3.5 Surface Water Potential

3.5.1 Zoning for Surface Water Potential

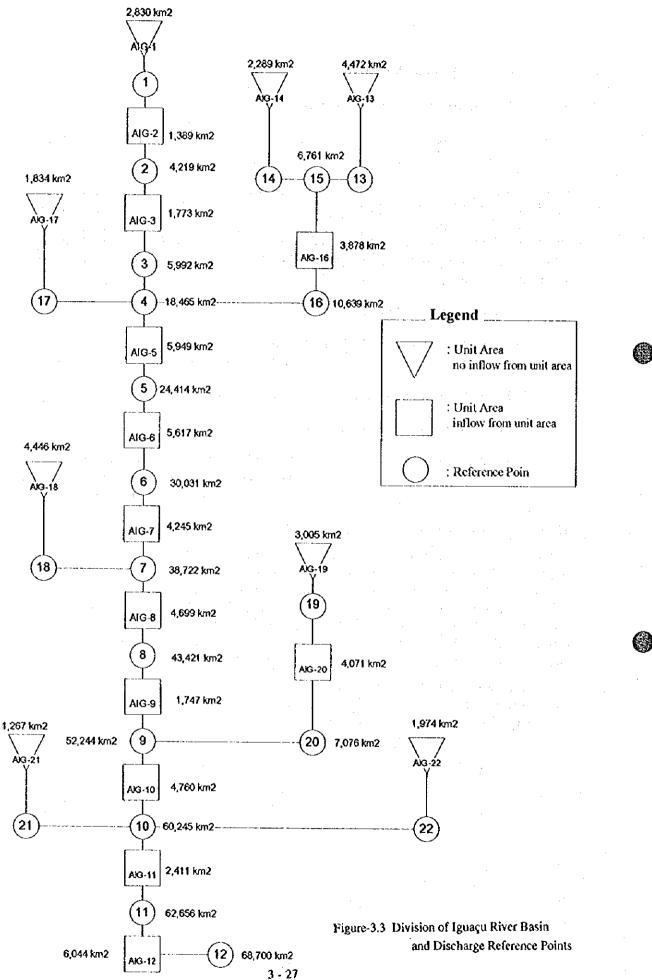
In order to compare required water supply with surface water potential, Iguaçu river basin was divided into 22 blocks as shown in Figure-3.3.

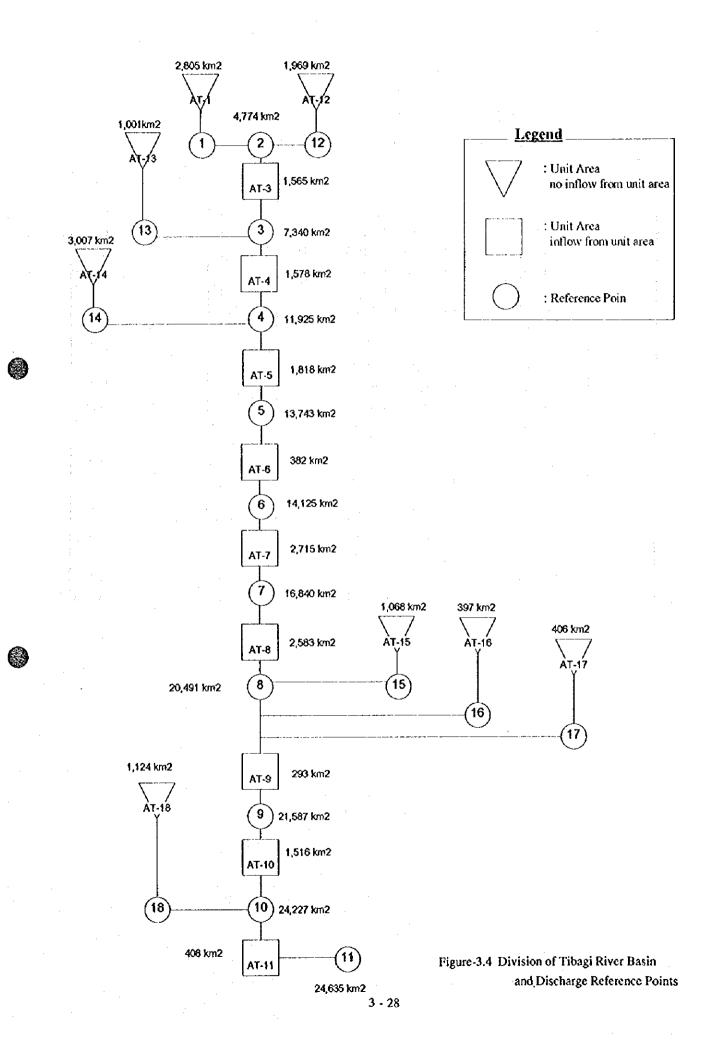
In order to compare required water supply with surface water potential, Tibagi river basin was divided into 18 blocks as shown in Figure-3.4.

Discharge reference point was determined downstream of each block. Each reference point is the same as the point of water quality study. Surface water potential was calculated at each discharge reference point.

3.5.2 Surface Water Potential

9


Surface water potential was calculated by deducting maintenance discharge $(50\%Q_{102})$ from the low water flow (Q_{102}) at each reference point. Low water flow was applied as follows:


(1) Curitiba metropolitan area	HG64 (CEHPAR,1990)
(2) catchment area < 5,000km ²	HG52 (CEHPAR,1982)
(3) catchment area \geq 5,000km ²	MINIMUM DISCHARGE VALUES FOR THE STATIONS STUDIED BY JICA IN PARANÁ STATE (COPEL,1995)

The result are shown in Table-3.19 and Table-3.20.

The surface water potential of the Iguana main river from its upstream until the junction with Negro river does not satisfy the water demand due to the Curitiba Metropolitan area located the upstream end of Iguaçu river. In the downstream after the junction with Negro river, the surface water potential of Iguaçu main river exceeds the demand and at the downstream end, Foz do Iguaçu, the surface water potential is 4 times more than the demand. However, the surface water potential of tributaries which the large urban area is located at the upstream end, such as Cascavel, tends to be insufficient for the demand.

The surface water potential of Tibagi main river is enough to the demand throughout the river. However, there is a lack of the surface water potential in tributaries around Londrina where large urban areas are concentrated.

Basin	Point No.	Catchment Area	Applied Method	Q _{10,7}	Q10.7
		An : (km²)	· · · · · · · · · · · · · · · · · · ·	(m ³ /sec)	(m ³ /sec/100km2)
Iguacu	AIG-1	2,830	HG-64	6.53	0.231
•	IG-2	4,219	HG-52	8.36	0,198
	IG-3	5,992	COPEL	13.75	0.229
	IG-4	18,465	IG3 + IG16 + IG17	41.14	0.223
	IG-5	24,414	COPEL	66.61	0.273
	IG-6	30,031	COPEL	85.43	0.284
	IG-7	38,722	COPEL	115.37	0,298
	IG-8	43,421	COPEL	131.50	0.303
	IG-9	52,244	COPEL	160.57	0.307
	IG-10	60,245	COPEL	184,40	0.300
	IG-11	62,656	COPEL	190.91	0.305
	IG-12	68,700	COPEL	205.52	0.299
	AIG-13	4,472	HG-52	11.25	0.25
	AIG-14	2,289	HG-52	5.76	0.25
	IG-15	6,761	AIG13 + AIG14	17.00	0.25
	IG-16	10,639	COPEL	25.30	0.23
	AIG-17	1,834	HG-52	2.09	0.11
	AIG-18	4,446	HG-52	12.20	0.27
	AIG-19	3,005	HG-52	8.69	0.28
	IG-20	7,076	COPEL	16.31	0.23
	AIG-21	3		2.42	0.19
	AIG-22		1	4.41	0.22

6

Table-3.17 Results of Draught Discharge Computation by Reference Point in Iguaçu River Basin

Basin	Point No.	Catchment Area	Applied Method	Q10,7	Q 10,7
		An : (km ²)		(m ³ /sec)	(m ³ /sec/100km2)
Tibagi	ΔT-1	2,805	HG-52	5.31	0,189
	AT-2	4,774	AT1 + AT12	9.04	0.189
· ·	• AT-3	7,340	COPEL	18.38	0.250
	AT-4	11,925	COPEL	30.51	0.256
	AT-5	13,743	COPEL	34.60	0.252
	AT-6	14,125	COPEL	35.41	0.251
	AT-7	16,840	COPEL	40.64	0.241
	AT-8	20,491	COPEL	46.24	0.226
	AT-9	21,587	COPEL	47.60	0.221
•	AT-10	24,227	COPEL	50.27	0.207
:	AT-11	24,635	COPEL	50.61	0,205
	AT-12	1,969	HG-52	3.73	0.189
	AT-13	1,001	HG-52	1.67	0.166
	AT-14	3,007	HG-52	4.83	0.160
	AT-15	1,068	HG-52	1,11	0.104
	AT-16	397	HG-52	0.32	0.080
	AT-17	406	HG-52	0.31	0.077
	AT-18	1,124	HG-52	1.25	0.111

۲

0

Table-3.18 Results of Draught Discharge Computation by Reference Pointin Tibagi River Basin

Reference River Location Arta (art) Quality in [99] Petential (mb cr) 1193. 20200 2015. 1 Rio Igassu Outjustan (downietan Curliba (downietan Curliba (downietan Curliba) 2,810 13.7 5.27 8.64 11.12 15.01 2 Rio Igasu such of Rato Amazons 4,219 13.7 4.18 13.1 11.53 11.57 3 Rio Igasu such of Rato Amazons 4,219 1.37 4.18 8.1 11.53 11.53 3 Rio Igasu dentex coefluence 5.922 0.30 6.68 8.40 11.63 10.54 4 Rio Igasu dentextex coefluence 18,653 0.30 20.57 8.71 12.12 14 16.31 5 Rio Igasu dentextex coefluence 18,652 0.30 20.57 2.70 2.00 5 Rio Igasu dentextex coefluence 28,712 0.06 42.72 9.13 12.54 14.84 4 Rio Igasu Fet d			Tuble-0.17 Bollace ind	ier r otennu					******
Four I matrix (mm)				Catchment	Surface Water	Surface Water	Required V	Nater Supply	(m3/sec) *
Four I matrix (mm)	Reference	River Name	Location	Агеа	Ouality in 1993	Potential	1993	2005	2015
1 Rio Iguava (downistram Curiliba (downistram Curilib			1	(km2)		(m3/sec)	Urban	Urban	Urban
(downstram Curinba metogothin Area;) -4.77 -4.78 -1.73 -0.14 0.29 0.20 2 Rio Ignacu south of Farts Amaronas 4,219 1.37 -4.18 8.31 11.53 1.53 3 Rio Ignacu uptrteam coeffloarse of Rio Nego 5.922 0.39 6.88 8.40 11.65 15.72 4 Rio Ignacu downstrean coeffloarse of Rio Nego 18,463 0.30 20.57 8.78 11.7 12.12 16.31 5 Rio Ignacu uptreem Uniso 24,414 0.06 33.31 8.94 12.35 16.57 6 Rio Ignacu uptreem Uniso 24,414 0.06 33.31 8.94 12.32 16.56 7 Rio Ignacu Foc do Areita Dam 30,031 0.09 42.72 9.13 59 3.06 3.20 17.66 3.40 10.6 2.32 11.75 12.26 16.84 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00		Qia Imiacu	Gusinvira			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER			
		ICO Iguacu		4,000	19.11	V. 11			
2 Ris Ignacu south of Perio Amaronis 4,219 1.37 4,18 8.11 11.35 15.36 15.35 15.36 15.35 15.36 15.35 15.36 15.35 15.36 15.35 15.35 15.36 15.35<									
4.1.3 -7.35 -1.1.3 -7.35 -0.2 3 Fio Iguacu uptream confluence of Rio Negro 5,992 0.39 6.88 8.40 11.65 135.2 4 Rio Iguacu downstream confluence of Rio Folinga 18,465 0.30 20.57 8.78 12.12 16.31 5 Rio Iguacu uptream Unizo 24,414 0.65 33.31 8.94 12.22 16.54 6 Rio Iguacu uptream confluence 38,722 0.00 57.69 9.616 13.23 12.56 16.84 7 Rio Iguacu downstream confluence 38,722 0.00 57.69 9.616 13.20 11.79 6 Rio Iguacu downstream confluence 38,722 0.00 57.69 9.618 13.20 11.79 7 Rio Iguacu downstream confluence 58,744 0.00 65.75 9.82 13.44 13.29 14.73 9 Rio Iguacu downstream confluence 52,744 0.00 65					· · · · · · · · · · · · · · · · · · ·		and the state of t	and the local data and the local	
	2	Rio Iguacu	south of Porto Amazonas	4,219	1.37	4.18			
3 Bio Iguacu upteran confluence of Rio Negro 5,992 0.39 6.88 8.40 11.65 15.21 -4.75 -5.82 0.52 0.59 0.44 4 Rai Iguacu downstran confluence of Rio Pexinga 18,465 0.30 20.57 8.78 12.12 16.31 5 Rai Iguacu upteram Uniao da Vioria 24,414 0.06 33.31 8.94 12.32 16.54 6 Rio Iguacu Upteram Uniao da Vioria 30,011 0.00 42.72 13 12.56 16.84 7 Rio Iguacu Sarda Areia Dam 30,011 0.00 57.69 9.611 13.30 13.20 17.84 40.0 6 Rio Iguacu Satingo Dam 43,421 0.00 66.73 58.21 13.44 17.99 3.6 66.40 43.7 3.2 8 Rio Iguacu Satingo Dam 43,421 0.00 80.29 10.84 14.80 40.0 6.6 6.73 55.21 34.4 40.0							-4.13	-7.35	-11.38
of Rio Negro -1.52 -4.77 -8.82 -0.93 4 Rio Iguacu ownstream confluence 18,465 0.30 20.57 8.78 1.212 1638 5 Rio Iguacu upsteem Unino 24,414 0.06 33.31 8.94 12.2 15.9 6 Rio Iguacu For do Arcia Dam 30,031 0.00 42.72 9.13 10.73 2.70 2.0 6 Rio Iguacu For do Arcia Dam 30,031 0.00 42.72 9.13 10.73 12.55 16.84 7 Rio Iguacu downstream confluence 38,722 0.00 65.75 9.82 349 25.7 7 Rio Iguacu Salto Santiago Dam 43,421 0.00 65.75 9.82 349 349 349 349 349 349 349 349 349 349 349 341 1179 16.16 33.14 1179 16.16 33.14 1179 16.16 341 16.16 341		ļ					0.50	0.36	• 0.27
of Rio Negro -1.52 -4.77 -8.82 -0.93 4 Rio Iguacu ownstream confluence 18,465 0.30 20.57 8.78 1.212 1638 5 Rio Iguacu upsteem Unino 24,414 0.06 33.31 8.94 12.2 15.9 6 Rio Iguacu For do Arcia Dam 30,031 0.00 42.72 9.13 10.73 2.70 2.0 6 Rio Iguacu For do Arcia Dam 30,031 0.00 42.72 9.13 10.73 12.55 16.84 7 Rio Iguacu downstream confluence 38,722 0.00 65.75 9.82 349 25.7 7 Rio Iguacu Salto Santiago Dam 43,421 0.00 65.75 9.82 349 349 349 349 349 349 349 349 349 349 349 341 1179 16.16 33.14 1179 16.16 33.14 1179 16.16 341 16.16 341	3	Rio Iguacu	upstream confluence	5,992	0.39	6.88	8.40	11.65	15.72
	•			-,					
4 Rio Iguacu ef Rio Foliaga destrum confluence ef Rio Foliaga 18,465 0.30 20.57 8.78 12.12 16.33 5 Rio Iguacu da Vitoria apternen Unio da Vitoria 24,414 0.66 33.31 8.94 12.22 16.54 6 Rio Iguacu Fee do Areia Dam 30.031 0.00 42.72 9.13 30.14 25.83 3.46 2.5 7 Rio Iguacu doventerum confluence 38,722 0.00 57.66 9.61 13.20 17.65 7 Rio Iguacu doventerum confluence 38,722 0.00 65.75 9.52 13.44 17.92 8 Rio Iguacu doventerum confluence 52,244 0.00 65.75 9.52 13.44 17.92 9 Rio Iguacu doventerum confluence 52,244 0.00 80.29 16.64 44.80 15.7 4.88 15.6 40.15 9 Rio Iguacu doventerum confluence 52,244 0.00 80.29 18.7 16.16.			oridoricipio						
of Rio Pecinga 11.79 8.45 42.23 5 Rio Iguacu optoream Unio 24,414 0.06 33.31 8.94 12.32 16.34 6 Rio Iguacu Fee do Arcía Dam 30,031 0.00 42.72 33.35 30.64 25.85 7 Rio Iguacu doventream confluence 38,722 0.00 57.69 96.11 13.20 17.66 8 Rio Iguacu doventream confluence 38,722 0.00 65.75 97.1 83.44 43.04 9 Rio Iguacu doventream confluence 52,244 0.00 80.25 15.84 17.97 8.44 17.97 9 Rio Iguacu doventream confluence 60,245 0.00 80.25 10.84 19.20 10 Rio Iguacu doventream confluence 60,245 0.18 92.20 11.7 7.1 3.44 10.97 10 Rio Iguacu controcam confluence 60,2455 0.05 93.46 11.87 16.16 <				10.777					
International proteom Unition 24,414 0.06 33.31 23.34 1.70 1.12 5 Rio Iguacu For do Arreia Dam 30,931 0.00 42.72 9.13 37.3 20.99 16.7 6 Rio Iguacu For do Arreia Dam 30,931 0.00 42.72 9.13 13.59 30.16 25.84 7 Rio Iguacu downstream combuence 38,722 0.00 57.69 9.61 13.20 17.84 40.0 6 Rio Iguacu downstream combuence 52.244 0.00 65.75 9.82 36.40 63.44 40.0 43.42 17.92 55.93 32.24 17.92 55.93 32.42 17.92 55.93 32.42 17.92 55.93 32.42 17.92 55.93 32.44 17.92 55.93 32.44 17.92 17.84 40.0 18.89 40.0 18.89 40.0 18.89 16.1 56.40 18.79 17.92 17.71 16.44 21.24 18.79	4	Rio Iguacu		18,403	0.30	20.57			
5 Rio Iguacu upstream Uniao 24,414 0.06 33.31 8.94 12.32 16.34 6 Rio Iguacu For do Areia Dam 30,031 0.00 42.72 33.31 8.94 12.32 10.39 6 Rio Iguacu downstream confluence 38,722 0.00 57.69 96.11 13.20 17.66 7 Rio Iguacu downstream confluence 38,722 0.00 57.69 96.11 13.20 17.66 7 Rio Iguacu downstream confluence 38,721 0.00 65.75 95.21 13.44 140.9 9 Rio Iguacu downstream confluence 60,245 0.18 92.20 11.76 74.1 54.3 46 10 Rio Iguacu downstream confluence 60,245 0.18 92.20 11.74 54.3 46 11 Rio Iguacu fiki o Coguacma 60,245 0.18 92.20 11.71 16.44 21.32 12 Rio Iguacu routt 63 <td></td> <td></td> <td>of Rio Potinga</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.24</td>			of Rio Potinga						4.24
da Vitoria 2437 2009 16.7 6 Rio Iguacu For do Areia Dam 30,031 0.00 42.72 9.13 12.56 16.84 7 Rio Iguacu dovinstream confluence of Rio Jordao 38,722 0.00 57.69 9.61 13.20 17.65 8 Rio Iguacu Shlo Sanligo Dam 43,421 0.00 65.73 9.82 13.41 17.99 9 Rio Iguacu Shlo Sanligo Dam 43,421 0.00 65.73 9.82 13.43 17.99 9 Rio Iguacu Shlo Sanligo Dam 43,421 0.00 80.22 10.74 4.59 3.6 9 Rio Iguacu downstream confluence of Rio Chopin 60,245 0.18 92.20 11.77 16.04 21.32 10 Rio Iguacu rowtstream confluence of Rio Capanema 60,245 0.018 92.20 11.77 16.04 21.32 11 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.58							2.34	1.70	1.26
da Vitoria 24.37 20.99 16.7 6 Rio Iguacu For do Areia Dam 30,031 0.60 42.72 9.13 12.56 16.8 7 Rio Iguacu downstream confluence 38,722 0.00 57.69 9.61 13.20 17.66 7 Rio Iguacu Shio Sanilago Dam 43,421 0.00 65.73 9.82 13.44 17.99 8 Rio Iguacu Shio Sanilago Dam 43,421 0.00 65.73 9.82 13.44 17.99 9 Rio Iguacu downstream confluence 52,244 0.00 80.29 10.84 14.80 19.74 10 Rio Iguacu downstream confluence 60,245 0.18 92.20 11.77 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 93.45 11.37 16.16 7.44 5.33 4.3 11 Rio Iguacu route 163 62,656 0.05 93.46 13.37 16.16 7.4	5	Rio Iguacu	upstream Uniao	24,414	0.06	33.31	8.94	12.32	16.54
- -	·	Ť							16.77
6 Nio Igueu For do Arcia Dam 30,031 0.00 42.72 9.13 12.56 16.8 7 Rio Iguacu of winstream confluence 38,722 0.00 57.69 9.61 13.20 17.65 8 Rio Iguacu of winstream confluence 38,722 0.00 57.69 9.61 13.20 17.65 9 Rio Iguacu downstream confluence 52,244 0.00 65.72 9.92 13.44 17.99 9 Rio Iguacu downstream confluence 52,244 0.00 80.29 10.84 14.80 19.74 10 Rio Iguacu downstream confluence 60,245 0.18 92.20 11.77 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 11.71 17.82 23.48 13 Rio Regacu river mouth 2,289 0.85		1		· ·		1			
Rio Iguacu downstream confluence ef Rio Jordao 38,722 38,722 0.00 57,69 9,61 13,20 44,49 13,20 40,00 13,21 8 Rio Iguacu Salto Sanligo Dam 43,421 0.00 65,75 9,82 13,44 17,59 9 Rio Iguacu Salto Sanligo Dam 43,421 0.00 65,75 9,82 13,44 17,59 9 Rio Iguacu downstream confluence of Rio Chopin 52,244 0.00 80.29 10,84 1480 19,74 4,89 36,64 46,9 65,75 43,75 <t< td=""><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td></t<>					0.00				
- -	0	KIO Iguacu	roz do Arcia Dam	30,031	S S 0.00 a	42.72			
7 Rio Iguasu downstream confluence of Rio Jordao 38,722 0.00 57,69 9,61 13.20 17,66 8 Rio Iguasu Salto Santiago Dan 43,421 0.00 65,75 9,822 13,44 17,39 9 Rio Iguasu Salto Santiago Dan 43,421 0.00 65,75 9,822 13,44 17,39 9 Rio Iguasu downstream confluence of Rio Capanema 52,244 0.00 80,29 10,84 1480 19,74 10 Rio Iguasu downstream confluence of Rio Capanema 60,245 0.18 92,20 11,77 16,64 21,45 11 Rio Iguasu route 163 62,656 0.05 95,46 18,75 43, 79,10 74,0 12 Rio Iguasu river mouth 68,700 0.10 102,76 12,71 17,88 73,2 8,48 79,10 74,0 13 Rio Rayaeu river mouth 68,700 0.10 102,76 12,71 17,88 54,3 53,017					e e le subjection				
of Rio Jordao 48.08 44.49 40.00 8 Rio Iguacu Salio Santiago Dam 43.421 0.00 65.73 9.82 13.44 17.99 9 Rio Iguacu downstream confluence of Rio Chopim 52.24 0.00 80.29 10.84 1480 19.74 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.7 16.04 1480 19.74 11 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.7 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 9.46 11.87 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 91.71 0.22 8.85 43.9 13 Rio Negro river mouth 68,700 0.10 102.76 91.71 0.22 8.85 43.9 14 Rio da Varzea river mouth 2.289 0.85 0.30<	<u>:</u>	<u> </u>				L		3.40	2.54
of Rio Jordao 48.08 44.49 40.00 8 Rio Iguacu Salio Santiago Dam 43.421 0.00 65.73 9.82 13.44 17.99 9 Rio Iguacu downstream confluence of Rio Chopim 52.24 0.00 80.29 10.84 1480 19.74 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.7 16.04 1480 19.74 11 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.7 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 9.46 11.87 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 91.71 0.22 8.85 43.9 13 Rio Negro river mouth 68,700 0.10 102.76 91.71 0.22 8.85 43.9 14 Rio da Varzea river mouth 2.289 0.85 0.30<	7	Rio Iguacu	downstream confluence	38,722	0.00	57.69	9.61	13.20	17.66
B Rio Iguacu Salio Santiago Dam 43,421 0.00 65.75 9.82 13.44 17.99 8 Rio Iguacu Salio Santiago Dam 43,421 0.00 65.75 9.82 13.44 17.99 9 Rio Iguacu downstream confluence of Rio Capanema 52,244 0.00 80.29 10.84 14.80 10.74 5.43 40 10 Rio Iguacu downstream confluence of Rio Capanema 62,656 0.18 92.20 11.77 16.60.4 21.32 11 Rio Iguacu route 163 62,656 0.05 93.46 11.87 16.16 79.80 73.0 12 Rio Iguacu river mouth (Fee do Iguacu) 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Regro of Rio da Varzea 5.46 5.41 5.31 0.17 0.02 0.82 13.4 5.18 79.30 74.0 14 Rio Regro upstream confluence of Rio da Varzea 0.18 5.63 0.17 0.22 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>40.03</td>				1					40.03
B Rio Iguacu Saho Sanfiago Dam 43,421 0.00 65.75 9.82 13.44 17.99 9 Rio Iguacu downstream confluence of Rio Chopim 52,244 0.00 80.29 10.84 1480 19.74 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 93.46 11.87 16.16 21.46 12 Rio Iguacu river mouth (Foz do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Iguacu river mouth (Foz do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 14 Rio da Varcea (fiold a Varcea 4.472 0.18 6.53 0.17 0.22 0.29 14 Rio da Varcea 6.761 0.41 8.50 0.30 0.37 0.48 13 Rio Negro downstrearn confluence of Rio da Varcea 6.761 <td></td> <td> ·</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		·		1					
P Rio Iguacu downstream confluence of Rio Chopin 52,244 0.00 80.29 10.84 14.80 19.74 9 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 12.32 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 12.32 11 Rio Iguacu route 163 62,656 0.05 95.45 11.87 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.53 23.48 13 Rio Regro upstream confluence of Rio da Varcea 4.472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varcea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro upstream confluence of Rio da Varcea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro		l							
- -	8	Rio Iguacu	Salto Santiago Dam	43,421	0.00	65.75			
9 Rio Iguacu downstream confluence of Rio Chopin 52,244 0.00 80.29 10.84 14.80 19.76 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 21.32 4.0 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 18.87 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Negro upstream confluence of Rio da Varcea 4,472 0.18 5.63 0.17 0.22 0.32 14 Rio da Varcea fiver mouth 2,289 0.85 2.88 0.33 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varcea 6,761 0.41 8.50 0.30 0.37 0.48 15		1	1						47.76
of Rio Chepin 69.45 65.49 60.213 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.42 12 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.45 12 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.78 23.48 13 Rio Negro upstream confluence 4,472 0.18 5.63 0.17 0.22 8.08 5.85 4.33 14 Rio da Varzea fiver mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence 6,761 0.41 8.50 0.30 0.37 0.48 14 Rio da Varzea fiver mouth 10,635 0.07 12.25 15.1 15<		1					6.70	4.89	3.65
of Rio Chopim 69.45 65.49 60.213 10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77. 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87. 16.16 21.46 12 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 14 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Negro upstream confluence 4,472 0.18 5.63 0.17 0.22 8.08 5.85 433 14 Rio da Varzea fiver mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence 6,761 0.41 8.50 0.30 0.37	9	Rio Iguacu	downstream confluence	52.244	0.00	80.29	10.84	14.80	19.74
Image: construct and confluence of Rio Capanema 60,245 0.18 92.20 11.77 16.04 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.32 12 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Iguacu river mouth 68,700 0.10 102.76 12.71 17.38 23.48 13 Rio Negro upstream confluence 4.472 0.18 5.63 0.17 0.22 0.29 of Kio da Varcea fiver mouth 2.289 0.85 2.88 0.31 0.15 0.19 14 Rio da Varcea fiver mouth 2.289 0.85 2.88 0.31 0.15 0.17 0.22 0.27 2.73 2.66 2.215 19.20 15.1 15 Rio Negr	-		of Rio Chooim				69.45		60.55
10 Rio Iguacu downstream confluence of Rio Capanema 60,245 0.18 92.20 11.77 16.64 21.32 11 Rio Iguacu route 163 62,656 0.05 95.46 11.87 16.16 21.42 12 Rio Iguacu river mouth (Foz do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstream confluence of Rio da Varzea 4,472 0.18 5.63 0.17 0.22 5.45 4.3 14 Rio da Varzea river mouth (river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td></td<>						+			
of Rio Capanema 80.43 76.16 708 11 Rio Iguacu route 163 62,656 0.05 93.46 11.87 16.16 21.46 12 Rio Iguacu river mouth (Foc do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstream confluence 4,472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varzea of Rio da Varzea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 14 Rio da Varzea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro dwmstream confluence 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro dwmstream confluence 6,761 0.41 8.50 0.30 0.37 0.48 17 Rio Regro river mouth 10,635 0.07 12.65 0.31 0.38 0.49	10	D'- /		10.04	0.10	02.20	the second se		
Image: constraint of the second sec	10	Rio Iguacu		60,245	0.18	92.20			
11 Rio Iguacu route 163 62,656 0.05 93.46 11.87 16.16 21.46 12 Rio Iguacu river mouth (Fez do Iguacu) river mouth (Fez do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstram confluence of Rio da Varzea (fielude Rio Negro) 64,472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varzea (fielude Rio Negro) 10,4472 0.18 5.63 0.17 0.22 0.29 15 Rio Avarzea (fielude Rio Negro) river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro tiver mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Ideada </td <td></td> <td></td> <td>of Rio Capanema</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			of Rio Capanema						
Image: Second						·	7.83	5.75	4.32
Rio Iguacu river mouth (Foz do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstream confluence of Rio da Varcea (include Rio Negro) 4.472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varcea (include Rio Negro)	11	Rio Iguacu	route 163	62,656	0.05	95.46	11.87	16.16	21.46
Rio Iguacu river mouth (Foz do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstream confluence of Rio da Varcea (include Rio Negro) 4.472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varcea (include Rio Negro)		1 -			ł .		83.59	79.30	74.00
12 Rio Iguacu river mouth (Foc do Iguacu) 68,700 0.10 102.76 12.71 17.58 23.48 13 Rio Negro upstream confluence of Rio da Varzea 4,472 0.18 5.63 0.17 0.22 0.23 14 Rio da Varzea (include Rio Negro) 2.289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 17 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 18 Rio Jordau river mouth 1,834 2.61 1.05 0.08 0.19 0.12 19 Rio Chopinn Sao Luiz 3,005 0.87 4.33 0.19 0.24 0.29 1.35 20 Rio Chopinn Sao Luiz <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>4.45</td>					1				4.45
(For 2 do fguacu) 90.05 85.18 79.2 13 Rio Negro upstream confluence of Rio da Varzea (include Rio Negro) 4.472 0.18 5.63 0.17 0.22 0.29 14 Rio da Varzea (include Rio Negro) 2.289 0.85 2.88 0.13 0.15 0.19 14 Rio da Varzea (include Rio Negro) 2.289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream cooffluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Polinga river mouth 1,834 2.61 1.055 0.08 0.10 0.12 18 Rio Jerdao river mouth 1,834 2.61 1.055 0.10 0.14 4.02 2.29 1.234 12.27 12.14 18 Rio Jerdao river mouth 1,834 2.61 1.055 <td< td=""><td>12</td><td>Dialana</td><td>river mouth</td><td>69.700</td><td>0.10</td><td>102.76</td><td></td><td></td><td></td></td<>	12	Dialana	river mouth	69.700	0.10	102.76			
Image: Second	12	Nio Iguacu		\$ 00,700	0.10	102.70			
13 Rio Negro of Rio da Varzea (include Rio Negro) 4,472 of Rio da Varzea (include Rio Negro) 0.18 5,63 (include Rio Negro) 0.17 (include Rio Negro) 0.22 (include Rio Negro) 0.23 (include Rio Negro) 0.13 (include Rio Negro) 0.13 (include Rio Negro) 0.13 (include Rio Negro) 0.13 (include Rio Negro) 0.15 (include Rio Negro) 0.19 (include Rio Negro) 0.13 (include Rio Negro) 0.15 (include Rio Negro) 0.19 (include Rio Negro) 15 Rio Negro downstream confluence (f Rio da Varzea) 6,761 (include Rio Negro) 0.41 (include Rio Negro) 8.50 (include Rio Negro) 0.30 (include Rio Negro) 0.31 (include Rio Negro) 0.38 (include Rio Negro) 0.33 (include Rio Negro) 0.38 (include Rio Negro) 0.38 (inclu			(Foz do Iguacu)	1			1		
of Rio da Varzea (include Rio Negro) 5.46 3.3.12 5.41 2.59 5.3 12.4 14 Rio da Varzea (include Rio Negro) 2,289 0.85 2.88 0.13 0.15 0.19 14 Rio da Varzea (include Rio Negro) 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jardao river mouth (include Guarapuava) 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29									4.38
(include Rio Negro) 33.12 25.59 19.4 14 Rio da Varzea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth (include Guarapuava) 4,446 0.00 6.10 0.44 0.58 0.52 8.0 19 Rio Chopini Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 18.13 15.0 20 Rio Chopini Sao Luiz (include Palmas) 3,005 0.87	13	Rio Negro	upstream confluence	4,472	0.18	5.63	0.17	0.22	0.29
14 Rio da Varzea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 1,834 2.61 1.05 0.08 0.76 0.97 0.95 0.9 13.13 10.50 8.7 3.320 25.8 0.19 1.86 10.52 8.0 17 Rio Potinga river mouth 1,834 2.61 1.050 8.7 3.320 25.8 18 Rio Jordao river mouth 4,446 <td< td=""><td></td><td>1 () () () () () () () () () (</td><td>of Rio da Varzea</td><td></td><td>ł</td><td></td><td>5.46</td><td>5.41</td><td>5.35</td></td<>		1 () () () () () () () () () (of Rio da Varzea		ł		5.46	5.41	5.35
14 Rio da Varzea river mouth 2,289 0.85 2.88 0.13 0.15 0.19 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 1,834 2.61 1.05 0.08 0.76 0.97 0.95 0.9 13.13 10.50 8.7 3.320 25.8 0.19 1.86 10.52 8.0 17 Rio Potinga river mouth 1,834 2.61 1.050 8.7 3.320 25.8 18 Rio Jordao river mouth 4,446 <td< td=""><td></td><td></td><td>(include Rio Neero)</td><td></td><td></td><td></td><td>33.12</td><td>25.59</td><td>19.41</td></td<>			(include Rio Neero)				33.12	25.59	19.41
Rio Negro downstream confluence of Rio da Varzea 6,761 of Rio da Varzea 0.41 conflict (richade Surzea) 2.75 (22.15) 2.73 (22.15) 2.73 (22.15) 2.73 (22.15) 2.73 (22.15) 19.20 (15.11) 15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 18,84 2.61 1.05 0.08 0.10 0.12 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 13.13 10.50 8.7 13.13 10.50 8.7 18 Rio Serdao river mouth (include Guarapuava) 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chopim fiver mouth (14	Rinds Varias		2 280	0.85	288			- Andrew Statements
Line Line <thline< th=""> Line Line <thl< td=""><td></td><td></td><td>inter moder</td><td>2,207</td><td>0.07</td><td>2.00</td><td></td><td></td><td></td></thl<></thline<>			inter moder	2,207	0.07	2.00			
15 Rio Negro downstream confluence of Rio da Varzea 6,761 0.41 8.50 0.30 0.37 0.48 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Polinga river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Polinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 4,446 0.00 6.10 0.44 0.58 0.76 18 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chopim river mouth (include Palmas) 7.076 0.00 8.16 0.93 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>				1					
of Rio da Varzea 8.20 8.13 8.0 16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Polinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 4,446 0.00 6.10 0.44 0.58 0.76 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chopim Sao Luiz 7,076 0.00 8.16 0.93 1.25 1.62 Pato Branco, Francisco 7,276 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade river mouth 1,267 11.4				<u> </u>	 	{			
Image: constraint of the second sec	15	Rio Negro		6,761	0.41	8.50			
Image: constraint of the second sec		ł	of Rio da Varzea	1			8.20	8.13	8.02
16 Rio Negro river mouth 10,639 0.07 12.65 0.31 0.38 0.49 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 4,446 0.00 6.10 0.44 0.58 0.76 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 0.80 20 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 0.12 0.12 0.10 22.89 18.13 15.0 20 8.16 0.93 1.25 1.62 7.076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade river mouth 1.267 11.4 1.21 0.56 0.81 4.10 1.16 4.11		1	1	1 ·			28.33	22.97	17.71
Image: Note of the second se	16	Rio Negro	river mouth	10 639	0.07	12.65			
Image: Note of the point of the po		1							
17 Rio Potinga river mouth 1,834 2.61 1.05 0.08 0.10 0.12 18 Rio Jordao river mouth 4,446 0.00 6.10 0.44 0.58 0.76 18 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chopim Sao Luiz 3,005 0.87 4.35 0.19 0.24 0.29 11 4.16 4.11 4.0 22.89 18.13 15.0 20 Rio Chopim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 Pato Branco, Francisco 8.77 6.53 5.0 8.77 6.53 5.0 21 Rio Andrade river mouth 1,267 11.4 1.21 0.65 0.81 1.10 22 Rio Capanema river m		1	1	1	Į				
Image: Normal system Image: No		D'- D - C							
Image: Normal Sector	17	Kio Polinga	UVEL WORD	1,834	2.61	1.05	2.		
18 Rio Jerdao river mouth (include Guarapuava) 4,446 0.00 6.10 0.44 0.58 0.76 19 Rio Chepim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chepim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chepim river mouth (include Pato Branco, Francisco Beltrao and Dois Vizinhos) 7,076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade (include Cascavel) river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.10 2.08 2.00 2.10 2.08 2.00		1	4	1	1	ł			
18 Rio Jerdao river mouth (include Guarapuava) 4,446 0.00 6.10 0.44 0.58 0.76 19 Rio Chepim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 19 Rio Chepim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chepim river mouth (include Pato Branco, Francisco Beltrao and Dois Vizinhos) 7,076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade (include Cascavel) river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.10 2.08 2.00 2.10 2.08 2.00		<u> </u>	<u> </u>			· · ·	13.13	10.50	8.75
Image: second	18	Rio Jordao	river mouth	4.446	0.00	6.10			
Image: Section of the sectio				1		1			
19 Rio Chopim Sao Luiz (include Palmas) 3,005 0.87 4.35 0.19 0.24 0.29 20 Rio Chepim river mouth (include Pato Branco, Francisco Bettrao and Dois Vizinhos) 7,076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14			Concern Constantion of	1		1			
(include Palmas) 4.16 4.11 4.00 20 Rio Chopim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 20 Rio Chopim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 20 Beltrao and Dois Vizinhos) 7.23 6.91 6.5 5.0 21 Rio Andrade river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14	10	D's Charles	Can Faile		0.07				
20 Rio Chopim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 20 Rio Chopim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 20 Pato Branco, Francisco 7.23 6.91 6.5 7.23 6.91 6.5 21 Rio Andrade river mouth (include Cascavel) 1.267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 21 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14	21	KIO C DOPINI		3,003	0.87	4.53			
20 Rio Chepim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 Pato Branco, Francisco Beltrao and Dois Vizinhos) 7,076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade (include Cascavel) river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 20 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14			(include Palmas)	1	ŀ	1			
20 Rio Chepim river mouth (include 7,076 0.00 8.16 0.93 1.25 1.62 Pato Branco, Francisco Beltrao and Dois Vizinhos) 7,076 0.00 8.16 0.93 1.25 1.62 21 Rio Andrade (include Cascavel) river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 20 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14							22.89	<u> </u>	15.00
Pato Branco, Francisco Beltrao and Dois Vizinhos) 7.23 6.91 6.5 21 Rio Andrade (include Cascavel) river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth (include Cascavel) 1,974 2.38 2.21 0.11 0.13 0.14 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14	20	Rio Chopim	river mouth (include	7,076	0.00	8.16	0.93		
Bettrao and Dois Vizinhos) 8.77 6.53 5.0 21 Rio Andrade (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth (include Cascavel) 1,974 2.38 2.21 0.11 0.13 0.14 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14				I .	1]	1		•
21 Rio Andrade river mouth (include Cascavel) 1,267 11.4 1.21 0.56 0.81 1.10 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 20 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14				ł		1			
(include Cascavel) 0.65 0.40 0.1 22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.0 2.10 2.08 2.00 2.00 2.00 2.00		+							
22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.00	21	Rio Andrade		1,267	1 11.4	1.2			
22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.10 2.08 2.00 2.08 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.11 0.13 0.14 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14		1	(include Cascavel)	1	· ·	1	0.65	0.40	0.11
22 Rio Capanema river mouth 1,974 2.38 2.21 0.11 0.13 0.14 2.10 2.08 2.00 2.08 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.11 0.13 0.14 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14						1	2.16	1.49	1.10
2.10 2.03 2.0	>>	Rio Cananema	river mouth	1 974	> 18	2.21			
		and contrained		','''	e				
	1		1						
	l				J	.	<u> </u>	17.00	1

Table-3.19	Surface	Water	Potential	and	Onality	in Ignaci	ı River Basin
	0011440	77 U U U	LOWING	su iu	Vuanti	macual	

*<u>Remark</u> first step

Required Water Supply

second step Surface Water Potential - Required Water Supply third step Possible Development Water / Required Water Supply

			Catchment	Surface Water	Surface Water		Water Supply	
Reference	River Name	Location	Area	Quality in 1993	Potential	1993	2005	2015
Point			(km2)	BOD(mg1)	(m3/sec)	Urban	Urban	Urban
1	Rio Tibagi	upstream confluence	2,805	3.17	2.66	0.78	1.01	1.27
		of Rio Imbituva	· ·			1.88	1.65	1.
		(include Ponta Grossa)				3.39	2.62	2
2	Rio Tibagi	downstream confluence	4,774	2.62	4.52	0.94	1.22	1.53
		of Rio Imbituva				3.58	3.30	2
		· · · · · · · · · · · · · · · · · · ·				4.79	3.70	2.
3	Rio Tibagi	downstream confluence	7,340	0.53	9.19	0.97	1.25	1.56
	÷	of Rio Pitangui				8.22	7.94	2
		, C				9.51	7.37	5
4	Rio Tibagi	downstream confluence	11,925	0.79	15.26	1.25	1.70	2.18
•		of Rio Fortaleza				14.01	13.57	13
						12.21	9.00	7
5	Rio Tibagi	downstream confluence	13,743	0.42	17.30	1.27	1.73	2.22
-	NIV HEED	of Rio Imbau				16.03	15.57	15.
		(upstream Telemaco Borba)	1.4			13.58		7
6	Rio Tibagi	upstream confluence	14,125	1.29	17.71	1.52	2.08	2.68
0	Kio Huagi	of Rio Imbauzinho (down-	14,125	1.27	11.11	1.52	15.63	15
						-		
	B ' T '	stream Telemaco Borba)	16,840	0.00	20.32	11.65	8.50 2.15	<u> </u>
7	Rio Tibagi	between Terra Nova	10,840	0.00	20.32			
		and Natingui				18.74	18.17	17.
						12.84	9.45	7
8	Rio Tibagi	downstream confluence	20,491	0.00	23.12	1.94	2.64	3.39
·		of Rio Taquara				21.18	20.49	19
			Į	· · · · · · · · · · · · · · · · · · ·		11.94	8.77	6
9	Rio Tibagi	downstream confluence	21,587	0.92	23.80	2.13	2.89	3.73
		of Rio Tres Bocas	ţ			21.67		20
			!			11.16	8.23	6
10	Rio Tibagi	downstream confluence	24,227	0.31	25.14	4.15	5.57	7.24
		of Rio Congonhas				20.99	19.57	17.
			1			6.05	4.51	3.
11	Rio Tibagi	river mouth	24,635	0.17	25.31	4.18	5.60	7.28
	_		1			21.13	19.71	18
			1			6.06	4.52	3.
12	Rio Imbituva	river mouth	1,969	1.83	1.87	0.16	0.21	0.26
		(include Irati)				1.71	1.66	1
			Į			11.69	9.08	7.
13	Rio Pitangui	river mouth	1,001	1.67	0.84	0.00	0.00	0.00
••		(include Ponta Grossa)				0.84	0.84	0
						-	-	•
14	Rio Fortaleza	river mouth	3,007	4.33	2.42	0.28	0.45	0.62
	Rio Iapo	(include Castro)				2.14	1.97	1
		······································	1			8.52	5.40	3
15	Rio Taquara	river mouth	1,068	10.7	0.56	0.28	0.40	0.52
		(include Apucarana)	1			0.28		0
		······	1			1.99		1
16	Rio dos Apertados	river mouth	397	31.7	0.16	0.20	0.26	0.34
		(include Arapongas)		51,1		-0.04	-0.10	-0
		function to abourgas)	1			0.81	0.62	0
17	Rio Tres Bocas	river mouth	406	339	0.16	0.00	0.00	0.00
17	INTO HES DOUBS	(include Londona)	-100		5.10	0.00	0.00	0.00
		(include Lendring)	1				. 0.10	
10	Die Creatie		1 1124	6.34	<u>A</u>	0.22	0.27	0.33
18	Rio Congonhas	river mouth	1,124	0.14	0.63			
		(include Cornelio Procopio)	1			0.41		0
	1		(2.89	2.35	1

Table-3.20 Surface Water Potential and Quality in Tibagi River Basin

•Remark furst step

Required Water Supply

second step

Surface Water Potential - Required Water Supply

- third step
- Possible Development Water / Required Water Supply

The lower water flow $(Q_{10,7})$ is calculated by flowing method.

(1) HG64 (CEHPAR, 1990); Curitiba metropolitan area

HG64 is analyzed for the low water flow in Curitiba metropolitan area by CEHPAR. Three figures and two tables are used to calculate the Q_{IRI} .

TR : return period

t : continuous days

Q; : annual minimum of average discharge of continuous "t" days

 $Q_{rRt} = Q_t$ discharge with occurrence probability of once in "TR" years

The low water flow by HG64 is calculated by following process.

- 1) α (DIA⁻¹); obtained from Table-3.22 and/or Figure-3.5
- 2) $\frac{Q}{\overline{Q}}$; obtained from Figure-3.6 to input TR
- 3) $K(\alpha, t)$; obtained from Table-3.23 to input t and α
- 4) $\bar{q}t = \frac{Q}{\bar{Q}} \times K(\alpha, t)$

5) $\bar{q}_{\rm LP}$; obtained from Figure-3.7

6) $\vec{Q} = \vec{q}_{LP} \times A/1000$

A; catchment area

7)
$$Q_{1R_1} = \vec{q} t \cdot \vec{Q}$$

(2) HG52 (CEHPAR, 1989); whole Paraná state for catchment area < 5000 km²

HG52 is analyzed for the low water blow in whole Paraná state by CEHPAR. Six figures are used to calculate the $Q_{TR,i}$. The low water flow by HG52 is calculated by following process.

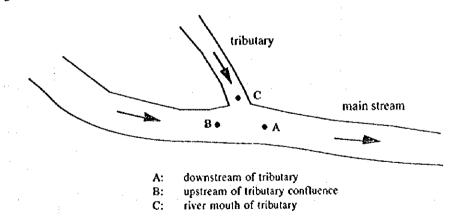
- six coefficients (a, b, c, α, β, γ) are obtained by six iso-coefficient map at optional point. (Figure-3.8 ~ Figure-3.13)
- 2) $\overline{q}t = \exp[a + b \cdot lnt + c(lnt)^2]$
- 3) $\overline{U}_{TR} = \alpha + (\beta + \alpha) \left[-\ell \ln \left(1 \frac{1}{TR}\right)\right]^{1/\gamma}$

4)
$$Q_{\text{TR}t} = \frac{A}{1000} \cdot \overline{U} \cdot \overline{q}t$$

(3) Minimum Discharge Values for the stations Studied by JICA in Paraná state (COPEL, 1995); catchment area ≥ 5,000 km². The low water flow $(Q_{10,7})$ for main rivers in Paraná state is analyzed by COPEL. $Q_{10,7}$ by COPEL's study is obtained to input only catchment area at optional point. The equation to calculate Q10.7 is shown as follows.

$$Q_{102} = a + b_1 \cdot A + b_2 \cdot A^2 + b_3 \cdot A^3$$

where A; catchment area (km^2)

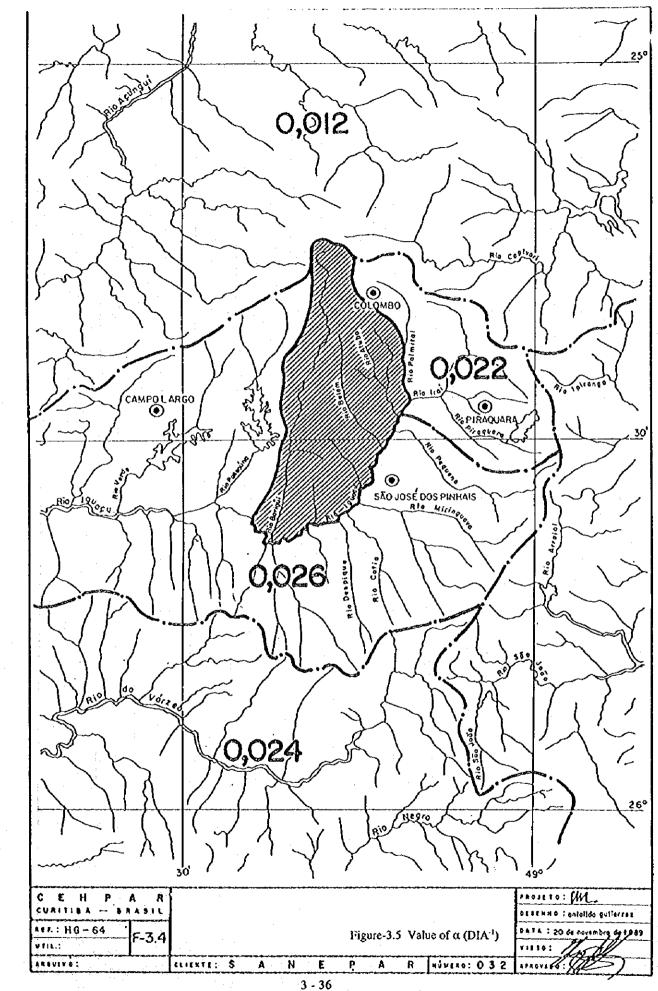

The coefficients (a, b_1, b_2, b_3) are shown in Table-3.21.

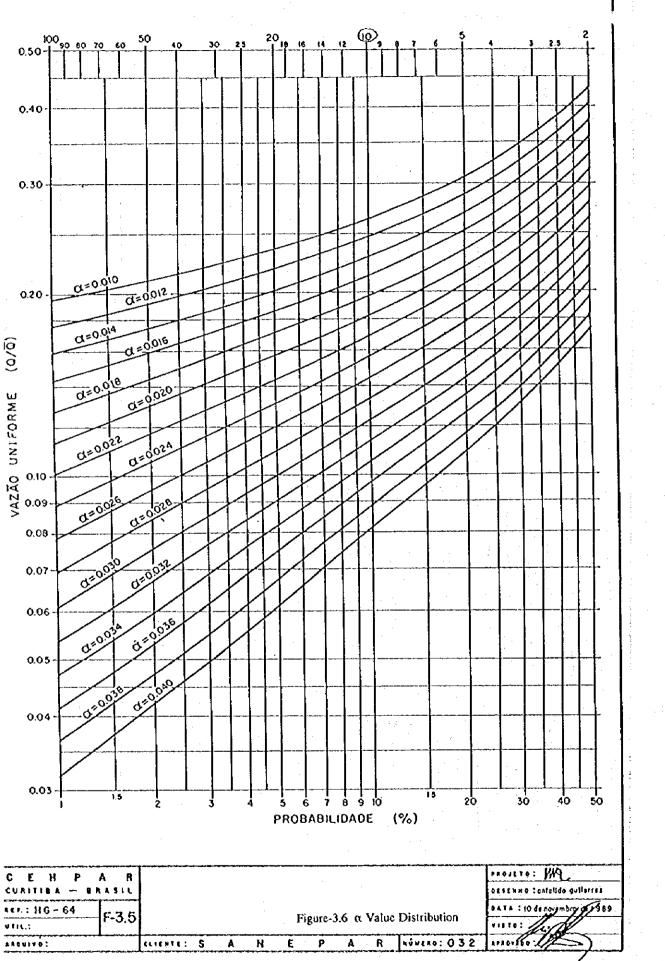
Basin	Coefficient							
	a	b _i	b, '	b,				
Iguaçu	1.27	1.83 x 10 ⁻³	4.46 x 10 ⁻⁸	-4.07 x 10 ⁻¹³				
Ivai	-9.61	5.10 x 10 ⁻³	-3.61 x 10 ⁻⁷	9.89 x 10 ⁻¹²				
Piquiri	-5.45	1.35 x 10 ⁻³	1.54 x 10 ⁻⁷					
Tibagi	6.42	3.83 x 10 ⁻³	-6.15 x 10 ⁻⁸					
Todas	1.18	2.08 x 10 ⁻³	4.76 x 10 ⁻⁷	-5.07 x 10 ⁻¹³				

Table-3.21 Coefficients of Equation for Q10.7

(4) Recommendation for the low water flow calculation method

There are several calculation method to obtain the low water flow in Paraná state. HG52 and HG64 are analyzed considering probability and continuous days and it is able to use at optional point. However, generally, the low water flow at main stream and at tributary are different due to difference of catchment area, time lag of flow and characteristic of basin, etc. For example, at the situation shown in following figure, the specific discharge of the low water flow at each point is different each other. According to HG52, each specific discharge is almost same.




According to the low water calculation method by COPEL for main stream, the condition mentioned above is not given. It seems that the method studied by COPEL is appropriate to calculate the low water flow at main stream.

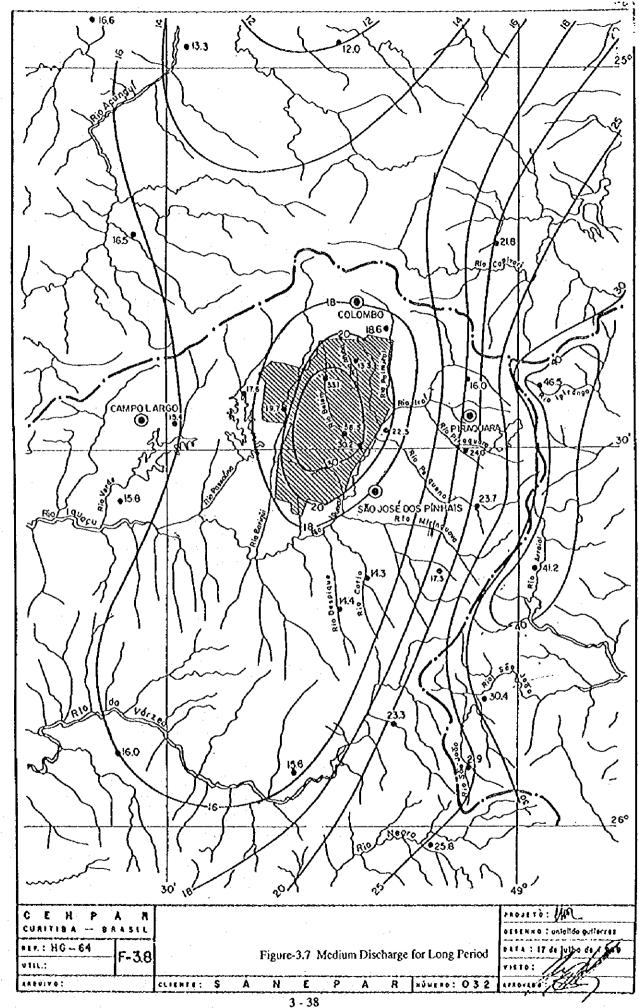
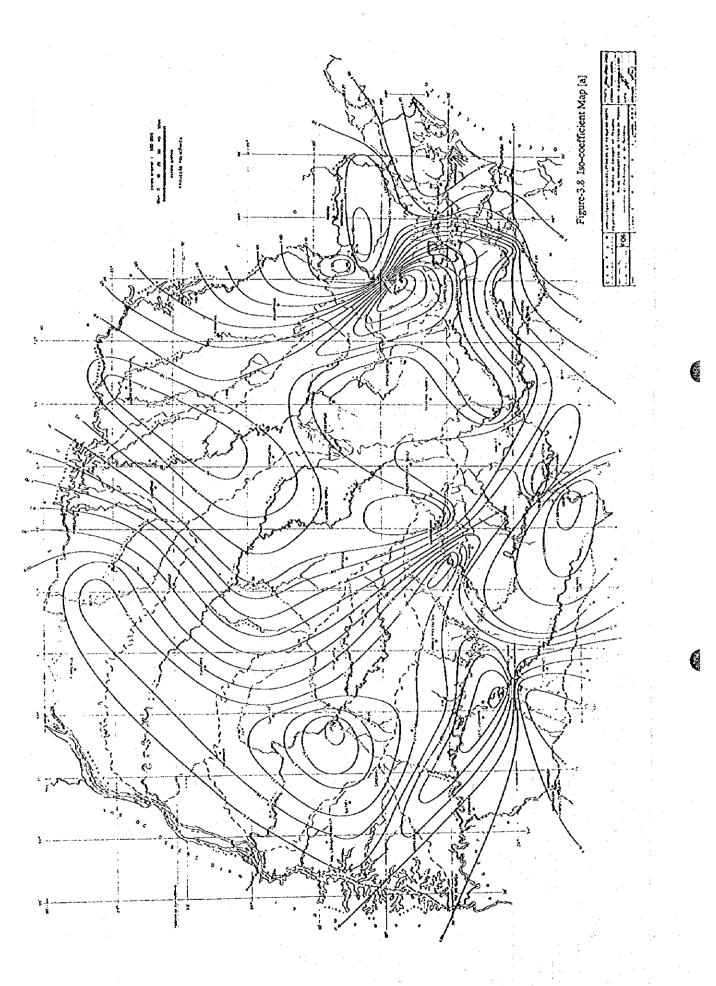
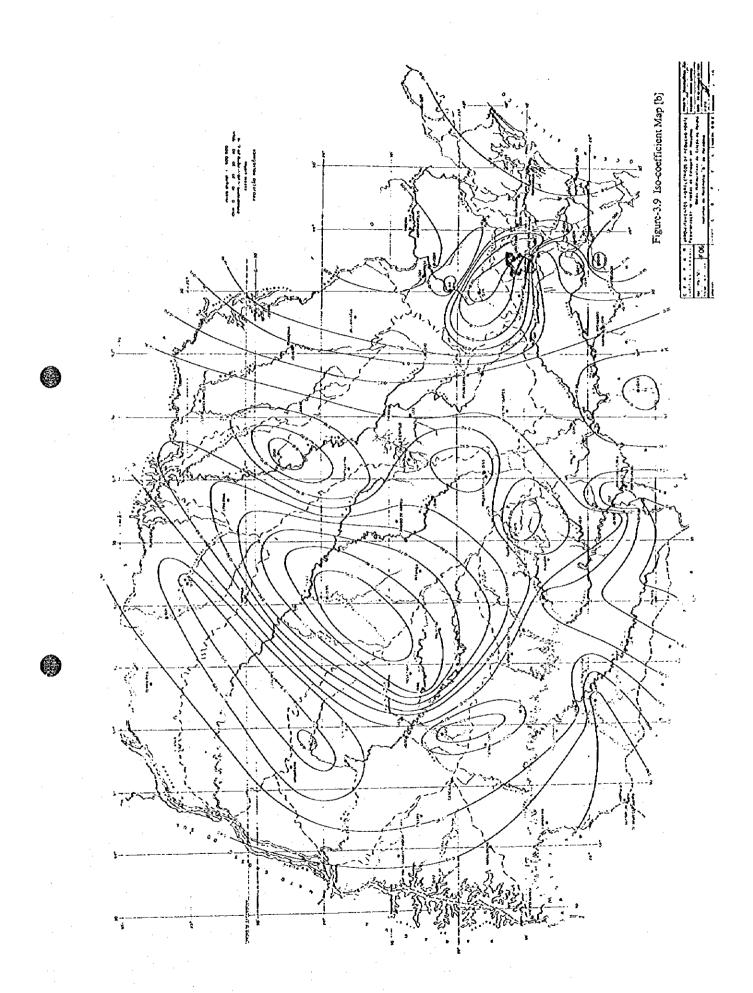
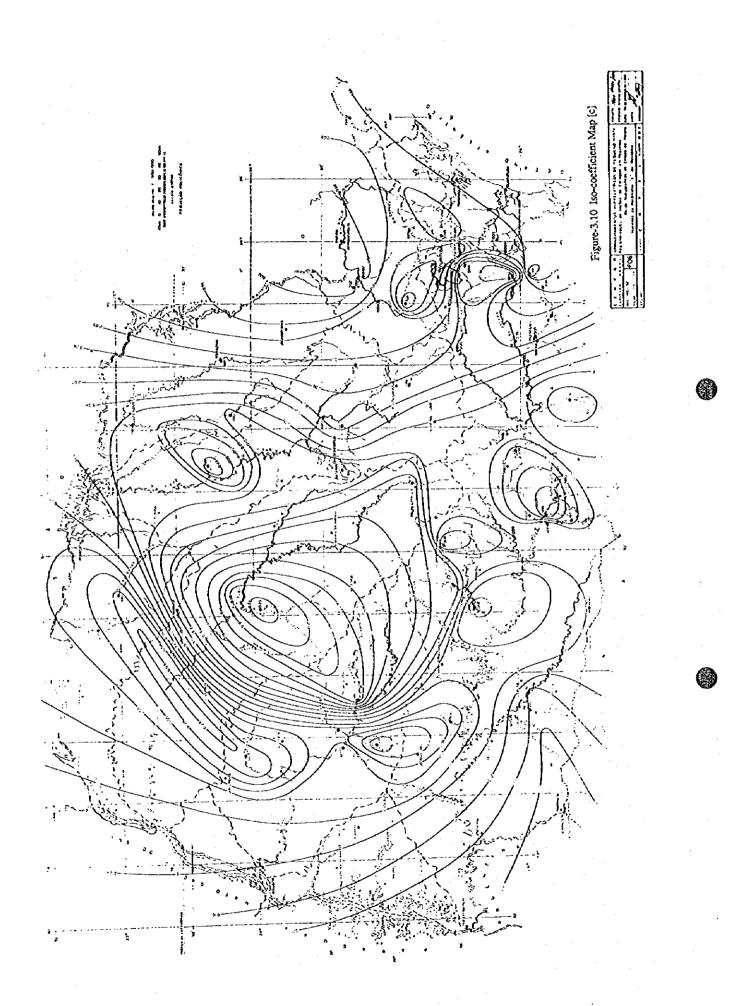

RIO	NOME DO POSTO	α (DIA ⁻¹)
Irai	Olaria do Estado	0,014
Iraí	Pinhais	0,022
Palmital	Vargem Grande	0,026
Atuba	Terminal Afonso Camargo	9,022
Iguaçu	Ponte BR-277	0,017
Pequeno	Fazendinha	0,026
Miringuava	Niringuava	0,034
Hiringuava	Campina do Taquaral	0,027
Miringuava	Cachoeira	0,027
Cotia	Ponte do Cotia	0,023
Despique	Serraria Baldan	0,023
Iguaçu	Araucária	0,033
Passaūna	Campina das Pedras	0,026
Verde	Rodeio	0,026
Iguaçu	Porto Amazonas	0,036
Negro	Bateias de Baixo	0,019
Negro	Fragosos	0,020
Negro	Rio Preto do Sul	0,029
Negro	Rio Negro	0,023
Várzea	Salto Baraçã	0,040
Várzea	Rio da Várzea dos Lima	0,029
Varzea	São Bento	0,024
Açungui	Passo do Açungui	0,013
Açungui	Balsa do Jacaré	0,012
Turvo	Turyo	0,012
Ribeira	Balsa do Cerro Azul	0,013
Ponta Grossa	Cerro Azul	0,011
Capivari	Praia Grande	0,012

Table-3.22 Value of α (DIA⁻¹)

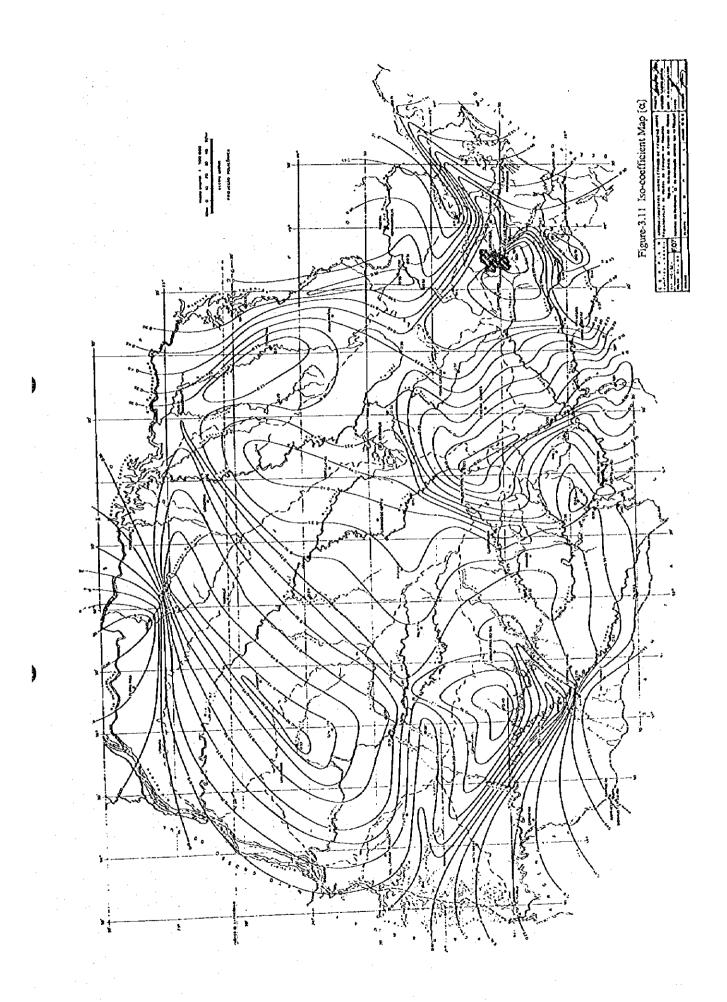
d t	3	7	10	15	20
0,010	1,015	1,036	1,052	1,079	1,107
0,015	1,023	1,054	1,079	1,121	1,166
0,020	1,031	-1,073	1,107	1,166	1,230
0,025	1,038	1,093	1,136	1,213	1,297
0,030	1,046	1,113	1,166	1,263	1,370
0,035	1,054	1,133	1,197	1,315	1,448
0,040	1,062	1,154	1,230	1,370	1,532

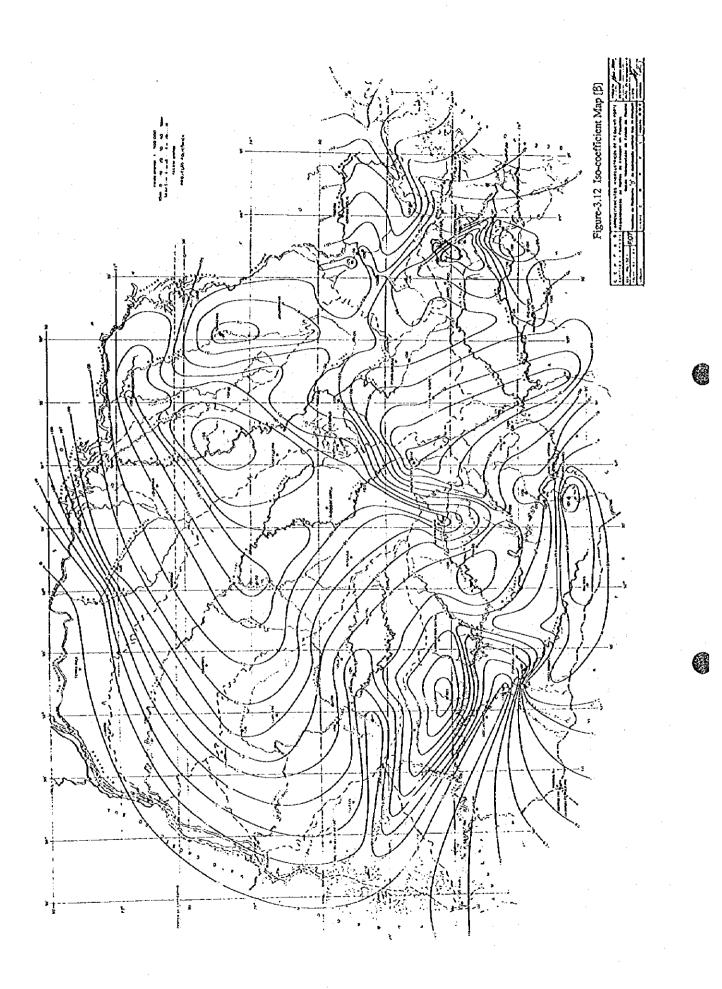


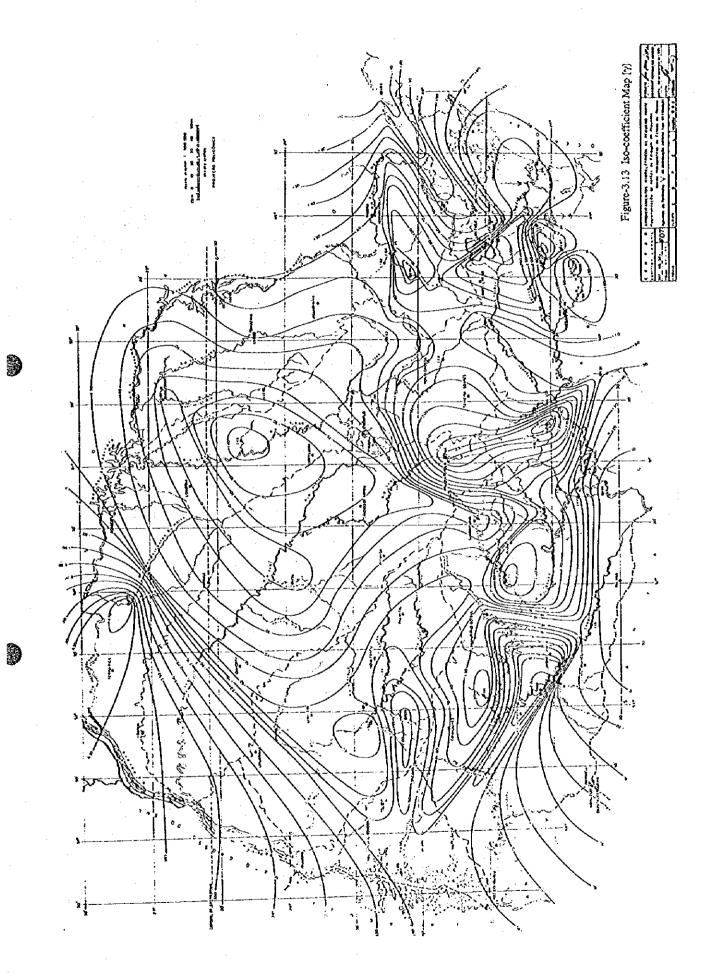




)


)





. ..

....

3.6 Groundwater Potential

3.6.1 Definition of Boundary of Area for Groundwater Study

(1) Iguaçu River Basin

The major municipal urban areas located in the Iguaçu river basin straddles over the boundary of other river basins. Therefore, the Iguaçu river basin for the study of the groundwater resources is composed of such areas as Iguaçu river basin, Karst basin on the right bank of Ribeira river, a part of the left bank of Piquiri river, and a part of Paraná III river basin including a part of the neighboring groundwater basins related to the major urban demand centers.

(2) Tibagi River Basin

The major municipal urban areas located in the Tibagi River Basins straddle over the boundary of other river basins. Therefore, the Tibagi river basins for the study of the groundwater resources is composed of such areas as Tibagi river, a part of the left bank of the Cinzas River, and upstream of Pirapo River including a part of the neighboring groundwater basins related to the major urban demand centers.

G

3.6.2 Assessment of Groundwater Potential in Iguaçu River Basin

(1) Iguaçu River Basin

The Iguaçu River Basin is composed of the following aquifers in order of older age:

Karst, Crystalline Rocks (including Granitic Rocks), Furnas Formation, Upper-Middle Paleozoic, Upper Paleozoic, Botucatu Formation, Serra Geral Formation north, Serra Geral Formation south, Guabirotuba Formation.

The specific mean discharge which is defined as the specific mean of the annual minimum of average discharge of continuous 7 days (mQ_7) is used for the key data for the assessment of groundwater potential in this study. The result of the assessment of aquifers in the Iguaçu River Basin is shown in Table-3.24. Assessment of Furnas Formation and Guabirotuba Formation are not able to be done by limitation of the data conditions.

(1)	[2]	[3]	[4]	[5]		[6]	[7]	[8]
Aquifer	Location in River Basin	Study Area	Spatial mQ7	Permis	Permissive Yield		Total Permissive Yield	Productivity of Borehole
·		km²	x 10 ⁻³ m ¹ /km²	%	x 10 ⁻³ m ³ /s/km ²	km²/s/m²	m ³ /s	x10 ⁻³ m ³ /s
Karsı	mainly Ribeira nad Upper Iguaçu	3,500	8.29	30	2,49	400	8.750	44.40
Cristalline Rocks	Upper Iguaçu	4,500	6.37	10	0.64	1600	2.880	5.56
Furnas Formation	Upper Iguaçu	350	•	15	-	-	· ·	11.10
Middle-Upper Paleozoic	Upper Iguaçu	3,900	4.69	10	0.47	2,100	1.830	2.78
Upper Paleozoic	Upper to Middle Iguaçu	3,100	4.90	10	0.49	2,000	1.520	2.78
Botucatu Formation	Middle to Lower Iguaçu	3,2000	-			-	-	124.00
Serra Geral Formation north	Lower Iguaçu	1,900	5.32	20	1.10	610	3.120	19.20
Serra Geral Formation south	Middle to Lower Iguaçu	32,000	5.26	15	0.79	1,300	11.900	3.33
Guabirotuba Formation	Upper Iguaçu	920	3.53	20	0.76	1,300	0.699	3.33

Table-3.24 Spatial Groundwater Potential of Iguaçu River Basin Estimated by Water Circulation in Iguaçu River Basin

Note [4]: Spatial and specific mQ,

[6]: Required Rechargeing Area by 1m³/s of groundwater yield

[7]: Total Permissive Yield of Aquifer in Study Area

The characteristics of each aquifer are described as follows:

1) Karst

Groundwater potential of Karst is evaluated to be high. The Karst area included in the Iguaçu River basin has a drainage area of about 3,500 km², and about 8.75m³/s can be developed within the permissible yield. This groundwater resource is appropriate for large scale development since its borehole productivity (borehole yield) is extremely large as 44 *Vs*/borehole.

The water quality of this aquifer is adequate for drinking water such as Mineral Water for Curitiba City, but not adequate for hydro-thermal and steam resources of industrial water resources because of its chemical characteristics.

2) Botucatu Formation

The permissible yield of Botucatu Formation can not be estimated in this study, and it is difficult to apply the concept of permissible yield to this formation at present. It's permissible yield can be technically estimated by use of the drawdown data of groundwater table, but the drawdown data are not available. The specific mean discharge also cannot be applied to this formation because of the nature of its geologic structure.

However, the amount of its groundwater is assessed to be very large based on its extraordinarily large borehole productivity (124 1/s; in average of 9 boreholes) and storage volume. It's storage volume is assessed to be more than 20 times larger than that of Karst and a little less than 10 times of that of Serra Geral Formation.

This aquifer forms layering, and its water temperature becomes 40-70 °C at the depth of deeper than 800 m. This groundwater resource, therefore, is assessed to have high potential

of industrial water use with appropriate control of pH and Na by mixing with other fresh water resources in consideration of confined water pressure, pH level and content of natrium.

3) Serra Geral Formation north

This aquifer is broadly distributed from near Cascavel to the north, but the study area within the Iguaçu River basin is limited to the area of $1,900 \text{ km}^2$ near Cascavel. Though the spatial permissive yield and mean productivity of borehole of this formation is less than a half of those of Karst, its potential is relatively large and is assessed to be an adequate groundwater resource for medium scale development.

The water quality of this aquifer is appropriate for both domestic and industrial water supply.

4) Serra Geral Formation south

The aquifer of Serra Geral Formation is broadly distributed with a basin area of 32,000 km² in the area middle reach to downstream of the Iguaçu River Basin. The groundwater resource of this aquifer is assessed to be appropriate for small to medium scale development based on its spatial permissive yield and productivity.

6

e

5) Guabirotuba Formation

This aquifer is distributed in Curitiba metropolitan area (CMA) with a basin area of 900 km², and its groundwater resource is widely used for the domestic and industrial water in CMA. Monitoring of groundwater of this formation is required with high maneuverability because it is distributed in the urban area. It will be required to measure promptly chemical contents in response to necessity not limiting to the standard observation items for drinking water because there is a possibility of contamination of groundwater.

The total permissive yield of the whole aquifer is estimated to be about 0.7 m³/s (average of CMA). Various kind of adverse effects on the use of wells will be expected in the central urban area of Curitiba city in the near future because present groundwater use for industries is estimated to be very high in this area.

6) Furnas Formation

The aquifer of Furnas Formation is assessed to be appropriate for small scale development based on its productivity of borehole.

7) Other Aquifers

Groundwater development of other aquifers not aforementioned is assessed to be infeasible except for the rural areas facing shortage or lack of other fresh water sources because of its low permissive yield and productivity.

(2) Tibagi River Basin

Tibagi River Basin is composed of Crystalline Rocks, Furnas Formation, Upper-Middle Paleozoic, Upper Paleozoic, Botsucatu Formation, Serra Geral Formation north.

The result of potential analysis is shown in Table-3.25 and is summarized as set out below.

1) Botucatu Formation

The aquifer of Botucatu Formation is exposed on the ground surface in a limited area, but it lies broadly under Serra Geral Formation in the northern part of the Tibagi River Basin.

The development potential of groundwater of this aquifer is assessed to be high as well as that in the Iguaçu River Basin. Its groundwater is used as hot water in a coffee production factories in Londrina, and is anticipated to be widely used in the future.

2) Serra Geral Formation north

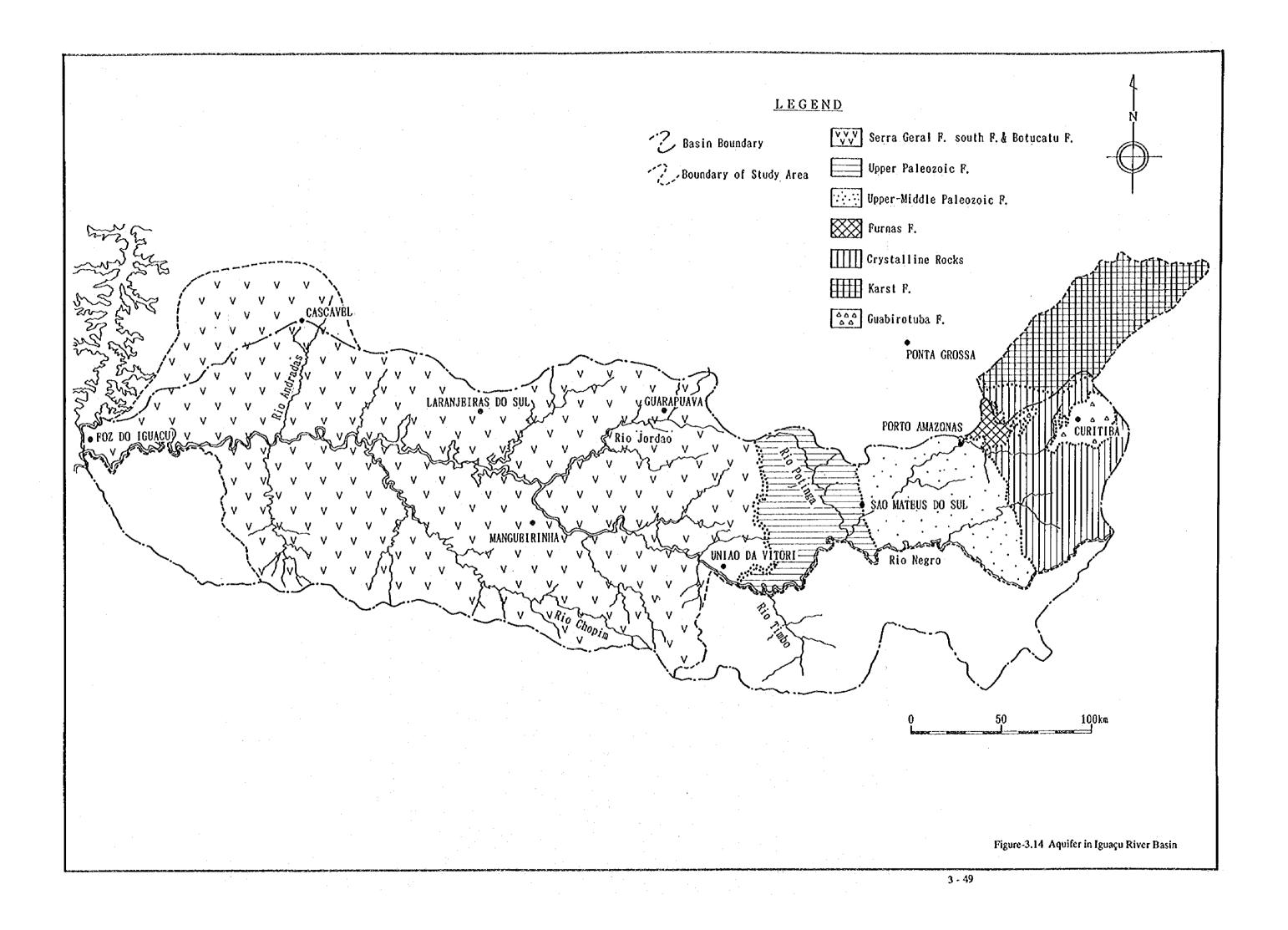
The aquifer of Serra Geral Formation north is distributed broadly in the north of the Tibagi River Basin. It's development potential of groundwater is assessed to be high and appropriate for medium to large scale because its permissive yield and productivity is higher than those of the Iguaçu River Basin.

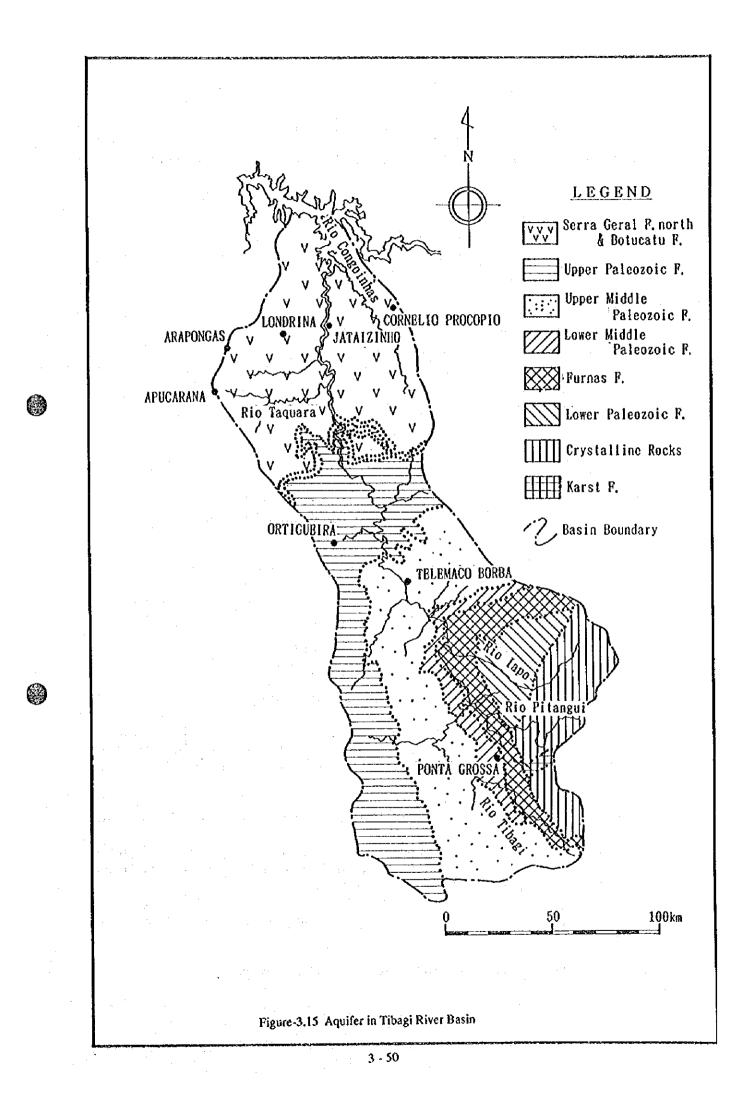
3) Furnas Formation

The aquifer of Furnas Formation is assessed to be appropriate for small scale groundwater development based on productivity of borehole as well as that in the Iguaçu River Basin.

4) Other Aquifers

Groundwater development of other aquifers not aforementioned is assessed to be unfeasible except for the rural areas facing shortage or lack of other fresh water sources because of its low permissive yield and productivity as well as those in the Iguaçu River Basin.


[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	(9]
Aquifer	Location in River Basin	Study Area	Spatial mQ7	Permiss	sive Yield	Require Recharge	Total Permissive Yield	Productivity of Borehole
		km²	m³/km² +1	%	x 10 ⁻³ m ³ /skm ²	km²/s/3	m ¹ /s	x 10°3m3/s
Cristalline Rocks	Upper Tibagi	7,500	6.00	10	0.64	1,600	4.8	5.56
Lower Paleozoic	Middle Tibagi	900	3.61	10	0.36	2,800	0.32	2.78
Furnas Formation	Middle to Upper Tibagi	3,500	<u> </u>	15	-	-	-	8.33
Lower-Middle Paleozoic	Middle to Upper Tibagi	2,500	6.37	10	0.64	1,600	1.6	2.78
Middle-Upper Paleozoic	Middle to Upper Tibagi	12,000	4.6	10	0.46	2,200	5.5	2.78
Upper Paleozoic	Upper to Middle Iguaçu	11,000	4.6	10	0.46	2,200	5.1	2.78
Botucatu Formation	Middle Tibagi and mainly L. Tibagi in underground	11,000	-	•			-	124
Serra Geral Formation north	Lower Tibagi	10,800	7.7	20	1.5	670	16.2	11.1


Table-3.25 Spatial Groundwater Potential of Tibagi River Basin Estimated by Water Circulation inTibagi River Basin

*1 same meaning as transitory Recharge of Groundwater

[4] - Spatial Specific mQ₂

[7] - Total Permissive Yield of Aquifer in Study Area

3.7 Water Development in Curitiba Metropolitan Area

The large urban areas included in Curitiba Metropolitan Area are as shown below:

- 1) Curitiba
- 2) Almirante Tamandare
- 3) Colombo
- 4) Piraquara
- 5) Sao Jose dos Pinhais
- 6) Araucaria
- 7) Campo Largo
- 8) Pinhais
- 9) Fazenda Rio Grande
- 10) Quatro Barras
- 11) Campina Grande do Sul
- 12) Balsa Nova
- 13) Contenda
- 14) Mandirituba

3.7.1 Water Requirement

Water requirement for urban area is mainly composed of urban domestic water and industrial water. Required water supply in Curitiba Metropolitan Area is shown in Table-3.26.

é

Ć

Case	Required Water		Year	
		1993	2005	2015
Base Case	Required Water Supply	8.190	11.401	15.425
	Water to be newly developed		3.211	7.235

Table-3.26 Required Water Supply in Curitiba Metropolitan Area (m³/s)

3.7.2 Process of Water Resources Development Study

As studied in the Section-6.1, there is no room for direct intake from river due to shortage of natural discharge in the upstream of Iguaçu river until confluence of Negro river. Therefore, development of new water resources has to depend on the combination of damreservoir and groundwater.

Process of water resources development in Curitiba Metropolitan Area was as shown below:

- (1) Water supply in Curitiba Metropolitan Areas was studied for surface water development by dams. Water development in proposed 10 dams, planned by SANEPAR around Curitiba at the upstream of Iguaçu river was studied.
- (2) Water supply in Curitiba Metropolitan Area was studied for groundwater development by wells.
- (3) The combination of dams and wells was optimized for the water supply.

3.7.3 Surface Water Development by Dam

The water development calculation was made based on the following conditions.

- a) Assuming the daily discharge at proposed dam sites are inflow to the reservoir, daily water balance in the reservoir is simulated for 20 years.
- b) Maintenance discharge from the reservoir and downstream of intake point is assumed to be 50% of $Q_{10,7}$ and the daily discharge is to be more than the maintenance discharge so that the catchment area in upstream of dam and the residual catchment area between dam and intake point are fully utilized for water development.
- c) i) When inflow is less than the sum of proposed development water and maintenance discharge, deference is supplied from reservoir water.
 - ii) When inflow is more than the sum of proposed development water and maintenance discharge, excess of inflow is recharged to the reservoir. If the reservoir is full at that time, excess water is discharge to the downstream of dam.
- d) Evaporation from reservoir is also counted by applying average monthly evaporation data for 20 years at Piraquara observation station.
- c) Scepage or infiltration from reservoir is neglected.
- f) Period of recovery is about 5 years.

The computation of storage capacity is given as the following procedure.

- a) Dam Inflow (Q dam)
- b) Discharge at intake point (Q intake)
- c) Development Volume (Q dev)
- d) Maintenance Discharge (Q maint)

Q maint, dam = $0.5 \times Q_{10.7}$ dam

Q maint, intake = $0.5 \times Q_{10.7}$ (intake)

e) Balance at Dam Site

 Q_{B} dam = Q dam – Q maint, dam

f) Balance at Intake Point

 $Q_{\rm B}$ intake = Q intake - Q maint, intake - Q dev

- g) Developed Water Development Volume (Q dev)
 5 alternative cases are employed.
- h) Evaporation (Qevp)

 $Q \exp = E_R x$ reservoir area

i) Required Replenishment Volume / Possible Recovery Volume (dQ), Outflow (Qout) and Required Storage Volume (Vres)

 $dQ = \min (Q_{B_1} \text{ dam}, Q_{B_2} \text{ intake})$

if dQ < 0 then dQ = 0

- j) Outflow from Dam (Qout) $Q \text{ out} \Rightarrow Q \text{ in } - dQ$
- k) Required Storage Volume (Vres)

```
V \text{ res, } t = V \text{ res, } t-1 - (dQ - Q \text{ evp}) \times 86.4
```

,where

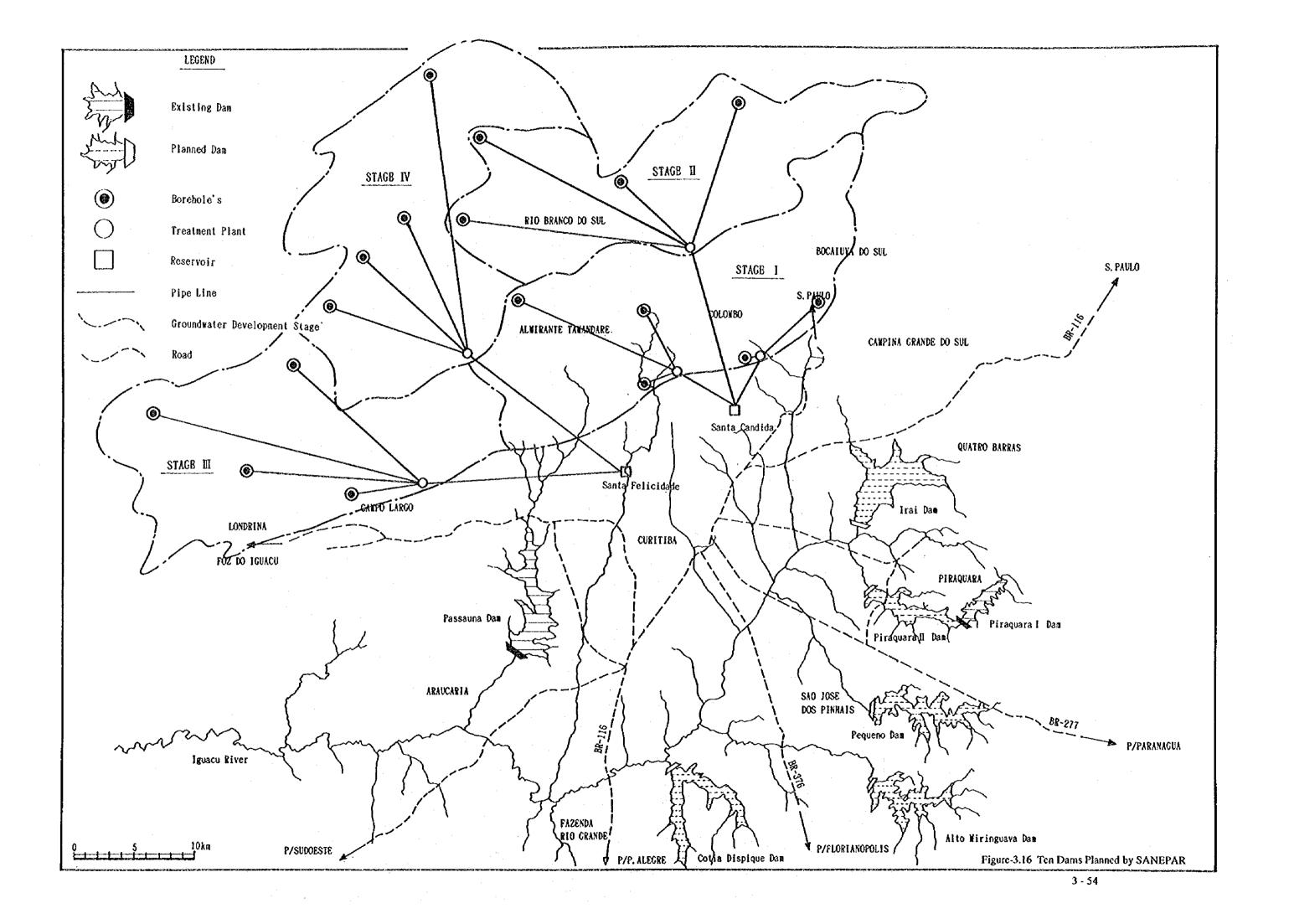
V res, t : storage volume at t day (10^3 x m^3)

V res, t-1 : storage volume the previous day (10^3 x m^3)

The proposed 10 dams planned by SANEPAR are shown in Table-3.27 and Figure-3.16.

	Dam Site				Intake Point					
Name of Dam (River)	Catch -ment Area	910,7 [m³/s/ 100km²1	Q _{10,7} 50% [m ³ /s]	Correc -tion Coeffi	Catch -ment Area	9 _{10,7} [m³/s/ 100km²]	Q _{10,7} 50% (m ³ /s]	Correc -tion Coeffi	Treat -ment Station	Supply Reser -yoir
	(km²)	lookin j	 Fur tol	-cient			(-Cient		
l Irai	112.6	0,355	0.200	0.781	226.6	0.408	0.460	1.807	ЕТА	
2 Piraquara 2	58.0	0.397	0.115	0.450					Irai	Cajura
3 pequeno	62.3	0.465	0.145	0.566	110.0	0.465	0.255	1.000	ETA Iguaçu	
4 Alto Miringuava	71.9	0.417	0.150	0.586	97.1	0.402	0,195	0.768	ETA BARRO PRETO	Xaxim
5 Cotia Despique	154.7	0.271	0.210	0.820	same as	dam site			ETA COCHOENE	
6 Alto Mauricio	36.0	0.277	0.050	0.195	·	ditto				
7 Das Oncas (Mandirituba)	29.0	0.276	0.04 0	0.156		ditto				Ceasa
8 Faxinal	63.3	0.269	0.085	0.333		ditto				
9 Das Onces (Coutenda)	75.6	0.265	0.100	0.392		ditto		1.000-4		Araucari
10 Piunduva	25.4	0.276	0.035	0.137		ditto				

Table-3.27 Proposed 10 dams planned by SANEPAR


[Note]: daily discharge at each dam site is calculated by multiplying daily discharge at Fazendinha station by correction coefficient.

1

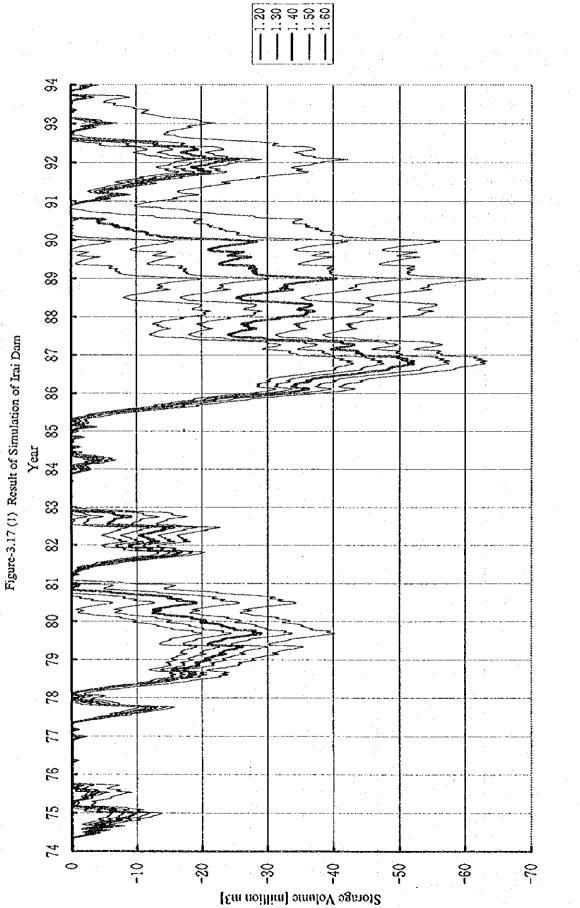
Correction Coefficient : $\alpha = C.A./110.0 \times q_{10.7}/0.465$

110,0 : C.A. of Fazendinha

q10, value was calculated by HG64

Several cases of proposed water development volume range from 0.10 m/sec to 1.40 m/sec were assumed at each proposed dam. Simulation of daily water balance in reservoir was carried out for 20 years. The result of simulation are shown in Table-3.28.

For example, judging from required recovery period of reservoir capacity, an appropriate water development volume by Pequeno dam (No.3) seems to be 0.8m³/sec.

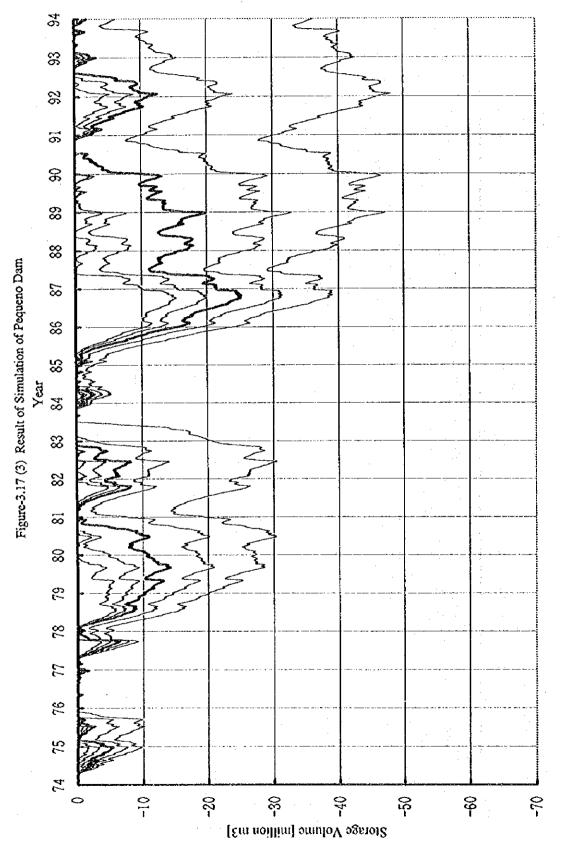

The water development volume by dams around Curitiba is as shown in Table-3.28.

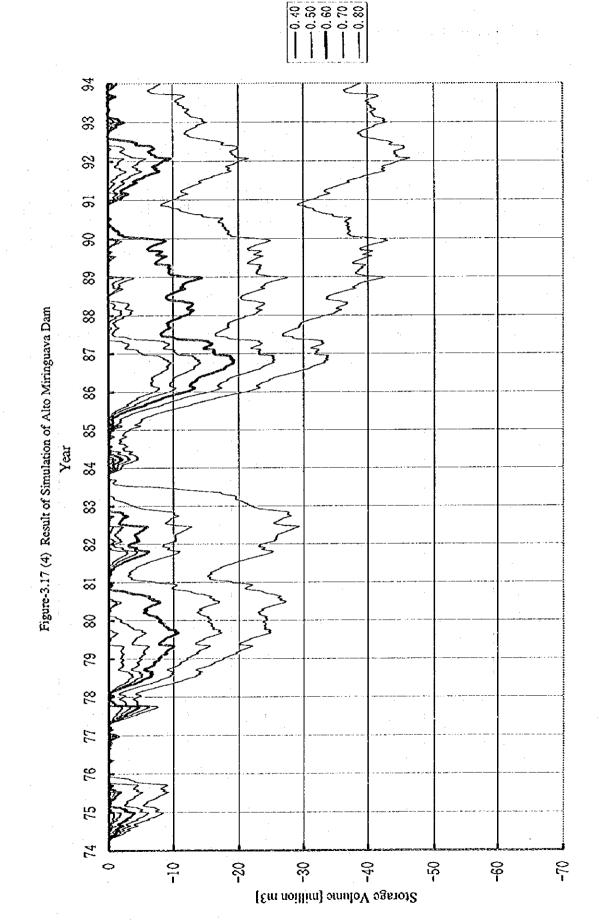
The results of simulation for dams which intakes are located in the downstream of the dam are shown in Figure-3.17 (1) \sim (4), while ones for dams which intakes are at dam site are same as the results in Chapter 2.

]	Name of Dam	Develop-ment Water (m ³ /sec)	Reservoir Capacity (x 10 ⁶ m ³)	Period of Recovery (Year)	
1	Irai	1.30 1.40 1.50 1.60	47.9 52.4 57.9 63.6	2.0 5.5 9.0	
2	Piraquara II	0,70 0,75 0,80 0,85	15.3 21.9 36.7 47.7	4.5 5.5 10.0	
3	Pequeno	0.60 0.70 1.22 0.80 0.90 1.00	15.5 20.1 25.4 33.0 48.2	2.0 4.0 5.5	
4	Alto Miringuava	0.40 0.50 0.60 0.70 0.80	5.2 14.4 19.4 27.6 46.4	2.0 3.0 5.5	
5	Cotia Despique	1.00 1.10 1.20 1.30 1.40	27.6 32.9 38.9 47.2	3.0 4.5 5.5	
6	Alto Mauricio	0.15 0.20 0.25 0.30 0.36	3.0 5.3 7.8 11.6	1.5 2.0 5.0	
,7	Das Onças (Mandirituba)	0.10 0.15 0.20 0.25 0.30	1.7 3.5 5.8 9.7	1.5 2.0 4.5	
8	Faxinal	0,30 0,40 0,50 0,60 0,70	5.2 9.8 14.9 25.0	1.5 2.0 5.5	
9	Das Onças (Contenda)	0.40 0.50 0.60 0.70 0.80	7.2 11.8 16.8 25.3	2.0 2.5 5.0	
10	Piunduva	0.10 0.15 0.20 0.25 0.30	1.8 4.0	1.5 2.0 5.5	
Total		6.50	210.0		

Table-3.28 DevelopedWater and Required Reservoir Capacity by Planned Dam

[Note] "-": It means that capacity is not recovery.


94 ន 27 33 6 8 58 88 Figure-3.17 (2) Result of Simulation of Piraquara II Dam 87 86 85 Year 84 8 82 8 ን 8 50 2% 5 76 ß 7 -90 -40 -50 -70 01--20 -30 \circ Storage Volume [million ms]


0

0

- 0. 70 - 0. 85 - 0. 85 - 0. 85

0.60

0

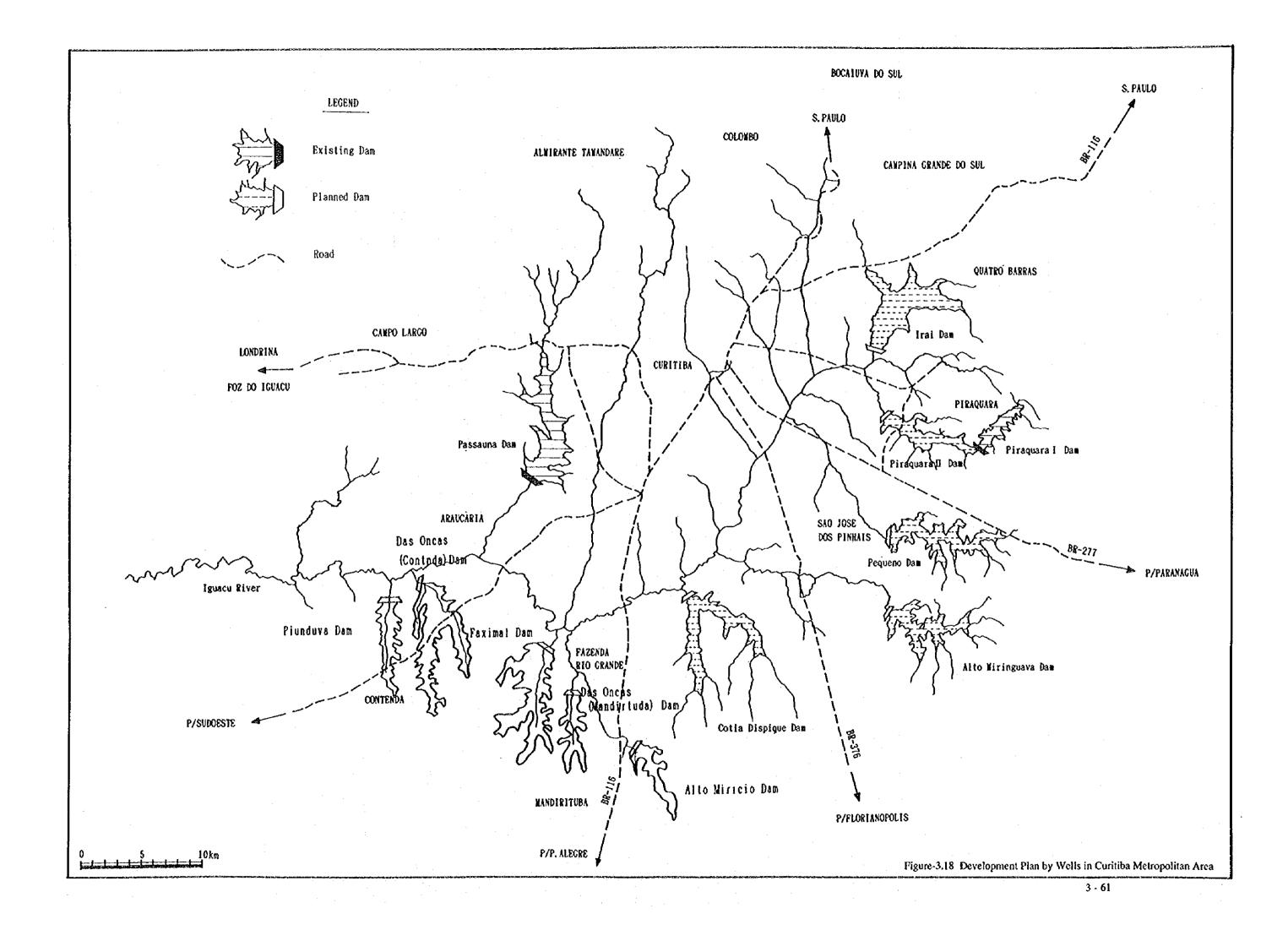
3.7.4 Groundwater Development by Wells

The aquifers in and around the Curitiba Metropolitan Area are Crystalline Rock, Guabirotuba Formation and Karst. The aquifer being targeted for groundwater development is the Karst aquifer, which is the most productive of the three.

The Karst aquifer is located some 10 to 50 km to the north of Curitiba, its influence area is $400 \text{ km}^2/\text{m}^3/\text{s}$ and its permissive yield per well is 0.044 m³/s/well.

The survey for the groundwater development of the Karst aquifer was carried out over four stages using the development of approximately 1 m^3/s as one unit. The four stages have been numbered 1 to 4 in order starting from the easiest one to develop. Table-3.29 and Figure-3.18 provide production data and indicate the locations of the wells in the aquifer respectively.

No.	Number of Productive Boreheles	Productivity (m³/s)	Stage	Number of Productive Boreheles	Productivity (m³/s)	Influence Area (km²)
1	9	0.40				
2	5	0.20				
3	5	0.20	1	29	1.20	480
4	3	0.10				
5	7	0.30				
6	6	0.25				
7	6	0.25	. 2	24	1.00	400
8	6	0.25	1			
9	6	0.25			· · · · · · · · · · · · · · · · · · ·	
10	6	0.25				
11	6	0.25	3	24	1,00	400
12	6	0.25			· · ·	
13	6	0.25			- 1.6 (- 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1.	
14	6	0.25				
15	6	0.25	4	24	1.00	400
16	6	0.25				
17	6	0.25				······································
Total				101	4.20	1680


Table-3.29 Productivity of Karst aquifer

6

6

[Note] borehile depth is 60 m permissive yield is 0.044m³/s

infruence area is 400 km²/m³/s

3.7.5 Optimization of the Water Supply System

As was mentioned earlier, whereas the required water supply in the Curitiba Metropolitan Area is 7.235 m^3 /s, the maximum available amount that can be developed from the ten dams is just 6.50 m^3 /s, meaning that it will be difficult to meet the demand through surface water alone. Moreover, as the amounts of water developed from the groundwater of the Karst aquifer increase, the feeding of water over long distances will lead to an increase in the unit water costs (rates) of development. For these reasons, it is necessary to ensure the water supply in the Curitiba Metropolitan Area through a combination of both surface water development by dams and groundwater development by Karst aquifer.

The features of surface water development by dam in contrast to groundwater development are as described below in Table-3.30.

Item	Surface Water Development by Dam	Groundwater Development
 Table water intake (certainty of available water) 	As the development plan has been formulated based on the results of statistically processing materials relating to water, which have been collected over a long period, and performing simulations using actual daily flow rates, the degree of certainty regarding the design water intake is high.	The monitoring of groundwater has been implemented in recent times, however, compared to the data on surface water, that relating to groundwater is lacking in terms of the length of period and size of area. Moreover, it cannot be said that a full understanding has been gained of the potentially available groundwater quantities and of the effects of development on surrounding ground and surface water quantities. It is therefore less certain that the design water intake can be secured, compared to the case of surface water development.
Water quality	In order to preserve the quality of the water in the dam reservoirs, development and improvement of the sewerage systems in upstream towns and the taking of measures to counter eutrophication in the reservoirs will be necessary.	As the Karst aquifer contains hard water, careful thought will need to be given to its specific uses in the case where it is used as industrial water.
③ Construction period	As large-scale works will be necessary, the construction period will be relatively long.	The boring of wells will not take such a long time, however, the laying of pipe lines will be slightly more time consuming than the construction of dams.
Tenvironmental impact	As reservoirs will be constructed artificially, it will be necessary to formulate a detailed plan upon first understanding the effects on ecological systems, the surrounding residents and water quality, etc.	Little direct effect on the surface environment can be expected, however, planning will have to take into consideration ground subsidence and the effects on other wells. As groundwater also acts as a source of surface water, it will also be necessary to amply consider the effects the development will have on the flows of downstream rivers.
Development cost	conditions of the dam sites and the fl groundwater development, cost will v development sites and supply areas, a	cost will vary depending on the topographical ow conditions of the rivers. Similarly, in the case of vary depending on the distances between the and also on the topographical conditions in the cult to make sweeping statements about which form

Table-3.30 Comparison of Surface Water Development by Dam and Groundwater Development

Regarding the optimal combination of surface water development by dams and groundwater development in order to fulfill the water requirement of Curitiba Metropolitan Area, setting will be done upon conducting the following examinations based on the characteristics described in Table-3.30.

- (1) Development costs will be calculated for each stage of both the dam development and the groundwater development, and the cheapest combination in the case where both are combined will be adopted.
- (2) The order of priority of the development will be decided in consideration of the required construction periods and the exploitable water quantities, etc.

The costs involved in the development of each dam and wells in each stage are as indicated in Table-3.31. The relationship between development costs when dam development and groundwater development are combined in order to develop the required water supply of 7.235 m^3 /s is as shown in Figure-3.19.

Water	Supply Reservoir	Name of Dam	Develpment	Cost	Unit Cost
Source	Well Field Zone	Number of Wells	Volume (m ³ /s)	(10 ⁶ US \$)	(10 ⁶ US\$/m³/s)
		Irai	1.400	49.3	49.3
	Cajura	Piraquara 2	0.750	22.0	22.0
		Pequeno	0.800	28.6	35.8
i	Xaxim	Alto Miringuava	0.600	35.3	58.8
		Cotia Despique	1.200	43.8	36.5
Surface Water	Ceasa	Alto Mauricio	0.250	20.0	80.0
		Das Oncas (Mandirituba)	0.200	25.4	127.0
		Faxinal	0,500	25.5	51.0
	Araucaria	Dos Oncas (Contenda)	0.600	23.1	38.5
		Piunoluva	0.200	17.4	87.0
Groundwater	Stage 1	29	1.290	40.3	31.2
	Stage 2	24	1.066	51.3	48.1
	Stage 3	24	1.066	\$3.7	50.4
	Stage 4	24	1.066	54.9	51.5

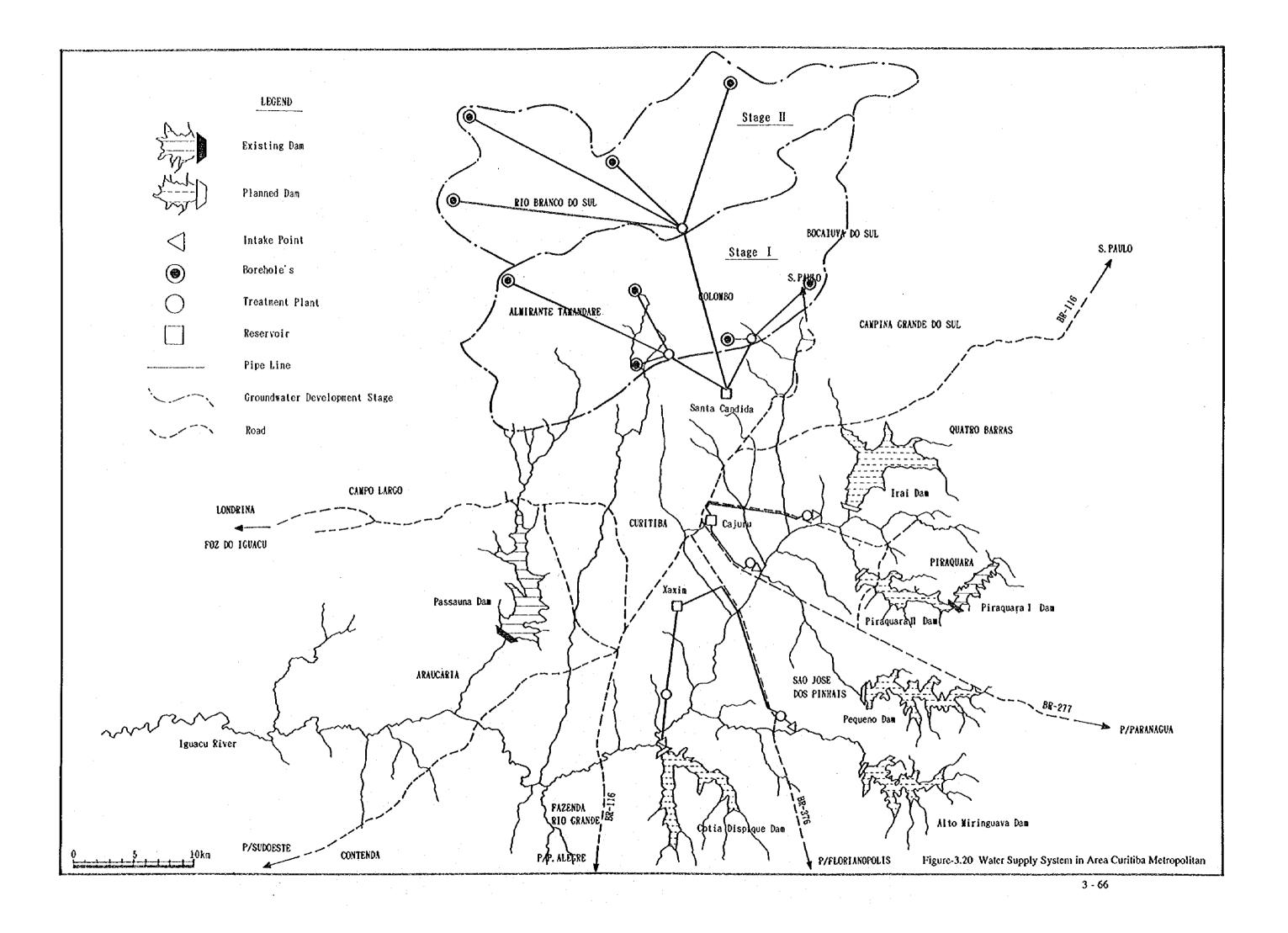
Table-3.31 Development Cost

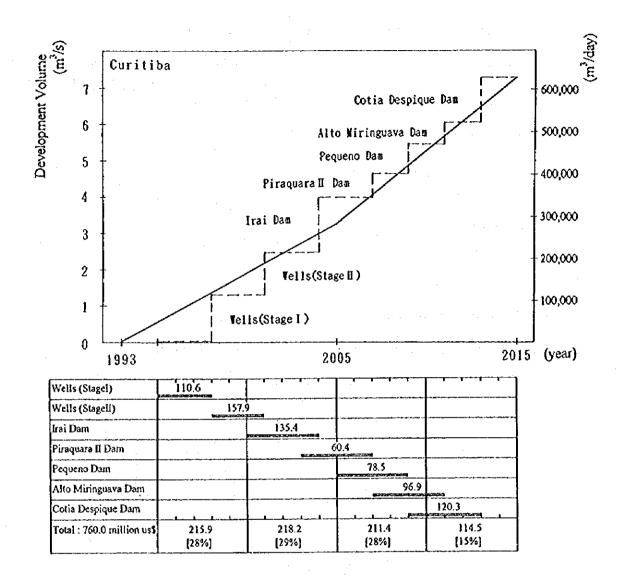
	(\$\$N*																																
*	Cost (10°*US\$)					* : :																					-						
	i mated		 		-	 								n b i	na) n	i		ve	• •	pme	:nt	Ŷ	511	⊡ C		Cos		 Cบ	rvc		
	3(0_	i						••••												· · ·		• •	•		7		;					
								· · · · ·			• • • •		-					, ,	71	\sim									5			• • •	· · ·
		 									• •		:									• • • • • • • • • • • • • • • • • • •		•	 	0							:: <u>}</u>
													- · · ·	1							 	No.	2 (5)	¢		-				•			asc_Cas
32 32														0 						110	e e		Ţ	 						 	-		23.#/SCB
	••												-					0	× ×									· · · · ·					evelopment Volume 1.23#/SCBase Case)
				· · ·			•								, co	20	/					1104	3.0				••••	• • • •					a¢nt_Vo
			•	· · · · · · · · · · · · · · · · · · ·								ક્રે	ری 			/			· · ·					20	10.0			 					Develop
41.								 				ø							· · · · ·					· • • •		×e)		5,25		•			
				· · · · · · · · · · · · · · · · · · ·					o							······································				••••••••••••••••••••••••••••••••••••••		•••• ••						ante ante	ેંદ્		C.	 	
			0	· · · · · ·			1					I							 			· · · · ·					:						
						· · · · ·	1. :			 	2.	0			3.				4	0				· · .	τſ	ce	6. _D	C V C	10	pm	7. en t	U V	olu
					0	 		6.	U				0_			_4. :	0			3.	:	<u> </u>		_2. nd	0_ va	ter	Ð	eve	.0. -1o	рю	en	(Y	olu
	· · · ·							· · ·	. 	Fig			19	 :	atio	n ba	elwe	en	Dev	relo		ent '	Vol		an	d C	ost		· · · ·	· : · · · ·	· · · · ·		
	•																								i i i				· · · · · · · · · · · · · · · · · · ·		 - : :		
	· .														3.	64																	

Based on Table-3.31 and Figure-3.19, the optimum use of dams and groundwater in terms of development cost is shown in Table-3.32. The water supply system in Curitiba metropolitan area is shown in Figure-3.20.

Name of Water Resource	Constructions	Development Volume (m ³ /s)	Cost (10 ⁴ US\$)
Irai Dam	dam, pipeline (Ø 1,200 x 15,000 m)	1,400	49.3
Piraquara II Dam	dam, pipeline (do.)	0.750	22.0
Pequeno Dam	dam, pipelia (Ø 800 x 8,000 m)	0.800	28.6
Alto Miringuava Dam	dam, pipeline (Ø 900 x 23,500 m)	0.600	35.3
Cotio Despique	dam, pipeline (Ø 900 x 17,000 m)	1.200	43.8
wells (stage 1)	29 wells, pipeline	1.290	40.3
wells (stage 2)	27 wells, pipeline	1.195	57.5
Total		7.235	276.8

Table-3.22 Optimization Water Supply


3.7.6 Implementation Schedule of Water Development


The development schedule in the case of the combination of dam development and groundwater development shown in Table-3.32 is as illustrated below.

Œ

6

Dam construction will take a relatively long time until completion, however, once completed it will be possible to obtain large amounts of water. The development of groundwater will take less time compared to dam. As 5 dams will be constructed over 20 years, one dam will be built every 4 years. Groundwater development will be implemented in the period during dam construction in order to supplement the water supply. Figure-3.21 gives a detailed representation of the implementation schedule of the development.

0

Figure-3.21 Implementation Schedule of Critiba Metropolitan Area

3.8 Water Development in Large Urban Areas (Type-A)

The urban areas were defined that their population will be more than approximately 100,000 in 2015. The following urban areas belong to Type-A as large urban areas in Iguaçu river basin except for Curitiba Metropolitan Area and in Tibagi river basin.

(1) Iguaçu river basin

- Cascavel

- Foz do Iguaçu
- Guarapuava

(2) Tibagi river basin

- Ponta Grossa
- Londrina
- -- Apucarana

3.8.1 Water Requirement

Required water supply in large urban areas was shown in Table-3.33.

River Basin	Municipality	Y	ear
		2005	2015
and the second	Cascavel	0.268	0.542
Iguaçe	Foz do Iguaçu	0.504	1.043
	Guarapuava	0.127	0.292
	Ponta Grossa	0.205	0,433
Tibagi	Londrina and Cambe	0.549	1.223
-	Apucarana	0.114	0.232

Table-3.33 Required Water Supply in Large Urban Areas (m³/s)

[Note] Water requirement for urban area is mainly composed of urban domestic water and industrial water.

3.8.2 Process of Water Resources Development Study

The process of water resources development in large urban areas is as shown below.

- (1) In cities where main rivers are nearby and direct intake is easy, water supply shall be secured through surface water development.
- (2) In cases where development by means of direct intake is difficult, careful consideration shall be given to the case of development to the development capacity and the development cost, etc. for both surface water and groundwater.
- (3) Regarding the development of surface water, more detailed examination shall be made on the promising alternatives stated in the Strategy (Main Report I) upon consideration of the local survey results and the state of existing facilities.
- (4) Examination shall be given to the case where the whole water supply is provided by groundwater development.

(5) Based upon the examination results of (3) and (4), the optimal development plan shall be formulated upon first giving careful consideration to the conditions stated in (2).

3.8.3 Water Resources Development Policies

Based upon consideration of the topographical conditions in Type-A cities and the surface water and groundwater conditions in the target areas, the water resources development policies as shown in Table-3.34 were decided upon.

City	Topographical	State of Water Reso	ources	Water Resource
	Condition	Surface Water	Groundwater	Development
Cascavel	Cascavel is situated in the mountains within the basins of the Iguaçu, Piquiri and Paraná3.	As the water resources are the rivers that flow down from the mountains, the water intake points must be placed downstream in order to expand their catchment area, meaning that the pipe lines will become very long. As the catchment area is small, the construction of a dam will be necessary.	The town is surrounded by the Serra Geral Formation north aquifer and below that the Botucatu Formation aquifer, and the productivity levels in both of these are high.	As the city has a large water requirement and the development of surface water is not easy, the development plan shall be formulated upon first examining the potential of both surface water development and groundwater development.
Foz de Iquacu	This city is situated at the mouth of the Iguaçu river next to the reservoir of the Itaipu Dam.	The city currently obtains its water from the Itaipu Dam reservoir. The city currently obtains its water from the reservoir of Itaipu Dam. Compared to the water quantity of Parama river, the necessary water requirement is very small.	Same as above (however, change north to south)	Development will involve improving the intake facilities from Itaipu Dam andthe pipe line facilities for taking water from Paraná river.
Guaraperava	This city is situated in the upper reaches of the Jardao river, which is a right bank tributary of the Iguaçu river. It is situated 20-30 km from the mountain tops.	A river with a catchment area of 700 km ³ runs nearby the city and direct intake development is feasible.	The Serra Geral Formation south aquifer is located around the town, however, the productivity of the existing wells is low.	In view of the fact that direct intake development is easy and the groundwater productivity is low, the development will be performed on the surface water resources.

Table-3.34 (1) Water Resources Development Policies for Large Urban Areas (Iguaçu River Basin)

City	Topographical	State of Water Re	sources	Water Resources
	Conditions	Surface Water	Groundwater	Development Policies
Ponta Grossa	situated in the ridge area of the basin boundaries of	If development that utilizes the tributaries is carried out, the small catchment areas mean that a dam will have to be built in order to store water. If the Tibagi river mainstream is utilized, direct intake development will be feasible.	existing wells is low	As the direct intake development of surface water is feasible and the surrounding aquifer is not suited to groundwater development, developmen will be carried out to exploit the surface water resources.
Londrina	Londrina is situated in the midstream to upstream area of a tributary of the Tibagi river.	If development that utilizes the tributaries is carried out, the large demand for water means that dams will have to be built in order to store water. Even if two dams are built, however, it will still not be possible to obtain the required amount of water. Although a pipe line in excess of 10 km would be required, it would be possible to achieve the direct intake development of the mainstream waters of Tibagi river.	The Serra Geral Formation north aquifer and below that the Botucatu Formation aquifer are located around the town, and the productivity levels in each are high.	As both surface water development and groundwater development are feasible, the development plan shall be formulated upon examinin both possibilities.
Αρυςαταπά	Apucarana is situated in the mountains and within the three river basins of the Tibagi, Pirapo and Ivai.	As the ratio of surface water that can be developed is low (50% q $_{10,7}$ or less) compared to the unit catchment area in this district, it would not be possible to supply the whole water demand through surface water development alone, even if direct intake from nearby rivers and dam construction was carried out.	Same as above	As the city is located in a region where surface water development is difficult and where suitable aquifers are situated, a water supply plan of groundwater development will be formulated.

Table-3.34 (2) Water Resources Development Policies for Large Urban Areas (Tibagi River Basin)

3.8.4 Water Supply System in Large Urban Areas

6

The water supply system proposed for each municipality was examined and the result is shown in Table-3.35.

Table-3.35 (1) Proposed Water Supply System in Iguaçu River Basin (Type-A)

Item		Name	Location	Possibility of Development	Catchment Area	Q10, 7	То	Total Project cost)st
				m1/s	kni	m/s/100km	10°us S	10°us \$/m/s	
Cascavel	s-C	Rio Sao Jose	Cascavei	0.300	145.0	0.420	14.18	47.3	0
0. 542 m [*] /s		Stage1(B.F. x1, S.G.F. nx5)	Cascavel	0.220			17.74	80.6	0
	-0-0	Stage2(S. G. F. nx4)	Cascavel	0. 080	-		6. 97	87.1	0
	Ú A	Antos	Cascavel	0.690	68.9	0.369	42.0	60.9	
Foz do Iguacu	S-FI.	Itaipu Reservoir	Foz do Iguacu	1. 042		0. 299	11.12	10.7	0
1.043 <i>m</i> /s									
Guarapuava	ч S-С	Rio Bananas	Guarapuava	0. 292	704. 0	0.180	9.12	31.2	0
0. 292 m²/s	6-0'	Stage1(S. G. F. sx7)	Guarapuava	0. 040			7.33	183.3	
	د-و ^ت	Stage2(S. G. F. sx7)	Guarapuava	0. 040			7.33	183.3	
	с-С.	Stage3(S. G. F. sx7, B. F. x1)	Guarapuava	0.124			17.74	143.1	
[Note] O is the r	ecommen Bottort	O is the recommended water supply system.			· .		-		

O is the recommended water supply system. B.F. means Boucatu. Formation aquifer. S.G.F. n means Serra Geral Formation north aquifer. S.G.F. s means Serra Geral Formation south aquifer. É

Table-3.35 (2) Proposed Water Supply System in Tibagi River Basin (Type-A)

0

Item		Name	Location	Possibility of	Catchment Area	Q10. 7	Tot	Total Project cost	st
				Development					
				m³/s	koľ	m [*] /s/100km ⁸	10°us \$	10°us S / m/s	
Londrina	'1-S	Rio Tibagi	Londrina	1. 223	21, 955, 0	0.088	46.51	38.0	0
Cambe	1-1-5 C-F	Stage1(S. G. F. nx6, B. F. x1)	Londrina	0. 223			14.33	64.3	
1.223m ³ /s	6-L3	Stage2(S.G.F.nx6, B.F.x1)	Londrina	0. 223			16.15	72.4	
	G-L.	Stage3(S. G. F. n×6, B. F. ×1)	Londrina	0.223			16.65	74.7	
Ponta Grossa	'd-S	Rio Tibagi	Ponta Grossa	0.433	1, 520, 0	0.221	13.47	31.1	0
0.433 <i>m</i> /s									
Apucarana	'Y-S	Ribeirao do Cerne	Apucarana	0.041	20.9	0. 056	- 9. 83	239.8	
0.232m/s	s-A2	Ribeirao do Cerne	Apucarana	0.009	15.6	0. 056	7.65	850.0	
	6-A.	Stagel(S.G.F.nX4)	Apucarana	0.132			7.65	58.0	0
	G-A2	Stage2(S. G. F. nx4)	Apucarana	0.132		-	7, 27	55. 1	0
[Note] O is the r	ecommen	O is the recommended water supply system.							

O is the recommended water supply system. B.F. means Botucatu Formation aquifer. S.G.F. n means Serra Geral Formation north aquifer.

The water supply systems that should be promoted in large urban areas are as shown in Table-3.36 below.

River Basin	City	Water Supply System	Constructions	Catchment Area or Well Number	Development Volume (m ³ /s)	Cost (10 ⁴ US\$)
	1	direct intake from Sao Jose river	pumps, pipeline (Ø 300 x 13,000 m x 2)	145.0km²	0.300	14.2
Iguaçu	Cascavel	wells (Serra Geral F. aquifer	wells, pipeline (Ø 400 x 11,000 m)	9 boreholes	0.180	
		and (Botucatu F. aquifer)	wells, pipeline (Ø 300 x 8,000 m)	1 boreholes	0.120	24.7
	Foz do Iguaçu	direct intake from Paraná siver	pumps, pipeline (Ø 500 x 1,900 m x 3)		1.043	11.1
	Guarapuava	direct intake from Bananas river	pumps, pipeline (Ø 300 x 4,800 m x 2)	704.0km²	0.292	9.1
	Ponta Grossa	direct intake from Tibagi river	pumps, pipeline (Ø 400 x 6,000 m x 2)	1520km²	0.433	13.5
	Londrina	direct intake from Tibagi river	pumps, pipetine (Ø 500 x 13,400 m x 3)	21955km²	1.223	46.5
Tibagi	and	(Alternative) wells (Serra Geral F.aquifer)	wells pipeline (Ø 400 x 5,000 m, Ø 400 x 7,500 m)	30 bereholes	(0.494*)	(47.1)
	Cambe	and (Botucatu aquifer)		4 bereholes	(0.496*)	
	Apucarana	wells{Serra Geral F. aquifer)	wells, pipeline (Ø 300 x 9,000 m, Ø 300 x 8,000 m)	8 bereholes	0.260	14.9

6

6

Table-3.36 Water Supply System Recommended in Large Urban Area

Note: * is development volume for only Londrina

The intake points and pipe lines for each city are as illustrated in Figure-3.22 - Figure-3.27.

3.8.5 Implementation Schedule of Water Development

The implementation schedules for each city are as shown in Figure-3.28 and Figure-3.29.

Since the water demands of all municipalities are expected to exceed the current water supply soon, the water development is necessary to be implemented as early as possible. In the case that the development is composed of several phases, the investment can be split. On the other hand, in the case that the volume of the water development is small, the construction has to be implemented at once. The water development is assumed to be implemented with the following manner.

- 1) If the water development consists of surface water and groundwater, the development will be split in several phases.
- 2) The minimum diameter of pipeline is assumed to be \emptyset 200. The number of pipe lines depends on the volume of water to be developed.

volume of water to be developed $< 0.2 \text{ m}^3$ /sec one pipe line

volume of water to be developed $\ge 0.2 \text{m}^3/\text{sec} \ 2 \text{ or } 3 \text{ pipe lines}$

Construction is composed of several phases.

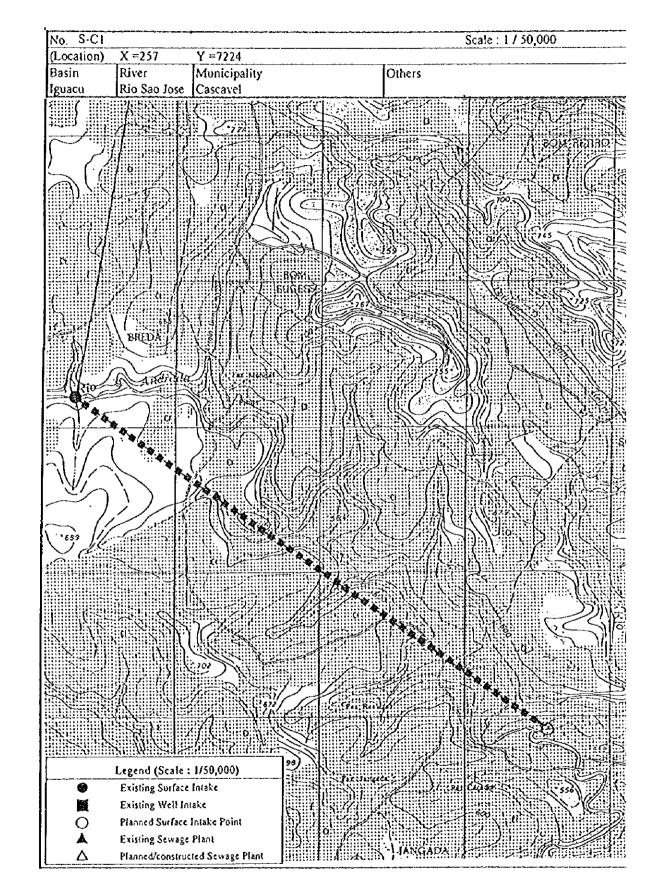


Figure-3.22 (1) Water Supply System by Surface Water in Cascavel

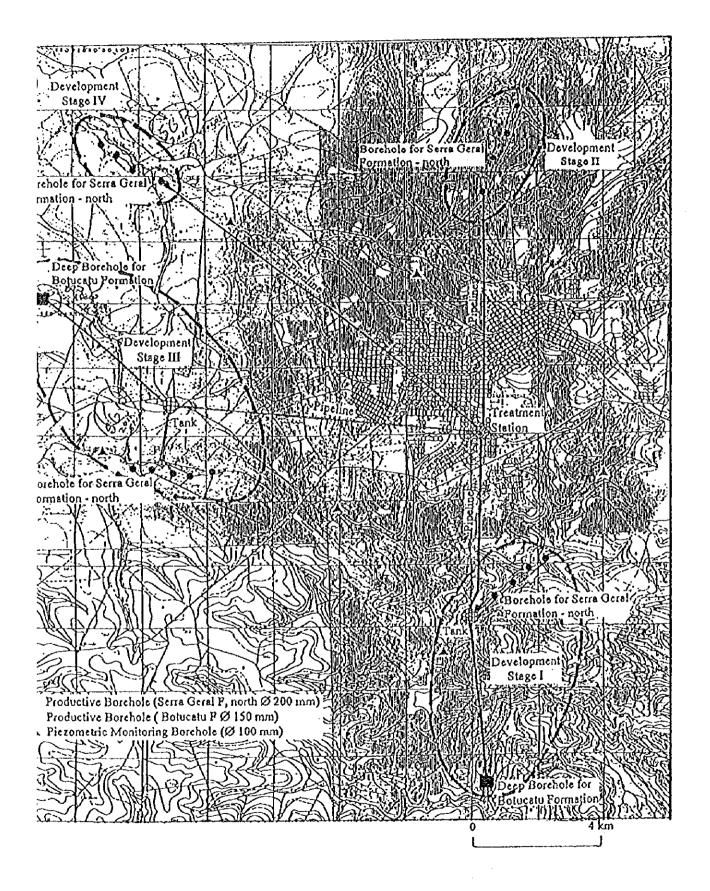


Figure-3.22 (2) Water Supply System by Groundwater in Cascavel (using stage I and II)

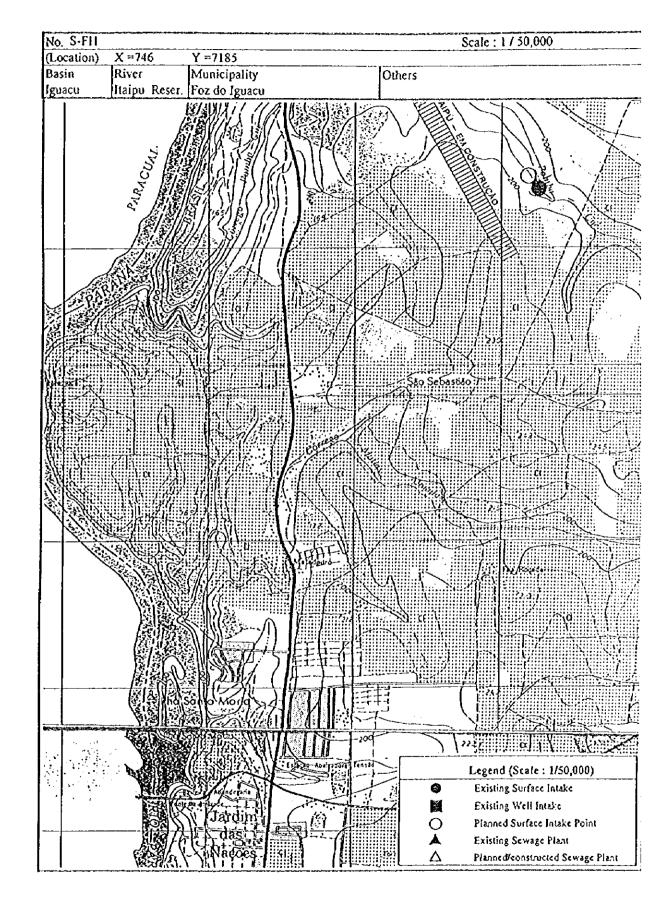


Figure-3.23 Water Supply System in Foz do Iguaçu

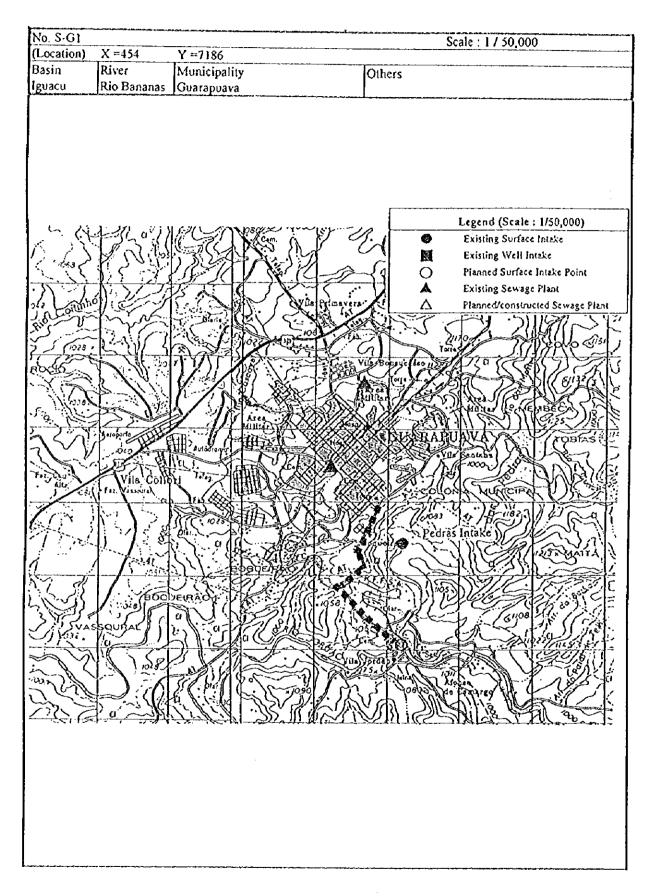


Figure-3.24 Water Supply System in Guarapuava

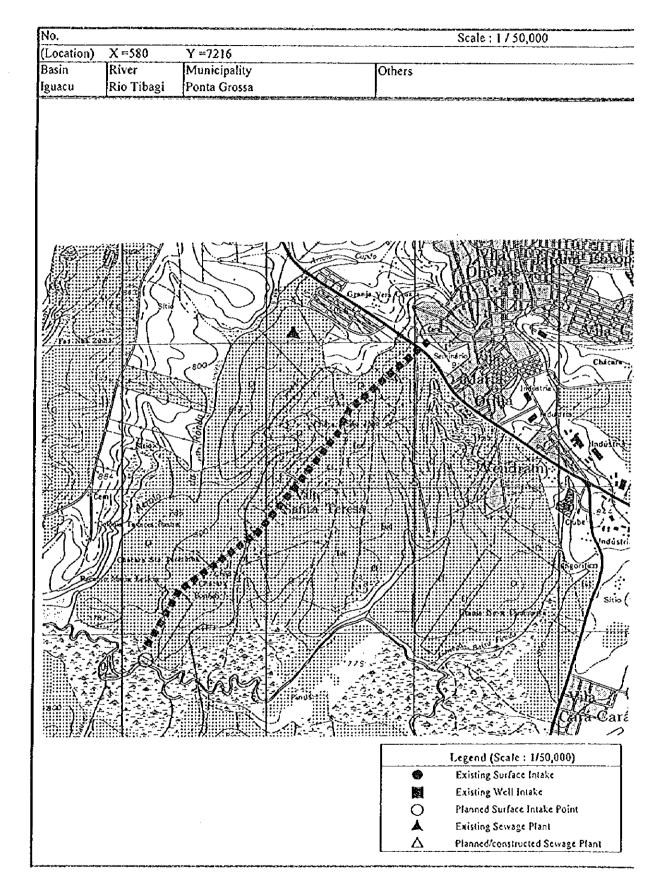


Figure-3.25 Water Supply System in Ponta Grossa

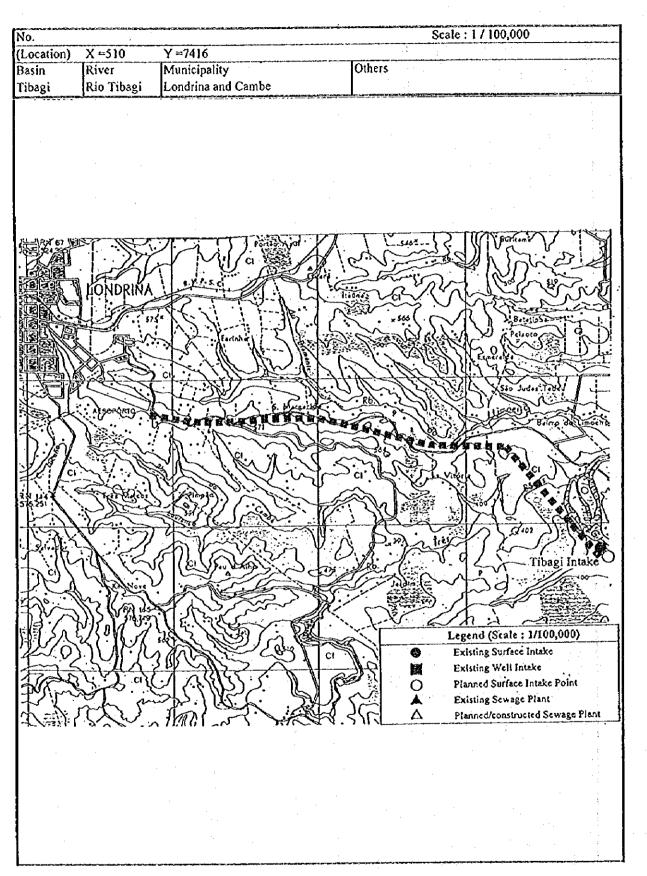


Figure-3.26 Water Supply System in Londrina and Cambe

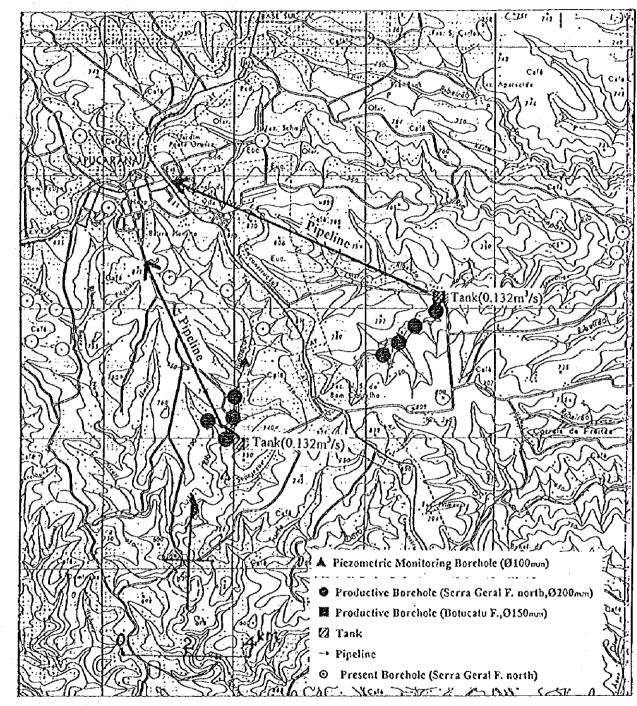
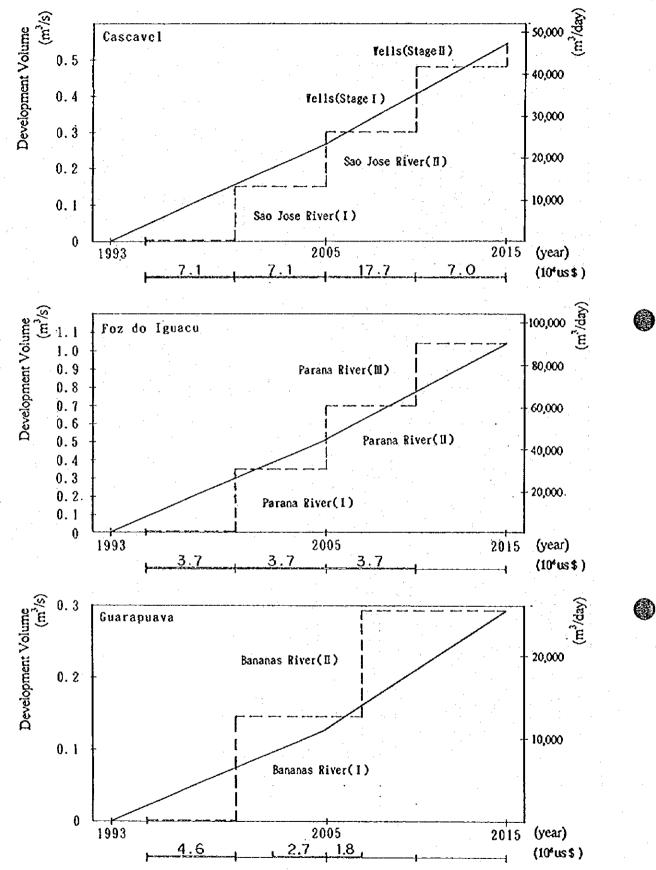
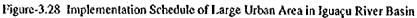




Figure-3.27 Water Supply System in Apucarana

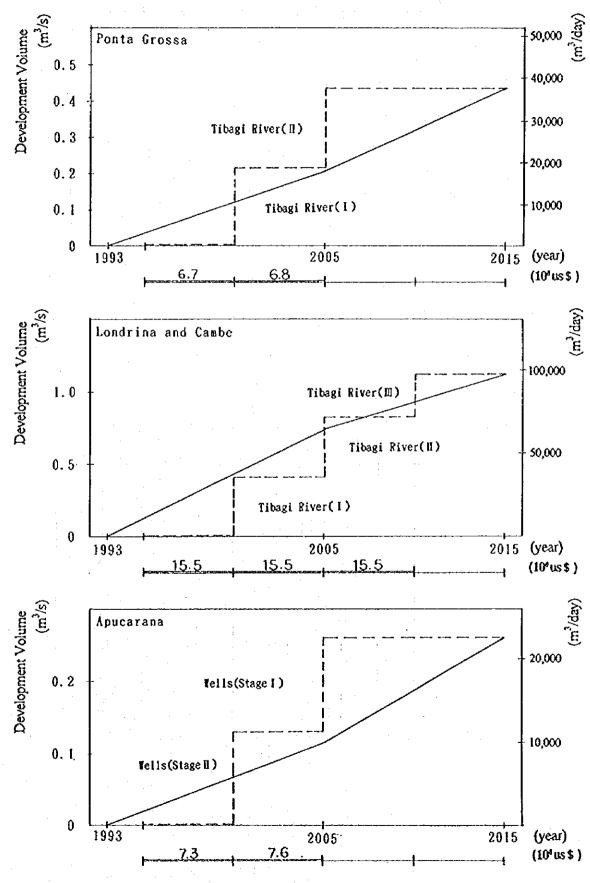


Figure-3.29 Implementation Schedule of Large Urban Area in Tibagi River Basin

Figure-3.29 Implementation Schedule of Large Urban Area in Tibagi River Basin 3 - 83

3.9 Water Development in Medium Urban Areas (Type-B)

The urban areas were defined that their population will be more than approximately 50,000 in 2015. The following urban areas belong to Type-B as medium urban areas in Iguaçu river basin and Tibagi river basin.

(1) Iguaçu river basin

- Francisco Beltrao
- Pato Branco
- Medianeira
- Dois Vizinhos
- Palmas
- Uniao da Vitoria

(2) Tibagi river basin

- Castro
- Telemaco Borba
- Cornelio Procopio
- Arapongas
- Cambe (be mentioned with Londrina in sector 3.8)
- Ibipora
- -- Irati

3.9.1 Water Requirement

Required water supply in medium urban areas was shown in Table-3.37.

River Basin	Municipality	Ye	ar
	· · ·	2005	2015
a an	Francisco Bertrao	0.098	0.231
	Pato Branco	0.053	0.112
Iguaçu	Medianeira	0.038	0.066
~ *	Dois Vizinhos	0.061	0.164
	Palmas	0.028	0.065
	Uniao da Vitoria	0.025	0.035
	Castro	0.124	0.250
	Telemaco Borba	0.112	0.215
Tibagi	Cornelio Procopio	0.027	0.069
Tioagr	Arapongas	0.061	0.142
	Ibipora	0.044	0.105
	Irati	0.033	0.075

Table-3.37 Required Water Supply in Medium Urban Areas [m³/s]

[Note] Water requirement for urban area is mainly composed of urban domestic water and industrial water.

3.9.2 Process of Water Resources Development Study

The process of water resources development in large urban areas is as shown below.

- (1) In cities where main rivers are nearby and direct intake is simple, water supply shall be secured through surface water development.
- (2) In cases where development by means of direct intake is difficult, careful consideration shall be given to the ease of development, the development capacity and the development cost, etc. for both surface water and groundwater.
- (3) Regarding the development of surface water, examination shall be made based on the topographical conditions and water resource materials.
- (4) Examination shall be given to the case where the whole water supply is provided by groundwater development.
- (5) Based upon the examination results of (3) and (4), the optimal development plan shall be formulated upon first giving careful consideration to the conditions stated in (2).

3.9.3 Water Resources Development Policies

Based upon consideration of the topographical conditions in Type-B cities and the surface water and groundwater conditions in the target area, the water resources development policies as shown in Table-3.38 are decided upon.

City	Topographical	State of Wal	er Resources	Water Resources
	Condition	Surface Water	Groundwater	Development
Francisco	This city is situated in	A river with a	The Serra Geral	In view of the fact that
Beltrao	the mid-stream of a	catchment area of 400	Formation south	direct intake
	tributary to the Iguaçu	km ² runs nearby the	aquifer is located	development is easy, the
	river and 30-40 km	city and direct intake	around the town	development will be
	downstream from the	development is	however, the	performed on the surface
	mountain tops.	feasible.	productivity of the	water resources.
	1	and the second second	existing wells is low.	
Pato Branco	This city is situated in	Development through		As the development of
	the upper reaches (near		Formation south	both surface water and
	the mountain tops) of	water from the river	aquifer is located	groundwater is easy, the
	a tributary to the	running nearby the	around the town, and	development plan will b
	lguaçu river.	town is feasible.	the productivity of the	
1	igoayu inci.	town is reasion.	existing wells is high.	
			existing wens is high.	possibilities.
Medianeira	This situ is situated on	An the situated	Same as above	
Medianeira	This city is situated on		Same as above	The water supply plan
	the ridge that	on a ridge, it is		that combines both
	separates the Iguaçu	difficult to obtain		surface water
	river and the Paraná	large amounts of water	· · · ·	development and
	river.	from just one intake		groundwater
		point, so intake will	1	development will be
		need to be performed		formulated.
		at a number of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		locations.	····	
Dois Vizinhos	This city is situated in		Same as above	If taking water from
	the mid-stream of a	cannot be satisfied		Chopim river is
	tributary to the Iguaçu	solely through the		effective, the water
	river. The catchment	intake of water from		supply can be secured
	area of the nearby	the city's surrounding		through development of
	river is small at less	small rivers. If water		surface water alone,
	than 100 km².	was taken from		however, if this turns ou
		Chopim river, the		to be unrealistic a supply
		demand for water		plan that combines both
		would be satisfied,		surface water
		however, the pipe line		development and
		length would be 210		groundwater
		km.		development
Palmas		Development through	Same as above	As the direct intake
	the upper reaches (near	the direct intake of		development of surface
	the mountain toos) of	water from the river	·	water is easy, the river
	a tributary to the	running nearby the		running nearby the city
	lguaçu river.	city is feasible.		will be developed as the
				water supply source.
Uniao Vitoria	This city is situated in	The direct intake of	The Upper Paleozoic	As the direct intake of
	the mid-stream of the	water from the Iguaçu	aquifer is located	surface water is easy and
	mainstream Iguaçu	river mainstream is	around the town.	the nearby aquifer is not
	river.	possible.	however, the	suited to groundwater
			productivity of	development, surface
				water will be developed
		9	existing wells is low	•
			and the permissive	as the water supply
	<u> </u>	I	yield is small.	source.

¢

Table-3.38 (1) Water Resources Development Policies for Medium Urban Areas (Iguaçu River Basin)

City	Topographical	المراجع المراجع والبراي والمتكون والمتكون ومترجع وتبري فيستجمعه والمستعد فالمتحد فالمتحد فالمتحد فالم	er Resources	Water Resources
	Condition	Surface Water	Groundwater	Development Policies
Castro	Castro is situated in the midstream of a tributary to the Tibagi river.	A river with a catchment area of 1,000 km ² runs nearby the city and direct intake development is possible.	The Lower Paleozoic aquifer is located around the town, however, the productivity of existing wells is low and the permissive yield is small.	As the direct intake development of surface water is easy and no suitable aquifers are located nearby, development that utilize surface water as the supply source will be carried out.
Telemaco Borba	This city is situated in the midstream arca of the mainstream Tibagi river.	The direct intake of water from Tibagi river is possible.	The Middle-Upper Paleozoic aquifer is located around the town, however, the productivity of existing wells is low and the permissive yield is small.	Same as above
Cornelio Procopio	in the upper reaches	The water intake from the nearby small rivers is not enough to satisfy the total water demand. If water was taken from Congonhas river, it would be possible to meet the supply, however, the pipe line would stretch for more than 128 km.	Formation north aquifer	As both surface water an groundwater development are possible, the development plan will I formed upon examining both cases.
Arapongas	Arapongas is situated on the ridge of the border between the Tibagi river and Pirapo river basins.		The Serra Geral Formation north aquifer is located around the town, and the productivity of existing wells is high.	As surface water development is difficult either a combination of surface water development with groundwater development or groundwater development alone will be implemented.
Ibipora	in the downstream area of a tributary that runs into the	The amount of water that can be taken from the nearby small rivers is not enough to satisfy demand. If water is taken from Tibagi river, the required supply will be secured, however, the pipe lines will extend for approximately 10 km.		As both surface water an groundwater development are possible, the development plan will t formed upon examining both cases.
Irati	Irati is situated in the upper reaches (near the mountain tops) of a tributary running into the upper reaches of the Tibagi river.	The amount of water that can be taken from the nearby small rivers is not enough to satisfy	small.	As the nearby aquifer is not suited to groundwate development, surface water shall be developed to provide the water supply.

Table-3.38 (2) Water Resources Development Policies for Medium Urban Areas (Tibagi River Basin)

3.9.4 Water Supply System in Medium Urban Areas

The water supply system proposed for each municipality was examined and the result is shown in Table-3.39.

E

Table-3.39 (1) Proposed Water Supply System in Iguaçu River Basin (Type-B)

.

			(1) 110 proposition of the second of the sec			1 ~ J [~ ~]			
Iten		Name	Location	Possibility	Catchment	610, 7	Tot	Total Project cost	ost
				Development	3				
				m/s	kul	m³/s/100km	10°us \$.	10°us S / m²/s	
Francisco	S-F.	Rio Marnecas	Francisco	0.237	437.0	0.341	4.65	19.6	0
Beltrao		Stagel (S. G. F. sx5)	Francisco	0, 011			5.80	527.3	
0.231 m/s	-C-F 2	Stage2(8.F. X1)	Francisco	0.124			6.24	50.3	
Medianeira	S-۸،	Rio Represa Grande	Xedianeira	0.013	14.2	0. 026	5.38	413.8	
0.066m/s	s-N2	Corrego Sanga Funda	Medianeira	0. 017	18.9	0. 034	5.09	299. 4	
· · · · · · · · · · · · · · · · · · ·	°H-S	Corrego Solde Ouro	Mediancira	0.010	10.8	610.0	5. 65	565. 0	
	с-Ж-Э	Stage1(S. G. F. sx5)	Medianeira	0. 020			6.50	325. 0	
	G-M2	Stage2(B.F.X1)	Medianeira	0.124			4.30	34. 7	0
Palmas	S-PA	Riodas Caldeiras	Palmas	0.065	83. 7	0. 028	4.94	76. 0	: 0
0.065 m/s	G-PA1	Stage1 (S. G. F. sx10)	Palmas	0.033			10.12	306.7	
	G-PA1	Stage2(S. G. F. sx10)	Palmas	0. 033			11.89	360.3	
Dois Vizinhos	S-Da	Rio Chopim	Dois Vizinhos	0.134	4. 050. 0	0. 125	9.12	68.1	0
0. 134 m ⁷ /s	C−D ₃	Stage1(S.G.F. sx4)	Dois Vizinhos	0.018			3. 71	206.1	
	C-D.	Stage2(S. G. F. s×3. B. F. ×1)	Dois Vizinhos	0.138			10,30	74.6	
Pato Branco	S-PB.	Rio Chopim	Pato Branco	0.112	2.816.7	0.363	9. 12	81.4	0
0. 112 m ³ /s	G-PB.	Stage1 (S. G. F. s×6)	Pato Branco	0. 025			8.09	325.6	-
	G-PB2	Stage2(B.F. ×1)	Pato Branco	0.124	-	-	7.30	58.9	
Uniao da Vitoria	S-U,	Iguacu	Uniao da Vitoria	0. 035	24.414.0	0.273	3. 71	106.0	0
0. 035 m²/s									

Note) O is the recommended water supply system. B.F. means Botucatu Formation aquifer. S.G.F. s means Serra Ceral Formation south aquifer.

Table-3.39 (2) Proposed Water Supply System in Tibagi River Basin (Type-B)

Item		Name	Location	Possibility	Catchment	Q10.7	۲ ۲	Total Project cost	ŝt
			- - - - -	oi Development	Area				
				s/m	kul	m³/s/100km	10°us S	10°us S / m²/s	
Cornelio	s-cp.	Congonhas	Cornelio Procopio	0. 069	913.3	0, 086	7.44	107.8	0
Procopio	ູ່ ລຸວ ອີ-ອີ	Stagel (S. G. F. n×4)	Cornelio Procopio	0. 029		-	5. 53	190. 7	
S/111000-0	G-CP 2	Stage2(B.F. X1)	Cornelio Procopio	0.129		-	9,68	75.0	
Arapongas	S-AR,	Rio Pirapo	Arapongas	0, 101	200.0	0.101	8.65	85.6	0
0. 142 m³/s	G-AR,	Stagel(S.G.F.nx5)	Arapongas	0. 066			11.41	172.9	
	G-AR2	Stage2(B.F. X1)	Arapongas	0.124			7.21	58.1	0
Ibipora	S-IB,	Rio Tibagi	Ibipora	0.105	21, 955.0	160 0	7.44	70, 9	n O
0. 105 m ³ /s	G-IB,	Stagel (S. G. F. s×3)	Ibipora	0. 050			3.97	79.4	
	G-IB2	Stage2(S. G. F. sx3)	Ibipora	0. 050			4. 71	94.2	
Castro	S-CA	Rio Lapo	Castro	0.250	I, 183. 3	0.179	5.53	22. 1	0
0.250 m²/s									
Telemaco Borba	S-T.	Rio Tibagi	Telemaco Borba	0.215	13, 743, 0	0. 252	6. 77	31.5	0
0.215m [*] /s									
Irati	S-IR1	Rio Imbituvinba	Irati	0.075	220.0	0. 151	9.00	120.0	0
0.075m³/s					-				

[Note]

O is the recommended water supply system. B.F. means Botucatu Formation aquifer. S.G.F. n means Serra Geral Formation north aquifer. S.G.F. s means Serra Geral Formation south aquifer.

The Water supply systems proposed for medium urban areas are shown in Table-3.40.

River	T			Catchment	Development	Cost
Basin	City	Water Supply System	Constructions	Area or Well Number	Volume (m ³ /s)	(10"US\$)
	Franceisco Beltrao	direct intake from Marrecas river	pumps, pipetine (Ø 300 x 700 m x 2)	437,0km²	0.231	4.7
	Pato Branco	direct intake from Chopim river	pump, pipeline (Ø 300 x 12,500 m)	2817.0km²	0.112	9.1
		(Alternative) Wells (Botucatu F.aquifer)	wells, pipeline (Ø 300 x 6,000 m)	T borehole	0.124	(8.1)
Iguaçu	Medianeira	Wells(Bolucatu F.aquifer)	well, pipeline (Ø 300 x 4,000 m)	I borehole	0.124	4.3
	Dois	direct intake from Chopim river	pump, pipeline (Ø 300 x 7,500 m)	4050.0km²	0.134	9.1
	Vizinhos	(Alternative) Wells (Serra Geral	wells, pipeline (Ø 300 x 6,000 m)	3 boleholes	0.012	
		F.aquifer) and (Botucatu F.aquifer)	(19 300 X 0,000 III)	I bolcholes	0.124	(10.3)
	Palmas	direct intake from Caldeiras river	pump, pipeline (Ø 200 x 3,400 m)	83,7km²	0.065	4.9
	Uniao da Vitoria	direct intake from Iguaçu river	pump, pipeline (Ø 200 x 200 m)	24.414km ⁴	0.035	3.7
	Castro	direct intake from Japo river	pumps, pipeline (Ø 300 x 1,200 m x 2)	1,183 km²	0.250	5.5
	Telemaco Borba	direct intake from Tibagi river	pumps, pipeline (Ø 300 x 2,700 m x 2)	13,743 km²	0.215	6.8
Tibagi	Cornetio	direct intake from Congonhas river	pump, pipeline (Ø 300 x 8,500 m)	413.3 km²	0.069	7.4
	Procopio	(Alternative) wells (Botucatu aquifer)	well, pipe line (Ø 300 x 14,000 m)	I boreholl	(0.129)	(9.7)
	Arapongas	wells (Botucatu aquifer)	well, pipeline (Ø 400 x 9,000 m)	I boreholi	0.124	7.2
		direct intake from Pirapo river	pump, pipeline (Ø 300 x 11,000 m)	200.0km²	0.101	8.7
	Ibipora	direct intake from Tibagi river	pump, pipelin (Ø 300 x m)	21,955 km²	0,105	7.4
		(Alternative) wells (Sella Geral F. aquifer)	welts, pipeline (Ø 200 x 3,500 m, Ø 200 x 6,000 m)	6 boreholls	(0.100)	(8.7)
	Irati	direct intake from Imbituvinha river	pump, pipeline (Ø 300 x 13,200 m)	220.0 km²	0.075	9.0

0

Table-3.40 Proposed Water Supply System

The intake point and pipelines for each city are as illustrated in Annex 6 and Annex 7.

3.9.5 Implementation Schedule of Water Development

Implementation schedule of water development is shown in Figure-3.30 and Figure-3.31.

Since the water demands of all municipalities are expected to exceed the current water supply soon, the water development is necessary to be implemented as early as possible. In the case that the development is composed of several phases, the investment can be split. On the other hand, in the case that the volume of the water development is small, the construction has to be implemented at once. The water development is assumed to be implemented with the following manner.

- 1) If the water development consists of surface water and groundwater, the development will be split in several phases.
- 2) The minimum diameter of pipeline is assumed to be \emptyset 200. The number of pipe lines depends on the volume of water to be developed.

volume of water to be developed $< 0.2 \text{ m}^3$ /sec one pipe line

volume of water to be developed $\ge 0.2 \text{ m}^3/\text{sec}/2 \text{ or } 3 \text{ pipe lines}$

Construction is composed of several phases.

As a result, in the Medium Urban Area, whose water development will be finished in the first phase, the investment will be concentrated in the first 5 years; however, this investment is small compared to the total investment of the water development in the whole river basin.

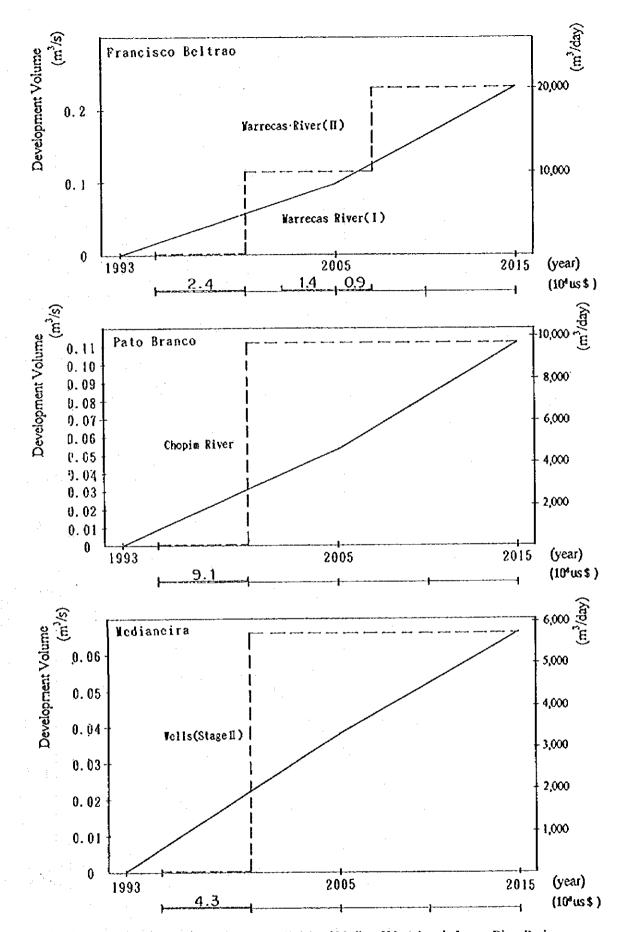


Figure-3.30 (1) Implementation Schedule of Medium Urban Area in Iguaçu River Basin

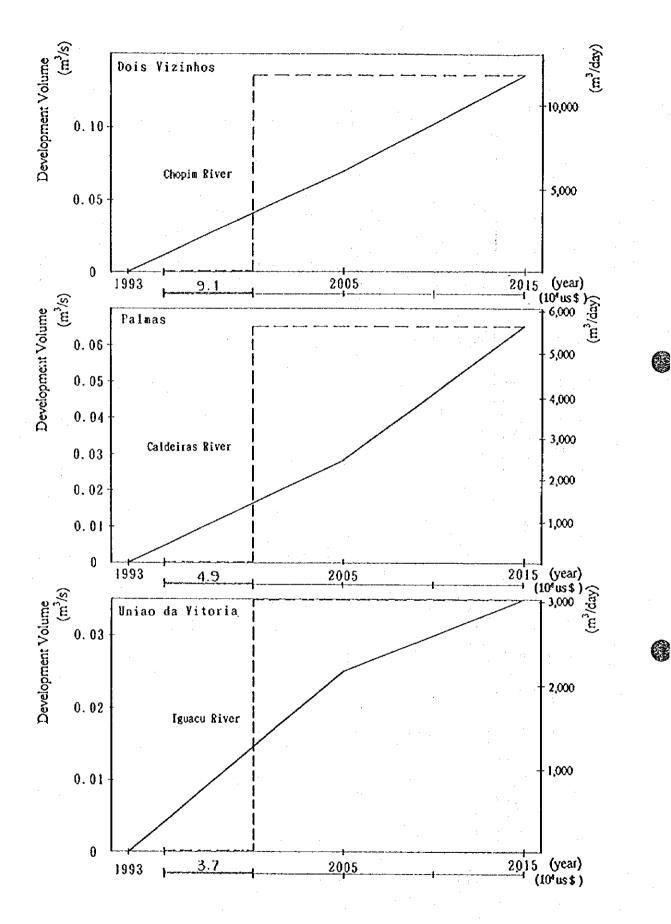
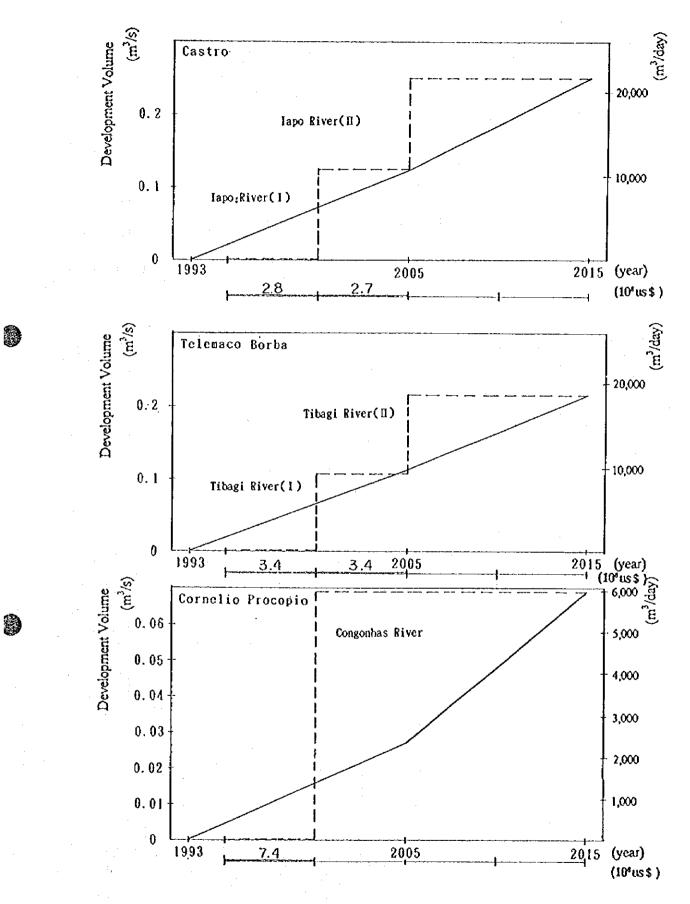
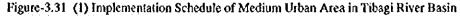




Figure-3.30 (2) Implementation Schedule of Medium Urban Area in Iguaçu River Basin

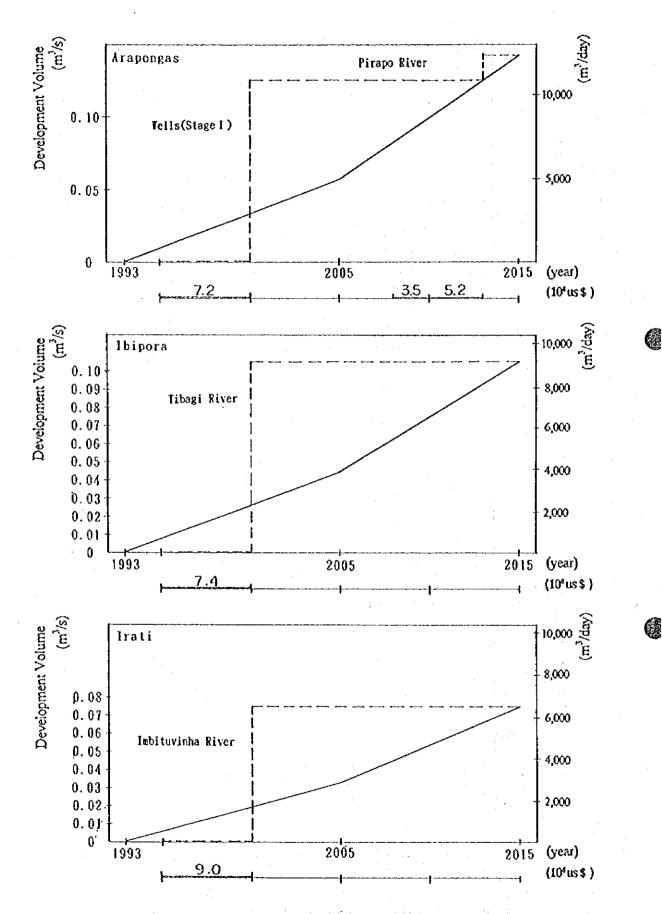


Figure-3.31 (2) Implementation Schedule of Medium Urban Area in Tibagi River Basin

3.10 Water Development in Other Urban Areas (Type-C)

Water development study of other urban areas was done for each zone as zone-a, zone-b and zone-c.

3.10.1 Water Requirement

Required water supply in other urban areas was shown in Table-3.41.

Table-3.41 Required Water Supply in Other Urban Areas (m³/s)

: : : :	Zone	Ye	ar			
·		2005	2015			
	Zone-a	0.143	0.322			
Iguaçu	Zone-b	0.142	0.326			
·	Zone-c	0.091	0.180			
······································	Zone-a	0.055	0.123			
Tibagi	Zone-b	0.056	0.119			
	Zone-c	0.045	0.105			

[Note] Water requirement for urban area is mainly composed of urban domestic water and industrial water.

3.10.2 Process of Water Resources Development Study

Process of water resources development in other urban areas was as shown below:

- (1) Determination of water resource for each zone evaluating surface water potential and groundwater potential.
- (2) Identification of the relationship between the water requirement and its development cost based on the cost estimation of several municipalities selected from each zone.
- (3) Cost estimation of all municipalities applying the above relationship to the water requirement of each municipalities.

3.10.3 Water Resources Development Policies

The water resources development policies for Type-C cities, based upon consideration of the topographical conditions and surface water and groundwater conditions in each zone, are as indicated in Table-3.42.

City	Topographical	State of	WaterResources	Water Resources
	Condition	Surface Water	Groundwater	Development Policies
Zone-a	These areas are situated nearby mainstream or downstream of tributaries.	As these areas are located nearby rivers with ample catchment areas, direct intake development is easy to achieve.	Of the aquifers located within the Iquacu River basin, those suited to groundwater development are the Karst, Farnas Formation, Guabirotuba	As the direct intake development of surface water is easy, the nearby rivers will be developed as water supply sources.
Zone-b	These areas are situated of second or third tributaries	The catchment areas of the nearby rivers are too small for performing the direct intake of water. The development of surface water would be possible if the intake points are placed further downstream, although the pipe line lengths would become long.	Formation, Botucatu Formation and the Serra Geral Formation north and south aquifers. Of these, the first three are located in the Curitiba metropolitan area. Regarding the supply of groundwater to Type-C cities, the Botucatu Formation and Serra Geral Formation advifers are situated in usable locations. The former of these possesses greater productivity potential, however, deep drilling would be necessary. As the Type-C cities do not	For those cities, which are located on the Serra Geral Formation south aquifer and where the required water supply can be met by one well (0.003 m ³ /s or less), groundwater will be developed in order to provide the water supply. For those cities requiring a bigger water supply or which are not located on the said aquifer, direct intake development of surface water will be implemented.
Zone-c	These areas are situated on top of ridges of mountains.	Surface water resources are not sufficient to provide the required water in those cities with a large water demand.	have such a high water requirement, development of the latter (Serra Geral Formation) aquifer is more appropriate.	For those cities which are located on the Serra Geral Formation south aquifer and where the required water supply can be met by three wells (0.010 m ³ /s or less), groundwater will be developed in order to provide the water supply. For those cities requiring a bigger water supply, or which are not located on the said aquifer, direct intake development of surface water will be implemented to meet the supply requirement.

Table-3.42 (1) Water Resources Development Policies for Other Urban Areas (Iguaçu River Basin)

City	Topographical	State of V	Water Resources	Water Resources
	Condition	Surface Water	Groundwater	Development Policies
Zone-a	These areas are situated nearby mainstream or downstream of tributaries.	As these areas are located nearby rivers with ample catchment areas, direct intake development is easy to achieve.	the Tibagl river basin, those suited to groundwater development are the Farnas	rivers will be developed as water supply sources.
Zone-b	These areas are situated upstream of second or third tributaries	the nearby rivers are too small for performing the direct intake of water. The	Formation aquifer is located in a narrow zone in the upper reaches of Tibagi river and does not lie close to Type-C cities. Regarding the supply of groundwater to Type-C cities, the Botucatu Formation and Serra Geral Formation aquifers, which are limited to the lower reaches of Tibagi river, can be utilized. The former of these possesses greater	For those cities, which are located of the Serra Geral Formation north aquifer and where the required water supply can be met by three wells (0.033 m ³ /s or less), groundwater will be developed in order to provide the water supply. For those cities requiring a bigger water supply or which are not located on the said aquifer, direct intake development of surface water will be implemented.
Zone-c	These areas are situated on top of ridges of mountains.			For those cities, which are located of the Serra Geral Formation north aquifer will be developed in order to provide the water supply. For those cities requiring a bigger water supply, the remaining water will be obtained from surface water development. In those cities not located on the Serra Geral Formation south aquifer, direct intake development of surface water will be implemented to meet the supply requirement.

Table-3.42 (2) Water Resources Development Policies for Other Urban Areas (Tibagi River Basin)

3.10.4 Water Supply System in Other Urban Areas

3

Water supply system in other urban areas are shown in Table-3.42 by each zone.

For municipalities belonged to Type-C, the relationship between the development volume and cost of surface water and groundwater for each Zone (a - c) is shown in Figure-3.32. Water resources (surface water or groundwater) for each municipality are shown in Data Book.

	Number		Developme	ent Volume	Cost
Zone	of Municipalities	Water Supply System	Surface Water (m ³ /s)	Groundwater (m³/s)	(10°US\$)
C∙a	23	direct intake from river	0.322		9.7
C-b	22	direct intake from river	0.298	-	42.5
. 1	16	wells		0.028	14.8
C-c	9	direct intake from river	0.157		28.4
	8	wells		0.023	7.5
To	otal		0.777	0.051	102.9

Table-3.43 (1) Water Supply System in Other Urban Areas (Iguaçu River Basin)

Table-3.43 (2) Water Supply System in Other Urban Areas (Tibagi River Basin)

	Number		Developme	Cost	
Zone	of Municipalities	Water Supply System	Surface Water (m ³ /s)	Groundwater (m³/s)	(10 ⁶ US\$)
C·a	9	direct intake from river	0.123	-	4.0
C-b	2	direct intake from river	0.057	-	5.1
	6	wells	-	0.062	7.8
C-c	3	direct intake from river	0.034		8.5
	6	wells	-	0.071	7.5
T	otal		0.214	0.133	32.9

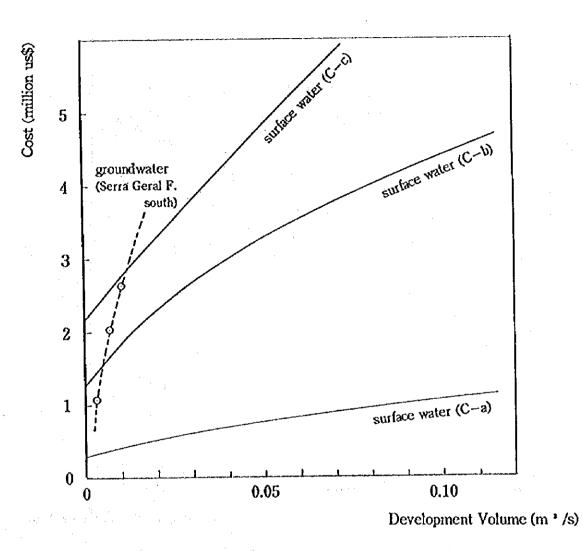
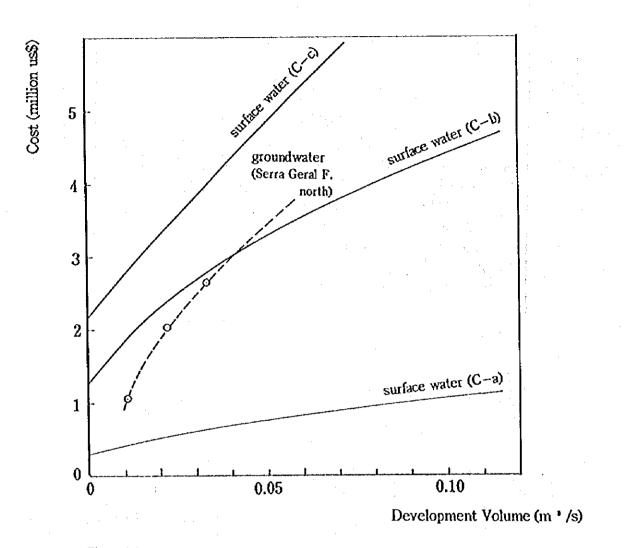
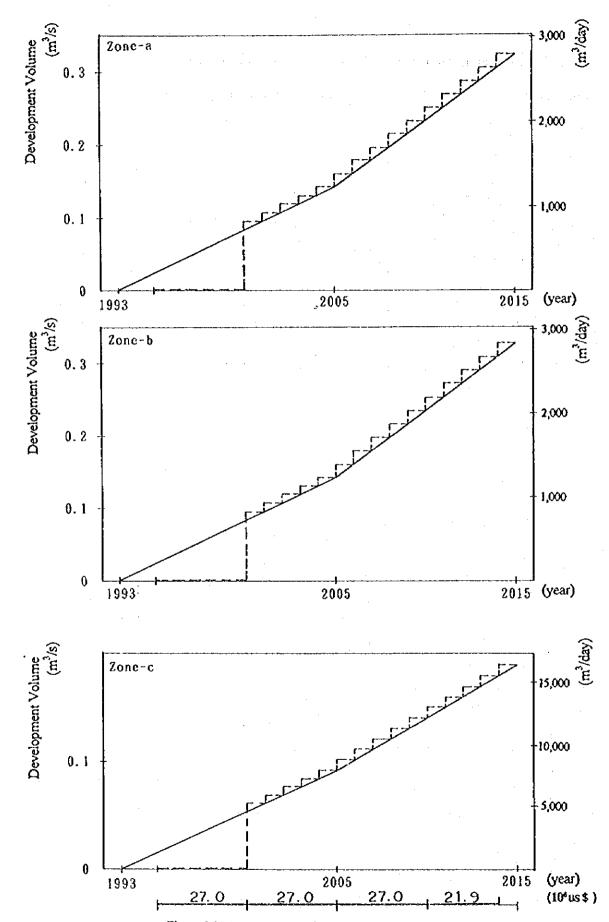



Figure-3.32 (1) Relationship between Development Volume and Cost (Iguaçu River Basin)

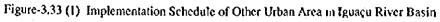
œ

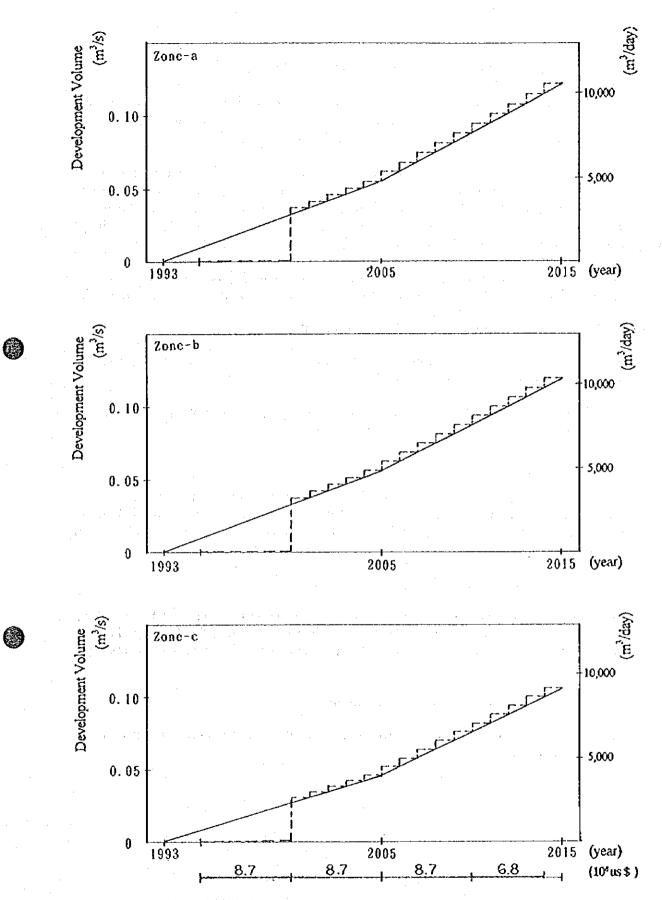
¢

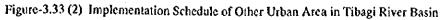

Figure-3.32 (2) Relationship between Development Volume and Cost (Tibagi River Basin)

3.10.5 Implementation Schedule of Water Development

9


. .


Implementation schedule of water development is shown in Figure-3.33.



e

é

3.11 Water Development for Rural Domestic Water

In rural areas, it is difficult to supply the water requirement by surface water systematically, because demand of domestic water is scattered due to topographic condition. Therefore, supply for domestic water will be done by groundwater development.

The demand of domestic water in rural areas tends to decrease from the point of view of the whole Iguaçu river basin and Tibagi river basin. Although there is an increase in some municipalities if the demand is examined with municipality wise, the volume of demand is very little. The maximum volume to be newly development is about 0.004 m³/s in Iguaçu river basin and about 0.02 m³/s in Tibagi river basin.

As a result, the development of rural domestic water will not be necessary and only improvement or maintenance of existing wells is enough to satisfy the future water demand.

3.12 Water Development for Agricultural Water

Supply method of agricultural water at rural areas is generally a pipeline method with a direct intake using a pipeline and headworks.

According to hearing and field reconnaissance, an average of intake volume was less than 0.001 m^3 /s, and average length of pipeline was 3 km.

(1) Iguaçu River Basin

The total water requirement for agricultural sector is $0.381 \text{ m}^3/\text{s}$. The total cost of its development was estimated applying the cost of unit water development determined during the cost estimation for large and medium urban areas and thus the total cost is US\$4.6 million.

(2) Tibagi River Basin

The total water requirement for agricultural sector is 0.083m³/s. The total cost of its development was estimated applying the cost of unit water development determined during the cost estimation for large and medium urban areas and thus the total cost is US\$ 1.0 million.

3.13 Total Cost for Water Development

The total cost for water development covering from intake to water-service installation was summarized in Table-3.44.

River Basin	Development Volume (m ³ /s)		Cost (10 ⁶ us\$)					
	(1) Domestic and Industrial Water	\rea)						
	1)Curitiba Metropolitan Area	7.235 (2.638)	760.0					
	2) Large Urban Areas	1.877 (0.090)	59.1					
Iguaçu	3) Medium Urban Areas	0.643 (0.192)	35.8					
	4) Other Urban Areas	0.828 (0.243)	102.9					
	Sub-total	10.583 (3.163)	957.8					
	(2) Agricultural Water Development (Rural Area)							
		0.381	4.6					
	Total	10.964 (3.163)	962.4					
-	(1) Domestic and Industrial Water Development (Urban Area)							
	1) Large Urban Areas	1.629 (0.324)	74.9					
Tibagi	2) Medium Urban Areas	1.115 (0.441)	52.0					
Ŭ	3) Other Urban Areas	0.347 (0.102)	32.9					
	Sub-total	3.091 (0.867)	159.8					
	(2) Agricultural Water Developm	ent (Rural Area)	· · · · · · · · · · · · · · · · · · ·					
		0.088	1.0					
	Total	3.179 (0.867)	160.8					

Table-3.44 Total Cost for Water Development

Note: ()shows industrial water

AND

The implementation schedule of water supply project is shown in Table-3.45.

			Development	Project						-	ia ale a a'r	-	alaar de		-					~ ~ ~				-
Area	Project	Water Resource	Volume (m3/s)	Cost (million us\$) 9		97	98	99	00	01	02			ktio 05				09	10	11	12	13	H	15
ເດິນເປັນ	Metropolicin Area		C. C	i de la com	38	19	100			380		8 00	10.0	0		8		2	8		1			્રે
		Wells (Stagel)	111,000	110.6																				
		Wells (StageII)	103,000	157.9																				
		Irai Dam	121,000	135.4		_	•		,						-									
		Piraquara B Dam	65,000	60.4			_				-													
		Pequeno Dam	69,000	78.5																			-	
		Alto Miringuava Dam	52,000	96.9																				
		Cotia Despíque Dam	104,000	120.3			•••		~ ~				-			-								
	(S year Progress Ri	aic)	625,000	760.0			215.1		.			207. 27%		L			222. 29%					14. 5%		
<1.xge l	Johan Arraz					1					1	8	8	8	200		1	1						
	Cascavel	Sao Jose River (1)	13,000	7.1									ľ.									- 22		
		Sao Jose River (II)	13,000	7.1																				
	1	Wells (Stagel)	16,000	17.7								-												
		Wells (Stagell)	10,000	7.0											_	—							-	.85.0
	Foz do Iguacu	Parana River (1)	30,000	3.7																_				
		Parana River (II)	30,000	3.7						i anti														
		Parana River (III)	30,000	3.7	[_				Γ	 													
	Guarapuava	Bananas River (I)	13,000	\$.6										Γ										
		Bananas River (11)	12,000	4.5	Γ					Γ	Γ				-						-			
	(5 year Progress R.	atc)	167,000	59.1			15 26%			13.5 [23%]					23.2 (39%)					7.0 [12%]				
<mediu< td=""><td>in Urban Area></td><td>10-14-10-12-12-12-12-12-12-12-12-12-12-12-12-12-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Γ</td><td></td><td></td><td>80</td><td></td><td></td><td></td><td></td><td></td><td>88</td><td></td><td></td><td></td><td></td><td>200</td><td>8</td></mediu<>	in Urban Area>	10-14-10-12-12-12-12-12-12-12-12-12-12-12-12-12-							Γ			80						88					200	8
	Francisco Bebrao	Marrecas River (I)	10,000	2.4							Γ			Γ										
		Marreeas River (II)	10,000	2.3	1	 _			[[1													
	Palo Branco	Chopim River	10,000	9.1				L.			Γ				:	Γ								
	Medianeira	Wells (Stage II)	11,000	4.3		L								Γ										
	Dois Vizinhos	Chopim River	12,000	9.1	L				i.	T	1-	1		[
	Palmas	Caldeiras River	6,000	4.9																				
	União da Vitoria	Iguacu River	3,000	3.7				L	Ļ,		—													
	(S year Progress R	alc)	62,000	35.8		ł	33.: [949]. (4ª					0. [2%					0 [0%]	
<other l<="" td=""><td>Urbin Area></td><td>Suffacen ater & Wells</td><td></td><td></td><td></td><td></td><td>8</td><td>X</td><td></td><td></td><td>2</td><td>2</td><td>N.</td><td></td><td></td><td></td><td></td><td></td><td>ે</td><td></td><td></td><td></td><td></td><td></td></other>	Urbin Area>	Suffacen ater & Wells					8	X			2	2	N.						ે					
	(5 year Progress Rate)		72,000	102.9	27,0 [26%]						27.0		****			27.9					21.9 22°		L	
<agricul< td=""><td>Rural Waler></td><td>Surfacewater</td><td></td><td>80.22</td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>ि</td><td></td><td></td><td>ु</td><td>ि</td><td>ि</td><td></td><td></td><td></td><td></td><td><u>انې</u></td><td>_</td><td></td></agricul<>	Rural Waler>	Surfacewater		80.22		<u> </u>						ि			ु	ि	ि					<u>انې</u>	_	
	(5 year Progress R	əic)	33,000	4.6			1. [249				1]. [269				(1. [249				 (1.3 269		
	Total		959,000	962.4			292 31°;					150 269					274. 283					44 1,5° ,		

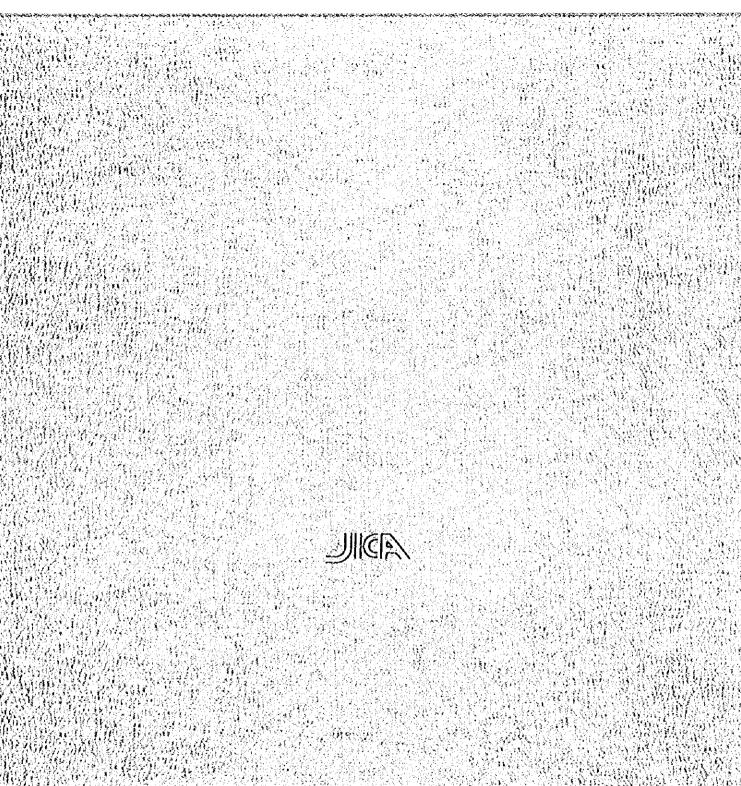
Table-3.45 Implementation Schedule of Water Supply Project for Iguaçu River Basin

Area	Project	Water Resource	Development Volume													ction Schedule								
(1 at an 1	L Urbin Area>		(no.s)	(namon ass)	%	÷.	128	ľ	l	0	8	03	्र	5	00	2	08	100	10		1 <u>1</u>	13	н 77	1
-1-14 86 4	Ponta Grossa	Tibagi River (1)	18,000	6.7	-	39 T		R	<u> </u> _	18	×.	ŝ.		<u></u>	a de la compañía de	33	20	12	1	3	<u> </u>	2	8. 1	i?
	Coma Orossa	Tibagi River (II)	19,000	6.8	1.500		<u></u>	┢═	f										┣	┝				┝
	Londrina	Tibagi River (1)	35,000	15.5	·	-			-			-	<u>.</u>	2.55				[-	_				
	& Canbe	Tibagi River (II)	35,000	15.5	1000		-	┢┈											<u> </u>					
	oc Carlos	Tibagi River (III)	36,000	15.5						-	ertter,	-		-										
	Apucarana	Wells (Stage II)		7,3	I									-		.	-		╞═╸	 _				
	Apucarans		22,000																_				_	
• • •	I	Wella (Stoge I)	23,000	7.6									-						<u> </u>					
	(5 year Progress R	atc)	188,000	74.9	9 29.5 [39%]					29.9 [40%]					15.5 [21%]						0 [0%6]			
<mediur< td=""><td>n Urban Area> 🎂</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>382</td><td></td><td></td><td>Ì</td><td>8</td><td></td><td></td><td></td><td></td><td>1</td><td><u>_</u></td><td></td><td></td><td>SI</td><td></td></mediur<>	n Urban Area> 🎂									3 82			Ì	8					1	<u>_</u>			SI	
	Castro	Ispo River (I)	11,000	2.8						-	<u></u>	22					<u></u>	22	<u></u>		~~~	-	-	2.22
		lapo River (II)	11,000	2.7				-									••					-		-
	Telemaco Borba	Tibagi River (1)	9,000	3.4								T			_			-			-		-1	
		Tibagi River (II)	9,000	3.4													1		<u> </u>					-
	Cornelio Procopio	Congonhas River	6,000	7.4								Ī				-	1		_		-		-	
	Arapongas	Wells (Stage I)	11,000	7.2										†	-[_	-	-	-	-†	
		Pirapo River	9,000	8.7									-7	-1			-1					-		
	Ibipora	Tibagi River	9,000	7.4						-		Ť	-†	1	Ť		1						1	_
	lrati	Imbiturinha River	6,000	9.0		_					-	-	1	1	-			Ť	~-	-	1	1	-+	
	(5 year Progress Ra	lic)	81,000	52.0			37.2					6.1				٩	3.5		~		1	5.2		
				W. W. Market	721	ן דייני	71%	1			[] 1557	12%	l T		হলে য	_	7%6])			-	0%		-
<u>espess</u>	<u>ne in relation de la constant</u>	Surfacensier & Wells	<u></u>	<u>i nanyi</u>	<u></u>	ं	<u></u>	2	्		ે		<u> </u>		<u>_</u>		×.	2	्र		×.	1		ŝ
	(5 year Progress Rate)		30,000	32.9			8.7 26%	1				8,7 26%	1				8.7 2696	1				5.8 2%	•	
Agricult	ural Water>	Surfacenalor			्र	ં	81	81	8	8	्रो									8			T	2
(5 year Progress Rate)			8,000	1.0	0.2 {20%}				0.3 [30%]					0.2				- 26.94	0.3 [30%]				1	
	Total		307,000	160.8	2	80	(5.6 7%)			<u> </u>		5.0 8%;)	1443 240				1.9 190]				ો	2.3 8%]		

A

ð

Table-3.46	Implementation	Schedule of Wate	er Supply Pro	ject for Tibagi River Basin


Literature Cited

1.	CEHPAR (1990) HG 64	:	Assessment of the Water Potential in the Metropolitan
			Area of Curitiba

2. CEHPAR (1982) HG 52 : Assessment of the Water Potential in Paraná State

3. Minimum Discharge Values for the Stations Studied by JICA in Paraná State (COPEL, 1995)

4. Master Plan of Water and Sewage Systems of Curitiba Metropolitan Area (SANEPAR, 1991)

