JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

PARANÁ STATE, THE FEDERATIVE REPUBLIC OF BRAZIL

## THE MASTER PLAN STUDY ON

## THE UTILIZATION OF WATER RESOURCES IN PARANÁ STATE

IN

THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT

## SECTORAL REPORT VOLUME C

HYDROGEOLOGY AND GROUNDWATER RESOURCES



December, 1995

Yachiyo Engineering Co., Ltd. Tokyo, Japan

and

Nippon Koel Co., Ltd. Tokyo, Japan



## JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

## STATE SECRETARIAT OF PLANNING AND GENERAL COORDINATION, PARANÁ STATE, THE FEDERATIVE REPUBLIC OF BRAZIL

## THE MASTER PLAN STUDY ON

## THE UTILIZATION OF WATER RESOURCES IN PARANÁ STATE

IN

## THE FEDERATIVE REPUBLIC OF BRAZIL

## FINAL REPORT

## SECTORAL REPORT VOLUME C

## HYDROGEOLOGY AND GROUNDWATER RESOURCES

December, 1995

Yachiyo Engineering Co., Ltd. Tokyo, Japan

and

Nippon Koei Co., Ltd. Tokyo, Japan

Second States (1996) 1997, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 201 States (2017), 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 201 , 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,



(4

n en operation en en entre de la construction de la construction de la construction de la construction de la co En 1999 de la construction de la con En 1999 de la construction de la co

Cost Estimate is Based on The Price Level of August, 1994, According to The Following Exchange Rate.

> US\$ 1.00 - ¥ 98.87 (as of August, 1994)

## COMPOSITION OF FINAL REPORT

## 1. EXECUTIVE SUMMARY

## 2. MAIN REPORT

- I. Strategy for Paraná State
- II. Master Plan for Iguaçu River Basin
- III. Master Plan for Tibagi River Basin

## 3. SECTORAL REPORT

- A. Socio-economy
- B. Meteorology, Hydrology and Surface Water Resources
- C. Hydrogeology and Groundwater Resources
- D. Domestic and Industrial Water
- E. Agriculture
- F. Hydroelectric Power Generation
- G. Water Utilization Plan
- H. Flood Control
- I. Water Quality and Sewerage
- J. Soil Erosion and Forest
- K. Ecology
- L. Water Environment Management
- M. Institution
- N. Cost Estimate, and Economic and Financial Assessment

## 4. DATA BOOK

## THE MASTER PLAN STUDY ON THE UTILIZATION OF WATER RESOURCES IN PARANÁ STATE IN THE FEDERATIVE REPUBLIC OF BRAZIL

## Sectoral Report Vol. C

Hydrogeology and Groundwater Resources

## Table of Contents

| CHAPTER 1 INTRODUCTION                        | C-1   |
|-----------------------------------------------|-------|
| 1.1 Scope                                     | C-1   |
| 1.2 Contents of the Report                    |       |
|                                               | · · · |
| CHAPTER 2 PHYSICAL AND SOCIAL CIRCUMSTANCE    | C-3   |
| 2.1 Location                                  | C-3   |
| 2.2 Topography                                | C-3   |
| 2.3 Climate                                   |       |
| 2.4 Vegetation and Surface Cover              | C-4   |
| 2.5 Population                                | C-4   |
| 2.6 Water Demand                              |       |
|                                               |       |
| CHAPTER 3 GEOLOGY                             | C-5   |
| 3.1 Geological Outline                        |       |
| 3.2 Stratigraphy and Permeability             |       |
| 3.2.1 Outline                                 |       |
| 3.2.2 Archean                                 |       |
| 3.2.3 Proterozoic                             |       |
| 3.2.4 Upper Proterozoic-Cambrian in Paleozoic |       |
|                                               | C-8   |
| 2 7 6 Manazala                                |       |

| 3.2.7 Cenozoics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3.3 Structural Geology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 3.3.1 Lineament Structure Represented in Satellite Images                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 3.3.2 Fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 3.3.3 Fold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| a provide a state of the second state of the second s |                |
| CHAPTER 4 STRATEGY FOR GROUNDWATER RESOURCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 4.1 Strategy of Groundwater Resources Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 4.2 Strategy of Groundwater Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 4.2.1 Groundwater Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 4.2.2 Groundwater Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 8 X X 1<br>1 |
| CHAPTER 5 GROUNDWATER RESOURCES ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| 5.1 Existing Borchole Data and Data Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 5.1.1 Existing Borehole Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 5.1.2 New Data base Well Inventory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 5.2 Basic Characteristics Test of Grondwater Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 5.2.1 Pumping Test of Selected Boreholes by This Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 5.2.2 Water Quality Test of Selected Weils by This Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 5.3 Groundwater Occurrences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 5.3.1 Aquifer Classification by Geological Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 5.4 Groundwater Potential of Representative Aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 129 - 3<br>  |
| 5.4.1 Calculation of Groundwater Potential Based on Pumpin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g Test -       |
| 5.4.2 Estimation of Groundwater Storage Based on Pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test           |
| 5.4.3 Permissive Yield Assessment of Groundwater Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| Based onRecharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| CHAPTER 6 MASTER PLAN PILOT BASINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1.2          |
| 6.1 Methodology of Master Plan Study<br>6.2 Definition of Boundary of Study Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |

| 6.3.1 Assessment of Iguacu Pilot Basin          | C-27 |
|-------------------------------------------------|------|
| 6.3.2 Assessment of Tibagi Pilot Basin          | C-30 |
| 6.4 Master Plan for Groundwater Management      | C-30 |
| 6.4.1 Classification and Zoning of Region for   |      |
| Groundwater Development                         | C-30 |
| 6.4.2 Groundwater Management for Municipalities | C-32 |
| 6.5 Unit Cost for Groundwater Development       | C-37 |
|                                                 |      |

| CHAPTER 7 RECOMMENDATIONC-38                                         |
|----------------------------------------------------------------------|
| 7.1 Recommendation on Comprehensive Groundwater ManagementC-38       |
| 7.2 Recommendation on Integrated Database of Borehole Inventory C-39 |

| THEFAT THEFT | List | of | Table |  |
|--------------|------|----|-------|--|
|--------------|------|----|-------|--|

9

| Table-2.1 | Population Distribution of Parana State                                 |
|-----------|-------------------------------------------------------------------------|
| Table-2.2 | Studied Water Demand                                                    |
| Table-3.1 | General Stratigraphy of Parana State                                    |
| Table-5.1 | Print-out Format of Informations for Each Borehole                      |
| Table-5.2 | Summarized Result of Pumping Test Done for This Study                   |
| Table-5.3 | Result of Water Quality Test of Wells Done by This Study                |
| Table-5.4 | Chemicai Components of Respective Aquifers (1/2)                        |
| Table-5.4 | Chemical Components of Respective Aquifers (2/2)                        |
| Table-5.5 | Calculated Result of Groundwater Potential by Pumping Tast Data         |
| Table-5.6 | Estimated Result of Groundwater Storage by Pumping Tast Data            |
| Table-5.7 | Assessment Result of Groundwater Potential by Data of Water             |
|           | Circulation                                                             |
| Table-6.1 | Mean Q7 & Q10,7 at Fluvial Stations in Iguacu River Basin, Ribeira      |
|           | River Basin and the Related River Basins                                |
| Table-6.2 | Potential of Groundwater Development for Projected Municipalities in    |
|           | Iguacu Pilot Basin                                                      |
| Table-6.3 | Mean Q7 & 10,7 at the Fluvial Stations, in Tibagi River Basin and the   |
|           | Related River Basin                                                     |
| Table-6.4 | Potential of Groundwater of Gevelopment for Projected Municipalities in |
| •         | Tibagi Pilot Basin                                                      |
| Table-6.5 | Master Plan of Groundwater Development for Projected Municipalities in  |
|           | Iguacu Pilot Basin                                                      |
| Table-6.6 | Master Plan of Groundwater Development for Projected Municipalities in  |
|           | Tibagi Pilot Basin                                                      |
| Table 6.7 | Master Plan of Groundwater Development for Iguacu Pilot Basin           |
| Table 6.8 | Master Plan of Groundwater Development for Tibagi Pilot Basin           |
|           |                                                                         |

# List of Figure

Figure-2.1 Location Map of Parana State

C-iv

| Figure-2.2 | Topography Map of Parana State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure-2.3 | Climatic Zone in Parana State and the and the address several transmission of the back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure-2.4 | Monthly Average Rainfall in Parana State and the second state of t |
| Figure-2.5 | Iso-countour Map of Specific Discharge in Parana State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure-3.1 | Geological Map of Parana State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure-3.2 | Typical Occurrence of Basalt Lava in Serra Geral Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure-3.3 | Sketch of Micro-fractures in a Outcrop of Cascavel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Figure-3.4 | Analysis Result of Micro-fractures in Outcrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure-4.1 | Relationship Between mQ7 and Catchment Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure-5.1 | Aquifer Distribution of Parana State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure-5.2 | Trilinear Diagram for Principal Aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure-5.3 | Pattern Diagrams of Respective Aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure-5.4 | Aquifer Model of "Karst" Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure-5.5 | Tank Model of Transitional Groundwater Resources of "Karst"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure-5.6 | Reservoir models of Botucatu Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure-5.7 | Aquifer Model of Northern Area and Southern Area in Serra Geral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure-5.8 | Aquifer Model of Caiua Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure-5.9 | Aquifer Model of Quaternary Fan Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure-6.1 | Aquifer Distribution in Iguacu Pilot Basin (1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure-6.1 | Aquifer Distribution in Iguacu Pilot Basin (2/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure-6.1 | Aquifer Distribution in Iguacu Pilot Basin (3/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure-6.2 | Aquifer Distribution in Tibagi Pilot Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure-6.3 | Plan of Urgent Project in Curitiba Metropolitan Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure-6.4 | Groundwater Develpment Plan with Piezometric Monitoring Borehole for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Cascavel a standard the second standard standard standard standard standard standard standard standard standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure-6.5 | Groundwater Development Plan with Piezometric Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -          | for Guarapuave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure-6.6 | Groundwater Development Plan with Piezometric Monitoring Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -          | for Medianeire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**C−v** 

| i.          |                                                                    |
|-------------|--------------------------------------------------------------------|
| Figure-6.7  | Groundwater Development Plan with Piezometric Monitoring Boreholee |
|             | for Francisco Beltrao                                              |
| Figure-6.8  | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Palmas                                                         |
| Figure-6.9  | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Dois Vizinhos                                                  |
| Figure-6.10 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Pato Branco                                                    |
| Figure-6.11 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Londrina                                                       |
| Figure-6.12 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Apucarana                                                      |
| Figure-6.13 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Arapongas                                                      |
| Figure-6.14 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
| · ·         | for Cornelio Procopio                                              |
| Figure-6.15 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Cambe                                                          |
| Figure-6.16 | Groundwater Development Plan with Piezometric Monitoring Borehole  |
|             | for Ibipora                                                        |
|             |                                                                    |

C-vi

۲

## APPENDIX

Short Report for Seminor II

UMA ABORDAGEN PARA O DESENVOLVIMENTO SUSTENTÁVEL DE RECURSOS HIDRICOS SUBTERRÁNEOS NO ESTADO DO PARANÁ

## CHAPTER 1. INTRODUCTION

1.1 Scope

The scope of the Study of Hydrogeology and Groundwater resources covers the following items with consideration of sustainable development :

1) to assess groundwater resources and to formulate strategy for Parana State

- Geological and hydrogeological settings,
- Borehole inventory survey,
- Water quality test of boreholes,
- Describing and modeling of groundwater reservoirs and/or aquifers,
- Estimation of groundwater productivity,
- Assessment of groundwater resources in respective aquifers
- Development of an implementation strategy for the permissive sustained yield
- Preparation of recommendations for management policy of groundwater resources

2) to evaluate groundwater resources and to formulate master plan for the pilot basins;

- Detailed modeling and description of groundwater resources
- Estimation of spatial groundwater productivity
- Assessment of spatial groundwater resources
- Formulation of groundwater development plan for future water demand
- Proposition of promising projects
- Preparation of recommendations for urgent groundwater development

### 1.2 Contents of the Report

This report is composed of mainly three part, assessment of the existing conditions strategy for the whole Parana State and Master Plan for the selected two Pilot Basins :

Assessment of Existing Conditions

Chapter 2 Physical and social Circumstance

Chapter 3 Geology

C-1

## Strategy

| Chapter 4 | Strategy for Groundwater Resources |
|-----------|------------------------------------|
| Chapter 5 | Groundwater Resources Assessment   |

## Master Plan

Chapter 6 Master Plan for Pilot Basins

## CHAPTER 2, PHYSICAL AND SOCIAL CIRCUMSTANCE

## 2.1 Location

Parana State is located within the central east side of the South America Continent and it occupies an southern part of Republic Brazil (Figure-2.1). It is bordered on the east by the Atlantic Ocean, the north by Sao Paulo State, the west by Matto Grosso do Sul State and Republic Paraguay, and the south by Santa Catarina State and Republic Argentine.

Parana State straddles approximately latitudes between 22°35'S and 26°45'S; and longitudes between 48°20'W and 54°50'W. It covers an area of about 200,000 km2.

#### 2.2 Topography

The area of Parana State is bordered by the Atlantic Ocean in the east, the Parana River in the west, the Parana-Panema River in the north, and the Branches of Iguacu River in the south.

The topographic features of Parana State are generally characterized by the following four areas from east to northwest (Figure-2.2):

- the Coastal Range

- the First Plateau

- the Second Plateau

- the Third Plateau

偏

The Coastal Range and the others are divided by the Coastal Mountains (named with "Serra Do Mar") composed of high mountains in altitude from 1,000 to 2,000 meters.

The Coastal Range is classified into the mountain areas and the Coastal planes. The Coastal planes consist of the Coastal terraces and fans ranging in altitude from 0 to 25 meters. In the mountain areas, the rivers and tributaries have steep gradients and flow into the Atlantic Ocean.

The First Plateau consists of the upland planes such as Curitiba City and hills with gentle gradients, and it is restricted to the Coastal Mountains in the east and the cuesta mountains in the west and/or northwest. The upland planes are ranging in altitude from 800 to 1,000 meters and the cuesta mountains show the inclination of the geological formations trending to the west and/or the northwest. Some of the rivers and tributaries are flowing into the Parana River and some of them are flowing into the Atlantic Ocean.

The Second Plateau consists of the planes and hills with gentle gradients ranging in altitude from 600 to 1,000 meters. It is restricted to two cuesta mountains in the east and the west. In this Plateau the rivers and tributaries are flowing into the Parana River in final.

The Third Plateau consists of the planes and hills ranging in altitude from 300 to 800 meters. It is restricted to the cuesta mountains in the east and the Parana River in the west. The hills in this Plateau are generally steeper than the hills of the other plateaus.

#### 2.3 Climate

Parana State strides across the tropic of Capricorn. The climate condition is approximately divided into the following two zones :

- tropical zone; the coastal range
- subtropical zone ;the other ranges(Figure-2.3).

There are four seasons in the subtropical zone.

The distribution of monthly rainfall at the selected rainfall gauging stations is shown in Figure-2.4. In Parana State, there is 1,400mm to 2,500mm of annual rainfall depth in the average of current twenty years (1974-1993) and there are moderate rainfalls through a year (Figure-2.4).

The specific discharge distribution in annual average is shown in Figure-2.5.

## 2.4 Vegetation and Surface Cover

The land use in Parana State is occupied with mainly cultivation fields, urban area and forest areas. The forest coverage in Parana State becomes about 5 to 8 % in the ratio.

63

## 2.5 Population

The present and projected future distribution of population in Parana State is summarized in Table-2.1.

#### 2.6 Water Demand

The water demand is projected for the turget years of 2005 and 2015 as shown in Table-2.2.

## CHAPTER 3. GEOLOGY

### 3.1 Geological Outline

The area of Parana State is underlain chiefly by Precambrian metamorphic rocks intruded by granitic intrusive rocks ranging Precambrian age to Paleozoic age, and sedimentary rocks of Paleozoic to Cenozoic with Mesozoic volcanics as shown in Figure-3.1.

Precambrian seems to occupy the core of geological units in Parana State and the younger groups of Paleozoic and Mesozoic are overlying on Precambrian. The core of it forms Precambrian Sheild and the latter ones form a Stable Platform in Palana State. Therefore, Precambrian is foundations of the First Plateau, and Paleozoic and Mesozoic are foundations of the Second Plateau and the Third Plataeu in individual.

The shape of the younger groups in the plane shows a Arc Structure inclining toward north and/or west side in the order of age(to see the geological profile in Figure-3.1).

The geological series from Middle Paleozoic to Mesozoic compose of a part of Parana Basin Structure which is the biggest Stable Platform in South America as shown in Figure-3.2. The Parana Basin occupies the catchment area of the Parana River and it forms a Stable Platform with the elongated axis of the basin structure along the Parana River trending to the NNE-SSW in direction. In Parana State, the formations of the Parana Basin show a arc structure named with Ponta Grossa Arc.

The all geological units from Precambrian to Paleozoic are cut by faults and/or they are intruded by dolerite dikes. The axis of arc structure is trending to NW-SE in direction and the arc is named with "Ponta Grossa Arc".

#### 3.2 Stratigraphy and Permeability

#### 3.2.1 Outline

The all geological complexes, groups and all formations are shown in Table-3.1. They are classified into sub-stages.

Precambrian are divided into the following three geological complexes :

- Archean series
- Proterozoic series
- Proterozoic ( to lower Paleozoic ) intrusive complex.

Paleozoic are divided into the following three stages :

- Lower Paleozoic

C-5

- Middle Paleozoic
- Upper Paleozoic.

## 3.2.2 Archean

Archean system is composed of Serra Negra granurite complex.

#### (1) Serra Geral Granulite Complex

This complex is restricted as blocks in an area of 510 square kilometers and it occurs in the coastal mountains area of inside of the First Plateau. The distribution of this complex is trending to NE-SW in direction.

This complex is composed of meta-dioritic rocks, serpentine, norite, gneissic granulites, gneiss, schists. The K-Ar age determination shows 2,530-2,710 m.a. (million years ago) analyzed by a rock sample of retrometamorphosed granodiorite. It shows granulite faces in the metamorphose stage.

This complex has no porous porosity and it shows little permeability.

## 3.2.3 Proterozoic

Proterozoic is divided into two stages (lower, and upper), and respective stages are composed of some complexes and groups. It occupies the main part of the First Plateau and Sheild in Parana State

## (1) Lower Proterozoic

1) Pre-Setuva Complex

This complexes are composed of the following five (5) complexes :

- Pien Basic and Ultra Basic Complex
- Coastal Migmatic Gneiss Complex
- Morro Alto Gneiss
- Rio das Cobras Formation
- Layering Granitic Rocks

They are exposured in areas of about 6,760 square kilometers. They crop out in the main part of the First Plateau of Parana State and those distributions is trending to NE-SW in direction. Curitiba city is overlying on this complexes.

They consist of amphibole gneiss, serpentines, peridotites, migmatites, gneissic migmatites, granites, anatexites, granodiorites, mica schists, and foliated granites. The Rb-Sr age determination shows 2,200 m a to analyzed by homblende gneiss.

The complex is a important component of the Sheild structure in Parana State

They have no porous porosity, but Granitic rocks in this complexes form fractured reservoirs in some cases.

#### 2) Setuba Group

This group is composed of the following three (3) formations :

- Perau Formation
- Turvo-Cajati Formation
- Agua Clara Formation.

This group is located in the central part of the first plateau. It is exposured in areas of about 1,610 square kilometers. The distribution of this group is elongating to NE-SW in direction and it is spattered in small geological units by faults and folding.

This group is composed of carbonate rocks(calcareous schists, marble, dolomite, limestone, and calc-silicate schist) and non-carbonate schists(quartz schists, amphibole schists, mica schists, graphite schists, green schists, and garnet-sillimanite schists). The respective results of age determination show 1,170 m.a-1,330 m.a by Rb- Sr method, 1,400-1,430 m.a. by Pb-Pb method.

This group has no porous porosity but carbonate parts in it are formed microcaves and dolines by chemical corrosion. This group is one of geological units to form "Karst".

### (2) Upper Proterozoic

Upper Proterozoic in Parana State is composed of Acungui Group.

#### 1) Acungui Group

Acungui Group occupys mainly two areas in the central part of the first plateau and it crops out in areas of 4,620 square kilometers. The distribution of this group is elongating to NE-SW in direction.

This group is classified into four (4) formations (Votuverava Formation, Capiru Formation, Itaiacoca Formation, Antinha Sequence Formation). Those formations are composed of alternations of carbonate rocks and non-carbonate rocks. The calcareous rocks consist of calcareous schist, calc-silicate schists, marbles, dolomites, meta-limestones, and meta-calc-silcate rocks. The non-carbonate rocks consist of meta-mudstones, meta-siltstones, quartzites, phyllites, meta-sandstones, meta-conglomelates, and mica schists. The results of age determination show 850-1,250m a of lead natural deposits by Pb-Pb (Promb-Promb) method, 1,100m a. of amphibolite by Rb-Sr method, and 580m a. of amphibolite by K-Ar method.

The parts of carbonate in this group include caves, micro-caves, and dolines in a

shallow depth from the surface. Those occurrences form Karst of topography. This group occupies main part of Karst in Parana State.

## 3.2.4 Upper Proterozoic-Cambrian in Paleozoic

Upper Proterozoic- Cambrian is mainly located in the area of the first plateau, second and the coastal range and it crops out in a area of about 520 square kilometers. It is composed of the followings :

- migmatites, granites and Brazilian anatexites
- porphyritic granites and alaskitic granites (K-Ar; 610 m.a.)
- granites and syenites (K-Ar; 500 m.a.and 630 m.a.)
- sub-alkaline and alkaline granites (Rb-Sr; 600±10 m.a.-495 m.a.)

The above mentioned rock faces are consolidated and they have low porous porosity without fractured porosities.

## 3.2.5 Paleozoic

Paleozoics is classified into Lower Paleozoics, Middle Paleozoics, and Upper Paleozoics in order of older age. Paleozoics are located within the area of second plateau and they crop out in area of about 41,900 square kilometers. Paleozoics is overlain by younger groups in order of age. The overlying arrangement of groups forms a arc structure called Ponta Grossa Arc.

## (1) Lower Paleozoics

This Palaeozoics is located within a core and they crop out in areas of about 300 square kilometers and it is composed of Cambrian and . It is a part of the core of Sheild in Parana State.

It is classified into the following formations :

- Cambrian, Ordovician and Silurian

1) Cambrian

It is composed of Camarinha Formation and Guaratubinha Formation, and areas of these formations are about 100 square kilometers and about 200 square kilometers respectively. Their lithologies are mentioned in Table- 3.1.

They has low porous porosity.

2) Ordovician-Silurian

It is composed of Castro Group, and this Group crops out in a area of about 860 square kilometers.

## (2) Middle Pateozoics

Middle Paleozoics are located within the area of the second plateau and they crop out in a area of about 7,240 square kilometers.

It is classified into the two periods of Ordovician and Devonian. Ordovician is composed of Castro Group and Devonian is composed of Parana Group.

1) Ordovician (Castro Group)

- Castro Group crops a area of about 860 square kilometers and it is dipping to northwest in direction.
- The lithological faces are described in Table-3.1. It's faces shows low porous porosity.
- 2) Devonian ( Parana Group )
  - Parana Group crops an area of about 6,180 square kilometers and it is classified into the two formations of Furnas Formation and Ponta Grossa Formation. This Group forms an arc structure dipping to north - west in direction.

- The lithological faces about the two formations are described in Table-3.1. Sandstones of Furnas Formation are characterized by high porous porosity and they have potential to be good aquifers. On the other hand, mudstones of Ponta Grossa Formation have low permeability.

## (3) Upper Paleozoics (Permian)

Upper Paleozoics are located within the western and northern marginal area of second plateau and they crop out in a area of about 20,910 square kilometers. They are classified into the following three periods :

- Lower Permian; composed of Itarare Group

- Middle Permian; composed of Guata Group
- Upper Permian; composed of Passa Dois Group

They are trending to west - north in dipping and they form a big arc structure called Ponta Grossa Arc.

1) Lower Permian ( Itarare Group )

Itarare Group occurs as a thick arc stripe and it crops out in areas of about 13,950 square kilometers. This Group is classified into three formations of Campo do Teniente Formation, Mafra Formation and Rio do Sul Formation.

Their lithological faces of this group are described in Table-3.1. Their lithological faces show that there are some porous beds and there are mainly low porous beds.

### 2) Middle Permian (Guata Group)

Guata Group occurs as a thin stripe and it crops out in areas of about 4,820 square kilometers. This Group is classified into the two formations of Rio Bonito Formation and Palermo Formations.

The lithology of the two formation are described in Table-3.1.

The sandstones and calcareous beds in Rio Bonito Formation have a potential to be porous media but the other beds are characterized with low porosity.

## 3) Upper Permian (Passa Dois Group)

Passa Dois Group is located outside the arc margin of Paleozoics in the west to the north area of second plateau, and crops out in a area of about 16,080 square kilometers.

This Group is classified into the four formations of Irati Formation, Serra Alta

Formation, Terezina Formation and Rio do Rasto Formation.

The lithologies of their four formation are mentioned in Table-3.1.

There are mainly sandstone and calcareous beds in Rio do Rasto Formation in mainly and their bed has possibility to be porous beds.

## 3.2.6 Mesozoic

Mesozoic is located in the western to the northwestern area of Parana State and it covers the third plateau. It crops out in an area of about 132,030 square kilometers.

Mesozoics is classified into the following periods :

- Trias-Jurrassics : composed of Sao Bento Group

Cretaceous : composed of Baura Group

(1) Trias-Jurrassics (Sao Bento Group)

Sao Bento Group is located within the third plateau and the rim of the second plateau, and it crops out an area of about 108,420 square kilometers.

It is classified into the following two formations :

- Piramboia Formation and Botucatu Formation (both called Botucatu Formation in Parana State)
- Serra Geral Formation

1) Botucatu Formation

Botucatu Formation is located within the thin rim of the end margin of the second

C-10

plateau. It crops out in areas of about 2,870 square kilometers. Therefore, this Formation is underlain under areas of the third plateau and it is trending shallow to deep from east to west in direction.

It is composed of fine to medium whitish sandstones and reddish siltstones deposited in banks. They are characterized by the sedimentary texture of cross laminations and horizontal stratification.

These sandstones has a high porosity except baked zones caused by intrusions of doleritic dikes.

#### 2) Serra Geral Formation

This Formation is located in main parts of the third plateau and it crops out in a area of about 105,540 square kilometers.

It is composed of tholeitic basalt lava flows with massive, amygdaroidal and aphanitic occurrences, few andesite lava flows and intercalations of fine grain sandstone lenses. The basalt volcanism is thought as continental fissure eruptions.

Respective Basalt lavas consist breciated zones in the bottom and top of flows in typically, and parts of this Formation in shallow depth from the surface is often weathered to obtain a secondary porosity.

### (2) Cretaceous ( Bauru Group )

Bauru Group is mainly located in the northwestern part of Parana State and it crops out in areas of about 23,620 square kilometers.

Bauru Group is composed of Caiua Formation and the other formations but there are few exposure of the other formations in Parana State. Therefore, Bauru Group in Parana State might be thought as Cretaceous consists of Caiua Formation in Parana State approximatively.

Caiua Formation is composed of alternations of very fine to medium grain whitish sandstones and reddish siltstones. The occurrences of alternations show small to large crossed laminations and large crossed stratifications. The sandstones is characterized by porous porosity.

#### 3.2.7 Cenozoics

Cenozoics is located in spattered areas of river sides and marine side over Parana State and it crops out in areas of about 6,400 square kilometers. It is composed of Quaternary series. Quaternary series occur with thin thickness generally. Quaternary series is composed of recent alluvium deposits, fan deposits, lacustrine deposits, and marine terrace deposits which consist of gravels, sands, and silts.

There are only two named Cenozoic formations in all Cenozoics of Parana State. Their



named formations are Alexandra Formation and Guabirituba Formation.

1) Alexandra Formation

This Formation is located in Coastal range. It deposited in delta and in fan.

It is composed of sands, silts and gravels.

This Formation is characterized with high permeability.

## 2) Guabirotuba Formation

This Formation is located in Curitiba Metropolitan area and it crops out in areas of about 920 square kilometers.

It is classified into the following two parts :

- Lower part of Guabirotuba Formation : composed of alternation of sands, silts and gravels deposited in alluvium.
- Upper part of Guabirotuba Formation : mainly composed of silts and fine
  - sands with silt matrix.

The lower part is characterized with permeable beds.

#### 3) Marine Terrace deposits

Those deposits is located in the coast side. This is composed of fine sands and silts deposited in beach.

The sands is characterized with porous porosity.

## 4) Recent Alluvium Deposits

Those deposits are restricted to river sides and they are composed of sands, silts, and gravels.

The sands and gravels are characterizes with high permeability generally.

## 3.3 Structural Geology

## 3.3.1 Lineament Structure Represented in Satellite Images

Lineaments of Edited Satellite Image is characterized with banded zonal structure due to Ponata Grossa Arc and dike swarms trending NW-SE in direction.

In addition, the image shows the presence of big faults which consist of faults trending to various directions and controlling recent drainage.

## 3.3.2 Fault

#### (1) Fault Occurrences

Faults could be recognized by the above image and field observations during reconnaissance field survey (Figure-3.3, and Figure- 3.4).

The discussion about faults in this section is considered with bigger faults and faults cutting to basalt dikes.

The bigger faults are classified into the following few faulting group due to trending in direction:

- NNE-SSW group ; This group is characterized to be concerned with formations of recent major topography like directions of Parana River, Coastal Mountains and Beach. Moreover, faults of this group are cutting and dislocating Caiua Formation and the other fault groups.
- The dislocations are recognized as a right lateral movement apparently.
- NWW- SEE group (to NW); This group is charcterized to cut the dike swarms and Caiua Formation, and to dislocate streams and dikes in left lateral of apparent fault sense.
- NE-SW group ; This group is characterized to cut Caiua Formation in left lateral of apparent fault sense.

## (2) Faulting stages

To sum up the former part, the stage of faulting among the above fault groups is confirmed as follows :

- the youngest faulting is presented by NNW- SSE group.
- the second younger faulting is presented by NWW-SEE group.
- the third younger faulting is presented by NE-SW group.

#### 3.3.3 Fold

(1) Fold occurrences

Folding structure in outcrop scale are observed in Acungui Group and Setuba Group of Precambrian age. Therefore, the above mentioned Ponta Grossa Arc is considered of a bending structure which is a type of folding, but this arc can not recognized in outcrop scale. In addition, the bending structure of Ponta Grossa Arc influence the stucture of Serra Geral Formation but it is cut by the distribution of Caiua Formation.

## (2) Folding stages

In consequence of the above occurences, two principle folding stages are revealed. The first principle folding stage is Precambrian age when the folds are characterized with tight and overturning fold axes to be accompanied with thurustings. The second principle folding stage is an age from Paleozoic age to Upper Jurrassic age, and before Cretaceous age. The second one is characterized by Ponta Grossa Arc and bending caused half doming uplift.

## CHAPTER 4 STRATEGY OF GROUNDWATER RESOURCES

#### 4.1 Strategy of Groundwater Resources Assessment

This study of groundwater resources in Parana State was conducted on the following two bases of considerations :

a) "Sustainable Development" was proposed by Rio-Summit of United Nations in

1992.

2.5

b) "Good Use" of groundwater resources, both quantitatively and qualitatively.

On the former viewpoint, the groundwater utilization should be based on the "Circulating Groundwater Resources" but not "Stored Groundwater Resources". Therefore, "Permissive Yield" was proposed in the groundwater resources assessment of this study and it included the meaning of permissive sustained yield. On the later viewpoint, groundwater resources in Parana State were characterized with variety in tridimensional distribution and water quality. The variety was studied to be useful for "Save Resources" of groundwater resources and good cost-benefit of groundwater development.

Sustainable yield for "Sustainable development" should be assessed by "Circulating Groundwater Resources". "Circulating Groundwater Resources" is represented with Transitional Recharge such as river baseflow and Deep Recharge. The former recharge is equivalent to river baseflow and the later one is the same as underground flows to vicinity reservoirs under the ground and/or to the Ocean, directly from their reservoirs. Their recharges are designated as groundwater resources which is circulating cycle of shorter range periods from the surface water to surface water through aquifers, in comparison with the circulation period of groundwater utilization from intake of water resources to the discharge of them. On the other hand, "Stored Groundwater Resources" is characterized by the longer circulating period of groundwater resources for the above mentioned human utilization.

The transitional recharge is equivalent to river baseflow and it is estimated as mean annual baseflow. In fact, there are no baseflow data in Parana State but there are Q7 data prepared by Parana state though some of them are insufficient. The Q7 data are represented as the annual minimum baseflow to be a continuity discharge of river for seven days within the dry season. But the biggest baseflow occurs during rainy season than during the dry season, annually. In terms of the above mentioned, Q7 data is thought to be a lower number than the number of annual mean baseflow at fluvial stations and it is considered to be a safety number of baseflow for groundwater utilization. Consequently, annual mean baseflow by fluvial stations is considered to be simulated with annual Q7 under the concept of "Sustainable Development of Groundwater Resources". The estimation of groundwater resources by aquifer could be carried out by use of the analyzed mean annual Q7 (in the later, written by mQ7) shown in Figure-4.1. In this analysis, it is necessary to check data condition of monitoring by analyzing respective fluvial stations.

In addition, the results of pumping test such as borehole yield should be applied for the following two items for groundwater development but not for estimation of groundwater resources :

Borehole productivity by aquifers and/or spatial borehole

productivity by spatial aquifers

Borehole intervals to keep non-interference distance for borehole.

## 4.2 Strategy of Groundwater Management

#### 4.2.1 Groundwater Development

For groundwater development, it was studied that the consideration of "Good Use" was important and necessary for water demand, both quantitatively and qualitatively. Two samples were described as follows :

1st. sample : Curitiba Metropolitan

The groundwater in Karst area is generally marked by clean water with high hardness in chemistry. This kind of water resources is potable but not suitable for heating water systems of industry use. Moreover, the distribution of Karst area is close to housing area in the northern part of Curitiba Metropolitan Area but far from Araucaria of industrial area in Curitiba Metropolitan Area. On the other hand, the aquifer of Guabirotuba Formation is located near the industrial area, and it is characterized by low hardness in chemistry. The aquifer of Guabirotuba Formation is suitable, both in distribution and chemicals to supply for heating water systems of industrial use.

2nd. sample : Londrina

In Londrina, there are big coffee factory and it is using hydrothermal

resources for boiling water of industrial use from Botucatu Formation by deep wells within the factory land. The aquifer is characterized by warm to hot water with alkalinity and deep sheeted resources in the third plateau. In the above connection, the temperature characteristics of the aquifer, its physical characteristics and distribution are effectively practiced as an good example of "Good Use" in the coffee factory. The required water supply amount was estimated by the projected water demand for the respective municipalities. The supply amount should be supplied with considerations such as the above mentioned, both quantitatively and qualitatively and it should be supplied by borehole complexes consisting of several boreholes(1 to 7 boreholes) by each complex.

The yield amount of each borehole complex should be estimated based on the spatial groundwater potential assessed by Q7 data, and each well should keep an interval distance to check the well-interference. In addition, the developed area of groundwater resources is to be prevented by recharging area obtained by the calculation of specific recharge area.

In general, the specifications of borehole for groundwater development could follow SANEPAR's specifications at present. This is due a fact that SANEPAR has many experiments for groundwater development.

#### 4.2.2 Groundwater Monitoring

At present, there are no continuous monitoring data for groundwater resources in Parana State. On the viewpoint of "Sustainable Groundwater Utilization", the arrangement of monitoring system for groundwater resources is one of the most important matters for groundwater management in Parana State. Purposes of monitoring for it are considered as follows:

- To adjust the yield of the groundwater development by each spatial areas for water supply,
- To study continuously the behaviors of groundwater resources, both quantitatively and qualitatively by sectored areas and groundwater basin,
- To prevent the over-pumping of groundwater resources, spatially and regionally,
- To manage groundwater basins, quantitatively and qualitatively.

Main monitoring items of groundwater resources consist on their quantity and quality.

The monitoring of quantity of groundwater resources could be done, considering the following items by respective aquifers in general :

- Piezometric observation of static level in borehole : All aquifers except "Karst",
- Fluvial discharge observation of river water to analyze the baseflow ; "Karst".

In actual operation of the monitoring, the above mentioned methods would be combined with the priority to choose main observation system. The monitoring of quality of groundwater resources could be conducted by the chemical analysis of water samples taken from boreholes regularly and temporally.

The analyzed chemical components should follow the chemical standard components of domestic water and the analysis of components of presumed contaminant materials for groundwater resources such as agricultural chemicals should be added.

In the wider area such as Parana State, the monitoring operations for the resources would be expected to be conducted by developing project of groundwater such as "Karst Project" by SANEPAR. In addition, it is necessary to carry out the monitoring operation for high priority area of groundwater utilization (industrial use in Araucaria, Curitiba Metropolitan area) and borehole concentrated areas (such as the Center of Curitiba City).

#### CHAPTER 5. GROUNDWATER RESOURCES ASSESSMENT

## 5.1 Existing Borehole Data and Database

## 5.1.1 Existing Borehole Data

Boreholes have been drilled by SANEPAR, Parana governmental departments and related institutions, municipality offices, private firms and by individuals. Borehole drilling is preceded by the following procedure at present :

- Formatted request letter for drilling to IAP, with the following items; owner of well, drilling company, purpose of drilling, daily discharge rate in plan, drilling site/depth/diameter, filter plan etc.
- Division of hydroresources management in IAP investigates the request letter.
- The division in IAP gives the authorization for the request drilling by judgment about the request drilling.
- The authorization requires report of drilling result.

However, this procedure had started from 1988 and many boreholes had drilled before this procedure without request letters and judgment by IAP.

Registered records were those received from 1988 to December 1993 accounted for 3,104 boreholes. The records consist of the followings :

- IAP's handling data accounted for 1,100 boreholes stored in IAP's database in governmental computer center without water quality data.
- SANEPAR's handling data accounted for 1,800 filed in respective drilling reports.
- IAP's records of the drilling requests accounted for 304 except the above boreholes.

In actually, the above boreholes data maybe cover the principle boreholes in Parana State but there are many boreholes without records in Parana governmental institutions.

#### 5.1.2 New database of Well Inventory

The new database of well inventory was created to fulfill the following purposes discussed among counterparts of Parana State and JICA expert :

C-19

- Collection of all boreholes data and compilation into one system
- Integration of drilling data (including pumping test data) and water quality data
- Easy access to the new well inventory data to construct the new database of well inventory on the marketed database software "Access by Micro Software" in a personal computer.

On the basis of the above discussions, the new database of well inventory was decided to be composed of about 150 items for the each borehole in group meeting (refer Figure-4.1). The data input was conducted by a local consultant firm and all the inputted data have been cross-checked by the counterparts of Parana State.

The sub-contract covers followings :

The disk of database of well inventory in Parana State (5 sets of disks); the size of database was about 5.8 megabits originally, which was compressed to about 1 megabits.

- The table of all inputted well data for database of well inventory was printed in A,B and C of data list books.
- Each well inventory is printed out in the 17 books of well inventory data as shown in Table-5.1.

#### 5.2 Basic Characteristics Test of Groundwater Resources

#### 5.2.1 Pumping Test of Selected Boreholes by This Study

This test was conducted in order to compare and cross-check the aquifer characteristics between the result of pumping tests and data of the new well inventory. The tests were carried out with the 8 sets of wells in four (4) principal aquifers in Parana State on the basis of the technical specifications attached to in the Report of Pumping Test (stored in JICA office of SEPLAN) conducted by a sub-conducted local consultant firm.

The comparisons and considerations were done between the result of above pumping test and the pumping data of the new well inventory, their aquifer characteristics are shown in Table-5.2.

In Table-5.2, there are differences among the values of critical yield, Specific Yield and Interference of Well between the well inventory data and the pumping test data conducted a local consultant. It is the reason why the former items are average of each aquifer and the latter ones are value of a particular tested well.

On the view of the regional development of groundwater resources, it is assumed reasonably for these three items to use the average value of the well inventory in each aquifer.

## 5.2.2 Water Quality Test of Selected Wells by This Study

#### (1) Result of water quality test

The well water quality tests were conducted to check and consider the present condition of groundwater pollution caused by human activities in urban areas. The test items are the following 7 (seven) components (described on Table-5.3) for 50 wells near from principal cities in Parana State including 15 wells in Metropolitan Curitiba :

| 1) N-NH3 | ; | Ammonium                                                                         |
|----------|---|----------------------------------------------------------------------------------|
| 2) N-NO3 | ; | Nitrate                                                                          |
| 3) N-NO2 | ; | Nitrite                                                                          |
| 4) P     | , | Phosphorus                                                                       |
| 5) COD   | ; | Chemical Oxygen Demand                                                           |
| 6) CCT   | • | Coliform Culture Test ( should be analyzed within 24 hours after sampling )      |
| 7) CCF   | • | Coliform Confirmation Test ( should be analyzed within 24 hours after sampling ) |

te altera de

The tests were sub-contracted to a local consultant firm. The results of the tests were recorded in the report (5 sets of the report) edited by the local consultant and the result of the analysis is shown in Table-5.3

## (2) Consideration of the result

The result of the analysis result is summarized as follows :

Ammonium(N-NH3) / Nitrite(N-NO2) : These components indicate a contaminated condition of groundwater by animal excrement. The analyzed results show low value and potable.

Nitrate(N-NO3) / Phosphor : These components are indicators of contamination of groundwater by agriculture fertilizers. The excessive N-NO3 component is known as a material of ill effect of health. In general, the analyzed results shows low value and potable. However, the content of Nitrate for Well No.1(Curitiba City) was analyzed to be 13 ppm which exceeds the maximum permitted value 10 ppm in Japan. It is important to monitor content of Nitrate in Curitiba City.

CCF (Coliform Confirmation Test): Content of this item is not permitted but many water samples contain over the permitted value zero. Since, it took several days to transport long distance from the sampling points to the speified laboratory, the test results with the excess value are not reliable.

C-21

## 5.3 Groundwater Occurrences

## 5.3.1 Aquifer Classification by Geological Unit

In Parana State, there are the following various kinds of reservoirs such as cave in carbonate rocks, fractures in basalt and crystalline rocks, porous in sand stone and/or sand, etc.

Such characteristics of aquifers are based on the rock formation, so that the aquifers are able to be classified as set out below in order of older age (Figure-5.1, 5-2 and 5-3).

(1) the "Karst"

- Composed of carbonate rocks and intercalated with schists and quartzite.
- Exposure area of about 5,740 km<sup>2</sup> ( the exposure area of carbonate rocks are about 3,480 km<sup>2</sup> in it ).
- Reservoirs consist of fractures, caves and dolines concerned with Quaternary sediment of river bed in general (Figure -5.4 & Figure -5.5).

(2) Crystalline rocks

- Composed of granitic rocks and metamorphic rocks.
- Exposure area ----- about 7,540 km2.
- Reservoirs mainly consist of fractures.
- (3) Early Paleozoics
  - Composed of two(2) groups (Castro Group and Parana Group).
  - Exposure area of about 7,150 km2.
  - Reservoirs mainly consist of partial fracture in local, but Furnas Formation is composed of permeable sandstones

(4) Middle ~ Late Paleozoics

- Composed of two groups, Itarare Group and Guata Group.
- Exposure area of about 17,400 km<sup>2</sup>.
- Reservoirs mainly consist of porous media of sand stone accompanied with partial fracture reservoirs.

## (5) Late Paleozoic

- Aquifer is composed of Passa Dois Group.
- Exposure area of about 17,400 km<sup>2</sup>.
- Reservoirs consist of porous media of sand stone accompanied with partial fracture reservoirs.

# (6) Botucatu Formation

- The exposures of this formations are mainly overlain by Serra Geral Formation in the same area as shown in Figure-5.6, so that the water balance of the above two formations in this study of meteorological analysis and river discharge analysis should be estimated as alike same aquifer.
- Botucatu Formation is composed high permeable sandstones (effective porosity;  $\geq 25$  %, Figure-5.6).
- This Formation is distributed within Serra Geral Formation and Caiua Formation in underground and it forms deep sheeted oundwater aquifer.
- The deep sheeted aquifer consists of alkaline hydrothermal resources in 40-60°C.

# (7) Serra Geral Formation

8

- Serra Geral formation is divided to two areas (the northern area and southern area) by geological setting and the well yield.
- Total exposure area of about 101,000 km<sup>2</sup>
- Main aquifers of this Formation is made of weathered layers, porous breciated zones of lava flow unit and opening faults connecting porous parts and the faults form bigger reservoir in scale (Figure-5.7).

#### (8) Caiua Formation

- Composed of mainly sand stone intercalated with arglirous layers.
- Exposure area of about 30,450 km<sup>2</sup>
- Reservoirs consists of porous media of sand stone.
  - This aquifer is characterized by homogeneity of porosity (Figure-5.8)

#### (9) Metropolitan Curitiba Area (except the "Karst" area)

- The aquifers in this area are occupied by the followings; Guabirotuba Formation, the Alluvium sediments and Granitic rocks.
- Exposure area of about 1,130 km<sup>2</sup>
- Reservoirs consist of coarser sediments and fracture in Granitic rocks
- (10) Coastal Range

The aquifers in this area are occupied by the marine terrace deposits and the Quaternary river bed sediments as shown in Figure-5.9.

- Exposure area of about 1,950 km<sup>2</sup>

Reservoirs consists of porous media of sand bed.

C-23

# 5.4 Groundwater Potential of Representive Aquifers

# 5.4.1 Calculation of Groundwater Potential Based on Pumping Test

The calculation of groundwater resources on the basis of pumping test data were roughly calculated by the following formula.

 $GR = A \times Qc / (3.14 \times r wi^2)$ 

GR : Groundwater Resources of Respective Aquifer, A : Area of Aquifer

Oc : Critical Yield of Respective Aquifer, rwi : Radius of Borehole Interference.

However, the above formula is presented a part of groudwater resources which are a "Critical Pumping Yield" and not total volume of groundwater resources.

The calculation results on the basis of the above formula are shown in Table-5.5.

In the rough estimation of groundwater, the groundwater resources of Botucatu Formation was calculated as the bigger amount, because the aquifer of Botucatu Formation is highly confined. However its groundwater resources should be considered to be limited by a water balance of recharge volume.

In the rough estimation, the high potential aquifers in Parana State are as follows :

- 1) Botucatu Formation and Serra Geral Formation
- 2) the "Karst"
- 3) Caiua Formation

#### 5.4.2 Estimation of Groundwater Storage Based Pumping Test

The total volume of groundwater resources were estimated on the basis of following formula and data summarized by the well inventory database as shown in Table-5.6:

$$QT = (A / Ai) \times Sc \times D \times (3.14 \times Ir^{2})$$

Sc = Qt /  $(3.14 \times ds \times Ir^2)$ 

A : Area of aquifer, Ai : Area of pumping interference,

D : Tickness of reservoir for each aquifer ; the tickness assumed by conceptional aquifer model

Sc : Coefficient of storage (= effective permeability )

Qt : Total volume of discharge from pumping start time to being time of critical yield

Ds : Drawdown of water level during pumping tests

Ir : Radius of well interference during pumping test

C-24

# 5.4.3 Permissive Yield Assessment of Groundwater Potential Based on Recharge

In general the groundwater resources are composed of circulating parts and storing parts. Their circulating parts, in their turn, were consisted of two parts : transitory recharge and deep recharge, but deep recharge parts are considered very small amount in the average of long period like as 20 years.

In this study, the amount of circulating groundwater resources was calculated to be equal to transitory recharge on the assumption that amount of deep recharge is zero, so that the data of meteorological and river discharge are used the average of for about twenty  $(17 \sim 20)$  years.

The transitory recharge of groundwater resources is estimated by the analysis of baseflow, because baseflow of river discharge is due to discharge of groundwater.

In the view of the above baseflow, the partial estimation of transitory groundwater resources for each aquifers and groundwater basins were studied using the low discharge data of 355 day's discharge in "Flow Regime" by JICA Team and the low discharge data of Q7 by IAP, and the mean base flows in respective exposure units of aquifers were decided by the relationship between the above mentioned low discharges (355 day's discharge and Q7) and the catchment areas corresponding to the discharge (Figure-4.1). Therefore, the average of Q7 for long years like as 17 years in a catchment areas was discussed almost same as baseflow analyzed by hydrograph, in the meeting of groundwater resources group. Therefore, the amount of baseflow in this study were adopted that average of Q7 and 355 day's discharge. By the above mentioned considerations, the groundwater potentials of respective aqufers in Parana state on the basis of water circulation are assessed as shown in Table-5.7.

In the assessed result, the baseflow of Curitiba Metropolitan area is smaller than the anothers. The reason is estimated that the all circulating flows of groundwater resources in Curitiba Metropolitan area are not trending to the Iguacu river basin but some of the flows are discharged to the Coastal range and the "Karst" area. In addition to the above, the discharge mechanism can be caused by the following two reasons :

- (a) The altitude in Curitiba Metropolitan area is much higher than the the Coastal range and the "Karst".
- (b) The opening fractures cutting through Pre-Cambrian Series are connecting their higher reservoirs to lower reservoirs and the regional circulation flows are tending from higher reservoirs to lower reservoirs (from the Upper Iguacu basin to the Coastal range and/or the Ribeira basin).

Therefore, the baseflow analysis shows high potential of transitory groundwater resources for the following aquifers :

- (a) the area of Caiua Formation----- 1,056 m<sup>3</sup>/d/km<sup>2</sup>
- (b) the "Karst " area-----785  $m^3/d/km^2$
- (c) the northern area of Botucatu and Serra Geral Formations---672 m<sup>3</sup>/d/km<sup>2</sup>

Furthermore, the estimated results of circulating groundwater resources present the total yields of a circulating groundwater, and the areal permissive yield appears to be about 10% of the yield from experimental estimation. However, the permissive percentages of aquifers in the "Karst" and Serra Geral Formation (consists two parts; the Northern part and the southern part) are can be estimated much ligher by approximately 30%, 20% and 15%. That is because their aquifers structures are very suitable for transposition of groundwater resources, and the critical yield of well in the above areas are bigger.

The total storage volumen of groundwater resources are estimated about 10,000 times of permissive recharge (in day rate) and about several ten times to a hundred times of groundwater resources calculated by critical yield of well and others.

# CHAPTER 6 MASTER PLAN FOR PILOT BASINS

# 6.1 Methodology of Master Plan Study

Master Plan Study was conducted for the following two (2) items:

- a) Assessment of spatial potential of groundwater development
  - Analysis of specific mean Q7 (mQ7) by aquifer in the pilot basins.
  - Assessment of potentiality of groundwater development for classified municipalities.
- b) Planning of groundwater management
  - Listing and plotting the existing well sites and discharge rate (yield) on the selected municipalities.
  - Collection of the latest spatial data of mean borehole yield and interference radius mainly from SANEPAR.
  - Borehole site selection and planning of pipeline systems for the selected municipalities.
  - Collection of the current cost data for the on-going "Karst" groundwater development and others by SANEPAR.
  - Implementation schedule of urgent groundwater development

# 6.2 Definition of Boundary of Study Area

The major municipal urban areas located in the Iguaçu and Tibagi river basins straddle over the boundary of other river basins. Therefore, the pilot basins for the study of the groundwater resources are delineated including a part of the neighboring groundwater basins related to the major urban demand centers as defined below:

1) Iguaçu Pilot Basin (Figure-6.1)

Iguaçu river, Karst basin on the right bank of Ribeira river, a part of the left bank of Piquiri river, and Paraná III rive basin,

#### 2) Tibagi Pilot Basin (Figure-6.2)

Tibagi river, a part of the left bank of Cinzas river, and upstream of Pirapo river.

#### 6.3 Assessment of Spatial Groundwater Potential in Pilot Basins

# 6.3.1 Assessment of Iguaçu Pilot Basin

The Iguaçu Pilot Basin is composed of Karst, Crystalline Rocks, Furnas Formation, Upper-Middle Paleozoic, Upper Paleozoic, Botucatu Formation, Serra Geral Formation north, Serra Geral Formation south, Guabirotuba Formation as shown in Figure-6.1.

In Iguacu Pilot Basin, reliable data of mQ7 and catchment areas at fluivial stations are

listed in Table-6.1. On the basis of the above data, the spatial groundwater potentials in Iguacu Pilot Basin are estimated by same way as the permissive yield assessment mentioned in the former chapter and they are shown in Table-6.2.

Of these aquifers Furnas Formation is treated as an independent aquifer in the Master Plan study, while it was analyzed together with other formation in consideration of distribution area in the study for Strategy. The site importance of this aquifer is not so high but its groundwater potential is higher than common potential of aquifers in Paraná State.

The specific mean discharge which is defined as the specific mean of the annual minimum of average discharge of continuous 7 days  $(mQ_7)$  is used for the key data for the assessment of groundwater potential in this study. The specific mean discharge based on base flow is not able to be estimated for Furnas Formation because its distribution area within the pilot basin is very small and an appropriate river discharge gauging station to be used to calculate the base flow of aquifer does not exist. The specific mean discharge of Guabirotuba Formation is also not available due to the same reason.

An statistical analysis of base flow data of these aquifer was conducted, and even one data or data having large dispersion are utilized based on an overall assessment. However, the same result of the study for Strategy is adopted for some aquifers of which specific mean discharges was disqualified by the statistical analysis. The same rule was applied to the Tibagi pilot river basin.

# <u>Karst</u>

Groundwater potential of Karst is high as evaluated in the study for Strategy. The Karst area included in the pilot basin has a drainage area of  $3,500 \text{ Km}^2$ , and about  $8.75\text{m}^3$ /s can be developed within the permissible yield. This groundwater resource is appropriate for large scale development since its borehole productivity (borehole yield) is extremely large as 0.44 l/s/borehole.

The water quality of this aquifer is adequate for drinking water. In fact it is actually utilized as the mineral water source for Curitiba. However, it is assessed to be not adequate for such industrial water resources as hydro-thermal and steam resources because of its high hardness and the Total Dissolved Solid (TDS).

#### **Botucatu Formation**

The permissible yield of Botucatu Formation can not be estimated in this study, and it is difficult to apply the concept of permissible yield to this formation at present. Its permissible yield can be technically estimated by use of the drawdown data of groundwater table, but the drawdown data are not available. The specific mean discharge also cannot be applied to this formation because of the nature of its geologic structure.

However, the amount of its groundwater is assessed to be very large based on its extraordinarily large borehole productivity (124 1/s; average of 9 boreholes) and

storage volume. Its storage volume is assessed to be more than 20 times larger than that of Karst and a little less than 10 times of that of Serra Geral Formation.

This aquifer forms layering, and its water temperature becomes 40-60 °C at the depth of deeper than 800 m. The average potential of hydrogen is pH 8.01 (alkaline), and the mean natrium (Na) content is 29.2mg/l. This groundwater resource, therefore, is assessed to have high potential of industrial water use with appropriate control of pH and Na by mixing with other fresh water resources in consideration of confined water pressure, pH level and content of natrium.

# Serra Geral Formation north

This aquifer is broadly distributed from near Cascavel to the north, but the study area within the Pilot basin is limited to the area of 1900  $\text{km}^2$  near Cascavel. Though the spatial permissive yield and mean productivity of borehole of this formation is less than a half of those of Karst, its potential is relatively large and is assessed to be an adequate groundwater resource for medium scale development.

The water quality of this aquifer is appropriate for both domestic and industrial water supply.

# **Guabirotuba Formation**

This aquifer is distributed in Curitiba metropolitan area (CMA) with a basin area of 900 Km2, and its groundwater resource is widely used for the domestic and industrial water in CMA. Monitoring of groundwater of this formation is required with high maneuverability because it is distributed in the urban area. It will be required to measure promptly chemical contents in response to necessity not limiting to the standard observation items for drinking water because there is a possibility of contamination of groundwater.

The total permissive yield of the whole aquifer is estimated to be about 0.7 m3/s (average of CMA). Various kind of adverse effects on the use of wells will be expected in the central urban area of Curitiba city in the near future because present groundwater use for industries is estimated to be very high in this area.

#### Serra Geral Formation south

The aquifer of Serra Geral Formation is broadly distributed with a basin area of 32,000 Km2 in the area middle reach to downstream of the Iguaçu Pilot Basin. The groundwater resource of this aquifer is assessed to be appropriate for small to medium scale development based on its spatial permissive yield and productivity.

# **Furnas Formation**

The aquifer of Furnas Formation is assessed to be appropriate for small scale development based on its productivity of borehole.

#### Other Aquifers

Groundwater development of other aquifers not aforementioned is assessed to be

unfeasible except for the rural areas facing shortage or lack of other fresh water sources because of its low permissive yield and productivity.

#### 6.3.2 Assessment of Tibagi Pilot Basin

Tibagi Pilot Basin is composed of Crystalline Rocks, Furnas Formation, Upper-Middle Paleozoic, Upper Paleozoic, Botsucatu Formation, Serra Geral Formation north, Serra Geral Formation north as shown in Figure-6.2.

In this Piot Basin, the spatial groundwater potentials are estimated by the same way as Iguacu Pilot Basin. The data of mQ7 and catchment areas are shown in Table-6.3 and the estimation of spatial groundwater potential in Tibagi Pilot Basin is shown in Table-6.4.

#### **Botucatu Formation**

The aquifer of Botucatu Formation is exposed on the ground surface in a limited area, but it lies broadly under Serra Geral Formation in the northern part of the Tibagi Pilot Basin.

The development potential of groundwater of this aquifer is assessed to be high as well as that in the Iguaçu Pilot Basin. Its groundwater is used as hot water in coffee production factories in Londrina, and is anticipated to be widely used in the future.

# Serra Geral Formation north

The aquifer of Serra Geral Formation north is distributed broadly in the north of the Tibagi Pilot Basin. Its development potential of groundwater is assessed to be high and appropriate for medium to large scale because its permissive yield and productivity is higher than those of the Iguaçu Pilot Basin.

#### **Furnas Formation**

The aquifer of Fumas Formation is assessed to be appropriate for small scale groundwater development based on productivity of borehole as well as that in the Iguaçu Pilot Basin.

#### Other Aquifers

Groundwater development of other aquifers not aforementioned is assessed to be unfeasible except for the rural areas facing shortage or lack of other fresh water sources because of its low permissive yield and productivity as well as those in the Iguaçu Pilot Basin.

#### 6.4 Mater Plan for Groundwater Management

#### 6.4.1 Classification and Zoning of Region for Groundwater Development

The urban areas are classified into the following categories by considering characteristics of each area.

# (1) Type-A: Large urban areas

The large urban areas are defined that their population will be more than approximately 100,000 in 2015.

The following urban areas belong to Type-A as large urban areas:

- A) Iguacu River Basin B) Tibagi River Basin
  - a Ponta Grossa

Londrina

Apucarana

- Curitiba metropolitan area
  - Cascavel
  - Foz do Iguacu
  - Guarapuava

The urban areas included in Curitiba Metropolitan Area are as shown below:

- Curitiba, Almirante Tamandare, Colombo, Piraquara, Sao Jose dos Pinhais, Araucaria, Campo Largo, Pinhais, Fazenda Rio Grande,

Quarto Barras, Campina Grande do Sul, Balsa Nova, Contenda, Mandirituba.

(2) Type-B: Middle urban areas

The middle urban areas are defined that their population will be more than approximately 50,000 in 2015.

The following urban areas belong to Type-B as middle urban areas:

A) Iguacu River Basin B) Tibagi River Basin

| •  | Francisco Beltrao | - Castro           |
|----|-------------------|--------------------|
| -  | Pato Branco       | - Telemaco Borba   |
| .= | Medianeira        | - Comelio Procopio |
| -  | Dois Vizinhos     | - Arapongas        |
| -  | Palmas            | - Cambe            |
| -  | Uniao da Vitoria  | - Ibipora          |
|    |                   | - Irati            |

#### (3) Type-C: Other urban areas

The other urban areas are classified into the following zoning by considering topographic conditions:

1) Zone-a: Urban areas located nearby main streams

These areas locate nearby main stream or downstream of tributaries, therefore problems of the shortage of intake rate and water quality are few.

2) Zone-b: Urban areas located upstream of second or third tributaries

Although there are problems of possible water development volume and intake method, water quality problems are quite few.

3) Zone-c: Urban areas located at top or ridge of mountains

These areas require to intake the water from the downstream of urban town, and water volume, water guality and intake method are involved in many problems.

One hundred and one municipalities belong to the Iguacu river basin, out of which 17 urban areas are classified into Type-A and other 6 urban areas are classified into Type-B. Therefore, 78 urban areas belong to Type-C urban areas.

Forty-three municipalities belong to the Tibagi river basin, out of which 3 urban areas are classified into Type-A and other 7 urban areas are classified into Type-B. Therefore, 33 urban areas belong to Type-C urban areas.

# 6.4.2 Groundwater Management for Municipalities

(1) Municipalities subject to master plan study and methodology

The study on the groundwater management was carried out for the municipalities ranked at the Type-A and B. The study of groundwater management for the municipalities ranked at the Type-C was not done and should be carried out by such as future feasibility studies in each individual case, because the amount of newly required water demand of them were studied too small to construct a new borehole or new intake facilities.

In this study, the master plan of groundwater development was conducted on the basis of the following items :

- All amount of the required water demand of the municipalities except Curitiba Metropolitan Area was supplied by groundwater development,
- For Curitiba Metropolitan Area, the Master Plan Study was done to develop four (4) m<sup>3</sup>/s of groundwater development within 7.235 m<sup>3</sup>/s of newly required water demand,

- The groundwater development plan for each municipalities was based on the spatial permissive yield and spatial borehole productivity within each municipality area,

The spatial borehole productivity was estimated by mean productivity of present SANEPAR boreholes within each minicipality except small diameter boreholes of personal use,

The number of required drilling boreholes was estimated by the following formula:

# N = Q / Pb

Ν

: number of required drilling boreholes,

- Q : required water demand (m<sup>3</sup>/s),
- Pb : mean borehole productivity (m<sup>3</sup>/s),
- The developing area of new drilling boreholes was estimated by the following formula :
  - Ad = Q / Yp Ad : Developing area of new drilling

Q : required water demand (m<sup>3</sup>/s),

Yp : Permissive yield  $(m^3/s/km^2)$ ,

The drilling sites of required boreholes were arranged within into the developing area of new drilling boreholes in iso-distance under the consideration of pipe line arrangement,

The groundwater development for each municipality was scheduled to supply the sub-section of water demand step by step,

Monitoring system was planned for sustainable groundwater development, the permissive yield was estimated in tentative and it's yield should be decided as standard value to conserve the groundwater resources and to develop groundwater resources in good use.

In this Sectoral Report, the required water demand was studied to be supplied by only groundwater resources, but in the actual plan the combined development plan of the surface water and groundwater resources was examined in the other Sectoral Report of Water Resources Development).

· (

# (2) Groundwater demand and potential for the municipalities

In planning of the development of the groundwater resources, it is assumed that the water demands for domestic and industrial uses and agricultural water requirement are supplied by development of the groundwater resources in order to evaluate the dependability of the ground water resources for the water supply to the municipalities.

Tables-6.5 and 6.6 indicate the aforesaid water demands in the nunicipalities with the Type-A and B. In the both pilot basins, the municipalities have a sufficient amount of the permissive yield comparing with the water demands at 2015 in general. The groundwater management plan for the municipalities with the Type-A is summarized hereunder:

a) Iguaçu pilot basin

Curitiba Metropolitan Area (CMA)

The incremental water demands during 20 years till 2015 is estimated at

7.235 m<sup>3</sup>/s and the aquifers in this area are the Karst, Guabirotuba Formation and Crystalline Rocks.

The groundwater resources in Karst aquifer is able to meet the aforesaid water demands during 20 years till 2015 in CMA. The development in this aquifer requires observation of river water level and discharge along the river reaches and piezometric monitoring of groundwater table in order to manage and control the groundwater development within the permissive yield.

In the aquifer of Guabirotuba Formation, there exist many boreholes in the central part of Curitiba City. Therefore, it is considered that the total extracted water amount is currently over the permissive yield in this aquifer taking into account a number of bore holes and productivity. In order to use effectively the available groundwater, establishment of piezometric monitoring network and rearrangement of location and number of the existing boreholes based on the result of monitored data and its analysis are strongly desired to be undertaken immediately.

In CMA, Crystalline Rocks lies under Guabirotuba Formation and new provision of a borehole at the open fractures in the rock layer is able to develop some amount of water corresponding to a little water demands or industrial water demand for a few factories. But, it is low possibility to identify the open fractures. From the mentioned aspects, this rock layer is excluded from planning. e

#### Cascavel, Foz do Iguaçu and Guarapuava

The incremental water demands during 20 years till 2015 is estimated at  $0.542 \text{ m}^3$ /s for Cascavel,  $1.043 \text{ m}^3$ /s for Foz do Iguaçu and  $0.292 \text{ m}^3$ /s for Guarapuava. The aquifers for theses municipalities are the Serra Geral Formation north and underlying Botucatu Formation. Both the aquifers have groundwater potential to meet the incremental water demands during 20 years till 2015. It is proposed to develop both the aquifers in order to reduce the length of pipeline system in a water supply zone by extracting large amount of water at a location within permissive yield of these Formations.

# b) Tibagi Pilot Basin

#### Ponta Grossa

The incremental water demand during 20 years till 2015 is 0.433 m<sup>3</sup>/s in total. The aquifer for this municipality are the Middle Paleozoic and the permissive yield almost corresponds to the incremental water demand at 2015. However, its productivity of a borehole is low level and therefore, a lot of boreholes are required to be provided for satisfying the aforesaid water demands.

#### Londrina and Apucarana

The incremental water demand during 20 years till 2015 is 0.950 m<sup>3</sup>/s for Londrina and 0.232 m<sup>3</sup>/s for Apucarana. The aquifers for theses municipalities are the Serra Geral Formation north and underlying Botucatu Formation. The combination of development of both the aquifers, which are applied for development for Cascavel is also proposed for these areas.

#### (3) Groundwater development for municipalities

The groundwater resources development plan for the municipalities is established as shown Tables-6.7 and 6.8.

The main features and draft implementation schedule of the proposed projects are summarized in Tables-6.7 and 6.8 and the main features for each municipalities are represented in Figures-6.3 $\sim$ 6.16.

Among the mentioned projects, the groundwater development projects for Curitiba Metropolitan Area and the municipality of Cascavel are required to be urgently implemented taking into account the present water demand/supply balance situation. The detail of these projects are described as follows:

a) Curitiba Metropolitan Area (CMA) (Figure-6.3)

# Groundwater development in the Karst aquifer

The Karst aquifer is the most prospective one as water source for the domestic and industrial water supply. Assuming the stagewize development of the Karst aquifer, this aquifer is divided into four (4) areas as shown in Figure-6.3 and these areas are planned to be developed in order of distance from CMA. The main features of bore holes planned to be provided in the respective area are as follows:

| Descriptions                                            | Main I | Features          |
|---------------------------------------------------------|--------|-------------------|
| a) Permissive yield                                     | 3.1    | m³/s              |
| b) Diameter                                             | 10     | inches            |
| c) Drilling depth                                       | 60     | m                 |
| d) Average productivity                                 | 160    | m <sup>3</sup> /h |
| e) Number of productive boreholes                       | 26     | holes             |
| f) Success ratio of borchole                            | 75     | %                 |
| g) Catchment area                                       | 400    | km²               |
| h) Number of observation stations for river water level | 5      | sites             |

The main features in the table are based on the following considerations:

The number of boreholes was determined by the data of permissive yield, borehole productivity and new demand.

Drilling location is planned to be made at a site, where the surface layer is not affected by the karstification, in order not to induce land subsidence or cave-in due to extraction of groundwater. It is necessary to review the specific mQ7 and determine the optimum permissive yield based on the result of monitoring on the river flow discharge and extraction amount from boreholes.

Management of groundwater uses and development in the aquifer of Guabirotuba Formation

In order to effectively use and develop the groundwater resources in this aquifer, it is required to establish an monitoring system for the groundwater table and water quality. The proposed monitoring system shown in Figure-6.3 is comprised of piezometric monitoring borehole of 20 locations among which fifteen (15) boreholes are planned to be located surrounding the central area of CMA and the other five (5) ones are installed in the central area. The water quality is also planned to be observed at monitoring boreholes in order to monitor water pollution due to infiltration of sewage and/or industrial waste water. Based on the data obtained through monitoring of groundwater table, it may be necessary to rearrange or integrate the existing boreholes in order not to induce the adverse effects such as land subsidence, lowering of ground water table, reduction of extraction of groundwater amount, and so on.

b) Cascavel (Figure-6.4)

The city area of Cascavel is located around the watershed boundary of the Iguaçu and Piquiri river basins, and therefore it is necessary for use of surface water to provide pumping-up facilities with significant hydraulic head which needs high construction cost and operation and maintenance cost. While, the Serra Geral Formation north and Botucatu Formation, rich groundwater aquifers, is underlying in the city area.

Taking into account the water resources conditions in Cascavel, the groundwater development of the aforesaid aquifers is proposed for domestic and industrial water supply for Cascavel as shown in Figure-6.4.

Since it is considered that the confined water table of aquifer of the Botucatu Formation is at about 600 m in elevation around the city area of Cascavel, the ground elevation at the drilling site is planned to be selected at EL. 600 m lower than the elevation of the city area and the drilling depth of the boreholes are required to be about 1,300 m. It is required to identify the open fractures in the aquifer of Serra Geral Formation based on the aerial photographs and fault analysis in order to decide the location of the boreholes. The piezometric monitoring boreholes are also provided at the up- and downstream of the boreholes along the open fractures.

(3) Water Development for Rural Domestic Water

In rural areas, it is difficult to supply the piped treated water systematically by surface water, because demand of domestic water is scattered due to topographical and social condition. Therefore, supply for domestic water will be done by groundwater development.

The following study items should be discussed with municipality wise in the

future study:

- intake rate
- cost for water development
- (4) Water Development for Agricultural Water

Supply method of agricultural water in rural areas is generally a pipeline method with a direct intake using a pipeline and headworks. Therefore, supply for agricultural water will be done by surface water development.

The following study items should be discussed with municipality wise in the future study:

- intake rate
- cost for water development

# 6.5 Unit Cost for Groundwater Development

The unit cost with borehole construction is listed in Table-6.9.

# CHAPTER 7 RECOMMENDATIONS

It is recommended to improve the following two main components of Groundwater Management which are basic necessity in Sustainable Groundwater Development:

- Comprehensive groundwater management
- Integrated monitoring of groundwater resources

#### 7.1 Recommendation on Comprehensive Groundwater Management

The comprehensive groundwater management in "Sustainable Development' is composed of two main component: i.e., Groundwater Development and Monitoring.

(1) Permissive Yield

It is most important for Groundwater Management to determine "Permissive Yield" under the consideration of water balance for respective aquifers and for respective developing areas. The groundwater development should be planned within Permissive Yield. Therefore review of the permissive yield should be conducted by the following ways since the permissive yield in this study has been tentatively determined:

- To review the mQ7 at the river discharge stations,
- To monitor the groundwater table, water balance and water quality by the observation holes and/or the river base flow in the surroundings of the developing areas,
- To set up the good site arrangement of production boreholes and monitoring posts on the basis of the groundwater circulation mechanism,
- To review and analyze the recorded monitoring data.

(2) Guidelines for Development and Management

The groundwater management should establish the following guidelines for groundwater development and monitoring:

- To determine the permissive yield of each borehole,
- To determine the spatial permissive yield in each developing area,
- To determine non-interference distance among pumping boreholes,
- To set up the site arrangement of monitoring posts of observation borcholes and/or fluvial river stations,
  - Design and construction method of the monitoring system.

(3) Long Term Plan of Groundwater Development

It is recommended to prepare and review a Long Term Plan of Groundwater Development for the major urban areas in Paraná State every 5 years.

# (4) Long Term Plan for Groundwater Monitoring System

It is recommended to prepare a long term plan for the integrated monitoring system of groundwater for the superintendence of regional management of large urban areas in addition to the mandatory monitoring system for respective groundwater projects.

It is also recommended to issue a management report which deals with the conditions of groundwater use, problems and needs in Paraná State once in 5 years.

(5) Legal and Institutional Arrangement

The following legal and institutional arrangement is recommended:

- Legal provision for responsibility of submission of necessary information from government, private and related institutions and organizations, and penal code,
- Legal provision for registration and license for drilling companies and penal code for conditions of concession and permission for groundwater development,
- Legal provision for the mandatory monitoring data including pumping and water quality tests at presence of authorized inspectors for renewal of concession and permission for groundwater use, and penal code such as closure of wells,
- Cost recovery system for the operation and maintenance of the integrated monitoring system by the expense of beneficiaries

# 7.2 Recommendation on Integrated Database of Borehole Inventory

It is recommended to improve the existing database and to upgrade it to a comprehensive database of borehole inventory for Sustainable Groundwater Development in Paraná State. It covers basic information of productivity, hydrogeology (geology, chemistry, hydraulic characteristics), location information, utilization information. The following work items are to be supplemented to achieve this purpose.

- To record the information of borehole locations, geological profiles and borehole profiles by scanner,
- To record the elevation of borehole site,
- To record systematically and annually and to supplement the data of newboreholes and new chemical analysis of water samples taken from boreholes,
- To conduct statistical analysis and review of the stored data including analyses of groundwater utilization, borehole productivity and water quality once in 3 years up to the year 2005 and once in 5 years thereafter.

Provision of a personal computer system with a scanner for exclusive use of database of borehole inventory is necessary.

# TABLES

Table-2.1 Population Distribution of Parana State

|      | •                   |                      |                           | •                        |                          |                      |                            |                          |                            |                        | •••                   | •                                |                               |                        |                            |                           |                                 | . * *                       |                                |                       |                     |                                    | · .                             |                            |                          |             |
|------|---------------------|----------------------|---------------------------|--------------------------|--------------------------|----------------------|----------------------------|--------------------------|----------------------------|------------------------|-----------------------|----------------------------------|-------------------------------|------------------------|----------------------------|---------------------------|---------------------------------|-----------------------------|--------------------------------|-----------------------|---------------------|------------------------------------|---------------------------------|----------------------------|--------------------------|-------------|
|      | Total               | 2.760.500            | 236,300                   | 28.900                   | 52,000                   | 126,100              | 617,100                    | 180,400                  | 63,000                     | 198.100                | 86.200                | 171.700                          | 323,800                       | 77.400                 | 1,240.600                  | 739,600                   | 287,000                         | 321.600                     | 388,100                        | 403.100               | 159.400             | 1,550,900                          | 485,300                         | 419.700                    | 213.600                  | 1 120 400   |
| 2015 | Rural               | 96.200               | 28,900                    | 17,900                   | 35,800                   | 42,300               | 44.700                     | 12,100                   | 31,900                     | 93,500                 | 47.000                | 27.800                           | 29,200                        | 8.800                  | 24,900                     | 8,000                     | 18,700                          | 28.000                      | 34,600                         | 38,900                | 64.500              | 96,200                             | 123,400                         | 147,100                    | 60,700                   | 1 1 6 1 100 |
|      | Urban               | 2.664.300            | 207,400                   | 11,000                   | 16,200                   | 83,800               | 572.400                    | 168,300                  | 31.100                     | 104,600                | 39.200                | 143,900                          | 294,600                       | 68.600                 | 1.215,700                  | 731,600                   | 268,300                         | 293,600                     | 353,500                        | 364.200               | 94,900              | 1,454,700                          | 361,900                         | 272,600                    | 152,900                  | 002 020 0   |
|      | Total               | 2.520,300            | 212,100                   | 29,500                   | 46,900                   | 119.200              | 518,600                    | 107,400                  | 60,800                     | 192,200                | 92.000                | 167,300                          | 311.200                       | 75.700                 | 1.030,800                  | 593,400                   | 273,800                         | 310,100                     | 378,500                        | 380.300               | 138,100             | 1.284.000                          | 477,500                         | 387,900                    | 201.300                  | 000 000 0   |
| 2005 | Rural               | 1.14,200             | 32,300                    | 21,500                   | 36,200                   | 45,900               | 55.300                     | 16,100                   | 34,600                     | 102.200                | 59.500                | 44,500                           | 50.300                        | 15.700                 | 48,000                     | 16,600                    | 34,600                          | 53.300                      | 67,800                         | 71.100                | 78,600              | 158,900                            | 173.300                         | 158.100                    | 70,100                   |             |
|      | Urban               | 2.406.100            | 179.800                   | 8,000                    | 10,700                   | 73,300               | 463,300                    | 91,300                   | 26,200                     | 000'06                 | 32.500                | 122,800                          | 260.900                       | 60.000                 | 982.800                    | 576,800                   | 239,200                         | 256,800                     | 310,700                        | 309,200               | 59.500              | 1,125,100                          | 304.200                         | 229.800                    | 131,200                  |             |
| -    | Total               | 2.086.900            | 180.300                   | 29,900                   | 40,000                   | 106.900              | 415,900                    | 64,800                   | 54.700                     | 175.700                | 96.500                | 168.300                          | 307.900                       | 78,000                 | 836,100                    | 442,500                   | 271,600                         | 319,400                     | 399.200                        | 375,200               | 125.800             | 1,034,900                          | 474,000                         | 338,100                    | 181,500                  | 000 007 0   |
| 1993 | Rural               | 126.400              | 33,700                    | 24,400                   | 33,500                   | 46,000               | 65.300                     | 20,900                   | 34,500                     | 103.600                | 72,400                | 71,300                           | 86,300                        | 28,400                 | 94,900                     | 35.700                    | 65,100                          | 104,600                     | 137,500                        | 132,300               | 91.800              | 265,100                            | 238,800                         | 157.600                    | 75,900                   |             |
|      | Urban               | 1.960.500            | 146,600                   | 5,500                    | 6,500                    | 006'09               | 350.600                    | 43.900                   | 20,200                     | 72,100                 | 24,100                | 97,000                           | 221,600                       | 49,600                 | 741.200                    | 406,800                   | 206,500                         | 214,800                     | 261.700                        | 242,900               | 34,000              | 769,800                            | 235,200                         | 180,500                    | 105,600                  | 2 454 000   |
| Year | No. and NAME of MRH | 01. MRH 268/CURITIBA | 02. MRH 269/L. PARANAENSE | 03. MRH 270/ALTO RIBEIRA | 04. MRH 271/A. RIO NEGRO | 05: MRH 272/ C. LAPA | 06. MRH 273/C.PONTA GROSSA | 07. MRH 274/CJAGUARIAIVA | 08. MRH 275/S. MAT. do SUL | 09. MRH 276/Col. IRATI | 10. MRH 277/ALTO IVAI | 11. MRH 278/N. V. WENCESLAU BRAZ | 12. MRH 279/N. V. JACAREZINHO | 13. MRH 230/AIg. ASSAI | 14. MRH 281/N. N. LONDRINA | 15. MRH 282/N. N. MARINGA | 16. MRH 283/N. Novis. PARANAVAI | 17. MRH 284/N. N. APUCARANA | 18. MRH 285/N. Novis. UMUARAMA | 19. MRH 286/C. MOURAO | 20. MRH 287/PITANGA | 21. MRH 288/Extr. Oeste PARANAENSE | 22. MRH 289/Sudoeste PARANAENSE | 23. MRH 290/ C. GUARAPUAVA | 24. MRH291/ MEDIO IGUACU |             |

C+T.ŧ

| i Water Demand |
|----------------|
| udic           |
| Sa             |
| 4              |
| 2              |
| Table          |

| -                               |  |
|---------------------------------|--|
| (MRB)                           |  |
| ~                               |  |
| 19                              |  |
| 5                               |  |
| ల                               |  |
| Ξ.                              |  |
| 8                               |  |
| .S.                             |  |
| bì.                             |  |
| Ċ,                              |  |
| ∞.                              |  |
| y Region ()                     |  |
| 2                               |  |
| 0                               |  |
| or Demands by Region (          |  |
| ປ.                              |  |
| Ċ.                              |  |
| 3                               |  |
|                                 |  |
| H                               |  |
| x                               |  |
| ы                               |  |
| [Water]                         |  |
| ۰Ð                              |  |
| - 😑                             |  |
| <u>_</u> ~                      |  |
| 3                               |  |
| ~                               |  |
| 1                               |  |
| - 51                            |  |
| - 1-4                           |  |
| 15                              |  |
| Ě                               |  |
| - 5                             |  |
| · #                             |  |
|                                 |  |
|                                 |  |
|                                 |  |
| d<br>D                          |  |
| L bu                            |  |
| 2nd J                           |  |
| c and J                         |  |
| tic and J                       |  |
| stic and J                      |  |
| estic and J                     |  |
| mestic and J                    |  |
| omestic and J                   |  |
| Domestic and J                  |  |
| Domestic and J                  |  |
| d Domestic and J                |  |
| ed Domestic and J               |  |
| ted Domestic and J              |  |
| reted Domestic and J            |  |
| vierted Domestic and Industrial |  |

| provision Non-serie and Industrial Water Demands by Region | ial Water | Demand     | s by Regi         | On (MIKH) | Â          |              |          |                  |          |          |            |          |          |                  | Ì        |
|------------------------------------------------------------|-----------|------------|-------------------|-----------|------------|--------------|----------|------------------|----------|----------|------------|----------|----------|------------------|----------|
|                                                            |           | 1993       |                   |           |            | 64           | 2005     |                  | -        | :        |            | Ň        | 2015     |                  |          |
|                                                            |           | Demand     | <b></b>           |           | Base Case  |              | 2        | Alternative case | -        |          | Base Case  |          | Altc     | Alternative case |          |
| No. and NAME OI MKG                                        | Tirban    | Industrial | Toatal            | Urban     | Industrial | Total        | Urban    | Industrial       | Total    | Urban    | Industrial | Total    | Urban L  | Industrial       | Total    |
|                                                            | 3         | 23.92      | 505.65            | 456.55    | 315.29     | 771.84       | 456.55   | 293.10           | 749.65   | 679.51   | 409.68     | 1,089.19 | 607.31   | 355.03           | 96234    |
| 01 MRH 268/CURUTIBA                                        | 14.06     | 2          | 23.29             | 28.63     | LST        | 30.20        | 28.63    | 1.57             | 30.20    | 41.35    | 0.54       | 41.89    | 41.35    | 0.54             | 41.89    |
| 02 MRH 269/L PARANAENSE                                    | 2 44 5    | 0.76       | 3                 | 3.98      | 0.92       | 4            | 3.98     | 0.92             | 4.90     | \$.66    | 1.13       | 6.19     | 5.06     | 1.13             | 6.19     |
| 03 MRH 270/ALTO RIBEIRA                                    | 57        | 0.97       | 4.87              | 6.33      | 0.44       | 6.77         | 6.33     | 0.44             | 6.77     | 9.10     | 0.60       | 9.70     | 01.6     | 09'0             | 9.70     |
| 04 MRH 271/A. RIO. NEGRO                                   | 8         |            | 13.81             | 60 Y      | 0.0        | 25.92        | 16.09    | 9.83             | 25.92    | 22.07    | 13.26      | 35.33    | 22.07    | 13.26            | 35.33    |
| OS MICH Z72/C. LAPA                                        | 100       | 100.22     |                   | 2 Y       | 5          | 117.36       | 66.78    | ľ                | 12022    | 19.16    | 62.23      | 163.46   | 107.99   | 73.66            | 181.65   |
| 06 MRH 273/C. PONTA GROSSA                                 | 47.35     | 10.00      | 10.00             |           | 000        | 10 00        | 5        |                  | 28.80    | 31.57    | 14.30      | 45.87    | 31.571   | 20.68            | 52.25    |
| 07 MRH 274/C. JAGUARIAIVA                                  | 7.45      | 1.24       | 14.02             | 14:24     | 14-00      | 10.04        | 100      |                  | 5 KK     | 1011     | 946        | 11.48    | 11.03    | 0.52             | 11.55    |
| 08 MRR 275/S. MAT. do SUL                                  | 629       | 9<br>0     | 699               | 178       | G-7        | 8            | 110      |                  | 200      | 27 FC    | 36         | CY 51    | 1972     | U. Y             | 20.07    |
| 09 MRH 276/Col. IRATI                                      | 20.21     | 2.60       | 22.81             | 25.95     | 3.96       | 16.62        |          |                  |          |          |            |          |          | -                |          |
| 10 MDH 277/ALTO IVAL                                       | 11.10     | 0.17       | 11.27             | 12.42     | 0.24       | 12.66        |          |                  | 12.66    |          |            | S.       | ANET     |                  |          |
| TO PROVE A TO PARTY                                        | 19.35     | 0.74       | 20.09             | 22.59     | 1.18       | 23.77        | 22.59    | 1.18             | 23.77    | 30.05    | • •        | 3.2      | 50.05    | 1.01             | 51.66    |
| CANTERNAL CALLS A CONTRACT TO ANY IN                       | 35.41     | 10.59      | 98'9 <del>1</del> | 42.01     | 14.95      | 56.96        | 42.01    | 14.95            | 56.96    | 56.67    | 14.95      | 71.62    | 56667    | 19.45            | 76.12    |
| 12 MKH 2/9/N.V. JACAUCTURIO                                | 20%       |            | 10.74             | 10.22     | 1.56       | 11.78        | 10.22    | 1.56             | 81.11    | 13.55    | 1.56       | 11.21    | 13.55    | 1.55             | 15.10    |
| 13 MKH 280/AIE, ANAI                                       | 81.15     | ľ          | 85 961            | 132.30    | 56.36      | 188.66       | 132.30   | 62.04            | 194.34   | 195.16   | S6.36      | 251.52   | 217.12   | 90.38            | 307.49   |
| 14 MRR 281/N.N. LONDRINA                                   |           |            |                   | 7K 01     |            | 120.87       |          |                  | 124.70   | 116.22   | 44.86      | 161.08   | 129.43   | 72.05            | 201.48   |
| 15 MRH 282N.N. MARINGA                                     | 68.05     | 7/107      |                   | 70 72     |            | 12           |          |                  | 47.56    | 5023     | 7.60       | 57.83    | 52.05    | 10.30            | 80       |
| 16 MRH 283 N. Novis, LONDRINA                              | 31.23     | 16.4       |                   | 200       |            |              |          |                  | 19       |          | ľ          | 14.61    | 56.28    | 25.16            | 81.44    |
| 17 MRH 284N.N. APUCARANA                                   | 36.73     | 10.94      |                   | 41.30     |            | 11.00        |          | 1                | 77 47    |          |            | 77 48    | 67 00    | 12.68            | 09'08    |
| 118 MRH 285N.Novis, UMUARAMA                               | 45.91     | 642        | 23                | 51.10     |            | 60.00        |          |                  |          |          |            | No vo    | 27.17    |                  | 20.20    |
| 19 MRH 286/C. MOURAO                                       | 43.15     | 8.02       | 51.17             | F-13      |            | 63.60        |          |                  |          |          |            | 8 8      |          | 7 62 4           | 8 16 96  |
| 20 MRE 287/PITANGA                                         | 14.47     | 0.50       | 14.97             | 18.64     |            | 19.57        |          |                  |          | ſ        |            |          |          | 75.72            |          |
| 21 MRH 288/Extr.Oeste PARANAENSE                           | 10.011    | 52.06      | 171.07            | 165.21    | 101.55     | 266.76       |          |                  |          | 4        |            | 20.040   | 14.77    |                  | 1.00     |
| 77 MRH 289/Sudgeste PARANAENSE                             | 5451      | 12.99      | 67.50             | 64.46     | 23.62      | <b>88.08</b> |          |                  |          |          |            | SCAUL    |          | 19400            |          |
| 23 MRH 290/C. GUARAPUAVA                                   | 38.38     | 16.59      | 55.47             | 52.37     | 29.41      | 81.78        |          |                  |          |          |            | 92701    |          | 1                |          |
| 14 MER 201 ARDIO ICUACU                                    | 20.87     | \$.95      | 23.62             | 27.18     | 13.26      | 40.44        | 27.18    |                  | 2        |          |            | 8.8      | 100-10   | 1011             |          |
| TOTAL OF PARANA STATE                                      | 1,031.21  | 480.60     | 181121            | 1,431.70  | 732.93     | 2,164.63     | 1,431.70 | 0 732.93         | 2,164.63 | 2,090.49 | 732.93     | 2,823,42 | 2,072.04 | 980.59           | 3,052.63 |
|                                                            |           |            |                   |           |            |              |          |                  |          |          |            |          |          |                  |          |

| E                            | RA               | SYMBOL     | PERIOD                                  | GROUP                                 | FORMATION            | LITHOLOGY (MAIN FOSSILS                                                                     |  |
|------------------------------|------------------|------------|-----------------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------------------------------------|--|
| CEN                          |                  | Qa         | QUATERNARY                              |                                       | · · ·                | alluvium.<br>inconsolidated marine sediments.                                               |  |
|                              | 5 m.y            | Qm<br>Qg   | <1.8 m.y.                               |                                       | GUABIROTUBA          | clays, arkoses, loams, sands and gravels.                                                   |  |
| <u> </u>                     |                  | Kba        | <1.0 mj.                                |                                       | ADAMANTINA           | thin sandstones, siltstones and brown                                                       |  |
|                              |                  | Kosa       | CRETACEOUS                              | BAURU                                 | SANTO ANAS-          | laminites.<br>sandstones and laminites.                                                     |  |
| U U                          |                  |            |                                         |                                       | TACIO                | violet sandstones (Theropoda)                                                               |  |
| <u>S</u>                     | e<br>V           | Kbc        | 140 to 65 m.y.                          |                                       | CARUA                | •                                                                                           |  |
| l is                         | 230 to 65 m.y    | KAs        | -                                       |                                       |                      | doteritic dikes and sills, syenite plutons, phonolite and carbonatites.                     |  |
| B                            | เลี -            | JKsg       | · · · · · · · · · · · · · · · · · · ·   |                                       | SERRRA GERAL         | basalt lavas and sills, with andesite lavas.                                                |  |
| · ·                          |                  |            | JURASSIC<br>TRIASSIC                    | SÃO BENTO                             | PIRAMBOIA            | sandstones and siltstones with few                                                          |  |
|                              |                  | JTpb       | 140 to 230 m.y.                         |                                       | AND BOTUCATU         | conglomerates (Collurousaria and Therapsid                                                  |  |
|                              |                  | Pb         |                                         | -                                     |                      | gabbro intrusions with alkaline differentiation green or red siltstones, snadostones and    |  |
| 1.                           | . F              | Porr       | ×                                       |                                       | RIO DO RASTO         | calcarenite (Endothiodon, Leinzia, Terraio                                                  |  |
|                              |                  |            | UPPER                                   |                                       | TEREZINA             | Phyloteca and Calamites)<br>siltstones and calcarious rocks (Pinzonella                     |  |
| <b>.</b>                     |                  | Ppt        | L L                                     | PASSA                                 |                      | neotropica)                                                                                 |  |
|                              | ľ                |            |                                         | DOIS                                  | SERRA ALTA           | laminites and shales (Maackia, Tholone<br>Acantholeaia)                                     |  |
|                              |                  | Ppsai      | PERMIAN<br>280 to 230 m.y.<br>MEDIUM    |                                       | IRATI                | muotones, shales and pyrobitumenous shale                                                   |  |
|                              |                  |            | PERMIAN<br>80 to 230 m.<br>MEDIUM       |                                       | PALERMO              | (Mesosaurus brasiliensis)<br>gray siltstones (Cardiocarpus and Dadoxylo                     |  |
|                              |                  |            | N to to                                 | GUATA                                 |                      | sandstones, siltstones, shales, limestone and                                               |  |
|                              |                  | Pg         | 53                                      |                                       | RIO BONITO           | and coal beds (Plicoplasia sp; Sanguinolites<br>brasiliensis, Glossopteris and Gangamopteri |  |
|                              | . ŀ              |            |                                         |                                       |                      | gray shales and siltstones, sandstones and d                                                |  |
|                              |                  | <b>2i</b>  | ver                                     |                                       | RIO DO SUL           | mictites (Chonetes sp; Langella imbituve<br>Warthia sp; Heteropectem catharina)             |  |
|                              | 570 to 230 m.y.  | ri .       | LOWER                                   | ITARARÉ                               | MAFRA                | sandstones, siltstones and laminites (Elonic                                                |  |
| 2                            | 20               |            |                                         |                                       | CAMPO<br>DO TENENTE  | gondwanus)<br>coarse sandstones, siltstones, dyamictites.                                   |  |
| PALEOZOIC<br>570 to 230 m.V. |                  | Dppg       | DEVONIAN                                | · · · · · · · · · · · · · · · · · · · | PONTA GROSSA         | gray shales and siltstones (Australocoelia<br>tourteloti and Metacryphaeus australis)       |  |
|                              |                  | Dpf        | 345 to 395 m.y.                         | PARANÁ                                | FURNAS               | sandstones and siltstones (Rounaltia furnai)                                                |  |
|                              |                  |            |                                         |                                       |                      | siltstones, sandstones, arkose, conglomerate                                                |  |
|                              | [                | Oc         | ORDOVICIAN<br>500 to 435 m.a            | CASTRO                                |                      | rhyolite, rhyolitic pyroclastics; few andesite                                              |  |
|                              | ł                | Cg         |                                         |                                       | GUARATUBI-<br>NIJA   | rhyolites, andesites, siltstones, sandstone conglomerates.                                  |  |
|                              |                  | Ct         | CAMBRIAN                                |                                       | CAMARINIIA           | siltstones, mudston, conglomerates and                                                      |  |
|                              |                  |            | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                       |                      | arkose.<br>alkaline granites, syenites and alaskites.                                       |  |
| 1.                           | * .              | Суа<br>Сут | 570 to 500 m.y.                         | GRANO-                                |                      | gray hornblend and hornblend + biotite                                                      |  |
|                              |                  |            |                                         | TOIDS                                 |                      | granodiorites, monzonites and granites<br>creamy and reddish gneissose granites, with       |  |
|                              | 5.<br>           | Crg        |                                         |                                       |                      | megacrystals of K feldspars.                                                                |  |
|                              |                  | PSygn      |                                         | -                                     |                      | gneissose granites of anatexite.<br>metaritmites, metasandstones and                        |  |
| ;                            |                  | PS22       | 0                                       |                                       | ANTINIIA<br>SEQUENCE | metalimestones, few metaconglomerates.                                                      |  |
|                              |                  | · ·        | No.                                     |                                       | ITATACOCA            | metasiltstones, metaritmites, dolomitic<br>marbles, dolomites, metasandstone, quar          |  |
| 1.                           |                  | PSal       | N N N N N N N N N N N N N N N N N N N   |                                       | HAIACOCA             | and micaschists                                                                             |  |
|                              |                  |            | ЕК РКОТЕКОZ<br>1000 ю 570 m.y.          | AÇUNGUI                               | CAPIRU               | metasilistones, metamudstones, grap<br>phytlites, dolomitic marbles, dolomits, u            |  |
|                              | <b>)</b>         | PSac       | 848                                     | AÇUNGU                                |                      | sandstones.                                                                                 |  |
|                              | 2500 to 570 m.y. |            | UPPER PROTEROZOIC<br>1000 to 570 m.y.   |                                       | VOTUVERAVA           | metasilistones, metamudstones, metarite<br>states, metarenites and micaschists. limes       |  |
|                              | 220              | PSav       | 5                                       | ÷ .                                   |                      | and dolomites.<br>banded migmatites, micaschists and quartz                                 |  |
|                              | 2500 to 570 m.y. | PSm        |                                         | <u></u>                               | AGUA CLARA           | calcareous schists, marbles, micasc                                                         |  |
| · }                          | 0 %<br>2 %       | PIsac      | OIC                                     |                                       |                      | metabasite, manganese rocks.                                                                |  |
| 1                            |                  | Dista      | Ž Ž Ž                                   | SETUVA                                | TURVO-CAJATI         | garnet-sillimanite schists, actinolite-t<br>schist, cale-silicate schists, dolomitic mi     |  |
| · .                          |                  | Plste      | /<br>/ER PROTEROZ<br>2500 to 1800 m.y.  |                                       |                      | and calc-silicate rocks.<br>calcareous-schists, micaschists, metaba                         |  |
|                              |                  | Pisp       | PRO<br>to I:                            |                                       | PERAU                | amphibolites and gartzites, metavolcanics,                                                  |  |
|                              | <br>             | Pipsm      |                                         |                                       |                      | banded migmatites, gneisses on strips, o<br>gneisses, quartzite to magnetite.               |  |
|                              |                  | Pipss      | LOWER PROTEROZOIC<br>2500 to 1800 m.y.  | PRESETUVA<br>COMPLEX                  | <b>}</b>             | amphibolites, metabasites, serpentines                                                      |  |
|                              | · · ·            | 1.1622     | ×                                       |                                       |                      | taleschists.<br>charnockites, granulites, magnesian se                                      |  |
| ARC                          | HEAN<br>0 m.y.   | Asn        | · · · · · · · · · · · · · · · · · · ·   | SERRANEGRA<br>COMPLEX                 | • • •                | amphibolites, micaschists and quartities.                                                   |  |

General Stratigraphy of Parana State Table 3 1

| 500.8000: 1 N <sup>#</sup> SIRIE: 2                                                                                            | CADASTRO DE POCOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TY. CONFERCIO NICH LEAN E PLAN DO PARTY                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Nº         SIRIE:         2           T.         105N+rcuctor cus capus         2           Classe do Dado         :         3 | utirização e conservação dos recrusos hidricos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aguit.Principal                                                                          |
| Data de Cadastro : 4                                                                                                           | subterrineos do estado do parana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tipo: 22 Era: 20                                                                         |
| 11. LOCALIZAÇÃO DO POCO                                                                                                        | O CROQUE DE LOCALEZACIO :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Formacio: 21                                                                             |
| Latituda : 5<br>Localtuda: 6                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aguif.Secundario<br>Tipo: 25 Era: 23                                                     |
| ***************************************                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Formacio: 24                                                                             |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Afinassoto Laga Principal (L/min)                                                        |
| Hunicipio: 11                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de 26 mate 27 m, Qip 28                                                                  |
| Localizacijo : 12                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Atlassanto Lesa Socundario (L/min)                                                       |
| 111.DOCUMENTO DO POCO<br>Nose do Proprietirio : 13                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ds 29 mate 30 m, Qis 28"                                                                 |
| Nee Beresa Preturecio :                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nivel Estatico(N.E.): 31 *                                                               |
| 14                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y.LITOLOGIA                                                                              |
| Uso do Asua : 15                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litologia 1:de 32-1 m, ate 32-2 m                                                        |
| Datianda Utilizada: 16 m³/D                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                       |
| Yipo do Boesba: 17                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| Profundidade : 18 m                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eltoiogia 2:de 33-1 m, ate 33-2 m                                                        |
| Potencia da Booba a Outoros :                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                       |
| 19                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| YI. PERFURACAO                                                                                                                 | D PERFIL LITHOLGOICO, CONSTRUTIVO E PERFILAGEN ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Litologia 3:de 34-1 m. ate 34-2 m.                                                       |
| Data Inle/Cone : 39                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                                       |
| Katodo/Perf. : 40                                                                                                              | A state of the second s  | Litologia 4;de 35-1 m, ate 35-2 m                                                        |
| Ditatros(col) :                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litologia 4:06 30*1 H, 216 30*2 H<br>36                                                  |
| \$1: 41 ,de 0 mate 42 m<br>\$2: 43 ,de 42 mate 44 m                                                                            | (1,1) = (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1 | <b>3</b> 0                                                                               |
| \$3: 45 .de 44 m ate 46 m                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litologia 5;de 36-1 m, ate 36-2 m                                                        |
| \$4; 47 de 46 mate 48 m                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                       |
| \$5: 48 .de 43 m ate 50 m                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                                                                        |
| \$6: 51 , de 50 m ate 52 m                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litologia 6:de 37-1 m. ate 37-2 m                                                        |
| Revestigent :                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                       |
| ¢1: 53 .ce 0 mate 54 m                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| \$2; 55 ,da 56 n ate 57 n                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Litologia 7:de 38-1 m, ate 38-2 m                                                        |
| \$3: 58 .de 59 mate 60 m                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>38</b>                                                                                |
| ¢4: 61 ,de 62 m ate 63 m                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ø5: 64 "de 65 mate 66 m                                                                                                        | a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VII. TESTES DE PRODUCIO                                                                  |
| \$6: 66-1, de 66-2m ate 66-3m                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equipament/Tipo-Protund.:                                                                |
| <u>Cinentacao</u> ; 71po 67'                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86 86 <b>-1 ∎</b>                                                                        |
| Ato: 67                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data Teste/inic, e Conc.; 87 hs                                                          |
| Filtro : Tipo: 68                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de 87-1 ate 87-2                                                                         |
| F-1 do: 69 g. ato 70 m                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>1'Etapa:</u> 01 88 m <sup>3</sup> /h. m <sup>1</sup> /h                               |
| F-2 do: 71 m, ato 72 m<br>F-3 do: 73 m, ato 74 m                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.E. 89 B. N.D. 90 B.TJ 91<br><u>2'Etapa:</u> 92 92 m <sup>3</sup> /h. m <sup>4</sup> /h |
| F-4 de: 75 g, ate 76 g                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.E. 93 R. N.D. 94 R.T2 95                                                               |
| F-5 de: 77 m, ate 78 m                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3'Etape: 03 96 m³/h m³/h                                                                 |
| F-6 de: 79 p, ate 80 m                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.E. 97 m. N.D. 98 m.T3 93                                                               |
| F-7 de: 81 m ate 82 m                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4"Etate: Q6 100 m1/h m1/h                                                                |
| F-8 de: 83 m, ate 84 m                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.E. 101 R. N.D. 102 R. 74 103                                                           |
| Commitario: 85                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recuperacio: 103-1 ha. /Tr 103-2 mª/h                                                    |
|                                                                                                                                | r: 111-1°C VIII.CARACTERISTICAS HIDRAULICAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Transmissividade(I:) IC4 m <sup>1</sup> /h                                               |
|                                                                                                                                | 112 Capacidade Especifica (Sc:) 106-1 m <sup>3</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |
| Turbid.: 113 Dureza: 117                                                                                                       | Coeficiente de Armazenamento(S:) 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |
| Data pH Ce TBS COD T-A1                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87-2                                                                                     |
| 110 114 115 116 135 118                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
|                                                                                                                                | A Profund/Crivo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| CIT SO4 HOO2 FT SIO2 T-Fe                                                                                                      | Kn <sup>**</sup> Ca <sup>**</sup> Ma <sup>**</sup> Na <sup>*</sup> X <sup>*</sup> I Nivel Dinamico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| 124 125 126 127 128 129                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| 124 123 120 121 120 123                                                                                                        | 130 131 132 133 134 A SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (n) 108                                                                                  |
|                                                                                                                                | Q/SV (•T; m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ***************************************                                                  |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WIN 1 1917 190                                                                           |

 Table-5.1
 Print-out Format of Informations for Each Borehole

| Aquifer                      |                | F         | Well Inventory Data |                |              |                         | Pumping Test Data  | t Data      |                |
|------------------------------|----------------|-----------|---------------------|----------------|--------------|-------------------------|--------------------|-------------|----------------|
| Name                         | Critical Yield | Yield     | Spectic Capacity    | Interference   | Test Well No | Well Name               | Critical Yield     | Specific    | Interference   |
|                              |                |           |                     | Radius of Well |              |                         |                    | Capacity    | Radius of Well |
| the Karst                    | 160 1          | щ3љ       | 72 m3/h/m           | 1 395 m        | S            | Colombo No.1            | 204 m3/h           | 59 m3/b/m   | unknown        |
|                              |                |           |                     |                | ę            | Rio Branco SulNo.1      | 20.8 m3/h          | 252 m3/h/m  | 440            |
| Serra Geral Formation(North) | 4              | ш3/Г<br>Ш | 2 m3/h/m            | 402<br>H       | £            | Apucarana No.1          | 4 <b>3.8 m</b> 3/h | 1.3 m3/h/m  | 520<br>11      |
|                              |                |           |                     |                | <b>4</b>     | Rolandia                | S3.5 m3/h          | 2.3 m3/h/m  | 370 11         |
| Calua Formation              | 30             | m3/h      | I.5 m3/h/m          | 297 H          | I            | Sao Jorge Do Patrocinio | 4.2 m3/h           | 3.3 m3/h/m  | 520 H          |
|                              |                |           |                     |                | 7            | Querencia do Norte      | 23.3 m3/h          | 0.73 m3/h/m | 330 B          |
| Guabhttuba Formation         | в<br>12        | m3/h      | 2 m3/b/m            | 492<br>El      | 7            | Penhais                 | 51.4 m3/b          | 3.4 m3/h/m  | 240 H          |
|                              |                | ÷         |                     |                | ¢            | Farenda Canada          |                    |             |                |

•

| Well                    | Location                | N-NH <sub>3</sub>                        | N-NO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-NO <sub>2</sub>                                                                                               | Ρ             | COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCT             | CCF            |
|-------------------------|-------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| 1                       | Ed. Tunis - Casa Blanca |                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | -              |
| 2                       | Tereza Pazini           | •                                        | 0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                            | •             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2               | •              |
| 3                       | Ed. Saxonl              | •                                        | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • · ·                                                                                                           | •             | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •               | •              |
| 4                       | Coca-Cola               |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *               | *              |
| 5                       | Ed. Helvética           |                                          | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1 | 0.07          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | -              |
| 6                       | Acquasul                |                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                |
| 7                       | Ed. Jaraguá             | an a | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,03                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
|                         | Rest, Veneza            |                                          | 3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13              | 8              |
| 9                       | Betontex                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               | <u>~</u>       |
| 10                      | Melissalur              | 0,6                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,013                                                                                                           |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170             | 9              |
| A COLUMN TWO IS NOT THE |                         |                                          | and the second se | 0,013                                                                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 8             | 0              |
|                         | Ferraria                | 0,08                                     | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,15                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
| 12                      | Guatupê                 |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · •             | -              |
| 13                      | Araucária - Rodovlária  |                                          | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |               | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                |
| 14                      | Fazenda Rio Grande      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 0,05          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3               |                |
| 15                      | Santa Mónica            | 0,06                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30              |                |
| 18                      | Tranqueira              | 0,04                                     | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ····                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
| 17                      | Almirante Ternandaré    | 0,05                                     | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               | -              |
| 18                      | Colombo Várzea Capivari | 0,02                                     | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | -              |
| 19                      | Itaperussú              | 0,07                                     | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | -              |
| 20                      | Colombo - Calcem        |                                          | 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                               | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •               | • .            |
| 21                      | Mandaguari              | *                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50              | -              |
| 22                      | Palçandu                | •                                        | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | {                                                                                                               | 0,03          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50              |                |
| 23                      | Campo Mourão            | 0,03                                     | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | {                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17              |                |
| 24                      | Maringá                 |                                          | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23              | •              |
|                         |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                                                                                               | ļ             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 240             |                |
| 25                      | Dr. Camargo             |                                          | 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·{                                                                                                              | 0,03          | <b>}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <u>~~~~~~</u> |                |
| 26                      | Nova Olimpia            |                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 0 005                                                                                                         | 0,13          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13              |                |
| 27                      | Maria Helena            |                                          | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,005                                                                                                           | <u>  0,13</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50              | 2              |
| 28                      | Pérola                  |                                          | 0,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>                                                                                                         | [             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                |
| 29                      | Xambré                  |                                          | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21              |                |
| 30                      | Aitónia                 |                                          | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | ļ             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8               | <u> </u>       |
| 31                      | Loanda                  |                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                        |               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·             |                |
| 32                      | Toledo                  |                                          | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                        | 0,03          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | <u>i</u>       |
| 33                      | Santa Cruz              |                                          | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                        | <u> </u>      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>        | -              |
| 34                      | Periolho                | •                                        | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                               | -             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | . <b>.</b>     |
| 35                      | Sede Alvorada           | -                                        | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                               | -             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | -              |
| 36                      | Santa Tereza            | -                                        | 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                               | 0,03          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | -              |
| 37                      | Juvinópolis             | -                                        | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                                                                                             |               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11              | -              |
| 38                      | Altamira do Paraná      |                                          | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | 1 .           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | -              |
| 39                      | Clevelándia             |                                          | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                                                                                             | T             | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -               | -              |
| 40                      | Rolandia                | <u> </u>                                 | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                                                                                             | 1 -           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1600            | - 1            |
| 41                      | Apucarana               |                                          | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | ·             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | <u>-</u>       |
| 42                      | 1º de Maio              |                                          | 2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 .                                                                                                             | 1             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1600            |                |
| 42                      | Palmeira                | 0,06                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,07                                                                                                            |               | ╋╼┈═╼╍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4               |                |
| and the second second   |                         |                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | +             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110             | <u><u></u></u> |
| 44                      | Saito Itararé           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 6              |
| 45                      | Ipiranga                | <u> </u>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                                                                                               |               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21              |                |
| 46                      | Porto Amazonas          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,1                                                                                                             |               | - A statement of the st |                 |                |
| 47                      | Antonio Olinto          | <u> </u>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
| 48                      | Arapoti                 |                                          | <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b>                                                                                                        |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110             | 4              |
| 49                      | Imbituva                | <u> </u>                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . <u>                                     </u>                                                                  | 1             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                |
| 50                      | Tebeira Soares          | - 1                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 -                                                                                                             | •             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               | 2              |

#### Result of Water Quality Test of Wells Done by This Study Table-5.3

| MPV 0.08 6 0.02 ··· 3.5 0 0 |     | N-NH <sub>3</sub> | N-NO3 | N-NO <sub>2</sub> | P . | COD | ССТ | CCF |
|-----------------------------|-----|-------------------|-------|-------------------|-----|-----|-----|-----|
|                             | MPV | 0.08              | 6     |                   | ••  |     |     |     |
|                             | MNP |                   |       |                   |     |     | 0   | 0   |

Nole:

MPV: Maximum permitted value - according to: Decree Nº 12,488 of 10/20/78 - NBA - 60 São Paulo State.

MPN: Most Probable Number

Bacteriological analyses were made according to the 18th edition of the "Standard Methods for the Examination of Water and Wastewater, 1992'. Chemical Analyses were made according methods 8038, 8171, 8000, 10013 and 8507,

HACH CHEM. Co.

Conclusion: According to the Decree above listed, this sample is potable

Table-5.4 Chemical Components of Respective Aquifers (1/2)

| ×          | 105 0 33 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                       | 6460<br>2050<br>2050<br>2050<br>2050<br>2050<br>2050<br>2050<br>20                                                                                                                        | 8, 20 0, 3 - 1<br>8, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, 50 0, | 61<br>61<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40<br>60<br>60                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iev<br>N   | 2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,00<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,70,000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,0000<br>2,00000<br>2,00000<br>2,00000000 | 1480<br>1480<br>1480<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                                  | 11.821<br>00.00<br>12.20<br>12.20                                                                                                                                                         | 4.80<br>0.16<br>8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.70<br>95.65<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.81<br>486.96<br>1.50                                                                                                                                                                                                                                                                                                                                                                                       |
| ю<br>Х     | 2.35<br>26.20<br>0.02<br>317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.80<br>0.02<br>40.00                                                                                                     | 28.60<br>28.60<br>28.60<br>28.60<br>25.00<br>25.00<br>25.00                                                                                                                               | 21.50<br>21.50<br>0.02<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141010101-<br>010101010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9000<br>9000<br>9100<br>9100<br>9100<br>9100<br>9100<br>9100                                                                                                                                                                                                                                                                                                                                                  |
| ŝ          | 4.821<br>57.701<br>0.001<br>317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.91<br>60.00<br>0.02<br>27.30<br>27.30                                                                                   | 52.90<br>52.90<br>0.48<br>***                                                                                                                                                             | 7.65<br>32.50<br>0.00<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.80<br>16.80<br>16.80<br>16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.04<br>75.30<br>0.68<br>3.10                                                                                                                                                                                                                                                                                                                                                                                |
| Mnr        | 0.00<br>191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06<br>0.00<br>0.00<br>0.00                                                                                               | 0.00<br>0.00<br>13.000                                                                                                                                                                    | 0.001<br>77<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00<br>0.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                        |
| ě<br>Ľ     | 0.00<br>2880<br>2000<br>2880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.08 0.05 29.91<br>23.00 0.37 260.00<br>0.00 0.00 0.02<br>38.00 27.30                                                      | 50000000000000000000000000000000000000                                                                                                                                                    | 0 0 000<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1990<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                |
| SiO2       | 21.20<br>26.80<br>20.000<br>20.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.97<br>45.50<br>0.01<br>16.00                                                                                            | 14.1010<br>14.1010<br>14.0100<br>18.000<br>18.000<br>18.000<br>18.000<br>1000<br>1                                                                                                        | 11000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.07<br>58.52<br>700<br>25.00<br>701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27/22/<br>58.433<br>25.000<br>64                                                                                                                                                                                                                                                                                                                                                                              |
| ŭ          | 0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 000<br>18 000<br>18 000                                                                                                 | 000000<br>000000<br>000000                                                                                                                                                                | 0.00<br>0.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00<br>455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000<br>0000<br>00000                                                                                                                                                                                                                                                                                                                                                                                         |
| SO4        | 14 20<br>0 00<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.76 2.10<br>14.00 8.00<br>0.00 0.00<br>2.00 0.00<br>36.00 30.00                                                           | 23 0 0 23 3<br>23 0 0 23 3<br>29 8 8 9                                                                                                                                                    | - 4 0 0<br>8 8 8 9 0<br>8 9 0 0<br>9 0<br>9 0<br>9 0<br>9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.08<br>329.40<br>329.40<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 0                                                                                                                                                                                                                                                                                                                                                   |
| ö          | 1 92<br>20 00<br>323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,76<br>0,00<br>36,00                                                                                                      | 25.00<br>25.00<br>25.00                                                                                                                                                                   | 9.00<br>0.00<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50<br>15.50 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                   |
| N.Org      | 14:010:010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101-1010<br>101-1010<br>1010-000                                                                                           |                                                                                                                                                                                           | 101000<br>101000<br>1010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101010101<br>101010101<br>101010101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                  |
| N.Amo      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.061                                                                                                                      | 1000000<br>000000000000000000000000000000                                                                                                                                                 | 0.001<br>0.001<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00<br>0.60<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000                                                                                                                                                                                                                                                                                                                                                                                                         |
| NO3        | 0.01<br>0.18<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01<br>0.00<br>35.00<br>35.00                                                                                             | 23 00 00 00<br>23 00 00 00<br>23 00 00 00                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0<br>8 0 0 0<br>8 0 0 0<br>9 0 0 0<br>9 0 0 0<br>1 3 0 0<br>0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000<br>0000<br>00000<br>00000                                                                                                                                                                                                                                                                                                                                                                                |
| NO2        | 0.90<br>0.00<br>0.00<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238.00<br>38.00<br>38.00<br>0.00<br>38.00                                                                                  | 24 00<br>0 000<br>24 00                                                                                                                                                                   | 0.77<br>6.60<br>0.00<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23<br>0.00<br>93                                                                                                                                                                                                                                                                                                                                                                                            |
| co2        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.00<br>36.00<br>36.00                                                                                                    | 27,00<br>27,00<br>27,00                                                                                                                                                                   | 21.63<br>0.00<br>111<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.91<br>123.91<br>123.91                                                                                                                                                                                                                                                                                                                                                                                    |
| HCO3       | 21.09<br>338<br>338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 5 127 17 56 92 77 30 72 82<br>266 00 188 70 228 00 197 00<br>0 19 00 2 90 4 00 4 00<br>1152 00 46 00 #VA #VA #VA                                                                          | 223.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 7.56 177.51 58.78 99.51 104.27<br>0 11.15 553.00 330.00 535.00 535.00<br>0 5.40 26.00 0.10 6.00 6.00<br>0 7.90 161.00 68.00 118.00 101.00<br>3 114 110 113 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 242 79         70.49         157.58         156.06           3         929 00         282.00         809 00         725.00           3         929 00         440         14.50         11.50           0         29.60         1.40         11.50         11.50           0         159.00         42.00         99.00         126.00           31         159.00         42.00         99.00         136.00 |
| Alc. Tot   | 76.26i         21.33i         20.95i         1           1         439.00i         172.00i         180.00i         18           1         53.00i         172.00i         200i         18           1         53.00i         172.00i         300i         18           1         53.00i         172.00i         300i         18           1         53.00i         7.00i         9.00i         18           2         203i         339i         339i         339i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 165.16 116.57 131.41 118.40<br>356.00 260.00 594.00 594.00<br>45.00 600 143.20 17.40 11.40<br>138.00 440.00 39.00 37.00 | 77.30<br>228.00<br>4.00<br>27.00                                                                                                                                                          | 119.91         50.65         63.86         66.51           601.00         176.30         273.00         223.00           1         4.00         0.400         2.00         2.00           2         21.00         #VA         3.00         3.00           1         16         16         16         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.51<br>535.00<br>118.00<br>113.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157.58<br>11.50<br>99.00<br>99.00                                                                                                                                                                                                                                                                                                                                                                             |
| Dur        | 21.33<br>172.00<br>339<br>339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116.57<br>260.00<br>6.00<br>40.00                                                                                          | 23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>23.89<br>24.89<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | 50.65<br>50.65<br>0.40<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.78<br>113-00<br>68-00<br>113-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.49<br>42.00<br>42.00                                                                                                                                                                                                                                                                                                                                                                                       |
| STD        | 76.26<br>439.00<br>53.00<br>203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165.16<br>366.00<br>38.00<br>38.00                                                                                         | 27.00<br>27.00<br>27.00                                                                                                                                                                   | 21.00<br>21.00<br>21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 253.00<br>111.00<br>111.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 229.00<br>159.00                                                                                                                                                                                                                                                                                                                                                                                              |
| Ha         | 0.0.4.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.60<br>7.70<br>38.00                                                                                                      | 7.05<br>9.50<br>7.30<br>27.00                                                                                                                                                             | 6.86<br>6.60<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 800 K K 0                                                                                                                                                                                                                                                                                                                                                                                                     |
| Turb       | 12.377 4.68<br>400.001 120.00<br>0.001 0.08<br>2.501 1.00<br>333, 3377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.20, 5.52<br>60.00, 32.00<br>2.50, 0.11<br>2.50, 11,00<br>2.50, 11,00<br>40.00, 40.00<br>38.00                           | 5.64 2.42 7.05<br>40.00 15.00 9.50<br>0.72 0.25 5.40<br>2.50 0.80 7.30<br>27.00 27.00                                                                                                     | 10.16, 4.82, 6.86, 555.00, 22.00, 8.40, 0.00, 0.08, 4.50, 2.50, 2.50, 0.08, 4.50, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.12<br>130.00<br>0.00<br>0.00<br>7.10<br>113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.666 8.18<br>175.00 145.00<br>0.00 0.12<br>5.00 1.50<br>103, 103                                                                                                                                                                                                                                                                                                                                            |
| Š          | 12.37<br>12.37<br>339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.20<br>60.00<br>2.50<br>40.00                                                                                            | 5.64<br>40.00<br>0.72<br>27.00                                                                                                                                                            | 25.00<br>25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.66                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9 <u>8</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                             |
| Formação   | Maxma<br>Minma<br>Minma<br>Noda<br>Número                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACUNGU<br>Média<br>Maxima<br>Minima<br>Moda<br>Numero                                                                      | BOTUCATU<br>Media<br>Maxima<br>Minima<br>Moda                                                                                                                                             | FURNAS<br>Media<br>Maxima<br>Minima<br>Moda<br>Número                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ITARARE<br>Media<br>Maxima<br>Minima<br>Moda<br>Número                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PASSA D<br>Média<br>Maxima<br>Minima<br>Moda<br>Número                                                                                                                                                                                                                                                                                                                                                        |

Table-5.4 Chemical Components of Respective Aquifers (2/2)

|   | Ē        | -        | 18, 2                           | 50. 15   | 0       | 80.2.4                    | 79.  | <br> <br> <br> <br> <br> | 621        | 17, 2          | 0<br>1<br>8<br>1                     |            | 2     |       | -                    | 72           | 35-110           | 00       |                               | 321 4                       |           |        | 122.100      |          | 00,                | 31, 1  | • |
|---|----------|----------|---------------------------------|----------|---------|---------------------------|------|--------------------------|------------|----------------|--------------------------------------|------------|-------|-------|----------------------|--------------|------------------|----------|-------------------------------|-----------------------------|-----------|--------|--------------|----------|--------------------|--------|---|
|   | -6W      |          | 55. 8                           | 50. 27.  | 8       | 8                         | 2    | <br> <br> <br> <br> <br> | 121        | 80<br>51       | 0.19[3.00                            |            | 11    |       |                      | 4.861 15.721 | 051,286          | 9        | 80                            | 16. 4                       |           |        | 8<br>8       | 8        | 40 14              | 91     |   |
|   | 2<br>S   |          | 5 1                             | C.11     | ີ       | 7 10 1                    |      |                          |            |                | , i                                  |            |       |       |                      |              | 1                |          |                               |                             |           |        |              | 100      | 0                  | 6, 2   | • |
|   |          | -        |                                 | - 1      |         |                           |      | <br> <br> <br>           | •          |                | <u>.6.50</u>                         | - 4        | - 1   |       | 1<br> <br> <br> <br> | - 1          | 0 260 60         |          |                               |                             |           | 21     | 5            |          | 2                  | D, 29  | - |
| • | Ŵ        | -        |                                 |          |         | 8                         |      | <br> <br> <br> <br>      | ď          | o¦             | o'                                   | o'         |       |       |                      |              | 22.50            |          |                               |                             |           | 1      |              | 800      | . 1                | 1      |   |
| - | ē        |          | 0.60                            |          |         |                           |      |                          |            |                | 00.0                                 |            |       | 1.1.1 |                      | 82.0         | 19.10            | 8        | 0                             | 751                         |           |        | 8:           | 000      | 000                | 282    |   |
|   | \$103    | 1        | 30.12                           | 88.00    | 0.0     | 25.00                     | 88   |                          | 31.39      | 61.00          | 18.31                                | AN#        | . 7   |       | 1                    | 32.21        | 120.00           | 00       | 26.8                          | 449                         |           |        | 19.79        | 8        | 25.00              | 158    |   |
|   | ū        |          | 1.451                           | 37,80    | 80      | 000                       | 62   |                          | 0.19       | 0.25           | 0.14                                 | AN         | 3     |       |                      | ਲੋ           | 50.70            | 0.00     | 0.0                           | 483                         |           |        | 5.10         | 8.0      | 0.00               | 202    |   |
|   | Ś        | -        | 3.53                            | 89.00    | 80      | 0000                      | 2    |                          | 3.95       | 6.00<br>8      | 0.60                                 | 5.00       | 8     |       | - 1                  | \$ 80<br>9   | 862 80<br>862 80 | 80       | 000                           | 404                         |           | 3      | 9<br>9<br>10 | 0.0      | 000                | 141    |   |
|   | ō        | -        | 3.69                            | 159.30   | 0<br>0  | 000                       | 145  |                          | 0.92       | ş              | 8                                    | 9.0        | 10    |       |                      | 4 3.17 6     | 00.001           | 8<br>0   | Ś                             | 792                         |           | 25     | 02.14        | 0.0      | 8                  | 305.   | - |
|   | N Org    |          | 0.21                            | 4.20     | 0.00    | 0.00                      | 88   | )<br>                    | 0.06       | 0. 15          | 0.01                                 | 0.01       | 4     |       |                      | 4            | 12.00            | 800      | 0.00                          | 523                         |           |        | 87.02        | 8        | 8                  | 157    |   |
|   | N.Amo    |          | 0.12                            | L _ 1    |         | L _ I                     |      |                          |            |                | 0.01                                 |            | 1 - 4 |       |                      | 0.03         | . <b></b> .      |          |                               | L _                         |           | 3      | B            | 800      | 0.00               | 157    |   |
|   | ŝ        | -        |                                 |          |         | 0.00                      |      | - •                      | 8          | 0.03           | .0<br>0.0                            | 0.00       | ბ     |       |                      | .0 <u>6</u>  | 15.00            | Ś<br>Ö   | 8<br>0                        | 290°                        |           |        | 1.12         | 80       | 0.00               | 198;   | 1 |
|   | ίŐΝ      | • •      | 0.57                            | 8.05     | 00.0    | 0.00                      | 143  |                          | 0.05<br>10 | 0.12           | 8                                    | 0.00       | ÷     |       |                      | 3            | 56.80            | 8<br>0   | і<br>В<br>о                   | 687                         |           |        | 100.84       | 0.00     | 0.0<br>0.0         | 222    |   |
|   | ŝ        | -        | 10.63                           |          |         |                           |      |                          | 2.15,      | 20<br>00<br>00 | 8                                    | ANA        | స     |       | - 4                  | 8 17         |                  |          |                               |                             |           | _L     |              | 0.00     |                    | 221    | • |
|   | HCO3     | -        | Ω.                              | ក្ត      |         | ē                         | 1    |                          | 03.92      | 58.60          | 29.00                                | <b>AVA</b> | ò     |       | -                    | ā            | 5                | ā        | 5                             | L.N                         |           |        | 64.70        | 0.0      | \$0.0 <del>0</del> |        |   |
|   | Alc. Tot | -        | 78.86                           | 61.80    | 3.001   | 44.00                     | 149, |                          | 90.30      | 50.00          | 29.00                                | 29.00      |       |       | -                    | 75.38        | 27.70.4          | 0.0<br>0 | 40.00                         | 8771                        |           | 20.00  | 95.00        | 4.8      | 80.00              | 316,   |   |
|   | Duri A   | -        | 63, 141                         | 19.30, 3 | 24      | 12.00                     | 155  |                          | 51.79      | 75.50; 1       | 24.00                                | AVA<br>AVA | ÷     |       | -                    | 54.17        | 8.00             | ġ.       | 40.00 <sup>1</sup>            | 877.                        |           | 40.401 | 45.001       | 80       | 10.00              | 316    |   |
|   | STD      | -        | 39.85                           | 26.5013  | 32.60   | 38.00.1                   | 144( |                          | 55.16      | 98.00          | 34.00                                |            | 4 4 E |       |                      | 15.97        | 55.001 6         | 0.00     | 20.001                        | 706.                        |           |        | 01.60        | 80       | 81.00              | 11 277 |   |
|   | ЪН       |          | 91 7.30 139.85 63.14 78.86 75.8 | 0.601    | 0.28    | 7.301                     | 1551 |                          | 3.06       | 8.70           | 12  7.40  84.00' 24.00' 29.00' 29.00 | 8.001 #    | 11    |       |                      | -<br>8       | 0.2018           | 00       | 7.401                         | 875, 879, 706, 877, 877, 83 |           |        | - i i        |          |                    | 311    |   |
|   | Turbi    | _        | 3.91                            | 3.001    | 0.051 0 | 201                       | 153, |                          | <u>.</u>   | 1.1            | 0.12                                 | 2.001      | 11:   |       |                      | 0            | 8                | 8        | 8                             | 875                         |           | 3.1.21 | 0.00:        | 00: 0.03 | 0.20               | 315,   | - |
|   | L<br>So  |          | 8.00                            | 001      | 00.0    | 2.50                      | 149, |                          | 1.36       | 00.00          | 2.50' (                              | 5.00       |       |       | 1-1                  | 8.55         | 0.00-20          | 100.0    | 2.50                          | 8661 8                      |           |        | 0.00.11      | 0.00     | 2.50               | 311    |   |
|   | -        |          | 1 1                             | 12       |         | )<br> <br> <br> <br> <br> |      |                          |            | ~              |                                      |            |       |       |                      |              | ž.               |          | , " "<br> <br> <br> <br> <br> |                             |           |        | Ř            |          |                    |        |   |
|   | Formação | PRE-CAME |                                 | axima    |         | Moda                      | mero | RIO BONITO               | Media      | axima          | Minima                               | Xda        | mero  |       | S.GERAL N            | Media        | zdima            | nma      | ц,                            | Número                      | S.GERAL S | 608    | Maorima      | nima     | Ą                  | Numero |   |

Ć

C

C • T.8

Table-5.5 Calculated Result of Groundwater Potential by Pumping Tast Dam

| Aquifer Type Area Borebole Di<br>Depth of the Aanst )<br>1 (the Manst ) A AAA 3740 and 2<br>b Accurding A AAA 3740 and 2<br>2 Crouxding A before C A36 126 1360 139                                                                                                                                                                                                                                                         | Disaster<br>of Borekole |                       | Spacific R         | Radius of       | incontinues Po | tential   T | Compared Streets   Take Compared Streets | 3      | Deterior Municipalities                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|--------------------|-----------------|----------------|-------------|------------------------------------------|--------|-----------------------------------------------------------------------------|--|
| A         AAAA         X140         BO           nm G.         A         AAAA         X140         BO           M G.         A         AAAA         X140         BO | d Borehole              |                       |                    |                 |                |             |                                          |        |                                                                             |  |
| person         fracture         km2           A         AAA         3,340           A         (CAVE)         cumb)           X         b-c         11,300                                                                                                                                                                                                                                                                   | -                       | Yield Ca              | Capasity Int       | Interesce       | to 1 km 2      |             | for Respectative Aquiffer                |        |                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                       | m/W/m              |                 | WWWW C         | UNKIEL      |                                          | m Mond |                                                                             |  |
| m.G. (CAVE) G.400                                                                                                                                                                                                                                                                                                                                                                                                           | 250                     | 160                   | 70                 | 007             | 220            | 6           |                                          | ;      | Curatibal Campo Largo,                                                      |  |
| X bec 17300                                                                                                                                                                                                                                                                                                                                                                                                                 | -                       | ~-                    |                    |                 |                | Ī           | Î                                        |        |                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                       | 2                     |                    | 8               | 1              | \$          | -                                        | H      | Mandiminity, Campo do Tanante                                               |  |
| Lariy Prairowic: X b-c 7,150                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | 0.7                | <u>8</u>        | ¢r             | 3.6         | 17                                       | 25.7   | Ponts Grosse, Tibeg, Para do Sui                                            |  |
| Crowp                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>             |                       |                    | •               |                |             |                                          | -      |                                                                             |  |
| 4 Mindle-Late Pateouol: X D-C 17,400 150                                                                                                                                                                                                                                                                                                                                                                                    | 110                     | 2                     | 00 <b>*</b> 1      | 0               | 8              | 5.6         | 2                                        | Pr://6 | Tremin Sterig. Lana                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                       | ┥                  |                 | Ĩ              |             |                                          |        |                                                                             |  |
| ate Patenzok X Dec 13,700                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 6 10 × 20 × 4         | 50<br>             | 8               | 2              | ę           | •                                        | Ŕ      | Inti. San Madaua do Sul                                                     |  |
| Bolucate & Serra Va.                                                                                                                                                                                                                                                                                                                                                                                                        |                         | (1770)                |                    |                 |                |             | 2,000                                    | 28,000 |                                                                             |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                       |                       | -                  | 5.4 <b>4</b> .3 |                | 1           |                                          |        |                                                                             |  |
| Bousents F. 11.560 100                                                                                                                                                                                                                                                                                                                                                                                                      | 300                     | 8.                    |                    | 500             | 960            | 110         | 120                                      | 1400   | Protes Grosse, Canto, Pirta do Sul.<br>Tidaçã                               |  |
| Bouccin & Serre Certel AAA A 24,060 200                                                                                                                                                                                                                                                                                                                                                                                     | 250                     | 150                   | 5                  | 200             | 105            | 150         | 800                                      | 3,600  | I construe. Teimara Dartve, ipuranga.                                       |  |
| ; coaffined aquiffer sone                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · ·               |                       |                    |                 |                |             | -                                        |        | TEXDIN SOTTE, LEDA                                                          |  |
| Botestatu & Serre Cenul Pi,   AVA   -   205,480   3,200                                                                                                                                                                                                                                                                                                                                                                     | 200                     | 200                   | 13                 | 300             | 706            | 300         | 1,800                                    | 21,100 | Joaquen Tavora, Saponana, Curiuva,                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                       |                    |                 |                | ÷           |                                          |        | Newson, Juni, Indi,Sao Materia do Sal                                       |  |
| Norte X AA 39,050 150                                                                                                                                                                                                                                                                                                                                                                                                       | 300                     | ą                     | ~                  | 00 <b>*</b>     |                | 77          | 110                                      | 0051   | Londria, Comine Procepie, Aproximi<br>Maines, Caronil, Carin Montra, Torido |  |
| 544 A 2,000                                                                                                                                                                                                                                                                                                                                                                                                                 | 150                     | 2                     |                    | ŝ               | 15             | 1           | 15                                       | 180    | Guardiante, Pastras, Latagura do sul                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                       | -                  | ~               | <del></del> .  |             |                                          |        | For do lenacu. Pato Branco                                                  |  |
| 8 Colore Formation 20,420. 2129                                                                                                                                                                                                                                                                                                                                                                                             | 700                     | 8                     | 1.5                | 8               | ) 10           |             | 08                                       | 5      | Umusum, Londa, Tapun, Jonnan,<br>Umusuma, Ciencite,                         |  |
| 9 (Metropolitan Curritha Area ) . 1.130                                                                                                                                                                                                                                                                                                                                                                                     |                         |                       |                    |                 | <u>.</u>       |             | ×0.15                                    |        | Warropousen Curruitue                                                       |  |
| 10) Contraction F. of bed B. X. 9502001-2 66                                                                                                                                                                                                                                                                                                                                                                                | 8                       | 5                     | ~                  | 86              | 15             | 4           | 0.1                                      | 21     |                                                                             |  |
| Thue A X 100                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | <br>1              | •               |                |             |                                          |        |                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                     | 15                    | ı į                | 500             | 19             | 3           | 0,1                                      | 0.3    |                                                                             |  |
| (Qualerrany Sys. In Constal Range)                                                                                                                                                                                                                                                                                                                                                                                          |                         |                       |                    |                 |                |             | 21.9                                     |        | d'arraya, Curreguezzia, Mauchos,<br>Courtuba,                               |  |
| 14 Quark River Bed (Defaultiver B. A. X 380 8                                                                                                                                                                                                                                                                                                                                                                               | ę                       | 50                    |                    | 8               | 282            | 8           | 3.6                                      | 130    | Antonyna, Alaxandra, Serra Negra,                                           |  |
| 15 Market Terrace Deposit A X 1.570 8                                                                                                                                                                                                                                                                                                                                                                                       | 120                     | -                     |                    | 8               |                | 7           | 0.0<br>                                  | 3.5    | Prais de Leate, Ilha do Mei, Ipanente                                       |  |
| Lagand in Items of Aquidet Type : AAA, very high potencial, AA, higher potential, A, high potential, B; modernes potential, C; low potential, X; no potential, b-C; partial                                                                                                                                                                                                                                                 | k moderate poten        | tial, C, low potentia | el, XC no potentia | A horse perturb |                | ĺ           |                                          |        |                                                                             |  |

Lagand in iteme of Aquifer Type : AAA, wey high potencial, AA; higher potential, A. high potential, B. moder \*1 : Aquifer in Quar, Ruver Bad in recharged by upper streams in area of Crystalline rocks.

\*2.: Aquifar of Ousivitude F, is composed of ad, layers underlain in show 1/3 area in the appointed area of Quadricade F.

\*3 : Area of cabonets rocks in the "Narst"

[11]: Interfernce radius of drawdown during pumping test

•

Table-5.6 Estimated Result of Groundwater Storage by Pumping Tast Data

| [1]                                    | [2]      | . (6)       | [4]      | ری                    | [6]                                                                    |                       |
|----------------------------------------|----------|-------------|----------|-----------------------|------------------------------------------------------------------------|-----------------------|
| Aquifer                                | Arca     | Borchole    | Specific | Specific Interference | Apparent                                                               | Total                 |
|                                        |          | Yield       | Capacity | Radius                | Potential                                                              | Storage               |
|                                        | km2      | x 10-3 m3/s | m3/h/m   | . m                   | x 10-3 m3/s/km2                                                        | x million m3          |
| 1. Karst                               | 5,740    | 44.40       | 70       | 400                   | 89.0                                                                   | *2 1.200              |
| 2. Crystalline Rocks                   | 7,540    | 5.56        | 1        | 500                   | 6.9                                                                    | 5.200                 |
| 3. Early Paleozoic                     | 7,150    |             |          | 500                   | 3.6                                                                    | <b>a - 1902. (1</b> ) |
| 4. Middle-Late Paleozoic               | 17,400   | 00.00       | . 1      | 400                   | 5.6                                                                    | 3,500                 |
| 5. Late Paleozoic                      | 15,700   |             |          | 500                   | 3.6                                                                    | 1-20;525-24           |
| . All of Botucatu F. & Serra Geral F.  | 101,110  | *1 124      |          |                       |                                                                        | +2 130,000            |
| 6. Boucatu F. & Serra Geral F. north   | (59,050) | 11.11       | 5        | 400                   | 22.0                                                                   | 24,000                |
| 7. Botucatu F. & Serra Geral F. south  | (42,060) |             | 1        | 500                   | 4.2                                                                    | 2.100                 |
| 8. Caiua F.                            | 30,450   | 8.33        | 2        | 300                   | 31.0                                                                   | 7,300                 |
| 9. Curitiba Metro. Arca                | 1.130    |             |          | •                     |                                                                        |                       |
| 10. Guabirotuba F.                     | (920)    | 3.33        | 2        | 500                   | 4.2                                                                    | 1.2                   |
| 11. Alluvium System                    | (081)    |             |          |                       |                                                                        |                       |
| 12. Granitic Rocks                     | (300)    | 4.17        | 1        | 500                   | 5.3                                                                    | 75                    |
| 13. Quaternary System in Coastal Range | 1,950    |             |          |                       | )<br> <br> |                       |
| 14. Quaternary River Bed(Delta/River b | (380)    | 5.56        | 20       | 150                   | 80                                                                     | 4.5                   |
| 15. Marine Terrace Deposit             | (1,570)  | 0.28        | (7)      | 200                   | 2.2                                                                    | 0.63                  |
| Note                                   |          |             |          |                       |                                                                        |                       |

[5]: Interference Radius at the pumping time of Borehole Yield [6]: Apparent aquifer potential of confined aquifers

÷

\*1: Borehole Yield of Confined Botucatu Aquifer

\*2: estimated by effective porosity, thickness and area of Botucatu Formation

Assessment Result of Groundwater Potential by Data of Water Circulation Table-5.7

| E                           | <b>[2]</b>                                        | ច     | [4]         | [5] | [6]           | Ē          | [8]              | [6]          |
|-----------------------------|---------------------------------------------------|-------|-------------|-----|---------------|------------|------------------|--------------|
| Aquiter                     | Location in River Basin                           | Study | Spatial mQ7 | ď   | Permissive    | Required   | Total Permissive | Productivity |
|                             |                                                   | Area  |             | • • | Yield         | Recharge   | Yeld             | of Borehole  |
|                             |                                                   | km2   | m3./km2 *1  | %   | x 10-3m3/skm2 | km2/s/3 -2 | m3/s             |              |
| Cristalline Rocks           | Upper Tībagi                                      | 7500  | 6.00        | 10  | 0.64          | 1600       | 4.8              | 5.56         |
| Lower Paleozoic             | Middle Thagi                                      | 906   | 3.61        | 10  | 0.36          | 2800       | 25.0             | 2.78         |
| Furnas Formation            | Middle to Upper Tibagi                            | 3500  |             | 15  |               | •          |                  | 8.33         |
| Lower-Middle Paleozoic      | Middle to Upper Tibagi                            | 2500  | 6.37        | 10  | 79'0          | 1600       | 9'1              | 2.78         |
| Middle-Upper Paleozoic      | Middle to Upper Tibagi                            | 12000 | 4.6         | 10  | 0.46          | 2200       | 5.5              | 2.78         |
| Upper Paleozoic             | Upper to Middle Iguacu                            | 11000 | 4.6         | 10  | 0.46          | 2200       | 5.1              | 2.78         |
| Ectucatu Formation          | Middle Tibagi and mainly L. Tibagi in underground | 11000 |             | •   |               |            |                  | 124          |
| Serra Geral Formation north | Lower Tibagi                                      | 10800 | 7.7         | 20  | 1.5           | 620        | 16.2             | 1.11         |
|                             |                                                   |       |             |     |               |            |                  |              |

\*1 same meaning as transitory Recharge of Groundwater
 [4] - Spatial Specific mQ7
 [7] - Total Permissive Yield of Aquifer in Study Area

| Ribelra                      | river basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |                |          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|----------------|----------|
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                  |                             | Area km2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Observ. Period             | m3/s           | Observ, Period | m3/      |
|                              | THE PARTY OF A DESCRIPTION OF A DESCRIPR | Karst                              | 81019300                    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83/10-93/12                | 1.70           | -              |          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 81019350                    | \$40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81/05-93/12                | 4.76           | 82-93          | 2.6      |
| do                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 81019550                    | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77/03-82/12                | 0.78           | · · · ·        |          |
| do                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 81020000                    | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77/03-88/12                | 1.22           | 77-88          | 0.5      |
| do                           | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Granite                            | 81125000                    | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46/01-93/12                | 4.24           | 46-93          | 2.90     |
|                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Karst                              | 81080000                    | 1,285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81/05-93/12                | 11.54          | 82-93          | 7,5      |
| do                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                             | 1,461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 11.91          |                |          |
| do                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | \$110200-\$1019550-\$102000 | 1,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78/08-93/12                | 13.91          | 79.93          | 9.9      |
| do                           | } <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Karst                              | 81102000                    | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78/08-93/12                | 3.67           | 79-93          | 2,4:     |
| do                           | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Karst                              | 81120000                    | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30/08-93/12                | 2.85           | 31-93          | 1.9      |
| do                           | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kørst                              | 81140000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |                |          |
| Capivari r.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 81299000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85/01-93/12                | 4.95           | 85-93          | 3.30     |
| Alt Igoacu                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 65020995                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85/01-93/12                | 0.19           | 85-93          | 0.0      |
| Alt Iguzcu                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kerst                              | 65021000                    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85/01-93/12                | 0.28           | 85-93          | 0.21     |
| Alt Iguacu                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Karst                              | 65021770                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85/01-93/12                | 0.12           | 85-93          | 0.0-     |
| Alt Iguacu                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kerst                              | 65021800                    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85/01-93/12                | 0.52           | 85-93          | 0.30     |
| Alt Iguacu                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lower Paleozoic                    | 65034000                    | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77/01-93/12                | 0.10           | 77-93          | 0.0      |
| Rio Negro                    | Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Granite                            | 65090000                    | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67/05-93/12                | 7.80           | 68-93          | 4.9      |
| Rio Negro                    | Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Middle Pateozolo                   | 65094500                    | 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76/05-93/12                | 5.07           | 77.93          | 1.4      |
| Rio Negro                    | Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Middle Palcozolo                   | 65100000                    | 3,379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30/05-93/12                | 21.41          | 31-93          | 13.0     |
| No Negro                     | Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Granite                            | 65135000                    | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39/08-93/12                | 3.88           | 40-93          | 2.5      |
| Rio Negro                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | (65136550-63135800)         | 966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          | 4.20           | -              | 1.70     |
| Rio Negro                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                                  | 65136550                    | 1,568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80/09-93/12                | 8.08           | 81-93          | 4.2      |
| tio Negro                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | (65155000-65136550)         | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 4.11           |                | 3.0      |
|                              | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #                                  | 65135000                    | 2,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30/05-93/12                | 12.19          | 31-93          | 7.3      |
| Rio Negro                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                             | 2,190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74/02-92/12                | 9.76           |                |          |
| Rio Negro                    | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Upper Paleozoie                    | 65208000                    | 8,140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14,04-72,12                | 40.63          |                |          |
| felo Iguacú                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | (65220000-65208090-6517500  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2///9 02/12               |                | (10)           | 59.0     |
| leio Iguacu                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                                  | 65220000                    | 18,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 97.22          | 64-93          |          |
| felo Iguacu                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #                                  | 65175000                    | 7,970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 46.83          | 64-92          | 26.6     |
| leio Iguacu                  | Palmital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Serra Geral Sul                    | 65415000                    | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45/11-93/12                | 1.75           | 46-93          | 0.71     |
| feio Iguacu                  | Areia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Serra Geral Sul                    | 65764000                    | 1,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 6.14           | 81-92          | 3.5      |
| feio Igvacu                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serra Geral Sul                    | 65770000                    | 1,645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63/08-93/12                | 8.65           |                |          |
| felo Iguacu                  | Iratim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65775900                    | 1,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87/01-92/12                | 11.38          |                |          |
| feio Iguacu                  | Jordao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65\$09000                   | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85/03-93/12                | 0.49           | 85-93          | 0.23     |
| felo Iguacu                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serra Geral Sul                    | 65810000                    | 731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36/11-67/12                | 2.57           | ÷-             | -        |
| felo Iguacu                  | Jordao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65811000                    | 1,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74/02-92/12                | 5.31           | 74-92          | 2.0      |
| feio Iguacu                  | Jordao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SerraGeral Sul                     | 65815000                    | 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60/03-83/12                | 16.26          | •              | -        |
| telo Iguacu                  | Jordao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65825000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63/01-93/12                | 25.05          | 65-92          | 12.8     |
| felo Iguscu                  | Cavernoso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Serra Geral Sul                    | 65855000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64/01-92/12                | 14.81          | 65-92          | 3.52     |
| Baixo Iguacu                 | Guarani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Serra Geral Sul                    | 65970000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78/08-93/12                | 1.56           | 79.93          | 0.60     |
| Baixo Iguacu<br>Baixo Iguacu | Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65925000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65/03-92/12                | 9.89           | 65-92          | 4.33     |
| saixo Iguacu<br>Saixo Iguacu | Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra GeralSul                     | 65927000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 18.56          | 65-92          | 10.3     |
|                              | <u>+</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63/01-92/12                |                | <u></u>        | 2.0      |
| Balzo Iguacu                 | Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65945000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 3.55           | 65-92<br>65-92 | 0.10     |
| Balno Iguacu                 | Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65948000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 1.20           | 65-92          | 2.91     |
| Saixo Iguacu                 | Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    | 65955000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 5.65           |                |          |
| Baixo Iguacu<br>Baixo Iguacu | Chopin<br>Chopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Serra Geral Sul<br>Serra Geral Sul | 65960000<br>65962000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 35.34<br>34.41 | 65-92<br>62-92 | 17.7     |
| Salto Iguacu<br>Balto Iguacu | Caopin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Sul                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78/08-93/12                | 1.56           | 04.72          | 13.0     |
| Bairo Iguacu                 | Andadas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Serra Geral Sul                    | 65979000                    | 1,309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76/07-92/12                | 6.76           | 76-92          | 2.2      |
| Baixo Iguacu<br>Bixo Piquiri | Сяратело                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Serra Geral Sul<br>Serra Geral Nor | 65931500<br>64780000        | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 3.76<br>2.77   | 76-92          | 0.8      |
| Sixo Piquiri<br>Sixo Piquiri | Galo Bang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Serra Geral Nor                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65/01-79/12<br>67/06-92/12 | 10.15          |                |          |
| Bizo Piquirl                 | Sapuca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Nor                    | 64790000                    | 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66/01/94/12                | 5.53           | 65-92          | 3.1      |
| Bixo Piquiri<br>Perene III   | Sapuca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serra Geral Nor<br>Serra Geral Nor |                             | and the second sec | 57/10-61/11                | 2.77           | -              |          |
| rarana III<br>Parana III     | Arroja<br>Sao Francisco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Serra Geral Nor                    |                             | 1,169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77/02-80/09<br>88/01-89/05 | 7.54<br>2.44   |                | <u>├</u> |

 Table-6.1
 Mean Q7 & Q10,7 at Fluvial Stations in Iguacu River Basin, Ribeira River Basin

 and the Related River Basins

ê

Table-6.2 Spatial Groundwater Potential of Iguacu Pilot Basin Estimated on the basis of Water Circulation

| [1]                         | 3                               | [3]   | [4]           | [5] . |                | [6]      | Ы     | (8)          |
|-----------------------------|---------------------------------|-------|---------------|-------|----------------|----------|-------|--------------|
| Aquiter                     | Location in River Basin         | Study | Spatial mO7   | å     | Permissive     | Required | Total | Productivity |
|                             |                                 | Area  |               |       | Yiełd          | Recharge | Yield | of Ecrehole  |
|                             |                                 | km2   | x 10-3 m3/km2 | %     | x 10-3m3/s/km2 | km2/s/m3 | m3/s  | x10-3 m3/s   |
| Karst                       | mainly Ribeira nad Upper Iguacu | 3500  | 8.29          | 30    | 2.49           | 400      | 8.75  | 44.4         |
| Cristalline Rocks           | Upper Iguacu                    | 4500  | 6.37          | 10    | 0.64           | 1600     | 2.38  | 5.56         |
| Furnas Formation            | Upper Iguacu                    | 350   |               | 15    |                |          |       | 11.1         |
| Middle-Upper Paleozoic      | Upper Iguacu                    | 3900  | 4.69          | 10    | 0.47           | 2100     | 1.83  | 2.78         |
| Upper Paleozoic             | Upper to Middle Iguacu          | 3100  | 4.9           | 10    | 0.49           | 2000     | 1.52  | 2.78         |
| Botucatu Formation          | Middie to Lower Iguacu          | 32000 | 4             |       |                |          |       | 124          |
| Serra Geral Formation north | Lower Iguacu                    | 1900  | 5.32          | 20    | 1.1            | 610      | 3.12  | 19.2         |
| Serra Goral Formation south | Middle to Lower Iguacu          | 32000 | 5.26          | 15    | 0.79           | 1300     | 11.9  | 3.33         |
| Guabirotuba Formation       | Upper Iguacu                    | 920   | 3.53          | 20    | 0.76           | 1300     | 0.699 | 3.33         |
| Note                        |                                 | х.    |               |       |                |          |       |              |

[4]: Spatial and specific mQr
 [6]: Required Rechargeing Area by 1m3/s of groundwater yield
 [7]: Total Permissive Yield of Aquifer in Study Area

Table-6.3 Mean Q7 & Q10,7 at the Fluvial Stations, in Tibagi River Basin and the Related River Basin

| River Basin           | small       | Aquifers                           | Station No        | Catchment | Mean Q7        | Ŀ     | Q10,7          |      |
|-----------------------|-------------|------------------------------------|-------------------|-----------|----------------|-------|----------------|------|
|                       | river basin |                                    |                   | Arca km2  | Observ. Period | m3/s  | Observ. Period | m3/s |
| Alto Tibagi           | Imbi        | Middle Palcozoic                   | 64442800          | 1,319     | 80/11-94/12    | 60.9  | 81-93          | 2.41 |
| Alto Tibagi           | Pitanqui    | Lower Paleozoic                    | 64450000          | 523       | 42/01-88/12    | 2.68  | 42-83          | 0.92 |
| Medio Tibagi Cativari | Cativari    | Middle Paleozoic                   | 64460000          | 122       | 41/04-93/12    | 3.22  |                |      |
| Alto Tibagi           | Zapo        | Granitic R.                        | 64477600          | 1,604     | 80/11-93/12    | 7.38  |                |      |
| Medio Tibagi Iapo     | Iapo        | Lower Paleozoic 64481000-64477600  | 64481000-64477600 | 576       |                | 5.27  |                |      |
| Medio Tibagi Iapo     | Iapo        | #                                  | 64481000          | 2,180     | 74/02-93/12    | 12.65 |                |      |
| Medio Tibagi Iapo     | Yapo        | Granitic R.                        | 64477020          | 210       | 10/68-90/08    | 1.56  | 81-89          | 0.58 |
| Medio Tibagi Tibagi   | Tidagi      | Middle Paleozoic 64491000-64482000 | 64491000-64482000 | 1,600     |                | 14.03 |                |      |
| Medio Tibagi Tibagi   | Tibagi      | #                                  | 64482000          | 14,000    | 80/01-93/12    | 75.42 |                |      |
| Medio Tibagi Tibagi   | Tibagi      | #                                  | 00016779          | 15,600    | 11/76-11/17    | 89.45 |                |      |
| Medio Tibagi          |             | Upper Paleozoic                    | 210264497012      | 213       | 21/06-63/12    | 4.12  | -              |      |
| Medio Tibagi          |             | Serra Geral Nort                   | 6450000           | 65        | 57/01-93/12    | 0.57  |                |      |
| Baixo Tibagi          |             | Serra Geral Nort                   | 64504500          | 290       | 20/98-90/22    | 2.62  |                |      |
| Baixo Tibagi          |             | Serra Geral Nort                   | 64504550          | 290       | 87/09-94/10    | 1.65  |                |      |
| Baixo Tibagi          |             | Serra Geral Nort                   | 6455000           | 4,627     | 67/10-92/12    | 37.17 |                |      |
| Baixo Tibagi          |             | Serra Geral Nort                   | 64508500          | 1,054     | 75/01-94/12    | 6.44  | ;              |      |

#:data of the station should be applied the calcuration of Q7 for the localizied aquifer catchment

- : nul data

Table-6.4 Spatial Groundwater Potential of Tibagi Pilot Basin Estimated by Water Circulation

| (I)                         | 2                                                 | [3]   | [4]         | [5] |               | ସ        | E     | [8]          |
|-----------------------------|---------------------------------------------------|-------|-------------|-----|---------------|----------|-------|--------------|
| Aquiter                     | Location in River Basin                           | Study | Spatial mO7 | ď   | Permissive    | Required | Total | Productivity |
|                             |                                                   | Area  |             |     | Yield         | Recharge | Yield | of Borehole  |
|                             |                                                   | km2   | m3/km2      | %   | x 10-3m3/skm2 | km2/s/3  | m3/s  |              |
| Cristaline Rocks            | Upper Tibagi                                      | 7500  | 6.00        | 0   | 0.64          | 1600     | 4.8   | 5.56         |
| Lower Paleozoic             | Middio Trbaçi                                     | 8     | 3.61        | 10  | 0.36          | 2800     | 0.32  | 2.78         |
| Furnas Formation            | Middle to Upper Tibagi                            | 3500  |             | 15  |               | 1-       |       | 833          |
| Lower-Middle Paleozoic      | kiiddle to Upper Tibagi                           | 2500  | 6.37        | 10  | 0.64          | 1600     | 1.6   | 2.78         |
| Middle-Upper Paleozoic      | Middle to Upper Tibagi                            | 12000 | 4.6         | 10  | 0.46          | 22       | 5.5   | 2.78         |
| Upper Paleczoic             | Upper to Middle Iguacu                            | 11000 | 4.6         | 10  | 0.46          | 2200     | 5.1   | 2.78         |
| Botucatu Formation          | Middle Tibagi and mainly L. Tibagi in underground | 11000 |             |     | - <b>-</b> -  |          |       | 124          |
| Serra Geral Formation north | Lower Tibagi                                      | 10800 | 7.7         | 20  | 1.5           | 670      | 16.2  | 11.1         |
|                             |                                                   |       |             |     |               |          |       |              |

[4] : Spatial and Specific mean Qr
 [6]: Riquired Recharge Area to produce 1 m3/s of groundwater
 [7] - Total Permissive Yield of Aquifer in Study Area

|                      |             |                                       |                     |              |          |                                     |                   |                         |              |            |                       | والأخدة المتحدثان |           |                         | -           |            | · · · · · · · · · · · · · · · · · · · |           | -           |                        |           |                            |
|----------------------|-------------|---------------------------------------|---------------------|--------------|----------|-------------------------------------|-------------------|-------------------------|--------------|------------|-----------------------|-------------------|-----------|-------------------------|-------------|------------|---------------------------------------|-----------|-------------|------------------------|-----------|----------------------------|
| Type & Municipality  | Required Wo |                                       | Target Aquifer      | Productivity | Success  | Developing Aquifer and              | Total Namber of   | Est. Stage of Dev       | elopment     |            | 2nd. Singe of De      | Velement          |           | 3rd, Stage of D         | )evelopsien | st.        | 40x Stige of Dey                      | elopment  |             | Sth. Stage of Deve     | lopnient  | Implementation Schedule    |
|                      | 2005        | 3015                                  |                     | of Boreholes | Ratio of | Total Number of Developing Borshole | Developing Stages | bes a second a leaf and |              |            | Bershele number and   | r I. É.           |           | Service number and      | <b>t</b>    |            | Borshile number and                   | 3         |             | Borshole number and    |           |                            |
|                      | a.Ma        |                                       |                     | 1147.635     | Borehote |                                     |                   | establishing year       |              | 10-3 m3/i  | establishing year     |                   | 10.3 =3/1 | establishing year       |             | z 10-3 m34 | estabilishing year                    |           | £ 10-3 m3/1 | estabilishing year     | x 10.3 m3 | 1 19/4 2008 2015 2019 2015 |
| Caridbe Metropolitan | 3211        | 7.235                                 | Kust                | 44.40        | 75%      | Kanat : 101 borcholas               | 4 Stepes *>       | Karst : 29 borshotes    | 251.42.4-    |            | Karst : 24 barshoter  | 24484-            |           | Kant : 24 boreholes     | 24.14.4-    |            | Kant : 24 byrcholos                   | 24244.4-  |             |                        |           | 1 11 III IV                |
|                      |             |                                       | Quebrotube F.       | 233          |          |                                     |                   | -jear of 19             |              |            |                       |                   |           |                         |             |            |                                       |           | 1070        |                        |           |                            |
| Cuxtral              | 0 268       | 0 542                                 | Botucatu F.         | 124.00       | 100%     |                                     |                   |                         |              |            |                       |                   |           | Serra Oural F. north: 5 | 1           |            | Sern Ocal F. north 4                  |           |             |                        |           | B BS IV                    |
|                      |             |                                       | Serra Qeral F.north |              |          |                                     | 1 T -             |                         | 5x19.11+26   |            | Sera Qual F. soth 4   |                   |           |                         | 1 1         |            |                                       |           | Ï.          |                        |           | ·····                      |
|                      | 0127        | · · · · · · · · · · · · · · · · · · · | Sers Oreal F south  |              |          | Bulurate F.: 2 bretoins             |                   | Bubicata F.: 1 - 1991   |              | - 18       | -3001                 |                   |           | Bohostu F.: 1 -2005     | 1           |            |                                       |           | <u> </u>    |                        |           |                            |
| L Casrapanya         |             | 0.04                                  | SOLL OWNER WAR      |              |          | Scient Qend Faouth : 35 borcholes   | 4 S-1000          | Seris Genil F. scuth 7  | 7-5 83-10    |            | Serra Geral F. south? | 715 \$3-40        |           | Semi Genil 7, south?    | 7.5.83-40   |            | Sem Oral F. south?(9)                 | 755 13-40 | 1           | Sera Qual F. with 7(9) | 7.3 13-40 | 2 IC (12 TA A              |
|                      |             |                                       | Bolycetu F.         | 124.00       | 100%     | Bohstaha F.: 1 borehola             |                   | -yew of 199             | <u>"</u>     |            | 1999                  |                   | 41        | Bohicetu F1 -2001       | 124         | 163        | -2005                                 | ļ         | 41          | -2011                  |           |                            |
| Erandsca Bellean     | 0 099       | 0 233                                 | Sata Goral Facad    | 2 27         | 101      | Serra Geral F south : 5 boreholes   | 3 Sugar           | Serre Genil F. south.5  | 5.2 22 11 1  |            | Botacete F2 I         | 1#124-124         |           | Bohanita F.; I          | 14123-124   |            |                                       |           |             |                        |           | a ti tit                   |
|                      |             |                                       | Solucate F.         | 124.00       | 190%     | Botucstu F. 2 borcholes             |                   | -year of 1996           |              | - <b>0</b> | -1997                 |                   | 124       | -2007                   |             | . 124      |                                       |           |             |                        |           | -{ +                       |
| Medisselin           | 8 0 38      | 0.066                                 | Serve Oaral Fashath | 24           | 80%      | Serre Goral F.north: \$ barcholes   | 2 Stages          | Same Oeral Facuth 5     | 5-144-22 2   |            | Botucatry F. : 1      | 11124-124         |           |                         |             |            |                                       | ſ         |             |                        |           | 1 K <sup>1</sup>           |
|                      |             |                                       | Botucatu F.         | 124 00       | 102%     | Botucetu F.:   borchoje             |                   | -y=w o(199              | · 1          | 22         | -2001                 |                   | 124       | -                       |             |            |                                       |           |             |                        |           |                            |
| t Polmas             | 0 028       | 0 065                                 | Serre Cenal F south | 3 33         | 80%      | 1                                   |                   | Some Oand # south 10    |              |            | Sens Geral Flooth 10  |                   |           |                         |             |            |                                       |           |             |                        |           | 1 11                       |
|                      |             |                                       | Botacatu F.         | 124 00       | 100%     | Serre Genit P scoul : 29 purcholes  | 2 Stages          |                         |              |            | 2005                  |                   |           | 1                       |             |            |                                       |           |             |                        |           |                            |
|                      |             |                                       | Some Ceret & south  |              |          |                                     |                   | -your of 1993           |              |            |                       |                   |           |                         |             |            | } <b>-</b> ~-                         |           |             |                        |           | 1 0                        |
| Dola Vulaže          | 8 061       |                                       |                     |              |          | Serre Gend F. jouth : 1 boreholes   | 2 Stages          | Seen Oral Frevil.4      | 4417-167     |            | Serra Octal Flavods J |                   |           |                         |             |            |                                       |           |             |                        |           |                            |
|                      |             |                                       | Bolucely F.         | 124.00       | 100%     |                                     |                   | -year of 199            | <u>د ا</u>   | 17         | Sotukatu F.1 -1998    | <u></u> ]24       | 137       |                         | <b> </b>    |            | <b> </b>                              |           |             |                        |           |                            |
| Polo Brance          | 6 A23       | <b>0</b> ] 12                         | Some Certal Flaouth | 4.17         | 80%      | Sens Genil Frouts: 6 borcholes      | 2 Stages          | Sent Oenl Facult 6      | Sec. 17-25 0 |            | Bohucata F.: )        | 124               |           |                         |             |            |                                       | 1         |             |                        |           | 1 1 4                      |
|                      |             |                                       | Botucetu F.         | 124.00       | 100%     | Boturate F barchole                 |                   | -year of 197            | s [·         | 25         | -2000                 |                   | 124       |                         | 1 1         |            | 1                                     | ł         | 1 :         |                        |           |                            |

.

# Table-6.5 Master Plan of Groundwater Development for Projected Municipalities in Iguacu Pilot Basin

\*I: Required weint supply amount based on "Base Case"

\*> Total permisers yield of whole area of Ousbirotube Formation

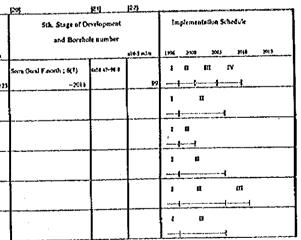
13 composed of 6 or 3 do cloping units

| Table-6.6                           | Master P | an of Grou                     | indwater D                           | evelopne            | nt for <b>I</b> | Projected Munici                                                        | palities in T                         | ibagi Pilot Ba                                       | sin                 |      | Jr 14                                              | 112)                  | (13)      | (14)                                              | (15)              | [16]       | (17)                                             | [14]                         | [10]     |
|-------------------------------------|----------|--------------------------------|--------------------------------------|---------------------|-----------------|-------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|---------------------|------|----------------------------------------------------|-----------------------|-----------|---------------------------------------------------|-------------------|------------|--------------------------------------------------|------------------------------|----------|
| (4<br>Municipality<br>Type and Name | _121     | Pi<br>Supply Demand<br>In 2015 |                                      | [5]<br>Productivity | Success         | 6)<br>Developing Aquifer and<br>Total Number of Boreboles               | 17)<br>Number of<br>Developing Stages | 191<br>196 Stage of Dev<br>and Borchole (            | elopment<br>number  | 010] | 2nd. Stage of Drv<br>and Borebole                  | dopment<br>numbor     | etë j njr | Jrd. Stoge of D<br>and Borchole                   | aumber            | 143 m34    | 4th. Stage of Deve<br>and Borshole a             | aumber                       | xi\$}a35 |
| A Londrizo                          | 0.451    |                                | Serra Geral F.north<br>Botucatu F.   |                     | ) <b>1</b> 07   | Serra Gerst F.north ; 30(39)<br>Botucatu F. ; 4                         | \$ Ştages                             | Sern Oend F.north ; 6(8)<br>Botucatu F. ; 1 — - 1997 | 6:16:17-98:6<br>1]4 | 223  | Some Genel Pinonh (; 6(8)<br>Botucers P. ; 1 -2000 | 6426 47-99 I<br>124   |           | Serre Oent Frank ; 6(F)<br>Betuestu F. ; 1 — 2004 | 641647-784<br>124 |            | Sam Geni F.sorth ; 6(F)<br>Buturetu F. ; 1 ~2006 | 6238.47 <b>-148</b> 8<br>134 | . 21     |
| А Аркопаа                           | 0113     |                                | Botucatu F.<br>Serra Geral F.narth   | (1247)<br>13.0      | 1009            | Serra Geral F.north ; \$(10)                                            | 2 Stages                              | Sens Octal Finorth ; 4(5)<br>-1997                   | 6231 86-133         | 132  | Sam Guni F.narth ; 4(5)<br>-2005                   | 4231 86-132           | 13        |                                                   |                   |            |                                                  |                              |          |
| 8. Cornetia Procopia                | 0.026    | 0.061                          | t Sena Gural F.oorth<br>Botucatu F.  | 7.2<br>124(LA       |                 | Serra Geral F.north ; 4(5)<br>Goducatu F. ; 1                           | 2 Stages                              | Serra Qenil E.north ( 4(3)<br>-1997                  | 6332-39<br>         | - 25 | Boxusaha F. ; 1<br>-2000                           | **                    | 12        |                                                   |                   |            |                                                  |                              |          |
| I Areptega                          | 0.001    | 014                            | 2 Serra Geral F.north<br>Bohucatu F. | 19.3<br>1240/       |                 | <sup>1</sup> Serra Geral Funorth ; 5(7)<br><sup>4</sup> Botucatu F. ; 8 | 2 Stugen                              | Seen Ourd Fronth ; 5(7)<br>-1997                     | 541333-64.7         |      | Botucatu F. 14<br>-2005                            | (24                   | 12        |                                                   |                   |            |                                                  |                              |          |
| 8 Comba                             | \$ 0%    | 025                            | Serra Geral F.north<br>Bonicatu F.   | 16.1                | 1               | <sup>4</sup> Serra Geral F.north ; 9(11)<br>*                           | 3 Suga                                | Sano Gent F.north ; 6(7)<br>-) 997                   | 6614.76-1084        | 100  | Botacatu F. ; 1<br>-2005                           |                       | 12        | Seena Genil F north ; X(4)<br>~2009               | 5x16.56-54.3      | . <u>.</u> | <br>                                             | <b> </b>                     | <b>_</b> |
| I Dipera                            | \$94     | > • 10                         | Serra Goral F.north                  | 160                 | 1               | " Sama Garal F. North ; 6(1)                                            | 2 Stages                              | Serra Octal F.north ( X-9                            | 351847 <b>~58</b> 4 |      | Serra Oand F rooth ; 3(4)<br>-2005                 | 3628 67 <b>-</b> 59 0 | .,        | ×                                                 | <u> </u>          | <u> </u>   |                                                  |                              |          |

-1997

#### ad Municipalities in Tibagi Pilot Basin e n.t.

11(1.1)


tucatu F.

100%

Note

[7][3] Required appropriate and a Demand excluding existing supply capacity for "Base Case"

(4) Special squifer potential (special and specific mean Q7)



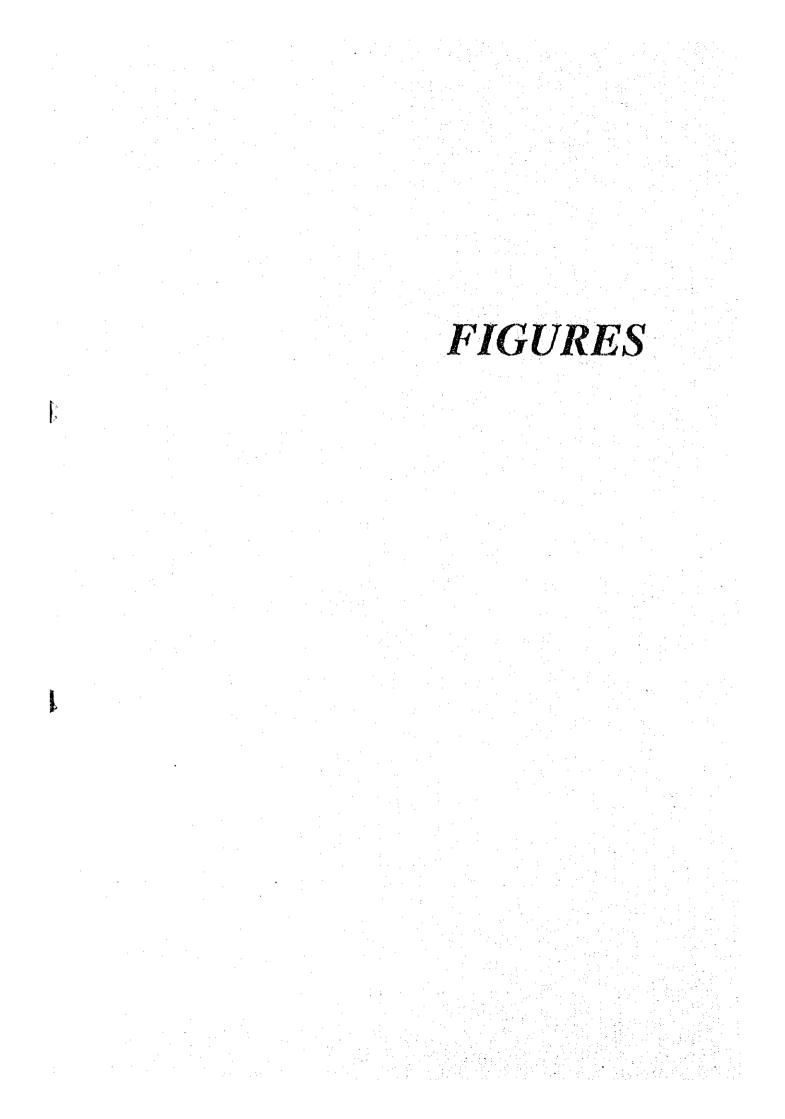
| Municipalities       | Geological Formation<br>to be Developed | Number of Productive<br>Boreholds | Chappe for Downloansest (1) 2015                                                                |
|----------------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|
|                      |                                         |                                   | Stages for Development till 2015                                                                |
| Curitiba             | Karst                                   | 112 (60 m)                        | 4 stages for development in the Karst aquifer<br>establishment of monitoring system (monitor    |
| type A               | · · · · · · · · · · · · · · · · · · ·   |                                   | boreholes of 20 in Guabirotuba formation and 5 wa<br>level gauge in 5 tributaries in the Karst) |
| · · ·<br>·           |                                         |                                   | (piezometric borehole: 17(60m, $\phi$ 80mm))                                                    |
| Cascavel             | Bortucatu Formations                    | 2 (1300 m)                        | 2 stages                                                                                        |
| type A               | Serra Geral Formation north             | 18 (180 m)                        |                                                                                                 |
|                      |                                         | •                                 | (piezometric borehole:6(180m, $\phi$ 80mm))                                                     |
| Guarapuava           | Botucatu Formation                      | 1(800m)                           | 4 stages                                                                                        |
| type A               | Serra Geral Formation                   | 35 (180 m)                        |                                                                                                 |
|                      | south                                   |                                   | (piezometric borehole:10(180m, $\phi$ 80mm))                                                    |
| Francisco<br>Beitrao | Botucatu Formation                      | 2(1000m)                          | 3 stages                                                                                        |
| type B               | Serra Geral Formation south             | 6(180m)                           |                                                                                                 |
|                      |                                         | •                                 | (piezometric borehole:2(180m, $\phi$ 80mm))                                                     |
| Medianeira           | Botucatu Formation                      | 1(850m)                           | 2 stages                                                                                        |
| type B               | Serra Geral Formation south             | 5(180m)                           | (piezometric borehole:10(180m, Ø 80mm))                                                         |
|                      |                                         |                                   |                                                                                                 |
| Dois<br>Vizinhos     | Botucatu Formation                      | 1(1200m)                          | 3 stages                                                                                        |
| type B               | Serra Geral Formation south             | 7(180m)                           | · · · · · · · · · · · · · · · · · · ·                                                           |
|                      |                                         |                                   | (piezometric borehole:3(180m, $\phi$ 80mm))                                                     |
|                      | · · · · · · · · · · · · · · · · · · ·   |                                   |                                                                                                 |
| Dalmas               | Serra Geral Formation                   | 10(180m)                          | 2 stages                                                                                        |
| Palmas<br>type B     | south                                   |                                   | (piezometric borehole:2(180m, $\phi$ 80mm))                                                     |
|                      | Botucatu Formation                      | 1(1200m)                          | 2 stages                                                                                        |
| Pato Branco          | Serra Geral Formation south             | 6(180m)                           | (piezometric borehole:2(180m, $\phi$ 80mm))                                                     |

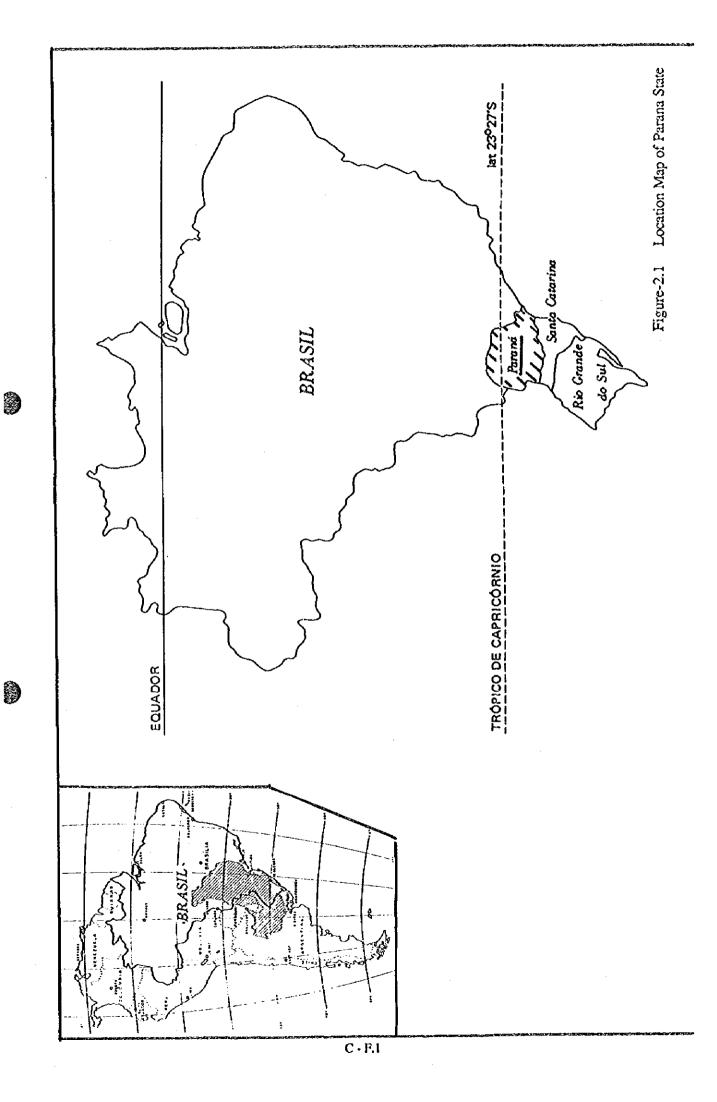
# Table-6.7 Master Plan of Groundwater Development for Iguacu Pilot Basin

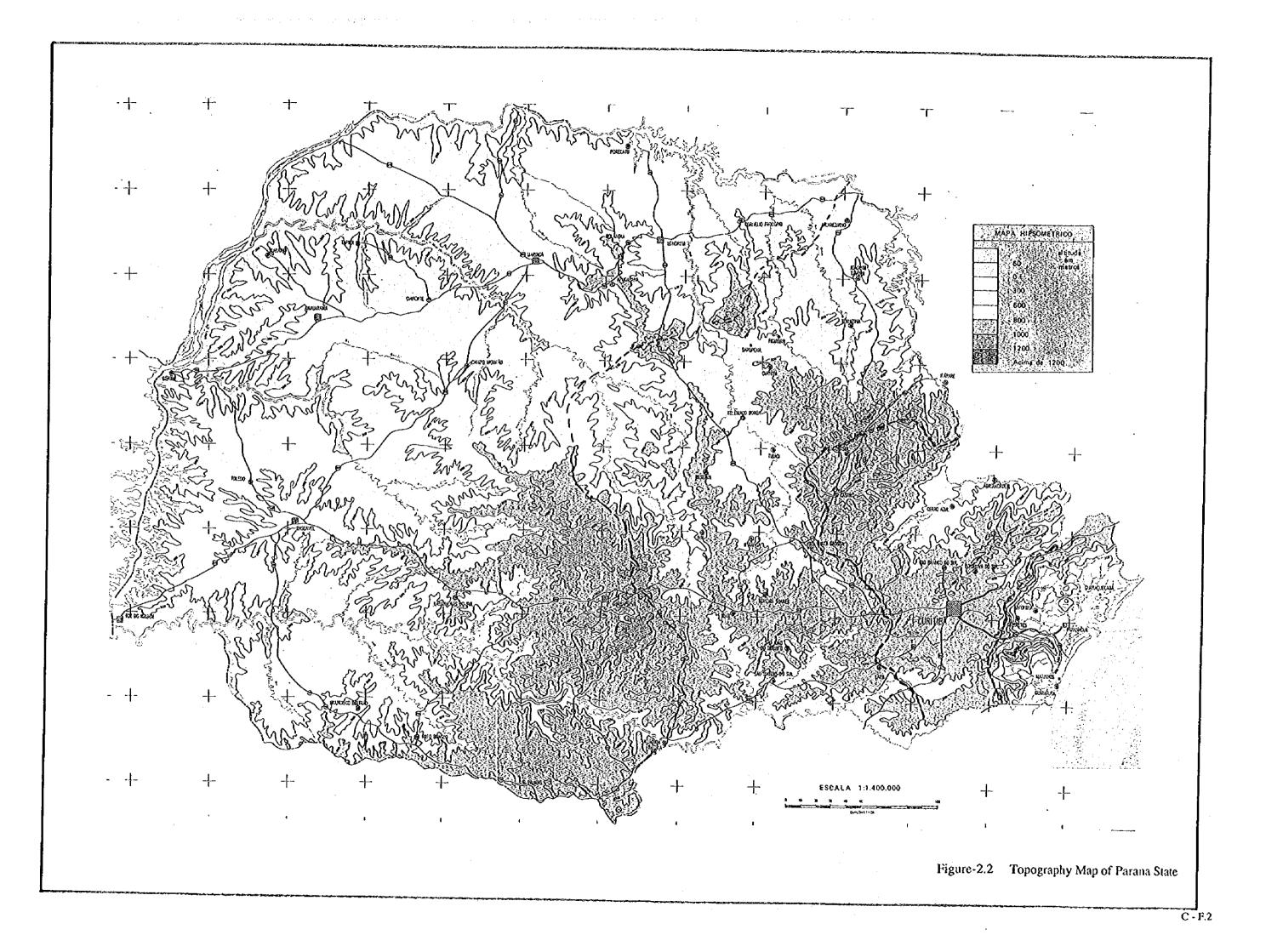
.

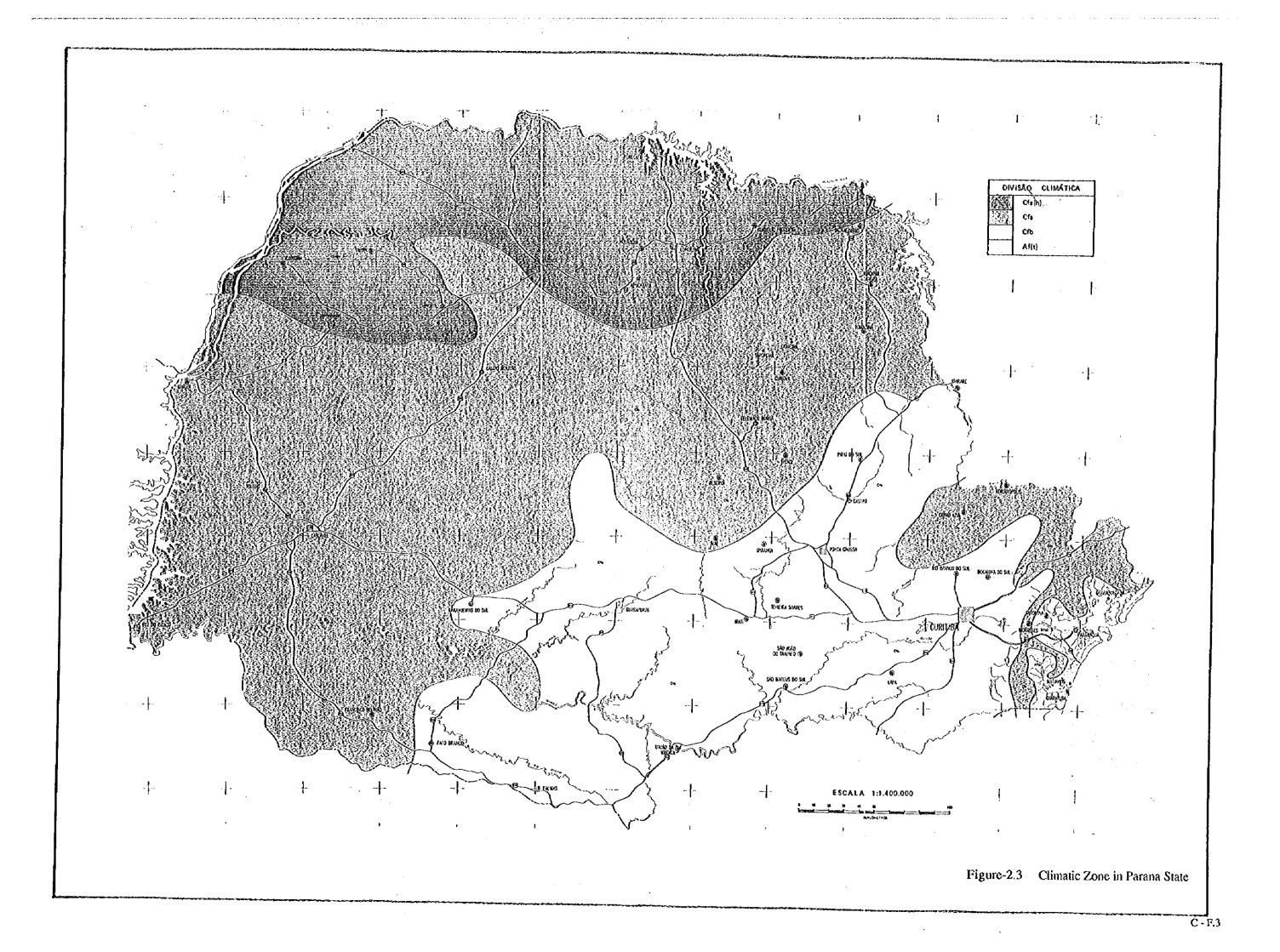
----

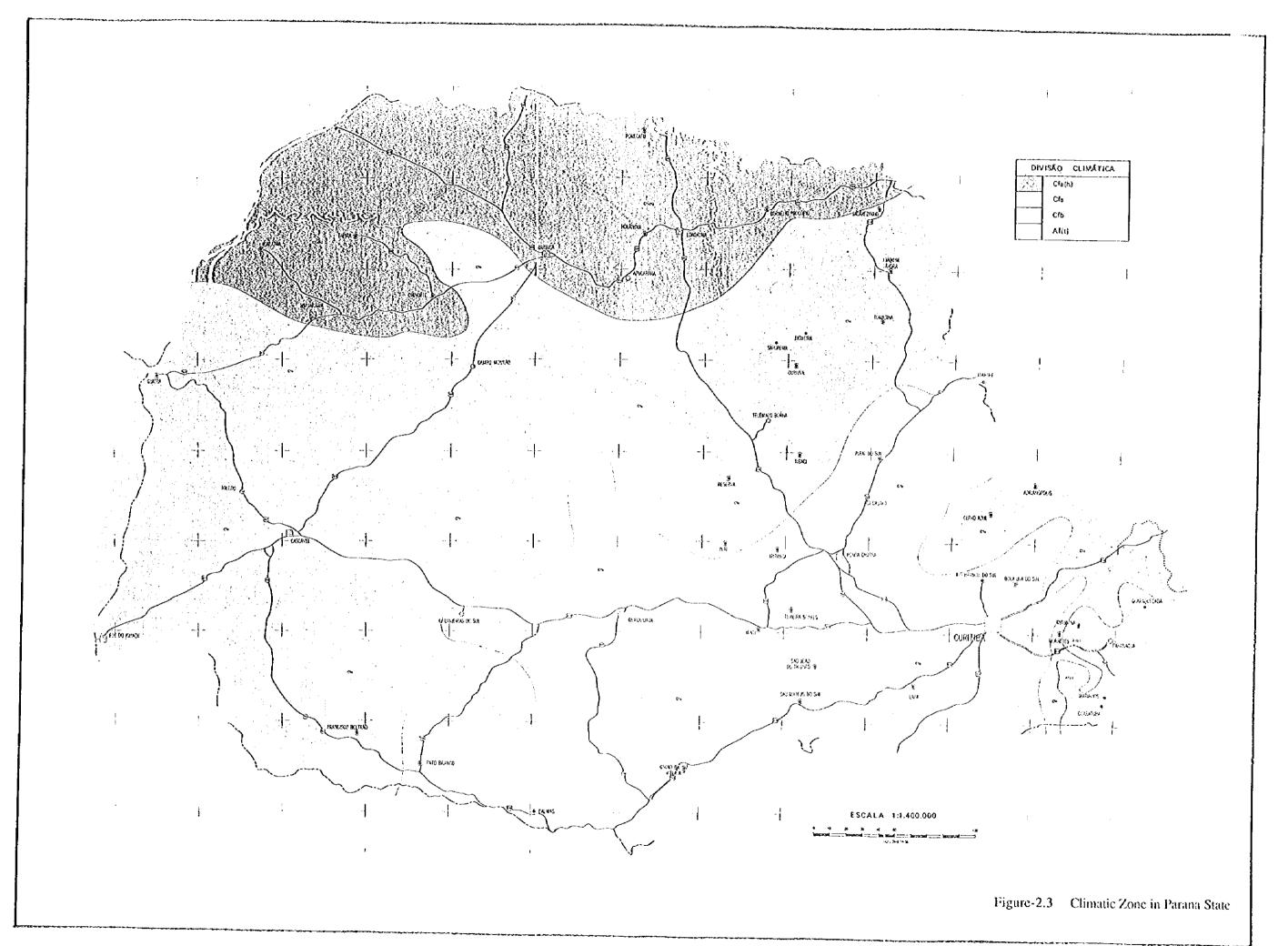
| Municipalities       | Geological Formation<br>to be Developed | Number of<br>Productive<br>Boreholds | Stages for Development till 2015              |
|----------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| Londrina<br>type A   | Serra Geral Formations north            | 36 (180 m)                           | 5 stages                                      |
| ijpo n               | Botucatu Formation                      | 4 (1300 m)                           | (10 piezometric boreholes; 180m, $\phi$ 80mm) |
| Apucarana            | Serra Geral Formations north            | 30 (180 m)                           | 2 stages                                      |
| type A               | Botucatu Formation                      | 1 (800m)                             | (2 piezometric boreholes; 180m, $\phi$ 80mm)  |
| Cornelio<br>Procopio | Serra Geral Formations<br>north         | 4 (180m)                             | 2 Stages                                      |
|                      | Bolucalu Formation                      | 1 (800m)                             | (2 Piezometric boreholes: 180m, $\phi$ 80mm)  |
| Arapongas            | Serra Geral Formations<br>north         | 5 (180m)                             | 2 Stages                                      |
|                      | Botucatu Formation                      | 1 (1000m)                            | (2 Piezometric boreholes: 180m, Ø 80mm)       |
| lbipora              | Serra Geral Formations<br>north         | 6 (180m)                             | 2 Stages                                      |
|                      |                                         |                                      | (2 Piezometric boreholes: 180m, $\phi$ 80mm)  |
| Cambe                | Serra Geral Formations north            | 9 (180m)                             | 3 stages                                      |
|                      | Bolucatu Formation                      | l (1000m)                            | (4 piezometric borcholes; 180m, $\phi$ 80mm)  |


| Table-6.8 | Master Plan of Grou | undwäter Development | for Tibagi Pilot Basin |
|-----------|---------------------|----------------------|------------------------|
|           |                     |                      |                        |





# Table-6.9 Unit Cost of Drilling


| Aquifer                                                           | *Unit Cost (USS/m)      | Method   | **Diameter (mm) | Depth (m) |
|-------------------------------------------------------------------|-------------------------|----------|-----------------|-----------|
| Botucatu Formation                                                | 1.000                   | rotary   | 300             | 1,000     |
| Furnas Formation                                                  | 100                     | rotary   | 200             | 150       |
| Guabirotuba Formation                                             | 200                     | rotary   | 150             | . 80      |
| Karst                                                             | 909                     | rotary   | 250             | 60        |
| Serra Geral Formation (north)                                     | 150                     | rotary   | 200             | 180       |
| Serra Geral Formation (south)                                     | 150                     | rotary   | 200             | 180       |
| *. Cost includes transnortation setting operation casing and test | ne operation, casing at | nd test. |                 | -         |


": Cost includes transportation, setung, operation, casing and test \*\*: Bottom of Borehole Source: adapted and enlarged from SANEPAR's cost data as of August, 1994

