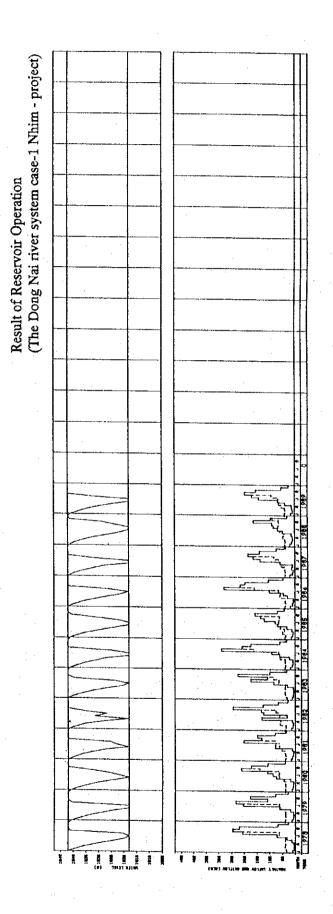
	ਉ	r 0	0	00	0	0.0) c	0	0	0	0 0	0	0	0	0.0) c	0	0	0.0	0	0.0) (0	0.0	0.0	0 0	0	0	0,0	9 0	0	0	000	0	0.0	0	0	0 0	9 0	0	0 0	000	0	0	9 6	, 0	0.0	000	
	roje	101 C		0.0	. 0	ο.				Α.	0.6			_	o (. .			_	ο.	ο.	n r	٠.		0	^ ·	٠.		0.6	. .		0.	n r	. 0	0.6	2 0	0	0.0		0	0 (o a	. 0	0	0 0		0.	00	
	4 - F	다 4 C 교 C		~ ~					_		-			•	•				_			•		•		_	-		Ψ,	-		_	-																
	Sesan4 - project)	,		363				0 0 0 0		371	372	24.0	375	376	377	4 7 4		0 0 04 04 04								0 0			41	7 Y Y		398			705	1 0 1 0 1 0	507	406			410	411	E 7	717	412	27.5	418	613	;
uo		4 0. 70 4	32.3	132.2	132.2	131.9	8	31.6	131.1	130.9	7.02.	100	130.0	130.0	8. 621	129.6	20.0	129.3	129.3	129.1	129.1	129.0	2 00	128.8	128.8	128.6	0.821	128.5	128.3	128.2	127.0	125.8	125.7	124.6	754.2	122.7	122.7	121.9	121.8	118.6	118.0	115.6		113.3	107.4	39.8	73.5	66.0	;
Result of Capacity Duration	(The Sesan river system case-5	DATE 2	5000	. 505	5205	. 905	5306	7087	900	3305	3707	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6807	704	2059	8306	2020	2406	5501	5206	7806	8906	900	8706	7606	5307	000	7607	9059	6907	2007	5912	7602	7601		7512						7801	6302	6401	6803	6802	7701	7703	,
acity	ver sy	NO. 10.						200																			100									n 4						122				0 to	358	9 20	}
of Cap	san ri	D. 7	'n	n n	v 0			6.07		٠,	m	7.0	38.6	38.6	38.5	339	7 20	3 P		18	38.2	37.9	37.7	37.6	27 4	37.3	37.3	26.9	36.8	36.7	0.9	36.0	9.0	0 10	15 1	24.9	34.6	34.2	0.48	33.6	33.6	7 . 4	יא מיני	131	23.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.9	32.8	2.
esult	The Se	ATE	4 4-4	8205 14		-	Η,			~	4	-1 +	4 4	-	-	Η.	н •	4004		+4	4-4	706 1		504	-	1 205	۲,	4.₽	-,	•••	-	-	۲, ۱	-	4-4	0 C	• •	**	200	1 -	_	-1 *	4 44	•	• • •	8705 1 3405	•	• • •	
~	€	٠.											224 82	٠.							_	^	. 00	768 855	^	0	eu .						-			283 75			287 66		290 78		244	-		96 687		92 66	
		•	242	243	777								0 Y			2	2	2 7		5 6	. ~	25	201	, ,	. ~	€.	27	20	2	5		173	5	2 2	58	200	88	25	55	ŭ 20	i či	~ 1	n o	. 6	2	200	, 70	m 1	ń
		o. į	147.6	147.5	147.5	247.5	147.4		7-751	147.1	146.9	146.8	9,4	7.66.		146.	146.1	571	10	1 10	145.3		145.0	144.5	144.		144.	144.	144.	144.	144.	777	143.	143.	277	143	141			142	142	142.	142	124	142.	142.	144	141.	141
*		DATE	8502	6102	6103	6701	7901	8801	8902	8212	7202	7102	8102	4707	8402	8602	8002	7711	9 6 6 6	0 0 0	7902	8503	8402	8807	8903	7803	8802	7002	6603	8905	9002	8303	6903	8606	7705	6502	2000	9307	7710	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6350	8603	5078 5084	8904	8003	6069	7903	7508	6203
		20.0	4 t	18	197	186	187	188	500	100	192	193	764	70	197	198	199	000	0 0	200	707	205	206	207	0 0	210	211	212	214	215	216	218	219	220	4 67 7 7 7 7 7 7	25.5	21 C 21 C 21 C 21 C	226	227	222	230	231	7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0	235	236	23.0	23.0	570
		o.	220.2	218.6	208.9	208.7	207.7	206.0	205.2	1007	198.2	197.9	197.8		187.2	187.0	187.0	186.8	186.1	1 00 0	100,	181	179 1	178.6	177.0	175.9	175.8	175.5	175.7	175.4	166.2	165.8	164.3	164.3	161.9	160 7	159.1	152.5	152.4	152.3	150.9	149.0	148.4	5 . E . T	148.2	148-1	147.9	147.9	147.8
		DATE	8105	6811	7212	4088	7105	9012	8206	6910 7610	7012	7301	9068	9104	11108	6101	7812	8312	6612	8/10	7000	8506	6211	7007	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6712	8201	7303	7177	8512	8099	6511	8912	8812	8101	7511	8701	8501	7302	7201	1100	7104	8712	7205	6911	8601	8001	6112	8202
		2	121	123	124	125	724	128	129	130	125	133	134	132	4 6	110	139	140	141	142	14.	1 17	146	147	7,0	7 1 2	151	152	ሳ ላ የ የ	155	156	157	7 17	160	4 6	161	164	1991	167	60 C) (A	171	172	173	175	176	777	179	180
		a.		338.3	338.1	337.7	328.5	328.1	325.5	318.5	318.4	318.3	317.6	317.5	7.000	307.4	306.2	301.9	301.5	297.5	297.2	24.7	286.3	286.2	286.1	787.0	279.0	275.7	274.6	268.5	245.6	265.1	263.8	263.5	263.3	254.1	253.6	0. W 4.	243.2	243.2	26.5	238.7	232.3	231.3	231.0	229.7	228.9	221.1	220.6
		DATE	7207	7206	7411	6609	8006	8510	4057	8008	8333	6309	6002	6111	1147	2409	8709	4707	7808	8907	6310		7111	6810	8210	27078	7408	8910	7211	76097	6412	8612	7410	6105	7305	6510	8611	7312	6711	7510	7 P 1 C	8007	7811	8012	7112	8607	8309	8811	8711
		S 0.	₽ 1		4	us a	01-				7.2		7.2											87				26			-	26				103							112	113	111	116	- T	110	120
		α.	86.8	386.8	86.8	86.8	0 4	86.8	86.8	86.8	20.00	86.8	86.8	36.8	86.0		386.8	86.8	8.98	86.8	86.8	20.00		7.98	185.8	20,70	יא	582.7	581.0	7 6 7 7	278.4	578.4	8-775	269.4	569.3	68.7	268.7	267.6	567.2	564.5	558.3	357.4	357.1	9.555	0 M	348.7	348.4	347.8	6.975
		tu J-		6410 3												2002			۳,	PO I	r i i	710	210 3	רא	(1)	209	100		705	7000	606	508 3	700	1 171			U	8049	306	107	011	0198	7010	906	8208	7106	106	3207	1111
		C		9 9	· 1	1~1	~ ^	٠.	~	ω (ου α) α)	0	0	۱ ۱	- <	0 00	, w	0.	•	۲.	40 0	ŋ /		,	na ir	- 1	^		IJα	, α)	a u (~ 0	· •0	-0 8	v 0)	α) ·	→ ✓		·		~ · ·			۰,۰				-


Result of Reservoir Operation (The Sesan river system case-5 Sesan4 - project)

*
(BMB)
YOU'S SIL
-
70T
コトフ

oroject)	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1235.15
- pro	— ਠਿੰਦੇਸ਼ਜ਼ਲੇਠੇਜ਼ਲਾਜ਼ਕਰਕ - ਅੰਦ V ਜਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਕ - ਜਾਂਦ -	1 1 1
Calculation 1 case-1 Nhim	A	91.86
() ~	0.000 0.000	115.20
fonthly Ene Nai river sy	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	119.04 119.04 119.04
Result of Monthly Energy (The Dong Nai river systen	115.20 115.20 115.20 115.20 115.20 115.20 115.20 115.20 115.20 115.20	115.20 115.20 115.20
3 €	A 40 - 94 - 14 - 14 - 14 - 14 - 14 - 14 - 14	119.04 119.04 119.04
	2	119,04 119,04 119,04
	•	104.96 115.20 70.57
	73 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	94.96 119.04 73.28
	A A A A A A A A A A A A A A A A A A A	79.40 106.40 71.27
RGY (GWH)	A MAR A	78.69
TOTAL ENERG	65.00 c c c c c c c c c c c c c c c c c c	67.99
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	72.78 74.92 60.79
•	> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

	project)	. <total></total>	1482,51	1566.21	1571.05	1601.49	1690.11	1478.85	1601.78	1643.04	1617.28	4 000 4 7	11.0 VOL.	1269.45	1590.72	19002.62	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42825	1690-11	54 8471	,
	e-1 Nhim -	< DEC >	100.78	100.79	100.86	100.83	72.47	100.82	100.80	109.77	123.47	000	0.00	100.80	60.92	1173.13	1 1	9/./6	123.47	40 07	1
pacity	system case-1 Nhim	× 20% ×	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	1.60.00	000	700	160.00	138.92	1898.02		158.24	160.00	448 02	J
Result of Monthly Capacity	Nai river	▼ 000 ×	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00		00.001	160.00	160.00	1920 00	3 6	160.00	160,00	000	
esult of M	The Dong	۸ ۲۳۳۷ ۸	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00		190.00	160.00	160,00	1000	3	160.00	160.00	000	>
14	_	A AUG. V	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	140.00		160.00	160.00	160.00	0,00	2010	160.00	160.00		007
		∧ Thr v	160.00	160.00	160.00	160.00	160.00	160.00	160.00	160.00	0	2	160.00	160.00	160.00	0	200	160,00	160.00		100.00
		∧ NITT ∨	98.02	158.23	160.00	160.00	160.00	10° 80°	153.15	160.00	70077	1	148.40	147.53	160.00	0	1147.43	145.77	140.00		78.05
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	67 86	107.97	110.81	131.51	160.00	08.62	447.80	27 75		74.	131.74	98.62	155.66	1	1231,07	127.64	00 07 6	200	67-86
		000	00 77	000	70.00	71 801	147 77	00	000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	10,00	108.18	121.58	134.77	1	1323.29	110.27	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	· · · · · · · · · · · · · · · · · · ·	66.86
	ER (MW)	2	000		00.00	00	17.8 00	000	J κ . 00	0000	70.00	7.7.7	26.66	0	99.73		1269.18	105.77		A A G 5 T	99.61
	PEAK POWER	4 14 14	1000	1 6	1001	100	100	000	000	200	77.001	1001	100 38	100.35	100.18		1203,33	100.28	4 4	100.04	100.11
	* MONTHLY	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	144	14	1000	2001	1 0	1 C T C C F	20.00	FC-007	1001	100,70	8000	100.56	i	1173.87	07 82	10	100.00	81,71

	ਜ਼	о. С		•		0				•	00		0.0	9 0		- 1	0.0		0	- 1	0.0) c	٠.	•	20			000		0 0		00	000	4		0.0	•					٠		00		•
	- project)	E C	, 0	0 (0	0	0 0	00	0	0 (9 0	0	0 (o c	0	0	00	> C	0	0	0 (o c	0	0 (> 0	0	00	0	0	0 0	0	00	0	0 (0	00	> 0	0	00	00	0 1	0 0	0	00	o 0	O
	Nhim.	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	362	363	4 to	366	767	9 60	370	371	372	374	375	440	378	379	330	 	0 00 00 00 04 01	385	382	9 6	80 00 00 00 00 00 00 00 00 00 00 00 00 0	9	0 t	392	1 3 3 1 3 4	# 55 20 12 20 12	396	ν α 0 0	366	007	100	403	402	907	, to 4	607	710	415	413	717	414	717	617	750
	case-1	α. α					0,0						0.0											•	0 0		0,0	90		0 0		0.0	00	00			9 0		0,0			•		00		•
ration		D A T €	o. o	o i	0 0	0	0 0	o e	0	0	00	0	0	၁၀		0	0 (5 0) C	0	0 (o c	0	0	o c	0	0 (5 0	0	0 0	0	0 0	00	00	9 0	0 (o c	0	00	o o	0	0 0	0	00	0	0
iry Du	river sy	, s	3 P	303	40 t	308	307	9 0	310	1 t t t t	818 818	1 11	315	4 64	, t.	14 14 14	320	ئ د د د	ひと	324	22.0	326 446	32.0	329	330	33	101	3 to 10	336	ν κ υ κ α ν	9 6 1 10 1 11	340	345	343	1 IN 14 th 14 th	91	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	675	0 i 0 i 0 i	ქ ბ ი ი ი	353	354 404	355	357	0 0 0 0 0 0 0	360
Capacity Duration	g Nai 1	'a. c	000	0.0	0 0	0	0,0	9 0	0	0.0	00	0	0	0 0	0	0.0	0	9 6	90	0	0.0	000		0.0	0.0	0.0	0.0	000	0.0	000	000	0.0	0	0.0	0,0	0.0) c	0	0.0	000	0.0	0.0	00	0,0	000	0.0
Result of	The Dong	DATE:	00	0	00	0	0	o c	0	0	00	0	0	00	0	0	0	ဂ	o c	0	o ·	00	0	0	0 0	0	0	90	0	0 0	0	0 (00	0 (0	0	0 0	0	0	D Q	٥	00	0	0 6	00	0
Res	E	NO.	247	243	244	2 1 2 1	247	2 7 60	250	251	252	1 7 12 1 7 1 7	255	256 600	200	525	260	261	2 Y	264	592	266	268	592	270	272	273	274	276	277	27.0	280	7 8 5 7 8 5	283	7 9 2 7 9 5 7 9 5	286	287	283	290	291	262	294	296	297	5 0 R	300
					•	0		•			•		•															0,0			0.0		000				-		_			-		0.0		
		DATE:	00	0	o c	0	0	00	0	o	00		0	0 (5 C	0	0	0	00	0	0	00	0	o	00	0	0	0 0	0	00	0 0	0	00	0	0 0	О	0 0	0	0	00	0	0	00	0	0 0	0
		NO.	13 13 10 10	181	7 t t	136	187 7	# # # # # # # # # # # # # # # # # # #	1001	191	192	194	195	196	ν α γ ο	0.61	200	207	202	202	505	206	208	209	210	212	213	214	216	217	218	220	12. 62 12. 63 14. 63	223) 12 12 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	226	227	223	230	2 4 4 4 4 7	233	234	235	237	238	240
		n.	· 0		ď,	00.00	٠,	o 6	, 0	,		, 0		•	30 α	, n	98.0	Š	₽,	v c	6	•		0	•		0	•					00													
		DATE	8703	8603	8803	7803	8903	8003	7078	8304	8404	70087	7062	8805	7000	9000	7806	7801	8301	8012	0	0	၁င		0	5 C	0	00	90	0	00	0	00	0	00	0	0 (9 0	0	00	0	0	0 0	0	00	0
		, D	21	M N	24		27	80 0	> C	32																	1 K		0. 49 0. 45	57		9	161													
		۵	160.0	160.0	160.0	158.2	155.7	153.1	1.8 4	147.9	147.8	147.6	145.9	142.8	138.9	414	131.5	123.5	122.0	110.0	109.8	108.2	108.1	107.7	100.9	100.8	100.8	100.8	100	100.8	100.7	1001	100.7	100.6	100.6	100.5	100.5	1001	1001	1001	100.3	100.3	100.3	100.2	1,001	6.66
		DATE	8809	8009	7908	8810	8905	9078	2000	8405	8204	8605	8606	8505	8911	1070	8105	8612	8503	2004	8512	8704	8104	8504	8012	8712	8312	8412	7912	7812	8601	8701	8801	3401	8501	8001	7901	870Z	8102	8602	7802	8402	8202	8902	2008	8 10 10 10
			⊶ (v M	41	л v		w (» с	, ,,	∾ រ	m v	, v	·0 i	· ·		0	T-t	N I	つべ	ŀ	·0 i	· ×	o o.	0	H 10	1 W	4 1	n vo	~	60 O	00	101	50	4 L	9	20	0 0	0	77	3 15	77	7 4	7.1	φ. c	502
		o.	o' o	່ດ	· ·	o' c	13	6.	. · ·	ia	ń.	d c	56	6		٠,	: .:	ċ	÷.	٠.	: .:	ς.	٠,	: .:	4	፡ -	: .:	<i>-</i> :	30	ď	46	: :	160.0	: .:	፡ -	: ::	۲.	: .	: .:	٠,	::	ď	۲,		÷.	: .:
			٠																														8610													
																													٠.,				11.7													

- project)	<total></total>	1000	T044.00	1974 - 51	0.00	7077	1930.29	1978.58	10 +30+	9 1	1874.37	1801 84		2018-66	57 570 F		1565.75	1847.02			22599.5	1883.29	77 0100	010101	1565.75		
Zin Ann	A 080 Y		100.00	119.76		141.10	46.041	47.		130.12	130.46	17 70 7	10.1	161.91	240	7.00	119.51	62 37	1		1488.6	124.05		101.7	65.32		
Dong Nai river system case-2 In An	A ACR	2 1	188.73	00 800		284.10	209.02	176. 62	, ,	566.64	158.46		198.75	275.96	10.10	0	24.7.42	0 7 10	001/0		2489.3	200		284.10	87.68		
ai river sy	1 200 1		293.57	70% 57		293.57	203.57	1000	77.67	293.57	70% 57		293.57	207.57		295.57	293.57		293.37		3522.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76.647	293.57	293.57		
he Dong N	. (V 257	284.10		77.487	269.62	780	1 0 0	20.4/2	269.22	0.00	21.100	281.44	000	21.107	284.10	21 15	4.00	287.10		5 7622	1	40.1/2	284.10	246.15	,	
(The		A SON A	275 17		250.55	07 056	1	12-7/2	254.65	266.01	1 0	2/4/2	234.56	1	76.77	271.58		27.20	275.61		*	2027-0	251.80	290.52	5 5 5 5		
		^ 10.7 ×	***	17.401	284.95	7 2 7 1 4	00.4	165.24	233.61	97		197.74	77 / 8		210.96	0.70	0 1	26.90	249.75	•		2185-1	182,10	70.70	100	0 40	
		V N11.		22.79	71 044	1 1	144.34	152.52	47 47	. !	67.45	111.70		140.40	85.90		10.11	86.43	127 45			1269.7	200	1 (156.56	67.22	
		,	Y LYE Y	73.36	1	27.57	73.16	73.41	0 7 0 7 1	20.017	24.43	74 0.4		75.98	7.0 7.7	1	73.62	77 78	100	74.30		8 5 70		0	218.69	71.07	
			A APR A	26.00)	75.36	75.48	70 72		71.04	76.8		10.0	80.79	-	- K - 7 /	76.18	100	20.0	61.94		7 10	1	78.14	81.92	71.02	
(HAS) ASSSAU	_		A MAR A	9.4	9 1	80.58	80.75	F / C 4	1 1	117.36	22.42		24.73	108.92	. 1	70.22	81,33		0	108.90		4 444		89.81	117,36	80.58	•
	Ţ		< 650 ×	7.7 7.4	0	76.43	78 03	10.1	0.0	83.92	77 00		96.55	47		77.56	75.88		86.42	84.02		000	207.4	82.43	96.55	75 83	
3	SOL STRIKE		< N71 >		190.50	0 0 0 0		10.0	103.87	06.50	1 1	0.0	95.98	Č	0 1	106.62	78 000	0.00	106.75	96.50			1271.8	36,500	40.00	1,1	87.50
	~		0402		1978	1070		1780	1981	C 1082	1 1	1785	7801 4		1785	1986			1 1988				TOTAL	u A	1 >	< : C :	2 Ή Σ

•	Anh - hroin
	Case-2 Tri
Result of Monthly Capacity	The Dong Nat river evetem case, 7 Tri Anh - project

- project)	<total></total>	2524.54	2695.73	2679.51	2637.74	2698,00	2529.81	2556.47	2464.39	2758.88	2655.80	2141.48	Ch (CUC	2000	30863.02	2571.92	2758.88	8/ 1/10	
case-2 Tri Anh	< DEC >	146.27	160.96	189,76	189.51	119.00	174.89	175.36	203.82	217.62	175.20	160.63	11	k	2000.81	166.73	217.62	07 70	
system case	4 ADN 9	262.12	290.26	394.59	290.30	242.53	370.34	220.08	262.39	333.28	276.08	343.64	11	,,-,,	3457.38	288.11	394.59	1	,,,,,,,
Nai river s	< 0CT >	394.59	367-26	394.59	394.59	394.59	394.59	394.59	394.59	394.59	394.59	394.59	0	244.24	4735.08	394.59	394.59	200	27 4 23
(The Dong I	< SEP >	394.59	394.59	374.47	394.59	387,94	373.91	394.59	390.89	394.59	394.59	327.99		244.24	4617.34	384.78	394.59		357.33
E	< AUG >	369.86	390.48	336.56	368.64	342.27	357.55	369.33	315.27	365.47	3.65.03	110.37		370.44	4061.27	338.44	300 AB) i	770.37
	< 10L >	180.26	345.37	234.63	222.10	314.00	214.59	265.78	104.14	283.56	444 57	1000	1	335.68	2937.02	244 75	75 P) (103.35
	^ N⊃? ∨	93,36	165.47	200.72	211.83	93.57	55.76	155-14	71 87	10	174 18	12001	,	177.29	1763.41	17.4 95		3	93.36
	Y XX V	98.80	98.29	711	68.67	70 200	100	000	71.00	7 V V	10	0.00	30.00	124.39	1405 64	7. 2.1	101	440.44	95.53
	ν 80.4 8	60,	104.47	- M	105.41	2.0	10.40.	100	104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	10000	7007	113.78	1248 AL	100.10	10.4	0/17	98.65
ER (MW) *	A CCC X	100 48	0 P K C F) v	1001	72 25	110 77	111	301444	110	100	101	1001	146.37	07 8774	100		*/*/67	108.30
PEAK POWE	A au u. V	113 70	77 211	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27.7	ν τ α 1 α 1 α 1 α 1 α	100 t	74.67	1000	110	7.477	125.03	V 0 0 7 6	1 4	111111111111111111111111111111111111111	100.0	112.85
* MONTHLY PEAK	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25.5		00.00	140.67	100		100	164.00	77.7.	1 1	00.00	N4 - 0 4 H	128.97	07.004.	3	0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	722.87	117.45
	× 140	070	0,00	0001	1000	1000	7 1 4	000	3 L	000	100	\ 0 \ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000	1989	101) () ()	u :	X d E	2: E

Ω.	0.0	0.0	0	0	0	0.0	0 0	0 0	0	0.0	0	0 0	0 0	9 0	9 0	0	0	0.0	0.0	0	0 0	0 1	9 0	3 6	9 0	0	0	0	0	0	0,0	0 0	9 0	0	0.0	0.0	0 0	90	0.0	0,0	0 0	0	0	0.0	0.0	0	0 0	0 0	20	0	0	0.0	0
DATE	0	o	0	0	0	0	0 (o c	0	0	0	0	0 0	> C	• c	0	0	0	0	0	0	0	0 0	> 0	> C	9 0	0	0	0	0	0 (0 () C	0	0	0	5 C	90	0	0	o c	, c	, 0	0	0	0	0 (00	> C	0	0	٥	o
0	361	362	363	364	365	366	367	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370	371	372	373	374	4 6	10	378	379	380	381	382	50 50 50 50 50 50 50 50 50 50 50 50 50 5	384	1 00 c	10	0 0 0 0 0	0 0	9 6	391	392	393	395	362	9 4	. 00 00 01 01	868	700	401	4 6	707	504	404	207	604	410	411	412	413	717	7 .	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	418	61.5	750
a.							0.0						•	•	•				•					•		1			•	•	•					•	•	•			0,0					٠			•		0	0.0	0.0
DATE	_	φ	• 0	0	0	0	, o (э с	0	0	0	0	00	> 0	> c	0	0	0	0	0	0	0	0 1	9 0	o (> 0	> 0	0	0	0	O	0	o c	0	0	0	0 6	o c	0	0	0 0	> 0) C	• 0	٥	0	0	0 (0 6	o c	ю	0	o
NO.	301	202) P) ()	303	306	307	909	9 0	11E	315	M .	41,4	7 7 7	1.0 1.0	1 F)	6	Ñ	N	325	N	ď	N	N	N	VΥ	vм	M	M	3	3	M I	7	ባሥ	1 10	340	4.	4 4	. 4	4	940	4 ~	4 🔻	i w	w	M	S.	M I	nı	'nν	300	S	360
Ω							0.0					٠.	•	0 0	5 0	000	0	0	0,0	0-0	0	0	0.0	0	0.0	2 0	000	0	0	0	0.0	0	0 0)))	0,0	0.0	0,0	0 0	0	0	0 0	200	000	90	0	0	0	0	0	o c	0	0.0	0
η. Υ.	c	· c	, c	o c	0	0	0	o c	0	0	0	0	0	0 0	5 (> C	· c	0	0	0	0	0	0	0	0 (0 0	o c	o c		0	0	0	0 () C	0	0	0	00	0	0	0 (0 (00	, c	0	0	0	0	0	o c	, 0	0	0
		1 7 7	1 to	117	572	546	247	248	750	251	252	253	254	255	256	, a	0 0	280	261	262	263	564	592	266	267	268	200	27.0	27.7	273	274	275	276	277	279	280	281	282	7 00 7	285	286	287	288	200	291	292	293	762	562	296	298	566	300
ρ					000	٠.	0.0		0 0			•	•	•	•) c		0		0	0.0	0.0	0.0	0		0	-, -	•	•		_,	0.0	•	-, -	1 1	٠.	-	•	•	· -•	٠.	•	,	•	•		-	٠.	•	•	00		
ti 1-		> 0	۰ د	> 0	> c	c	0	0	0 0	, c	0	0	0	0	0	0 0) (> C	c	0	O	0	0	0	0	0	0 0	o c	o c),O	0	o	0	0 0) (• 0	o	0	э c	0	0	0	0 () () (0	a	0	0	0 0	> C	, Э С	, 0
9		0 0	N .	200	4 W) (C	181	00 t	D C	7 6	161	100	194	195	196	767	0 0	r C) C	202	0	О	0	0	0	208	0 1	٠,	٠.	4 44	. 44	212	+-1	₹ 4	+ -	• ~	N	FU I	A L	N	N	N:	N	M F	ባሾ	ıм	ıM	m	,	mı	237 248	ን ሶ	7 - 4
ī	1. L	2	0 0	50			104.1	03	86	5 6	0 0	·ø	80	8	é	98.3	0 6	, u	٦ <	, O			0	r			,	•	•					•					•			•	٠						٠	•	•	•	00
	0 Y U	4018	7804	8804	4008	# \C	8507	5807	8505	# U	3000	8105	8204	8805	7805	8005	n 1	0 4 6 0 4 6 0 4 6 0 4 6	0 0 0	0 0	7806	200	٥	0	0	0	φ.	0 (> (o, c	0	0	0	0	φ (0	0	0	0 0	0	0	0	0	0	9 0	o c	0	0	0	0	0 0	> (9 0
	2	121	122	123	124	n s v r	127	128	129	9 6 4 P	444	M C	134	135	136	137	138	o () ·	147	1 7	771	145	146	147	148	149	150	17.1	1 2 4 2 4 4	154	155	156	157	10 CE	160	161	162	163	1 1/1 0 Y	166	167	168	169			٠,		~	176		20 0	180
	a.	2007	189.8	189.5	180.3	1181	175.4	175.2	174.9	202.	161.0	157.7	155.1	154.2	146.4	146.4	1.66.3	1.5	14.5	104.0	ν α γ α γ α	7	129.2	129.1	129.0	129.0	129.0	128.9	125.2	125.0	124.7	124.4	121.8	121.7	120.0	0.0	117.4	114.6	113.8	113.0	113.4	112.9	112.8	112,2	111.5	110	100	109.4	109.3	108.7	108.5	108.5	105.8
	DATE	8006	8012	8112	7807	8506	8412	8712	8312	7,900	7912	8203	8406	8706	8503	8903	7812	8801	2002	4 6	2 40 0	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8501	8001	8401	7901	8901	8201	8505	2068	200	8905	8911	8603	8806	0 x 0 v 0 v	8301	8302	7802	7007	8002	8702	8102	8504	8403	7 00	0 K	8103	8703	8803	8003	5067	8304
	2	61	62	63	79	Š,	67	89	,6 i	٥į	7 7	7 4	1,2	75	76	77	6 0	2.0	D (≓ (c	9 0	֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֜֞֞֞֞֞֓֓֓֞֞֞֜֞֓֓֓֞֞֓֓֞֞) (C	86	87	88	80	0	ф. С	2 6	7 7	2 2	96	26	80 6	× 6	101	102	103	1 C	106	107	108	109	110	 	4 1	114	115	116	117	90	120
	D.	394.6	394.6	394.6	394.6	394-6	394.6	394.6	394.6	397.0	397.76	444	304.6	394.6	394.6	9-765	394.6	394.6	394.6	200	1000	000	2.72	373.9	370.4	370.3	369.9	369.3	368.6	1,465	100	7.575	343.6	342.3	336.6	335.7	32.0	315.3	314.0	2000	280.1	283.6	276.1	265.8	7-292	25.0	2000	7 4 4 4 7	222.1	220.1	217.6	214.6	211.8 203.8
	DATE	7810	2909	8110	8210	8310	8409	8510	8609	8610	8709	01.00	8910	8010	3011	7809	3810	7910	3109	8509	000	,,,,	100	9 6	8000	3311	7808	8708	8108	8608	00/00	4000	8811	8208	8008	8907	0000	8208	8207	8502	7911	8607	8711	2078	8511	7811	1000	3007	8107	8411	8612	8307	8106
	Š	, ,	2	м	4	'n	• P	. თ	O.	Ç.	e-f (t-f t	N P	1 - V	, IS	, T	17	t co	13	20	21	21	d'i	7 C	7 6	7 0	. α) ι Γ\	5	30	31	32) i	0 K	9	12	W 89	о (М •	7 4	7	. 43	4,	t 4	2.7	48	67	08.	in i	n t	7 0	יו יי	9	27	28	\$ 0 0 0

Result of Reservoir Operation (The Dong Nai river system case-2 Tri Anh - project)

	· project)	· <total></total>	1002.27	1020.98	40	77.01	8/5.12	1002.62	20.678		100	801.21	1120,46	02 20	C	731.21	00 77X		11149.6	929.13		11CO 14C	731.21		
	m Thuan	. DEC >	64.91	64.87	70 77	, ,	04.40	61.08	64.92	1.0	14.40	64.95	65.00	0	7	64.05	24 77		736.3	61,36		00,40	26.77		
alculation	case-3 Ha	A Y VON A	76.94	85.23		10.00	82.58	70.43	110.14		00.00	76.82	118.29	1,0	10.07	61.90	000		1002.0	83,50		118,89	000))	
' Energy C	rer system	< 700 >	200.84	170 42		01.011	146.69	138.85	178 56		180.52	112.81	201.46		104.40	62,46	14 60 4	66.461	1809.2	150.77		201.46	77 67	,	
of Monthly	Dong Nai riv	< 9 mm > < 1 mm > <	154.23	78 171	1 6	70.00	92.59	155,53	AS 97		164.21	61.27	179.07		7414	58.93		\$	1454.2	121 18	1	179.07	o a v		
Result	(The Do	< AUG >	82.73	1 7 7 7 7	1 1	61.55	62.43	126.45	02 07	2	140-88	61.79	144 31	1 .	65.06	60.13		06.00	1052.1	27 48		140,88	**	1	
		< 10 × ×	77 65		h 1	60.35	60.61	84.55	04		60.41	60.82	57 07		66.09	50.65		60.40	747.8	C * C 7	27.70	84,55	1	× / × 00	
		A NIII	57 47		00.70	57.76	58.12	40.30		00.00	57.98	28.67		77.00	28.00	57 73	• • • • • • • • • • • • • • • • • • • •	57.25	0 808	0 0	00.00	40.30		20.48	
		^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7 1	60.09	59.96	60.34	41 74	* 4	プロ・ブハ	60.35	000	1 1	00.00	60.63	60.47		59.31	7 7 5 7	1 1	00.00	72 17	- 1	59.31	
	¥	000	2 6 6	0 /	59.18	59.15	000			26.52	17 65		111	54.55	62 65		17.	58.26		1 1 1	01.00	20 70		58.26	
	ENERGY (GWH)	1	\ L	07.00	62,32	62,30	42 47	, ,	75.20	62.41	12 64	1 4 6 7	10.00	62.68	78 67	, ,	10.20	61.35	1	0	62.46	30 67	0.0	61.35	
	TOTAL EN	0	1000	2	57.22	16. 25	27 77	1 1	0.10	57.31	17 05	1 2 4 5	0 ·	57.51	17 Y		04.40	56.37			57.84		7.	56.37	
	* MONTHLY		227	11.79	64.23	74.21	17 77	1 1	0.10	64.32	22 77	1 .	00.00	94.49	75 /7	1	10.40	63.34	ţ	, , ,	64.31		7.40	63.34	
		(۲ (m	¢	c	٠.	4 (v	м	١.	; ,	Λ	v	٢		æ	ο.							

		٨	٥	m	273	S	9	0	v	٠,	1	7	v		٠,	ω.	m	m	^		,	
	- project)	<total:< td=""><td>1371.0</td><td>1395.9</td><td>1246.7</td><td>1197.7</td><td>1371.3</td><td>1162.5</td><td>1424 2</td><td>100</td><td>0.40</td><td>1532.8</td><td>1267.1</td><td>000</td><td></td><td>1184.7</td><td>15249.9</td><td>1270.83</td><td>1537.8</td><td>000</td><td>A . 0 A A</td><td></td></total:<>	1371.0	1395.9	1246.7	1197.7	1371.3	1162.5	1424 2	100	0.40	1532.8	1267.1	000		1184.7	15249.9	1270.83	1537.8	000	A . 0 A A	
	ат Тћиап	< 0EC >	87.24	87.19	87.29	87.31	32.10	87.26	87 X	1 6	9	37.36	87.75		0	35.98	989.70	82.47	87 36		00.00	
	ı case-3 Нап	< VON >	106.86	118.37	164.20	118.44	97.82	152 97	8 L L Q	3 0	Y00.04	164.29	104 42		37.4	81.80	1391.68	115.97	147 20		81.80	
y Capacity	ver system	< 0CT >	76.692	229.06	196.37	197.17	186.62	172 79	0000	200	151.62	270.78	208 31		47.47	214.42	2431.72	202 64	200	0 1	83.95	
ot Month	(The Dong Nai ri	< 958 >	214.21	197.00	137.19	128.60	214.02	0.7	0000	00.00	85.09	248.70	404	2	81.85	195,47	2019.70	148	7 0 0	0	81.85	
Kesult	(The D	< 904 >	111.19	183.61	82.46	0	40 041) a) h	137.00	83.05	179.18	72 /0		80.82	84.24	1616 14	2 7 7 7		7 . 00	80.82	
		< JUL >	79.89	72	24.78	1 × 1	7 7 7 7 7	100	70.7	. 81.19	81.75	81.25		27.40	80.17	81.18	7 1 2001	4000	1	113.64	79.02	
		< NOT >	80.08	80.02		100	. 10	0.0	00.4	80.53	81.21	X0 71	9 6	80.67	80.18	79.52	.,	, ,	יי סיי	83,75	79.00	
		Λ ₹ E	¥ 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.) (C	0 0	0.00	40	86.70	80.50	81-11	81.44	7 6	1 1	81.49	81.15	79.72	11	20.00	21.10	85.98	79.72	
		A GO	7	1 0	2	62.13	26.11	82.57	82.29	82.53	200	, ,		83.04	82.48	80.91		07.484	44.30	93.04	80.91	
	ER (MW) *	000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1	7	85.73	34.1	84.02	83.89	84.02	20 28	, ,	04.60	84.46	24. 1.5	82.46		1001	85.96	87.78	82.46	
	PEAK POWES	η α	1000		n :	70	7	85.37	85-28	85.37	25		00.00	85.75	57 5X	83.83		1023.68	85.31	85.87	83.89	
	* MONTHLY	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	900	30.00	70.00	36.52	86.46	86.47	7 7 8	,	0.00	86.77	7 7 7 8	85.13		1037,26	30.44	87.05	85.13	
	~																					

	ase-3 Ham Thuan - project)
Result of Capacity Duration	(The Dong Nai river system case-3

9

	n. 0	•	•				0			•			٠,	0.0	0.0	0.0	0 0	9 0	0	0		0	o o		0		0.0	0.0	0,0) c	9 0	0	0.0	0	00	0	0.0	0.0		0		0.0	9 0	0	0	, c	0 0		0.0	0 0	000	
. :	DATE O	o c	,	> <) (o	0	٥	0 0	o c	> C	, 0	0	0	0	0 (0 0	> c	0	0	o	0	0 0) C) O	0	0	0	0 (D (o c	0	0	0	00	00	ø	0	00	0	0	0	90	0	٥	00	o c	0	0	00	o o	,
	, NO.	-1 C O Y O M	1 V	0 1	1 7 7 1) Y	367	368	369	0 F	, V	M 12	374	375	376	377	9 4	٠ ٢ ٢) i	1 20 1 20 1 41	183	384	385	9 6	0 00	9 60	360	391	392	363	1 00	100	397	398	0 0 0 0 0	201	402	403	707	404	407	408	409	411	412	413	414	414	417	713	617) !
		•	•	•		•	, ,	•		•	•				•	•	•												•	•	•			•	•	•			•	• •		•	•				•		0			•
	DATE	5 C	> <	5 6	> c	, c	0	0	0 (0 0	5 C	9 0	0	0	0	0	0	o c		0	0	0	0	9 0	o c	9 0	0	0	0	0	0 (> c	0	0	00	o ċ	0	o	0 0	0 0	0	0	00	, c	0	0	00	> C	о	0	00	>
	2 5	501	۷ ۱ ۲ ۲	707	# to 0	200	M 000	308	309	310		4 K	315	315	316	317	318	319	327	1 C	323	324	355	1 10	α τ. α τ.	9 0	36	33	332	ю и и	334	0 Y	M 6	338	0 0 0 0	0 t t	375	343	4 17	7 7	347	87 F	W 14 W 10 W 10	אור אור	325	353	W W 77 U	0 K	327	00 i	0 C	200
		•		•	•					•	•				•	•	•	•	•	•				•				, ,		•		•				• -		•	•			•	•		٠.	•	٠		0	•		
)	DATE	0	э.	0 1	O (o c	0	0	٥	0 0	0 0	o c	00	0	0	o	0	0 (> c	o c	0	0	0	0 (S 6	> 0		0	0	0	0 1	> C	0	0	0 (00	0	0	0 (o c	0	o	0 0	> C	0	0	00	o c	0	0	00	>
	NO.	241	242	543	777	242	244	572	672	250	251	N N	256	25.5	256	257	258	525	260	107	2 6 2 6 3 15	792	265	566	V 0	0 7	200	271	272	273	274	275	27.0	278	279	9 9	280	283	284	2 6	287	288	289	240	262	293	294	2 6 2	297	298	500	200
		•	•		•		•		•	•	•	•	•	•			•		•				•										•		•					•				•			•		0,0	٠	•	
	DATE	0	0	0	0	0 0	9 0	0	0	0	0 (0 (5 6	o c	0	0	O	0	0 (0 0	5 C	0	О	0	0 (0 6	5 6	э c	0	о :	0	0 (5 C	0	0	0 (o c	0	0	0 0	þ	o	0 (5 C	0	0	0	O C	9 0	o	0 (ɔ
	O.N.	00	Ø	ထ	∞	လ (20 00) KQ	w	0	0-1	0 0	ው ር	> 0	٠.	O.	0	O.	0	0 (э c	0	0	0	O 1	0 (0 -	4 *		4.1	24	ef t		4 ~4	↤	N I	NA	N	(v)	ns t	vΝ	r cv	OLD	つと	า ค	M	۴ ۱ ا	m) t	237	m	m.	4
	α,	4	į	ä	1 4-4	ċ		, 0	0	ö	ö	6			· 'c		0	ď	٥.	٠,	, 0		ö	4	•	٠				٠,				٠,		•			•							,			0 0			
	Ξ	80	8	70	5	0	8808	2 9	8	70	8	9	ရှင်	0 6	9 6	000	00	80	8	8	830	, 0		0	0	0	0 0	> c	0	0	0	0	0 0	0	0	0	00	0	0	0 (o c	0	0	0 (00	o	0	0	0 0	0	0	0
	NO.	121	122	123	124	125	126	, K	129	130	131	132	ν. Ε	4 10	7 7 7	137	138	139	140	17.	145	771	145	146	147	14.8	149	o r	155	153	154	755	901	~ K	129	160	161	0 K	164	165	100	168	169	170	171	173	174	175	176	178	179	180
	a	85.8	85.6	85.5	85.5	85.4	85.4	3,4	85.1	85.1	85.1	85.1	8,48	34.5	0 0	2,48	2,42	84.2	0. 48	84.0	84.0	י מ מ מ	0,10	83.9	83.8	83.8	63.7	20.5	2 0	82.9	82.7	82.7	82.7	0.70	82.5	82.5	82,5	, K	82,2	82.1	27.7	81.0	81.8	ές Ες	60 K	81.5	81.4	B.1.4	81.4 V. K	81.2	81.2	81.2
	DATE	8702	8602	8102	8802	8202	8402	8202	7902	1068	8002	8509	8708	7803	7 6	000	8103	8803	8503	8403	8203	0100	8303	8902	7903	8208	8003	8508	8205	7804	8104	8604	2000	3008	8404	2062	8008	7070	7904	8004	8212	8309	8911	8507	8308	8107	8505	8605	7805	8505	8407	8907
	, 02	61	62	9	79	9	99	29	9 6	20	7.7	72	23	7 7	2,5	7 0	7.8	29	80	80	85	η . Θ α	8 2	86	87	88	60 f	0,0	, o	ው የ	76	9.2	9 1	~ &	0 0	О	00) C	0	0	00	0 0	0	Ϥ	r1 r		4	44	114	4 +4	4-4	N
	α	. 0	6	0	8,4	99	28,	9 1	1 4	80	26	97.	96.	96	, i		,		72	70.	. 49	4 6) t	37.	28.	8	ω	n M		90	99	97.												•	•				9.4			
	1- 6-	8610	787	0178	8609	7910	8409	8209	28750	8710	8110	7909	8010	8709	8909	2 6	707	8608	8310	8208	8611	300	1100	8009	8109	8111	7911	8207	7808	2 60 2 44 4 44	9711	8211	8309	8411	8412	8112	8512	2108	8712	7812	7912	7007	8601	8101	900	ο α Ο υ	8401	8301	1062	1 (0)	8811	7802
	2	, , ,	1 (1	y W	1 4	'n	Ф	r (0 0	ď	+	12	13	71	۲. ا	9 1	- 00	0 00	20	21	23	v) (t u	2 6	27	82	53	o M	ω k	אנ) 4 M	មា	w W	M 14	0 D	07	7 7	7 .	74	5.7	9!	. 00	6 7	S	ς, ε	0 V) vi	25	10 r 40 t	- α η ν	N 00	9

Result of Reservoir Operation (The Dong Nai river system case-3 Ham Thuan - project)

Result of Monthly Energy Calculation

MONTHLY TOTAL ENERGY (GWH) *

<101AL>	503	7 1	601.42	47. //4	1000	516.18	// 103	***	506.23	74 27	3	74.9.41	V7 054	01.	246.00	10	4.00.1	510.24	,	6612.1	700	10-766	659.40		0/1801	
< DEC >	87.95	1	36.50	12 12	0.00	36.51	** 54	1	36.50	77 72	; ;	24.65	77 72	2	36.45		24.00	15 42	1	4:5.2	1	06.40	36.51		15.42	
× 20% ×	67 77		60.87		***	60.87	1.6 0.7	*	62.50	14	* * * * * * * * * * * * * * * * * * * *	77.38	70 57	***	77.77		27.15	40	1	576.3		70.84	75 67		73 93	
< 001 ×	** ***	4 4 4 4 4 4 4	100.29		4.4.	86.31		×1.	79.07	* * * *	77./07	68.24	77.7	01.0	80.8		42-17	00	1 4 7 6	1066.3		88.69	11 11	444,44	42.17	l l
V 955	17 20	10.1	80.12	1	46.79	55.37	1	20.00	27.07		70.7	37.04		100.44	75 28)	37-17	1 1	1,00	270		75.54	177 706	1001	37.04	•
V 9116 V		01.10	υ. (α		38.30	64 67		75.29	7.8.11	1 1	39.04	70.67		86.22	4. 4.	i i	36.42		01.24	6 877	9	55.68	74 00	\$ 0 . h	C7 7%) } }
^ E	,	000	70 17	,	38.24	62 72	1	53.37	47 05		38.23	17 YX	1 1	36.34		20.00	76.27		28.22		***	38.80	1 1	10.10	11 12	11.00
A 21.5		55.35	20 03	30.77	35.08	ì	0	35.24	1 0 0 2	•	35.10	90		35.02		24.45	30	1	36.90		4.62.4	40.27	1 2	36.90	4/ 07	0
2	Z E	36-14	7 7 7	00.10	36.19		2000	38.22		20.00	36,23		20.17	36.16	1 1	37.50	8. 72	1	36.25	!	7.757	7		38.52		00.00
	X X X	35,05		40.44	35.08		7 7	4	1	×ו•	75.11		35.04	70 52	1	35.11	40 67	2.00	35.10		7.50.7	40	00.00	1.4		24.49
	V XXV V	44 41		36.30	7.4.7.4.7)	36.24	72 72		26.23	74 74	9 .	36.28	06. 72		36.35		20.00	36.33		732.7		70.00	74 34	1	36.24
	< FB >	70 04	,	32.86	77.05		32 80	43 80	0 .	52.81	47. 08		32,84	10 62	10.01	32.90	· ·	***	32.88		397.9		01.0	47 OR		32.80
	< 'AN >	74 17	1	36.45	47.73		36,36	0 / 7.4	0	36.40	0.7 72	0	29.45	, ,	20.46	36.47		20.44	36.46		2 227		20.44	87 72	,	36.36
	7 KAR	7 0 1	17.0	1979		7400	1981		1707	1983			1985		1980	1087	1	1988	1989		137.01	1	AVE	> 4 70	< X E	ZIE

٠							X	esult of M	Result of Monthly Capacity		ر د د	(**************************************
MONTHL	Y PEAK POWER	* (MM)					C	The Dong	Nai nver s	O.	ase-5 Daivii	. project,
							,	000	V 700 V	< AUN >	A DEC A	<total></total>
V 200	> < KU1 >	WAR V	A APR V	A MAY A	< 200 v	V 10L V) jor v	L		0.00	¥ C	212.04
				0	000	48,53	17.7	10.051	19.701	00.10		1
49.02	48.92	0B 87	0 0 10 10	00.04	, ,		111 01	111.28	134.80	66.80	90.67	821.97
66.87	48.90	64.84	48.59	19.87	24.00	100	1 (1)	4 4 4	116.15	96.58	68.87	744.22
49.02	26.87	68.83	48.72	79.87	22.87	λη·ΕΛ (0 0	9 6	116.01	66.79	20.67	706.28
88 87	48.81	148.71	78.60	48.50	48.58	20	00.00	0.0	77 70 7	αυ γν	47.22	808.85
Y C 7	76 87	78 87	48.75	51.37	48.95	71.66	701.40	104.01	1001) (X	90 07	68.759
(o a /	68.83	48.72	09.87	48.49	78.43	20-05	27.75	70.00	1004	80.00	80 87	844.07
0 0	70 87	98 87	48.76	69.87	74.87	51.39	250.48	10.401	10.4		ν ο ο ο ο	727
,	0,10	,	7.07	77	48.74	76 87	26.54	21.44	77.17	10.10	1 0	2 1
48.95	78.87	/ - R*	0 0	9 4		α α	115.33	147.84	156.36	91.45	10.67	901.87
48.95	48.87	77 87	48.66	09-87	3 6	0 0	9 4	44.0	120.78	61.70	66.87	247.48
49.02	48.95	48.86	48.76	20.40	78.70	10	0 0	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 4 4	51.57	50.67	599.27
48.97	48.91	43.81	48.71	78.62	78.62	0 1 0	1	100	200	7 12	20.72	711.13
10.04	78.93	78.87	48.75	48.73	51.26	51.37	20.70	* * * * * * * * * * * * * * * * * * * *))) 1	1	,	:
•	1						000	1000 01	1430.45	800.39	558,04	9041.95
587.79		585.62	584.35	587.86	587.64	0 7 7 9 0	940.10	100	2000	46.70	46.50	753.50
00		000	07.84	48.99	48.97	25.16	10.4	0.1) + · · · · · · · · · · · · · · · · · ·		, 0	7 C
0 , 0		,		77 43	54.05	71.66	120.48	767.84	15/ 141	0.00	1	1
70.67	48.96	98.87	7.0	7) !		40 07	77-15	56.68	47.12	20.72	25.665
			•	0	· ·	· ·						

20-67 96.58 157.41 147.84 120.48 71.66 52.26 51.37 68.78 48.78 48.60 48.84 48.84 48.71 586.82 48.90 48.96

	_			0.0			0.0	0 0	9 0	0	0.0	0	0	0 0	90	0	0.0	0 0	9 6	9 0	0	0.0	0 0	9 0	0	0	0	0 0	0	0.0	0 0	0	0.0	000	0	00	0	00	??	0.0	000	0	00	00	0.0	00	0.0	, ,
	- project)	шс	0 0	0	00	0 0	0	0 0		. 0	. 0	0	0	0 (,		0	0 0	5 C) C	. 0	0	0	00	0	. 0	0	0 0	90	0	00		0 (D 0	0	00		0 0	0	٥.	o ó	0	o c	00	01	00	0	0
•	- pr	DAT			-																																											
	Result of Capacity Duration (The Dong Nai river system case-3 Da Mi	NO.	7 C 9 C	363	364 4 4	366	367	M 4	7 P	37.	372	373	374	375	0 K	378	379	380	193	4 to	386	385	386	1 30	J 1.	366	391	392	39.0	362	396	, w	300	0 0	402	403	405	907	807	607	710	715	413	4 1 4	97.7	417	419	750
	-3 D	α. «	9 0	0.0	000	000	0.0	0 0	9 0	0	0	0.0	0.0	0	90	0	0	0	0 0	0 0	000	0	0.0	0.0	0 0	0	0-0	0	0 0	0	00	9 0	0	00	0	00	0.0	0,0	00		000	0	000	0,0	0	00	0	0.0
	ocase				<u>.</u>			۰.	0.0				0	0	o · c			0	0	0 (2 0	. 0		0	0 6		. 0	٥.	00	. 0			. 0			00		0 1		. 0	00	. 0	01	0 0	. 0	φ¢	, 0	o
	ratior /sterr	다 보 C			•	-		•	, ,	- ~	, .		_		•			•	_	-																												
,	Result of Capacity Duration (The Dong Nai river system	, N	707	303	307	200	303	308	606) t	417	111	314	315	316	100	319	320	321	355	42.4 42.4	325	326	327	3 50	4 5	i in	332	10 to	5 E	10 t	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 6 9 6 9 6	0 t t	345	143	34.5	346	746	340	N 10	3 2	25.5	4 2 2 4	326	357	359	360
	pacit Iai riv	OL.		0	À,		: :	ċ	~ ~	2 0		3 (0	0) c		6	d	ä	00	5 6		ò	0	90		ō	00		0	0 0	0	0 0	0.0	0 0	90	0	0 0	0	0 0	9 0	0	00	0	00	0	
	of Cal		n (0	0.0		0	ο (n c	a c	20	. 0	0	o:) C	. 0	0	0	0 (> C	. 0	0	0 1		, 0	0		. 0	0	0 0	. 0	0	00	0 (0	0 0	, ó	0 (00		٥ (00	00	00	0
	e Do	DAT																																														
	# E	2	241	244	772	242	247	248	546	250	251	200	2 2 2	255	256	257	900	260	261	262	263	4 0 4	266	267	263	200	2 7 0	272	273	275	276	277	27.0	280	287	283	20 00 00 00 00 00 00 00 00 00 00 00 00 0	286	287	289	290	292	293	762	296	297	298	300
		α.	0,0	000	0	0,0	0 0	0.0	0-0	0 0	0 0	90	000	0.0	0.0	0 0	50	000	0.0	0.0	0.0	0 0		0	0.0) C	0		90	0	0,0	00	0	0 C	0	00	0.0	0,0	000	0.0	00	0	0.0	00	0	000	0.0
							00			•															0	۰.	G (0	0.0		0	0 0	. 0	00	0	00		0 (00	. 0	00	00	0	o c	0	00	. 0
		DATE						, ,		_			-	,	_		•		Ĭ		•				_																							
		Ö	181	1 to 4	186	185	186	188	189	190	191	205	193	195	196	197	198))))	201	202	203	204	202	202	208	209	210	212	213	217	216	217	218	220	221	223	224	2 2 2	227	228	230	231	23.5	234	235	237	2 2 2	240
		D.	8.7	0 0 0 4	. 7.	8.7	9 9	0 40	ο ασ	8.6	9.87	9 87	9.67	9 4	9	5	8	vi n	9 4	7.2	7.1	2.0	0 0		0.0	0	0.0	9 6		0.0	0.0		00	0	00	0	0,0	000	0	00		0.0	00	0.0	000		00	
			-4	4 -	3 4	4	٠, ٠	1 4	-								,						0 0	.	. 0		0.0	.	. 0	0 (9 0	. 0	0.0	. 0	0 (0 (5 0	. 0	00	0 0	00	o c	0	0(00	0 0	0
																																				9 0												
		Ş	121	122	125	125	126	127	129	130	12	132	103	5 to 6	1 1	137	138	139	7 5	141	143	771	165	140	17.	1.9	150	121	123	154	155	157	158	100	161	162	164	165	167	168	170	171	777	174	175	170	178	180
			0.64	0.67	0.0	20.	0.64	00	> C	0	0.6	0-6	0.6	0 0	, q	6.0	6,8	0.	, c) o	6	0.	6.87	ο, α ο, α	0 10	6	6-8	0.0	0 00	80	α α α α	8	80 0	0 20	8,8	E 87	8.8	න ග න ස	, e5	80 6	7 0	1.8	0 K	7.83	1.84	- 87 - 87	7.87	48.7
																																																1804
			2 0 7 8	781	000	8 0	7801	800																												8102			0 00		2008			0 00	, 00	ത ത	το .	യയ
		:	y v	62	, 63	4 50	9	67	0 Q	9 6	7.	7.5	73	74	2 7	4.5	78	79	8	0 0	0 00	76	85	88 6 6	20 00	9 60	80	5.5	9 6	76	φ. Ω. 4	9 6	80	000	101	107	101	105	107	108	901	4 4	44.	114	517	116	118	119
			4	7.9	00 0) (d	34.6	0 0	D 0	N 80	, 0	6.1	0.9	116.0		, 11	1	7.9	9	01.2	7.00	91.4	86.9	86.8	9 .		8.99	8.95	21.8	51.6	26.7		56.6	9. 4	26.5	7. 95	21.6	e4 :	4 4	51.4	21.4	51.4	51.3	51.2	50.4	8 67	1.67	0.67
			•	. 44	.,	-	• **	-		, ,	,,,	٠,													0.1							٠.			٠.00	<u></u>	, -	-4	m 0	. ^-	7.1							
			DA T	867	860	1 00	840	780	850	ο α γ γ	107	801	870	811	088	0 0	790	821	831	820	200	361	800	831	820	0 0	791	811	7.87	. (1	870	ω α ε τ	8008	822	850	790	2 2	881	000	800	7 8	820	396	83 K	8 2 (78(40	3312
																																										~ - ·	-	M -	4 10	~ ^		

Result of Reservoir Operation (The Dong Nai river system case-3 Da Mi - project)

* MONTHLY TOTAL ENERGY (GWH)

<total></total>	1893.8	2028.63	2001.86	1971.97	2007.26	1936.26	1932.33	1803.18	2053.12	2003.22	1577.89	1898.60	23108.1	1925-68	2053.12	1577.89
A DEC V	105.84	105.83	132.91	141.10	107.89	130.26	140.95	151.74	148.94	131.28	130,45	65.32	1492.5	124.38	151.74	65.32
× 00% ×	180.28	208-64	284-10	86.802	125.61	266.63	158.45	188.91	275.97	198.75	238.43	105.46	2440-2	203.35	284.10	105.46
< 00T >	293.57	293.57	293.57	293.57	293.57	293.01	293.57	288.36	293.57	293.57	288.80	293.57	3512.3	595.69	293,57	288.36
A SEP Y	284.10	284.10	266-09	284.10	72.872	260.96	284.10	279.01	284.10	284.10	169.53	284.10	3243.1	270.25	284,10	169.53
A AUG V	269,23	290.52	250 39	272.76	252.04	259.31	276.80	188.70	273.61	264.17	76.96	268.00	2962.5	246.87	290.52	26.96
< 10L >	133,23	255.81	156.27	146.63	228.49	158.49	190.48	92.25	204.86	246.30	91.70	78-972	2151.4	179.28	255.81	91.70
	82.50	118.72	143.26	150.85	82.72	83.26	111.70	128.23	86.25	110.84	86.43	127.09	1311.8	109.32	150.85	82.50
< MAY >	02.06	87,80	87.84	88.11	226.51	91.44	87.67	86.28	86.97	88,33	88.08	96.33	1205.4	100.46	226.51	86.28
APR >	92.07	90.81	56.06	91.59	85.24	93.09	77.06	87.71	89.52	91.72	91,30	87.86	1082.3	90.19	63.06	85.24
V WAR V	99.08	97.50	97.68	98.34	120.84	100.05	96.96	118.74	96.47	98.22	97.83	118.37	1240.1	103.34	120.84	27.96
< FEB >	95.96	91.33	94.72	91.83	102.43	93.53	93.96	90.32	95.57	91.86	04.70	102.46	1135.7	79.76	102.46	90,32
< NAL >	170.77	103.98	104.08	104.10	103.19	106.23	107.25	102.96	117.26	107.07	103.48	103.18	1330.8	110.90	170.77	102.96
O. YEAR	1 1978	2 1979	3 1980	4 1981	5 1982	1983	7 1984	8 1985	9861 6	1987	1 1988	2 1989	TOTAL	AVE	X A X	NIE

Result of Monthly Capacity
(The Dong Nai river system case-3 Tri Anh - project)

* MONTHLY PEAK POWER CMW) *

<total></total>	2587.49	2771.26	2734.60	2696.67	2738.33	2647.51	2634.82	2467.28	2806.30	2736.44	2155.85	2593,72	1370.25	2630.85	2806,30	2155.85
< DEC >	142.26	142.24	178.64	189.65	145.02	175.08	189.44	203.95	200.19	176.45	175,34	87.79	2006.05	167.17	203.95	87.79
< Y0N >	250.39	289.78	394.59	290-25	174.46	370.31	220.06	262.37	383.29	276.04	331,15	146.48	3389.17	282.43	394.59	146.48
< 0CT >	394.59	394.59	394.59	394.59	394.59	393.83	394.59	387.57	394.59	394.59	388.17	394.59	4720.89	393,41	394.59	387.57
v 938 v	394.59	394.59	369.57	394.59	387.15	362,44	394.59	387.52	394.59	394.59	235-45	394.59	4504.25	375.35	394.59	235.45
< AUG >	361.86	390.48	336.54	366.61	338.76	348.54	372.04	253.63	367.76	355.07	130.34	360.22	3981,85	331,82	390.48	130.34
< 10℃ ×	179.07	343.83	210.04	197.08	307.11	213.02	256.03	123.99	275.35	331.05	123.25	331.77	2891.60	240.97	343.83	123.25
< N⊓C >	114.58	164.89	198.98	209.52	114,87	115.64	155.14	178.09	119.80	153.95	120-04	176.52	1822.01	151.83	209.52	114.58
V ₩ V V	121.23	118.01	118.06	118.43	304.45	122,91	117.84	115.96	116.90	118,73	118,38	129.47	1620.38	.135.03	304.45	115.96
A SER	127.88	126.13	126.33	127.21	118.40	129.29	125.61	121.81	124.34	127.38	126.83	122.03	1503.20	125.27	129.29	118.40
A MAR V	153.18	131.05	131.29	132,17	162.42	134.47	130,32	159.59	129.66	132.02	131.50	159.10	1666.77	138.90	162.42	129.66
۸ (۱) ا	138.34	135.91	136.09	136.65	152.43	139.19	135.01	134.40	142.21	136.70	136.06	152.47	1675.44	139.62	152-47	134.40
V NA.	229.83	139.76	139.89	139.92	138.69	142.78	144-16	138.39	157.61	139.88	139.36	138.68	1788.65	149.05	729.53	138.39
SARY UN	8200	7070	1,980	1981	5 1982	1983	7 1584	1985	9 1986	10 1987	1988	12 1989	TOTAL	AVF) × 0	Z H E

Result of Reservoir Operation (The Dong Nai river system case-3 Tri Anh - project)

6A-130

							Resu	Result of Monthly Energy	aly Energ	\circ	ou	
YTHINON	TOTAL EN	ERGY (GWH.)	* \$				(The	Dong Nai	river syst	¤	case-4 Dai Ninh -	project)
							/ (14)	\ au\	< 0CT >	< VOV >	A DEC >	<total></total>
V 14 1	A FEB V	A MAR V	A APR A	A MAK Y	A NOO Y	۷ اوا ۷ ۷ اوا ۷	200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 666	173.94	66.31	1561,14
	67 14	400	94. 39	98.85	95.13	165.42	250.00	77.5	1 6		74 43	1744 94
74.07	10.70	1			474	210 99	222 44	215.27	**-777	1	3 1	111
74.62	90.91	100.02	96.00	20.00	100		27 7 72	216.38	222.44	215.27	27.56	1797.54
72.24	94.18	100.06	96.09	98 53	173.00	744.00	1000	700	222 44	214.46	101.11	1794.33
74.44	00 00	100.17	96.23	98.61	168.51	189.99	2 022		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	148 32	00 07	1892,96
1100	1 1	107 67	00 00	182.37	191.15	217.04	220.18	73.67	1 1 1 1 1 1 1	1 1 1		1649 60
100.84	/O" / A	1		100	7 4 00	102 84	219.06	215.27	552.44	410.67	200	
31.50	71.71	100-50	96.57	78.7	77.70	17.00		215 27	227.44	144.38	101.13	1737.76
0	70 70	56.65	26.29	87.86	139.61	200.002	7 70 100		, ,	190 70	100.35	1766.99
				404	7,821	178.23	216.91	67.717	*****	201		
100.83	09.06	44.04	72.00	9 1		70	221 06	215.27	222.44	215.27	112.40	1/88-13
100 96	90.78	28.82	95.85	100.87	108.70	00.0		70.040	77 666	188.16	38.90	1757.03
	0	100 14	96. 28	98.67	135.54	27.05	777	31775		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	* * *	1571.18
80.08	20.4			07 00	414 54	144.78	167.40	169.70	178.70	* * * * * * * * * * * * * * * * * * * *	4	1000
88.11	94.18	100.08	70.13	0 1	1 1	1	77 666	215.27	222.44	127.65	58.94	10.02/1
100.78	90.55	99.65	95.71	115.24	155.02	101/12		,				
1			-	•	•		0	, e / H U f	2 246	8,2526	1056.3	20801.7
8 080	1079_1	1207.9	1157.0	1289.3	1673.9	2365.8	2587.5	1000	1000	187 74	88.03	1733.47
1	000	100 44	7 96	107.44	139.49	197.15	212.78	0117	,		412 40	1892.96
77.	3			400 77	404	210 00	222 44	215.27	*** 777	77.617	1	
100.96	97.87	107.54	74.44	70.701	111111111111111111111111111111111111111	10	07 771	169.70	198.56	127.65	58.94	1007
54.69	71.71	99.65	95.68	24.89	45.15	1441	,					

	- project)	<total></total>	2135.18	2413.70	2456.09	2455.96	2588.63	2241.97	2371.09	2417.03	2459.73	2403.16	2146.44
	case-4 Dai Ninh	< DEC >	89,13	95.86	128.32	135.91	4.07	107.93	135.93	146.98	151.08	119.49	135.90
ity	em case-4	V >0N >	241.58	289.45	298.98	297.86	233.77	298.98	2007	251.10	298.98	261.34	279.08
thly Capac	i river syst	< 007 ×	298.98	298.58	298.98	298.98	298.98	298.98	298.98	298.92	298.98	298.98	266.88
It of Mont	(The Dong Nai ri	< SEP >	298.98	298.98	297.75	298.98	298.98	298.98	298,98	295,45	298,98	298.98	235.69
Resu	(The	< AUG >	295.80	298.98	290.75	296.02	295.93	77.762	296.88	291.55	297-12	298.80	225.00
·		< 101 >	222.34	295.69	268.21	255.36	291.73	259.22	277.73	239.55	290.13	292.50	194.59
			132.13	199.91	240.31	234.05	265.48	132.17	193.90	219.62	150.74	188.25	456.92
		A MAY >	132.82	132,42	132,43	132.54	245.13	133.00	132.36	136.64	135.57	132.62	132.52
		APR V	133.87	133.41	133.46	133.65	138.85	134-13	133.30	132.89	133.12	133.72	444
	ER (MW) *	A 848 A	134.89	134.44	134.48	134.64	144.54	135.08	134.31	133.93	134.23	134.62	136 92
	PEAK POWER	× 858 ×	122,48	135.29	135.32	135.40	145.45	106.71	135.15	134.82	135.09	135.42	145 43
	* MONTHLY	< JAN >	33.18	100.29	97.10	102.56	135.52	45.34	133.05	135,52	135.70	108,45	118 47
	*		_	_	_								

<total></total>	2135.18	2413.70	2456.09	2455.96	2588.63	2241.97	2371.09	2417.03	2459.73	2403.16	2146.44	2351.50	28441.48	2370.12	2588.63	2136.18
< DEC >	89.13	95.86	128,32	135.91	40.26	107.93	135.93	146.98	151.08	119.49	135,90	25-62	1419.82	118.32	151.08	79.22
۸ >0× ۷	241.58	289.45	298.98	297.86	233.77	298.98	2007	251.10	298.98	261.34	279.08	177.29	3128.95	260,75	298.98	177.29
× 00.7	298.98	298.58	258.98	298.98	298,98	298.98	298.98	298,92	298.98	298.98	266.88	298.98	3555.69	296.31	298.98	266.88
< SEP >	298.98	298.98	297.75	298.98	298.98	298.98	298.98	295.45	298,98	298.98	235.69	298.98	3519.74	293.31	298.98	935.69
< AUG >	295.80	298.98	290.75	296.02	295.93	77.762	296.88	291.55	297.12	298.80	225.00	298.98	3480.27	290.02	298.98	225.00
^ 155 >	222.34	295.69	268.21	255.36	291.73	259.82	277.73	239.55	290.13	292.50	194.59	292.75	3179.80	264.98	295.69	05 701
^ NO	132.13	199.91	240.31	234.05	265.48	132.17	193.90	219.62	150.74	188.25	154.92	213.36	2324.83	193.74	265.48	143 15
A MAY >	132.82	132,42	132,43	132.54	245.13	133,00	132.36	136.64	135.57	132.62	132.52	154.90	1732.94	144.41	245.13	42 024
A APR >	133.87	133.41	133.46	133.65	138.85	134-13	133.30	132.89	133.12	133.72	133.58	132.93	1606.91	133.91	138.85	04 677
A MAR V	134.89	134.44	134.48	134.64	144.54	135.08	134.31	133.93	134.23	134.62	134.52	133.90	1623.58	135.30	144.54	4 74 00
✓ 853 ×	122,48	135.29	135.32	135.40	145.45	106.71	135.15	134.82	135.09	135.42	135,31	134.75	1591,38	132.62	145,65	106 73
V NAL V	33,18	100.29	97.10	102.56	135.52	45.34	133.05.	135,52	135.70	108,45	118,43	135.45	1277,60	106.47	135.70	0 7
J. YEAR	1978	\$761 5	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TOTAL	AVE	×	7

(g	00000	00000	00000	00000	00000	00000	0000000	0000000	0000000	00000000
- proj	표 Q O O O O	00000	00000	00000	00000	00000	000000	000000	0000000	0000000
i Ninh		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3882 3882 3843 3843 3843	444444 948884 94884	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000000000000000000000000000000000000	44444444444444444444444444444444444444	4444444 244444444444444444444444444444
e-4 Da	00000	00000	00000	00000	00000	00000	0000000	0000000	00000000	0000000
city Duration river system case-4 Dai Ninh - project)	84 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000			00000	00000	000000	000000	0000000	0000000
Durati er syst	M W W W W W W W W W W W W W W W W W W W	0000 0000 0000 0000 0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144444 14444 14444	3333 3333 3433 4433 4433 4433 4433 443	0 4 8 4 9 6 8 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6 6 6 6	HUNGHUNG MUNG MUNGHUNG MUNG MUNGHUNG MUNG MUNGHUNG MUNGHUNG MUNGHUNG MUNGHUNG MUNGHUNG MUNG MUNG MUNG MUNG MUNG MUNG MUNG M	8004884 8004884	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
apacity Nai rive	00000	00000		00000	00000	00000	0000000	0000000	00000000	00000000
Result of Capacity Duration (The Dong Nai river system	DATE OOOO	00000	00000		00000	00000	000000	0000000	0000000	0000000
Result of C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22246	222222222222222222222222222222222222222	255 255 255 255 255	22222	265 265 268 268 270	222222222222222222222222222222222222222	282 282 282 283 284 284	22222222222222222222222222222222222222	0008765 0008765 0008765 000876
	00000	0000	00000	00000	0000	000000	0000000	0000000	00000000	00000000
	α ποοοοο	0000	00000	0.0000	0000	00000	0000000		0000000	00000000
	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	186 187 188 189	190 190 190 190 190 190 190 190 190 190	1995 1995 1996 1999	12220 0000 10000 10000	2002 2004 2004 2004	20000000000000000000000000000000000000	22210987 22210987 22210987	2222222 222222 222222 222222 22222 22222	0 0 8 4 9 W W W W W W W W W W W W W W W W W W
	132.6 132.5 132.5 132.5	1325.2 1327.2 1327.2 1327.2	1222 1222 1223 1234 1234 1334 1334 1334	2006-7 2006-7 2006-7 200-8	1000H	000000			00000000	00000000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				7812 3912 3901	00000	0000000	0000000	0000000	0000000
	222222 222222 222222 222222			• • • •		11 11 11 11 11 11 11 11 11 11 11 11 11		1000 1000 1001 1001 1001 1001 1001 100	1770 1770 1770 1770 1770 1770 1770 1770	1175 1175 1175 1176 1178 1180
	22222 222422 224422 20000 24400	194.6 193.9 188.2	154.9 151.1 150.7	145.6 138.9 135.6	2022	2000 2000 2000 2000 2000 2000 2000 200	126.92	- 9 9 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	40000	24 5 5 6 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	7807 7807 8506 8906		1806 1905 1612 1612 1612 1512	2022	8601 8601 8001	1022	26498888 2000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88840000000000000000000000000000000000	88 88 89 80 80 80 80 80 80 80 80 80 80 80 80 80
	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		27272					00000000000000000000000000000000000000		VM VM V V V V V V V V V V V V V V V V V
	2899.0 2899.0 2899.0	0000	299.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2888	299.0 297.9 297.7	2222222 242222 242222 24222 24222 24222 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 242 2422 2422 242 2	22222222222222222222222222222222222222	12222222222222222222222222222222222222	22222222222222222222222222222222222222
٠.	DATE 7809 7908 7908		8210 8310 83110 8409	8410 8510 8609 8610 8611	8709 8710 8908 8909	8209 8708 8111 8009	84.08 81.08 82.08 7808 7907 8509	88207 8207 88207 88507 79907	88 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88511 7811 7811 88505 88105 8211 803
	5 H U M 4 1			50000				MU10087		0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Result of Reservoir Operation (The Dong Nai river system case-4 Dai Ninh - project) # # # # E E # (4) 19411-12128

* MONTHLY TOTAL ENERGY (GWH) *

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 1	1972.68	1970.20	1922.35	1040	10.0761	1850.97	1875.62	1801 52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2016.48	1948.20		LV44.00	1851.85		22590.0	1882.50	2016.48		1004-00		
V 10 V	7	119.64	151.64	28 071		90.00	130.18	130.46	0 / 14		162.04	51 171		10.71	65,32		1520.9	126.74	162.04		65.56		
4 A D A Y	0 / 0 / 1	208.89	284.10	200	9 10	10-0/1	266.71	158.46	100	0 / 1001	276.07	70 04,	N 1	238.15	87.63		2459.6	26. 200	06. 40	1	87.68		
V 100 V	7.4.5.0	293.57	70 500	7 7 7 7 7 7	7	295.57	293.57	297.57	111111111111111111111111111111111111111	76.042	793.57	70.400	2.0.43	293.57	201 47	,	3522.9	75 700	7000	7.0	293.57		
۸ ش س ک	284.10	284.10	240 64		01.407	279.17	268.82	287 10	200	77.127	284.10	1 0	77.107	236.15		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1323.8	374 08		71.102	236.15		
< AUG >	275.17	290 52		200	274.00	254.50	244 04	10010	0 / 1 / 7	234.56	10110	1 1	5/1/5	27 17	100	41.672	7000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	20.00	82.12	,	
< JUL >	134.11	756		1/4.50	165.24	233.61	4	10.10.	17.74	77.48	10 010	0 T O T O	248.18	00 76	01	67.642	, 0	4	192	256-92	00 74	2	
< ND? >	67.22		***	144.52	152.52	57.37		24.70	111.70	178.25	1 (27.00	111		0	127.65	1	× 100 × 100	105.80	152.52	47 23	77.10	
< MAY >	77 34	1 1	13.77	73.50	73.41	218 50		74.47	73.01	70 08		73.07	73.62	1	27.7	87.14		10401	86.70	218.69	1 0		
< APR >	74.00	9 1	75.50	75.48	76.04	71.02	7	76.80	75.04	07.00	3	75.94	74.18	1 4	75.80	80.98		912.5	76.04	00 C €		71.05	
< MAR >	0.4	9 1	80.58	80.75	81.41	115 50	7 C - C T T	82.43	84.11	400	7.00	97.30	, K	1 1	80.90	118.67		1093.6	91.13	118 63	91	80.08	
< FE8 >	71 12	9	75.28	78.10	76.16	1 10	7	77.00	29-96		•	84.09	4.0)	84.51	75.25		976.8	81.40	64 40	0 1	75.25	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		140.00	95.51	57.75	0 Y D		47.00	87.38	96.03		0	106.51	40.04	705.00	106.64	106.54		1264.4	105.37	7200	140	46.58	
0000		1978	1979	1980	000	* 1	1982	1983	7801 4		3 1985	1986	100	7061	1988	1989		TOTAL	AVE		X X E	X H X	

	project)	TOTAL>	525.63	693.10	690.02	627.10	694.60	529.44	558.14	463.98	754.65	559.07	125.57	525.89	347.16	570.60	754.55	2225.57	
	[‡] Tri Anh - pr	DEC >					_											87.79	
	ase-4 T															_	_		
pacity	system o	< VON > .	_	_	_	_	_	_							3416	284.	394.	121.77	
athly Ca	ai river	A 00.1	394.59	364.59	354.59	364.59	394.59	394.59	394.59	394.59	394.59	394.59	394.59	367.59	4735.08	394.59	394.59	394.59	
sult of Mo	(The Dong Nai river systen	< SEP >	394.59	394.59	374.26	394.59	387.74	373.36	394.59	390.89	394.59	394,59	32.7.99	394,59	4616.37	384.70	394.59	327,99	
Re	E	< AUG >	369.86	390.48	336.56	368,35	342.08	357.55	369.33	315.27	365.47	364.56	110.37	369.89	70507	338,31	300.48	110.37	1 2 4
		< 1UL >	180.24	345.37	234.63	222.10	314.00	214.59	265.78	104.14	283.56	333 57	103.35	335.68	29.17.02	244.75	45 575) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	1
		× NOC ×	93.36	165.47	200,72	211.83	93.57	94.35	155.14	178.14	119.31	154.18	120.04	177.29	1743 41	146.95	21.0	1 1 1 1 1 1 1 1 1)
		V XXX	98.60	98.29	72,86	98.67	293.94	100.05	54.86	102.13	95,53	10.80	98.62	117.13	1408 48	114 53	1000	* K K K K K K K K K K K K K K K K K K K	3
		Λ α α α τ	105.55	104.47	104.83	105.61	98.65	106.75	104.22	112.20	01.30	100	104.27	112.47	77 77 1	100	11	\	0
	* (WW) #3	A 00 00 00 00 00 00 00 00 00 00 00 00 00	109.68	108.30	75.801	100 42	155	110 77	114	146 40	130.79	100	10.80	159.50	78 07/1	07 661		00.500	00.4
	PEAK POWER	× 8111	113.79	112 03	110 01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	148 44	114 58	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	125.25	175.13	111	124 62	111.98	6 6 7 7 7	1000	0 0	100.00	777740
	* MONTHLY	V NAL A	285.87	178.43	000	17011	14.0	117 45	129.07	4004	164.14	40.40	1/4 4/4	143.20	77	1077.40	1 t t t t t	70.00	112.51
		9	: α	0 0	· c) +	1 0	1 M	1 4		١ ٧	4 0	. α	0.0					

			0	0	9	0	C		? '	•	9	9	C	•	?	9	C	2 .	7	9	
		Φ.	o	o	ó	0	c		>	o	o	o	c		ċ	Ö	C		>	o	
		DATE	0	0	o	0	C		>	0	o	0	c	, ,	0	0	¢) (>	0	
	i Anh -	S.	361	363	363	364	4 4) ·	0	367	368	269) ·	371	372	373) (374	375	
	case-4 Tri 1	α.	0.0	0.0	0	C	4					0	•	٠				٠	٠		ı
tion	•	DATE		c	c) C	•	۰ د	0	0	o) C		>	0	c	, (0	0	c	
, Dura	er sys	OX.	301	,	9 K	3 6) (ŝ	306	307	K C M	0 0) (310	311	717	1 1	515	314	4	
pacity	Vai riv	α			9 0							•			- 1			•	- 4		
Result of Capacity Duration	Dong 1	u + <	_	o (0 0	> <	5	0	0	•	0 0	۰ د	>	0	c			0	c		
Resn	The	, <u>ç</u>	2 .	7 0	747	777	544	572	26.6	, ,	1 0	20	249	250	100	1 1	252	253	746	,	
		ŧ). ·	•	0	0						•	٠		•					٠	
			٦. ۲.	o	0	0	0	0	•	۰ د	-	q	0	c	,	9	0	c	, (Э	

₹	α.	0 (0 0	0.0	0 0	000	0	0.0	0	0.0	000	9 0	0	0.0	0.0	0.0	0 0	0	0	0.0	0	0	0.0	9 6	5 0	0 0	0.0	0.0	0 0	0 0	0	0	0	0	0.0	0	0	0.0	0 0	0	0.0	o c	0	0,0	0 0	9 0	00	0	0.0	0,0	90	
Sold -	DATE	0 (0 (0 0	> (> <	0	0	0	0	00	> c	0	0	0	0 0	0 0) C	o	O	O	0	0	၁	> c	o c	0	0	φ.	0 0	0	0	0	0	00	> C	0	0	00	0	0	0 0	0	0	0	> (o c	0	0	0	0 0	•
i Ann.		361		363		777	200	368	369	370	371	3/6	1 C	375	376	M.	1 2 3	, ,											392							2 6			4 v		•	804		411	412	413	J 6	1 4	417	4 60 f	2 H V	1
e-4 Tr	ď	0	0	0	0 0) c	90	0	0.0	0.0	0,0	9 6	9 0	0.0	0	0	0.0	9 0	90	0	0	0.0	0	o'	0	0 0	000	0	0.0	0	0 0	9 0	0	0	0	0 0	0 0	0.0	00	00	0.0	0.0	90	0.0	0.0	0	0,0	9 0	0	0-0	0,0	5
The Dong Nai river system cast	DATE	0	0	0	0	0 0	o c	0	0	0	0	0 (o c	. 0	0		0	00	o c	> C	0	0	0	0	0	0 0	၁င	0	0	0	0 0	> C	0	0	0	0 (> c	0	0 0	0	0	o ·	00	0	0	0	0 (> <	9 0	0	0	0
er syst	, ox	301	302	303	300	302	306	0 0 0 0 0	9 0	310	311	312	4 4 4	11.5	316	317	318	319	520	400	4 6 7 10 7 10	324	325	326	327	328	0 C) H	332	M	m	', p	יזני		£1	M I	4 4 7	М	P : I					0 N N N				3 2 2	0 0	. ες 1 (1)	r	360 0
Nai ny	a	0.0	0.0	0.0	0.0	0	00		0	0.0	0.0	0	0 6	0 0	0	0.0	0.0	0	0 0	9 0	9 0	0	0	0.0	0.0	0	0 0	9 0	0	0.0	0.0	0.0)) (0	0	0.0	0.0	0	0.0	00	0.0	0.0	0 0	000	0	0.0	0.0	0.0	9 0	0.0	0.0	0.0
Dong	DATE I	0	0	0	0	0	0 0	o c	0	0	0	Ö	0.6	o c	o c	0	0	o	0	0 0	5 C	o 0	0	0	0	0	00	o c		О	0	0 0	o 0	0	0	0	0 (0	0	0 0	0	0	0	00	0	0	0	0	o c	9 0	O	0
The				243		572	246	Ņſ	0 0	1 6	251	252	253	254	777	257	258			58	N C	9 6	1 1	2	2	26	269	270	7/2	273	274	275	276	- 27	1 .01	23			284		280				4 6	, , ,		,,,	296			300
	o	. 0	0	0	0.0	0.0	0.0	0 0	9 0	0	0	0	0	0 0	0 0	0 0	0	0.0	0,0	o d	0) o	9 0		0	0	0.0	0.0	0 0	0	0.0	0	0,0	90	0	0	0	9 0	0.0	0	5 0	0	0.0	0.0	0 0	0	0	0.0	0.0	0 0	0	0
	h.	10	0		0	0	0	0 (ci c	o c	0	0	0	0	φ (o c	0	0	0	9	0	> (> <) C	0	0	o	0 (o c	9 0	0	0	0	0 0	0	0	0	0 0	0	0	00	9 0	0	0.0	> c	o C	0	0	0	5 C	0	0
	Ş	2 4	4 h	9 K	184	181	186	187	0 0 0 0) () () ()	191	192	193	194	195	9 6	108	199	200	202	202	503	3 0	0 0	7 0	80.0	209	210	211	217	214	215	216	217	2 5	220	221	222	527	225										237		
	,	, u	0.00	0 0 0 0	104.8	104.7	104.2	104.1	103.4	105.1	1001	0	7 86	98.6	98.6	9 6	0 0		95.5	94.3	93.6	93.4	χ () () (9 0) c	0	0.0	0.0	0 0	5 0	0	0	0.0	0.0	000	0	0.0	0.0	0	0.0	0,0	0 0	0	0.0	0 0		9 0	0	0.0	0.0		0
		DATE	8104	7087	1000	7007	8404	8507	8807	8505	8604	200	8105	8204	8805	7805	300 100 100 100 100 100 100 100 100 100	207	8605	8308	8206	7806	8912	5 (9.0	0	0	Ο.	0 (0 0	0	0	0	0	0 0	90	0	0 (o c	0	0 (5 C	o. c	0	0 (o c) C	0		00	5 C	00
		2	121	122	17.5	9 0	126	127	128	129	e	٦,	1 ~		Ξ.	17.		•		7	-	۲			1 4 9	, x	149	150	151	152	0 4 0 10 0 4 7	152	156	157	158	4 4 4	141	162	163	165	166	167	1 1 2 6 6	170	171	172	177	175	176	177	178	180
		OL.	203.6	2007	189-7	1 P	178.1	177.3	175.4	175.0	165.5	107	160.8	159.5	155.4	155.1	154.2	140.4	141	143.2	138.8	138.8	138.3	130.8	129.2	129.1	128.4	126.9	125.2	125.1	121.8	120.0	119.3	119.0	117.4	11/11	114.6	113.8	113.3	112.9	112.5	212.2	112.0	112.0	110.8	110.4	700	001	108.7	108.5	108-1	105.8
		DATE	8512	8008	8712	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/ 00 / W	8906	8412	8312	2006	26816	7017	8903	8203	9078	8706	2000	4 6 6 6	8601	8402	8202	8701	8603	8501	1018	7901	8001	8502	8602	8911	8000	8606	8212	8301	0 × 0	8302	7802	8102	8702	1068	8002	4004	8902	8303	8808	7 50 7	9 K	8000	8003	7903	8204 8704
		S.	6,1	29	63	4 1	0 4	629	89	69	2	7.5	V F	1,7	7.2	9.2	77	00 0	, a	3 6	2 63	83	78	8	80	000	20 C	6	6	92	60 C	1 tr	. 6	. 97	80	0 0	0 0	102	103	101	106	107	0 0	110	111	112	M •	111	116	117	118	150
		o.	ĕ	765	394.	m I	707	אר	366	m	50	ΜI	594.0	3 14	וא ו	m	m	m I	394.0	,, ,,	, 17	M	383.4	374.3	М	וויי	369.9	1 6		n	M F	7.07	• •		335.7									262.2	•		241.4	N C	ÚN	1 1/2	214.6	211.E 203.8
		DATE	7810	2909	8010	8011	8109	0 1 1 0	8409	8410	8510	8609	8610	2000	8010	7910	8310	7809	8709	200	7007	8209	8611	8008	8309	8311	8008	8078	8108	8608	8708	8308	10 A C	8008	8907	8707	1 0 10 10 10 10 10 10 10 10 10 10 10 10 10	8508	8207	8205	7911	8607	8407	4 4 4 4	7801	7811	8211	8007	7018	8612	8307	8012
		o		ľ	n	7	S .	۰ ۲	. 00	٥	0	r-i	N t	2 <	·	0	4	90	0.5	0 1	H 0	3 M	7	5	9	23	φ (у К У С) rd M	25	M.	7 L	7 Y) h	89	3	9 :	1 17	43	7 7	2 9	7.7	87	4 n	, 50	22	M	2,5	N V	N N	28	8 8 8 8

.

Result of Reservoir Operation (The Dong Nai river system case-4 Tri Anh - project)

6A-138

Ħ
CHMB)
FYERGY
TOTAL
MONTHLY
*

Result of Monthly Energy Calculation (The Dong Nai river system case-5 Dong Nai4 - project)

<tctal></tctal>	839.42	971.03		****	963.87	1065,59	7 C C C	7.4	935.28	962.60		40.04	966.08	10	07.07.0	061.72		11399.8	66-676		1065.59	839-42		
	77.05	20.87		000	58.59	08.77		0 1	53.71	63.34	1	00.00	58.65		97.81	17 LR) :	8.879	54.07	. (15.08	37. 48		
× 202 ×	106.82	120 04		150.00	120.04	102 53	***	00	62.49	111.05		150.00	111.35		136.66	0	1	1393.9	116.45		136.66	α •		
< 100 ×	141.22	11.1 22	1 4	141-22	141.22	17.1 22	1	141.66	141.22	141.22		141.22	141.22		141.22	4/1 33	3 2 7 4 7	1694.6	171 22	11.414	141.22	171 22	1 1 1 1	
< SEP ✓	136.66	77 721	9 .	136.56	136.66	77 721	3 .	136.66	136,66	134 44		136.66	134.46	2 1	124.69	** ***	150.00	1628.0	77 32+	00.00	136.66	07 /61	10.404	
A DAY >	130.92	, ,	22.747	137.12	140.36		1 t	133.72	140.59	147 64	10.	140.75	474 22	1	139.28	7	141.66	1665.1	7	7.00	141.22	,1	120.46	
< 30E >	1 TO	1 (150.76	140.52	127 03	200	124.00	99.52	121 22		140.04	117.36	C P C T	777	85.07		130.89	0 +271	1 1 1	114.00	140.52		82.0	
∧ Nail >	77 70		67.65	79.56	70 04	0.4	130.03	27,30	78 87		40	78.07		3	11 77		122.89	V 200	1	17.57	130.03		27.30	
> 2			30.46	30.46	,	71.10	110.24	29.04	74 07		32.26	42		27.75	41 00		33.42		200	37.82	110 24) ·	28.47	
400		40.47	30.94	¥1 0.4	111	20.20	31.50	30.83		7 4 7 7	31.60	74 87	1	32.24	C7 CX	74.40	32-14	1	0.0	31,55	75 65	1	29.84	
2	,	14.00	33.99	2 + 72		14.45	34.17	34.09		4 - 40	34.24	78 72	9	35.14	40	27.00	34.53		415.5	34.44	7 4 2 2	****	33.41	
0		27.44	32,21	14 61	11	25.75	32.31	75 - 62	1 1	0	32.37	10 01	,	33.01	70 72	00:40	32.43	1	393.5	32,80	70.75	20.40	11.99	
	V Z T V	26.80	36.81	***	0,0	37.03	36.85	4 O A F) (57.05	36.86	1	71.00	37.25	1 1	ハボ・ノイ	36.95	!	7.577	70 7%		07.10	36.80	
	Y M A K	1978	1070		2007	1981	1982	0.0	1 0 N	1984	υ α φ +	1 0	1730	1987		1988	1989		TOTAL	200		XXX	MIN	

	_	
	(The Dong Nai river system case-5 Dong Nai4 - project)	<t0tal> 1146.33</t0tal>
	Dong Nai	< 05C > 59.16
aty	em case-5	38.26 38.15 123.41 175.97 189.81 189.81 148.35 59.16
Result of Monthly Capacity	i river syst	< 00T >
It of Mon	Dong Na	4 SEP >
Resu	(The	< AUG > 175.97
		< JUL > 123,41
		< JUN > 38.15
		. MAY > 38.26

* MONTHLY PEAK POWER (MW) *

-C.E.F.	146.33	326.63		24.	216.40	1454.85	218.63	100	of I	513.89	556.17	00 012	011	98.33	214 03	,	15564.46	70 200		20.47	25 97	1	
						60.21											172.04 155			~ 1	_		
V	ŝ	8		œ.	78	9	7.7		9	8	9	4	0 !	9	5	1	872	7.5	d +	9	ķ	>	
^ \0\v	148.36	144 72		104.01	166.72	142.40	180 081	. (124.43	154.23	189.81	0, 100	104.00	189.81	4.4 7.7	11777	1935.91	77 171	707	139.81	114 11	, , , , , , ,	
< 0CT >	189.81	200		189,81	189.81	189.81	000+		187.81	189.81	189.81		70.	189.81		10.01	2277.67	000	10.401	189.81	200	70 407	
< 325 ×	189.81	0 00 0	4 · · · · · · · · · · · · · · · · · · ·	189.81	189.81	189.81	60.4	1 .	186.681	189.81	189.81		187.81	173.18	0 0	107.01	2261.05		74.001	189.81	111	07.07E	
< 40G >	175.97		10.401	184.30	188.66	189.81	1 1	C / - / / T	188.97	184.85	480.18	1	189.81	187,20		189.81	2238.09		186.51	189.81	1	175.47	
^ 187 >	123 4	1 1	1/2.4/	188.87	170.74	146 75		122.0	162.93	188.60	72 25		165.59	214.34		175.92	1936 A1		160.58	188.87		114.54	
	ν τ α κ		121./4	68.83	100.09	01000) (24.75	109.51	90.12	Y / a C +	1	116.59	44.12	11	170.68	74 84 17		06.86	180.59		37.92	
^ ^AW >	7C BH	9	76.07	76.07	41	0 C C C C C C C C C C C C C C C C C C C	7	59.05	26.27	22 27		77.7	68.24	00.57		26.77	40	2	20.84	81 871) ·	38.26	
V 000	4	1	75.97	43.14	27 77	14.47		70.27	75.77	08 27		10, 11	45.19	CU 57	1	79.77	200	26.73	43.83	57		41.45	
/ G 2 X			45.69	75.87	70 77) () () () () () () () () () (1	78.64	69.97	70 97	76 77	10101	47.23	24 47		14.61	70 000		05.94	26 47)	74.91	
V 800 V		2	76.27	48.01	7.7	000	0	77.84	48.66	78 12	100	10.04	49.12	70 87	, ,	48.25	0	1	48.37	0 4 2	14.	47.60	
7		4	87.67	87 07	,		70.75	02.63	08 67	200	# ·	0 , 7	50.07	. N	7	79.69	,	740.07	02 67		2000	97.67	
5	# C	2 / 4 1	1979	0.00	0 0	1061	7861	1983	7007) 0 0 0 1 0	יי העלי	1986	1027		0	1989	;	DIAL	u / P	1 2	7.4.4	XXX	

Ę,	n	0	0	0.0	0 0) c	0.0	0.0	0 0	5 0	00	0	0	0-0	0 0	9 0	0	0	0.0	0	0 0	9 0	0	0.0	0	00	0	0	00	90	0.0	0 0	000	0.0	00	0	0.0	00	0	0.0	0,0	0 0	0	0	0 0	00	0	00	0	
nro <u>i</u>	1	u o	0	O	0	o c	0	0	0 (0 (5 C	, 0	0	0	0 (o c	, 0	0	0	0	0.0	> c	o c	0	0	0 (0	0	00	0	0	00	0 0	0	00	0	0	00	9 0	0	00	o c	0	0	00) 0	0	00	, 0	
Z: 67	1 4 4 4		1 2	53	75	50	367	80	69	0 1	571	J M	14	375	9!	377	0 0	80	81	82	εο ·) L	0 4	200	88	600	2 1	25	٠ د د	4 W	96	24	3.98 0.08 0.08	00	107	u n	70	500	007	80	601	O +	415	113	717	A 50	174	80 0	150	
,	, S									m																																				90	00	9 (90	
r V	<u> </u>	a, c	0.0	0.0	0.0	0.0	0	0	0	0	0 0	50	0	0	0	0	9 0	0	0	0	0	0	5 0		0	0	0 0	0	0	0 0	0	0.0	00	000	0.0	9 0	0.0	ö	o c	6	6	o o	, o	0	0	o c	90		20	
Ę.	22	E A C	> 0	0	0	0	9 0	0	0	0	00	o c	0	0	0	0	0 (> C	0	0	Q	0	0 0	o c	0	0	00	φ	0	00	0	0	00	0 0	0	Б С	0	0	00	0	0	00	90	0	0	5 C	90	00	> 0	
uratio	syster	2 2	100	900	304		306						717	315	316	317	979	ን ር ሳ ኮ) to	322	323	324	353	9 10 0	326	329	330	335	333	434	0 M	337	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	341	24 K	344	345	346	146	349	350	352	351	354	355	357	358	3 2 4	
oity D	nver	α.	0.0	0 0	0	0.0	0 0	000	0	0.0	0	0 0	90	0.0	0	0.0	0	0 0	, ,	0	0.0	0.0	0	0 0	000	0.0	•	9 0	0.0	0,0	9 0	0.0	0.0	00	0.0	0,0		0.0	0,0	0 0	0	0	0 0	000	0			0	00	
Result of Capacity Duration	(The Dong Nai river system case-2 bong war from	ш	0 1	o c	0	О	0 0	5 C		0	0	O 1	0 () O	0	0	0	0 (o c) C	. 0	0	0	0 (o 0	0	0	00	0	ю	00	0	0	00	0	0	> 0	0	o (o c	0 0	o	0 (> 0	0	0	00	0	00	,
ult of	e Don	NO. DAT	÷	n 61	า -4	'n	•	1.47	00	. 0	- 4-1	6	ю.	t tr	1 90		6 0	6	o •	- 1 0	ìй	-1	ι,	91	<u>α</u>	0 0.	0	٠, ٢	ıМ	7.	N 4	0 ^	ω,	0.0) el	25	กร		86	~ 60 60	0 0	0	291	N 10	1 4	295	96	208	299	
Res	Ē			242							251																														й й э о			00			00			
		α	0.0	0,0	90	0	0.0	0,0	9 0	0	0	0.0	0	0 0	0	0	0.0	0.0	0,	0 0	0	0,0		0.0	0 0	5 0	0	0 0	00	ö	0 0	0 0	0	0,0	000	0	00	0	0	00	; e		<i>i</i> •	o 0		0	o c		9,0	5
		CATE	0	0 (0 0	0	o	0	0 0	oc	0	0	0	0 0		0	0	0	0	0 (> C	0	0	0	0 (90	0	0.	0	0	0 (o c	0	0 (0 0	0	Ó C	0	0	0	o c	• •	O I	00	0	O	00	o 0	0.0	>
		, O					186						193			100					2 50 50						210		212		215	216	27.5	219	220	222	253	225	226	227	223	230	231	232	255	235	236	238	239	042
		Δ.	•	9.77	, , ,	7 7 7	44.1	43.9	1 00	, r	n ei	0	0.57	0 0	2.0	0.0	7.17	6.01	6.04	39.0	9 6	200	0	0	0	00	0,0	0-0	00	0		00	00	0.0	0,0	0	٠	90	0		0 0	•	0-0	0	00		0	00	000	
		H H	100	504	707	101	8806	705	50 C	707	100	805	507	706	705	4 V	108	500	506	305	808	908	000	0	o	00	0	a	0 0	0	0	00	o 0	0	00	0	0	00	0	0	0 (o c	0	0	0 0	> 0	00	00	, 0	0
																								944					1 2	2 4	S	9 1	~ «	0.00	160	1 (2)	163	104	0 y	29	168	6 F	17.1	7.5	, y	4 5	176	77	9.0	0
		Z	12				126																		•										•			77 7	-			*1 *		ون		y 0	-		4 FF	6
		٥		121.7	116.6	114.3	109.5	108.4	100-1	98,5	90.1	3 6	78.8	78.8	72.3	72.2	0 4	65.8	60.2	265	20.4	200	0,0	8.67	8.67	7-64	. 0	50.00	67	7 0	1.67	6.87	6.87	φ,	2.84	0 00	9	0.87	7.7	7.7	7.7	2.0	97	7.97	91	1 4	5,5	2,0	, 55	77
		1	1000	29067	8706	8807	8406	8606	8106	8612	8506	3478	8712	8112	8312	8412	0000	7012	8212	7812	8915	8701	1000	1000	8101	8301	1000	8201	8001	7901	8702	8802	8602	8402	8902	3002	3202	8002	7902	8703	8803	8103	8403	8903	8503	8203	8303	7903	40/8	8905
							0 Y		68	63	10	4 ¢	. K	7.7	25	. 92	7.	9 0	80	8	82	ю Ю	4 6	ο α	60	88	80 C	, 0,	25	5 6 6	9 1	96	0 C	0 0	100	101	103	701	105	107	108	109	111	112	113	114	110		811 113	120
				0 10	89	89	189.8		8	8	B (zi 0	o «	, ω,	8 6	85.8				82		8.6	83	20.00	0.00	8	8,6	0.00	9.2	0.0	7.00	88.6		5 7 7 8 7 7 8 7 7 8	80.6	7.67	76.0	75.9	M S	707	66.8	7.991	7-99	65.6	57.7	54.6	7.87	78.8	33.8	129.8
			,														~ .	٠,	7	1 (-	-	Π.	٠ ١٠	, ,		• • •				•	1 41	44 (1 44	47 4					•	•	~ -		-	٠,		1 44		
٠		i	0.A4E	4804	7908	7909	7910	200	8011	8109	8110	8210	0000	8311	6078	8410	8505	8510	0000	8611	8708	8705	8710	381	8008	8905	891(8200	8602	840	000	8507	880	000	8208	800	790	8907	3809	8107	8207	7911	8111	2078	860	871	7811	820	8211	841

Result of Reservoir Operation (The Dong Nai river system case-5 Dong Nai4 - project)

6A-142

	project)	<to; al=""></to;>	857.02	065 70	955.35	10000		1021.101	882.54	936.48	70 000	07.50	1007.01	740		1/8.20	57.870		11174.5	931.21		1021.10I	778.26	,	
	ong Nai8 -	< DEC >	36.01	39.20	57.55		7	57.45	56.77	72.27	1	07.70	29 - 44	60 77		43.54	4, 45	,	538.7	68.77		29.44	21 72		
Calculation	1 case-6 D	V VOV V	88.33	06.66	130 67			85.93	127,24	C	, ,	40.11	135.37	Ç 70	-1 I	118.15	מא		1228.0	102.33	5	139,67	000		
ly Energy (iver systen	× 001 ×	153.37	153.37	153 37	1000	10001	153.37	153.30	157 77	1	155.57	153.37	72.47	1	153 37	152 27	777	1840,4	153 36	3 1	153.37	~	2	
of Monthl	ong Nai ri	V SEP V	148.42	148.42	7.0	· U · · · · · · · · · · · · · · · · · ·	148.47	147.70	141.59	4 / 10 / 2	J .	146.60	148.42		74.041	125.42	0,0	140.45	1741.5	17.5 13	24 - 21 -	148.42	000	145.45	
Result	(The D	A AUG V	135.04	454 42		00.00	139.63	142.64	136.20	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	129.92	87.77		134.7	64.30		141.10	1,600.0	444	70.7	153.37	í	00.40	
		< JUL >	79. 67	1 7 7 7 7	101	101.90	109.53	137,58	45 CY	1	J A . 000	82.73	104.44		120.81	38.96	1 4 1 1 1	127.20	1211.3	1 6	* * * * * * * * * * * * * * * * * * * *	137.58		38.96	
		∧ NIII ∨		1 (70.47	36.70	51.53	106.06	74		29.94	37.72	77 05	20.	59.19	16.01	7	82.67	472.1	· · ·	000	104.06	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35,48	
		× × ×	77.40	2 1	27.70	37.15	37.33	52.39	11,	5	37.60	37.86	/7 62	,	37.48	47 47		37.96	7 847		78.07	4.0	, , , ,	37.13	
	* =	4		0 10	201.75	37.45	37.79	47 40		0 1	37.67	37.50	17	00.70	37.89	47 07	1	37.44	7 657	771	3/./1	87	1	37.38	
	NERGY (GW)	Y GA	***	101	70.04	07.07	69-05	02.07	0 1		70.53	40.28		7	59.07	54 07	1	40.13	0 787		V 0 • 0 •	47 17	1	40.13	
	TOTAL EN	4	0 0	0 1	3/./4	39.12	37.93	47 40	2	0.00	39.21	37 66	11	00.70	37.95	72 02	20.00	37,46	0 00	1	30.24	72 02	000	37.46	
	* MONTHLY		2 ()	45.71	75.91	42.21	00.54	C .		24.37	42.97	200 6 /		74.77	00 67		00.01	75.64	1	0.0	30.87		00-04	24.39	
		•	<u> </u>	œ	ò	2			9 1	m	¥	V	٠.	ŏ	٠	. 9	ŭ	ò							

- project)	4101134 117136 117136 1170136 11709	1063.93
case-6 Dong Nai8	A 0 DEC C 7 O S S S S S S S S S S S S S S S S S S	42.28
ъя	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95.13
Result of Monthly Capacity (The Dong Nai river system	00000000000000000000000000000000000000	206.05
lt of Montl Dong Nai	A C C C C C C C C C C C C C C C C C C C	174.20
Resul (The	A A UG A A A UG A A A A	86.42
	0 100 100 100 100 100 100 100 100 100 10	52.37
	00000000000000000000000000000000000000	147.30
	A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	70,42
	A S S S S S S S S S S S S S S S S S S S	53.44
ER (MW) *	A A A A A A A A A A A A A A A A A A A	55.62
PEAK POWER	\ AUTION AUTON AUT	57.58
MONTHLY	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	57.88 32.79
н	E	* 7

Ę	ξ,	د م د) C	0	_	0	0.0	0 0	0 0	0	0.0	0.0	0.0	0.0	0.	2 6	0 0	0.0	0.0	0.0	0	0.0	0,0) c	9 0	0	0.0	0.0	0	0 0) c	0	0.0	0.0	0,0	0	0.0	0	0 0	000	0.0	0.0	0	0.0	9 0	, 0	0.0	0.0	50	0.0	0.0	00	· •
	(The Dong Nat river system case-o Dong Ivaio - project	DATE	> <	, c	0	0	٥	0 0	o c	0	O	0	0	0	0	o •) C	, c	o	0	0	0	0	> 0	o c		0	0	0	0 0	o c	0	0	0	0 0	o c	0	0	0 0	o e	0	0	0	00	o c	0	0	0	0 0	> 0	0	00	>
0; c[X	ביים ב						366					٠.,				376			0 80 1 M															397											017	175	413	717	415	414 417	718	419	1 4 5
, , ,		a. 6	0 0	200	0	0.0	0.0	0	0 0	90	0	0	0.0	0.0	0.	0) (9 0	0	0	0.0	0.0	0	0	0 0	9 0	0	0	0.0	0 6	0 0	9 0	0	0-0	0 0	9 0	0	0-0	0	90	00	0	0.0	0,0	0 0	0	0	0.0	o o	00	0.0	0.0	2
E	r case-	DATE	0 0		0	0	0	0	00	00		0	0	0	0	0	0 6	> 0	0		0	0	0	0	0 0	o c	0	Ó	0	0	0 0	5 C	0	0	0	5 0	0	0	0,	0 0	o 0	0	٥	0	0 0	› O	φ.	0	0 0	> 0	0	0 (ɔ
uration	systen		301	305 FOF	1 M	305	306	307	308	۰ C ۲ C	, - - - - -	315	1 11	314	315	316	317	א ני	7 6	125	322	323	324	325	329	327	9 60	330	331	332	10 10 10 10	4 V	1 (0) 1 (1) 1 (1)	337	338	370	344	342	67E	4 4 4	1 4 1 4 1 F	7	348	349	0 v	4 to	M (2)	354	in i	300	. 60 1 50 1 10	359	360
icity D	ı nver	٥.	0	0,0	000	0	0	0.0	0 0	0 0	9 0	00	0.0	0	0.0	0.0	0	0 0	9 0	0	0.0	0	0.0	0.0	0.0	0 0	9 0	0	0	0	0	0 0	00	0	0.0	0 0	00	0	0.0	0.0	0 0	0	0	0	0 0	9 0	0	0	0	00	0	0	0.0
Result of Capacity Duration	ng Na	DATE	0	0	o c) C	0	0	0 4	> (> c	> C	o C	· 0	0	0	0	0 (> <	> C	0	0	0	0	0	0 0	o c	,	0	0	0 (0 0	C	0	0	0 0	o 0	0	0	0 0	> C	o	0	0	00	> C	, 0	0	0	00	, 0	0	ь
esult o	He Do	NO.	172	272	24.5	570	246	247	248	V 10	200	100	9 6	7.0	255	256	257	258	500	202	262	263	564	592	266	267	202	270	27.5	272	273	274	275	277	278	279	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	282	283	787	282	280	288	588	290	297	3 64 3 64	567	295	296	298	299	300
Ä.	C						0		0.	ò	0 0	9 0	0 0	9 0	0	0.0	0.0	0.0	0,0	9 0	0	0	0	0.0	0	0	0 0	90	0	0.0	0	0.0	9 0	0	0.0	0.0	0 0	00	0.0	0 1	0 0	9 0	0	0	0.0	00) C	0	0.0	00	20	0.0	0.0
		DATE	0	0	0 0	o c	o c	0	0	0	0 4	0 0	> <	> 0		0	ö	0	0	5 C	o c	0	0	0	0	0	0 0	> c		Ó	0	0	> c	0	0	0	0 0) O	0	0	0 0	5 C	0	0	0	00	> C	0	0	00	> 0	· o	0
		NO.		182	183	# U	7 X Y	187	188	189	440	191	192	2,7	101	196	197	198	0.1	200	100) () ()	207	205	208	207	208	200	217	212	213	214	213	217																		2 6	240
		۵	52.0	52.0	51.9	21.5		1	80.9	20.6	20.0	9	20.0	4.00	200	0	6.67	6.67	7 67	6.7	יו יו יו	7 7	2	0	0.0	0.0	0.0	0 0	90	0	0	0		000	0	0.0	0,0	9 0	0	0.0	0,0	0 0	90	0.0	0	0.0	20	90	0	0	00	, 0	0.0
		DATE	8004	8904	8204	7904	8000	0000	8505	8805	8605	7805	8405	8705	7 7 6	8808	8005	2062	8306	7806	7420	7803	107	10	0	0	0 1	0 6	> c		0	0	0 0	э c	ó	0	0 0	o c	0	0	0	0 0	9 0	0	0	0	00	o o	10	O	00	0 0	0
) r r r r		153	154	125	126	128	159	160	161	101	164	165	166	101		•	171	• • •				T) T	179	-
		a	7 98	84.6	83.2	32.9	82.2	7 2 2	71.6	70.4	70.3	67.8	7.09	7.09	200	10	57.8	57.8	57.8	57.0	27.7	7,0		7.7	57.1	56.7	56.5	50.0	7.00	, M	56.2	56.1	26.0	9 6	55.6	55.1	54.8	7.70	54.5	54.5	24.3	27.7	7.70	1 10	83.4	52.8	52.7	7.00	52.5	52.4	4.4	2 2 2	52.1
		u K		8307	8406	8606	8706	2100	8106	8205	8012	8112	3312	8712	8412	7 7 6 6	1018	8701	8401	8601	7901	2001	1028	000	7302	8001	8802	8702	8102	2008	8002	2064	8502	3505	3302	7803	8803	8103	0 0	8403	8003	2903	9000	9 60 60	8304	7804	8804	2707	200	8506	8807	8404	8504
				7 6			92								7.4				62			22	200	0 0 1 v	3 8	0 00	88	83	0 0	4 6	и М Ф	76	9.5	96	× ö	0.0	100	101	9 F	104	105	106		0 0	. , .		112			-1 -2-1	117	118	120
	e.	(D. 3	1.002	206.1	206.1	206.1	206.1	206-1	206.1	206.1	206.1	206.1	206.1	206.1	206.1	9 7 6	206.1	206.1	206.0	205.1	203.6	196.7	196.5	107	194.0	191.7	189.7	188.0	187.7			181.4	180.7	179.8		•	171.0	164.1	147.3	147.2	146.4	143	138.8	137.0	131.8	125.2	122.7	4. 4.1.	111.2	111.1	107-0	95.1
		1																						8008	0010	0 0	8208	8908	8611	8108	0 C C C C C C C C C C C C C C C C C C C	7808	8708	7907	8008	4 60	8809	8907	8815	200	8107	8407	8607	7911	3007	8711	8511	7811	1128	8000	8411	7807	8911

Result of Reservoir Operation (The Dong Nai river system case-6 Dong Nai8 - project)

6A-146

Result of Monthly Energy Calculation (The Dong Nai river system case-6 Tri Anh - project)

* MONTHLY TOTAL ENERGY (GWH) *

< 10.5	1991.42	10000	24.4.00	1932.63	1840 49		KOTTO,	1860.14	1001		1672.40	2407.45		1926.54	17.78 04	3000	1884.32		22769.6	1907 47		2107.43	1438.96		
< DEC >	123.67		155.40	141.12	4.0 B.		100.07	130.57	140 48	2 1	140.93	151 74		124.24	00 1107	763180	20.09		1518.1	124 51	3 1	151.76	60.07		
× 202 ×	168.68		187.04	266.92	400	0	122.73	238.37	4/8 17	7	178.62	257 7.4	04.160	176.35		21.012	124.58		2278.3	400 84	0	266.92	122.73		
× 00 ×	79 500		293.57	284.63		70.162	286.21	291.85	20.00	77.07	283.08	100	243.01	293.57		21 - A 1 E	707 57		3320.2	74.0	0.0	293.57	110		
< 435 ×	281	20.10	284.10	373 00	1 4	71.607	283,53	271.69		01.402	181.01		784.10	284.10		100,93	0, 780	21.	0.886		77.767	284.10	20 701	1	
< AUG >	200 546	6277	232.16	201		191.25	266.09	156 86		2/1.91	112 82		271.65	37.4.08		102.77	,,,,,,	7.0.7	2 427 4		218.95	282.16		1.70	
^ == `	1 2 5	144.00	250,34		10 to 1	107.78	167.68	000	1 1	187.97	407 13	1 1	176.32	44.0	775.73	04.66		143.46	0 000	2	141.75	25.025		74.4	
7 31 2	200	94.78	111 41	1 1	10.47	102.90	111 15		70.44	97.64	200	42.11	50	1 1	10.17	101.03		120.021	,	10001	102.19	120 01		74.37	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	145	109.33	101 22	, ,	103.24	103.36	150 81	100	×0.4	103.16		10.401	104 07		103.43	100 10.	3 1	102.85		1014.1	109.51	0 0 0		102.85	
,	X L .	108.94	104 90		106.65	106.92	400	000	70%.45	106.43		100.10	106 18		106.40	40 b		105.65	,	158/.1	107.26	000	71.45	105.65	
	A XXW V	116.37	07 200	112.00	113.76	114.08	11.11	0 ()	116.82	115.42		AA. REC	110 01		114.01	140 74	0	131.00		1427.2	118.94	, ,	0	113.68	
	< FEB >	108.43		316.54	120.58	115 90	1 6	70.021.	108.70	56 361.	1	120.64	00 000	750.70	109,50		777.0%	120.73		1395.5	114 20		125.45	108.43	
	•																	127.63							
	YEAR	1079	1 7 7	1979	1080	0 0	1001	1982	1087		1200	1085		1986	1001	3	1989	1989		DIAL		H V I	×ΥΣ	ZHE	

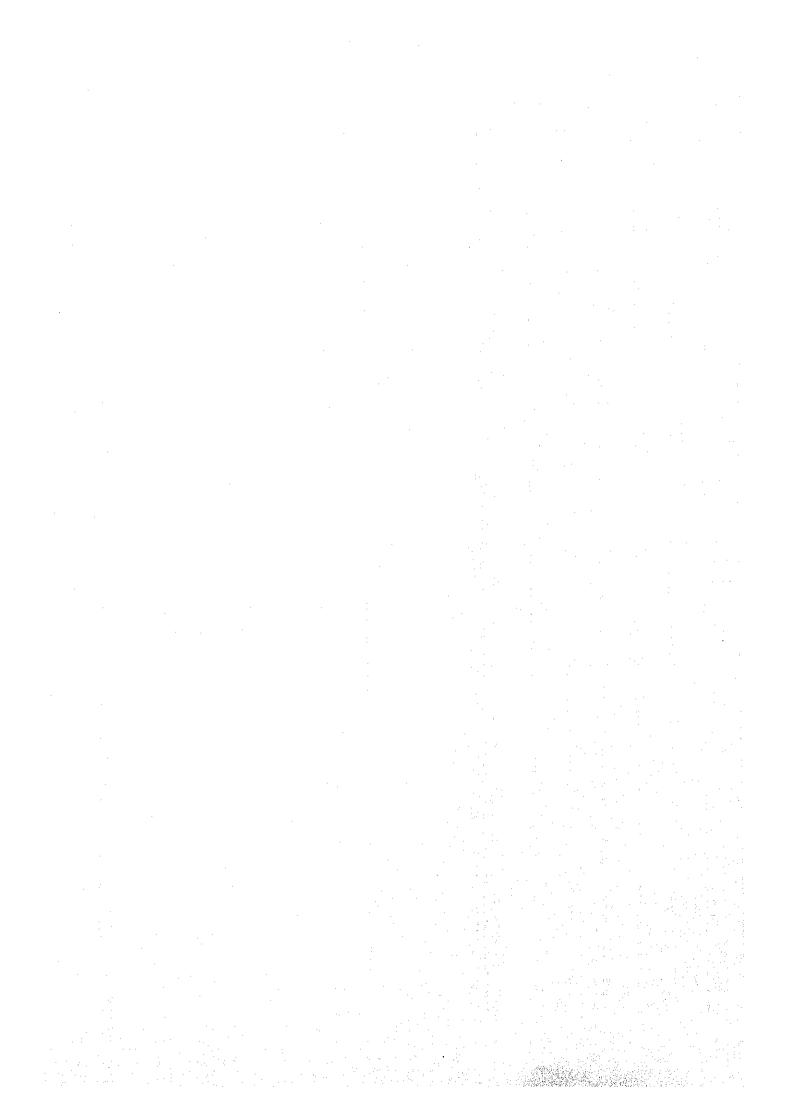
Result of Mon (The Dong Na

* MONTHLY PEAK POWER (MW)

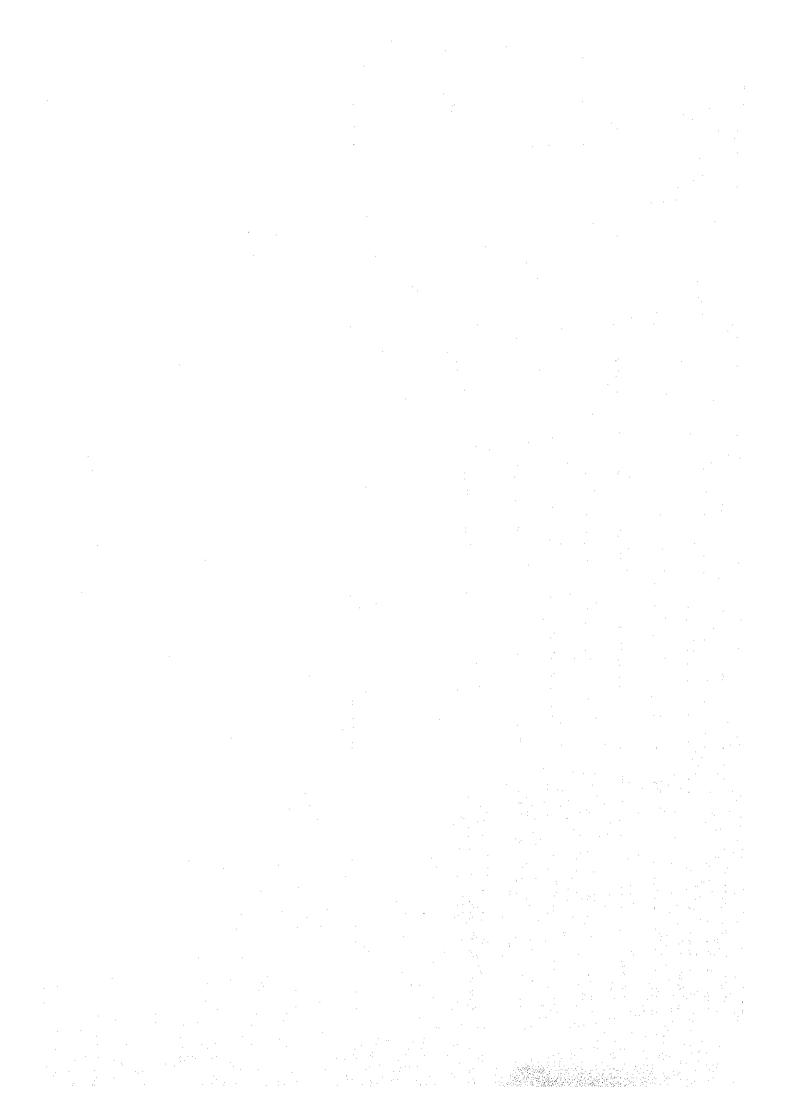
<total></total>	2721.74	2858.24	2641.98	2547.27	5749.69	2548.06	2717.38	2290.37	2883,30	2634.99	1968.41	2578.50	31139.90	2594.99	2883.30	1968.41
A 05C V	166.23	166.53	189.67	189.31	170.19	175.49	175.37	189.42	203.98	167.02	166.50	80.74	2040,44	170.04	203.98	30.74
< NON >	234.28	262.55	370.72	262.09	170.46	331.08	205.79	248.09	357.58	26.772	303.77	173.03	3164.36	263.70	370.72	170.46
< 0CT >	394.59	394.59	385.26	392.30	384.69	392.27	394.59	380.48	394.59	394.59	160.12	394.59	4462.66	371.89	394.59	160.12
< SEP >	390.37	394.59	377.90	373.85	393.79	377.35	394.59	251.40	394.59	394.59	148.51	394.59	4286.13	357.18	394.59	148.51
AUG >	341.39	379.25	270.35	257.06	357.65	210.84	365.46	151.64	365.10	330,75	138.13	363.86	3531.47	294.29	379.25	138.13
< 101. >	167.58	336.48	140.31	144.86	225.38	138.33	252.65	138.60	236.98	178.67	133.60	192.77	2286.22	190.52	336.48	133.60
< NOC >	138.31	154.74	131.77	142.92	154.38	138.37	135,61	132.68	132.13	135.18	140.33	166.68	1703.09	141.92	166.68	131.77
A MAY V	146.95	138.74	138.76	138.93	214.80	147.30	138.60	139.80	138.46	139.05	146.64	138.23	1766.33	147.19	214.80	138.23
< APR >	151,31	148.04	148.12	148.50	150.97	151.97	147.82	147.36	147.47	148.56	150 74	146.74	1787.61	148.97	151.97	146.74
< MAR >	156.42	152.79	152.91	153,34	185.16	157.02	155.13	159.93	160.72	153.24	155.59	176.08	1918.32	159.86	185.16	152.79
× 839 ×	161.35	167.45	173.25	172.47	179.57	161.76	179:96	179.53	180.02	162.95	160.32	179.65	2058.29	171.52	180.02	160.32
۷ × × ۲	272.99	162.48	162.95	171.64	162.65	166.29	171.73	171.45	171.67	185.47	164.13	171.54	2135.00	177.92	272.99	162.48
YEAR	1978	1979	1980	1981	1982	1983	1987	1985	1986	1987	1988	1989	TOTAL	AVE	XAX	z H E

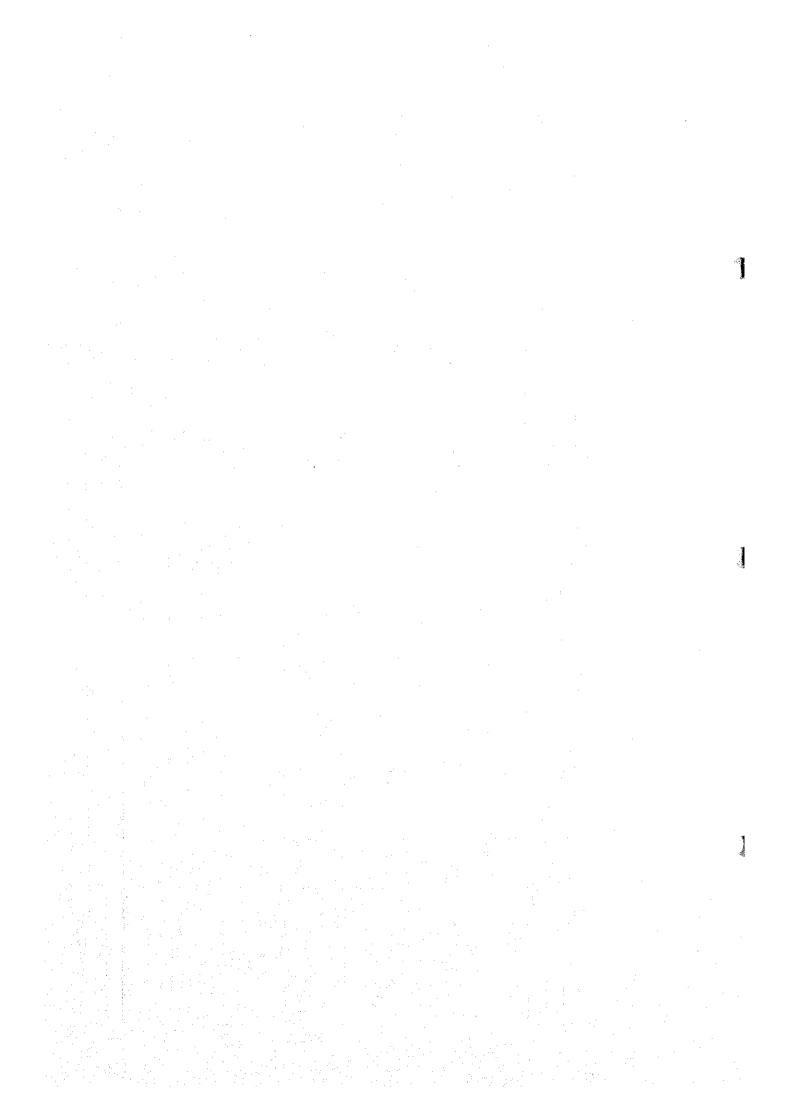

	⊕ ′						0.0									٠.	0.0	-	0.0		_	-	0.0	0.0	0	0.0	0.0	0 0	0.0	0.0	0 0	000	•	0.0	0	0.0	0.0	0	0.0	0	9 6		0,0	•	0 0	000		0.0	0 0	:
	projec	DATE) C	. 0	o ·	٥ د	00	o	0 0	o ,c	0	O	٥	00		0	0	0) (0	0	0	00	0	0	0	0 (0	o	00	0	0	0 0	00	0	00	0	0	0	0 0	, 0	0	0	0 0	3 0	00	0 (00	,
	(The Dong Nai river system case-6 Tri Anh - project)		147	363	364	365	367	368	369	370	372	373	374	375	5 / C	32.00	379	380	181	4 C	7 7 7	385	386	787	3 C	390	391	265	7 4 6 17	395	396	, c	665	007	707 705	403	707	404	207	408	604	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	412	513	7 L 7	419 416	217	817	617) 3
	e-6 Tri	a	9 0	0	0.0	0 0	000	0	0,0	0,0 0 0	0 0	0	0.0	0 0	9 0	0	0	0.0	0	0 0	90	0	0.0	0.0	0 0	0	0	0 0	0 0	0	0,0	00	0	0.0	0 0	0	0.0	90	0	0.0	0 0	20	0	0.0	0	0 0	0.0	0.0	000	•
ion	em cas	DATE	0 0	ò	0	0 0	00	0	0	0 (00	0	0	0 (00	0	0	٥	0	00	> 0	0	0	0	0 0	0	0	0 (00	0	0	0 0	•	φ.	00	0	0	o c		0	00	> C	0	0	0	0 0) O	0	00	>
Durat	er syst	NO.																																														8		
pacity	dai riv	o.	0.0) C	0.0	0.0	00	0	0.0	0.0	00		0	0.0	0 0	o c	0	0	0	0.0	9 0	9 0	0	0.0	0 0	0 0	0	0.0	0 0	0	0.0	0 0	000	0.0	000	0	0.0	90	00	0.0	0	000	0	0	0.0	0.0	0	0.0	0.0	>
Result of Capacity Duration	Dong 1	DATE	0	o c	0	0	0 0	oc	• •	0	00	> C	0	0	0	o c	, c	0	0	0	0 0	o c	0	o	0 0	D C	0	o	00	0	0	0 0	00	0	00	9 0	0	00	> C	0	0	00	o c	0	0	00	>0	0	0 (>
Resul	(The]	, 02																																														298		
		o.	0.0	0 0	00	0.0	0,0	9 6	0	0.0	0.0	0 0	000	0.0	0.0	0 0	9 0	00	0.0	0.0	0.	0 0	000	0-0	0	0 0	9 0	0.0	0.0	0,0	0	0.0	00	0.0	0,0	9 0	0.0	0,0	9 0	0	0.0	0.0	0.0	0	0	0,0	2 O	00	0.0	0
		DATE		00	o c	O	0 (5 C	0	0	0	0 0	o c	a	0	0 (5 , 6	o c	0	0	0	0 0	o c	0	0	0 0	0 0	0	0	0 0	0	o.	00	0	Ġ.	5 C	0	0 (5 C	0	0	0	00	0	0		D C	00	0	0
				(C) (C)	ሳ ላ ነ መ ተ ተ	185	186	× 00 00 00 00 00 00 00 00 00 00 00 00 00	189	190	41	192	100	195	196	197	R61	A C	201	202	203	207	200	207	208	500	210	212	213	4 4 6	512	217	27 8 0 0	220	221	222	524	225	226	22.8	229	230	et i M t	7 6	536	235	236 246	238	239	240
		a	4	~	5 C	3 6	139.0	0 0	0 00	88	8	90	20 00	3 80	80	138 1	in i	ላ የ	או מו	2	걾	80.7	0 0	0.0	0.0	0.0	0 0	0	0.0	0 0	000	0.0	00	0	0.0	0,0	0	0.0	0,0	000	0	0.0	0.0	9 6	9 0	0.0	00	9 0	0.0	0.0
		AATE	8107	8,06	8804	8505	8705	8105	2002	8405	8507	8605	8306	7806	8905	8308	8406	8708	8000	8606	8008	8912	0 0	0	0	0	00		0	0 0	0.0	0	00	9	0	0 0	0	0	0 0	5 C	0	0	0 0	o c	0	0	00	o 0	0	0
																															120	157	123	160	161	162	16.5	165	166	168	169	170	171	172	174	175	176	177	179	
		۵	m	٠.	2,0	'n	173.0	72,	7.7		::	7.	ο,		,	κ.	166.7	166.5	144.3	166.2	164.1	163.0	162.9	162.5	161.8	161.4	160.7	160.1	159.9	157.0	1.00	155.1	154.7	10.6	153.2	152.9	152.0	151.6	151.3	151.0	148.6	148.5	148.5	200	147.8	147.5	147.4	147.3	146.7	146.6
		ti +	8707	8903	8312	8002	8911	8102	8401	100	8901	8501	8211	7178	7902	8712	8906	7912	200	7812	8801	8001	8702	7007	8302	7802	8603	8870	8503	8303	7.00.3 7.03.8	8 40 4	7906	072	8703	8003	8304	8508	7804	8204	8704	8809	8104	8004	7078	8604	8504	8305	8904	8805
	÷																																						106	707	0 60	110	111	175	4 4		116	117		
					_							-~	-				40	~ 1	Λ.			10		A 4	n ~	1	ın	r4 0	n min	$^{\circ}$	~ ·	0 4	~ 1	· •	J 🕶	O.	J 5"	. ~	æ	80 (x) C) ×		٠Ţ	- 1 W	, ,,	•	J 1	- 4	

Result of Reservoir Operation (The Dong Nai river system case-6 Tri Anh - project)

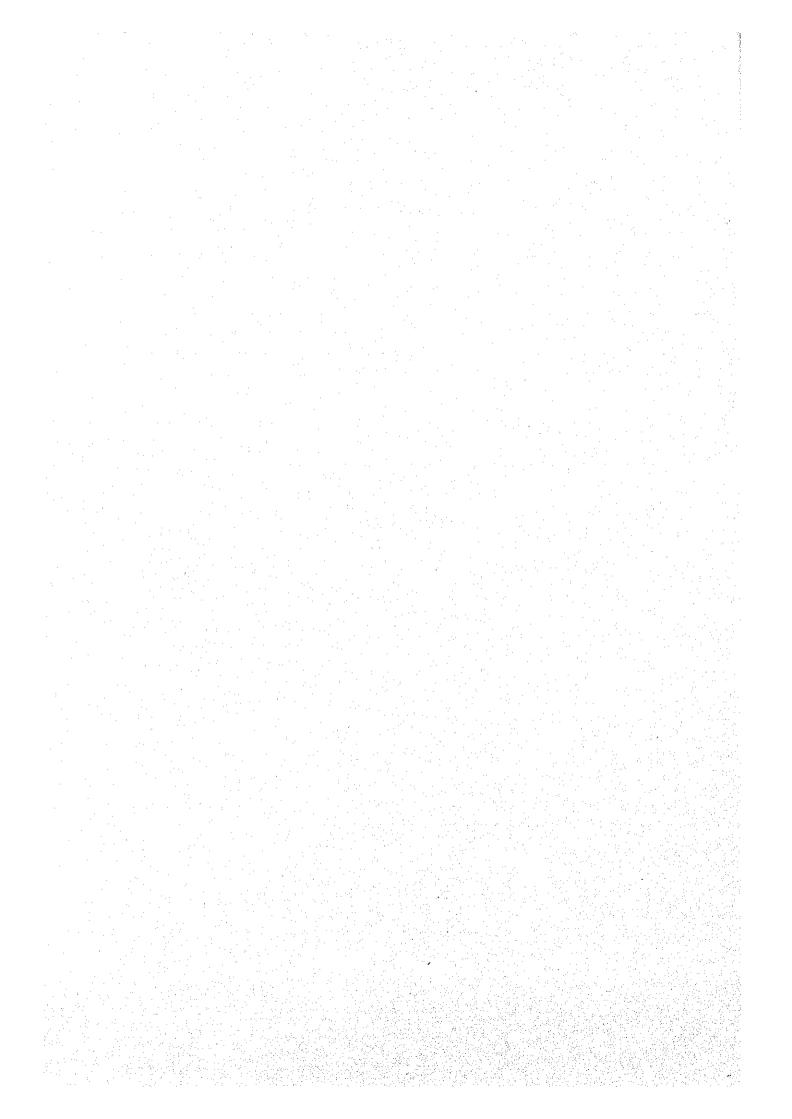

6A-150

6.2.3 Back Ground of Civil Work Cost Review

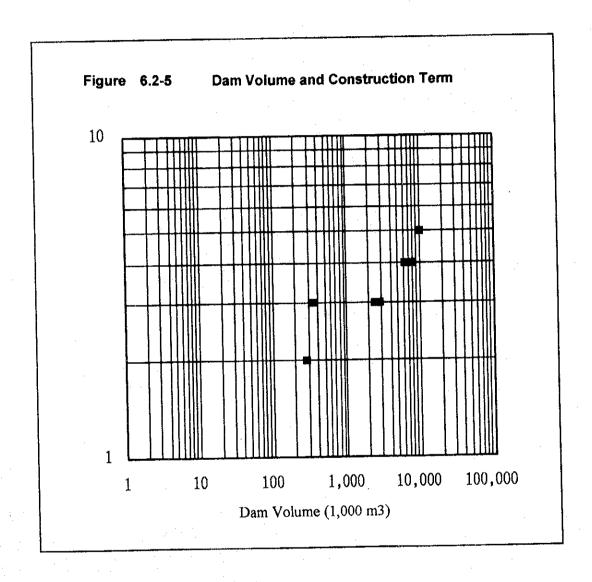

The main work is composed of the items of the civil works for dam, water way, and power plant. The items are open excavation of soil and rocks, tunnel excavation, embankment of impervious core, filter, and rocks, which are especially for dam embankment, concrete for open and tunnel structure, reinforce bar, and access road for the project site. For the cost estimation of the civil work, diversion system during dam construction and service facilities for the site installing are also necessary besides the main work cost. These are estimated by applying ratio with total cost of main structure for each item, referring to "Pre-F/S Report of Son La hydropower project" by PIDC1 and past records of other hydropower projects in the Southeast Asian area. The unit price of access road per km is applied from "Pre-F/S Report of Son La project" by PIDC1.



A.Civil Work 1. Excavation Rock 1000m			T UOS	Son La (S)	Son La (L)	(T) B	Huoi Quan	(uan	Dai	I III	Dan		Son Con 2	7 uo
Investme	Unit	Unit Price	Quantity		Quantity	Amount	Quantity	Amount	Quantity	Amount	Quantity		Quantity	Amount
, u	1			2,050,309		3,486,228		735,128		301,485		413,322		100,143
k h	_													
k h		(SSD)												
•.	1000m3	3.00	4,612	13,836	7,380	22,140	624	1,871	2,973	8,919	857	2,571	264	1,692
	1000m3	7.00	25,322	177,254	42,860	300,020	2,392	16,743	2,065	14,455	4,371	30,597	807	5,649
	1000ш3	108.00	490	52,920	870	93,960	809	65,686	118	12,744	309	33,372	190	20,520
-	·								-		-			
	1000m3	3.00	2,110	6,330	5,160	15,480	0	0	575	1,725	069	2,070	150	450
	1000m3	9.00	24,038	144,228	57,380	344,280	0	0	4,302	25,812	5,779	34,674	100	900
ravel	1000m3	15.00	1,517	22,755	3,860	57,900	0	0	250	3,750	332	4,980	086	14,700
3.Concrete	: .													;
nec	1000m3	130.00	1,970	256,100	2,841	369,330	1,661	215,956	235	30,498	233	30,297	47	6,123
Underground 10	1000m3	200.00	179	35,800	303	60,600	218	43,660	25	10,380	112	22,480	9	15,120
Re-Bars	. +	756.00	64,442	48,718	96,300	72,803	32,482	24,556	9,209	6,962	111,370	84,196	4,825	3,648
	km	1253.00	40	50,120	40	50,120	15	18,795	0	0	IO	12,530	07	090,52
Sub Total				808,061		1,386,633		387,267		115,245		25/,/6/		790,16
										,		i i		
Installation	10%			80,806		138,663		38,727		11,525		777,07		0CL,Y
	15%			121,209		207,995		58,090	-	/97/1		58,000		15,734
Others	10%			80,806		138,663		38,727		11,525		25,777		9,136
Total				1,090,882		1,871,954		522,811		155,582		347,986		123,608
Cost by PIDC-1)C-1			1,133,957		2,043,412		423,047		132,779		208,924		59,137
Difference/Investment cost	tment co:	अ		-2.00%		-5.00%		14.00%		8.00%		34.00%		64.00%
B Hydro-Mecanical equipment	ment													
Metal Structure	ton	7,000	19,070	133,490	20,810	145,670	11,420	79,940	1,844	12,908	3,589	25,123	1,466	10,262
Lifting Machine	ton	8,000	2,910	23,280	3,160	25,280	1,160	9,280	610	4,880	1,001	8,008	375	3,000
Total				156,770		170,950		89,220		17,788		33,131		13,262
Cost by PIDC-1)C-1			82,353		89,734		22,152		13,095		50,960		6,583
Difference/Investment cost	tment co	st		4.00%		2.00%		%00.6		2.00%		4.00%		7.00%
C.Electro-mechanical Equipment	upment							·						
Installed Capacity	: .	MW	2400	1	3600	1	800		250	•	375	•	09	1
Number of Unit		•	10		12	1	4	,	m		۳ ا	£	2	•
Unit Capacity		MW/Unit	240	'	300	ı	200	•	83		521	ı	30	,
Unit Cost	\parallel	1,000035	34,400	- 0	51,443		31,000	- 000	12,000	27 000	000,62	000 07	11,000	000 66
Cost		1,000US\$	·	344,000		075,10	-	124,000	•	27,000	2	02,000	•	0007
Cost by PIDC-1	╢	1,000US\$	-	11	1	636,480	,	149, /60		50,185	*	32,172	•	147.7
Difference/Investment cost	cost	%		4.00%		-1.00%		-4.00%		2.00%		9.00%		12.00%
D. Transmission Lines	-	#0x1000						790 CC		17.075		22 130		081.8
Cost by PIDC-1	-	1,00005	,	5	,	a l		77,000		12,0/2		23,120	•	1,140
E.Contigency	-	1 0001154		76 413	t	128 356		27.652		9 092	,	12.854	1	3.490
Fland	-	1,000				22,022						,		
Cost by PIDC-1	R	1,000US\$	1	0		0	1	0	1	0	1	0	1	0
G. Administration and Engineering Fee	gineering	; Fee												
Cost by PIDC-1		1,000US\$	-	171,704	,	289,798	•	62,261	-	20,516		30,491	•	7,916
H.Compensation Cost by PIDC-1		1 000115\$. 1	161.562		298,448		28.176		63,743	*Reviewed	44.800	,	8,930
TOTAI														
Cost by JICA Team		1,000US\$	-	2,001,331		3,376,826		876,200		335,796		626,582		183,346
Cost by PIDC-1		1,000US\$		2,050,309		3,486,228		735,128		301,485		413,321		100,143
Difference of the review		1,000US\$		-48,978		-109,402		141,072		34,311		213,261		83,203
										,				
										,				
														-
Total Difference Ratio	9	%		-2.00%		4.00%		19.00%		12.00%		52.00%	·	83.00%



		Appendix 6.	2-4	Result of the Review of Civil Work Cost	he Reviev	v of Civil	Work Co	7				Unit:	Unit: 1,000US\$
Project Name		Cua	Cua Dat	An Khe	Che	X		Sesan 3		Sesan 4	n 4	Thuong Kontum	Kontum
Unit	nit Unit Price	Quantity	Amount	Quantity	Amount	Cuantity	Amount	Chantity	Amount	Cuantity	Amount	Quantuty	Alifornia
Investment Cost	ost		200,000		171,397		250,913		188,152		514,532		275,526
A.Civil Work	(40).5									***			
1.Excavation Farth 1000m3	(USS)	1.800	5,400	1.310	3,930	4,171	12,513	388	1,165	1,335	4,005	1,062	3,186
			3,780	461	3,227	2,066	14,461	986	6,904	580	4,057	2,892	20,241
nd	⊇ 		0	50	5,400	27	2,873	49	5,270	129	13,975	149	16,092
			,	700	7	1 206	7317	430	1 260	1 743	5 226	1 020	3.060
Earth 1000m3	m3 5.00	3	1,500	4,705	14,109	3 199	10 196	2.280	13 679	9 456	56.736	2.680	16.080
				156	2,340	533	7.992	300	4,493	1,244	18,663	470	7,050
3 Concrete			,) 1	·) }	1		`		۸.		
Open 1000m3)m3 130.00	99	78,000	114	14,872	91	11,804	102	13,260	167	21,723	. 64	8,307
md			0	14	2,800	10	2,020	18	3,620	49	098'6	49	9,840
s	 	9,0	4,560	4,392	3,320	4,717	3,566	6,007	4,541	10,807	8,170	4,189	3,167
4. Access Road km	n 1253.00	16		15	18,795	10	12,530	0	0 202	0	0	40	137,173
Sub Total			113,288		//6,0/		71,111		24,192		142,412		137,14
	7001		11 170		7 098		9 1111		5.419		14.242		13,714
	15%		16,993		10 647		13.667		8.129		21,362		20,571
·	%0I 10%		11,329		7,098		9,111		5,419		14,242		13,714
Total			152,939		95,820		123.000		73,159		192,261		185,142
Cost by PIDC-1			115,909		70,797		146,788		92,500		260,988		151,710
Difference/Investment Cost	ent Cost		19.00%		15.00%		-9.00%		-10.00%		-13.00%		12.00%
B.Hvdro-Mecanical equipment	int	-											
Metal Structure ton	n 7,000.00	1,680	11,760	5,041	35,287	1,849	12,943	2,514	17,598	4,111	28,780	9,621	67,347
			3,760	255	2,040	395	3,160	450	3,600	1,035	8,280	200	1,600
			15,520		37,327		16,103		21,198		37,060		68,947
Cost by PIDC-1			12,089		16,645		699'6		13,246		20,939		26,439
Error Ratio			2.00%		12.00%		3.00%		4.00%		3.00%		15.00%
C.Electro-mechanical Equipment						,			•			ò	
Installed Capacity	MW	105		116	•	120	1	077	•	300		707	, ,
Number of Unit	- A ATT // Tamit	ر بر	•	30	ı	7 9	1 1	110	· •	123	1 1	+ 59	
Unit Cost	1 000158	13 000	: ;	0006		13.000		22,000	1	21,000	ı	16,000	t
Coet	1 000118\$	┸	39 000		27,000		26,000	-	44,000	-	63,000	•	64,000
Cost by PIDC-1	1,000US\$		18,892		20,509		21,590		45,760	1	76,127	_	45,967
Difference/Investment Cost	厂		10.00%		4.00%		2.00%		-1.00%		-3.00%		7.00%
D.Transmission Lines	-		364.3		10.073		100		7016		776 OT		0.469
Cost by PIDC-1	1,00003\$	'	2,1,0	•	10,202	-	10,120	-	1,243	-	10,007		0,40
E.Contigency Cost by PIDC-1	1,000US\$		6,724	1	5,047	•	8,175		7,080	-	16,505	1	10,454
F.Land	•												
Cost by PIDC-1	1,000US\$		0		0	_	0	•	0		0	,	0
G.Administration and Engineering Fee Cost by PIDC-1	eering Fee	Ţ	15.361	ı	11.300	,	18.623		15.859	ı	37,456	,	23,457
H.Compensation													
Cost by PIDC-1	1,000US\$		25,850	-	36,836	•	35,948	1	6,462	١	91,650	ı	9,047
TOTAL			~~ ~~		1				1		i c		000
Cost by JICA Team	1,000US\$		260,569		223,593		237,969		175,003		514 532		369,499
Difference of the review			60,569		52,196		-12,944		-13,149		-65,733		93,973
							,						
				-			***********						
Total Difference Ratio	%		31.00%		31.00%		-4.00%		-7.00%		-13.00%		34.00%
									:				

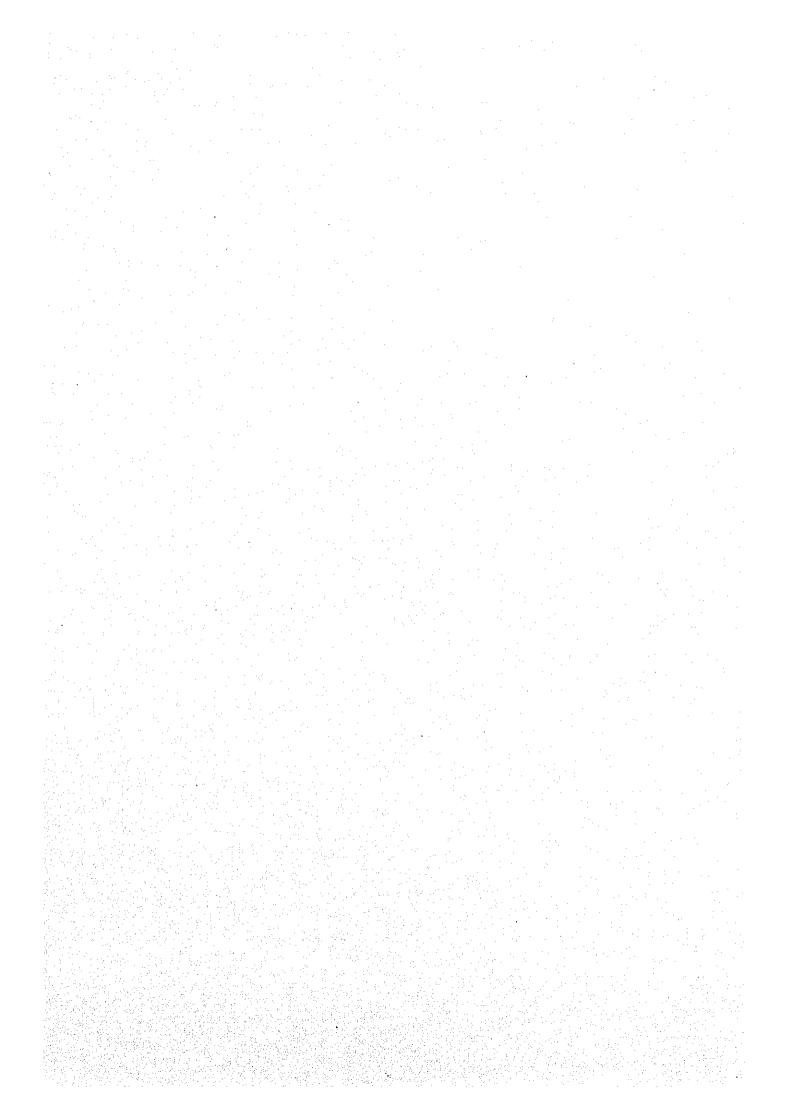


			Appendix 6.2	4	esult of t	Result of the Review of Civil Work Cost	v of Civil	Work Cc	st 3				Unit: 1	Unit: 1,000US\$
Project Name					Rao Quan	Quan	Dong Nai 8	Nai 8	Dong Nai 4	Ì	Cau	Cau Don	Dai Ninh	**************************************
		Unit Price	Quantity	Amount	Quantity	Amount	Quantity	Amount	Cuantity	Amount	Cuantry	Amount	Cuantity	408 535
Investment Cost	t Cost		1	114,419		138,398		4/7,1/4		372,400		110,711		2000
A.Civil Work		(100)												
T.E.XCAVALUM Farth	1000m3	3.00	379	1.137	878	2,634	7,020	21,060	5,204	15,612	2,065	6,194	6,252	18,756
	1000m3	7.00	1,361	9,527	303	2,121	9	39	3,619	25,333	1,332	9,324	2,249	15,743
pun	1000m3	108.00	0	0	245	26,492	0	5	241	26,028	0	0	319	34,452
	0	Ċ		Ç	1 200	3 000	12 248	20 744	170 0	6.213	436	1 607	8 683	26 049
	1000m3	00.5	1000	480	1,290	3,009	5 210	31 014	3 937	73 622	505	3.031	222	1.332
	10000113	0.05	1,000	1,400	1111	1661	1,373	20.595	454	6,810	63	938	157	2,355
3 Concrete	CITTONN		2	20,1		1								
ne en	1000m3	130.00	120	15,600	65	8,437	350	45,513	358	46,527	129	16,705	321	41,730
nd	1000m3	200.00	0	0	44	8,700	0	0	80	16,080	0	0	119	23,700
S	٠,	756.00	4,718	3,567	5,369	4,059	11,182	8,454	6,370	4,816	4,361	3,297	30,730	23,232
4. Access Road	Кm	1253.00	20	25,060	0	0	07	25,060	00	745 221	OT	12,530	7	237,460
Sub Total				63,384		68,196		192,379		746,221		23,620		604,167
General Site	ò	•		0000		000 9		10 738		74.677		5 363		23.747
Installation	%07			0,530		10.220		78.857		36 933		8.044		35.620
Others	30°			6 338		6.820		19,238		24,622		5,363		23,747
Curcis				85 58		92.05		259 712		332 398		72.396		320.583
IEDO I				20,00		95 104		280,000		252 022		54 790		225,292
Cost by PIDC-1	-2			064,0		401,104 5 000%		7000 7		20.00%		15.00%		23 00%
Difference/Investment Cost	stment C	OST		10.00%		2.0070		1.00.4		40.0078		0/00/01		2/22/22
B. Hydro-Mecanical equipment	pment	2000	1 600	12 203	804	6 255	7 000	55 930	3 668	25 676	1 200	8 400	7.581	53.070
Metal Sunduire	10 £	00.000,/ \$ 000.00	500	4 000	180	1 440		5360	1,286	10,288			426	3,404
Tatal	100	0,000		17 203		7,695		61 290		35 964		_		56.474
Coet by DIDC 1				0.017		4 153		25 232		21,099		10.274		27,777
Frror Ratio				7,007		3.00%		8.00%		4.00%		2.00%		7.00%
C Flectro-mechanical Fournment	ninment													
Installed Canacity		MM.	8	•	08		192	,	200	•	20	ı	300	•
Number of Unit			m	3	3	•	8	1	3	•	2	,	2	•
Unit Capacity		MW/Unit	27	•	27	ı	64	•	. 67	,	25	•	150	
Unit Cost		1,000US\$	8,000	•	8,000	-	16,000	-	16,000	-	6,000	1	28,000	ı
Cost		1,000US\$		24,000		24,000	1	48,000	1	48,000	-	12,000	•	56,000
Cost by PIDC-1		1,000US\$		14,321	•	15,066	-	33,945	1	35,360	-	8,996	_	61,864
Difference/Investment Cost	Cost	%		%8		%9		3%		3%		3%		-1%
D.Transmission Lines								- (:					1000
Cost by PIDC-1		1,000US\$	-	2,070	1	8,970	·	10,550		31,2/1		11,730		34,914
E.Contigency Cost by PIDC-1		1.000US\$	1	4,205	1	4,794		15,581		14,216		3,432	'	14,630
F.Land														
Cost by PIDC-1		1,000US\$	-	٥	,	0	-	0	1	0	-	0		0
G. Administration and Engineering Fee	ngineerir 	ig Fee		9 498	ı	10 911	1	35.496	1	32.360	ı	7,749	1	32.956
H Commencation														
Cost by PIDC-1		1,000US\$	· I	7,872	_	9,400	_	71,968	1	5,258	•	19,945	1	11,102
TOTAL											-			
Cost by JICA Team	E .	1,000US\$		150,506		157,835		502,397		397 486		139,412		526,659
COSt Dy FLOC-1		1,00003		114,417		000000		20,000		100 001		20,021		110 104
Difference of the review	1ew	1,0000.58		36,087		19,43/		67,67		100,961		77,430		116,124
\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				900		\0000 · •		1 000		000		è		/80000
Total Difference Katio	oni	%		31.00%		14.00%		7.00%		27.00%		20.00%		27.0076

6.2.5 Concept of Construction Term Review

Below figure shows the past records of construction term and dam embankment volume in Japan. At first, construction term of each project is considered, supose that it is developed in Japan. At second, a lag of road construction work is taken into consideration as 1~2 years. At third, a lag of hydropower project construction work is taken into consideration as 1~2 years, it often happens in developing countries.

6.2.6 Method of Equalized Annual Cost Calculation


The equalized annual cost of a hydropower project consists of depreciation and operation-maintenance (OM) cost. This is estimated by multiplying the annual cost factor by the investment cost assuming a discount rate of 10%. The method of calculation of equalized annual cost is as follows;

- Equalized Annual Cost = Annual Cost Factor x Investment Cost = Depreciation + Interest + OM cost
- Depreciation+Interest = Investment Cost x Capital Recovery Factor
- Capital Recovery Factor (CRF) = $(i(1+i)^n) / ((1+i)^{n-1})$

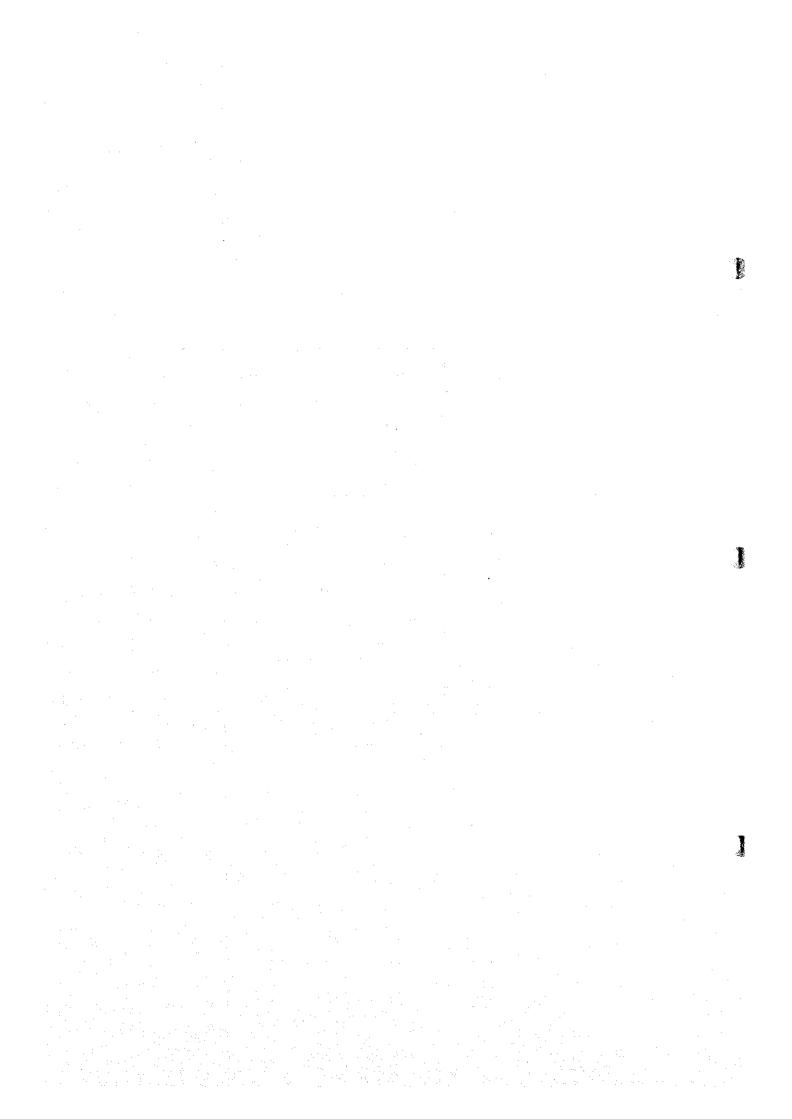
e n:	Service Life	
	Civil Facility	50 years
	Hydro-mechanical Facility	25 years
	Electro-mechanical Facility	25 years
i:	Discount Rate	10.0%
	CRF for Civil Facility	10.1%
	CRF for Hydro-mechanical Facility	11.0%
	CRF for Electro-mechanical Facility	11.0%

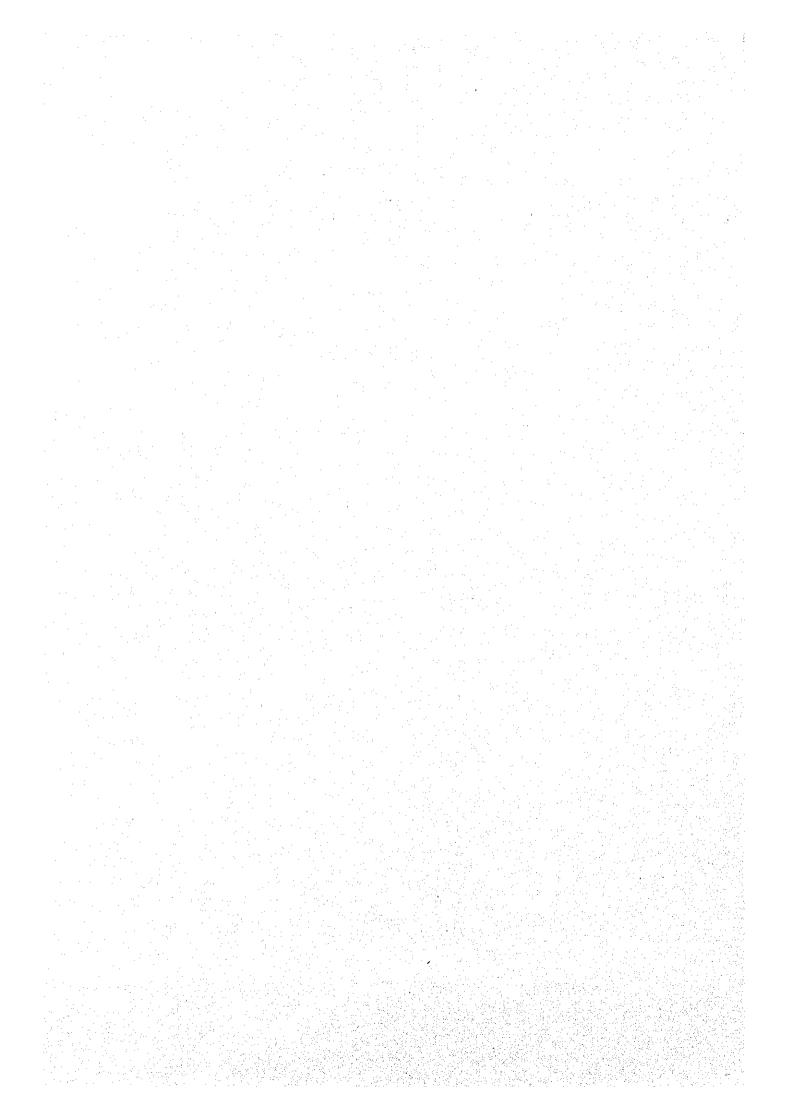
• Rate of Operation and Maintenance Cost to Direct Project Cost

Civil Facility	* *	1.5%
Hydro-mechanical Facility		1.5%
Electro-mechanical Facility	en e	1.5%

Appendix 6.2-7 Result of assessment about the projects (under varying Peak Operation Time)

					F F						r J				peration							
Project	Unit	Son La	Son La	Huoi	Dai Thi*	Cua Dat*	Ran Mai*	Song	Song	An Khe*	Plei	Sesan 3	Sesan 4	Thuong	Buon	Rao	Ham	Da Mi	Dong Nai	Dong Nai	Cau Don	Dai
1 roject	Ont	(S)	(L)	Quan	Darim	Cua Dui	Dan Mai	Con2*	Hinh*	THI ITHE	Krung	SQUAL S		Kontum	Cuop*	Quan*	Thuan	Dunn	8	4	044 5 071	Ninh**
Installed Capacity	MW	2400	3600	800	250	105	350	60	70	116	120	220	366	260	81	80	300	172	192	200	50	300
Firm Power	MW	729	1747	247	86	35	151	17	26.2	41.7	108	77	124	82	23	30.2	100	49	90	42	23.7	81
Annual Output	GWh	10,804	17,396	2,984	1,300	507	1,777	271	253	482	785	1,079	1,810	736	479	286	972	551	946	950	200	1,175
Annual Benefit by													ļ									
Peak Operation			1																			
Time												j										
T=24 hr	1000US\$	358,500	713,006	109,829	42,730	17,011	66,330	8,688	10,557	18,167	39,083	36,797	60,503	32,082	13,687	12,072	40,404	21,083	37,589	26,288	9,054	39,396
T=12 hr	1000US\$		1,126,800	168,334	63,100	25,301	102,096	12,714	16,763	28,045	41,925	55,035	89,873	51,504	19,134	19,226	64,090	32,689	58,906	36,236	14,667	58,581
T=10 hr	1000US\$		1,151,907	191,735	71,248	28,617	113,465	14,325	19,245	31,995	41,925	62,331	101,622	59,273	21,313	22,087	73,565	37,332	61,748	40,215	15,283	66,256
T=8 hr	1000US\$		1,151,907	226,838	81,575	33,591	113,465	16,741	20,932	35,766	41,925	70,668	117,823	70,927	24,582	23,868	87,776	44,296	61,748	46,184	15,283	77,767
T=6 hr	1000US\$	754,293	1,151,907	240,813	81,575	33,591	113,465	18,873	20,932	35,766	41,925	70,668	117,823	74,243	27,424	23,868	87,776	50,217	61,748	56,132	15,283	91,268
Annual Cost with					·															***		
IDC															-		1					
CRF	1000US\$	313,229	573,832	97,018	38,464	33,242	70,416	23,356	22,643	28,721	31,773	24,223	65,523	47,760	19,310	17,547	45,643	23,996	59,871	31,711	14,858	47,879
,													.									
OMC	1000US\$	45,517	83,669	14,114	5,608	4,847	10,350	3,410	3,319	4,159	4,667	3,500	9,570	6,873	2,799	2,574	6,657	3,479	8,794	4,650	2,175	6,962
		0.00.004.6		111 100		20.000	00.756	26.766	25.062	22.000		07.700	75.002	54.600	22 100	00 101	50 200	07.475	(0.66	46 170	17.022	70.748
Total Annual Cost	1000US\$	358,746	657,501	111,132	44,072	38,089	80,766	26,766	25,962	32,880	36,440	27,723	75,093	54,633	22,109	20,121	52,300	27,475	68,665	46,178	17,033	70,745
B/C													· ·									
T=24		1.00	1.08	0.99	0.97	0.45	0.82	0.32	0.41	0.55	1.07	1.33	0.81	0.59	0.62	0.60	0.′	77	0.55	0.57	0.53	0.56
T=12		1.48	1.71	1.51	1,43	0.66	1.26	0.48	0.65	0.85	1.15	1.99	1.20	0.94	0.87	0.96	1.2		0.86	0.78	0,86	0.83
T=10		1.67	1.75	1.73		0.75	1.40	0.54	0.74	0.97	1.15	2.25	1.35	1.08	0.96	1.10	1.3		0.90	0.87	0.90	0.94
T=8		1.96	1.75	2.04		0.88		0.63	0.81	1.09	1,15	2.55	1.57	1,30	1.11	1.19		66	0,90	1.00	0.90	1.10
T=6		2.10	1.75	2.17	1.85	0.88	1.40	0.71	0.81	1.09	1.15	2.55	1.57	1.36	1.24	1.19	1.	73	0.90	1.22	0,90	1.29
Economicity																						
Investment Cost per installed Capacity	US\$/kW	854	968	919	1,206	2,482	1,590	3,056	2,549	1,928	2,091	855	1,406	1,421	1,858	1,730	1,193	1,087	2,462	1,250	2,338	1,248
Levelized Unit Cost			0.0378			0.0751	0.0455	0.0988	0.1026	0.0682	0.0464	0.0257			0.0462	0.0704	0.0538	0.0499	0.0726	0.0486	0.0852	0.0602


^{*} Projects with "*" are not reviewed for electricity. Therefore, electricity values are quoted from those offered by PIDC-1./** Electricity is quoted from the value of IEV./***This investment cost is ordered to use for asse



Appendix 6.2-7 Result of the Ranking Study of the new hydropower projects in Vietnam

								Compared by "B/C"						
		Levelized Unit	Cost	T=24		T=12		T=10		T=8		T=6		
	RANK	Project Name	(\$/kWh)	Project Name	B/C	Project Name	B/C	Project Name	B/C	Project Name	B/C	Project Name	B/C	Remarks
	1	Sesan 3	0.0257	Sesan 3	1.33	Sesan 3	1.99	Sesan 3	2.25	Sesan 3	2.55	Sesan 3	2.55	B/C better than
	2	Son La (S)	0.0332	Son La (L)	1.08	Son La (L)	1.71	Son La (L)	1.75	Huoi Quan	2.04	Huoi Quan	2.17	"Ham Thuan & Da Mi"
	3	Dai Thi*	0.0339	Plei Krung	1.07	Huoi Quan	1.51	Huoi Quan	1.73	Son La (S)	1.96	Son La (S)	2.10	A
-	4	Huoi Quan	0.0372	Son La (S)	1.00	Son La (S)	1.48	Son La (S)	1.67	Dai Thi*	1.85	Dai Thi*	1.85	
	5	Son La (L)	0.0378	Huoi Quan	0.99	Dai Thi*	1.43	Dai Thi*	1.62	Son La (L)	1.75	Son La (L)	1.75	
•	6	Sesan 4	0.0415	Dai Thi*	0.97	Ban Mai*	1.26	Ban Mai*	1.40	Sesan 4	1.57	Sesan 4	1.57	
heaper than	7	Ban Mai*	0.0455	Ban Mai*	0.82	Sesan 4	1.20	Sesan 4	1.35	Ban Mai*	1.40	Ban Mai*	1.40	
am Thuan & Da Mi	8	Buon Cuop*	0.0462	Sesan 4	0.81	Plei Krung	1.15	Plei Krung	1.15	Thuong Kontum	1.30	Thuong Kontum	1.36	
^	9	Plei Krung	0.0464	Buon Cuop*	0.62	Rao Quan*	0.96	Rao Quan*	1.10	Rao Quan*	1.19	Dai Ninh**	1.29	
	10	Dong Nai 4	0.0486	Rao Quan*	0.60	Thuong Kontum	0.94	Thuong Kontum	1.08	Plei Krung	1.15	Buon Cuop*	1.24	
	11	Dai Ninh**	0.0602	Thuong Kontum	0.59	Buon Cuop*	0.87	An Khe*	0.97	Buon Cuop*	1.11	Dong Nai 4	1.22	B/C >1
1	12	An Khe*	0.0682	Dong Nai 4	0.57	Dong Nai 8	0.86	Buon Cuop*	0.96	Dai Ninh**	1.10	Rao Quan*	1.19	
	13	Rao Quan*	0.0704	Dai Ninh**	0.56	Cau Don	0.86	Dai Ninh**	0.94	An Khe*	1.09	Plei Krung	1.15	T
	14	Dong Nai 8	0.0726	An Khe*	0.55	An Khe*	0.85	Dong Nai 8	0.90	Dong Nai 4	1.00	An Khe*	1.09	
	15	Thuong Kontum	0.0742	Dong Nai 8	0.55	Dai Ninh**	0.83	Cau Don	0.90	Dong Nai 8	0.90	Dong Nai 8	0.90	
. 5	16	Cua Dat*	0.0751	Cau Don	0.53	Dong Nai 4	0.78	Dong Nai 4	0.87	Cau Don	0.90	Cau Don	0.90	
	17	Cau Don	0.0852	Cua Dat*	0.45	Cua Dat*	0.66	Cua Dat*	0.75	Cua Dat*	0.88	Cua Dat*	0.88	
	18	Song Con2*	0.0988	Song Con2*	0.32	Song Con2*	0.48	Song Con2*	0.54	Song Con2*	0.63	Song Con2*	0.71	
		LUC "Ham Thuan B/C "Ham Thuan		0.0524 T=24	\$/kWh 0,77	T=12	1.21	T=8	1.39	T=6	1.73			

.

6.2.8 Items to be confirmed in F/S of Son La Hydropower Project with Work Schedule

(1) Topographical Survey

•Making topographical map by survey for four dam axis candidates and all the reservoir area

(2) Geological Investigation

- Study on the results of geological investigation by PIDC1
- · Geological investigation work at Pa Vinh site of dam axis candidate
- Seismic prospecting along the dam axis for four dam axis candidates and spillway
- · Grouting test for dam axis candidates
- Site selection of borrow area for impervious core materials and quarry site for rock materials
- Core boring for borrow area and quarry
- Core boring for the area with geological problem in the reservoir area
- · Adits for dam axis, borrow area, and quarry
- · Material tests for dam embankment materials
- · Site investigation in the reservoir area to find sinkhole, landsliding area

(3) Hydrological Study

- · Review of inflow discharge data along the Da river
- Study about designed flood discharge
- Study about sedimentation
- Study about flood control volume of the reservoir
- Study about irrigation downstream

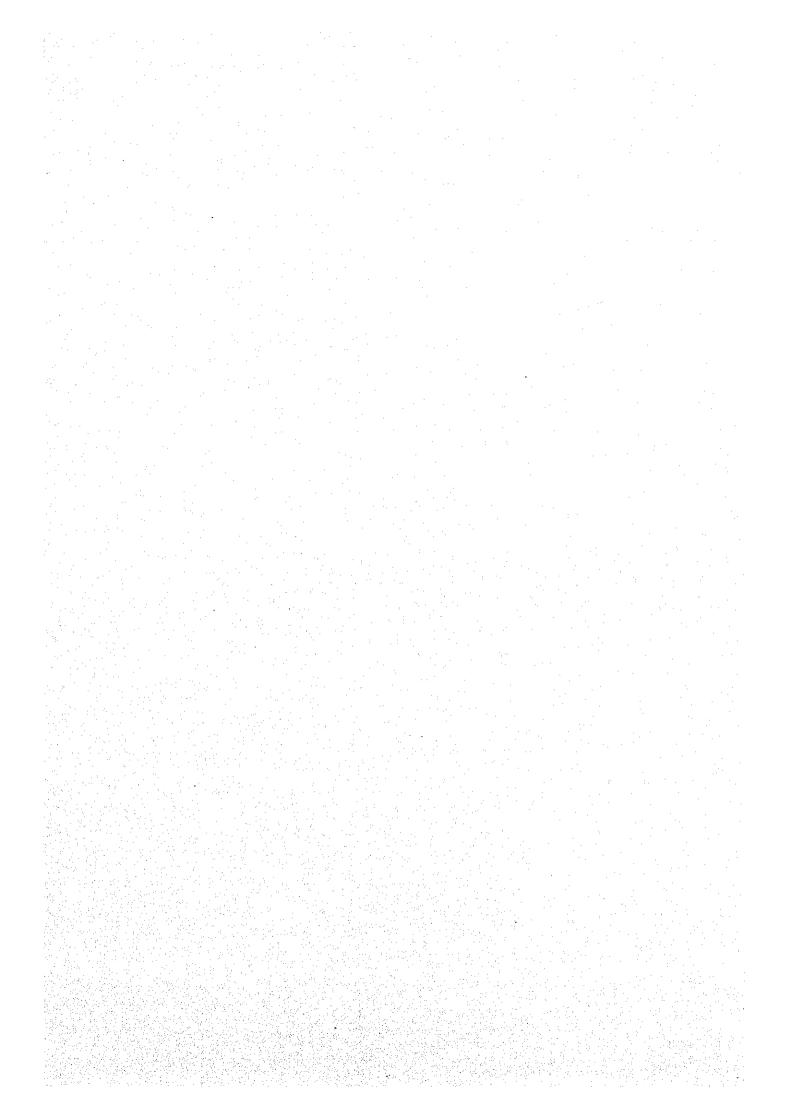
(4) Designing Work

- · General design of the structures
- · Analysis of dam stability under static conditions and dynamic conditions
- General study for hydro-mechanical works

(5) Construction Work Study

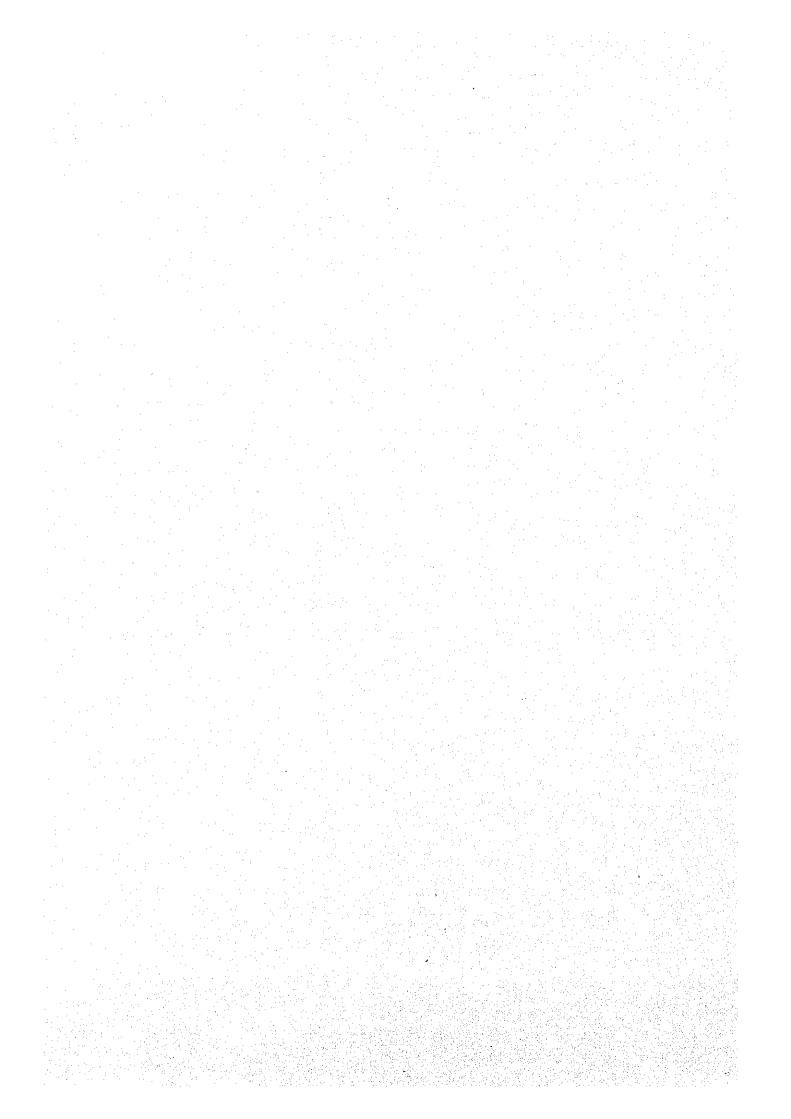
- · Service facilities planning
- Cost estimation
- · Study about construction schedule

(6) Electro-mechanical Work study


- · Study about turbine and generator
- Cost estimation for electro-mechanical work
- · Study about transmission line
- Power system operation

(7) Compensation

- Environmental estimation
- · Study about quantities of compensation
- · Cost estimation for compensation


(8) Others

- Demand and supply forecastingFinancial analysis
- Study about development scale

Appendix 6.2-8 Tentative Time Schedule of the Feasibility Study on Son La Project

1	Year																														
	Project Month	1	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
	Calendar Month	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
	Rainy Season				·			<u> </u>		<u> </u>						-												· · · · · ·	*******		
	- Data collection & site reconnaissance																ļ														
	- Data review & analysis				<u> </u>	1		4																							
First Stage	 Review of existing development schemes & Comparative study for optimum scheme 					<u> </u>	<u> </u>																								
	- Formulation of detailed investigation						<u> </u>																								ĺ
	program	·	<u> </u>	<u> </u>	-	ļ					ļ			<u> </u>		ļ	<u> </u>	ļ						ļ							-
	- Preparation of detailed investigation	İ							ĺ									ļ								·					
	program	 	-	<u> </u>				<u> </u>	<u>: </u>	-	_																				_
	- Topographic surveys									— —														ļ							_
	- Geological investigation & material tests																<u> </u>	ļ 								ļ					<u></u>
	- Geological & geotechnic studies							<u> </u>		<u> </u>		ļ						İ						<u> </u>							
Second	- Hydrological survey				<u> </u>				<u> </u>																			~ ~ -			
Stage	- Power survey									l	•						1														
	- Environmental assessment					111111111111111111111111111111111111111																			******		***				
	- Compensation survey																														
	- Additional data collection																												1		
	- Optimum studies										•							<u> </u>	1		i i i i i										
	 Review & study of optimum power generation expansion program 																			1											
Third	- Feasibility-grade design											ļ. 		-										1							
Stage	- Cost estimation		1					<u> </u>				ļ	<u> </u>						<u> </u>												
	- Implementation plan	1															<u> </u>														
	- Economic & financial analyses				1															<u> </u>											
	- Inception Report	∇																													_
	- Porgress Report				-			∇											<u> </u>	<u> </u>	-										
Report	- Interim Report			<u> </u>						<u> </u>								 	 	-	<u> </u>										
	- Draft Final Report	1		•	1						***************************************		<u> </u>						<u> </u>										- 37		-
	- Final Report	1	-	1														<u> </u>		 	<u> </u>				<u> </u>						

6.2.9 Geological Information about Son La Hydropower Project

The geology of Son La hydropower project comprises of various sedimentary and effusive strata and intrusive rocks, covered by sediments. The basement rocks were subjected to regional metamorphisms and deformations resulting in many foldings and faults. Considering the geological conditions of the project site, dam type of Son La hydropower project should be recommended to be Rock Fill. Otherwise, RCC, or Concrete Facing are possible, but these dam types will be difficult in construction work, especially for quality control in Vietnam.

On the other hand, a large stratum of lime stone is widely distributed along the right bank of the middle to downstream reservoir area. During our site reconnaissance near Son La town, many topographic features, such as sinkhole, caused by karstification were seen. These sinkhole can exist in the reservoir area. Therefore, geological site investigation should be made to check the existence of such sinkhole near dam axis and reservoir area. These sinkhole can make influence for stability of dam and watertightness of reservoir, especially at the ridge of catchment area boundary. A regional assessment on the reservoir watertightness is required more carefully to select optimum dam site and development scale.

Geological investigation work has been already done to make sure the geological feature of three dam site candidates, except Pa Vinh site. The results of geological investigation is summarized in Table-a. According to this investigation work, alluvium is estimated between 10 and 20 m in thickness, and intensively weathered zone of right and left abutments are estimated to vary from 5 m to 20 m from upstream candidate site to downstream. According to our site reconnaissance, some fresh outcrops can be seen at upstream dam candidate site, such as Pa Vinh site and Ta Bu site. On the other hand, result of permeability test of borehole shows that high permeable zone is estimated to be $20 \sim 50$ m at both abutments at all three candidate sites. Therefore, grouting work of dam foundation can be the key for dam construction. Engineering geology of the Alternative Damsite Foundation is shown in the table in next page. For dam site selection, geological investigation work should be made at Pa Vinh site, the most upstream site which is not investigated yet to make comparative study with the results of investigation work at other three dam site candidates made by PIDC-1.

Table 1 Topographical Characteristics of the Alternative Damsites

	,	No. 1	No. 2	No. 3	No. 4	4
	Cuit	Pa Vinh Damsite	Ta Bu Damsite	Ban Pau Damsite	Ban Tan	Ban Tan Damsite
Name of Cross Section		A-A	A-A	A - A	Upstream	Downstream
					(Alternative 265 m) (Alternative 215 m)	(Alternative 715 m)
					(Alternative 200 III)	לווו כוד אווושרוואר לווו
Elevation of River Bed	ш	106.78*	102.23*	92.47*	93.	93.19*
Width of River Bed	ш	220	230	170	180	180
Average Inclination of the	degree	25°	35° (EL. 110 ~ 230 m)	35°	13°	25°
Left Abutment			10° (EL. 230 ~ 320 m)			
Average Inclination of the	degree	40°	32° (EL. 110 ~ 270 m)	18°	20°	25°
Right Abutment			10° (EL. 270 \sim 310 m)			
Valley Width at EL. 265 m	E	740	840	920	1,360	1
Valley Width at EL. 245 m	E	0.29	740	810	1,260	1,260
Valley Width at EL. 215 m	ш	580	999	0.29	1,140	1,130
Minimum Pass Length at						
Left bank	Ħ	Thick	300	150	220	0
Right bank	ш	950	300	Thick	Thick	Thick
Minimum Pass Length at						
EL. 215 m						
Left bank	E	•	1.	•	ŧ	300
Right bank	ш	•	ſ	1	ı	Thick
Remarks				Thin ridge of	Thin saddle (FT. 226	Thin saddle (FT, 220 m) on the left bank
		-		the left bank	THE SMALL (FILL)	in) on the rest owns

* Ref. Da River Profile

Table 2 Geological Characteristics of the Alternative Damsites (1/2)

<u>.</u> .						
No. 4 Ban Ta Damsite	Vien Nam Formation (Permian ~ Triassic)	Left bank ~ Right bank: (Upper part)	Basalt porphyrite, massive, intercalated with green schist layers			Gabbro diabase dykes along faults
No. 3 Ban Pau Damsite	Vien Nam Formation (Permian ~ Triassic)	Left bank ~ Riverbed: (Lower part)	Basalt porphyrite, transformed, schistosed, massive, interbedded intercalated with green schist layers layers	Right bank: (Upper part)	Basalt porphyrite, massive	Gabbro diabase dykes along faults
No. 2 Ta Bu Damsite	Vien Nam Formation (Permian ~ Triassic)	Left bank ~ Right bank: (Lower subformation)	Basalt porphyrite, transformed and schistosed, interbedded with green schist layers	Right bank: (Upper subformation)	Basalt porphyrite, massive	Gabbro diabase and rhyolite porphyry along faults
No. 1 Pa Vinh Damsite	Muong Trai Formation (Triassic)	Left bank ~ Riverbed: (Lower formation)	Massive basalt porphyrite	Right bank: (Upper formation)	Alternation of siltstone, sandstone and tuffaceous sandstone	Gabbro diabase and rhyolite porphyry along faults
	Foundation Rocks	Strata				 Intrusive Rocks

Table 3 Geological Characteristics of the Alternative Damsites (2/2)

	No. 1 Pa Vinh Damsite	No. 2 Ta Bu Damsite	No. 3 Ban Pau Damsite	No. 4 Ban Ta Damsite
Quaternary System	Alluvium:	Alluvium:	Alluvium:	Alluvium:
	River bed deposit consisting of fine grained sand with pebbie and gravel 3 m in thickness	River bed deposit Terrace deposit Reservoir sedimentary silt on both banks	River bed deposit Reservoir sedimentary silt on both banks	River bed deposit $2 \sim 10$ m thick Terrace deposit $2 \sim 5$ m thick
	Residual soil:	Residual soil:	Residual soil:	Residual soil:
	Left bank 5 m thick Right bank 3 m thick	Less than 5 m thick (max 9 m)	2 m thick thicker at high elevation max. 10 m	
Geologic Structure	Anticlinorium:	Folding:	Monoclinic:	Monoclinic:
	Mainly dipping to the right bank with $40 \sim 80^{\circ}$	Mainly dipping $50 \sim 80^{\circ}$	Dipping to the right bank with $25 \sim 70^{\circ}$	Dipping to the right bank
	III grade fault on the right bank	Faults, III grade, IV grade, V grade	Faults, IV grade, V grade	Faults
Remarks	No existing borehole	Muong Trai Formation (middle subformation):		
		Massive limestone on the right bank		

Table 4 Engineering Geology of the Alternative Damsite Foundation (1/2)

Table 5 Engineering Geology of the Alternative Damsite Foundation (2/2)

	No. 1 Pa Vinh Damsite	No. 2 Ta Bu Damsite	No. 3 Ban Pau Damsite	No. 4 Ban Ta Damsite
(5) Fresh Rock Zone	Lots of fresh outcrops of basalt porphyrite on the riverbed and both banks	Some fresh outcrops on the riverbed	No outcrops of fresh rock on the riverbed, but below alluvium on the riverbed and at low elevations on both banks, fresh rock zone can be observed (BP6, 2, 21, 7)	Some fresh outcrops on the riverbed, and fresh rock zone can be observed below alluvium (BP8, 23)
Permeability	No borehole data	High permeable zone ($q \ge 0.10$) is estimated to be $30 \sim 35$ m at the left abutment (strongly fractured zone), thinner at the right abutment but thick, about 55 m, at the right rim (strongly fractured zone)	High permeable zone ($q \ge 0.10$) is estimated to be $25 \sim 55$ m on the left abutment (strongly fractured schistosed basalt porphyrite), and thinner on the right abutment (massive basalt porphyrite)	Generally low permeability (q ≤ 0.02) in fresh rock zone Some high permeable zones along tectonic crushed zones (faults)
Ground Water Level	No borehole data	Low groundwater level at high elevations on both abutments (strongly fractured zone)	Low groundwater level at the left abutment (strongly fractured schistosed basalt porphyrite, thin ridge)	Low groundwater level at the left abutment (strongly fractured schistosed basalt porphyrite, zone, thin ridge)
Remarks	Lens of limestone just downstream of the damsite on the left bank	A limestone layer lying on the right bank shall be carefully investigated	Thin ridge on the left abutment	Thin ridge on the left abutment