Case A When the available water is sufficient:
Al Combination with the 2nd Sabaki P / L
A2 Combination with the 2nd Mzima P / L

Case B When the available water is not sufficient, the deficit will have to be supplemented by other reservoir or water source. Examples are as shown below and their conceptual figures are presented in the attached sheet:

Bl Combination with Rare reservoir plus Rare P/L (deficit is supplied by Rare reservoir)

B2 Combination with 2nd Mzima P/L plus Tsavo reservoir (deficit is supplied by Tsavo reservoir)

B3 Combination with 2nd Sabaki P/L plus Tsavo reservoir (deficit is supplied by Tsavo reservoir)

There might be other means of supplementing the deficit such as the combination with other water sources like local rivers and/or groundwater. Situation being as such, a thorough study will be needed in future to select the best plan. In this connection, the selected plans in this study should be retained as those to represent the objective situations as of present. Reconsideration will have to be performed newly under the new situation with the water resources development on the Athi River added.

EXAMPLES OF CONCEIVABLE PLANS WITH MUNYU SCHEME

ORGANIZATION CHART OF WATER ENGINEERING DEPARTMENT IN THE MINISTRY OF WATER DEVELOPMENT

EXISTING BUUK WAMER SUPREY SOURCES

EXISAING BULK WAMER SURPIY SOUZCES (COMTINUED)

EXISTMNG Bت゙ニK WATER SUPPUY FACTIITIES

Facilities	（i）Marexe pipeline	（2）Vaima Pipeiine（3）	Pemion Water Works（4）	Mazeras－Jaribuni pipeiine
2．Spring zazake	vǎere Springs	vizima springs	－．	－
2．River Intake	－	－	Pemida River Intake	－
3．Borehoies	－	－	－	－
4．Tzeatmen＝2iant	Secimentãion， iminins shamox \＆chiorinaむion Eacisizy．	Chiorination Eacility．	Sedimentation basins， sidters \＆chlorination Eacility．	－
5．mansmission Main	$\begin{gathered} 2300 m=-250 m: \\ 42 k \end{gathered}$	$\begin{aligned} & 2530 \mathrm{~mm}-2760 \mathrm{~mm}: \\ & 2.9 \mathrm{~km} \end{aligned}$	Comection to Varere Jipeline	$\begin{aligned} & 2200 \mathrm{~mm}-2180 \mathrm{~min} \\ & 50 \mathrm{~km} \end{aligned}$
6．Boostex Pumping Station	Mile 6 booster 2u゙Mins station	－	－	Mazeras booster pumping station
7．Resezvoirs	cれanga：wwe \＆Raya 30 uivo 205 sevoirs ： $\begin{aligned} & 29,600 \mathrm{~m}^{3} \& \\ & 2,200 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & \text { vazeras zeservoirs: } \\ & 82,000 \mathrm{~m}^{3} \end{aligned}$	－	Ribe，Xaioieni \＆D zeservoizs： $450 \mathrm{~m}^{3}$ تaribuni water Tark $45 \mathrm{~m}^{3}$
8．Ochers	－	10 Break pressure taniks on Mzima 3ipe＂ine	Intake pumps \＆ high iLEt pumps for Eilters	－

mNNEX 2205－1

Page 3 of 4
EXISTANG wayer Suppiy factitutes（COM－ANUED）

Facilities	（5）Noxth Vainiane（6）Ma Pipeinne	，ауеze Kaya somo Dipeline	（7）Miwi Boreholes		Maiindi Pipeiine
2．Spring Intuke	－	－	－		－
2．River Intaice	－	－	－		Sabaki River Intake
3．sozenozes	－	－	No． $2,2,3, \& 4$ Boreholes with pumps		2 Borehoies in Ganda with pumps
4．アッeaテuent アコロッヒ	－	－	Chlorination Eacilities		2reseたニ2ing basins， seaimentation basins， Eilters \＆chlorination facilities
5．Iransmission Main		$\begin{gathered} 0200 \mathrm{~min}-2 \pm 50 \mathrm{~m} \\ 10 \mathrm{~km} \end{gathered}$	2200m		5300mm－ 0200 mm
6．300ster Pumping Station：	－	\cdots	－		Malindi \％．2iant booster pumps
7．Reservoirs	NGuu حatu reservoirs： $\begin{aligned} & 4,550 \mathrm{~m}^{3} \text { anc } \\ & 28,000 \mathrm{~m}^{3} \end{aligned}$	s：Kaya Bombo reservoir： $2,200 \mathrm{~m}^{3}$	こiwi water tank： $2,200 \mathrm{~m}^{3}$		$\begin{aligned} & \text { Garalani reservoin: } \\ & \text { i,135 } \mathrm{m}^{3} \& \\ & \text { Ganca reservoirs: } \\ & 1,600 \mathrm{~m}^{3} \end{aligned}$

mombasa vater supply
ANNUAL AVERAGE DAILY GATER DEIIVERED

Renarks: (l Extrapolated figures.

HOMBASA WATER SUPPLY
Water available or produced

Name of Water Suppl		y Class								
		1	2	3	4	5	6	7	8	Total
1.	Kilifi	304	0	0	21	0	45	0	0	370 nos
		82	0	0	6	0	12	0	0	100 (8)
2.	Tezo Roka	193	0	0	3 l	0	3	0	0	227
		85	0	0	14	0	1	0	0	100
3.	Kaloleni	222	0	0	11	0	19	0	0	252
		88	0	0	4	0	8	0	0	100
4.	Malindi	1672	0	0	42	0	74	3	10	1809
		92	0	0	2	0	4	0	l	100
5.	Gede Watarou	218	1	0	21	2	18	30	4	294
		74	0	0	7	1	16	10	1	100
6.	Voi	514	0	0	4	3	9	0	0	530
		97	0	0	1	1	2	0	0	100
7.	Whadanyi	275	5	0	2	0	2	0	0	284
		97	2	0	1	0	1	0	0	100
8.	Mwajika-Teri	25	0	0	O	0	0	0	0	25
		100	0	0	0	0	0	0	0	100
9.	Dembwa	59	O	0	3	0	\bigcirc	0	0	62
		95	0	0	5	0	0	0	0	100
10.	Mazeras-Rabai	109	25	13	13	5	11	7	0	183
		60	14	7	7	3	6	4	0	100
11.	Maxiakani	257	10	0	8	2	10	13	0	300
		86	3	0	3	1	3	4	0	100
12.	Mackinnon Road	8	0	0	2	0	0	0	0	10
		80	0	0	20	0	0	0	0	100
13.	Kwale	145	0	-	4	0	33	0	0	182
		80	0	\bigcirc	2	0	18	0	0	100
14.	Msambeni	43	0	0	2	7	13	8	0	67
		64	0	0	3	1	19	12	0	100
15.	Kinango	52	-	0	11	0	10	-	0	73
		71	0	0	15	0	14	0	0	100
16.	South Sainlend	685	153	91	43	9	51	49	5	1,086
		63	14	8	4	1	5	5	0	100
17.	North Mainland	1781	104	36	71	16	38	44	14	2104
		85	5	2	3	1	2	2	1	100
18.	Mombasa İsland	9788	1333	1814	1191	368	425	22	1	14942
		66	9	12	8	2	3	0	0	100
19.	West Mainland	1911	84	307	134	107	69	67	0	2679.
		71	3	11	5	4	3	3	0	100
	rotal	19421	1715	1161	1659	513	898	245	42	26755 nos.
		73	6	8	6	2	3	1	o	100 (8)

Remarks: (l Upper figures show numbers of sexvice connection.
(2 Lower figures show ratio in percentage to the total.
(3 Number of class stands for following categories:
1: Single fanily
2: Hultiple
3: Flats
4: Conmercial
5: Industrial
6: Institution
7: Kiosks
8: Beach hotels

Source: CPWB office, data of February, 1979.

LEAKAGE AND LOSSES

$$
\text { Unit: } 10^{3} / \text { day }
$$

Source: Statistic Unit.
Chief Operations and Maintenance Engineer.

Design and Maintenance Division, Coast Province Water Branch.

Page 1 of 2
Mismoracai census roruianzon or const province

	2962		2959		2.979	
	Popunasion：ito Nacion		Popuiation z to Nation popujation \＆to Na			
	（20）	（8）	$\left(10^{3}\right)$	（3）	$\left(20^{3}\right.$ ）	（ 8 ）
Yoeai Kerya	5，636	：00	10，943	200.	25，322	200
Coust アニovince	727	8.42	943	8.62	2，339	8.71
Protect mesm	S25	7.24	815	7.45	1，123	7.33
Kiさiざ づここごくt	222	2.45	256	2.43	372	2.42
Souttonn Jivision	（96）	（2．06）	（223）	（1．03）	（252）	（0．90）
Noーtican Eivisien	（33）	（0．44）	（ 477	（0．43）	（ 64．）	（0．42）
こと「ここん こivision	（43）	（0．50）	（ 57\％	（052）	（ 85）	（0．55）
	（37）	（0．43）	（49）	（045）	（ 72）	（0．47）
Gcce zocation	（ 5i		（ 2is）		（ 27 ）	
Gごcia zocation	（2\％）		（33）		（ 44）	
	（ 5）		（ 7 \％		（ 20 ）	
SWade Dうごせract	258	2.82	203	2.88	287	2.57
Venionsa こiscinict	280	2.03	24.7	2.26	342	2.23
こaえt力 こavcea コistuicを	75	0.87	96	0.88	± 23	0.80
Voi Sivision	（29）	（0．22）	（ 30）	（0．27）	（ 35）	（0．25）
Wuncuayi Division	（56）	（0．65）	（ 66）	（0．60）	（ 85）	（0．55）

$\begin{array}{ll}\frac{2979}{200 u i t i o n} & \text { q } 20 \text { Nation } \\ \left(10^{3}\right) & (8) \\ 216 & 2.42 \\ 5 \% & 0.37 \\ & \\ 25 & 0.26 \\ 42 & 0.27 \\ 92 & 0.50\end{array}$
$\begin{array}{cc}\frac{2969}{2024 a t i o n} & z \text { to Nation } \\ \left(20^{3}\right) & (2) \\ 230 & 2.29 \\ 42 & 0.38 \\ 25 & 0.24 \\ 22 & 0.20 \\ 52 & 0.47\end{array}$

Source：popuiatien consus

KiiEEL むiscincs
VaLinci Livision
 Pavera Division

Zami Discract
7ana ziver تiscriet －

ぶ．3．

PROJECTED POPULITION OF COAST PROVINCE AS PERCFITPAGE OF B:ATION POPULATION

	Bistorical	Unit: \%				
		Projected				
	1979	1930	1985	1990	1995	2000
Coast Frovince	8.72	8.74	8.83	3.39	3.94	8.96
Project area	7. 32	7.33	7.38	7.42	7.46	7.50
Kilifi district (l	2.42	2.42	2.44	2.45	2.47	2.48
Kiale District	1.87	1.37	1.88	1.89	1.89	1.90
Womesa District ${ }^{(2}$	2.23	2.24	2.26	2.28	2.30	2.32
Taita-Taveta District	0.80	0.80	0.80	0.80	0.80	0.80
Non Project Srea	1.10	1.41	1.45	1.47	1.48	1.46
Kilifi District	0.37	0.37	0.36	0.34	0.33	0.31
Taitarsoveta District	0.16	0.16	0.16	0.16	0.16	0.16
1aru Bisirict	0.27	0.27	0.27	0.27	0.27	0.27
Than River District	0.60	0.61	0.66	0.70	0.72	0.72

Renacks: (1 Excluding Malimi Division of northern bank of the Sabaki River
(2 Excluding Taveta Division

PRONECTED POPULATION OF PROUECT AREA ASPERCENTAGE OF NATION POPULATION

PPOJECTED POPUIATION OF THE PROJECT AREA BY DISTRICT

Unit: 10^{3}

A. ivoject Area

B. Non-Project Area

Kilifi District	57	59	67	75	86	96
Raita Taveta District	25	25	30	35	42	49
Lamu District	42	43	51	60	71	83
Tana River District	92	97	124	156	139	223
	216	224	272	326	388	451

C. Prant povinco rotal

$$
1,339 \quad 1,335 \quad 1,654 \quad 1,563 \quad 2,338 \quad 2,766
$$

Remots: (l Tncluajm talindi division of sowthern bank of the Sebaki River
(2) Excluaing Toveza Division

HISTORICAL POPULATION OF URBAN CEINTRES

Coast Province	727,844	100	944,082	100	1,339,000	100
folindi	5,818	0.80	10,757	1.14	23,306	1.74
Voi	2,533	0.35	5,313	0.56	7,329	0.55
Kilifi	2,081	0.29	2,662	0.28	5,861	0.44
Kariakani	1.454	0.20	3,956	0.42	2,853	0. 21
Wundanyi	3,717	0.51	4,385	0.46	6,075	0.45
Krale	1,008	0.14	1,092	0.12	2,193	0.16
Kinango	1,599	0.22	2.450	0.26	3,647	0.27
rotal	18,210	2.51	30,615	3.24	51,264	3.32

PROJECTED PORUIZTION OF UREAN CENTRES

Historical	Projected		
	1979	1990	

Cosest Province
$\begin{array}{lllllll}\text { Population } & \left(10^{3}\right) & 1,339 & 1,385 & 1,654 & 1,968 & 2,338\end{array} \quad 2,766$
\% to Nation (\%)
8.72
3.74
8.33
8.39
B. 94
8.96

Uxban centers ${ }^{\text {(l }}$

Population $\left(10^{3}\right)$	51.3	53.6	67.8	34.6	105.0	128.4
$\$$ to Province (\%)	3.82	3.87	4.10	4.30	4.89	4.64

Remarks: (i Total of seven wrin contres i.e. ifilmi, Voi, Kilifi, foriakni, fiundmyi, kwale and Nimogo
HISMORICAI AN PROUECTED ZORUZAZION OF RROEECM AREN

	VOMBASA			UREAN CENAER				RURAT			TOMAL PROEECA AREA	
又eご	\＆た Naざにニ	20puiation	$\begin{aligned} & \text { Growis } \\ & \text { nate } \\ & \hline \end{aligned}$	2 to دニOvince	200～このたion	$\begin{aligned} & \text { Growtin } \\ & \text { Raze } \end{aligned}$	\％ 50 がさごこの	popuiasion	Growth Rate	8.50 Natior．	Popuiation	z to Na＝ion
	（ ε ）	（20）	（ $\%$ ）	（2）	$\left(20^{3}\right)$	（i）	（8）	（20）	（7）	（2）	（20）	（8）
2952	2.08	180	－	2.53	18	－	0.22	427	\cdots	4.94	625	7.24
2969	2.26	247	4.62	3.24	3i	7.70	0.28	537	3.33	4.91	825	7.45
2979	2.23	342	3.32	3.82	52	5.29	0.33	730	3.52	4.76	1，123	7.32
200－08：0\％												
－980	2.24	355	3.80	3.57	54	4.54	0.34	752	3.02	4.75	2，262	7.33
2935	2.25	423	3.57	4.20	66	4.82	0.36	6.92	3.45	4.76	2，382	． 7.38
2950	2.28	505	3.62	4.30	35	4.53	0.38	i， 052	3.38	4.75	2，642	7.42
－995	2.30	602	3.54	4.49	205	4.40	0.40	i，244	3.41	4.76	1，950	7.46
2000	2.32	726	3.55	4.64	226	4.21	0.42	2，472	3.42	4.76	2，315	7.49
G20w												

HISTORICAL ANO PROIECTEO POPULATION
OF THE PROJECT AREA

porulation projection of project area

(HIGH AND LON GRONTH)

Now Unit: 10^{3}					
1. Nation Population					
	1980	1985	1990	1995	2000
A. High Projection (1	15,880	19,100	23,050	27,910	33,930
B. Hedium "	15,850	18,730	22,140	26,150	30,870
C. Low " (2	15,840	18,580	21,560	24,730	28,060
2. Population of Project Area					
	1980	1985	1990	1995	2000
\% To Nation (\%)					
Mombasa	2.24	2.26	2:28	2.30	2.32
Other Urban Area	0.34	0.36	0.38	0.40	0.41
Rural Area	4.75	4.76	4.75	4.76	4.76
Project Axea rotal	7.33	7.38	7.41	7.46	7.49
A. High Projection					
Mombasa	356	432	\$26	642	787
Other Urban Area	54	69	88	112	139
Rural Area	754	909	1,095	1,329	1,615
Project Axea'total	1,164	1,410	1,709	2,083	2,541
B. Mediwa Projection					
Mombasa	355	423	505	601	716
Other Urban Area	54	67	84	105	127
Rural Area	753	892	1,052	1,245	1,469
Project Area Total	1,162	1,382	1,641	1,951	2,312
c. Low Projection					
yonbasa	355	420	492	569	651
Other Urban Area	54	67	82	99	115
Rural lirea	752	834	1,024	1,177	1,336
Project Area rotal	1,161	1,371	1,598	1,845	2,102

[^0]
HOPEES AND BEDS AVAIEABLE BY AREA

1.		1976		1977		1978	
		wo. of Hotels	Beds Available	No. of Hotels	$\begin{gathered} \text { Beds } \\ \text { nvailable } \end{gathered}$	No. of Hotels	$\begin{gathered} \text { Beds } \\ \text { Available } \end{gathered}$
	Beach		(10 ${ }^{3}$)		(10) ${ }^{3}$		(10)
	South	14	552.6	14	590.9	14	695.4
	North Hombasa	16	945.2	16	992.4	15	1,045.9
	Kilifi/Hatamu	7	310.8	7	$\therefore 299.8$	7	346.9
	Malindi/Lamu	11	393.8	12	285.3	15	435.2
	Sub-total	48	2,202.5	49	2,268.3	51	2,523.4
2.	Kombasa Island	30	506.7	30	509.9	33	531.4
3.	Coast Hinterland				¢		
	East	5	84. 2	4	80.5	5	90.8
	Hest	6	189.8	6	184.3	6	179.8
	Sub-total	11	274.0	10	264.8	11	270.6
	Total	89	2,983, 2	- 89	3,043.0	95	3,325.4
ef.	rotal Kenya	228	6,983.1	227	7,028.3.	272	7.358.0

historical and projected hotel-beds occuried in coastal area
\qquad
Unit: 10^{3} night-bed

Year	Hotel Night-beds	Growth (\%)	Lombasa	Kilifi/satanu	Malindi/ IJamu
Historical					
1968	508.2	-			
1969	569.0	12.0			
1970	696.7	22.4			
1971	815.4	17.0			
1972	923.9	14.4			
1973	1,008.4	8.1	739.9	122.0	146.5
1974	1,173.6	16.4	868.4	148.3	156.9
1975	1.371.6	16.9	1,051.4	146.6	173.6
1976	1,575.2	14.8	1.242.9	148.6	183.6
1977	1,778.6	12.9	1,415.6	167.8	195.1
1978	1,903.4	7.3	1,508.1	374.7	225.7
1979	2,111.1	10.6'			

Growth (1968-79) 13.8\% p.a:
Growth (1973-73) 13.6% p.a. 15.33 p.a. 7.4% p.a. 9.03 p.a.
Projected

1980	2.331 .4	10.4
1035	$3,152.2$	6.2
1990	$3,632.9$	2.9
1995	$3,853.7$	1.2
2000	$3,943.7$	0.5

Growth (1973-2000) 3.08p.a.
N.B. Coastal Area Covers: Mombsa Island, Noxth Mainland, South Mainland Malindi/Lamu and Xilifi/Hatamu

WATER DEMAND PROUBCTION OF DOMESTIC USE

 IN MOMBASA AND URBAN CENTRES1. Estimate of Income Group Composition
1.1 Weighting Factor by tacone Group

Income Group $1972 \mathrm{KSh} /$ Honth Group Average Weighting Factors

High income	$6,000+$	8,500	0.644
Hedium "	$2,000-6,000$	3,500	0.265
Low "	$0-2,000$	1,200	0.091

1.2 Estimated Income

Mrabasa Incone Total: 19.695×0.342 nil. person $=6.736$

2000

Incone Group	\% of Pophlation	Heighing Factors	Total Average Income (Index)
High incone	107	0.644	6.440
Rediun "	80	0.265	21.200
Low	10	0.091	0.910

Nonbasa fncone Total: 23.550×0.716 mil. person $=20.442$

Growth rate of wonbasa Incone in 1979-2000: 5.438 p.a.
2. Estinate of Daily Per capita Donestic Use

1979

Income Group	\% of Population	Per cap. Demand (l	Average Demand
High income	58	200 lpcd	10
Nedium"	45	100	45
Low "	50	50	25

(1) Based on "MOWD Design Ranual"

Daily maximur demand inclusive of loss and leakage:
High cost housing : 300 lpcd
Medium " " : 150
Low " " : 75

Assuming daily maximus demand being 50 more than annual average demand.

2000
\% of

Income Group popmlation	Per cap.Denand	Average Denand	
High incone	10%	240 lped	24
Hodium "	80	120	96
Jow "	10	60	6

(Estinated based on CPWB data)

VATER DEMAYD PROUECTION BY USE OF CATEGORIES

1. Domestic Demand

Unit: CMD

Yeax	Vonbasa	Urban Rural	Total	
Present Potential				
1979	27,360	4,080	18,980	50,420

Projected
$1980 \quad 29,110 \quad 4,430 \quad 20,300 \quad 53,840$
$1985 \quad 38,490 \quad 6,190 \quad 27.620 \quad 72,300$
$1990 \quad 51,010 \quad 8,590 \quad 35,770 \quad 95,370$
1995 67,910 11,870 48,520 128,300
$2000 \quad 90,220 \quad 16,130 \quad 64,720 \quad 171,070$

| Growth (1979/2000) 5.85% | 6.76% | 6.008 | 5.99% |
| :--- | :--- | :--- | :--- | :--- |
| Per cap. (2000) | 126 lpcd 126 lpcd 44 lpcd | | |

2. Industrial Demand

Year	Monbasa	Urban	Rural	Total
1979	4.670	140	-	4810

Projected

1980	5,220	160	-	5,380
1985	9,100	270	-	9,370
1990	15,870	480	-	16,350
1995	27,660	830	-	28,490
2000		48,230	1,450	-
				49,630

Growth (1979/2000) 12\% 12%
per ha (2000) $24 \mathrm{ma}^{3} / \mathrm{d} \cdot \mathrm{ha} 16 \mathrm{ma}^{3} / \mathrm{d} . \mathrm{ha}$
3. Tourism Demand

Year	Mombasa	Urban ${ }^{1}$	Rural	Total
Present Potential				
1979	4,540	1,520	-	6,060
Projected				
1980	5,010	1,680	-	$\therefore \quad 6,690$
1985	6,780	2,270	-	9,050
1990	7,810.	2,620	\rightarrow	10.430
1995	8,290	2,780	--	11,070
2000	8,480	2,840	-	11,320

Growth (1979/2000) 3.02\% 3.02\% 3.02\%
4. Comercial, Public and Other Demand

Projected

1980	14,670	2,170	34,160	50,980
1985	19,630	2,900	39,250	61,780
1990	26,270	3,890	44,450	74,610
1995	35,160	5,200	51,330	91,690
2000	47,050	6,960	58,810	112,350

Growth (1979/2000)6.008 6.008 2.80%

Renarks:
(1) Including Coast Hinterland of East and best
5. Total Watex Deband

Year Monbasa
Other
present potential

1979
50,410
$7,790 \quad 51,980$
110,180

Projected

1930	54,010	8,440	54,440	116,890
1985	74,000	11,630	66,870	152,500
1990	100,960	15,580	80,220	196,760
1995	139,020	20,680	39,850	259,550
2000	193,980	27,380	123,560	344,920

Grointh (1979/2000)
6.63% p.a. 6.17% p.a 4.28p.a. 5.58% p.a.
Per cap. 2000
271 lped 214 lped 34 lped
6. Water Demand by Use
6.1 Monbasa :

Year Donestic Industrial Tourism C.P. \& others Total
$1979 \quad 27,360(54) \quad 4,670$ (9) 4,540 (9) 13,840 (28) 50,410 (100)
2000 90,220(47) 48,230(25) $3,480(4) 47,050(24) \quad 193,960(100)$
6.2 Urban Centers

| Year | Donestic | Industrial | Tourism | C.P. \& othexs total | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1979 | $4,080(52)$ | $140(2)$ | $1,520(20)$ | $2,050(26)$ | $7,790(100)$ |
| 2000 | $16,130(59)$ | $1,450(5)$ | $2,840(31)$ | $6,960(25)$ | $27,380(100)$ |

6.3 Rural freas

Year	gomestic	hivestock	Touriss	C.P. 8 others	Total
1979	13,980 (37)	25,200 (48)	--	7,800 (15)	51,980 (100)
2000	64,720 (52)	40,310 (33)	-	18,530 (15)	123,560 (100)

Water Demand Projection

HIGH AID LON G?OHTH FATER DEMENO PROUECFION

1. Wigh Growth iotex Denzend .

Unit: CAD

Yrar	grasa	Other	Eural	Total
1930	54,330	3.630	54,600	113,060
1935	78,220	12,240	63,500\%	158,960
1990	111,640	16,240	86,000	214.480
1995	161.810	23,130	111,100	295,040
2000	241,330	31,720	142,000	415,050
inth p.a. 79/2000)	7.7\%	6.7\%	4.98	6.5\%
Cep. 2000	3071 ped	2281 pcd	83 lpca	

2. In: Growh hatex Domend

Unit: CrD

Year	Fombasa	Other	Sural	rotal
1930	53,290	3,240	50,900	112,430
1035	70,730	11,070	61,400	143,200
1930	92,740	14,390	10,800	177,930
1695	121,730	13,500	85,900	226,130
2000	158,800	23,110	93,700	280,700

Growh p.a.
(1979/2000)
$5.6 \frac{3}{}$
5.33
3.48
4.73

annual average water demano high and low prouection

Yeors
net water demand projection

WATER DEMAND VERSUS EXISTING AND ON-GOING

peak month demand projection for all areas

demand arras										t: m3/day
	1980		1985		1990		1995		2000	
	(1)	(2)	(1)	(2)	(2)	(2)	(1)	(2)	(1)	(2)
1. Kırıfı										
(1) Urban center	5.650	7,350	7,680	9.990	10,190	13,200	13,630	27.710	17.160	22,310
(2) Rural	8,500	9,960	12,010	14,180	16,350	19,300	22,870	27,220	31,420	37,650
2. Kwale										
(1) Urban centar	640	830	870	1.130	1.150	1,500	1,540	2,000	2,080	2,700
(2) Rural	8,760	9,440	20.420	11,480	12,400	13.670	19,980	22,310	30,550	34,240
3. Fasca/rraveca										
(1) Urban center	1,200	1,560	1,640	2,130	2,280	2,800	2,900	3,770	3.920	5,100
(2) Rural	2.760	1.960	2,270	2,450	2.630	2,970	3.230	4.070	3,960	4,620
4. Sub-total										
(I) Orban center	7.490	9,740	10,190	13,250	13,520	27.500	18.070	23,480	23.260	30.110
(2) Ruraz	19,020	22,360	24.590	28,120	31.380	35.940	46,080.	53.590	65.930	76,520
5. Mombasa	53.960	59,360	74,030	81,430	101.000	211,100	238,830	152,710	194,040	223.440
6. Grand-toral	80.470	90,460	108,810	122,790	145,900	164,540	202,980	229,780	283,130	320.060
	$\left(0.93 \mathrm{~m}^{3} / \mathrm{sec}\right.$. $05 \mathrm{~mm}^{3} / \mathrm{sec}$)	$\left(2.26 \mathrm{~m}^{3} / \mathrm{sec}\right)$	($42 \mathrm{~m} 3 / \mathrm{sec}$)	(1.69m3/sec)	(2.90m $3 / \mathrm{sec}$)	($2.35 \mathrm{~m}^{3} / \mathrm{sec}$)	2.66m ${ }^{3 / \mathrm{sec} \text {) }}$	(3.28m3/8ec	. $70 \mathrm{~m} 3 / \mathrm{ssc}$)

[^1]| | $\frac{\square}{d}$ | | |
| :---: | :---: | :---: | :---: |
| $=$ | \cdots | | |
| $\frac{\square}{9}$ | \cdots | | |
| \cdots | $=1$ | | |
| | | | |

A Simulation Model to Estimate Reservoir

Copacity Required for the Tsavo Reservoir

Reservoir Copacity Required for the Tsavo Reservoir

Deficit on the Sabaki River by Changing Abstraction to Mombasa without the Tsovo Dam

PLAN OF TSAVO DAM SCALE $1: 2,000$

CROSS SECTION OF TSAVO DAMS SCALE I:500

FLOOD ESTIMATES AT TSAVO DAM SITE

A. General

1. Monthly mean discharge at the dam site (3G2) is collected for the development of water resources as mentioned in Chapter 6 of the Inventory Report. Flood runoff is estimated for the design of spillway and diversion facilities. The prediction of flood discharge is made based on the relationship between rainfall and discharge, since flood peak is not well estimated by reading the gauge height once a day.
B. Frequency Analysis

a. Rainfa11

2. There are three rainfall gauging stations in and around the watershed. Those are the stations near the Mzima Springs (93-38-17), Ngulia lodge (93-38-27) and Tsavo gate (93-38-28). Measurement of the first station was started on March 1950 and maximum daily rainfall in a year is available, while measurement of remaining two stations was started on January 1971. Rainfall data for the two stations are not long enough for the frequency analysis. Thus, rainfall data of the only one station are available for the whole basin.
3. Annual maximun daily rainfall data of the three stations are collected from the Hydrology Section of MoWD as tabulated in page 5 of 9 of the ANNEX. Frequency analysis of rainfall is made by the above data.

ANNEX 4308

Page 2 of 9

b. Frequency Analysis

4. Several frequency distributions are adopted for determing the recurrence interval of the hydrologic event of a given magaitude x, because there is no information which distribution is well fitted to the hydrologic event. Frequency distributions applied are extremal distribution type I (Gumbel method), Pearson type III and lograormal (Iwai method).
5. The results of frequency analysis by the three methods are depicted in page 6 of 9 of the ANNEX. The biggest value among ones estimated by the three methods is adopted as the magnitude for each recurrence interval. Though the frequency analysis is made by the data of a station, namely point rainfall, it is assumed that rainfall of the station represents rainfall of this basin.
6. Probable maximum precipitation (PMP) at the station 93-38-17 is estimated based on the empirical method developed by Herschield. The formula is expressed as follows;

$$
X \max =\mu+150
$$

where μ and O are mean and standard deviation of samples, x max is the extreme value of 24 -hour point rainfall and 15 is empirically derived from records in the United States.
7. The statistical parameters, mean and standard deviation of records at $93-38-17$ are 50.5 and 29.0 ma, respectively. The probable maximum precipitation is

$$
\begin{aligned}
& \text { on is } \\
& x \max =50.5+15 \times 29.0 \\
&=485.5 \mathrm{~mm}
\end{aligned}
$$

8. The reduction factor which is the parameter to reduce from the point rainfall to the basin average rainfall is assumed to be 0.6 , because hyetal maps of rainstorms are not prepared. PMP in the basin is obtained multiplying 0.6 by PMP of the point;

$$
\begin{aligned}
\text { PMP basin } & =485.5 \times 0.6 \\
& =291.3 \mathrm{~mm}
\end{aligned}
$$

C. Estimates of Flood

a. Unit Hydrograph

9. For predicting flood discharge from rainfall, the response function between rainfall (input) and discharge (output) is determined. Though there are several mathematical models to express the response function of a basin, the unit hydrograph method is applied for the estimate of flood discharge, because rainfall and flood discharge data are not enough for the identification of parameters included in the mathematical models.
10. The flood recorded on April 14, 1967 is selected as the flood to determine the unit hydrograph as depicted in page 7 of 9 of the ANNEX. The first peak of the flood might be caused by the rainstom on April 12, 1967 which is shown in page 5 of 9 of the ANNEX. However, there is no information of the rainstorm caused the second peak of the flood. Thus, the second peak of the flood is eliminated by assuming that the recession limb on the first flood is exponentially regressed as shown in the dotted line.
11. For the estimate of rainfall excess on the flood, the drainage area in the upper reaches of the Loolturesh River is excluded, since flood discharge of the Loolturesh River is retained in seasonal swamps.

The drainage area for flood estimate is decided to be $4,050 \mathrm{~km}^{2}$, by which the runoff coefficient is calculated to be 0.23 for the flood on April 14, 1967. The rainfall excess is estimated to be 3.8 mm (0.023 x 163.3 mm).
12. If the rainfall excess of the unit hydrograph is defined to be 10 mm , the unit hydrograph is obtained as shown in page 8 of 9 of the ANNEX. Hydrographs of 10 -year and 200 -year recurrence intervals are depicted as shown in page 9 of 9 of the ANNEX assuming that the runoff factor of rainfall for each recurrence interval is 0.4 . The 10 -year flood is used as the design flood of the diversion facilities. According to the Code of Japan on fill-type dams, the design flood for the spillway is defined as the flood with 1.2 times discharge of the 200-year flood. Applying this Code, the design flood for the spillway and the probable maximum flood estimated from PMP are shown in page 9 of 9 of the ANNEX.

Ammal Maximum Daily Rainfall

Year	Station					
	93.38 .17		93.38 .27		93.38 .28	
	max. daily rainfall, ma	date	$\begin{aligned} & \text { max. daily } \\ & \text { rainfall, mm } \end{aligned}$	date	$\begin{aligned} & \text { max daily } \\ & \text { rainfall, mm } \end{aligned}$	date
1950	31.8	Apr .27				
51	46.0	Apr. 16				
52	89.2	Apr. 13				
53	36.1	Jan. 1				
54	89.4	Apr. 8				
55	41.9	Dec. 13				
56	-	-				
57	79.5	Jan. 23				
58	-	-				
59	11.4	Nov. 26				
1960	42.7	Jan. 21				
61	27.9	Apr ${ }^{\text {d }} 9$				
62	33.3	Dec. 3				
63	39.1	-				
64	34.3	-				
65	37.3	Jan. 4				
66	34.5					
67	163.3	Apr. 12				
68	44.7	Dec. 6				
69	53.1	Dec. -				
1970	37.6	Mar . -				
71	39.9	Dec. -	55.8	Dec. -	81.0	Apr. --
72	47.6	Feb. -	60.6	Nov. -	77.2	Dec. -
73	50.8	Apr . -	88.2	Nov. -	30.3	Jan. -
74	33.7	Mar. -	38.5	Apr . -	40.0	Oct. -
75	38.3	Apr.-	30.0	Nov. -	35.2	Nov. -
76	45.5	Apr . -	66.5	Nov. -	47.5	Sep. -
77	60.0	Jan. -	71.3	Dec. -	44.8	Apr . -
78	74.7	Jan. -	59.4	Nov. --	86.3	Dec. -
79	-	-	34.0	May -	60.0	Peb. -

Probable Daily Rainfall

Unit: $\mathrm{mm} / \mathrm{day}$

Return period (Year)	Method applied		
2	46	Pearson III	Iwai
5	76	40	45
10	95	66	67
20	114	87	83
25	119	109	99
50	138	116	104
100	156	140	121
200	174	163	138
500	198	188	155
1000	215	223	180

ANNEX 4308
Page 7 of 9

Flood Dated April 14, 1967

ANNEX 4308
Page 3 of 9

Unit Hydrograph of Tsovo Dam Site

```
ANNEX 4308
Page 9 of 9
```


Design Floods of Tsavo Dam Site

(2nd MZIMA P/L PLAN)
estimated 1995 demand and sources of supply
(PEAK MONTH DEMAND)

AREA	SOURCES OF SUPPLY				
	Total Demand $\mathrm{m}^{3} / \mathrm{d}$	$\begin{aligned} & \text { Maima } \\ & \mathrm{P} / \mathrm{L} I \& I I \\ & \mathrm{~m}^{3} / \mathrm{d} \end{aligned}$	$\begin{aligned} & \text { Marere } \\ & \text { P/L } \\ & \mathrm{m}^{3} / \mathrm{d} \end{aligned}$	$\begin{aligned} & \text { Tivi B.H. } \\ & \text { P/L } \\ & \mathrm{m}^{3} / \mathrm{d} \end{aligned}$	$\begin{aligned} & \text { Sabaki } \\ & \text { P/L } / \mathrm{I} \\ & \mathrm{~m}^{3} / \mathrm{d} \end{aligned}$
1. Mombasa Is	55,000	55,000	-	-	-
2. West Mainland	42,710	42,710	-	-	-
3. North Mainland	40,000	8,000	-	-	32,000
4. South Mainland	15,000	15,000	-	-	
5. Kilifi District	40,000	.	-	-	40,000
6. Kwale District	500	500	-	-	-
7. North					
7. Kwale District Central	2,500	2,500	-	-	-
8. Kwale District	21,310	1,810	12,000	7,500	-
9. South					
9. Taita District	7,840	7,840	-	-	-
10. Kilifi South	4,920	4,920	-	-	-
	229,780	138,280	12,000	7,500	72,000

(2nd MZIMA P/L PLAN)
ESTIMATED 1990 DEMAND AND SOURCES OF SUPPLY

AREA	SOURCES OF SUPPLY				
	Total Demand $\mathrm{m}^{3 / d}$	$\begin{aligned} & \text { Mzina } \\ & \text { P/I I I II } \\ & \mathrm{m}^{3} / \mathrm{d} \end{aligned}$	Marere P/1, $\mathrm{m}^{3} / \mathrm{d}$	$\begin{aligned} & \text { Tiwi B.H. } \\ & \text { P/L } \\ & \mathrm{m}^{3} / \mathrm{d} \end{aligned}$	$\begin{aligned} & \text { Sabaki } \\ & \text { P/L } \\ & \mathrm{m}^{3} / \mathrm{d} \\ & \hline \end{aligned}$
1. Mombasa	39,000	39,000	-	-	-
2. West Mainland	33,100	33,100	-	-	
3. North Mainland	28,000	-	-	-	28,000
4. South Mainland	11,000	4,670	6,330	-	-
5. Kilifi District	29,500	-	-	-	29,500
6. Kwale District	500	500	-	-	-
North					
7. Kwale District	1,500	1,500	-	-	-
8. Kentral District	13,170	-	5,670	7,500	-
South					
9. Taita District	5,770	5,770	-	-	-
10. Kilifi South	3,000	3,000	-	-	-
	164,540	87,540	12,000	7,500	57,500

\begin{tabular}{|c|c|c|c|}

\hline \multicolumn{4}{|l|}{\begin{tabular}{l}

INDEX

-

- PROPOSED P/L

MZIMA

existing t.plant

proposed reservoirs

Exist. $36.000 \mathrm{~m}^{3} / \mathrm{d}$

(0.) 2nd Mzima $104.000 \mathrm{~m}^{3 / 4}$

EXISting springs and boreholes

existing reservoirs

existing P / L

PROPOSED SUBSIDIARY P/L
\end{tabular}}

\hline
\end{tabular}

Design Criteria for the Project

1. Design capacity

General

(1) Intake facilities including intake pumps: peakmonth demand $\times 1.10$ (loss of treatment 10%)
(2) Treatment plant: peakmonth demand $\times 1.10$ (loss of treatment 10%)
(3) Transmission pumps: peakmonth demand $x 1.0$
(4) Transmission P/L: peakmonth demand $\times 1.0$
(5) Distribution reservoirs:
(a) Mombasa area: average annual daily demand $\times 11 / 2$ days
(b) For all other areas: average annual daily demand $\times 21 / 2$ days

Capacity of Augmentation Plans
(2nd Mzima P/L)
(1) Intake: Max. $1.2 \mathrm{~m}^{3} / \mathrm{sec}\left(103,680 \mathrm{~m}^{3} / \mathrm{d}\right)$
(2) Transmission main: ditto
(Rare P/L)
(1) Intake: Max. $3.18 \mathrm{~m}^{3} / \mathrm{sec}\left(275,000 \mathrm{~m}^{3} / \mathrm{d}\right)$
(2) Treatment Plant: ditto
(3) Transmission main: Max. $2.89 \mathrm{~m}^{3} / \mathrm{sec}\left(250,000 \mathrm{~m}^{3} / \mathrm{d}\right)$
2. Rare Treatment Plant Design Parameters Used

General

(1) Design output in 2000: $200,000 \mathrm{~m}^{3} / \mathrm{d}\left(2.31 \mathrm{~m}^{3} / \mathrm{sec}\right)$
(2) Maximun design output: $250,000 \mathrm{~m}^{3} / \mathrm{d}\left(2.89 \mathrm{~m}^{3} / \mathrm{sec}\right)$

Major Facilities

(1) Intake Pumps: a. $@ 19.1 \mathrm{~m}^{3} / \min \times 2$ units -20% to Max.
b. $038.2 \mathrm{~m}^{3} / \mathrm{min} \times 4$ units -80% to Max.
c. Stand by $019.1 \mathrm{~m}^{3} / \mathrm{min} \times 1$ unit
@ $38.2 \mathrm{~m}^{3} / \mathrm{min} \times 2$ units
Stand by Total 50%
(2) Raw water main: Max. $3.18 \mathrm{~m}^{3} / \mathrm{sec}$ flow capacity Dia. $1,500 \mathrm{~mm}, \mathrm{C}=130, \mathrm{v}=1.8 \mathrm{~m} / \mathrm{sec}, \mathrm{L}=4.8 \mathrm{~km}$
(3) Receiving/Distributing Tank: Detention time - 2 min . Effective volume - $300 \mathrm{~m}^{3}$
Diameter - 5 m
Depth of water - $4 m$
(4) Mixing chamber: Detention time - 1 min.

Baffle cone type
(5) Flocculation basin: Detention time - 30 min .

Vertical flocculators
(6) Sedimentation basins: Surface loading $1.0 \mathrm{~m}^{3} / \mathrm{m}^{2} \mathrm{~h}$

Conventional type $\quad 27 \mathrm{~m} \times 85 \mathrm{~m} \times 6$ units
(including one unit stand by)
Detention time - 3 hrs
(7) Filtration: Flow rate $120 \mathrm{~m} / \mathrm{d}(5 \mathrm{~m} / \mathrm{h})$ Rapid sand filters $9.2 \mathrm{~m} \times 10 \mathrm{~m} \times 30$ units Total filter area $=2,760 \mathrm{~m}^{2}$
(including 5 units stand by) Wash water $a, b a c k$ washing $0.6 \mathrm{~m} / \mathrm{min}$
b, surface washing $0.2 \mathrm{~m} / \mathrm{min}$
Rate per filter $=0.8 \times 92=73.6 \mathrm{~m}^{3} / \mathrm{min}$ Max. 6 min operation $=442 \mathrm{~m}^{3}$ Wash water storage $=1,000 \mathrm{~m}^{3}$
(3) Chemical dozing: a. Alum Max, $200 \mathrm{mg} / 1$ Aveg.
b. Chlorine Max. $5 \mathrm{mg} / 1$

Normal $1 \mathrm{mg} / 1$
c. Soda ash
(9) Transmission Pumps: a. $017.4 \mathrm{~m}^{3} / \mathrm{min} \times 2$ units - 20% to Max. b. $034.8 \mathrm{~m}^{3} / \mathrm{min} \times 4$ units -80% to Max.
c. Stand by
$017.4 \mathrm{~m}^{3} / \mathrm{min} \times 1$ unit
$034.8 \mathrm{~m}^{3} / \mathrm{min} \times 2$ units
Stand by Total 50%

STUDY ON FlUCTUATIONS IN WATER DEMAND
 AND SYSTEM CAPACETY FOR THE PLAN

1. Demand Fluctuations

Since a water supply system should be designed to meet the peak consumption periods it is important to review the present demand fluctuations throughout a year. It is impossible, however, to determine true demand fluctuations in Mombasa from present consumption, therefore the projection for fluctuations in annual, monthly and daily demands are based on the past study made by consultants in $1972 \frac{11}{1}$ and compared with other similar cities in tropical climates.

Peaking factors studied in the said report are quoted and shown in the followings:

	Average Peaking Factor	
Supply Systen		Peak Month
Meak Day		
Mombasa Distribution System	1.075	1.225
North Mainland System (all areas)	1.23	1.50
North Mainland System	1.29	1.63
(excluding industrial consumption)		
Malindi System	1.30	1.45
Gedi/Watamu System	1.30	1.85
Malindi/Gedi/Watamu System (combined)	1.30	1.55
Kilifi System	$1.25-1.30$	-

With careful analysis, in this planning, the peaking factors of 1.10 and 1.30, for peak month demands, were adopted for the further study for Mombasa area and other project areas respectively.

[^2]
2. Design Capacity

Taking into consideration the close relation to the on-going Sabaki P / L system, the capacity for the plan in respect to a bulk water supply system is designed to meet the peak monthly demands. Peak monthly daily demands by area are projected and shown in ANNEX 2444-2. (ref. ANNEX 4404-1 Design Criteria for the Project.)

(2nd MZIMA P/L PLAN)
DISTRIBUTION RESERVOIR CONSTRUCTION SCHEDULE

Location	System	Provision in 1986 $\begin{array}{r}\mathrm{m}^{3} \\ \hline\end{array}$	Provision in 1995 \qquad	Total
1. Voi	$\begin{aligned} & \text { 2nd Mzima } \\ & \text { P/L } \end{aligned}$	20,000	-	20,000
2. Taru	11	20,000	-	20,000
3. Maliakani	11	20,000	-	20,000
4. Nguee Tatu	$\begin{aligned} & \text { Sabaki } \\ & \text { P/L } \end{aligned}$	20,000	20,000	40,000
5. Kaya Bambo	Marere P/L	30,000	30,000	60,000
6. Changamwe	Sabaki P/L	13,600 ${ }^{1 /}$	-	13,600
7. Balancing	2nd Mzima P/L	30,000	30,000	60,000
Total		153,600	80,000	233,600

Note: $1 /$ Shall be provided in the Sabaki P/L system in 1984.

Standard $020,000 \times 5=100,000 \mathrm{~m}^{3}$
" $\quad 030,000 \times 4=120,000 \mathrm{~m}^{3}$
Total $220,000 \mathrm{~m}^{3}$

Plan Element

\begin{tabular}{|c|c|}
\hline Spring Intake \& - Total 2 km long sheet piling and infiltration trench installed with \(1,000 \mathrm{~mm}\) to 500 mm dia. concrete pipes. A RC made intake chamber with flow control valve and a drain and excess water draining outlet of 600 mm sluice valve. \\
\hline Main Transmission P/L \& \begin{tabular}{l}
- Pipes \(1,350 \mathrm{~mm}\) dia; \(86,000 \mathrm{~m}, 1,100 \mathrm{~mm}\) dia; \(43,310 \mathrm{~m}, 1\) m000 ma dia, \(88,230 \mathrm{~m}\). Suitable for maximurn working pressure of \(12.5 \mathrm{~kg} / \mathrm{cm}^{2}\) including surge surglus. Peak capacity of flow would be \(1.2 \mathrm{~m}^{3} / \mathrm{sec}\) and flow control would be done at intake chamber. \\
- Line valves and operating points at about 2 km incervals \\
- Air valves and washouts as required by profile with approx. 10 per 9 km .
\end{tabular} \\
\hline Break Pressure Tanks

Storage Reservoirs \& | - Capacity $720 \mathrm{~m}^{3}$ each, detention time 10 min at max. flow. |
| :--- |
| - Installed with 600 man dia by-pass. |
| - Six BPTs iń total would be constructed. |
| - Voi Reservoir at $20,000 \mathrm{~m}^{3}$. |
| - Taru Reservoir at $20,000 \mathrm{~m}^{3}$. |
| - Mariakani Reservoir at $20,000 \mathrm{~m}^{3}$. |
| - Balancing Reservoir near existing BPT No. 10 at $60,000 \mathrm{~m}^{3}$. |
| - Kaya Botabo Reservoirs at $60,000 \mathrm{~m}^{3}$. |
| - All reservoirs are designed to be circular prestressed concrete construction. |
| See standard Annex 4480-2. |

\hline
\end{tabular}

- 500 mm dia, $28,000 \mathrm{~m}$
- 400 mm dia, $17,000 \mathrm{~m}$
- 350 mm dia, $3,000 \mathrm{~m}$
- 300 mm dia, $40,000 \mathrm{~m}$

Materials suitable for maximum working pressure $12.5 \mathrm{~kg} / \mathrm{cm}^{2}$ including surge surplus.

MAIN FEATURES OF 2ND MZIMA P/L WITH TSAVO RESERVOIR PLAN

$$
\text { Development scale: } 1.2 \mathrm{~m}^{3} / \mathrm{sec}
$$

1. Dam
Catchnent $\left(\mathrm{km}^{2}\right) \quad 4050$ excluding the area of the Loolturesh River

Type
Height above river bed (m)
Reservoir, effective storage $\left(10^{6} \mathrm{~m}^{3}\right)$
Fill volume $\left(10^{3} \mathrm{~m}^{3}\right)$
Design flood $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$
Annual mean discharge $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$

2. Water supply facilities

Type of intake Underground
Trunk main P/L, diameter (mm)

and length $(\mathrm{m})$$\quad$| $1,350 \mathrm{~mm}-86,000 \mathrm{~m}$ |
| :--- |

COST ESTIMATES OF 2ND MZIMA P/L WITE TSAVO RESERVOIR

				Unit: Develop	$\begin{aligned} & \$ 10^{3} \\ & \text { nt Scale: } \end{aligned}$	$2 \mathrm{~m}^{3} / \mathrm{sec}$
	conomic Cos		Sales Taxes		inancial Co	
L.C.	F.C.	Total	L.C.	I.C.	F.C.	Total
3,980,4	1,760.0	5,740.4	635.6	4,616.0	1,760.0	6,376.0
36,428.4	101,280.0	137,708.4	12,487.6	48,916.0	101,280.0	150,196.0
14,572.6	896.0	15,468.6	2,693.8	16,266.4	896.0	17,162.4
150.0	400.0	550.0	50	200.0	400.0	600.0
3,965.0	7,420.0	12,385.0	1,058.9	5,023.9	7,420.0	12,443.9
2,279.2	1,584.1	3,863.3	335.9	2,615.1	1,584.1	4,199.2
8,298.7	5,913.4	14,212.1	1,235.8	9,534.5	5,913.4	15,447.9
5,168.5	7,018.0	12,186.5	1,059.7	6,228.2	7,018.0	13,246.2
9,290.9	2,746.1	12,037.0	1,046.7	10,337.6	2,746.1	13,083.7
34.5	163.3	197.8	17.2	51.7	163.3	215.0
8,416.8	12,918.1	21,334.9	1,962.1	10,378.9	12,918.1	23,297.0
92,585.0	142,099.2	234,684.2	21,583.3	114,168.3	142,099.2	256,267.5
13,887.8	21,325.0	35,203.7	3,237.5	17,125.3	21,315.0	38,440.3
106,472.8	163,415.0	269,887.9	24,820.8	131,293.6	163,415.0	294,708.6
-	-	-	-	75,700	51,072	126,772
-	-	-	-	206,994	214,487.	422,481

ECONOMIC COSTS ESTIMATED FOR WATER FACIIITIES AND CIVIL WORKS ON 2ND MZIMA P/L WITH TSAVO RESERVOIR

Development Scale: $1.2 \mathrm{~m}^{3} / \mathrm{sec}$.
Items Unit Quantity $\frac{\text { Unit Price Amount }}{\text { US }}$
A. Water Supply Facilities

1. Underground intake L.S. $\quad 3,980.41,760.0$
2. Transmission main p / L

$\varnothing 1350$	m	87,000	215.90	$18,780.0$	600.00	$52,200.0$
$\varnothing 1100$	m	43,310	149.90	$6,490.7$	416.90	$18,056.0$
$\varnothing 1000$	m	88,230	126.50	$11,156.9$	351.60	$31,024.0$
Sub-total				$36,428.4$		$101,280.0$

3. Break pressure tanks
and reservoirs

Break pressure tanks No.	6	85×10^{3}	510.0	65×10^{3}	390.0
$30,000 \mathrm{~m}^{3}$ reservoirs No.	4	$1,600 \times 10^{3}$	$6,400.0$	52×10^{3}	208.0
$20,000 \mathrm{~m}^{3}$ reservoirs No.	5	$1,400 \times 10^{3}$	$7,000.0$	51×10^{3}	255.0
Miscellaneous	L.S.			662.6	
Sub-total		$14,572.6$	43,0		
Cormunication system L.S.			150.0	896.0	

5. Subsidiary P/L

$\phi 500$	m	28,000	64.5	$1,805.6$	120.3	$3,368.4$
$\phi 400$	m	17,000	45.7	776.9	85.2	$1,448.4$
$\phi 350$	m	3,000	37.3	111.8	69.6	208.8
$\phi 300$	m	40,000	31.8	$1,270.7$	59.9	$2,394.4$
b-total				$3,965.0$		$7,420.0$

B. Dam
6. General items L. S
$2,279.2 \quad 1,584.1$
7. Coffer dam and diversion tunnel

Excavation in oepn cut m^{3}	153,300	6	919.8	3	459.9	
Excavation in tunnel	m^{3}	40,200	45	$1,809.0$	75	$3,015.0$
Embankment	m^{3}	273,300	5	$1,366.5$	5	$1,366.5$
Concrete	m^{3}	23,400	100	$2,340.0$	30	702.0
Reinforcement bars	ton	1,000	900	900.0	80	80.0
Miscellaneous	L.S			963.4		290.0
Sub-total			$8,298.7$		$5,913.4$	

ANNEX 4507-2
Page 2 of 2

Items		Unit	Quantity	L. C.		F. C.		
		Unit Price		Amount	Unit Price	ce Amount		
			(US\$)	(US\$103)	(US\$)	(US\$10 ${ }^{3}$)		
8.	Main dam							
	Excavation		m^{3}	162,400	6	974.4	3	487.2
	Embankment	m^{3}	452.700	5	2,263.5	5	2,263.5	
	Asphalt concrete facing	m^{2}	29,600	15	444.0	100	2,960.0	
	Concrete in cut-off wall	m^{3}	2,500	100	250.0	20	50.0	
	Curtain grouting	m	6,000	25	150.0	100	600.0	
	Miscellaneous	L.S.			1,086.6		657.3	
	Sub-Total				5,168.5		7,018.0	
9.	Spillway							
	Excavation	m^{3}	502,500	6	3,015.0	3	1,507.5	
	Backfill	m^{3}	10,000	1	10.0	0.50	5.0	
	Concrete	m^{3}	49,300	100	4,930.0	20	986.0	
	Reinforcement bars	ton	1,000	900	900.0	80	80.0	
	Steel anchor bars	ton	100	1,300	130.0	700	70,0	
	Miscellaneous	L.S.			305.9		97.6	
	Sub-Total				9,290.9		2,746.1	
10.	River outlet facilities	L.S.			34.5		163.3	
	Grand Total				84,168.2		29,180.9	

ECONOMIC LIPE OF EQUIPMENT AND MATERIALS

Remarks: R.C. stands for "Reinforced Concrete".

BREAKDOWN OF O\&M COST ON SECOND MZIMA P/L

Unit: US\$10 ${ }^{3}$

Year	Proposed System Supply, $\mathrm{m}^{3} / \mathrm{d}$	$\begin{aligned} & \text { Staff } \\ & \text { Salary } \end{aligned}$	Cheraical	Repair	Total
1986	1,990	32.17	0.54	16.2	48.91
1987	5,510	\vdots	1.51	:	49.88
1988	8,480	:	2.29	:	50.66
1989	12,000	:	3.26	,	51.63
1990	18,400	56.44	5.01	:	77.65
1991	28,000	:	7.64	:	80.28
1992	39,890	:	10.88	:	83.52
1993	52,000	:	14.16	:	86.80
1994	63,990	:	17.42	;	90.06
1995	75,990	:	20.73	:	93.37
1996	89,760	:	24.55	:	97.19
1997	102,810	:	28.03	:	100.67
1998	104,000	:	28.32	:	100.96
1999	\vdots	$:$:	:	!
2000	!	:	:	:	:
:	:	:	!	:	:
2035	:	-	:	:	:

SECOND MZIMA P/L WITH TSAVO RESERVOIR PLAN

cost and water volume strbams

Return on Investment on the Development
(Mzina Plan)
Scole of

1. $2 \mathrm{~m}^{3} / \mathrm{sec}$

ROI AND WATER RATES (AT CURRENT PRICES) BY VARIOUS ANNUA, INCREASE RATES OF WATER RATE

(1) at Curr	(2)	(3)	$\begin{gathered} (4) \\ \text { at } 19 \end{gathered}$	$\begin{gathered} (5) \\ \text { Price } \end{gathered}$	(6)	(7)
Annual Increase		$\text { R Rate } / 1$	Wate	$\text { late } 11$	R 01	
for 1980-1986	$\frac{1980}{(\mathrm{KS}}$	$\frac{1986}{\left.h / m^{3}\right)}$	($\mathrm{KSh} / \mathrm{m}^{3}$)		2nd Mzima	Rare
13%	5.88	$\begin{gathered} 12.24 \\ \left(\$ 1.63 / \mathrm{m}^{3}\right) \end{gathered}$	5.60	6.58	6.5%	9.4%
15%	5.88	$\begin{gathered} 13.60 \\ \left(\$ 1.81 / \mathrm{m}^{3}\right) \end{gathered}$	5.60	7.31	7.1%	10.1%
17%	5.88	$\begin{gathered} 15.08 \\ \left(\$ 2.01 / \mathrm{m}^{3}\right) \end{gathered}$	5.60	8.11	7.7%	10.8%
20%	5.88	$\begin{gathered} 17.56 \\ \left(\$ 2.34 / \mathrm{m}^{3}\right) \end{gathered}$	5.60	9.44	8.7%	11.8%

(8)
at Current Price

Annual Increase for 1980-1986

Consumer's Water
Tariff in $1986 \not 2$ (KSh/m ${ }^{3}$)
13%
17.49
$\left(\$ 2.33 / \mathrm{m}^{3}\right)$
15%
19.43
$\left(\$ 2.59 / \mathrm{m}^{3}\right)$
17%
21.54
$\left(\$ 2.87 / \mathrm{m}^{3}\right)$
20%
25.09
($\$ 3.35 / \mathrm{m}^{3}$)

L1 Evaluated at the outlet of distribution reservoir.
$\angle 2(8)=(3) / 0.7$ Assuming the cosi of distribution system constitutes 30% of the consumer's water tariff.

SECOND MZIMA P/L WITH TSAVO RESERVOIR PLAN
FIRR CALCULATION

No.	Fiscal Year	Capital Cost \& Replacement		O\&M Cost	Gross Revenue	Unit: US\$10 ${ }^{3}$ Net Benefit
		F.C.	L. C.			
1	1983	29,292	25,555	-		-54,847
2	1984	124,139	112,390	-		-236,529
3	1985	54,828	54,522			-106,350
4	1986	-	-	91	1,251	1,160
5	1987	-	-	93	3,463	3,370
6	1988	-	-	94	5,348	5,254
7	1989	--	--	96	7,542	7,446
8	1990	6,228	17,527	144	11,313	-12,586
9	1991	-	-	149	17,604	17,455
10	1992	-	-	155	25,146	24,991
11	1993	-	-	161	32,688	32,527
12	1994	-	-	168	40,230	40,062
13	1995	-	-	174	47,773	47,599
14	1996	-	-	181	56,584	56,403
15	1997	-	-	187	64,633	64,446
16	1998	--	-	188	65,377	65,189
17	1999	-	-	;	-	65,189
18	2000	(R) 584	186	:	:	64,419
19	2001	-	-	-	;	65,189
20	2002	-	-	,	-	65,189

Discount Rate
0%
3%
4%

Net Benefit

$$
\begin{array}{r}
+215,576 \\
+16,588 \\
-28,690
\end{array}
$$

FIRR $=3.4 \%$
(R): Replacement Cost

									t: US\$10 ${ }^{3}$
No.	Year	$\begin{aligned} & \text { Water Sold } \\ & \left(10^{3} \mathrm{~m}^{3}\right) \end{aligned}$	Average Water Rate ($\mathrm{Ksh} / \mathrm{m}^{3}$)	Operating Revenue	Operating Expense		Income Before Interest	Interest Payment	Net Income
				Water Sales	O\&M Cost	Depreciation			
1	1983	-	-	-	-	-	-	-	-
2	1984	-	-	-	-	-	-	-	-
3	1985	-	-	-	-	-	-	-	-
4	1986	690	13.6(\$1.813)	1,251	91	13,357	-12,197	17,152	-29,349
5	1987	1,910	.	3,463	93		- 9,987	16,617	-26,604
6	1988	2,950	:	5,348	94		- 8,103	16,057	-24,160
7	1989	4,160		7,542	96		- 5,911	15,425	-21,336
8	1990	6,240		11,313	144		- 2,188	14,768	-16,956
9	1991	9,710		17,604	149		4,098	14,501	-10,403
10	1992	13,870		25,146	155		11,634	13,710	- 2,076
11	1993	18,030		32,688	161		19,270	12,892	6,278
12	1994	22,190	.	40,230	168		26,705	11,976	14,729
13	1995	26,350	:	47,773	174		34,242	11,010	23,232
14	1996	31,210	.	56,584	181		43,046	9,970	33,076
15	1997	35,650	:	64,633	187		51,089	8,855	42,234
16	1998	36,060	:	65,377	188		51,832	7,667	44,165
17	1999	-	:			.	.	6,379	45,453
18	2000	:	.	.	.	-	.	4,992	46,840
19	2001	:	:	.	-	.	.	3,506	48,326
20	2002	:	.	:	:	-	.	1,897	49,935

grojected cash flow for secono mzima p/L with tsavo reservoir plan

														Unic: ussio ${ }^{3}$
			T10n				Capita	1 cose	Debt Se	ervice	tocal	Increase	Cash at	Debe Service
.o.	Year	Interes	Deprectation	Coan	Equity	Source	Foreign Currency	Local Currency	interest	Prancipal	Application	in cash		
:	1983	-	-	29,292	25,555	54,847	29,292	25.555	-	-	54.847	0	0	-
2	1984	-	-	224,139	112.390	236,529	124.139	212.390	*	-	236,529	0	0	-
3	1983	-	-	54,828	52.522	106,350	54,328	51,522	-	-	206,350	0	\bigcirc	-
4	2986	-12.197	13.357	-	-	1,160	-	-	27.152	7.177	24,329	-23.169	- 23.269	0.048
5	2987	-9,987	:	-	-	3.370	-	*	26.627	7,712	24.329	-20.939	- 44.128	0.239
6	1988	- 8.203		-	-	5.256	-	-	16,057	8.272	24.329	-19,075	- 63,203	0.226
7	1989	- 5,912	!	-	-	7,446	-	-	25.425	8,904	24.329	-16,883	- 80.086	0.306
8	1990	- 2.288		6,228	17.527	34,926	6.228	27.527	24,768	9,562	48,084	-13.260	- 93.266	0.459
9	2991	4.096		-	-	27.455	-	-	14,501	10,45:	24,952	- 7,497	-200,743	0.700
20	2992	22.634		-	-	24,991	-	-	13.710	12.242	24,952	39	-100,704	2.002
21	1993	29.170	:	-	-	32.527	-	-	12,892	12.060	24,952	7.525	- 93.129	2.304
12	1994	26.705	:	-	-	40,062	-	-	11.976	12,976	24.952	15,110	- 78.019	2,606
23	2995	34.242	!	-	-	47,599	-	-	21.010	23.942	24.952	22.647	- 55.372	1.908
14	2996	43,046		-	-	56.403	-	-	9.970	24,982	24,952	32,451	- 23.921	2.260
25	1997	\$1,089	!	-	-	64,646	-	-	8.855	16,097	24,952	39.444	25,573	2.583
16	1998	52.832		-	-	65,189	-	-	7,667	17,285	24.952	40,237	55,810	2.613
17	1999		\vdots	*	-	:	-	-	6,379	18,573	24,952	!	96,047	:
18	2000	\vdots	\vdots	-	-	\vdots	-	-	4.992	19.960	24,952	\vdots	236,284	\vdots
19	2002	:	\vdots	-	-	\vdots	-	-	3,506	21,446	24,952	;	176.521	!
20.	2002	:	!	-	-	;	-	-	2.897	23.055	24,952		216,758	.

Reservoir Gross Storage and High Water Level of Rare Reservoir

Flow Capocity of Diversion Conal
from the Sobaki to the Rare

GROSS SECTION OF RARE DAMS SCALE $1: 500$

Cross section of diversion CANAL FROM THE SABAKI TO THE RARE RESERVOIR (40 Km) 3) CLE : $: 10$

FlOOD ESTIMATES AT RARE DAM SITE

A. General

1. For the estimate of flood discharge at the dam site, it is desired to use discharge data at the existing gauging station (3LA2). However, discharge measurement on flood has never been made at the station. Moreover, there is no rainfall gauging station in the watershed except the area of the Voi River. As there is no available information for the prediction of flood in the basin, flood discharge is estimated from specific discharge of other basins.

B. Specific Discharge

2. Specific discharge is defined as the value of peak discharge over the catchment. Flood discharge at the Tsavo dam site has been already discussed in ANNEX 4308. Design floods at the proposed Mwachi dam site have been estimated by the flood on May 14,1972 and rainfall data at Maji ya Chumbi (93-39-23).
3. The specific discharges for design floods at the dam sites of Tsavo and Mwachi are summarized as below.

	Catchment, Km^{2}	Specific discharge, $\mathrm{m}^{3} / \mathrm{sec} / \mathrm{Km}^{2}$		
		Design flood for diversion	Design flood for spillway	PME $/ 1$
Tavo	4050	0.16	0.38	0.49
Mwachi	2090	0.34	0.87	1.27

/1: Probable maximum flood.
4. The catchment of $2,090 \mathrm{Km}^{2}$ on the Mwachi dam site is measured by excluding the area belonging to the seasonal river. The catchment of the Rare dam is neasured to be $1,500 \mathrm{~km}^{2}$ excluding the area of upper reaches as mentioned in para. 5201. For the estimate of discharge for the cofferdam and diversion channel, the catchment is made $580 \mathrm{Km}^{2}$ by providing another cofferdam at the point that $E 1.400 \mathrm{ft}$ contour runs across the Goshi River for the purpose of making the diversion facilities small.
5. As the cofferdam near Goshi is only used for retarding the peak discharge of flood, it is allowed for the cofferdan to be over-topped without any diversion facilities. After the completion of the main dam, the cofferdam is removed.
6. It is said that the value of specific discharge exponentially decreases as catchment increases, that is, the specific discharge of the Rare is greater than that of the Mwachi. However, the specific discharge estimated for the Mwachi is applied to predict the flood discharges for the Rare dan, because the Rare River is located in the drier area than the Nwachi River. The peak discharges predicted for the Rare dam are as follows;

Design flood for the diversion facilities;	$260 \mathrm{~m}^{3} / \mathrm{sec}$
Design flood for the spillway;	$1,305 \mathrm{~m}^{3} / \mathrm{sec}$
Probable maximum flood;	$1,905 \mathrm{~m}^{3} / \mathrm{sec}$

(RARE PLAN)
ESTIMATED 2000 DEMAND AND SOURCES OF SUPPLY

AREA		Total Demand $\left(m^{3} / d\right)$	$\begin{gathered} \text { Mzima } P / L \\ \left(\mathrm{~m}^{3} / \mathrm{d}\right) \\ \hline \end{gathered}$	SOURCES OF SUPPLY		$\begin{gathered} \text { Sabaki P/L } \\ \left(\mathrm{m}^{3} / \mathrm{d}\right) \end{gathered}$	
		Marere P / L Tiwi B. H. $\left(\mathrm{m}^{3} / \mathrm{d}\right)$		$\begin{gathered} \text { Rare } P / L \\ \left(\mathrm{~m}^{3} / \mathrm{d}\right) \\ \hline \end{gathered}$			
1.	Mombasa Is.		75,000	-	-	75,000	-
2.	West Mainland	64,000	13,780	-	50,220	-	
3.	North Mainland	53,000	-	-	35,500	17,500	
4.	South Mainland	21,500	-	-	21,500	-	
5.	Kilifi District Coast	54,500	-	-	-	54,500	
6.	Kilifi District South	5,500	5,500	-	-	-	
7.	Kwal District North	1,500	1,500	-	-	-	
8.	Kwal District Central	5,500	5,500	-	-	-	
9.	Kwal District South	30,000	-	19,500	10,500	-	
10.	Taita District	9,720	9,720	-	-	-	
		320,220	36,000	19,500	192,720	72,000	

Sizes and capacities of major components

Intake Facility and Pumping Station

Raw Water Transmission Main

Rare Water Treatment Plant
a) Receiving/Distributing Tank
b) Flocculation and Sedimentation Basins
c) Filters

- RC construction intake with two separate gates and intake conduits
- 9 vertical turbine pumps:
$3 @ 19.1 \mathrm{~m}^{3} / \mathrm{min}$ with 390 kw motors $6038.2 \mathrm{~m}^{3} / \mathrm{min}$ with 750 kw motors
- 4.5 km long, $1,500 \mathrm{~mm}$ dia rising main from intake pumping station to treatment plant
- Plant capacity for maximum output is $250,000 \mathrm{~m}^{3} / \mathrm{day}$, while in Phase I $100,000 \mathrm{~m}^{3} /$ day and $150,000 \mathrm{~m}^{3} /$ day in Phase II.
- Description of treatment plant elements are in the followings.
- An RC circuler tank with 1 min ditention time for total influent of $250,000 \mathrm{~m}^{3} /$ day
- 6 rectangular tanks for the max capacity with one unit of stand-by
- Coagulation with aluminum sulphate with provisions for addition of sodium carbonate
- 30 rapid gravity filters with water back/surface washing and with total output capacity of 250,000 $m^{3} /$ day

d) Chemicals	- Plant would include facilities for storing, preparing, feeding alum, lime, sodium carbonate and chlorine
e) Administration and Operation Building	- Administration building with wash water tank on the top
Transmission Pumping Station	- An RC construction pumping station - 9 horisontal turbine pumps: $3017.4 \mathrm{~m}^{3} / \mathrm{min}$ with 570 kw motors $6 @ 34.8 \mathrm{~m}^{3} / \mathrm{min}$ with $1,100 \mathrm{kw}$ motors
Transmission Main	- $1,500,1,200$ and $1,000 \mathrm{~mm}$ dia pipes with total length about 78 km - Line valves and controlling points at about 5 km intervals - Air valves and washouts as required by profile with approx. 3 per 2 km
Break Pressure Tank and One-way Surge tanks	- 2 one-way surge tanks as required on the P / L - Rabi balancing tank at $20,000 \mathrm{~m}^{3}$
Storage Reservoirs	- New Mazeras reservoirs at $30,000 \mathrm{~m}^{3}$ - Nguu Tatu reservoirs at $170,000 \mathrm{~m}^{3}$ - Kaya Bombo reservoirs at $100,000 \mathrm{~m}^{3}$ - Voi reservoir at $20,000 \mathrm{~m}^{3}$ - Taru reservoir at $20,000 \mathrm{~m}^{3}$ - Mariakani reservoir at $20,000 \mathrm{~m}^{3}$
Subsidiary P/L	- 600 men dia, $28,000 \mathrm{~m}$ - 450 mm dia, $17,000 \mathrm{~m}$ - 350 mm dia, $53,000 \mathrm{~m}$ - Materials suitable for max. working pressure $12.5 \mathrm{~kg} / \mathrm{cm}^{2}$ including surge surplus

ANNEX : $406-2$

INTAKE PUMPS

(NOT TO SCALE)
rare intake and pumping station general plan

Water Quality Standard

(WHO and Japanese Standards for Drinking Water)

Substance or characterist		ghest ble Ieve	dards Maximum Pemissible	Japanese Standards
Color as Pt.co.	unit	5	So	Max. 5
Turbidity	FTU	5	25	Max. 2
Total Solids	mg/l	500	1500	Max. 500
pH		7-8.5	6.5-9.2	Fron max. 8.6 to min. 5.8
Detergents	$\mathrm{mg} / 1$	0.2	1.0	
Mineral oil	mg / l	0.01	0.3	-
Phenol	mg/l	0.001	0.002	Max. 0.005
```Total Hardness (as CaCO3)```	$\mathrm{mg} / 1$	100	500	Max. 300
calcium as Ca	$\mathrm{mg} / 1$	75	200	-
Magnesium as Mg	$\mathrm{mg} / \mathrm{l}$	30	150	-
Chloride as cl2	rag/l	200	600	Max. 200
Copper as Cu	$\mathrm{mg} / 1$	0.05	1.5	Max. 1.0
Total Iron as Fe	mg/l	0.1	1.0	Max. 0.3
Manganese as Mn	$\mathrm{mg} / \mathrm{l}$	0.05	0.5	Max. 0.3
Sulfates as SO4	$\mathrm{mg} / 1$	200	400	-
Zinc as Zn	$\mathrm{mg} / 1$	5	15	Max. 1.0
Coliforn Groups	$/ 100 \mathrm{ml}$	-	-	Not to be detected
Total Bacteria	$/ 1 \mathrm{ml}$	$\cdots$	-	Max. 10

Note : The water quality is recomended to conform to criteria established by who. These criteria may be superseded by local standards.



(RARE PLAN)
DISTRIBUTION RESERVOIR CONSTRUCTION SCHEDULE

	Location	System Name	$\begin{aligned} & \text { Existing } \\ & m^{3} \end{aligned}$	Provision   in 2000   $\mathrm{m}^{3}$	Total $\mathrm{m}^{3}$
1.	Mazeras	Mzima P/L	81,000	13,6001/	81,000
2.	Changamwe	1	29,600	13,600-1	43,200
3.	Nguu Tatu	Sabaki P/L	9,100	170,000	270,100
		Rare P/L	18,000		
4.	Voi	Mzima	580	10,000	10,580
5.	Kaya Bombo	Marere P/L	1,125	100,000	101,125
		Mwachi P/L			
6.	Tiwi	Tiwi B.H.	2,250	-	2,250
7.	Mazeras II	Mwachi P/L	-	30,000	30,000
8.	Taru	Mzima P/L	--	20,000	20,000
9.	Mariakani	"	-	20,000	20,000
10.	Ribe Tank	Rare P/L	-	20,000	20,000
	Total		141,660	383,600	525,260

Note: 1/ Sabaki P/L project.

## MAIN features of rare reservoir with p/h

Item	Development Scale	
	$1.5 \mathrm{~m}^{3} / \mathrm{sec}$	$2.5 \mathrm{~m}^{3} / \mathrm{sec}$
Dam		
Catchment ( $\mathrm{km}^{2}$ )	1,500	1,500
Type of dam	rockfill	rockfill
Height (m)	31	33
Reservoir effective storage ( $10^{6} / \mathrm{m}^{3}$ )	16.8	27.6
Fill volume ( $10{ }^{3} \mathrm{~m}^{3}$ )	306	380
Design flood ( $\mathrm{m}^{3} / \mathrm{sec}$ )	1,305	1,305
Diversion canal		
Length (km)	40	40
Excavation ( $10^{3} / \mathrm{m}^{3}$ )	1,084	1,339
Capacity ( $\mathrm{m}^{3} / \mathrm{sec}$ )	8.0	13.3
Water supply facilities		
Pumping station (units)	2	2
Intake pumps (units) ( $019.1 \mathrm{~m} 3 / \mathrm{min}$ )	3	3
(038.2 m $\mathrm{m}^{3} / \mathrm{min}$ )	3	6
Transmission pumps (units) (017.4 $\mathrm{m}^{3} / \mathrm{min}$ )	3	3
(@34.8 m ${ }^{3} / \mathrm{min}$ )	3	6
Raw water main P/L,		
Diameter (mm) and length (km)	1,200mm-4. 5 km	1,500m-4.5km
Treatment plant ( $055,000 \mathrm{~m}^{3} / \mathrm{d}$ ) (units)	3	5
Transmission main P/L		
Diameter (mm) and length (km)	1,200mm-51 km	1,500mm-51km
	1,000mar-18km	1,200 $\mathrm{mm}-18 \mathrm{~km}$
	$800 \mathrm{~mm}-9 \mathrm{~km}$	1,000mm- 9 km

COST ESTIMATES OF RARE RESERVOIR WITH P/I


ANNEX 5503-2
Page 1 of 2
ECONOMIC COSTS ESTIMATED FOR WATER FACILITIES AND CIVIE WORKS ON RARE RESERVOIR WITH P/L,

Development Scale: $2.5 \mathrm{~m}^{3} / \mathrm{sec}$
Items Unit Quantity $\quad$ Unit Price Amount Unit Price Amount
A. Water Supply Facilities

1. Pumping Equipment
(Intake/Transmission)
$1.651 .0 \quad 5,405.0$
2. Raw Water Main $\mathrm{P} / \mathrm{L}$
$m \quad 4,500 \quad 373.8$
$1,682.0$
$740.5 \quad 3,332.0$ $\$ 1500$
3. Treatment Plant
L.S.
$24,734.0$
9,654.0
4. Transmission Main P/L m

$\phi 1500$		51,000	373.8
$\phi 1200$	m	18,000	157.6
$\phi 1000$	m	9,000	126.5


$19,063.8$	740.5	$37,765,5$
$2,836.8$	498.1	$8,964.9$
$1,138.5$	351.6	$3,164.6$
$3,112.3$		$2,160.0$

Power Supply Facilities L.S.
$\begin{array}{ccccc}\text { Reservoirs } & 30,000 \mathrm{~m}_{3}^{3} & \text { units } & 8 & 1600 \times 10^{3} \\ & 20,000 \mathrm{~m}_{3}^{3} & 1 & 6 & 1400 \times 10^{3} \\ & 10,000 \mathrm{~m}^{3} & 1 & 1 & 750 \times 10^{3}\end{array}$
$12,800.0$
$8,400.0$
750.0
Miscellancous
L.S.

1,045.6
Sub-Total
49,147.0
$52,056.0$
5. Communication Equipment L.S.
300.0
800.0
6. Subsidiacy P/L $\varnothing 600$ $\$ 450$ $\$ 350$ m 43,000 $\quad 37.3$

Sub-Total
B. Dam
7. General Item
L.S.
$3,282,0$
$1,457.0$
8. Sabaki intake and diversion channel

Excavation	$\mathrm{m}^{3}$	$1,338,500$	6	$8,031,0$	3	$4,015.5$
Stone pitching	$\mathrm{m}^{2}$	722.600	2	$1,445.2$	1	722.6
Sabaki intake	L.S.			$7,000.0$		$2,500.0$
Miscellaneous	L.S.		$3,184.8$	936.9		
Sub-Total			$19,661.0$	$8,175.0$		

ANNEX 5503-2
Page 2 of 2


BREAKDOWN OF O\&N COST ON RARE PLAN

Unit: us\$103
Development Scale: $2.5 \mathrm{~m}^{3} / \mathrm{sec}$

Year	Proposed System Supp1v. $\mathrm{m}^{3 / d}$	Staff   Salary	Chemical	Repair	Blectricity	Total
1986	1,990	108.1	12.85	107.0	40.05	268.00
1987	5,510	:	35.62	:	110.91	361.63
1988	8,480	:	55.05	-	171.14	441.29
1989	12,000	:	77.67	:	241.53	534.30
1990	18,400	:	119.09	,	370.35	704.54
1991	28,000	:	193.65	:	602.19	1,010.94
1992	39,890	:	268.20		834.03	1,102.23
1993	52,000	:	342.76		1,065.86	1,623.72
1994	63,990	:	417.31		1,297.70	1,930.11
1995	75,990	210.7	491.87		1,529.54	2,339.11
1996	89,760	:	595.48		1,851.75	2,764.93
1997	106,010	:	699.09		2,173.95	3,190.74
1998	121,990	:	802.70		2,496.16	3,616.56
1999	138,000	:	906.31	-	2,818.36	4,042.37
2000	155,600	:	1,009.92	:	3,140.57	4,468.19
2001	170,490		1,087.56	:	3,382.01	4,787.27
2002	186,500	:	1,165.19	.	3,623.45	5,106.34
2003	202,480	-	1,242.83	:	3,864.90	5,425.43
2004	214,660		1,320.46	:	4,106.34	5,426.80
2005	216,000		1,398.10		4,347.78	6,063.58
	!	:	-	:	!	!
2035	:	*	-	-	-	

FINANCIAL COST ESTIMATES OF RARE RESERVOIR WITH RARE P／L Cnit：USS $10^{3}$



呙吉品筑呙荡
 ．Transmission main $P / t$ including trans． pumping st．and distribution res． Communication equip．
Capital Cost
A．Water Supply Pacilities
Pumplag equipments
Rav vater main $P / L$
in in $\dot{n}$
6．Subsidiary $9 / 5$
Dam
7．General items
8．Sabaki intake
10．Main dam and
Spilivay
3．Sabaki intake and diversion canal
12．Rivar outhet facilities
C．Engineering and Adm．
D．Physical Contingency
apital cost Total
E．Price Contingency
F．Financial Cast Total

RARE RESERVOIR WITH P/L PLAN COST AND WATER VOLUME STREAMS

Unit: US\$ $10^{6}$
Development scale: $2.5 \mathrm{~m}^{3} / \mathrm{sec}$


Unit: US\$ $10^{6}$
Development scale: $2.5 \mathrm{~m} / \mathrm{sec}$

End of fiscal year	No.	Water volume $10^{6} \mathrm{~m}$	$\begin{gathered} \text { Capital } \\ \text { cost } \end{gathered}$	$\begin{gathered} 0 \& M \\ \cos t \end{gathered}$
2010	25	78.84	5.2	6.1
11	26	-	1.1	:
12	27	:	-	:
13	28	:	-	:
14	29	:	-	:
15	30	:	4.0	:
16	31	:	44.7	:
17	32	:	-	:
18	33	:	-	:
19	34	:	- -	:
2020	35	!	1.1	:
21	36	:	3.9	:
22	37	:	-	:
23	38	:	-	:
24	39	:	-	:
25	40	:	7.8	:
26	41	$\vdots$	69.5	:
27	42	:	-	:
28	43	:	-	:
29	44	:	-	:
2030	45	:	3.9	:
31	46	:	-	:
32	47	:	-	:
33	48	!	-	:
34	49	,	$\cdots$	
2035	50	78.84	--	6.1

Discount rote $6 \%$



Movement of Optimal Development Scale by Changing Tariff


Movement of Optimal Development Scale by Changing Tariff


Movement of Optimal Development
Scale by Changing Tariff


Development by the Rare Plan, $\mathrm{m}^{3} / \mathrm{sec}$
Movement of Optimal Development
Scale by Changing Tariff


Return on Investment on the Development (Rare Plan) Scole of $2.5 \mathrm{~m}^{3} / \mathrm{sec}$


## RARE P/L WITH RARE RESERVOIR PLAN <br> (FIRST PHASE DEVELOPMENT)

FINANGIAL INTERNAL RATE OF RETURN

No.	Fiscal Year	Capital Cost			OsM Cost	Gross Revenue	Unit: US\$10 ${ }^{3}$
			F.C.	L. C.			Net Benefit
1	1983		19,236	27,844	-	-	-47,080
2	1984		81,521	122,447	-	--	-203,968
3	1985		36,004	56,132	-	-	-92,136
4	1986		-	-	498	1,251	753
5	1987		-	-	673	3,463	2,790
6	1988		-	-	821	5,348	4,527
7	1989		-	-	994	7,542	6,548
8	1990		5,352	14,871	1,310	11,313	-10,220
9	1991		5,352	14,871	1,666	17,604	- 4,285
10	1992		-	-	2,118	25,146	23,028
11	1993		-	-	2,692	32,688	29,996
12	1994		-	-	3,422	40,230	36,808
13	1995		-	-	4,351	47,773	43,422
14	1996	(R)	5,859	1,866	4,904	53,846	41,217
15	1997		-	-	4,937	54,209	49,272
16	1998		-	-	:	:	:
17	1999		-	-	:	;	
18	2000		-	-	:	:	49,272
19	2001	(R)	12,454	4,261	-	-	32,557
20	2002		-	-	4,937	54,209	49,272
		Discount Rate			Net Benefit		
		0\%			+110,317		
		2\%				, 154	
		$3 \%$				, 195	

Remarks: (R) stands for Replacement Cost
projected income statements for rare p/i witi rare reservoir plan

No.	Year	$\begin{aligned} & \text { Water Sold } \\ & \left(10 \mathrm{~m}^{3}\right) \end{aligned}$	Average Water Rate (Ksh/m ${ }^{3}$ )	Operating Revenue	Operating Expense		Income Before Interest	Unit: USS $20^{3}$		
							Interest Payment	Net Income		
				Water Sales	O\$M Cost	Depreciation				
1	1983	-	-	-	-	-		-	-	-
2	2984	-	-	-	-	-	-	-	-	
3	1985	-	-	-	-	-	-	-	-	
4	1986	690	13.6(\$2.813)	2,251	498	25,351	-24,598	11,264	-35,862	
5	1987	1,910	;	3,463	673	:	-22,561	10,912	-33,473	
6	1988	2,950		5,348	821	.	-20,824	10,545	-31,369	
7	2989	4,160		7,542	994		-18,803	10,129	-28,932	
8	1990	6,240		11,313	1,310		-15,348	9,698	-25,046	
9	1991	9,710	¢	27,604	1,666	,	- 9,413	9,235	-18,648	
10	2992	13,870		25,146	2,118	:	- 2,323	9,581	-11,904	
11	1993	18,030		32,688	2,692		4,645	9,029	- 4,384	
32	1994	22,190		40,230	3,422		11,457	8,412	3,045	
13	1995	26,350	:	47,773	4,351		18,071	7,762	10,309	
14	1996	29,700		53,846	4,904		23,591	7,060	16,531	
15	1997	29,900		54,209	4,937		23,921	6,734	17,187	
16	1998	:	:	:	:	:	.	5,921	18,000	
17	1999	:	:	:	:	:	:	5,039	18,882	
18	2000	:	:	:	:	:	:	4,093	19,828	
19	2001	:		:	:	:	:	3,076	20,845	
20	2002	:	:	:	:	:	:	2,880	21,041	

PROFECTED CASH FLOW FOR RARE P/Z WTTM RARE RESEKVOTR PLAN (FIRST PHASE DEVELORMENT)

No,	Year	Income Sefore Interest	Depreciation	$\begin{aligned} & \text { Foreign } \\ & \text { Loan } \end{aligned}$	Government Equity	Tosal Source	Capital Cost		Debr Service		Total Appiscation	Increase in Cash	Cash ac End	Unie: US\$ $10^{3}$	
									Debr Service.						
							Foreign Currency	Local Currency			Incerest			Principal	Coverage
2	1983	-	-	19,236	27,844	47.080	29,236	27,844	$\bullet$	-		47,080	0	0	-
2	2984	-	-	81.321	122,447	203.968	82.522	222,447	-	-	203.968	0	0	-	
3	2985	-	-	36,004	56.132	92.236	36.004	56.232.	-	$=$	92.136	0	0	-	
4	1986	-24.598	25.351	-	$\cdots$	753	-	-	12. 264	4.713	15,977	-35.224	-15.224	0.047	
5	2987	-22.56	-	-	$=$	2,790	-	-	10,913	5.063	15,977	-13,187	-28.621	0.275	
6	2988	-20,824	:	-	-	4.527	-	-	20.545	5,432	15,977	-12,450	-39,861	0.283	
3	2989	-18,803	:	-	-	6.548	$\cdots$	-	10,129	5.848	15.977	- 9.429	-49.290	0.410	
8	2990	-15.348	:	5.352	14.871	30.226	3.352	14,871	9,698	6.279	36.200	- 3.974	-55.264	0.626	
9	2992	-9,623	:	5.352	14,872	36,162	5.352	24,871	9.235	6.742	36,200	- 39	-55.303	0.998	
10	2992	- 2,323	:	-	-	23.028	-	$=$	9,581	7.578	17.159	5.869	-49,434	1.342	
11	1993	4.645	:	$\bullet$	-	29.996	$*$	-	9.029	8,130	17,159	22.837	-36.397	1.748	
22	1994	11.437	:	$\cdots$	-	36,808	-	-	8.412	8.747	27.259	19,649	-16.948	2.245	
13	2995	28.071	:	-	-	43.422	-	-	7,762	9.397	27,359	26.263	9.315	2,332	
14	2996	23,591	:	-	$\cdots$	48,942	-	-	7,060	10.099	17,259	31.783	41.098	2.852	
15	2997	23,922	:	-	-	49,272	-	-	6,736	13.012	17,745	32.527	72,625	2.777	
16	1998	:	:	*	-	:	-	-	5.921	22,824	17.745	:	104.232	:	
17	2999	:	:	-	-	:	$\cdots$	*	5.039	12.706	17.745	:	135,679	?	
28	2000	:	-	-	-	:	-	-	4,093	13.652	27.745	*	167.206	!	
19	2002	:	:	$\cdots$	-	:	*	-	3,076	14,669	17.745	32,527	298.733	2.777	
20	2002	:	:	-	*	:	-	-	2.880	26.212	18,991	30.281	229.01	2.334	

## rare p/a With rare reservoir plan (FULL DEVBLOPMENT) <br> FIRR CALCULATION

No.	Capital $\operatorname{Cos}$ t					Gross Revenue	Net Benefit
	Fiscal Year		F.C.	L.C.	OSM Cost		
1	1983		19,236	27,844	-	-	-47,080
2	1984		81,521	122,447	-	-	-203,968
3	1985		36,004	56,132	-	-	-92,136
4	1986		-	-	498	1,251	753
5	1987		-	-	673	3,463	2,790
6	1988		-	-	821	5,348	4,527
7	1989		-	-	994	7,542	6,548
8	1990		5,352	14,871	1,310	11,313	-10,220
9	1991		5,352	14,871	1,666	17,604	- 4,285
10	1992		-	-	2,118	25,146	23,028
11	1993		4,067	17,417	2,692	32,688	8,512
12	1994		4,067	17,417	3,422	40,230	15,324
13	1995		-	-	4,351	47,773	43,422
14	1996	(R)	5,859	1,866	4,952	56,584	43,907
15	1997		-	-	5,636	66,646	61,010
16	1998		4,067	8,632	6,415	76,690	57,576
17	1999		4,067	8,632	7,302	86,752	66,751
18	2000		-	-	8,311	96,814	88,503
19	2001	(R)	12,454	4,261	8,834	107,185	81,636
20	2002		-	-	9,390	117,247	107,857


Discount Rate	Net Benefit
$0 \%$	$+254,455$
$3 \%$	$+39,432$
$4 \%$	$-2,225$

FIRR 3.95\%

Remarks: (R) stands for Replacement Cost
PROJECTED INCOME STATEMENTS FOR RARE P/L WITH RARE RESERVOIR PLAN

Unit: US\$10									
No.	Year	$\begin{aligned} & \text { Water Sold } \\ & \left(10 \mathrm{~m}^{3}\right) \end{aligned}$	Average Water Rate (Ksh/m ${ }^{3}$ )	Operating   Revenue	Operating Expense		Income Before Interest	Interest Payment	Net Income
				Water Sales	0¢M Cost	Depreciation			
1	1983	-	-	-	-	-	-	-	-
2	1984	-	-	-	-	-	-	-	-
3	1985	- -	- -	-	-	-	-	-	-
4	1986	690	13.6(\$1.813)	1,251	498	29,100	-28,347	11,264	-39,611
5	1987	1,910	- :	3,463	673	:	-26,310	10,912	-37,222
6	1988	2,950		5,348	821		-24,573	10,545	-35,118
7	1989	4,160		7,542	994	-	-22,552	10,129	-32,681
8	1990	6,240		11,313	1,310	:	-19,097	9,698	-28,795
9	1991	9,720		17,604	1,666		-13,162	9,235	-22,397
10	1992	13,870		25,146	2,118		-6,072	9,581	-15,653
12	1993	18,030		32,688	2,692		896	9,029	-8,133
12	1994	22,190		40,230	3,422		7,708	8,412	- 704
13	1995	26,350		47,773	4,351		14,322	8,414	5,908
14	1996	31,210		56,584	4,952	.	22,532	7,693	14,839
15	1997	36,760		66,646	5,636		31,910	7,347	24,563
16	1998	42,300		76,690	6,415		41,175	6,514	34,661
27	1999	47,850		86,752	7,302	.	50,350	5,608	44,742
18	2000	53,400		96,814	8,311		59,403	5,290	54,113
19	2002	59,320		107,285	8,834		69,251	4,228	65,023
20	2002	64,670	:	117,247	9,390	:	78,757	3,983	74,774

PROTECTED CASH FLON YOR RARE P/L WTMH RARE RESERVOIR PLAN (FULL DEVELOPMENT)

No	Year	$\begin{aligned} & \text { Income Before } \\ & \text { Incerese } \end{aligned}$	Depreciation	Foreign Loan	Government Equity	Total Source	Capteal cost		Debt Service		Tocal Applicaeton	Increase   in Cash	$\begin{gathered} \text { Cash st } \\ \text { End } \end{gathered}$	Debt Service Coverage
							Foreign Currency	Losa! Currency.	Interest	Princtaal				
1	2983	-	--	29,236	27.844	47,080	19,236	27.844	-	-	47,080	0	0	-
2	1984	-	-	81.522	122,467	203.968	82,521	122,447	-	-	203.968	0	0	-
3	1985	-	$=$	36,004	56.232	92,136	36,004	56,132	-	-	92,236	0	0	-
4	2986	-28.347	29,100	-	-	753	-	-	21,264	4.713	15.977	-15.224	-25.224	0.047
5	1987	-26.310	:	-	-	2.790	-	-	10,912	5,065	15.977	-13,187	-28.412	0.275
6	1988	-26.573	,	-	-	4,527	-	-	10,545	5,432	25.977	-11.450	-39,861	0.283
7	1989	-22.552		-	-	6.548	-	-	10,129	5.848	25.977	- 9,429	-49,290	0.610
8	1990	-29.097		5,352	14,871	30.226	5,352	24.872	9,698	6,279	36,200	- 5.974	-55.264	0.626
9	1992	-13.162		5.352	24.872	36.262	5,352	24,872	9,235	6.742	36,200	- 39	-55,303	0.998
20	1992	- 6.072	(	-	-	23.028	-	-	9.581	7.578	17.259	5.869	-49,634	1.342
11	2993	896		4.067	17.427	52,480	4,067	27.417	9,029	8,130	38.643	12,837	-36,597	1.748
12	1994	7,708		4.067	17.427	58.292	4.067	27.417	8.422	8,747	38.643	29.649	-16.948	2.145
23	1995	24.322		-	-	43,422	-	-	8.414	9.643	28,057	25,365	8,417	2.405
14	2996	22.532		-	*	51,632	-	-	7.693	10.364	28,057	33.575	43,992	2.859
15	1997	32.910		-	-	61.010	-	-	7.347	11,296	28.643	42.367	84.359	3.273
16	1998	41,275		4.067	8,632	82,974	4.067	8,632	6.514	12.129	31,342	51,632	135.992	3.770
17	1999	50.350		4,067	6.632	92,149	4,067	8,632	5,608	13,035	31.342	60.807	196.798	4.262
18	2000	59,403		-	-	88,503	-	-	5,290	24,251	29.541	68.962	265,760	4.529
19	2002	69,251		-	-	98,351	-	-	4,228	25.313	29,542	78.810	344.570	5.033
20	2002	78.757	-	-	-	107.857	-	-	3,983	26,804	20.787	87.070	432.640	5.189



$0.51(0.87)$
DISCOUNT WATE : OERCFNT 10
TARIFF, KSH (IIS OOILAR)

## STAGF DEVELOPMENY

 $\begin{array}{llllll}0 & - & 0 & - & M & - \\ \div & \cdots & 0 & 0 & 0 & 0 \\ i & 1 & 1 & 1 & 1 & 1\end{array}$
#### Abstract

   $$
M \neg \text { IMA OLAN }
$$



$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ \div & 0 & 0 & 0 & 0 \\ 0 & 0\end{array}$

$\begin{array}{llllll}n & \rightarrow & x & \cdots & o r & 5 \\ < & - & - & - & - & -\end{array}$
$\cdots \quad n \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$
$\therefore \therefore \therefore \therefore \therefore \therefore$
****

$$
\begin{aligned}
& \dot{\circ} \dot{G} \dot{c} \dot{c} \\
& \dot{\circ} \dot{C} \dot{c} \dot{c}
\end{aligned}
$$

$$
* * *
$$

$$
\dot{0} \dot{\therefore} \dot{\therefore} \dot{c}
$$

$$
\begin{array}{llllll}
k & c & m & m & m & i \\
k & m & m & i & \cdots & n \\
k & m
\end{array}
$$

WATER SUPPLY AUGMFNTATION FAOJFGT OF YONRGSA-CMASTAL AREAOHINYFRLAND
STAGE DEVELDPMENT


*ANNEX 6301-2
WATER SUDEGY AUGNENTATEON DRCJEGT OF NONGASA-COASTAL AREA-HYNTFDLAND

stagf dfvelonmment

> ANNEX 6301-3

ANNEX

$$
* * * * * * * *
$$

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & - & \div \\
0 & - & 0
\end{array}
$$

WATER SUPDLY AUGNFNYATION POOJFCT OF UOBGASAGCOASTAL AREAOHINTFRLAND
WATER SUPDLY AHGMENYATPON OWOJFCT OF UOMGSSA-COASTAL AREAGHINYFRLAND



## (9.07) <br> 8.90



$$
\begin{aligned}
& \text { STAGE DFVELODNENT } \\
& * * * * * * * * * * * * * * * * * *
\end{aligned}
$$

$$
* \star * * * * * * * *
$$

$$
\begin{aligned}
& * * * * * * * * * * * * * \star * *, \\
& \star * * * * * * * * * * * * * * \\
& ?
\end{aligned}
$$

$$
* * * * * * * * * * *
$$

$$
\begin{aligned}
& * * * * * * * * * * * * * * * * * * * * * * * * * \\
& \text { OAFF PLAN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEN RENEFIT } \\
& \text { MIL. DOL. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? } \\
& \begin{array}{l}
* * * * \\
* * * * * * * *)
\end{array}
\end{aligned}
$$

WATER SUPDIY AUGMFNTAYTON DROJFCT OF WDBASAOCOASTAL AREAOKINTERIANO

## TARIFFASSH (US ONLLAN) R.59 (1.13)







ANNEX 6301-S
WGTER SUPELY AUGWFATATTO: DRCJECT OF BONRASA-COASTAL AREAOHITTFRLAND


## STAGE DEVFLOOMENT


ANNUAL
NFT BENEFIT
$+$
ANNEX
6301-6

$(1.20)$

$$
\because \text { KTMA DIAV } \quad \text { RARF PLAN }
$$

$$
\begin{gathered}
* * * * * * * * * * * * * * * * * * * * * * * * * * * ~ \\
? \\
?
\end{gathered}
$$

$$
* * * * * *
$$

- 

$$
\begin{aligned}
& 4 * * * * * * \\
& 4 \\
& 0.4
\end{aligned}
$$

$$
\frac{2}{2}
$$

$$
\star \star * \star *
$$

$$
\begin{gathered}
\Sigma \\
\times 4 \times 4
\end{gathered}
$$

$$
\underset{*}{*} \dot{*} \dot{*} \dot{\therefore} \dot{x} \dot{x} \dot{c}
$$

$$
\therefore \dot{\therefore} \dot{\therefore} \dot{\therefore} \dot{\therefore}
$$

$$
\begin{aligned}
& \text { OFVELOQO } \\
& \text { UEVTSCALE } \\
& \text { IVGS }
\end{aligned}
$$

$$
\star \star \star \star * * * * *
$$

$9.7 n$

$$
\underset{y}{* * * * * * * * * * *}
$$

$$
\begin{array}{r}
* * * * \\
1
\end{array}
$$

$$
k \star * * *
$$

$$
* * * * * * * * * *
$$

$$
\begin{aligned}
& \begin{array}{l}
\circ \\
\\
\circ
\end{array} \\
& \begin{array}{l}
\sim \\
\sim \\
\sim
\end{array}
\end{aligned}
$$

WATFR SUPGLY NBGMENTATTOS DGOJECT OE MOMGASA-COASTAL APEA-HINTEPLAND




OBJECTIVE FUNCTION AND DYNAMIC PROGRAMMING-1

1. The problem whether the limited resources available are allocated in efficient ways is arisen in many fields. Though the problem given is quite simple, there are many difficulties encountered in treating this apparently simple and straightforward problem.
2. For tackling the problem mentioned above, it is necessary to express the problem in the precise mathematical form. The problem is expressed as follows;
(1)

$$
R\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)+\ldots .+g_{n}\left(x_{n}\right)
$$

subject to
(2) (a) $x_{1}+x_{2}+\ldots . .+x_{n}=x$,
(b) $x_{i} \geq 0$
where $x_{i}$ denotes the quantity of resources assigned to the $i$ th activity, $g_{j}\left(x_{i}\right)$ is the return function from the $i$ th activity and $R(\cdot)$ is the objective function. The problem is to maximize Eq. (1) under the constraints of Eq. (2).
3. It can be considered that the above problem is solved by calculus using a lagrange multiplier or by linear programming. However, in calculus the return function must be expressed in the functional form. Even though the return function can be expressed in the functional form, the problems that are arisen in applications are usually less amenable to route techniques. In linear programming, the objective function and constraints of Eq. (1) and (2) must be expressed in a linear function. As the technique called dynamic programing developed by R.E. Bellman is applicable to the problems which are not solved by calculus or linear programing, dynamic programing is applied to the optimization study.
/1 R.E. Bellnan, Applied Dynamic Programing, Princeton University Press, Princeton, New Jersey, 1962.
4. Dynamic programing is explained by the classifical stagecoach problem. A coward salesman must travel the teritory of unfriendly Indian 100 years ago. Though his starting point and destination is fixed, he can travel by some combination of the routes avallable as shown page 4 of 5 of the ANNEX. He likes to travel the Indian teritory by the safest route.
5. The figure written between the numbered blocks is the cost to buy the life insurance policies offered to stagecoach passengers. The safest route is defined as the cheapest route to buy life insurance policy.
6. It is possible to find the chepest route by evaluating all the possible routes. Howevex, if the problem is large and complex, it takes much time, even though it not impossible to find the cheapest route by evaluating all the possible routes. For saving the computation time, the problem is solved by dynamic programoing.
7. The procedures to find the cheapest route by dynamic programing are as follows. First, the numbered blocks are defined as "state" and there are five stage from the starting point to the destination. The cheapest route from the first stage to each state of the second stage is fixed like 1-2, 1-3 and 1-4. The cost to buy the life insurance policy is shown in the block with parenthesis. The cheapest route from the second stage to "state $5^{\prime \prime}$ of the third stage is obtained by comparing the sum of the current cost from each state of the second stage to the state 5 and the cheapest cost upto each state of the second stage, so that the cheapest route to come "state 5 " is 1-2-5 and the cost is 5 .
8. By the proceduce mentioned above, the cheapest route on each state of each stage ls obtained. There is only one way to come "state 10 " from the forth stage, so that the cheapest route from "state 1 " to "state $10^{\prime \prime}$ is exclusively determined and the route is traced back by the arrows of the reverse direction.
9. The objective function to maximize the difference between benefits yielded from the projects and costs charged to the project is mathematically expressed as follows;

$$
\max \sum_{j} \sum_{i}(B i j-C i j)
$$

subject to

$$
\begin{aligned}
& \sum_{i} X i j \leq X j, \\
& \underset{j}{\sum} \sum_{i} X i j \leq Y \text {, and } \\
& \mathrm{Xij} \geq 0
\end{aligned}
$$

where $X i j$ is the development scale of $i$ stage on the $j$ plan and $X j$ is the physical limit of the $j$ plan. For the development scale selected arbitrarily $Y$, the maximum net benefit is searched. It is quite hard to find the maximum value of the above equation, because the numerical combinations can be conceivable. To overcome this situation, applied is dynamic programming.
10. A computer program of the optimization study is made by dynamic programing. The flow chart of it is shown in page 5 of 5 of the ANNEX.



ANNEX 6401

DEVEZOPMENT SCHEDULE OF RARE PLAN


## COAST PROVINCE WATER BRANCH ORGANIZATION



## MINISTRIES AND AGENCIES INVOLVED IN COMAUNITY WATER SUPPLIES

a. The Nairobi City Council is responsible for the water supply and sevage systens of Nairobi.
b. Five municipalities and two county councils operate their urban water supply systems under the direction of the Ministry of local Government.
c. Several hundred small rural water supply schenes axe operated by county councils.
d. The Kenya Railways operates about 100 water schemes supplying staff houses and adjacent villages.
e. The President's office plans and budgets water supplies for new settlement areas, usually with the fater Engincering Department of MOWD as the executing agency.
f. The Ministry of Cooperative Develonent administers govermment grants to all self-help schemes in rural areas.
9. The Ainistry of Health is responsible for potable water supply quality surveillarice from the commanty-health point of view.

## main features of the second mzima plan and the rare plan

|  | Items | Second Mzima Plan | Rare Plan |
| :---: | :---: | :---: | :---: |
| 1. | Developrnent Scale (m3/s) | 1.2 | 2.5 |
| II. Dam and Reservoir |  |  |  |
|  | Catchment Area ( $\mathrm{km}^{2}$ ) | 4,050 | 1,500 |
|  | Type of Dam | Rockfil1 | Rockfill |
|  | Height of Dam (m) | 34 | 33 |
|  | Reservoir Effective Storage ( $10^{6} \mathrm{~m}{ }^{3}$ ) | ) 21 | 27.6 |
|  | Fill Volume ( $10^{3} \mathrm{~m}^{3}$ ) | 450 | 380 |
|  | Design Flood ( $\mathrm{m}^{3} / \mathrm{s}$ ) | 1,550 | 1,305 |
| III. Diversion Canal |  |  |  |
|  | Length (km) | - | 40 |
|  | Excavation ( $10{ }^{3}{ }^{3}$ ) | - | 1,339 |
|  | Capacity ( $\mathrm{n}^{3} / \mathrm{s}$ ) | - | 13.3 |
| IV. | Water Supply Facilities |  |  |
|  | Raw Water Main P/L Diameter (mm) \& Length (kn) |  | 1,500mm - 4.5 km |
|  | Transwission Main P/L |  |  |
|  | $\text { Diameter (mm) \& Length (km) }\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$ | $\left\{\begin{array}{l} 1,350 \mathrm{~mm}-86 \mathrm{~km} \\ 1,100 \mathrm{~mm}-43 \mathrm{~km} \\ 1,000 \mathrm{~mm}-88 \mathrm{~km} \end{array}\right.$ | $\left\{\begin{array}{l} 1,500 \mathrm{~mm}-51 \mathrm{~km} \\ 1,200 \mathrm{~mm}-18 \mathrm{~km} \\ 1,000 \mathrm{~mm}-9 \mathrm{~km} \end{array}\right.$ |
|  | Pumping Station (unit) | - | 2 |
|  | Treatment Plant ( $055,000 \mathrm{~m}^{3} / \mathrm{d}$ ) (unit) | ) | 5 |
| V. Costs $/ 1$ |  |  |  |
|  | Economic Cost (US\$militon) | 270 | 274 |
|  | Foreign Currency Portion | 163 | 123 |
|  | Local Currency Portion | 107 | 151 |


| Items | Second Mzima Plan | Rare Plan |
| :---: | :---: | :---: |
| $\text { Financial } \operatorname{cost}^{(2}(U S \$ \text { militon) }$ | 421 | 452 |
| Foreign Currency Portion | 214 | 164 |
| Local Currency Portion | 207 | 288 |
| OSM Cost ${ }^{13}$ (Economic) (US $\$ 10^{3}$ ) | 101 | 6,064 |

VI. Evaluation
Return on Investment ${ }^{14}(\%)$
5.5
8.3
FIRR $/ 5$ (\%)
3.4
4.0
/1 Excluding replacement cost.
/2 Excluding replacement cost and interest during construction.
/3. Under full supply conditions.
14 When the estimated water rate of $5.6 \mathrm{KSh} / \mathrm{m}^{3}$ is applied to evaluate the water at the outlet of distribution reservoir.

15 When the water rate of $13.6 \mathrm{XSh} / \mathrm{m}^{3}$ is applifed under the same conditions as mentioned in/4.

3

H2.


[^0]:    Reparks: (l Based on case A projection made by Central Bureau of Statistics, June, 1971
    (2 Based on Case $B$ projection of the above

[^1]:    Notes: (1) Annual Average Base

[^2]:    /1 Scott-Wilson Kirkpatrik and Partners, "Draft Supplementary Report and Alternative Schemes for Supplying Water to Mombasa and the North Coast", July 1972.

