

Power =
$$2.757 \times 10^{-6} \times CMH \times H \times \frac{1}{n}$$

CMH →Flow rate in cubic meters per hour

H →Total pressure in milimeters of water column

n →Total efficiency

Considering two similar fans of= 38,000 CMH and 50 mm we total pressure:

Power =
$$2.757 \times 10^{-6} \times 38.000 \times 50 \times \frac{1}{0.50}$$
 kw

Power = 10,476 kw

2.2.6.3 Summary of fan selection:

Q = 38.000 CMH

 $H = 50 \, \text{mm}$

Power = 10.5 kw

3. AIR CONDITIONING PROJECT

3.1 Served Space

The study is for the administration and control areas of Severino Pumping Station. These are in the 70:20 elevation level as the plans indicate. Sizes, heights, orientation, building materials and finishes are in the plans too. Form 1 gives an extract of sizes required for the load calculation.

3.2 Project Conditions

3.2.1 Outdoor Conditions

To stablish the external conditions nearest to project localization, metereological stations information was review. Based on Portoviejo, Poza Honda, Alajuela and Chamotete Stations the following data are stablished.

Dry bulb temperature

33 °C

Average relative humidity

70%

Outdoor daily range

10 °C

Wind velocities

1.6 m/s, SO

Barometer pressure

1006,5 m bar

Annual sunshine

1430 hours

Maxim daily sunshine

10 hours

Altitude

70 over sea level

3.2.2 Indoor Conditions

Design is based on 24 °C indoor temperature and on 50 % indoor relative humidity. Continuous operating as considered for the control room area.

3.3 Air Conditioning Cooling Load

March, 23, 15hoo is considered the project day for the air conditioning load estimation.

Out Door Loads

Solar heat gain throught glass areas, solar heat gain throught walls and roofs, load from partitions, ceilings and floor because the temperature difference, are considered in the exterior loads. Since the low average wind velocity, infiltration air load is not considered.

To determine the load from outdoor air ventilation, a number of occupants within each space is assumed.

Indoor Loads

Included de indoor loads the next sources are considered; heat and moisture given of by people, heat gain from electric lighting, heat gain from equipment and apliances, and the heat delivery for control and protection panels specially in control room and telephone room.

The form 2 is used to estimate the conditioning load. This form is aplied in each local and summarized for each system. In the forms are indicated the parameters used in the load calculation.

The different rates and calculation procedures presented are in accordance to ASHRAE guide, and Carrier Company Air Conditioning. hand-book

3.4.1 Suply Air Conditioning System Duct Sizing

SECTION	AIRFLOW	TOTAL LENGTH	RATIO L/Q	VELOCITY	AREA	SIZE	LOSS
V - A	9460	11	(0.12)	7.66	0.343	1100 x 350	1,37
A - B	7900	3	0.06	7.25	0.303	950 x 350	
В-С	6340	3	0.066	6.80	0.259	800 x 350	
C - D	4780	e or 3 a to	0.079	6.40	0.207	750 x 300	
D-E	3220	3	0.095	5.85	0.153	670 x 250	.* % t+ +
E-F	2200	4	0.170	5.20	0.118	500 x 250	
A - 1	780	2,5	0,200	6.55	0.033	250 x 200	·
A -2	780	4.5	0.340	5.95	0.036	250 x 200	
B - 1	780	2.5	0.200	6.25	0.035	250 x 200	
B - 2	780	4.5	0.340	5.70	0.038	250 x 200	
C-1	780	2.5	0.200	5.90	0.036	250×200	
C-2	780	4.5	0.340	5.45	0.040	250×200	
D - 1	780	2.5	0.200	5.50	0.039	250×200	
D - 2	180	4.5	0.340	5.10	0.042	250×200	•
E-1	1020	2.0	0.135	5.30	0.053	250 x 220	
F - 1	1100	3.0	0.190	4,50	0.068	350 x 250	<u></u>
F - 2	1100	3.0	0.190	4.50	0.068	350 x 250	
V - 6	3580	13.0	(0,06)	5.92	0.168	500 x 350	0.78
G-H	2320	7,0	0.290	4.85	0.133	460 x 300	
H - I	1160	4,0	0.240	4,20	0.078	420 x 200	
G-1	630	2,0	0.180	5.15	0.034	250 x 200	
G - 2	630	2.5	0.300	4.45	0.040	250×200	
H - 1	580	3.0	0.280	4.10	0.039	250 x 200	
H-2	580	3,0	0.280	4.10	0.039	250 x 200	
1-1	580	3.0	0.280	3.60	0.044	250 x 200	
I - 2	580	3.0	0.280	3.60	0.044	250 x 200	<u> </u>

3.4 Duct Sizing

3.4.1 **Suply**

The static regain method is used, to duct sizing. 250 x 200 mm x mm are the minimum sizes. Next table gives the results- The abreviations and symbols are referred to the air conditioning draws.

3.4.2 Return

Each air conditioning system use a duct return line. The constant loss method is used to the duct sizing. Next tables gives the results.

3.4.2 Return Air Conditioning System Duct Sizing

SECTION	QI	Q2 CMH	VEL	AREA	DUCT SIZES	REGISTERS SIZES	% Q	%∧
RI	2020	8829	7	0.343	1100 x 350	950 x 400	100	100
R2	2020	6809		0.281	900 x 350	950 x 400	77	82
R3	2020	4789		0.213	800 x 300	950 x 400	54	62
R4	944	2769		0.134	500 x 300	750 x 300	31	39
R5	1825	1825		0.093	400 x 250	900 x 400	20	27
		•						
R8	1160	3280	6	0.152	450 x 350	800 x 300	100	100
R7	1060	2120		0.109	450 x 250	750 x 300	65	71.5
R6	1060	1060		0061	350 x 200	750 x 300	32	40

3.5 Register and Diffuser Selection

For the suply air conditioning system, 250 mm diameter round ceiling diffusers are selected.

For the returns, rectangular registers are selected. Sizes are in accordance to velocity and capacity and are presented in table 3.4.2

3.6 Air Conditioning Control System

A combination of on-off control, refrigeration capacity control and reheating control shall be used to maintain the temperature within a deviation range of \pm 1 °C from the set point. For reheating control an electrical heater is considered in the air conditioning unit. Its capacity was stablished considering the 50% of the 70% partial refrigeration load after the 30% of refrigeration capacity control. This heating capacity shall be used to restore the heating load which develops when the minimum night temperatures occur, too.

The control system described heretofore is considered for the total refrigeration load divided in two compresors of equal capacity and similar characteristics, to obtain the better steady performance and economical operation.

Form No. 1
Local: Manager Room

SURFACE	WIND	SWC	WALLS	DOOF		TOTAL
No.	PERIMETER	AREA	AREA	PERIMETER	AREA	AREA
1 SE	6.60	2.70	17.3		1. 1 	20.00
2 NE			27.5		·	27.50
3 NO		+ 4	17.2	6.8	2.8	20.00
4 SO			27.5			27.50
5.H			22.0			22.0
6			·			
7						
8						

Form No. 1 Local: Office

SURFACE	WIND	ows	WALLS	DOO		TOTAL
No.	PERIMETER	AREA	AREA	PERIMETER	AREA	AREA
1	13.2	5.4	32.1			37.5
2		,	32.5			32.5
3			36.5	5.6	1.6	37.5
4		·	29.5	7	3,0	32.5
5			48.75		\$ • **	48.75
6						
7	. ;	į			:	
8	:			1		:

Form No. 1

Local: Conference Room

SURFACE	WIND	ows	WALLS	DOOL		TOTAL
No.	PERIMETER	AREA	AREA	PERIMETER	AREA	AREA
1	6.6	2.7	24.8			27.5
2			32.5			32.5
3	;		24.5	7	3	27.5
4			32.5			32.5
5			35.75			35.75
6	1		·			
7						
8	: :					

Form No. 1
Local: Control Room

SURFACE	WIND	ows	WALLS	D00		TOTAL
No.	PERIMETER	AREA	AREA	PERIMETER	AREA	AREA
1	13.2	5.4	46.6	7,00	3,00	55
2			39.5	7,00	3,00	42.5
3	19.8	8.1	46.9		: -	55
4	:		40.9	5.6	1.6	42.5
5 - 2			93.5			93.5
6					:	
7						
8			1			

Form No. 1

Local: Telephone Room

SURFACE	WINI	ows	WALLS	D00	RS	TOTAL
No.	PERIMETER	AREA	AREA	PERIMETER	AREA	AREA
1	6.6	2.7	12.3			15
2			27.5			27.5
3	Section 1		13.4	5.60	1.6	1.5
4			27.5			27.5
5			16.5		L	16.5
6		·				
7						
8						

REFERENCES:

ACGIII

Industrial Ventilation. A manual of recommended practices. 15

th ed. American Conference of Governmental Industrial

Hygienists.

ASHRAE

1989 Fundamentals Handbook

ASHRAE

1961 Guide and Data book, Fundamentals and Equipment.

CARRIER COMPANY. 1972 Hand book of Air Conditioning System Design

SHEET: 1/7
PREPARED BY: H. PEREZ OFICCE
CUSTOMER
LOCATION SEVERINO POMPINE STATION

SPACE USED BY A OMPHISTRATION DREA (SUMMARY)
LOCAL DIMENSIONS MX m=10.75m²x 3 m=212 m²

:

r = 2.5 (1.25 = 7.1	1001	SOLAR GAIN OR	FACTOR	Keath
CONCEPT	AREA		1	
	1.0	18.kip,	1	
		DUTERLNCE		
		GAIN GLASS	*T	
		GAIN, CIASS	-	
Class	m³a_			
Glass	m a		*l	
	D) 1			
(ilas				
Glass	. gn x			
	rı'x		1	
Skylight		TRANS WALLS & R	704	
		TRANS DALES & R		
WALL	in ³ x	·	1	
	ni x		R .	
WALL				,
WALL	h; x		_×	
WALL	, in the			
77.000	ma		1	1.5
ROOF SUN				•
ROOF-	m, I		*	1
SHADE				2.55
	AND ASSESSED FOR	CEPT WALL AND RO	VIII	
	The Trees of La	CELL HARRING IN		:
1013 6 1055	T, (u)		3	
Divisory wall	1078		K.	•
	,			i
Door				
Roof	tar x		_=	
	m's		X .	
Floor				
Filtering	តាំង			
	INTE	RNALHEAT		
			x	
Prople		People		-
Power		KW	X	
Light		Watts # 0.86-	1 .	
Line at			Ħ	
Applications				
Additional		•) i	
		· •		
Grins			SUBTOTAL	
Storage	Li X		. (•	
Olivina.			SUBTOTAL	
Safety Factor		<u> </u>		10407
	ROOM S	ENSIBLE BEAT		10701
		Loss die In	KW.	
Strap. Direct				
heat gain	.% 1	kaks ** *		ļ
Dutside eie	m seg x	°C x	UF 1 0 3	
Cocupt oil				11603
		OOM SENSIBLE HEAT		11000
	1.31	ENT HEAT	_	
		ni ^v seg x		
INFILTRATE	/N			l
People	4	reopie	3	f
	5.01	X		l
Vapor				l
Applications				
Additional	400	**		I
Gaine	* 1	* .		
	ın ²¹ x	GRAG		ì
Vapor	in x	CKKO	: 1	
Dilumion				l .
		· · · · · · · · · · · · · · · · · · ·	SUBTOTAL	,
2.24		%		
Safety Factor		70	LATENT HEAT	
			PATENT HEVE	1
BULL I PAN	DOCTTILIBAT	ION LOSS	1.0	
	ru it i	GRAG x	BF x0 72	
outside nie	RI TI J	UNIO A		2016
i	1.00	EFFECTIVE ROOM	LAILNIIILAL	1
		EFFECTIVE ROUT	TABILLIEAT	13625
J				1
		DE AIR HEAT		
E 4	ours			
Sensible			9.1	648
Sensible	nids x	%(1- 11)x) 648 4320
Sensible Latent			x 0.72	4320
	nids x	%(1- 11)x		4320
	nids x	%(1- 11)x	x 0.72	4320
Literal	nd ¹ /\$ x nd ¹ /sc <u>x</u> x	C(I- 10)x GRKOx(I- BF)x	x 0.72 Subtoral	4320
Latent Return Duct	ni da u ne Segui Retum Du	C(I- 10)x GRKUx(I- BF)x	E 0.72 Subtotal Delmmid A	4320
Literal	nith a haliseg a Return Du Leakage Cain	C.Y. Fump	E 0.72 Subtotal Delmmid A Fige Loss	4320 682
Latent Return Duct	nd ¹ /\$ x nd ¹ /sc <u>x</u> x	C(I- 10)x GRKUx(I- BF)x	E 0.72 Subtotal Delmmid A	4320

DATE:	10/1994 INSTALATION N	
APROVE	EO BY	

CALCULATE	FOR		L HOUR	MAX LOAD		LOCAL HOUR SOLAR HOUR
Working Hours			WD	1 118	TR	OR KO
Conditions		100	40	1 70	<u>-</u> -	
Exteriors		33		- 38	1	
Interior		<u> </u>			1	
Difference	г -	_3_L		OUTSIDE AIR		
VENTI-	l .	people	x .	աշի		
LATION		_m x			te	
11	<u> </u>	· · ·		Wen	s ventilation	300
INFILTRA- TION	i	0015		x doors		W ₃₌
	Crack		m x	m'/h	n:/h	<u> </u>
				mVh labites	tion 🖷	
	m'/h f	UTSIDE	AIR			_m'/3v

·	ADP
SIVE	SHE - 13625 ELECTIVE POOM TOTAL HEAT -0.85
ADP	prescated any 11 x selected any 11 x
Δ'	QUANTITY OF BEHUMIDIFIED AIR (1-0.2 BF) x (°C10024 - 11 ADP) = 10.4 °C
m3/h	61 409 EFFEC ROOM SENS . 3480m1/6
∆ [†] outlet	10407 ROCH SENS HEAL . 9.3 ·C (Room . air outlet)
 	AIR SUPPLIED FLOW
Ri76	Room Sen. Heat " m/h
Supplied	0.3 x °C &
niVh By-possed	myh ASmyh AD =myh
<i>D</i>) 10 30 0	INLET AND OULET CONDITTIONS OF THE DEVICE
D8 Inlet	11 24 - 4 300 1/h FA (Tac 33 - 11 24) + 1 de 24 3 c
DB Outlet	Tadp 11 C+ 0.2 DF (Take 243 - Tadp 11) - Tale 13.9 C From Psychronetric chart Tube 18.4 C Tube 12.3 C
t	

NOTES

- If this & is too high, determine the mYh supplied by the difference desired, by the way of te amount of impulsed air
- When using a by-pass of mixed air of exterior air and returned air, use mith supplied.

When by-passing only return air, use m'th dehumidified.

SHEET: 2/7		, i
PREPARED BY: 14. VENE	***OFICCE	
CUSTOMER LOCATION SEVERING P	1110116	MITTATE
LOCATION SEVERIBULE	OULING	

SPACE USED BY MANAGER ROOM LOCAL DIMENSIONS mx m = 22 m2 3 m = 66 m2

CONCEPT AREA SOLAR CHANGE FACTOR TEAP. DIFFILENCE	LOCAL DIMENSIONS	mx m= LL	n x => m = - m
CONCEPT AREA SULPARISON DITAIN			CTOS TOTAL
Olean SE 2.1 m/2 320 2.0.45 389 Olean SE 2.1 m/2 320 2.0.45 389 Olean m/2 3 3 3 3 3 Olean m/2 3 3 3 3 WALL SE 13.3 m/2 3 3 1.30 WALL SE 13.3 m/2 3 1.30 WALL SE 13.3 m/2 3 1.30 WALL NO 13.2 m/2 3 1.30 WALL NO 13.2 m/2 3 1.30 WALL NO 13.2 m/2 3 1.33 ROOF SUN 22 m/2 18 1 1.33 ROOF m/2 3 3 2.50 Roof 10 m/2 18 1.35 Additional 16 1.35 Additional 16 1.35 Outside n/2 10 0 m/2 2.3 3 3 Outside n/2 10 0 m/2 2.3 3 3 Outside n/2 10 0 m/2 2.3 3 Outside n/2 10 0 m/2 2.5 Outside n/3 10 0 m/2 2.5 Outside n/4 10 0 m/2	CONCEPT AREA	200.000	CIUK
Class SE			i
Class SE		DIFFERENCE	
Class SE	SOLAR	GAIN GLAN	5.45 ZR9
Clas	Ohei SE Z. I m's	320 1	<u> </u>
Class 17	Class m's		
SUPPRINCE 19.5 19.0 26.5 26.2 26	Glass ma		
SOLAR. GAIN. & BRANS WALLA & ROOF 1.90 263 WALL NE 13.3 m²			
SOLAR CAIN. & TRANS WALLARD ROOF 1.90 WALL NE	Skylight max	<u>X</u>	
WALL NO 13-2 m²x	SOLAR GAIN . &	TRANS WALLS & ROOF	1901 263:
WALL NO 13-2 m²x	WALLSE 13.3 mx		tias uis!
WALL NO		8	1.99
WALL		8	1'30
ROOF-SUN 22 m ² 3 8 x x x x x x x x x	WAS m's		
ROCF-	BOOK SIN 22 BIT	18	1.33
STADE			
CAIN IRANS. FACEPT WALL AND ROOF Total Gloss F. 3 m/s 9 2 5.50	#ULDE		
Total Glass 1, 1 m's 9 1 2, 50 Divisory stall 2, 8 m's 9 2, 50 Divor 2, 8 m's 9 2, 50 Divor 2, 8 m's 8 1, 62 Divor 2, 8 m's 8 1, 62 Divor 2, 9 m's 8 1, 62 Divor 2, 6 m's 8 1, 62 Divor 2, 6 m's 1, 60 Divor 3, 6 m's 1, 60 Destar 3, 6 m's 1, 6 m's Divor 4, 60 m's 1, 6 m's Divor 5, 6 m's 5, 6 m's Stational 5, 7 m's 5, 7 m's Divor 6 m's 5, 7 m's Divor 7, 8 m's 8, 7 m's Divor 8, 7 m's 1, 7 m's Divor 8, 7 m's 1, 7 m's Divor 1, 7 m's 1, 7 m's Divor	STAIN TOUNE. F	CEPT WALL AND ROOF	134.
Divisory wall 2.8 m/s 9 2.50 180	Taracture 2.3 min	9 .	5.50
Door 2,8			میم ا
Thora	1 have 2.8 ""	3	X.10
Flow		li .	460
Second State Sta	HOOS	8 r	1.01 180
People		DEAL DEAL	
People			81.0 244
Light Applications Additional Cains Straight Factor Str			60.0 516
Applications		NW	125 132
Additional Calins			
Storage			
Storage m's subjoint. Storage m's subjoint. Safety Factor SUBJOTAL Safety Factor ROURI SENSIBLE HEAT Inp. Doct Less due to RW Berlington U.S. is leak 2 in Fax 35		-	
Storage	Qains	tin	PER AL
Safety Factor Safety Factor ROOM SENSIBLE HEAT Imp Dood ROOM SENSIBLE HEAT Imp Dood Room ROOM SENSIBLE HEAT So Octobe at 100 mines a 3 °C x 0.2 BF x 0.3 EFFECTIVE ROOM SENSIBLE HEAT INFILITATION ROOM SENSIBLE HEAT REFLICTIVE ROOM SENSIBLE HEAT ENFILITATION ROOM X Not X X X X X X X X X X X X X X X X X X X	[· · ·
Safety Factor	Storage m'		
Safety Factor ROORI SENSIBLE HEAT Inp. Does Less due to RW Sensible HEAT Deel gein V. S. Less due to RW Sensible HEAT Exp. Less due to RW Sensible HEAT Dotside if 100 m/seg x 3 V x 0.2 HE x0.1 EFFECTIVE ROORI SENSIBLE HEAT INFILITATION Infinity RATE REFLECTIVE ROORI SENSIBLE HEAT Defende V people x S L O Vapor ROB x X X X X Applications Administration Administration Community CR RCU Dotterion SUBTOTAL Safety Fector ROORI LATENT HEAT ENTECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT Sensible 100 m/s x L S ORRO x 0.2 HE x0.12 EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT OUTSIDE ARRHEAT OUTSIDE ARRHEAT OUTSIDE ARRHEAT EFFECTIVE ROORI LATENT HEAT EFFECTIVE ROORI LATENT HEAT OUTSIDE ARRHEAT OUTSIDE			
ROUNTSESSIBLE HEAT Inp Doet Less 2 to RW heal gein 4, S to Lesls 2 to Fax 5; heal gein 4, S to Lesls 2 to Fax 5; heal gein 4, S to Lesls 2 to Fax 5; heal gein 4, S to Lesls 2 to Fax 5; heal gein 4, S to Lesls 2 to Fax 5, S to Octobe if 100 m²/sg x 3 to C 2 UF x 0.1 INFILTRATION m²/sg x 3 to C 2 UF x 0.1 INFILTRATION m²/sg x 3 to C 2 UF x 0.1 INFILTRATION m²/sg x 3 to C 2 UF x 0.1 INFILTRATION M²/sg x 1 to C 2 UF x 0.1 Safety Tector S	Safety Factor		
Input	ROOM	SENSIBLE HEAT	
Second S		Les die to	
Outside six 100 m/sex 34 x 5.2 br x0.3 EFFECTIVE ROOM SENSIBLE HEAT INFILTRATION mr/sex 1 Feorle 4 people 5 5 4,0 Vogor KUh 2 Applications Additional Cains Vogor mr/s GR KU Dr/sestion Subjection Sifety Fector 5 ROOM LATERN HEAT EFFECTIVE ROOM LATERN HEAT EFFECTIVE ROOM LOTAL HEAT OUTSIDE AIR HEAT Sensible 100 m/sex x2 GR KO x (1-0, 2-8) 3 03 Laters 100 m/sex x2 GR KO x (1-0, 2-8) 3 03 Lat	ا خاکا سندندا	leaks 2 % 195	
LATENT IBAT RIFLITATION RIFLET ROOM SENTER I RIFLET ROOM SENTER I ROOM SENTER	Outside is 100 m/set?	9° 1 0.2	
INFILTRATION Price I TENT INFAIT Propie I SI, Q TEOPLE I SI, Q TEO	ENTERINE	COURT SENSIEGE TICK	
INFILTRATION notice 1 208 People 4 people 1 51,0 Vagor ROLL 1 Applications Additional Coains Vapor British GREG Diffusion SUBTOTAL Safety Lector RUDALATENT HEAT INFILLIPON DUCT FILTRATION LOSS 2.7 Subside if 100 m/h x 15 00 AO x 0.2 by x 0.2 ESTECTIVE ROOM LATENT HEAT OUTSIDE ARRIVAT OUTSIDE ARRIVAT Sensible 100 m/h x 9 \(\chi(1-0.20)\) x 0.7 Latent 100 m/ss x 2 CGR KO x (1-0.20) x 0.7 Latent 100 m/ss x 2 CGR KO x (1-0.20) x 0.7 Latent Dock Return Duck Beautiful Act CV. (Nump Fixe Loss beautiful Act CV. (Nump Fixe Loss beautiful Act CV. (Nump Fixe Loss Loss) Return Dock Return Duck Beautiful CV. (Nump Fixe Loss Loss) Return Dock Return Duck Beautiful CV. (Nump Fixe Loss Loss)	i ii	TEST HEAT	
People 4 people 4 \$4,0 Vagor 8.Ch 8 Additional Cains Vapor 9.Ch 8.Ch 8 Additional Cains Vapor 9.Ch 8.Ch 8 Subtotal 9.Ch 9.Ch 8.Ch 9.Ch 9.Ch 9.Ch 9.Ch 9.Ch 9.Ch 9.Ch 9		no see 8	
Typer NUB 2 Applications Additional Quint Vapor m''s GREC Subtotal Return Dock Return Duck Return Dock Return Duck Subtotal Return Dock Return Duck Subtotal Return Dock Return Duck Subtotal Return Dock Return Duck Return Dock Return Duck Subtotal		peorle I	<u>51.0</u> 208
Applications Additional Caint Vepor Diffusion Sicty Jector Sicty Jector Sicty Jector ROULLAIENT HEAT INITUATION DUCT HUTERITON LOSS 2.7/ outside air 100 m/h x 2.5 GARO x 0.2 be 80.12 outside air 100 m/h x 2.5 GARO x 0.2 be 80.12 ESTECTIVE ROUNT LITERAT OUTSIDE AIR HEAT OUTSIDE AIR HEAT Senville 100 m/h x 3 °C (1-0, 2 B) x 0.72 Laient 100 m/h x 3 °C (1-0, 2 B) x 0.72 Laient 100 m/h x 2.5 GARO x 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 to let		
Additional Quints Vapor Defination Subject of State of	1000		
Cains Vapor Part OR RU			1 . ,
Vapor m ¹¹ x GRKO Subiotal Safety Lector Signification Subiotal Subiotal ROUNILATENT HEAT INITIATION DUCT FILL TRAITON LOSS 2 // outside air 100 m ² h x 15 0AKO x 0.2 bs 10.22 outside air 100 m ² h x 15 0AKO x 0.2 bs 10.22 Subiotal Subiotal Subiotal Return Duct Return Duct Return Duct Return Duct Britian CV. (hop fixe loss 2 2 8 beat Gian Lealage (tala CV. (hop fixe loss 4 2 2 8	Coint		
Defection Subject Sub		GRACI	
Scholler Scholler Scholler RECONTAINENT HEAT RECONTAINENT HEAT RECONTAINENT HEAT RECONTAINENT HEAT Sensible 100 m/h x \$5 00.00 x 0.2 hr m²2 ESTECTIVE ROOM LATERT HEAT ESTECTIVE ROOM TOTAL HEAT OUTSIDE AIR HEAT OUTSIDE AIR HEAT Sensible 100 m/h x \$7 \cdot(1-0.2 hr) x 0.72 Latert 100 m/sg x \$2 \cdot			
Secrible 100 m/h 1 9 °C(1-D, 2 B) 2 0 1 2 1 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	220,000	St	BIOTAL
ROUNTAINEN HAT BUTCHION DUCT THE TRAININ LOSS 2.76 outside n'r 100 mich x 25 GARO x 0.2 16 f x 6.12 ESTECTIVE ROOM LATENT HEAT ESTECTIVE ROOM TOTAL HEAT OUTSIDE AIR HEAT Sensible 100 mich x 3 x (1-0.2 0) x 20.72 Latent 100 mich x 3 x (1-0.2 0) x 20.72 Return Duct Return Duct Return Duct Return Duct Beat Gian Lealage (Isla C.V. Limp Fixe Loss beat Gian Lealage (Isla C.V. Limp Fixe Loss 4.228	Safety Factor		
INTULTION DUCT FILTRALION LOSS 2 % entside air 100 m/h x 15 00 NO x 0.2 life nd 2 638	3	ROOM LAT	ENTHEAT IN
entside air 100 m/h x 25 GA.KO x 0.2 bF xa 12 ESTECTIVE ROOM LATENT HEAT Sensible 100 m/h x 9 x (1-0.2 bF) x 0.5 Laient 100 m/s x 25 GR.KO x (1-0.2 bF) x 0.52 Return Duct Return Duct Beat Gian Lealage (1-in C.V. Limp Fixe Leas Laient Lealage (1-in C.V. Limp Fixe Leas 428	THE REPORT OF THE TRA		7, 1
FRICTIVE ROOM LATENT HEAT FRICTIVE ROOM LATENT HEAT OUTSIDE AIR HEAT Sensible 100 m/m 19 m (1-0,2 H) a 03 Latent 100 m/m 19 m (1-0,2 H) a 03 Latent 100 m/m 19 m (1-0,2 H) a 03 Latent 100 m/m 19 m (1-0,2 H) a 03 Latent 100 m/m 19 m (1-0,2 H) a 03 Return Duct Return Duct Deformid & Deformid		1.5 GREG x 0.2 DE	14.12 36U
EFFECTIVE ROOM TOTAL HEAT OUTSIDE AIR ILEAT Sensible 100 m³/m = 9 °C(1-0,2 BF) = 0.5 Laient 100 m²/m x2 S GR KO n(1-0,2 BF) = 0.72 Laient 100 m²/m x2 S GR KO n(1-0,2 BF) = 0.72 Subsetal Return Duct Return Duct Defound &	Sabore III 100 II A	ESTECTIVE ROOM LAT	ENTILEAT 638
Sensible 100 m/h x 3 x (1-0.2 B) x 0.5 Laient 100 m/ssg x 2 CR KO x (1-0 BU) x x 0.72 Return Doct Return Duct Defound & beat Gian Lealage (12 in C.V. Limp Fixe Loss 4 228)	1	EFFECTIVE ROOM TO	TALLIEAT 4548
Sensible 100 mt/h 1 9 °C(1- D. 2 Bf) 2 03 1440 Latera 100 mt/ssg x 2 5 GR KO x (1- 0 Bill) x 2 0.72 Return Duct Return Duct Deformed & Deform			
Laient 100m/Seg x 2 CR KO x (1-0, lin/) z 20.72 1440 Laient 100m/Seg x 2 CR KO x (1-0, lin/) z 20.72 Subsetat Return Duct Return Duct Defining & Defining & Defining & Defining & Defining & Cy. Ching Fixe Loss 228			
Return Duct Return Duct Defamild & Defamild & Defamild & Lealing Claim C.V. Dunp Pipe Less 228	Sensible 100 m/h		
Return Duct Return Duct Defining & Defining & 228 Best Gian Lealage (12) C.V. Dunp Pipe Loss 228	Laiest 100m/seg x2		
best Gran Lealinge Cizlin C.V. Prinsp Pipe Loss 228	1	Pri	······
best Gran Lealinge Cizlin C.V. Prinsp Pipe Loss 228	1	tu b	formid &
34. 24.			eles 220
	heat Gian LeaLage Cial		A,
OKCAT (OCALOCIDEA)	5 3 4 6 6 6	TOTAL OF DEAT	432
	GREA	COLALOFTEN	

DATE: 10/195	INSTALATION N° 1
APROVED BY	

			, A.	*		· · · · · · · · · · · · · · · · · · ·
CALCULATE	FOR		AL HOUR AR INXER	MAX LOAD		LOCAL HOUR SOLAR IBAIR
Working Hours	-			1 % 1R	T.R.	URKO
Conditions		_ <u>D0</u>	W8			
Exteriors	: L	33-		1 10 -		
Interior		24	ļ	50	ļ	
Difference		9	i		<u></u>	
VENTI- LATION	_		le x	OUTSIDE AIR 25 mYh mYh	- <u>10</u>	00
	1				a ventilatio	
INFILTRA-	levol	ving doo	15	xpcoc	ic m	/h people =
		open doors		x doors	s m'	⁄h m³=
ł	CAR					
	Crac	ks	m x	pı'/k		/h =
			-	mVh Invites	tion 🛢	
•	m/h	OUTSID	EAIR	<u> </u>		m/k

	ADP
SHFE	ENECTIVE ENECTIVE BOOM SOIAL REAT
ADP	MINCATED AND
You.	QUANTITY OF DEHUMIDIFIED AIR (1-0.28F) x (°Cicc24 - 11 ADP) = 10.4 °C
333/li	3910 EFFEC ROOM SENS . 1253 m'/h
A ^T outlet	3506 ROOM SENS HEAL . 9.3 "CERSON . as outlet)
	AIR SUPPLIED FLOW
m'/h	Room Sea Heat myh
Supplied	Room Sea. Heat myb
mVh	myli ASmyli AD =myli
By-passed	INLET AND QULET CONDITTIONS OF THE DEVICE
DB Inict	Tr C + m/h EA (TecTr) = Take C
DB Outlet	TodpC+UF(TdbeTadp)= TdbaC
1 1 1	From Psychrometric chart Twbe C Twts C

NOTES

- If this Δ^1 is too high, determine the m'/h supplied by the difference desired, by the way of te amount of impulsed air
- When using a by-pass of mixed air of exterior air and returned air, use mith supplied.

When by-passing only return air, use m'th dehumidified.

SHEET: 3/7
PREPARED BY: M. PERET OFICCE
CUSTOMER
LOCATION SENERING PUMPING STATION

SPACE USED BY OFFICE LOCAL DIMENSIONS IN X

m = 4875" x 3.0m = 146 m'

EQCAL DIA	15 NO NO NO	30 X 24 =		
CONCEPT	AREA	SOLAR UAIN OR	FACTOR	Keath
CONCERT	AN)A	TEADE.	1	4
1 !		DIFFERENCE	L	
	SULAR-	GAIN - CLASS	1 0.45	118
Oles SE	5.4 m/x	350	3 0.45	110
Class	m'x			1.7
Olea .	en'x			
Glass Skylight	711 X	· · · · · · · · · · · · · · · · · · ·		
501	AR . CAIN . A	TRANS WALLS & R	OOF	1100
WALLSE	32 1 m's	8	1.30	490
WALL.	115 K		- *	555
WALL NO	36.5 mx	8	1.90	555 494
WALL 50_	4 2 m	8	1:33	1202
ROOF-SUN	48.75m'x	1.6		•
ROOF. SHADE	FIT 2	1000		
SHADE	IN TRANS. EX	CEPT WALLAND R	100	267
Total G12-56	5 4 m's	9	3.3.3	2.
Divisory wall	m x	9	2.5	104
- Door	4.6		-: - ε· s	•
Roof	m'x	8	1.02	398
Floor	48.15m2x			-
Filtering		RNALHEAT		
I	10	people	× 61.0	610
Foner	- 30	KW	18(0.0	860
Light	480	Watts x 0.86	1.25	516
Applications			. x	
Additional			я .	
Cains	···	·	SUBTOTAL	
1	m'x		* (·)	A 1
Storage	W. I		SUDIOIAL	6274
Safety Factor		10%		6 2 T
341617 67-114	ROOMS	ENSIBLE HEAT		690I
Imp. Duct		Lost due to	KW	690:
Liveracio 4	.5 .	leeks 2 %	F1935%	108
Outside air	200 m'×g±'	STORES	. Z BF 10.3	ŦĞŠŠ
<u></u>	EFFECTIVE R	DOVE SENZURE LIEV	<u></u>	4033
1		ENT BEAT		
INFILIRATE		beolise *	\$ 57.0	520
People	KGA	peoise		
Applications				
Additional				
Online				
Vapor	±n ²¹ x	ORKO	·	
Diffusion			SUBJOTAL	
0.63, 84		96	100,0,	
Safety Factor			LATENT HEAT	138
INTULTION	JULY FILTRAT	ION LOSS	2 %	120
outside sir	500 mg x	2.5 GR X G x O.	2. DF x0.72	
		EFFECTIVE ROOK	LARENT HEAT	8451 9077
		EFFECTIVE ROO	M TOTAL BEAT	
	OUTS	DE AIR HEAT	6.3	432
	COOmité K	9 ~(1.0,211)	g D.72	2880
Laterd Z	O 0 11 15 1 1 0 0	GRAGA(1-0.73F) x	Suinotai	
I	100	400	30.0.	
Return Duct	Petura Do	ct	Delannid A	l '.
heat Gian	Lestage Cain	C.Y. Tong	Pipe Loss	454
3 % +	2 .	34 8	**	12843
	A DEAT	TOTAL OF HEAT		I

DATE:	10/1994		
PROJECT		INSTALATION N°	<u>+</u>
APROVE	D 8Y		

		DCAL HOUR			 i	OCAL HOUR
CALCULATED	SOR .	OLAR HOUR	MAX. LOAD		\$	OLAR HOUR
Working Hours					TR.	URKG
Conditions	DB	W.B	25 118		110	
Exteriors	3.5		_ <u>}</u> 0	— }		
laterior .	24		\$0	}		
Difference	9					L
			OUTSIDE A			
VENTI-	_10_pcc	ole x	2O m	/h =	200	
LATION	m	x	133	/h =		
				iYh ven	tilation	·
NEIL1RA-	revolving do	045	xpo	ople	m /a	bcobje=-:-
HON .	open doors _ Extractor		x do	or s	(aYh	en ₃ =
	Cracks	int _x	mYh		m\/h	*
					_	
			ա/և ան	(Fation		en As

	· Var
SHFE	SHE SEPECTIVE ROOM SENS
ADP	BRICATED ADF
۵	QUANTITY OF DEHUNIDIFIED AIR (1-0.2 BF) x (°C Loc2 4 . 14 ADP) = 10.4 °C
m3/h	7699 EFFEC. ROOM SENS. , 2467 m'11
Δ [†] outlet	6301 ROOM SENS HEAT . 9.3°C (Room . air culter)
	AIR SUPPLIED FLOW
	The Care Care Usat
m√h	Roota Sea, Tiest
Supplied	0.3 x "C &"
niVh	m/h AS •m/h AD =m/h
By-passed	THE DEVICE
i	INLET AND OULET CONDIT HONS OF THE DEVICE
D8 Infet	Tr *C + myh EA
DB Outlet	Tadp 'C + GF (1 dbe Tadp) = 1 dbs 'C
	From Psychrometric chart Twbe 'C Twbs 'C

NOTES

- If this Δ^k is too high, determine the m'th supplied by the difference desired, by the way of te amount of impulsed air
- When using a by-pass of mixed air of exterior air and returned air, use m'th supplied.

When by-passing only return air, use milh dehumidified.

SHEET: 4/7 PREPARED BY H. PEREZ OFICCE CUSTOMER	
LOCATION SEVERING PUMPING STATION	
SPACE USED BY COLUMN ROOM AND OTHERS (SUMMA) LOCAL DIMENSIONS mx px mx 435	m ²

CONCEPT AREA SOLAR GUINOR FACTOR Really MANN. DISTIRRANCE Class max x x x x x x x x x x x x x x x x x x
Class
Gless my g g g g g g g g g g g g g g g g g g
Cless 19 18 2 3 4 Class 19 18 1 Class 19 18 1 Class 19 18 1 Class 19 18 18 2 Class 19 18 18 18 2 Class 19 18 18 18 18 18 18 18 18 18 18 18 18 18
Class
Glast m'x g Glast m'x g Sylight m'x g WALL m'x g W
Class
Glass night states a state of the state of t
SUBJUNE SUBJ
SOLAR GAIN & TRANS WALLS & ROOF WALL M'S R WALL M'S
WALL WALL M'X WALL M'X WALL M'X WALL M'Y WALL M'Y ROOF-SUN M'Y SHADE CAIN, TRANS- EXCRET WALL AND ROOFF Total \$1055 M'X SHADE CAIN, TRANS- EXCRET WALL AND ROOFF Total \$1050 TOTAL TOTAL
WALL 10 X X X X X X X X X X X X X X X X X X
WALL mx x WALL mx x WALL mx x ROOF-SUN mx x ROOF-SUN mx x SHADE CAIN, TRANS - EXCEPT WALL AND ROOF Total \$1.55 mx x X COOP Roof mx x Interval HEAT Floor mx x Interval HEAT Flore NW x Lipit Wx x x x Lipit Wx x x x Additional Calux SUBIOTAL Safety Faster ROOM SENSIBLE HEAT LATENT HEAT LATENT HEAT NEW x x LATENT HEAT Prople x x x x ROOMS SENSIBLE HEAT INFIGURATION x x x x x x x x x x x x x x x x x x x
WALL IN TROP SUM IN TO A A ROOF SHADE CAIN, TRANS - EXCEPT WALL AND ROOF Total Glass II I I I I I I I I I I I I I I I I I
ROOF-SUN m's a ROOF- ROOF- ROOF- ROOF- ROOF- ROOF- CAIN, TRANS, EXCRET WALL AND ROOF Total Science Total Sci
ROOF- SHADE UAIN, TRANSEXCEPT WALL AND ROOF Total GLOSS IN
CAIN, TRANS. EXCEPT WALL AND ROOF Total GLOSS my g Divisory wall mx g Door mx g Roof mx g Littering mx d
CAIN, TRANS. EXCEPT WALL AND ROOF Total GLOSS IN X Door Total GLOSS IN X LOCOT TO X LOCOT TO X TO X LOCOT TO X TO X THE TO X
CAIN, TRANS - EXCEPT WALL AND ROOF Total \$1555
Total Class Table
Notice 10
Poor Reef m's s Floor NAL HEAT Foods NEW s Floor KW s Floo
Roof m's 1
Floor m's a lifering myth myth myth myth myth myth myth myth
From
People
Feeple
Power N.W N.
Light
Applications Additional Cains Storage m/x Storage m/x Storage m/x Storage m/x Storage M/x Storage M/x Storage Stor
Additional Claims
Color Colo
SOUTONE Storage m'X
Safety Factor Safety Factor Safety Factor ROURI SENSIGLE HEAT Imp. Duct best gain **a** leads to the lin NW **BEST TEAT INFICTRATION no leads to the lin ROURI ROURI ROURI INFICTRATION no leads ROURI Feople Noole ROURI Vapor KGh I Applications Additional Gains Vapor m GREG
Safety Factor Safety Factor Safety Factor ROURI SENSIGLE HEAT Imp. Duct best gain **a** leads to the lin NW **BEST TEAT INFICTRATION no leads to the lin ROURI ROURI ROURI INFICTRATION no leads ROURI Feople Noole ROURI Vapor KGh I Applications Additional Gains Vapor m GREG
Safety Factor Safety Factor ROOM SENSIES HEAT Less the In Not beel gain to beel to beel to beel to beel gain Outside air my Seg 2 C 2 BE x 0.3 EFFECTIVE ROOM SENSUE HEAT LATENT HEAT INFOLTRATION neither to beel to be been to be be
BOOK SENSIGHE HEAT IMP. Duct fees the
Imp. Duct Freschie Im. A.W. heat gain *a 6 leaks 6 6 6 15
IMP. Diet his sign of tests sign of feet 36 best gain sign of tests sign
Outside air mileg ii C ii (NE 8.0.3) EFFECTIVE ROOM SENSIBLE HEAT LATERT HEAT INFOLTRATION nobeg ii People people is Vapor KGh ii Additional Gains Useer in the GRESG
Outside sir mines a T TERES 29830 EFFECTIVE ROOM SENSISEE HEAT LATENT UEAT INFICERATION metass a People geople a Vapor kCh a Applications Outside Vapor min GREG Vapor min GREG Vapor min GREG
THE CITY ROUNTSENSIONE HEAT INFOLTRATION notice a Front people a Vapor KGb a Applications Additional Gains Vapor m ^B GRNG
LATENT HEAT
INFILITRATION netting 8 Feople geople 8 Vapor KGh 8 Applications Additional Onins Vapor m ^B GRNG
People People E
Vaper KGh I Applications Additional Online Vaper m ^B H GRXG
Applications Additionst On into Vapor in Fig. GRAG
Additional Grand United Manager Manage
Additional Gains United To The GRAG
Vapot m ³ II GENG
Vapor m ^o u GEXG
Diffusion
SUBJUIAL
Safety Factor %
ROON LATENT HEAT
BIPULTION DUCT FICTRATION LOSS
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
TATESTINE BOOKET ATENTISE THE MATTER
EFFECTIVE ROOM TOTAL HEAT \$ 4009
A TOUR DESCRIPTION OF THE PROPERTY OF THE PROP
OUTSIDE AIR HEAT
Sensible mills a C(1- Df) x 03
Sensible no'ls x °C(1- Bf) x 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sensible mills k C(1- M)x 03
Sensible no'ls x °C(1- Bf) x 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Scusshife ne'lls x C(1 Bf)x 9.3 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Scissific ni/h x C(1- BI)x 9.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sensible ni/h n C(1 B) n 2 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DATE: 10/1991	4	:
PROJECT	INSTALATION N° 2	
APROVED BY		

				ــــــــــــــــــــــــــــــــــــــ				ALTIOUR
CALCULATED	FOR	· ·	AL HOUR AR HOUR	MAX	TOVD			ALIDER
Working Hours						1 1 R		GRKO
Conditions		DB :	V/B		% RR	<u> </u>		0.0110
Exteriors		33			₹0	{		
Interior		2 4		_ _	50	ļ		
Difference	÷.	9		!		Ļ	1_	
			•	DUTS	DE AIR	• ,		
VENII-		pcopi	x		mYb	=		
					anYh	=		
LATION		m x						
				, † ·	m ¹ /	h ventila	tion 6	51
NELLIRA-	revol	ing door		x_	0000	le t	n'/h pc	oole *
	орся	doors	·		door!	, r	n'/ir mi	5 T
	L				h	-	n'/h =	
	Craci	· ·	_ m x	EG / C		•		 -
· · · · ·]	 ·		mYl	h Infikta	tion .	•	·/h
•	m'/h	OUTSIDE	AIR		Contract Contract			1111

	ADP
SIFE	ERF 29830 EFFECTIVE SOON STAL HEAT . 0.87
ADP	INDICATED ADP - 11.5 TO RELECTED AIR - 11 TO
8'	QUANTITY OF DEHUMIDIFIED AIR (1-0.28F)×(°Ctcc24 - 11 ADP)= 10.4°C
m3/b	29830 EFFEC ROOM SENS . 9510 mil
A ^T outlet	ROOM SENS HEAL *C (Room - air podlet)
	AIR SUPPLIED FLOW
ın\/h	Room Sen Heat = m'/h
Supplied	Room Sen. Heat myli
nyh	mVh A5 •mVh ADmVh
By-passed	INLET AND QULET CONDITTIONS OF THE DEVICE
DB Inlet	Tr 24 % - M/A FA (THE 33 - TO 24) - TOWER GO
DB Outlet	Tadp 11 vc + 0.2 DF (1 dos 24.6 - Tadp 11) - Tata 137 c From Prychrometric chart Twite 18.3 vc Twise 12.6 vc
1	

NOTES

- If this A' is too high, determine the m'/h supplied by the difference desired, by the way of te amount of impulsed air
- † When using a by-pass of mixed air of exterior air and returned air, use m/h supplied.

When by-passing only return air, use myh dehumidified.

FORH 2

وانس		
SHEET: 5/7 PREPARED BY: M. PERET OFICE		
CUSTONIER CUSTONIER		
LOCATION SEVERIND PURPING STA	NOIP	

SPACE USED BY LOCAL DIMENSIONS

m=93.5m2x3.4 m = 318 m2

CONCEPT AREA	SOLAR OAIN OR	FACTOR	Kealh
Concest	TEME	1	
	DIFFERENCE	L	
SOLAR.	BAIN GLASS 320	. 0.45	178
Class SE, 5.4 m's	320		110
Glass Dr. A	320	X 0.30	3.18
Cifacs NO 9,1 m/x	320	1 0.50	
Ofass m'x Skylight n'x			
	TRANS WALLS AR	oor	308
WALL SE 46.6 m's	8,,,,,	``, <u>1.</u> 90	700
WALL 1971		1	217
WALL NO 46.9 m's	8	1.90	113 622 2306
WALL 50 40.9 m/x	8	1.90 x 1.33	, <u>6</u> 23
ROOF SUN 93.5 m's	1.8		2306
Proof in t	4.3	*	
SHADE	CEPT WALLAND BO	VOE	
Total Glass 5.4 m/s	9	S.5	267
45.			111
·licor 7.G	3	2.5	111
Roof m's		×	427
Floor 93.5 m's	8	1 1.05	163
Filtering ne'h			
	RNALTIEAT	1.61.0	-468
Propie 8	people		6880
Power 8	KW	x 860.0	1800
1940	Webs x 0.86-	1 1.25	1 800
Applications Additional			
Gains		-	
Out its		SUBTOTAL.	
Sincege to x		1 (:)	. و فضم
		TVIOLENS	16254
Safety Enclor	10 %		1625
	ENSIBLE HEAT		19819
Imp. Duct	Lores time to	KW Fac 3.5 %	1488
heaf gain 4,5 % • Chalside air 200 m'eseg x	<u>- Icaka 2 % 4</u> 3 °C. x	2 BF x 0.1	301
Culside on 200 m'est x	TON SENSIBLE HEAT		19415
	ENT HEAT		
INFRIRATION	nr/seg X		
Fenpie 8	people	152.0	416
Vapor KOh	1		
Applications			
Additional		. 1	•
Gains Vacor m'x	GREG	<u></u>	
Vapor m'x Difussion	OKKO	1	
Fihriz2 log		SUBTOTAL	
Safety Factor	*6		
V	ROOM	LATENT HEAT	
IMPULTION DESCRIPTIONAL	ON LOSS	2 /. 2 DE x0.71	357
outside air 200 mith x	25 CRAU . O.	2 08 x0.73	120 1493
	EFFECTIVE ROOM	LAIENI IIEAT J	21268
	EFFECTIVE ROOM	TO ALTIEAT	21200
OUIS	DE AIR HEAT B TO (1. O. T. 19F) T	0.1	432
Southle 200 m/h x	GR XU > (1-0, 24) 1	x 0.72	2880
THEM SOOM MEETED	OW WASTE AND ALL	Subject	
Return Duct Return Duc		Delasmid. 🛦	
bent Ginn Lenkage Gnin	C.V. Pump	Tipe Louis	638
1 2 % 1 3 % 1	IOTAL OF HEAT	-*	25218

DATE: 10/199	u instalation n° 2.
PROJECT	instalation n° 2.
APROVED BY	

CALCULATE	D FOR SQL	AL BOX R AR BOX R	HAX LOAD		OCAL HOUR SOLAR HOUR
Working Hours			1 % IBR	I.R.	ORNO
Conditions	เบ	WB		, r.	OK NO
Exteriors :	33		30		
Interior Difference	34			 	
VENII- LATION	8pcopi	ex 2	au /h	200	
INTILIRA- TION	revolving door	s	abeeb	le mYh	pcepic=
1100	open doors Extractor	·	x doors	mYh	nı¹.»
# +	Cracks	- 64 X	mVh	m ¹ /b	
		- ,	ns'/h: Infiltral	ion 🛎	1.5
	aayk OUTSIDE				m'/h

ſ	ADP
SHEE	SHE EFFECTIVE BOOM TOPAL HEAT
ADP	DEPICATED AIM - 11 Y
Δ'	QUANTITY OF DEHUMIDIFIED AIR (1.0.2 BF) x (°C1cc24 - 11 ADr.) = 10.4 °C
mMı	19775 EFFEC. ROOM SENS - 6538m"/h
∆ [†] outfet	RQOM SENS HEAR C (Room - siz outlet)
<u> </u>	AIR SUPPLIED FLOW
n)/h	Record Son, Heat = my/h
Supplied	0.3 x °C &¹
ni/b By-passed	nt/h ASm/h AD =m/h
177 75325	INLET AND OULET CONDITIONS OF THE DEVICE
DB Intel	Tr
DB Oullet	Todo Co BE(Tabe Tudo 1 v Tabe C
L	l <u></u>

KOTES

- If this A¹ is too high, determine the m²/h supplied by the difference desired, by the way of te amount of impulsed air
- 4 When using a by-pass of mixed air of exterior air and returned air, use mt/h supplied.

When by passing only return air, use m'/h debustidified.

SHEET: 6/7	
PREPARED BY: 11. PERE?	OFICCI:
LOCATION SEMERIND PU	HAINE SLATION

DATE: 10/1934
PROJECT INSTALATION N° 2

APROVED BY

SPACE USED BY COL	FERC	NE ROOM		189
LOCAL DIMENSIONS	mх	n = 35.1\$m²x	3	U = 10.1 m.

CONCERT	AREA	SOLAR GAIN OR	FACTOR	Keul li
	1 1 1 1	DIFFERENCE	· · · · · · · · · · · · · · · · · · ·	
	SOLAR.	CAIN-CLASS		
38 edi)	2.7 613	320	x 0.45	389
	ni's		1	4
Glass	PR ¹ K		*	
Olu4	In a			
(ilas				
Skyliple	01/1			
SQ1.	AR - DAIN - 6	TRANS VALUE & R	1.90	317
WALL SE	24.8 m'x	<u>8</u>		494
WALL NE	32.5 m/s	8		
WALL NO	24.5 m's	8	1 1.90	312
WALL	DI'X			
ROOF-SUN	35,13 m'x	1.8	1.11	882
ROOF-	m's		*	1000
CHILDS		and the second second		
SHADE	N 10138 63	CEPT WALL AND E	UKZE	5 - 3 5
Linding	2. 7 m/s	9	1 5.5	134
Total Stass	2.3 m's		1	
Divisory wall	3.0 "	9	2.5	.68
- Door	3.0 m'r			
Roof	m'x			292
	₹ 5.7 \$ m'x		1 1.05	~ -
Filtering	974 1			
	1811	RNAL BEAT		
Femple	15	people	1 6	915
Fower	1.7	K.M.	1 8 to	1032
	440	Walls 1 0 86	z 1,25	550
Light	410		-	-
Applications			 1	
Additional			· I	
Gains			SUBTOTAL	
C				
Slowage	pı x	. 	<u> </u>	5505
			SUBTOTAL	55L
Safety Factor		0.34		22.5
	ROOM	SENSIULE HEAT		6054
lug. Diet		Loss due to	KW .	606
heat prin 4	.5 % ;	leaks 2 %	Fan 3-54	600
Quiside ait	53 5 m'/seg x		D. LO BF 103	205
Crisios ari	COLCUMN R	OOM SENSIBLE HEA	ī]	203 6865
}	1 4	IENT BEAT	₋	- -
1 10,000 3 8 2 2 20		bi seg s		
INTILIRATE			x 52.0	380
Teople		<u>Leutje</u>		. •
Vapor	KUA	<u> </u>		
Applications				
Additional				
Onous			·	
Vapor	m ¹¹ t	GRAC	, ,	
Difustion				
			SUDIOTAL	
Safety Factor		%		4 12
1		ROOM	I LATENT HEAT	1.61
DEPTH TICK	DUCT HCTRA	ION LOSS	3 7.	187
outside air	3 7 S m'/a 2	25 GR KG x O	& BF x0 72	1350
Dittaine mit.	3 T 3 411/38 /	FFFFF IIVE ROOM	TASH THEAT	2251
ļ		BEEFE BILL BOX	M TOTAL HEAT	9116
		SIDE AIR HEAT		1 -
	DUI:	3 7 (1-0.2 11)	1 0.)	810
		1 4 TH 0. CIR)		
Soulds ?	5 1 5 m/a			EUUU
Somitic ?	SAS milds Sagasiline ZF	SORNORD OUTS	20.73	5400
Scientis 3	5 ¥ 5 midi ⊋ 5 midseg x ?	SORNO (1 O.UI)	\$ 0.77 \$estated all	5 400
Latena 3	\$ 5 m \ Seg x ?	SORKO A (1-O. NO) *	2-styl cent	\$400
Latena 3	Return 1)	50KKU x (1-0,00) x	Septoral Delumid: A	
Latent 3 Return Duct heat Gian	Return 13 Leakago Gain	SOR KO x (3-0, UV) x	Delamid A	213
Lafens Buct	Return D Leakage Gain	SOR NO x (1-0.101) x	Septoral Delumid: A	213
Latent 3 Return Duct heat Gian	Return D Leakage Gain	SOR KO x (3-0, UV) x	Delamid A	

CACTAIER	roa	CALHOUR LARHOUR	MAX LOAD		LOCAL HOUR SULAR HUUR
Wasking Hours			% IBR	18	TORKO
Conditions	υō	WB_			
Exteriora	33		30		1
interior	24	ļ	20_		
VENTI- LATION	M	ole x	JTSIDE AIR 25 mVh mVh mVh xpeepl	rentilation	
INFILTRA- TION	open doors Extractor		x doors	m'/h	W ₂ ==
	Cracks		m'/h m'/h Infiltrat		# <u></u>

	ADP
SHE	EFFECTIVE BOOM SERS.
ADP	DOMESTIC ALL C
Δ,	QUANTITY OF DEHUMIDIFIED AIR (1-0.2BF) x (°Cicc24 - 1 L ADP) = 10.4 °C
ns3/ls	03 - 10 1 C 6 T C RODE SEHS - 2700 m1/5
ئة outlet	BOOK SKYS HEAL C (Room - air surles)
لتنسا	AIR SUPPLIED FLOW
	Room Sen. Heat " m'/h
m/A Supplied	O.3 x °C A¹
m\/h	m/h ASm/h AD ~m/h
By-passed	INLET AND QULET CONDITTIONS OF THE DEVICE
OB Inlet	It or amyh _EA (facTc) < Ide °C
DB Outlet	TideCDF (Tibe

NOTES

- 4 If this A^t is too high, determine the mVh supplied by the difference desired, by the way of te amount of impulsed air
- | When using a by-pass of mixed air of exterior air and returned air, use m'th supplied.

When by-passing only return air, use m'/h debumidified.

PREPARED BY: M. PEREZ OFFICE.

CUSTOMER

LOCATION SENERIND POMPING STATION

SPACE USED BY TELEPHONE POOH LOCAL DIMENSIONS mx m=165 m2 x m=50 m2

CONCEPT AREA SOLAR DAIN OR FACTOR Keels	
DIFFERENCE	
Ches SE 27 m/n 320 x 0.45 389	} ,
Citass Ne'x	
Ulass mix x	
WALL SE 12.3 m/s 8 1 140	_
WALL 111X	
WALL NO 13.4 ms 8 11.90 204	
WALL 103 103 103 103 103 103 103 103 103 103	
RUOK-50N 13.3 MI 12	
ROOF- m's stiade	
CARS THANS, EXCEPT WALL AND ROOF	1.
Industrial 2.3 m/s 9 × 3.5 1 1 7	
Divisory wath 16 m's 9 * 2.5 36	•
-Door	
Reef m'x x 1.02 135	
7 / 0.0	
DESTRUCTED AT A TOTAL OF THE PARTY OF THE PA	
2 monte 2 41.0 144	
1 KW x 860.0 860	;
Upld 120 Wells x 0.65 x 1.15 129	
Applications	1.1
Additional	
Gains	
SUBTOTAL	
Sixege m's x (-) SUBIOTAL 2403	
ROOM SENSIBLE HEAT 2863	
Location KW - 0.4	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
O. C. L. C. C. L. C.	
EFFECTIVE ROOM SENSIBLE HEAT	,
LATENT HEAT	
INFALTRATION m'seg x Facely 2 people x 52.0	1
1 code	٠.
Vapor KGh x	
Applications Additional	
Gaint	
Vapor ni ² k GREG	
Difference	
St41 OTAL	
Safety Factor % ROOLELATENT HEAT	
IMPORTION DUCT TILL TRAHON LOSS 27 57	
A 1/1	ŀ
FFFFCFIVE ROOM LATENT HEAT 435	
EFFECTIVE ROOM TO FALHEAT 3625	;
OUTSIDE AIR HEAT	
Specific 3.6 m/h x 9 °C(1-0, 2 BF) x 0.1	
Dates 3.6 m/see x25 GR KO x(1 - BF) x x 0.77	1
Sulamai	
Remin Duct Return Duct Defaunte &	100
healthan Leakage Gain C.V. Thomp Pipeloss 108	
1 29 + 1 5 + 30 4 nagi	
OREAT TOTAL OF HEAT	

DATE: 10/199	INSTALATION N° 2
APROVED BY	

CALCULATE	STOR	CALIFER CARTIOUR	MAX LOAD	•	JOCAS, ROTUR SOLAR DOUR	
Working Hours					GRAO	
Conditions	100	W 11	*. SIR	TR.	UK KU	
Exteriors	33	ļ				
Inferior			50			
Difference	3		UISIDE AIR		L	
VENTI-	peop	ole x	n) /h =	·		
LATION	m	K	n:/h =		_	
			ne <u>V</u> b	ventilation		
INFILTRA- TION	revolving doo	rs	xpcople	e iaYh;	people=	
	open doors _	taVh	19/h m;=			
	Extractor		·			
	Cencks m x m/h			m/a :	mVa =	
	<u> </u>		esVb Infiltrati		•	
	mYa OUTSID	E AIR	2		m/h	

	ADP
SHFE	STREETIVE ROOM TOTAL BEAT
ADP .	INDICASED ADV - T SELECTED ADV - 11 TC
Δ¹	QUANTITY OF DERUMIDIFIED AIR (1-0.2BF) x ("Circ24 - 11 ADF) = 10.4°C
gu3/h	3190 EFFEC ROOM SENS - 10.22m 16
A ^T outlet	RQCHA_SERS_BEAL . *C (Ronm - alt outlet)
	AIR SUFFLIED FLOW
n1//h	Room Sen, Heat = m'/h
Supplied	0.3 x °C Δ
m/h By-passed	m/h ASm/h AD =m/h
Dy-passed	INLET AND QULET CONDITTIONS OF THE DEVICE
DB Inlet	Tr
DB Outlet	Tadp
	From Psychonic trick twice C Intra C

NOTES

- If this Δ^{k} is too high, determine the mYh supplied by the difference desired, by the way of the amount of impulsed air
- | When using a by-pass of mixed air of exterior air and returned air, use myle supplied.

When by passing only return air, use m'h delimitedified.

FORH 2

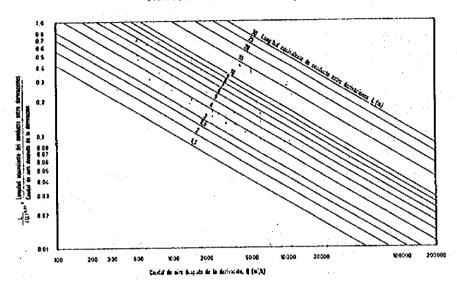
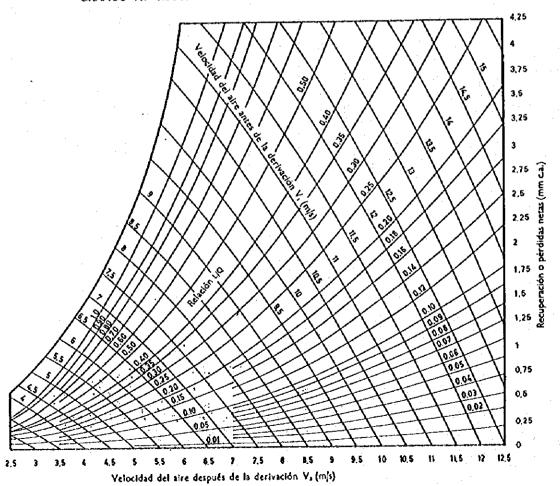



GRAFICO 11. RECUPERACIÓN ESTATICA EN BAJA VELOCIDAD

1-3-56

1.3 (5) Sanitary Installations

(A) Sanitary Installations

1 GENERALIDADES

300

La presente memoria técnica describe el cálculo, diseño y dimensionamiento de las instalaciones sanitarias, tanto interiores como exteriores de la Estación de Bombeo Severino.

2. ALCANCE DEL PROYECTO

El sistema de abastecimiento de agua para la Estación de Bombeo comprende el suministro de agua potable, agua para uso sanitario y el sistema para protección de incendios.

El agua cruda es obtenida desde la tubería de enfriamiento de la bomba en el nivel 45.000. El equipo de tratamiento consiste de un tanque de filtración, tanque de almacenamiento de agua tratada, bombas de alimentación, tanque hidroneumático y unidades de esterilización instaladas en el nivel 50.000.

El agua para uso doméstico y sanitario, es filtrada a través de filtros de arena, clorinada automáticamente, almacenada en el tanque de agua tratrada y distribuida a todos los servicios por medio del conjunto bomba - tanque hidroneumáticio.

El sistema de protección contra incendios es independiente y funciona a través de su propio sistema de bombeo. El agua para el sistema no es tratada y es suministrada desde el tanque de almacenimiento de agua cruda, ubicado en el nivel 45.000.

El sistema de drenaje y desagüe esta constituido por las aguas de desecho y aguas negras (residuales).

Las aguas negras y de desecho son colectadas en el tanque séptico, y bombeadas al sistema de drenaje de aguas negras después de ser tratadas, descargando a las zanjas de infiltración.

3. SISTEMA DE AGUA POTABLE

3.1 Alimentación del Sistema

La alimentación de agua cruda proveniente del embalse, se realiza a través de una derivación del sistema de suministro de agua de enfriamiento, almacenándose en el tanque

de agua cruda; de este tanque, se bombea hacia la unidad de tratamiento y se almacena en el tanque para agua tratada.

3.2 Tanques de Almacenamiento y Equipos

El volúmen del tanque de incendios se determinó en 12.0 m³ y el volúmen del tanque de agua tratada en 4.0 m³. Volúmenes que se obtuvieron, en incendios al considerar dos hidrantes funcionando durante 40 minutos con un caudal total de 5.0 l/s y en agua potable dotaciones de 70 l/hb x día para un total máximo de 30 personas.

Los tanques serán metálicos y herméticos con tapas sanitarias y bocas de ventilación para su mejor operación y mantenimiento.

Para el sistema contra incendios será necesaria una bomba centrífuga de eje horizontal que maneje un caudal de 5.0 lit./s a una altura dinámica total de 60 m, acoplada a un motor de 5.5 Vw, de 3500 rpm, corriente trifásica 220/440 v y 60 ciclos.

En el sistema de agua potable se utilizará el siguiente equipo; dos bombas una de reversa y otra de operación, centrífugas de eje horizontal para un caudal de 1.5 l/s, con una altura dinámica total de 15.0 m, acopladas a un motor de 0.75 kw, de 3500 rpm, 220 v y 60 ciclos, la succión y descarga de la bomba serán de 40 mm de diámetro. Estas bombas alimetarán desde el nivel 45.000 a la unidad de filtración ubicada en el nivel 50.000.

Una unidad de filtración, con arena como medio filtrante, con capacidad de 50 l/min con una bomba para retrolavado.

Una unidad de clorinación compuesta básicamente por una bomba dosificadora de diafragma y un tanque de almacenamiento para la solución de hipoclorito.

Dos bombas centrífugas (operación y reserva) para un caudal de 1.1 l/s, con una altura dinàmica total de 43 m, acopladas a un motor de 3.0 kw, de 3500 rpm, 220 v y 60 ciclos, con succión y descarga de 32 mm de diámetro. La descarga de la bomba irá acoplada a un tanque hidroneumàtico de 500 l/s de capacidad y 10 bar. de presión de trabajo, con presiones mínimas y máximas de 43 m y 60 m respectivamente.

Finalmente se dispondrá de un compresor de aire, con presión mínima de 6.0 atm, caudal de aspiración de 3900 lit/hora y una potencia de 1.5 kw.

3.3 Red de Agua Potable

La red de distribución se inicia en la salida del tanque hidroncumático, en el nivel 50.000; a partir de este nivel existe una columna principal de 32 mm de diámetro que llega hasta el nivel 70.000, donde se deriva en ramales que dan servicio a todos los aparatos sanitarios de la estación de bombeo.

Para la determinación de caudales de diseño y diámetros en cada una de las tuberías se ha considerado: caudales tipo entre 0.10 l/s y 0.15 l/s para los distintos aparatos, el porcentaje de simultaniedad correspondiente (100%) y que la velocidad en la tuberías se encuentre en el rango de 1.5 a 2.0 m/s.

De acuerdo a las variables anteriormente descritas y considerando las pérdidas de carga tanto localizadas como de fricción, se ha determinado para el uso sanitario más elevado y alejado del punto de alimentación, que la presión mínima necesaria que se debe suministrar es de 43.0 m.

Las tuberías y accesorios serán de hierro galvanizado de acuerdo a las especificaciones.

Para direccionar el flujo en cierto sentido o interrumpir, se ha colocado válvulas check o de paso en diferentes tramos de la red, las mismas que deberán cumplir con las especificaciones respectivas y serán instaladas en la cantidad y sitios indicados en los planos.

3.4 Red de Distribución de Agua Caliente

La temperatura promedio de la zona de 25 °C y un clima cálido - húmedo a determinado que este servicio se preste a las unidades del fregadero de cosina y cuarto de duchas.

El equipo de generación de agua caliente está constituido por dos calentadores eléctricos instantáneos de 7.0 litros y 1.5 kw.

4. SISTEMA CONTRA INCENDIOS

El agua para la red de incendios no será tratada, será agua cruda proveniente del embalse la Esperanza. El tanque de almacenamiento-reserva de agua cruda será de 12.0 m³ y el control del afluente se realizará a través de una llave de flotador.

El sistema tiene una bomba de alimentación independiente, con un ramal de derivación para recirculación; la red de distribución alimenta a todos los niveles de la estación de bombeo, cada nivel está cubierto por dos cojinetes contra incendio. El diámetro de la columna principal es de 65 mm y el de las derivaciones y tomas de 40 mm.

En la determinación de la altura dinámica total, se considera una presión mínima en cajetín de 24.0 m y las pérdidas de carga para el cajetín mas elevado y alejado del punto de alimentación.

Adicionalmente en el sistema contra incendios se considera extinguidores portátiles de incendio que se ubicarán en los ambientes cerrados, como se indica en los planos.

5. SISTEMA DE AGUAS RESIDUALES Y VENTILACIÓN

Este sistema comprende la tubería, accesorios, ramales, colectores, conexiones, bajantes, tuberías exteriores, cajas de revisión y tuberías de ventilalción.

5.1 Red de Aguas Residuales

En el diseño de la red de aguas negras se considera como unidad de desague 0.47 l/s; las unidades de descarga consideradas para los distintos aparatos fluctúan entres 2 y 5, tomadas para uso de oficinas.

Las derivaciones de retretes (wc) tienen un diámetro de 110 mm y los demás desagues provenientes de otros aparatos sanitarios tendrán un diámetro mínimo de 50 mm. La pendiente mínima de los ramales colectores será del 1%. Los ramales colectores descargan a cajas de revisión independientes como se indica en los planos.

Las aguas negras y de desecho son recolectadas en el tanque séptico, una vez tratadas, son bombeadas a la red de drenaje de aguas negras y descargadas a la zanja de infiltración de 42.0 m de longitud.

La red de aguas negras y de desecho estará compuesta en su totalidad de tubería de pvc. y obedecerá a las especificaciones técnicas.

El tanque séptico será de hormigón armado y sus dimensiones exteriores en planta son 2.33 m x 4.51 m y su emplazamiento como se indica en los planos. Esta coformado por una

doble cámara y filtro de material granular, un tanque biodigestor, un depósito de contacto para desinfección y un equipo de bombeo de las aguas tratadas.

5.2 Red de Ventilación

Para evitar pérdidas del sello hidráulico en los desagues de los aparatos sanitarios en la batería de servicios, se ha diseñado un sistema de ventilalción sanitaria.

La red de ventilación esta conformada en su totalidad con tuberías de pvc 50 mm de diámetro, y está constituida de ramales de ventilación con pendiente al aparato sanitario de 0.5%, que se conectan a la columna de ventilación; en la parte superior de la columna se ubicará un sombrerete.

(B) Formulas

FÓRMULAS

1)
$$V = 1.273 * Q/D^2$$

V : Velocidad del flujo (m/s)

Q : Caudal (m³/s)

D : Diámetro de la tubería (m)

2) hf =
$$\left(\frac{Q}{0.28 * C * D^{2.63}}\right)^{1.85} * L$$

$$hl = K \frac{V^2}{2 g}$$

hf : Pérdidas de carga por fricción (m)

hl : Pérdidas de carga localizadas (m)

Q : Caudal (m³/s)

D: Diámetro (m)

L : Longitud (m)

C : Coeficiente (120 acero)

v : Velocidad (m/s)

g : Gravedad (m/s²)

K : Coeficiente en función del accesorio

Accesorio	K
Codo 90°	1.0
Reductor	0.5
Tee	1.0
Val. compuerta	1.0
Válvula check	1.0

3)
$$P = \frac{\gamma * Q * HDT}{76.2 * n}$$

P : Potencia (Hp)

Q : Caudal (m³/s)

γ : Peso específico (1000 kg/m³)

HDT: Altura dinámica total (m)

η : Eficiencia (0.6 adoptada)

4)
$$V = Q * \frac{25}{sc} * \left(\frac{pl+1}{pl-p2}\right)$$

V : Volumen tanque hidroneumático (lit)

Q : Caudal máximo absoluto (lit/min)

Sc : Número de disparos máximos por hora (15)

p1 : Presión máxima de trabajo (atm)

p2 : Presión mínima de trabajo (atm)

5)
$$V = 1.3 \text{ N (C * T + 100 * Lf)}$$

V : Volumen útil total del tanque séptico (lit)

N: Número de usuarios (hb)

C : Producción Aguas Negras (50 l/dia - hb)

T: Período de detención (1 dia)

Lf : Producción de lodo fresco (0.20 l/dia - hb)

6)
$$L = \frac{N * Q}{2 * D * I}$$

L : Longitud de la zanja de infiltración (m)

N : Número de usuarios (hb)

Q : Contribución (caudal) (lit/hb-dia)

D: Profundidad efectiva de la zanja (m)

I : Velocidad de infiltración (18 l/dia-m²)

7) Equivalencias

$$1 \text{ hp} = 0.746$$
 $1 \text{ atm} = 10 \text{ m H}_2\text{O}$

(C) Cold and hot Domestic Water

1. GENERAL ASSUMPTIONS

- For the calculation, the following flows in each faucet are adopted

SANITARY DEVICE	FLOW	SIMBOLOGY
Lavatory sink	0.10	(L)
Shower	0.10	(SH)
Water closet	0.10	(WC)
Slop sink	0.15	SK, S
Faucet	0.10	(F)

- The speed of water flow in pipeline are between 1.0 and 2.0 m/s.
- The head losses in the pipeline is determined for the far away device and it is considered as 12 m of water head
- The hot water system including automatic heaters for the shower room and sink service.

2. CALCULATION AND ESTIMATION OF PERSONS IN THE STATION

ENVIRONMENT	AREA (m²)	No. OF PERSONS persons/m ²	TOTAL PERSONS
Control room	99.0	1/22 m ²	3.0
Telecommunication room	15.0	1/15 m ²	1.0
	40.0	1/2 m ²	20.0
	47.0	1/10 m ²	5.0
	19.0	1/10 m ²	2.0
er tyttigen i Alexan	N.	Total	31.0

Normally we estimate that in the pumping station will stay 11 persons; in some special case (maximum) is considered that the conference room will stay at least 20 persons thus the total is 31 persons.

* 30 persons are considered for design.

3. CONSUMPTION RATES AND RESERVE RATES OF DOMESTIC WATER

Considering that the area is used for offices, the consumption and reserve rates are the following:

No. OF PERSONS (p)	CONSUMPTION RATE 1/p-day	CAPACITY I/day	No RESERVE RESERVE DAYS VOLUME liters
11.0	70	770	3.0 2,310
19.0	70	1,330	1.0
			3,640

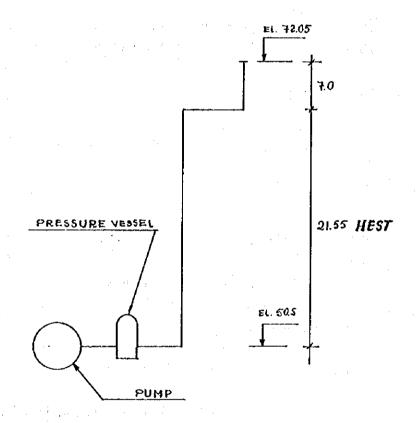
^{*} 40 m^3 is taking to design.

4. DIAMETERS AND FLOW RATE CALCULATION

Right branch

SH	F						Q. FLOW c/s	DIAMETER (nun)
0.1			•			•	0.1	20
0.1	0.1	0.15	-			•	0.35	3 1 2 20
0.1	0.1	0.15	0.2		1.20		0.55	25
0.1	0.1	0.15	0.2	0.2	:		0.75	25
0.1	0.1	0.15	0.2	0.2	0.2		0.95	1. if 32
0.1	0.1	0.15	0.2	0.2	0.2	0.15	1.10	3.2

Left branch


S	F	F	Q. FLOW	DIAMETER
0,15	•		0.15	20
0.15	0.1	0.1	0.35	20
			e de _{l'arte} de la case de	The state of
Stand pipe		1.10 ± 0.35	1.45	3.2

5. CALCULATION OF PUMP AND PRESSURE VESSEL

- Total dynamic head (HDT)

HDT = HEST + head service + HF

HEST: static head
HF: Head losses

HF = hl + hf

hi = fittings losses

hf = friction losses

DIAMETER	Q	181 J 144	1. 1. L. 1. 1.	hf	V	Σk	hl
(mm)	Flow (1/s)	Head losses	Length (m)	(m)	Speed (m/s)		(m)
20	0.10	0.0165	4.30	0.07	0.318	3.0	0.015
20	0.35	0.1470	22.95	3.37	1.11	2.5	0.16
25	0.55	0.0935	2.60	0.24	1.035	3.0	0.16
25	0.75	0.1610	2.40	0.39	1.411	1.0	0.10
25	0.95	0.2230	0.80	0.18	1.693	1.5	0.22
32	1.10	0.0765	2.50	0.19	1.144	4.0	0.27
32	1.45	0.1300	20.05	2.61	1,56	6.0	<u>0.74</u>
				7.05	·		0.67

HF =
$$7.05 + 1.67 = 8.72 \cong 9.0 \text{ m}$$

HDT = $21.55 + 12 + 9.0 + = 42.55 \cong 43.0 \text{ m}$

- Output of pump

$$P = \frac{100 * 0.0015 * 43}{762 * 0.60} = 1.41 \text{ Hp} * 1.5 = 2.12 \text{ Hp} = 2.84 \text{ Kw} \cong 3.0 \text{ kW}$$

- Pump features

Q = 90 1/min

HDT = 43.0 m

P = 3.0 kW, 220 v, 60 Hz, 3 Phases

- Calculation of pressure

Min. pressure = 43.0 m (at the starting)

Max. pressure = $\frac{4}{3}$ * 43.0 = 57.33 (pump out of service)

Max. discharge simultaneous 1.5 l/s

Max. discharge 1.5 * $\frac{2}{3}$ * 60 = 601/min

Pressure vessel capacity = $60 * \frac{25}{15} * \left(\frac{5.7 + 1}{5.7 - 4.3}\right) = 478.61 \cong 126 \text{ gallons}$

6) DIMENSIONING OF EQUIPMENT

- * Equipment at El. 45.0
- Raw water storage tank

Volume

= 12000 lit

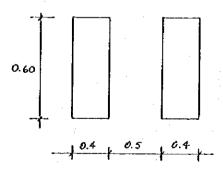
Section

= rectangular

Dimensions

2.0 L * 3.0 w * 2.0 H

- Hydrant pump


Type = Centrifugal - horizontal shaft

Exterior dimensions: 0.40 * 0.60

- Feed pump for filtering

Type: centrifugal - horizontal shaft

Total exterior dimensions: 0.40 * 0.60

Note: The final arrangement of the equipment at El. 45.0 m shall be as shown on the drawings.

- * Treated water equipment
- Treated water storage tank

Volume

4000 lit

Section

rectangular

Dimensions

1.5 L * 1.5 w * 1.8 H

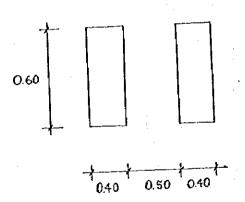
Pressure vessel

Volume

500 lit

Section

circular


Dimensions

0.60 D * 1.80 H

- Feed pump for distribution system

centrifugal - horizontal shaft

Total exterior dimensions: 0.40 * 0.60

Water filter unit

Filter

sand

Type

circular

Dimensions

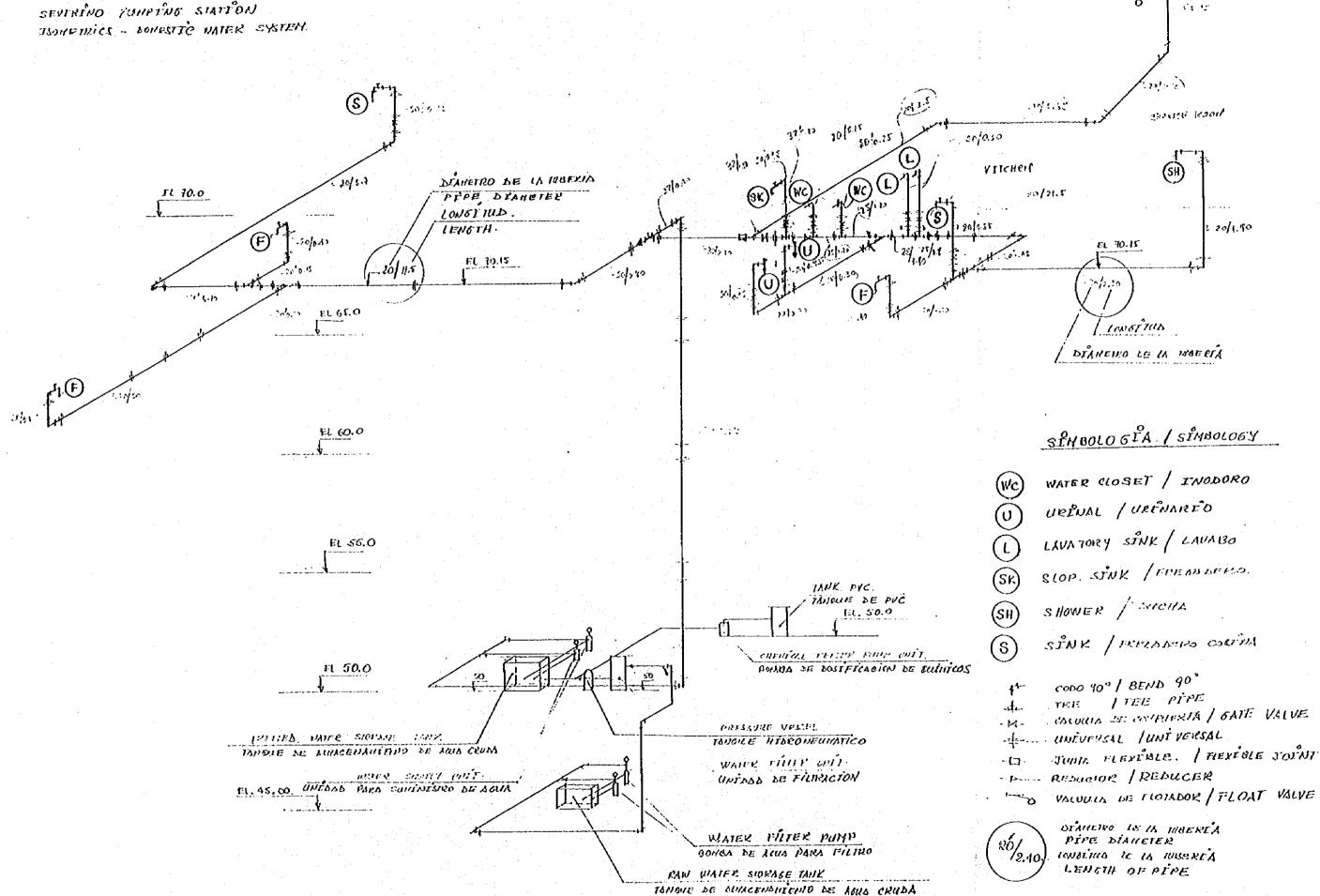
0.50 D * 1.40 H

Back washing pump Type: centrifugal

Exterior dimensions: 0.40 * 0.60

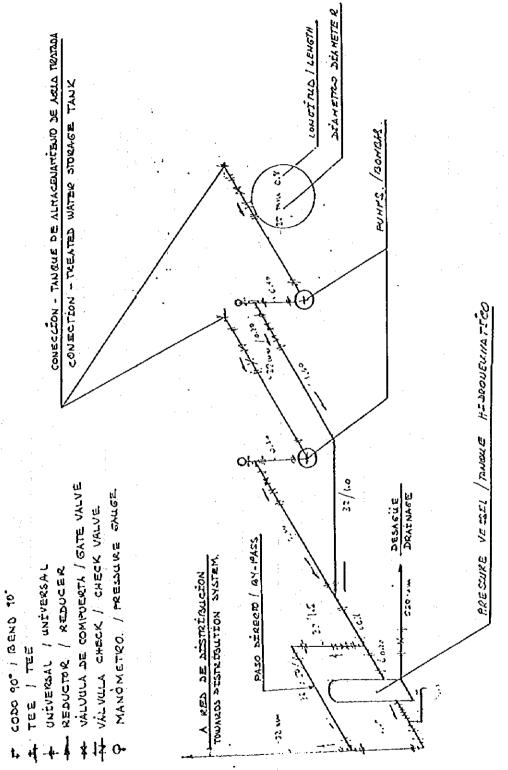
- Chemical feeder pump of hypochlorite

Type : diaphragm

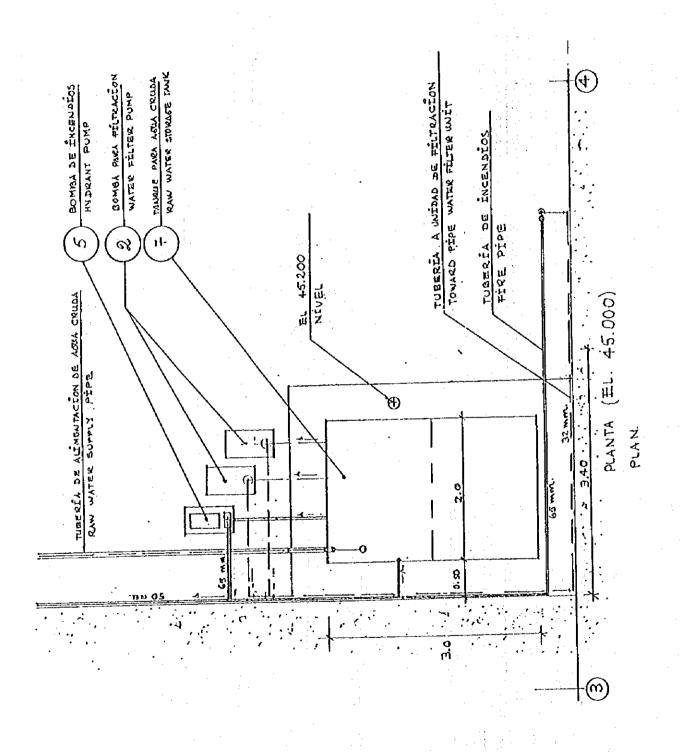

Dimensions : 0.40 * 0.60

- Hypochlorite solution tank

Volume : 200 lit (min 50 lit)


Dimensions : 0.5 L * 0.5 N * 0.8 H

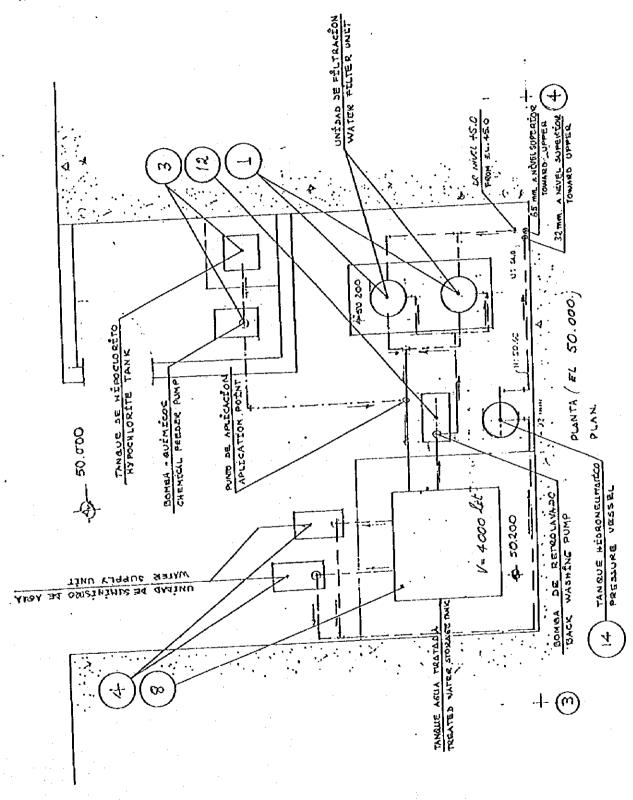
ESIDETON DE BOUSEO SEVENENO
TSOVEMIA - RES DE AUIA POISBLE
SEVERÊNO TUMPINO STATION
TSOVETIOS - SOMESTIC NATER SYSTEM



COUECTION PUMP - PRESSURE VESSEL

SIMBOLOGÍA / SIMBOLOGY

INSTALACIONES SANITARIAS DISPOSICION EN PLANTA DE EQUIPOS SANITARY INSTALATIONS ARRANGEMENT OF EQUIPMENT PLAN.



INSTALACIONES SANITARÍAS

DISPOSICION EN PLANTA DE EQUIPOS

SANITARY INSTALATIONS

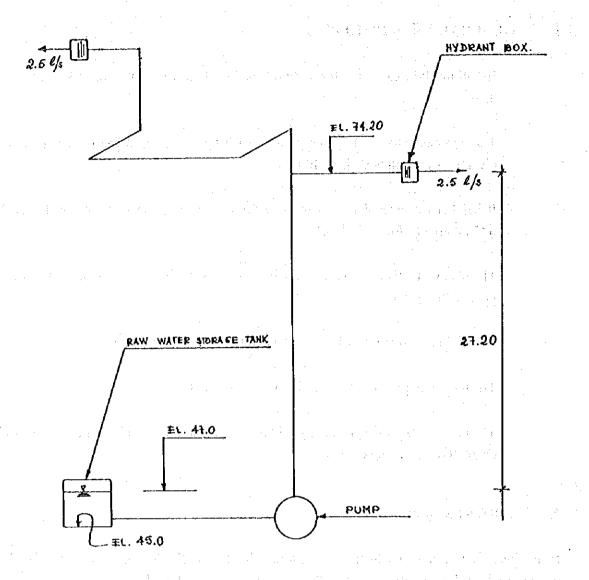
ARRANGEMENT OF EQUIPMENT PLAN.

(D) Fire Fighting System

1. GENERAL ASSUMPTIONS

- Itshall not be treated the fire network water, it shall be raw from La Esperanza dam.
- The minimum diameter of the column shall be 65 mm and the diameter of the diversions and inlets shall be 40 mm.
- It has been estimated the quantity of fire considering one hydrant-box for each 625 m² area (2 for each floor).
- The maximum distance between hydrant boxes shall not be less than 30 m neither greater than 60 m.
- The hydrant boxes dimensions shall be 900 H * 850 W * 250 D.
- The minimum pressure for each hydrant box shall be 24 m.
- The portable fire extinguishers shall be arranged at close locals, with quantity and characteristics as the drawings.

2. FIRE RESERVE


It has been considered two hydrants operating simultaneously during 10 minutes for the computation of the fire reserve, with a flow for each hydrant of 2.5 l/s.

Fire volume = 2 * 2.5
$$\frac{1}{s}$$
 * 2400 s = 12000 lit

In Ecuador, the fire volume varies between 8 to 20 m³.

3. COMPUTATION OF PUMPING SYSTEM

- It shall be considered one unit
- Flow total of design: 5 l/s; 2.5 l/s for each hydrant
- Computation squetch

HDT = HEST + CARG + HF

HF = hf + hf

HDT = Altura dinámica total

CARG = Presión en cajetín

HF = Pérdidas de carga

hf = Pérdidas de fricción

hi = Pérdidas localizadas

$$HEST = 27.2 m$$

$$CARG = 24.0 m$$

Computation of losses (HF)

- Losses until level 69.0

hf =
$$\left(\frac{0.005}{0.28 * 120 * 0.065^{2.63}}\right)^{1.85}$$
 * 32.7 = 1.62 m

FITTING	K	QUANTITY	Σk
90° Elbow	1.0	2.0	2.0
Reducer	0.5		·
corps;	1.0	6.0	6.0
Gate valve	1.0	1.0	1.0
Check valve	1.0	1.0	<u>1.0</u>
			10.0

hl = 10 *
$$\frac{\left[\frac{0.005 * 4}{\pi * (0.065)^2}\right]^2}{19.62}$$
 1.16 m //

- Loss at the nearest hydrant Friction loss

	DIAMETER	LENGTH	hf	v
	nım	m	m	m/s
	65	12.4	0.17	0.75
:	50	3.9	0.19	1.27
	40	25.9	3.80	1.99

DAY FITTING K QUANTITY
$$\Sigma$$
k hl
65 90° Elbow 1.0 2.0 2.0
"T" 1.0 2.0 $\frac{2.0}{4.0}$

DAY FITTING K QUANTITY
$$\Sigma k$$
 hl

50 Reducer 0.5 2.0 1.0

Elbow 1.0 1.0 1.0

"T" 1.0 1.0 $\frac{1.0}{3.0} \rightarrow 0.25$

40 90° Elbow 1.0 5.0 5.0 $\rightarrow 1.0$

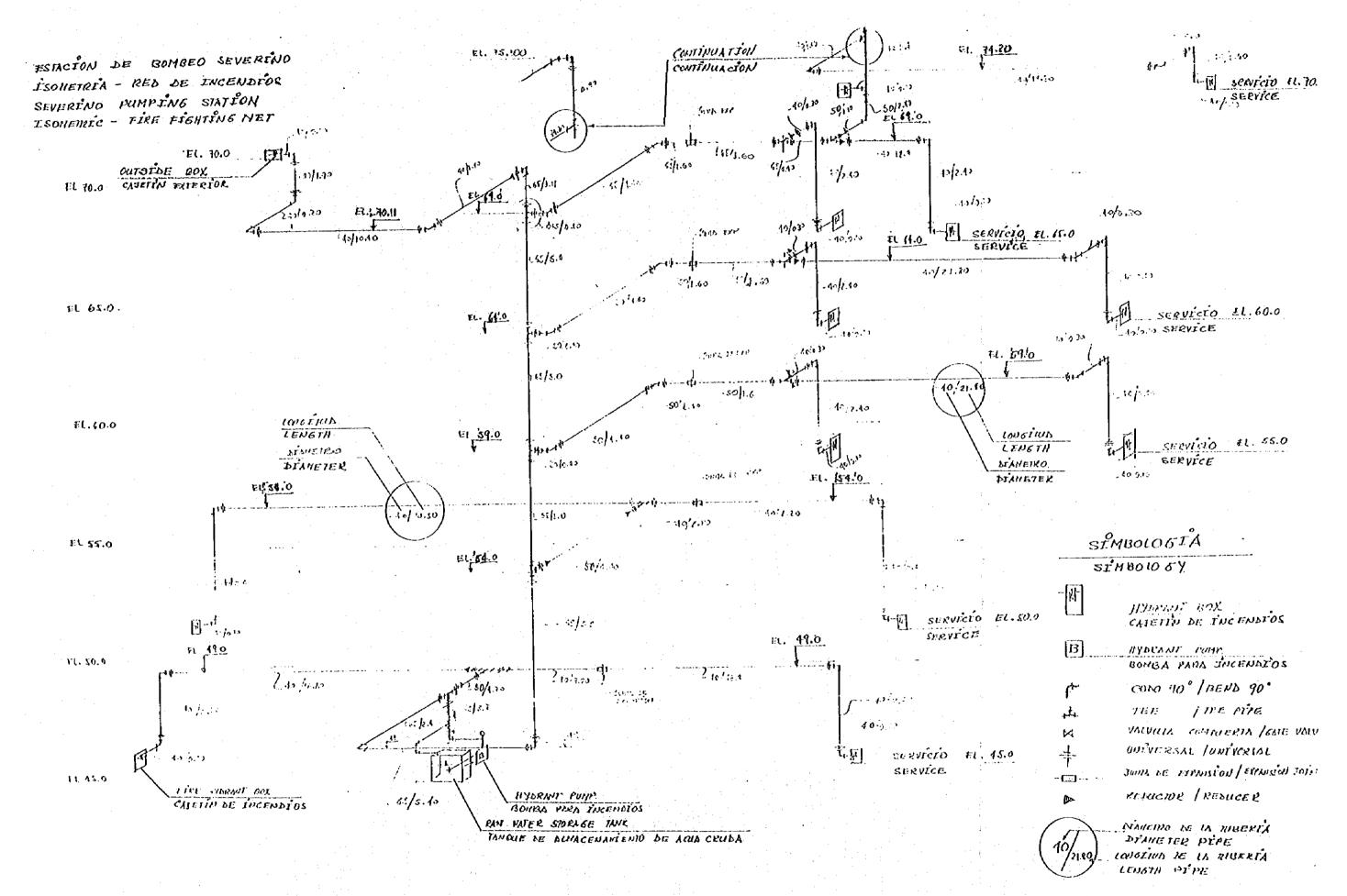
hf total = 1.62 + 0.17 + 0.19 + 3.80 = 5.78

hl total = 1.16 + 0.11 + 0.25 + 1.0 = 2.52

HF = hf + hl 8.30 m

- Motor output

$$P = \frac{1000 * 0.005 * 60}{762 * 0.60} = 6.56 \text{ Hp} * 1.1 = 7.22 \text{ Hp} = 5.4 \text{ kw} = 5.5 \text{ kW}$$

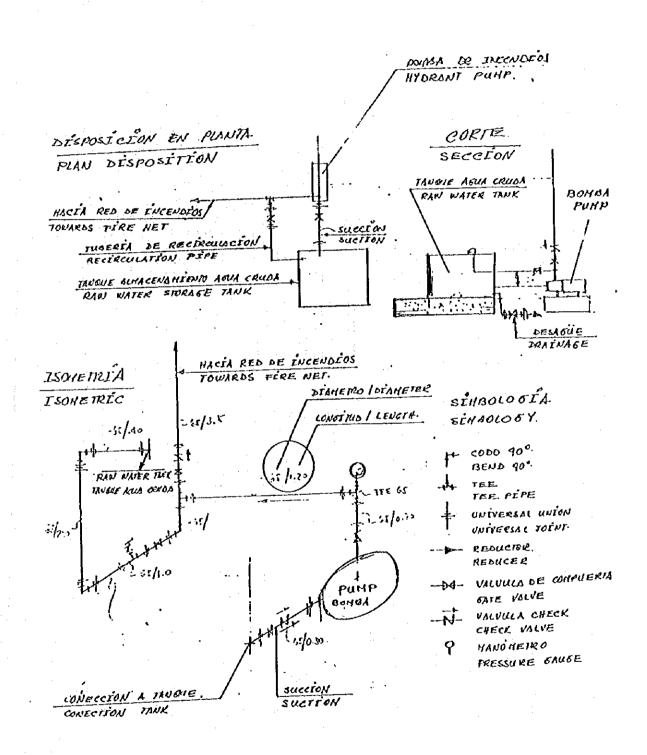

- Pump specifications

$$Q = 300 \text{ l/min}$$

$$HDT = 60 \text{ m}$$

$$P = 5.5 \text{ kW}, 220 \text{ v}, 60 \text{ Hz}, 3 \text{ Phases}.$$

- Squetch of the connection, level 75.100

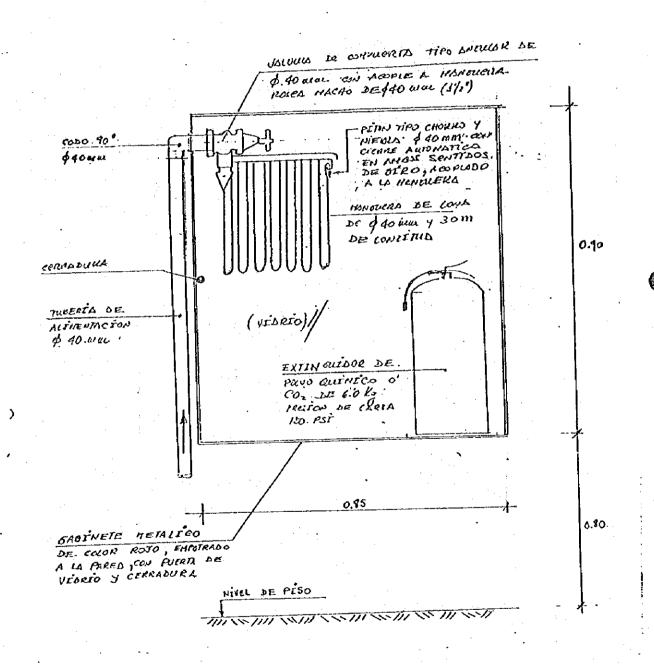


INSTALACTORES SANTTARTAS / INCENDIOS

ISOHETRÍA Y CONECCION . BONDA - TANQUE - RED DE DISTRIBUCION

SANTTARY INSTALATIONS / FÉRE

ISOHETRÍC AND CONECTION . PUMP - TANK - DISTRIBUTION SYSTEM



TUSTALACIONES SANCTARIAS / INCENDIOS

DETALLE TÉPÉCO DEL CAIETÍN CONTRA ÉNCENDIOS

SANCTARY INATALATIONS / FÉRE.

TYPÍC DETAÍL OF HYDRANT BOX.

(E) Sewerage and Ventilation Systems

1. GENERAL ASSUMPTIONS

- In the design it has been considered 28 1/min (0.47 1/s) as drainage unit.
- The drainage units considered for any used devices shall be the following:

Device	e Symbology		Minimum diameter of the drainage (mm)	
Lavatory sink	\mathbf{L}_{+}	2	50	
Water closet	WC	5	100	
Shower	SH	3	50	
Slop sink	SK,S	3	50	
Floor drain	FD	3	50	
Urinal	U,	2	50	

- The water closet diversions shall have a 110 mm minimum diameter
- The collector branches shall discharge to independent check boxes
- The minimum slope collectors shall be 1%
- All drainage and ventilation piping shall be fabricated with PVC
- The couplings between branches shall be to 45°.

2. INSPECTION BOXES AND PIPING

RUN		QUANTITIES	DAY	LENGTH
From	То		mm	m
C-1	C-2	6	75	2.70
C-2	C-3	12	110	9.00
C-3	C-4	12	110	9.70
C-5	C-4	6	75	5.70
C-4	C-6	18	110	6.70
C-6	C-7	18	110	3.10
C-7	T.S.	18	110	1.10

RUN		QUANTITIES	DAY	LENGTH
From	То		mm	m
CH-1	T.S.	17. (17. (17. (17. (17. (17. (17. (17. (110	0.6
T.S.	C-8	35	110	1.0
C-8	C-9	35	110	3.5
C-9	C-10	35	110	9.0
C-10	C-11	35	110	9.0
C-11	C-12	35	110	9.0
C-12	C-13	35	110	12.0
C-13	C14	35	110	13.0

Features of Inspection Boxes

Box No.	Inlet Elevation	Output Elevation	Dimensions
C-i	69.799	69.749	0.5 * 0.5
C-2	69.722	69.672	0.5 * 0.5
C-3	69.582	69.532	0.5 * 0.5
C-4	69,429	69.382	0.5 * 0.5
C-5	69.799	69,486	0.5 * 0.5
C-6	69.315	69.265	0.5 * 0.5
C-7	69,234	69.184	0.5 *0.5
C-8	69.500	69.450	0.5 * 0.5
C-9	69.415	69.365	0.5 * 0.5
C-10	69.275	69.225	0.5 * 0.5
C-11	69,135	69.085	0.7 * 0.7
C-12	68.995	68.945	0.7 * 0.7
C-13	68.825	68.825	0.7 * 0.7
C-14	68.645	68.595	0.7 * 0.7
CM-1	69.774	69.729	0.5 * 0.5

3. COMPUTATION SEPTIC TANK

- No. of persons: 30

- Sewage water production (c) : 50 l/day-hab

- Fresh sludge production (lf) : 0.20 l/day-hab

Net volume : 1.3 * 30 * (50 * 1 + 100 * 0.2) = 2730 1t//

4. DIMENSIONING AND OPERATION

- Minimum depth: 1.10 m
- Double chamber in series
- Chamber 1 volume = $\frac{2}{3}$ * 2730 = 1.82 m³
- Chamber 2 volume = $\frac{1}{3}$ * 2730 = 0.91 m³
- The filtration tank shall have granular material
- Oxidation chamber
- Contact deposit for desinfection
- Pumping equipment for treated water
 - 2 submergible pumps

Q : 250 l/min

HDT : 8.0 m

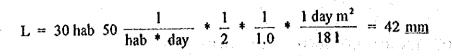
P : 0.75 kW, 3Φ, 220v, 60 Hz, Φ 40 mm.

- Rectangular concrete of reinforced concrete of 2.33 m * 4.51 m
- The arrangement, inside distribution and dimensions are showed in respective drawings.

5. INFILTRATION DITCH SIZING

 $L = \frac{NQ}{2 * D * I}$

L: Length (m)


N: Users number

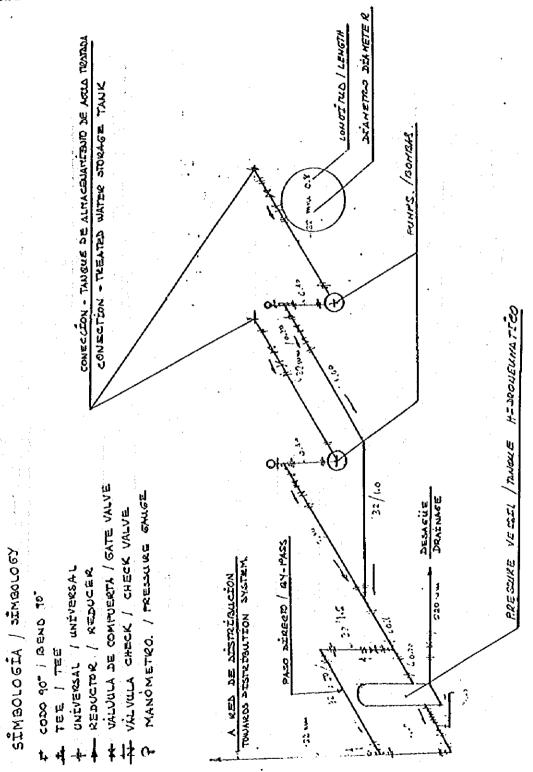
Q: Flow l/hab-day

D: Net depth (m)

I: Infiltration speed

$$18 \frac{1}{\text{day} * \text{m}^2}$$
 (adopted in the design)

Diameter piping Φ 110 mm

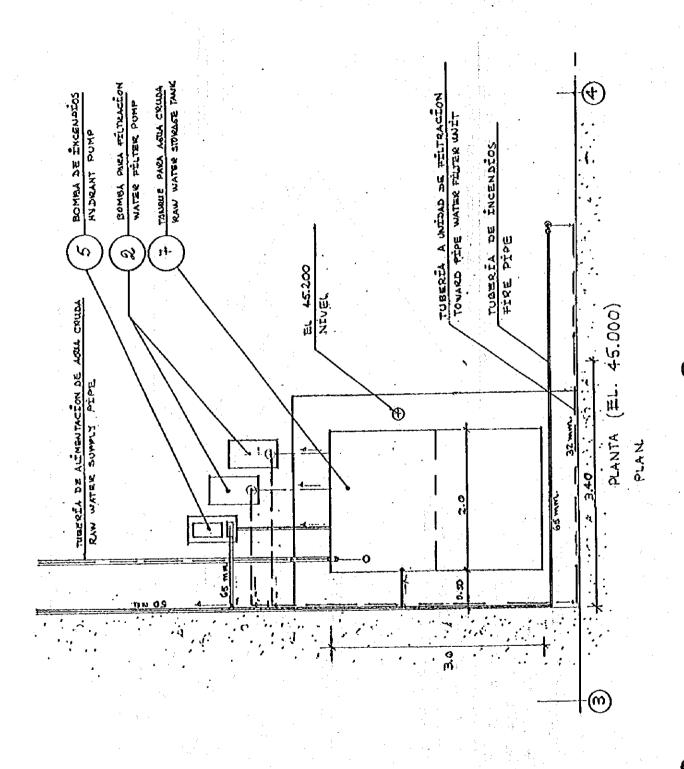

- Typical detail of infiltration trench

6. COMPUTATION PIPING OF VENTILATION

- All ventilation pipings shall be of 50 mm diameter and fabricated with PVC
- The ventilation there shall be only in rest room
- The ventilation camber shall have a slop to sanitary device of 0.5% and shall be connected to the ventilation column, which shall have a cap in its superior extreme.

ESINCION DE BOUSEO SESENTINO TSOVEMEN - RED DE AUIA PO'ABLE SEVERENO PUMPENS STATTON ISOMETRICS - DONESTIC WATER SYSTEM. 2010-12 .. 10/ 5.50 21.00 CU 12.000 20,000 3) 2 2 1/2 · KITCHER DIAHETRO DE LA THEEKIA IL 10.0 50/21.5 PTPE DYAHETER LONGTIUD. LENSTH. 20/1.90 EL 70.15 134710 EL 70.15 -70/2,10 . 65,7 EL 65.0 LONGTYUL DIAHETRO LE LA TREELA STHBOLO 6TA / STYBOLOGY EL 60.0 WATER CLOSET / INODORO URINAL / URINARTO LAVATORY SINK / LAVABO EL 55.0 SLOP. STNK / FREDMERS. TANK PIC. TRUCUE DE PUC SHOWER / SINK / FRELADERS COURA CHENGAL TELENO COME ONT. 11 50.0 AWARD DE BOSTFICACION DE BUTHIOS cond 70° / BEND 90° TEL PIPE . VALULIA DE CONTRIBERTA / GATE VALVE PRESSURE VESSEL -4- universal funi versal TRITIES WATER STOPAGE TAUX. TANGILE HISEONFUMPTICO TAPQUE DE AUNACENANTENTO DE ACIA CEUM JUMP FLEXIBLE. / FLEXIBLE JOIN WATER THIFF ONT. WHER SUPRY COUT UNIDAD DE FILIRACION - -- RESULTOR / REDUCER EL 45.00. UNEDAD PARA SUITATIVE DE AGUA VALUULA DE MOTADOR / FLOAT VALVE DIMERRO LE IN MUERTA PIPE DIAHETER WATER FILTER PUMP BOHEA DE LOUA PARA FILINO CONTINO LE LA MUERTA LENGTH OF PIPE RAW WATER STORAGE TANK TAMOVE DE SUMACENAMIENTO DE ACUA CRUDA

CONECTION PUMP - PRESSURE VESSEL

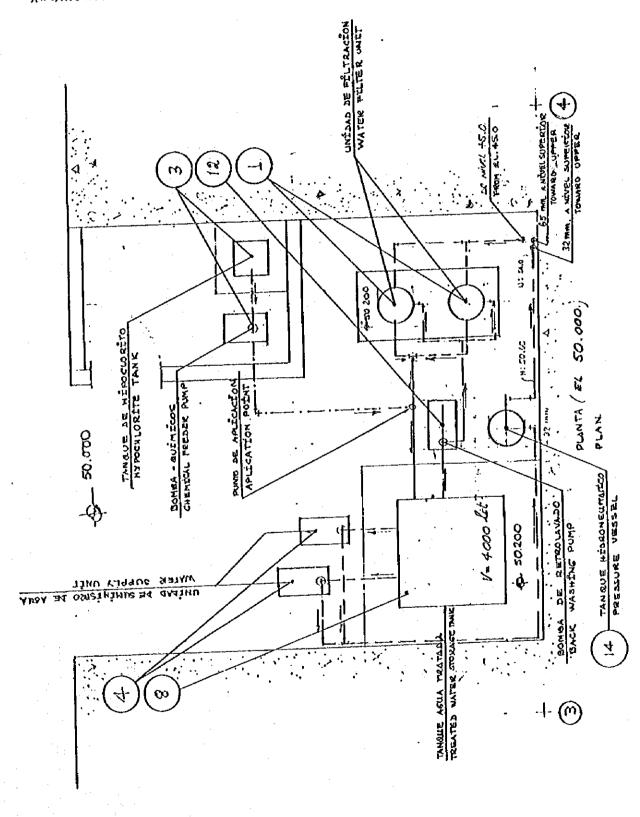


INSTALACIONES SANÉTARIAS

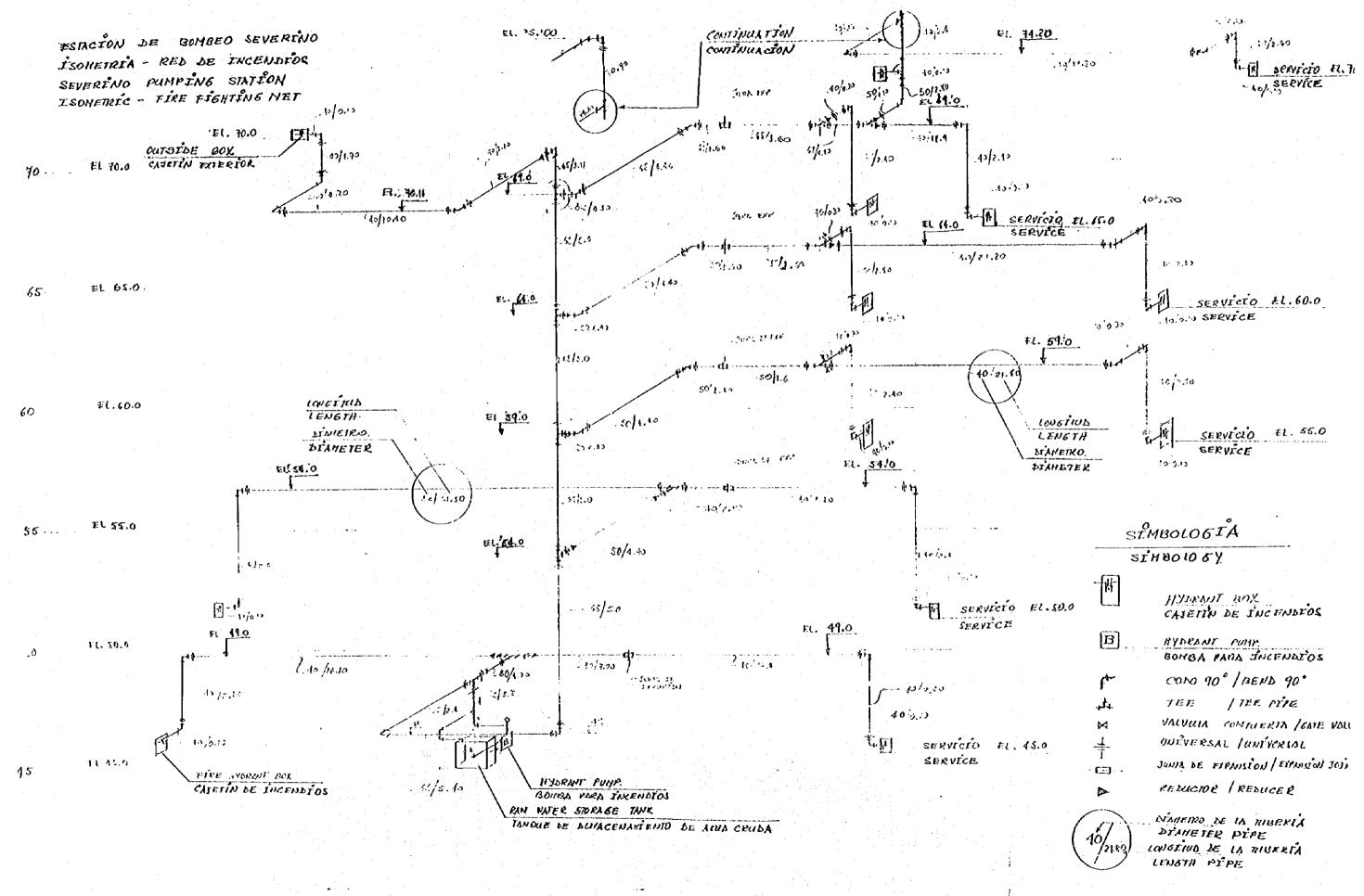
DISPOSICION EN PLANTA DE EQUIPOS

SANÉTARY ÉNSTALATIONS

ARRANGEMENT OF EQUIPMENT PLAN.



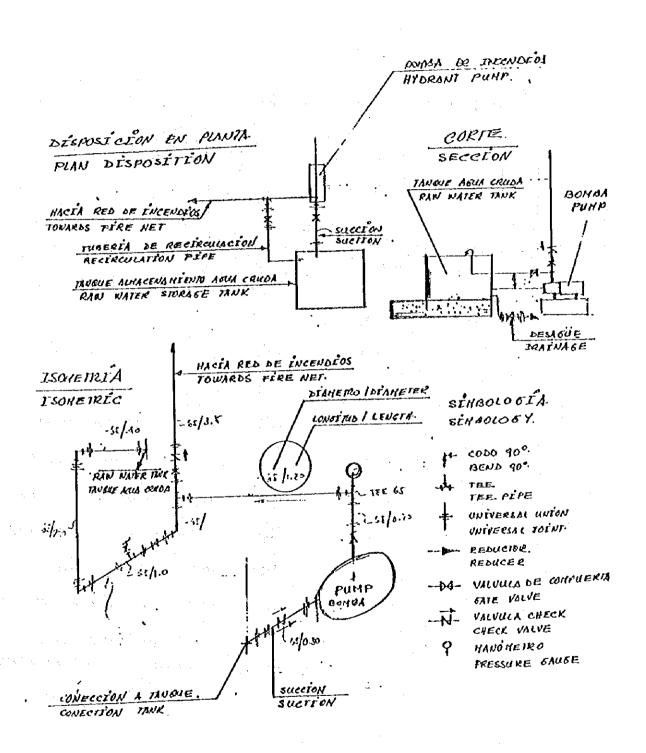
INSTALACIONES SANÉTARÍAS


DISPOSÍCION EN PLANTA DE EQUIPOS

SANÍTARY INSTALATIONS

ARRANGEMENT OF EQUIPMENT PLAN.

Ş

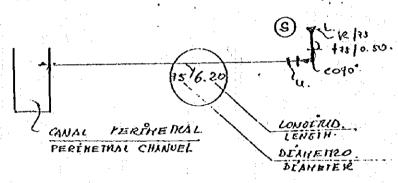


INSTALACIONES SANITARIAS / INCENDIOS

ISOMETRÍA Y CONECCION . ISOMBA · TANQUE · REA DE DISTRIBUCION

SANITARY INSTALATIONS / FÉRE

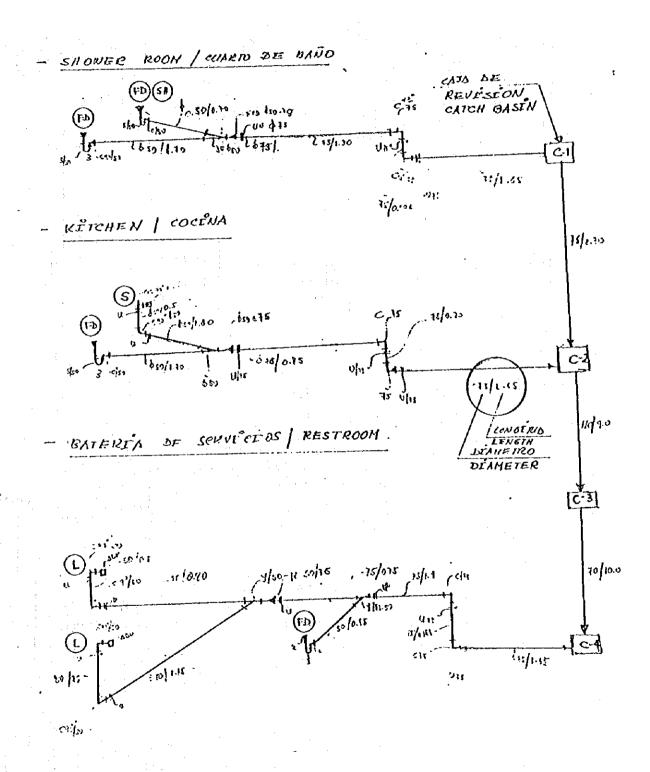
ISOMETRÍC AND CONECTION . PUMP - TANK - DISTRIBUTION SYSTEM


instalactones sanétarias / desague

calculo de tugerias / isometrías

sanétary instalations / drainage

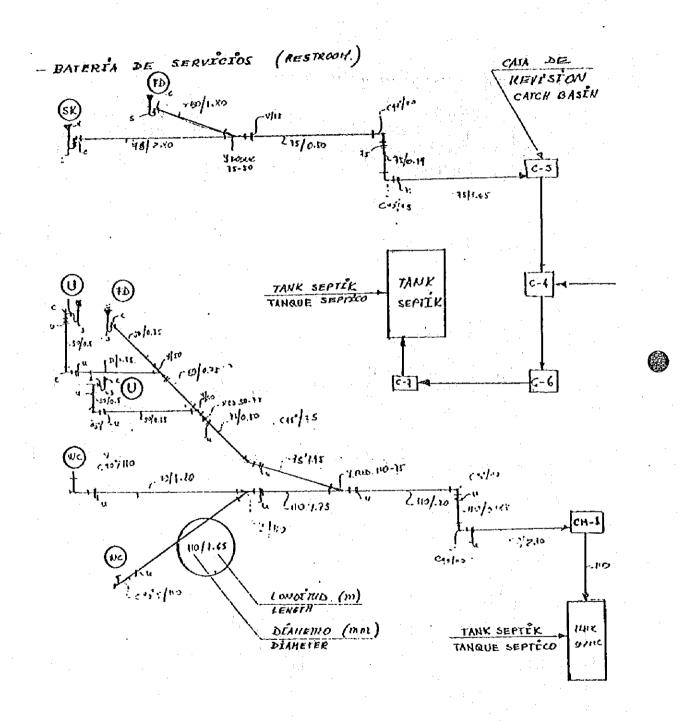
calculation of pipe diameter / isometric.


- BATTERY ROOM / CLARID DE BATERTAS.

STHUOLOGEN / SEMBOLOGY.

STAB	OLOGIA / SIMBOLOGY.		
10	REJÍLLA Y SÍFON. FLOOR TRAP.	(L)	LAVAGO / LA VATORY SENK
ei ·	ADAPIADOR / ADAPTER	(SH)	buchs / SHONEK
d d	COPO do , DEND do.	Ne	INDOORD / WATER CLOSET
t _t .	COSO 150 BEND 15°	(sv)	mediatero / slop, stak
-b-	REDUCIOR / REDUCER	(\$)	TREGADERS COSTNA / STILK
	unfon / Joint	FD	TROUPA DE PISO. FLOOR TRAP.
	HEE / HEE	(U)	URINARIO / URINAL
1	CODO 40° CON RAMAL	XX	CAJA DE REVISION/CAICH BASIN
¥	BEND GO WITH VENT BEND GO WITH VENT	75/6.20	DIAMETRO (MM) DIAMETER

INSTALACIONES SANITARIAS/DESAGUE,
CALCULO DE TUBERIAS / ISOMETRIAS
SANITARY ÎNSTALATIONS / DRAÎNAGE
CALCULATION OF PÎPE DÎAMETER / ISOMETRIC.

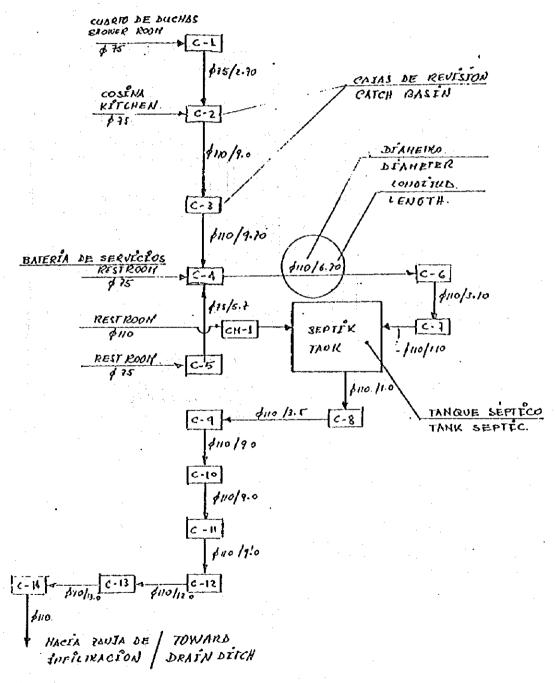


INSTALACIONES SANITARIAS/DESAGUE

CALCULO DE TUBERÍAS/ISOMETRIAS

SANITARY INSTALATIONS / DRAÎNAGE

CALCULATION OF PÎPE DÎAMETER/ISOMETRIC

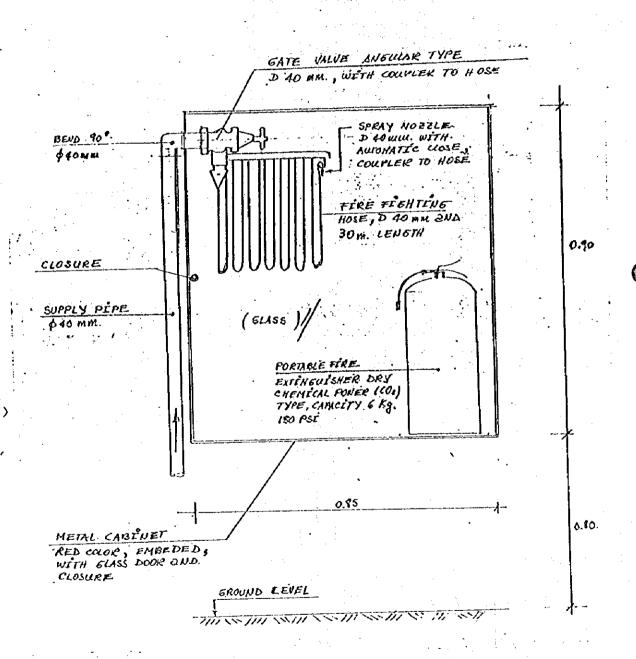

INSTALACIONES SANCTARÍAS / DESAGUE

CALCULO DE TUBERIAS / ISOMETRIAS

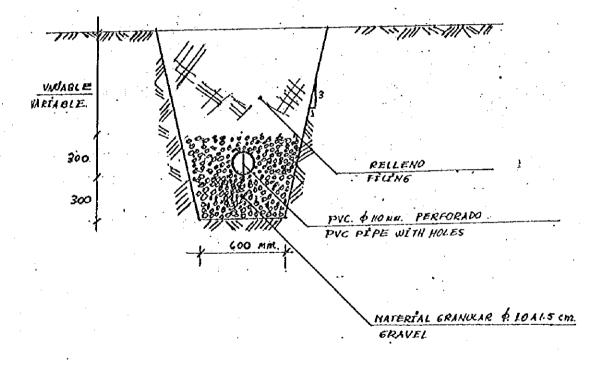
SANTTARY INSTALATIONS / DRAÎNAGE

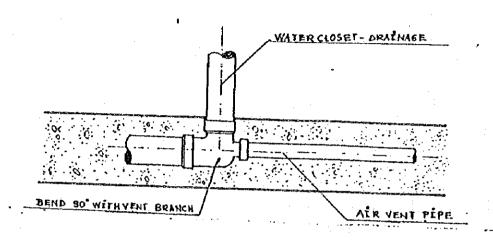
CALCULATIONS OF PÉPE DIAMETER / ISOMETRIC

GENERAL ACCAGENENT OF THE EXTERIOR NET



TUSTALACIONES SANÍTARÍAS / ÍNCENDÍOS


DETALLE TÉPICO DEL CAJETÍN CONTRA ÉNCENDÍOS


SANÍTARY INSTALATIONS / FÉRE.

TYPÍC DETAÍL OF HYDRANT GOX.

DETALLE TÎPÎCO DE ZANJA DE ÎNFÎLTRACION TÎPÎC DETAÎL OF ÎNFÎLTRATÎON TRENCH

CONECTION DRAINAGE - VENTILATION DETAIL