
CHAPTER 5

MEA'S SHORT- AND LONG-TERM POWER DISTRIBUTION SYSTEM IMPROVEMENT AND EXPANSION PLAN

CHAPTER 5 MEA'S SHORT- AND LONG-TERM POWER DISTRIBUTION SYSTEM IMPROVEMENT AND EXPANSION PLAN

5.1 Outline of the Revised 7th Plan

MEA formulated the Revised 7th Plan, and has performed its implementation to cope with the rapid increasing demand.

Brief description of the Revised 7th Plan concerning this Study is as follows:

(1) Terminal Station

Six new terminal stations (Thanontok, Sainoi, Jangwatana, Ratchada, Bangkoknoi and Teparak) are to be constructed with the total capacity of 2,700 MVA, of which Thanontok is to be invested by MEA.

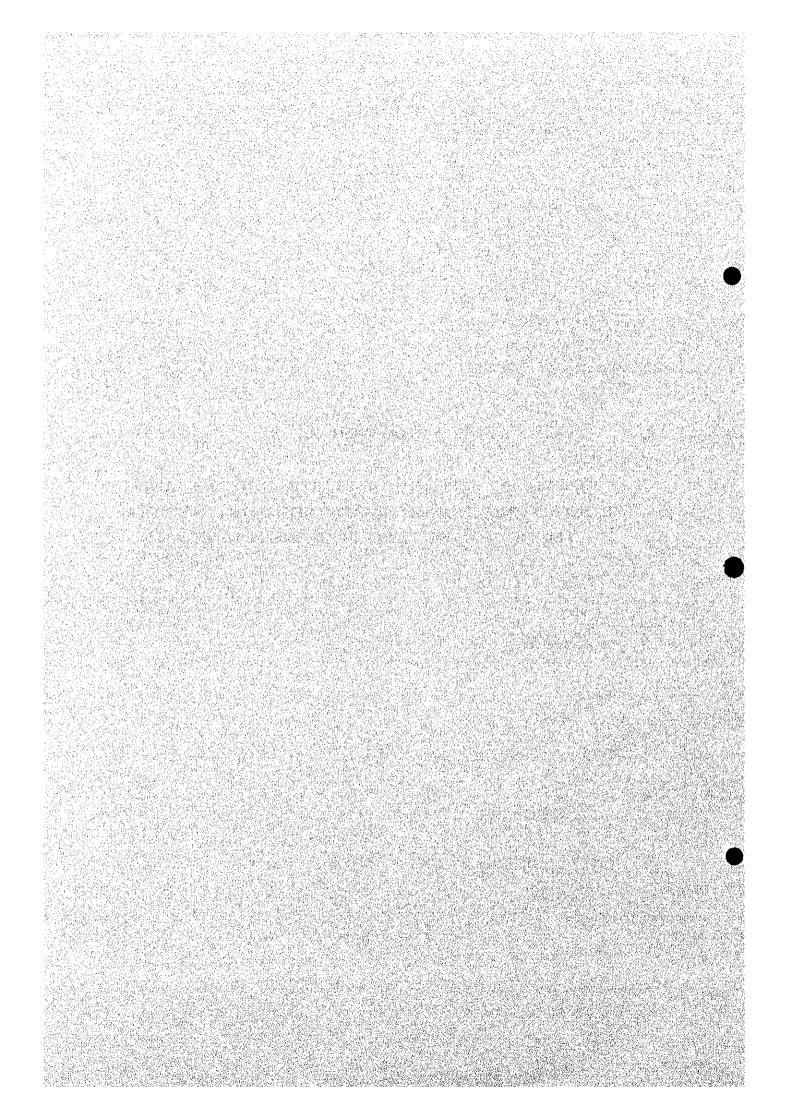
Besides seven existing terminal stations will be boosted by 1,400 MVA and the total increasing capacity will be 4,100 MVA.

(2) Distribution Substation

Forty-two new distribution substations with total capacity of 4,400 MVA will be constructed; 16 existing substations will be boosted by 800 MVA in total, and 22 temporary or small substations will be dismantled resulting in reduction of 1,060 MVA. The total increasing capacity will be 4,140 MVA. In addition, there will be modification of two more existing substations.

(3) Subtransmission Line System

The total length of subtransmission line to be constructed will be 377.7 ckt-km of which 281 ckt-km is overhead line and 96.7 ckt-km is underground cable. Moreover, there will be subtransmission line addition at the total length of 35.3 ckt-km, of which 26.6 ckt-km is overhead line and 8.7 ckt-km is underground cable.


5.2 Progress of Substation Expansion Plan

According to the Revised 7th Plan, most of the substation expansion work has been considerably behind schedule. As a countermeasure to cover power supply, therefore, temporary one-bank substation has been installed in many cases.

Although 12 substations among the 73 projects in total have been commissioned as temporary substations in advance along with rapid increase of power demand, the construction work of many other substations has been by two or three years behind schedule. However, the majority of substations are scheduled to be commissioned by FY 1997 although the commissioning date of five substations is extended to FY 1998.

CHAPTER 6

FORMULATION OF OPTIMUM SHORT- AND LONG-TERM POWER DISTRIBUTION SYSTEM IMPROVEMENT AND EXPANSION PLAN

CHAPTER 6 FORMULATION OF OPTIMUM SHORT- AND LONG-TERM POWER DISTRIBUTION SYSTEM IMPROVEMENT AND EXPANSION PLAN

6.1 General

The followings are the items that the JICA Study Team has specially paid attention to the planning of the future power distribution system in the Metropolitan area.

- (1) Reliability.
- (2) Capacity of subtransmission networks and substations.
- (3) Application of advanced technology to distribution system facilities in the high load density area.
- (4) Land acquisition method for distribution substation in downtown area.
- (5) Voltage regulation control.
- (6) Telecommunication system improvement.
- (7) Feasibility of construction of underground subtransmission and distribution lines and substations.
- (8) Impact to environment.

The followings are the major improvement and expansion of the power distribution system in this Study.

- (1) To promote uprating of 12 kV to 24 kV primary line in distribution area (except in network area).
- (2) Expansion of 115 kV subtransmission system.
- (3) Introduction of 230 kV subtransmission system into urban area.

ang milinam Kinggi (1721-1821) [[[] 全线 (1721-1821) [[] 40 [

- 6.2 Regional Load Forecast in FY 2016 by the JICA Study Team
- (1) Forecast of design load to be used for formulating the distribution substation expansion plan

gually are equal to the beautiful to get the reduction are depth to

When calculated from the increase trend of load by FY 2011 since FY 1993 according to the least squares method, the MW and MVA values of non-coincident load for FY 2016 are 17,578 MW and 19,030 MVA, respectively.

The forecast result is presented in Table 6.2-1.

(2) Load forecast for distribution substations by regions
On the basis of the supply areas of distribution substation in FY 2001,
therefore, the load blocks have been set by integrating those with similar
load characteristics. The results of study are presented in Table 6.2-2
and Fig 6.2-1.

6.3 Long-Term Expansion Plan of Distribution Substations (FY 2016)

(1) Formulation of expansion plan

A method was adopted to calculate the utilization factor in the demand for FY 2016 to be supplied on the basis of equipment for FY 2011 and to study the substations where extension plans are needed.

Countermeasures should be taken for the following substations:

- (a) 2-bank configuration substation wherein the utilization factor exceeds 75%.
- (b) 3-bank configuration substation wherein the utilization factor exceeds 80%.
- (c) (1 x 60 MVA + 1 x 40 MVA) bank configuration substation wherein the utilization factor exceeds 65.0% (excess of 65 MVA).
- (d) (1 x 60 MVA + 2 x 40 MVA) bank configuration substation wherein the utilization factor exceeds 79.3% (excess of 111 MVA).

The preferential order of countermeasures is as follows:

i) Switchover to surrounding substation with lighter load through distribution line.

og ditte og mellene og men ble trente ett kritisk frette flette militær

o standard (1966), ki propositi dada propositi ne da karangan na hagi dibi dibi da mandarda na mad Mandara (1968), ki mata milina mina karangan dibi di Karangan da Karangan inggan

- ii) Expansion of bank and/or its capacity.
- iii) Construction of new substation. Selection and pathograph in programmer in

Table 6.2-1 MEA's Forecast of Maximum Power Demand & 2016's Forecast of Planning Load

			1000	0000	9013	9018
and the second of the second o	1993	1996	2001	2002	4011	0102
Planning Load	0.1 000	000	7 884 80	86.080.0	12, 645, 86	-14.874.58
Coincident Load 12% 24KV (MM) A	4, 080. 50	538 90	737	827.96	951.	1, 119, 08
Coincident Load by 1150 (MM) R	10 787 /	5 805 70	8, 402, 38	10, 797.24	13, 597, 69	
		66	91.	92.33	93.00	93. 00
Additional Load (Annual Average)			(6		115 71
24KV (MW)		395. 43	479.62	460.88	55.55	440.14
69&115KV (MW)		45.80	39. 72	10.03	560.09	479.19
		02 .11.5	3			:
Average increase date	ı	88.88	7.79		4.	3.30
			6. 48	2.34	2	3.29
Ond Ond	, i	0.00	7.67	. :		3.30
minutes Average)		00 662 E	UU Ub6 8			15, 780, 00
Total Max. Power Demand (MW) C. Average Increase (%)	4, 340. UU -	3, 123. 00 9. 61	0, 230. 00 7. 69	5. 14	ŀ	3.30
	1.03130	1.01445	1.01356	1. 01354	1.01354	1.01354
Planning Load Planning Load Planning Load Planning Load Planning Pl		6, 217. 35	9, 063.	11, 783.	14, 944.	578.
Non-Coincident Load 12&24KV (MVA) E	بن	6, 809, 80	9, 916, 56	12, 850, 55	16, 261. 73	19, 029, 51
(7.7 8	7.83	<u>.</u>	4.87	က် က
Non-Coincident Load 12&24NV (MN) %	1	- 86 - 98		5.32		3.19
D D	1.1840	1. 18			-∹ •	<i>∹</i> '
	:	0.9130	0.9140	0.9170	0.9190	0.823

Table 6.2-2 Block Load of Distribution Substation Planning

_									_																					_				_
		Distribution Substation of Block Arca(2001)	63/RY, KH, S1	. 10 BB, BO, NII, ST, TW	24 NG, PS, BE, VK	59 SC, KD, EC	25 BD, 31, PE, 43, 5 V, 44, 45, 46, 47	99 KR. PC, YA. SB, TH, KE, YI	72 NK	97 BY, PO, RC, HP	13 SM, SN, BZ, PP	CK, 1.P, MC, YT, IN, JJ		36 CL. KP. KT. LN. WS. PW. SL. SY. SU. WB. YT. UK. YN. SH. SW	2. 87 BA. HK. NN. PT. PK, PA. SS. SY. EW. HA. SA. DD, CK. PL. RP	0. 45 BM, KN, WN, TS, TB, WR	3. 36 Rt. Pg. KM. TT. NS. YK. TC	36	3. 74 KU, RN, JR	2. 44 MA, PJ, SR, SK, SO, TK, MU	1. 53 BK, KS, PD, TR, T1	86 KA, DX, KY, WI, KI.	05 LK, RT, SP, KG	88 KJ, RH, SC, TA	35 BG, TP, R1, SE, JK	85 BI. BU. PK. PR. KO. TK	MB, EB, WW	RK, K I, BH, PY	CG, 1.B	BN, BP, BS, MC, OB	56 BJ. RC, AB, TY		•	
		increase (%)	5.63	1.10	5.24	7	2.	က်	0.	erż	4	-		1.36	2.87	0.45		i					æί				6. 65	5.98	3, 57	1. 79	3.56		3	l
0.00	0107	Density (kYA/km2)	822. 17	4, 299, 95	9, 744, 41	2, 179, 13	10, 423, 22	14, 588, 50	2, 819, 20	11, 800, 52	24, 561, 76	14, 770, 02	52, 622, 26	68, 989, 02	31, 450, 13	12, 266, 31	32.926.58	2, 191, 23	16, 908, 14	16, 252, 60	2, 806, 29	9, 186, 64	6, 511, 35	8, 573, 60	559	5, 664, 08	1, 050, 90	4, 824, 54	5, 576, 85	3, 249, 71	1, 152, 33		5 830 91	
		(MVA)	420.13	532, 12	589, 54	323.06	1, 216, 91	1, 108, 73	74.00	590 03	614. 04	672.04	513.07	1, 621, 24	2, 058.40	5.12. 78	905.48	39.99	350.84	698.86	510.74	539. 72	856. 2.1	492. 98	659, 56	669. 78	457, 14	735.74	223.07	560.58	452.86		5 07 19 099 62	10.000
-		Increase (%)	7.80	3.18	7. 40	6. 74	4.35	8. 17	2.79	6. 11	6. 27	3.88	3. 77	3. 44	4.99	2.52	5. 49			4.55	3.62	6.00	10.27	5.00	4.46	2.92	8.85	8.16	5.70	3.89	5, 69		ZV 5	
	2011	Density (kVA/km2)	625. 32	4. 070. 79	7, 548, 26	1, 741, 25	9, 325, 91	10, 904, 61	2, 720, 38	9. 713. 00	20, 066, 00	13, 520, 66	48, 424, 52	64, 489, 36	29, 902, 43	11, 992, 99	27, 905, 09	1, 550, 14	14, 068, 92	14, 405, 12	2, 600, 55	7, 600.85	4, 420, 99	7, 438, 26	6, 729, 63	5. 429. 77	761. 54	3, 609, 25	4. 680. 25	2, 973, 39	967. 43		96.1 79 6.001 39	100.100.1
		Load (NYA)	319.54	503.76	456. 67	258.14	1, 088, 80	828.75	71.41	485.65	501.65	615.19	472.14	1.515.50	1, 786, 67	530.69	767.39	28. 29	291.93	619.42	173.30	446.55	581.36	427. 70	587. 16	642.07	331. 27	550.41	187.21	512, 91	380.20		18.961.72	
		Density (kVA/km2)	295. 09	2, 976, 32	3, 695, 04	906.98	8, 090, 45	4, 970, 13	2, 066, 29	5, 368, 20	10, 925, 60	9, 242, 42	33, 451, 28	45, 968, 51	18, 379, 25	9, 352, 77	16, 350, 55	632.88	7, 946, 51	9, 231, 86	1.821.87	4, 244, 60	1, 662, 66	4, 567.13	4, 350, 95	4, 070, 70	326. 23	1, 647, 80	2, 689, 00	2, 030, 72	556. 26		2 P. 10	O. U30-114
	1002	Load (MVA)	150.79	368.32	223, 55	134. 46	711.06	377. 73	54. 24	268.41	273.14	420.53	326.15	1, 080, 26	1.098.16	413, 86	449. 64	11.55	164.89	396. 97	331.58	249.37	218.64	262. 61	379. 62	481.36	141.91	251.29	107.56	350.30	218.61		92 310.0	a, 310, 00
-		Arca (km2)	511.00	123. 75	60.50	148.25	116.75	76.00	26. 25	50.00	25.00	45.50	9.75	23.50	59. 75	14. 25	27.50	18.25	20.75	43.00	182.00	58. 75	131.50	57.50	87.25		435, 00	152, 50	40.00	172.50	393.00		9 950 00	U. 600 VV
		рас			200				2 2 2 3				The second									1 1 1												1
		No Block Name	Sainoi	2 Taweerattana	3 Bangkae	4 Klongsanamcha	5 Pakkred	6 Nonthaburi	7 North Bangkok	8 Rungpracha	9 Pradipat	10 Chankasea	11 Sapandam	12 Chidlom	13 Sonvijai	14 Taksin	15 Thanontok	16 Bangkrachao	17 Jangron	18 Suanson	19 Rangplakod	20 Domanang	21 Lardprao	22 Klongjan	23 Srieian	24 Rangping	25 Hinburi	26 Romk lao	27 Chalongkrung	28 South Bangplee	29 Tubyao	30	Total	10th
1			İ								-	ĺ				1	1			.	١.						l			ľ	10			1

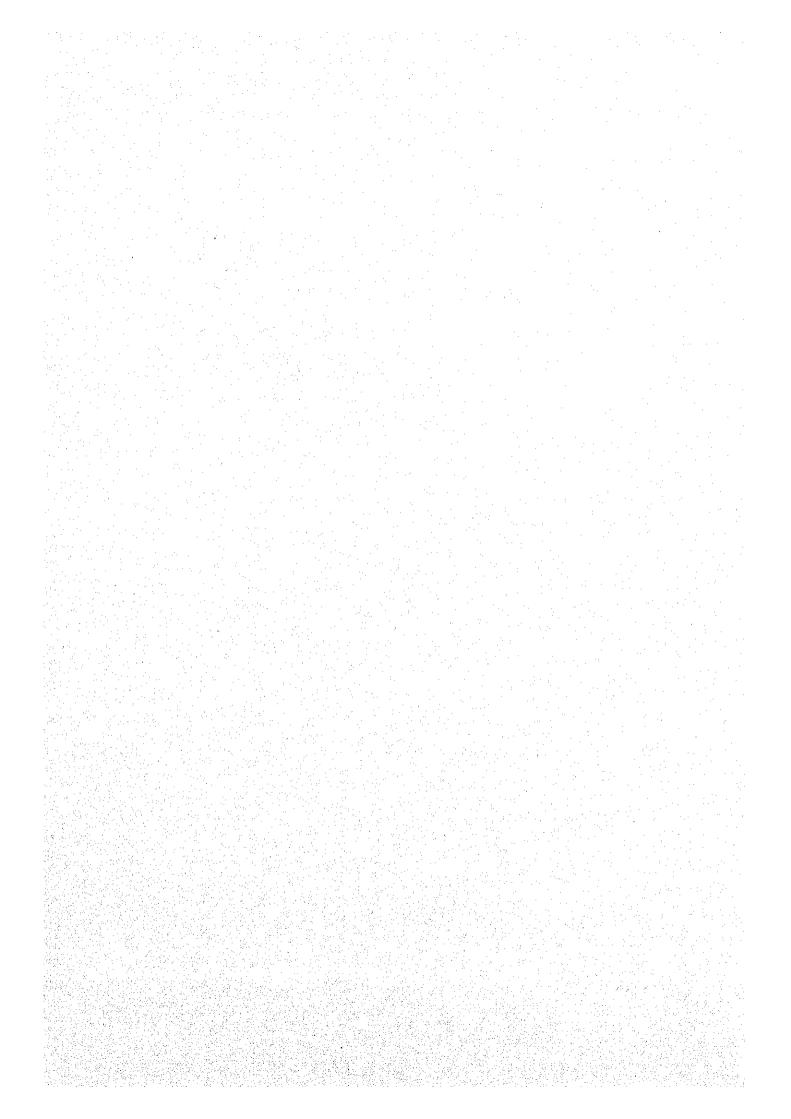
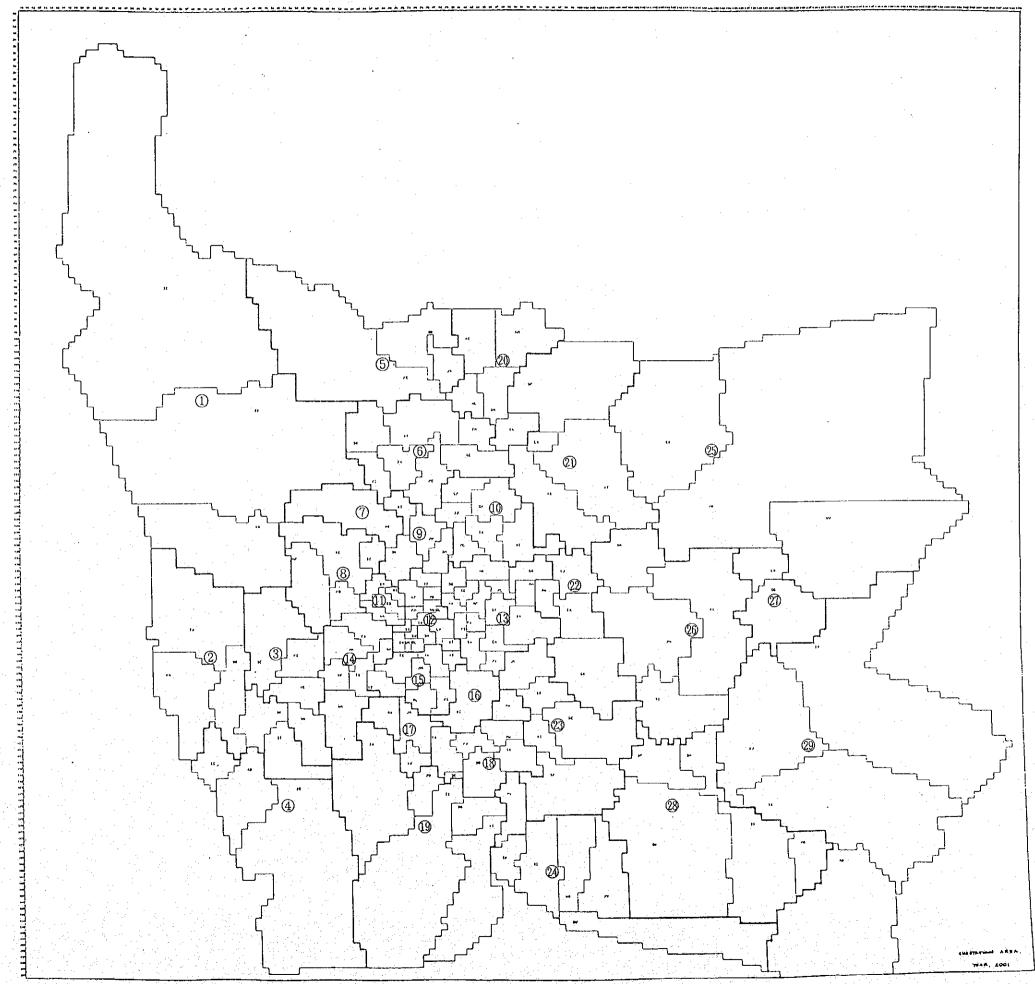
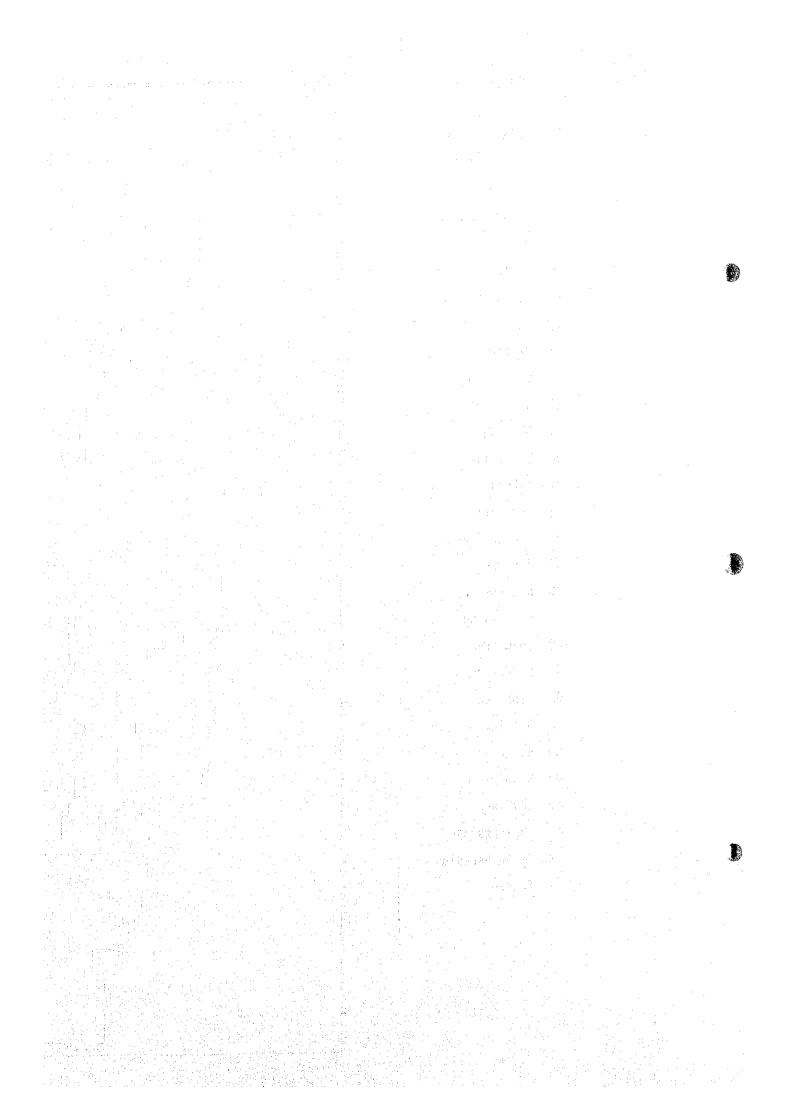
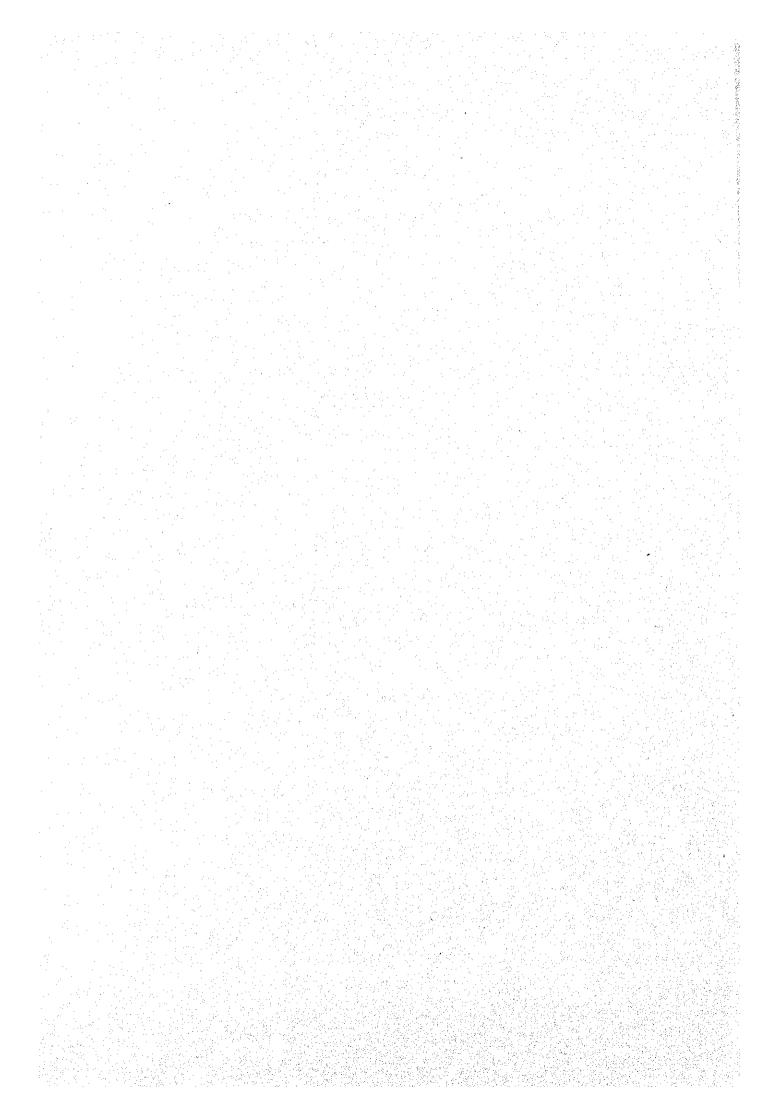
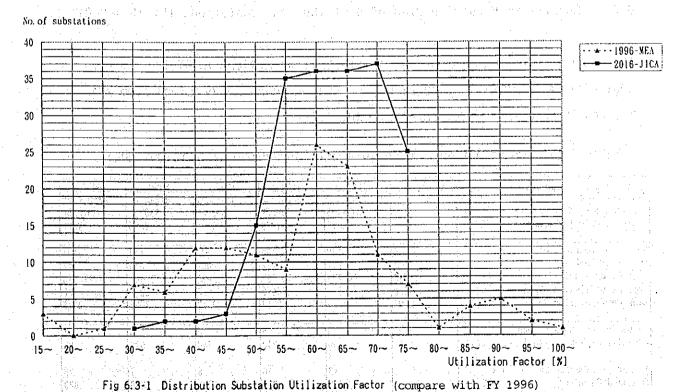





Fig. 6. 2-1 Block Area

- ① Sainoi
- ② Taweewattana
- ③ Bangkae
- Klongsanamchai
- ⑤ Pakkred
- ⑥ Nonthaburi
- North Bangkok
- Rungpracha
- Pradipat
- **O** Chankasem
- Sapandam
- ① Chidlom
- Soonvijai
- Taksin
- ① Thanontok
- Bangkrachao
- ① Jangron
- Suansom
- Bangplakod
- ② Donmuang
- ② Lardprao
- 20 Klongjan
- ② Srieiam
- 20 Bangping
- 25 Minburi
- 26 Romklao
- Chalongkrung
- South Bangplee
- ② Tubyao


The results of comparing the facility states in FY 1996 and those in FY 2016 are listed below:

rung pendikan nagat di beraja di riba di FY	1996(A)	FY 2016(B)	B/A
No. of substations	124	192	1.55
No. of banks at the state of the state of	257	515	2.00
Capacity (MVA)	11,645	29, 240	2.51
Average utilization factor (%)	58.9	65.1	+6.2%
No. of banks per each substation	2.07	2.68	

For reference, utilization factor of distribution substation in FY 1996 and 2016 is presented in Fig. 6.3-1.

Incidentally, the quantity of equipment to be expanded for twenty (20) years during the period FY 1997-2016 is as listed below:

	Number of Substations	Installed Capacity (MVA)
New	68	10, 120
Enlargement	91	6,775
Total	159	16,895

6.4 Long-Term Expansion Plan of Distribution Substations (FY 2001-2011)

The long-term plan for distribution substations from FY 2001 through FY 2011 has been determined to be formulated by reviewing the plan formulated by MEA. The result is presented in Table 6.4-1 (including FY 2016 plan).

Table 6.4-1 Construction Plan of Distribution Substation (FY 2001-2011)

	1996	2001	2006	2011	2016
Planning Load [MYA]	6, 856. 23	9, 916. 55	12, 850, 26	16, 262, 11	19, 029, 65
Additional Load [MVA]	-	3, 060, 32			1
Additional Load per annum [MVA]	-	612.06			
Increase Rate per annum [%]	1. · - 1:	7. 66		1 1	i .
Number of Substations	124	151	167	182	192
Number of Banks	257	341	404	476	515
Installed Capacity [MVA]	11.645	17, 545	22, 340	26, 700	29, 240
Average Utilization Factor [%]	58. 9	56. 5	57. 5	60.9	65. 1
Bank Configuration Ratio	2. 07	2. 26	2. 42	2. 62	2. 68
Number of New Substations		27	16	15	10
Capacity of New Substations [NYA]	-	3, 000	2, 040	2, 100	1, 320
Number of Expanded Substations		46	42	38	28
Expanded Capacity [MYA]	-	2, 540			
Increment [MYA]		5, 540	4, 195	4, 360	2, 540
Increment per annum [MYA]	i	1, 108		-,	1

6.5 Short-Term Expansion Plan of Distribution Substations (FY 1997-2001)

The short-term expansion plan for distribution substations in FY 1997 through 2001 will be formulated by reviewing a new five-year plan obtained from MEA. The result of review is presented in Table 6.5-1.

Table 6.5-1 Construction Plan of Distribution Substation (FY 1997-2001)

	1996	1997	1998	1999	2000	2001
Planning Load [MVA	6, 856-2	7, 456, 16	8, 002. 55	8, 586. 21	9, 243. 01	9, 916, 55
Additional Load per annum [MVA] -	599. 93	546. 39	583, 66	656. 80	673. 54
Increase Rate per annum [%]	-	8. 75	7. 33	7. 29	7. 65	7. 29
Number of Substations	124	130	135	139	144	151
Number of Banks	25	277	289	302	318	341
Installed Capacity [NVA] 11,64	12, 825	13, 585	14, 425	15, 405	17, 545
Average Utilization Factor [%]	58.	58. 1	58. 9	59. 5	60.0	56. 5
Bank Configuration Ratio	2. 0	7 2. 13	2. 14	2. 17	2. 21	2. 26
Number of New Substations		6	5	4	5	7
Capacity of New Substations (NVA) -	300	340	340	580	800
Number of Expanded Substations		18	10	8	7	23
Expanded Capacity [NYA] -	920	360	360	380	960
Increment (NVA]	1, 220	700	700	960	1.760

- 6.6 Methodology of Subtransmission Line and Terminal Station System
 Plan
- (1) Approach to the subtransmission system planning

First, the study on the basic system configuration at FY 2016 which is the final target in this Study was carried out based on the MEA's draft long-term plan up to FY 2011, taking into account the distribution substation expansion plan at FY 2016 formulated by the JICA Study Team.

After formulating the long-term optimum plan at FY 2016, the study on the optimum subtransmission system plan at each target year during the period of FY 1997-2011 has been carried out by expanding the necessary subtransmission system facilities in chronological order toward the FY 2016's plan.

Power flow analyses and fault current calculation have been carried out to define the necessity for subtransmission system improvement and expansion.

- (2) Criteria for the subtransmission system planning

 The criteria adopted for the subtransmission system planning in this Study
 are based on the MEA's planning criteria.
- 6.7 Subtransmission Line and Terminal Station System Plan (FY 2016)

Fig. 6.7-1 and Fig. 6.7-2 show the system configuration at FY 2016 planned by the JICA Study Team.

- (1) Terminal station improvement and expansion
 - If any of the terminal stations are unable to cope with the increasing load, the following countermeasures should be considered:
 - Load reduction by transferring the distribution substations to be supplied from one terminal station to the other.
 - Addition of terminal station capacity to be able to supply the increasing load.
 - Construction of new terminal station to share load from adjacent terminal stations.

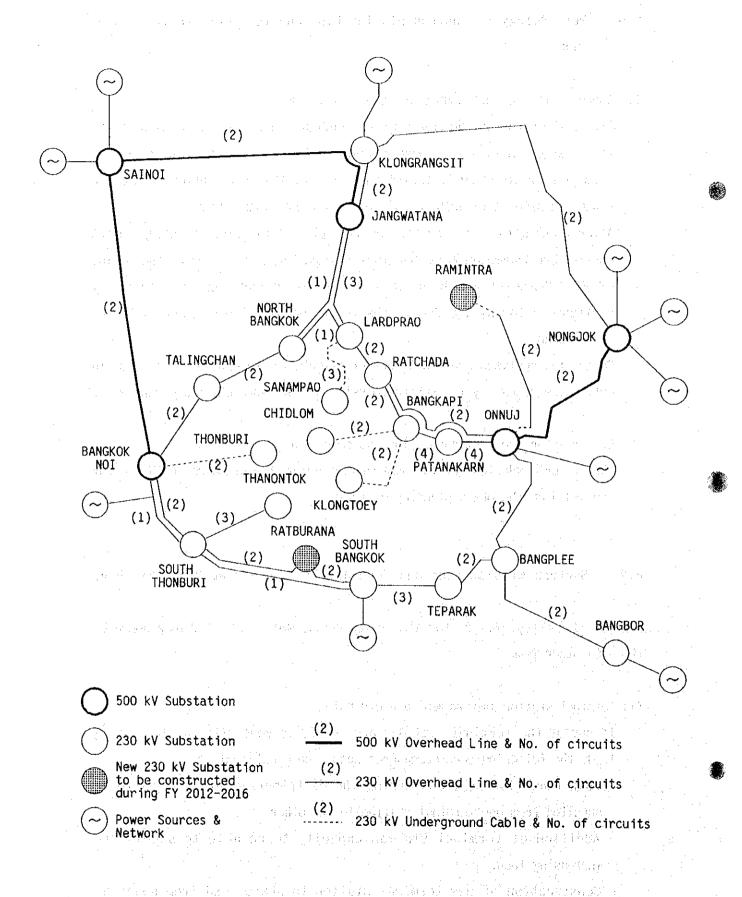
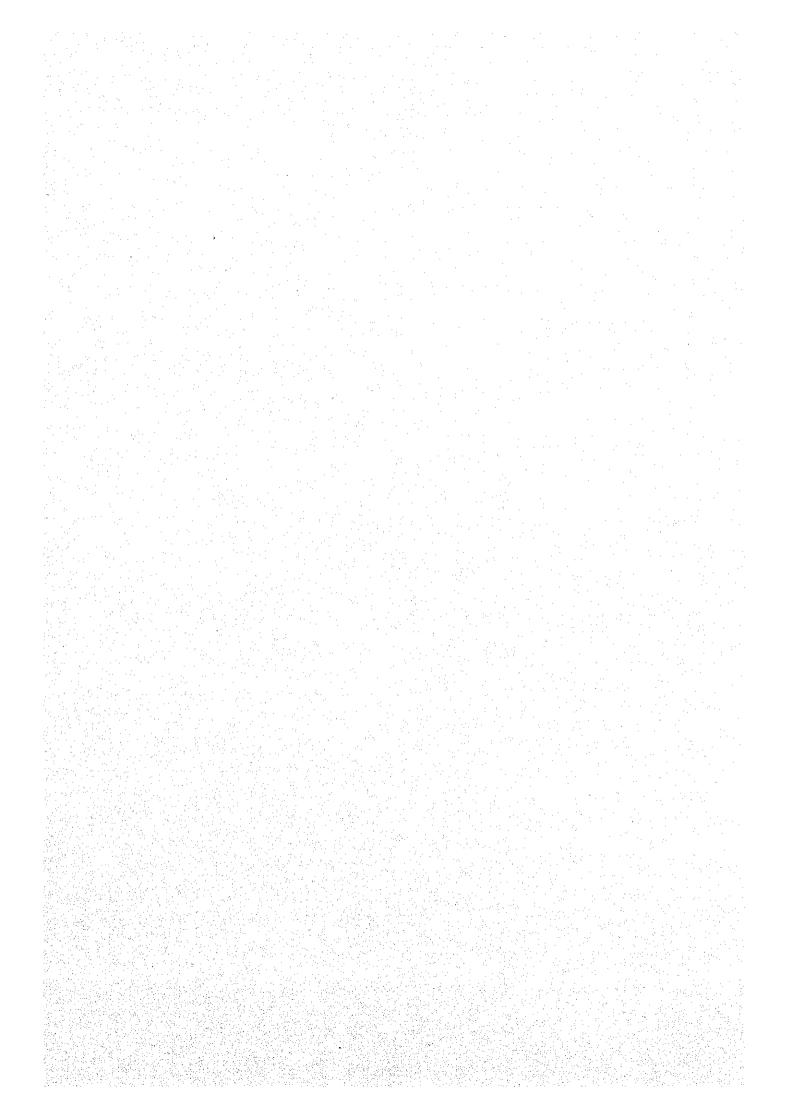
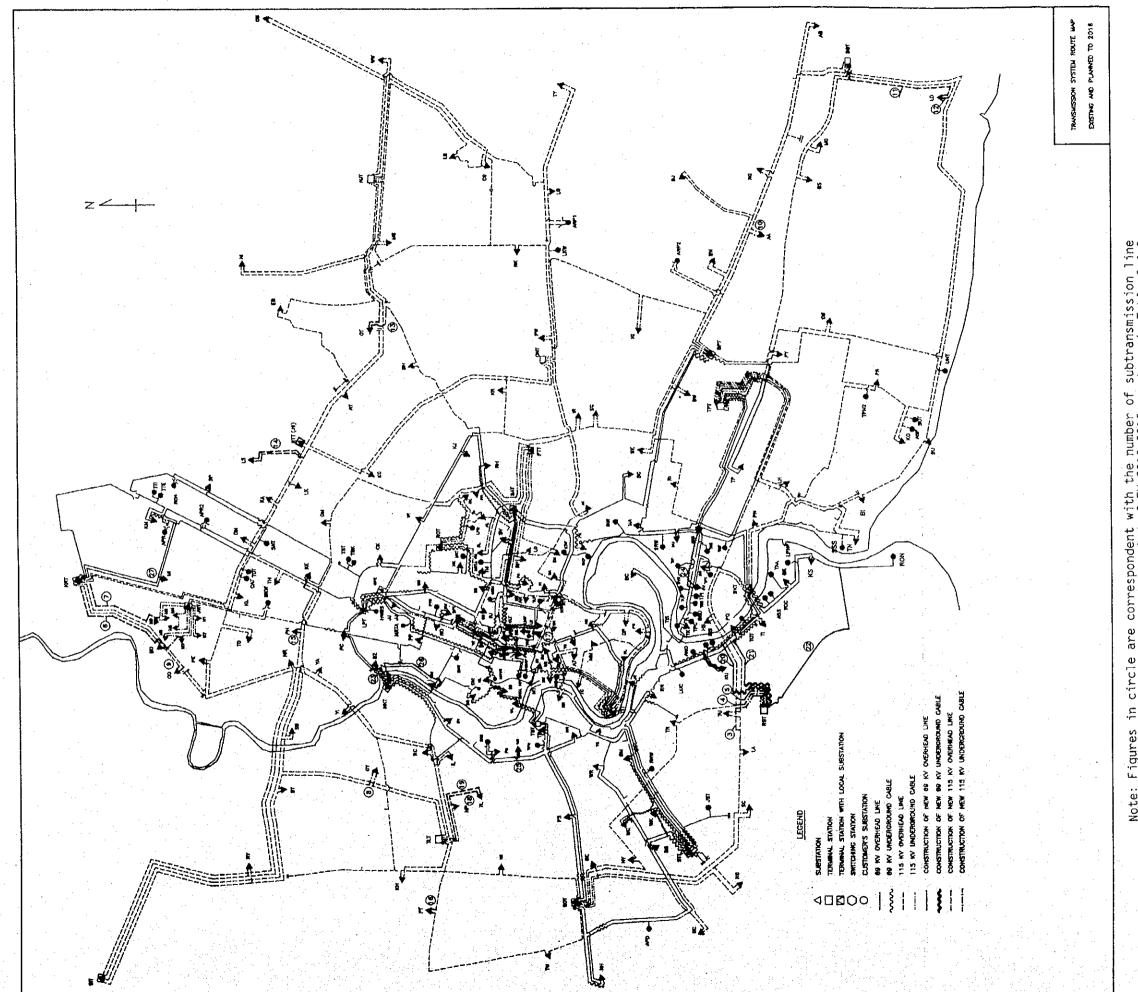
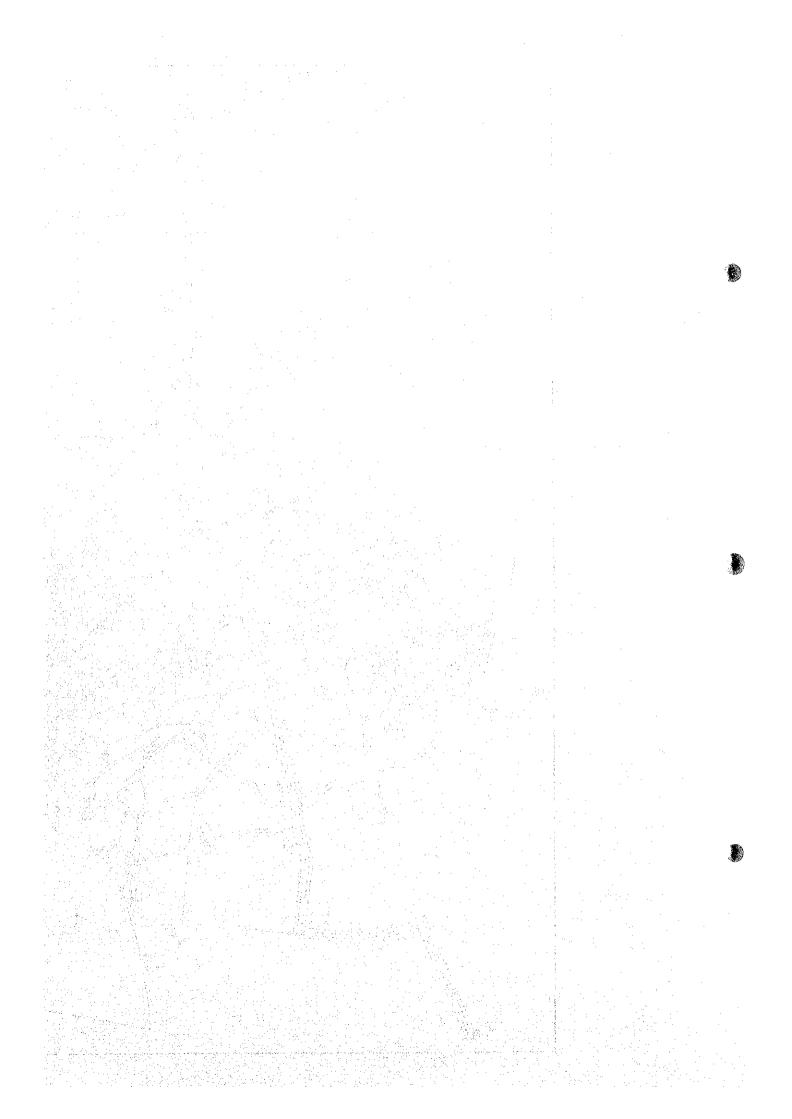
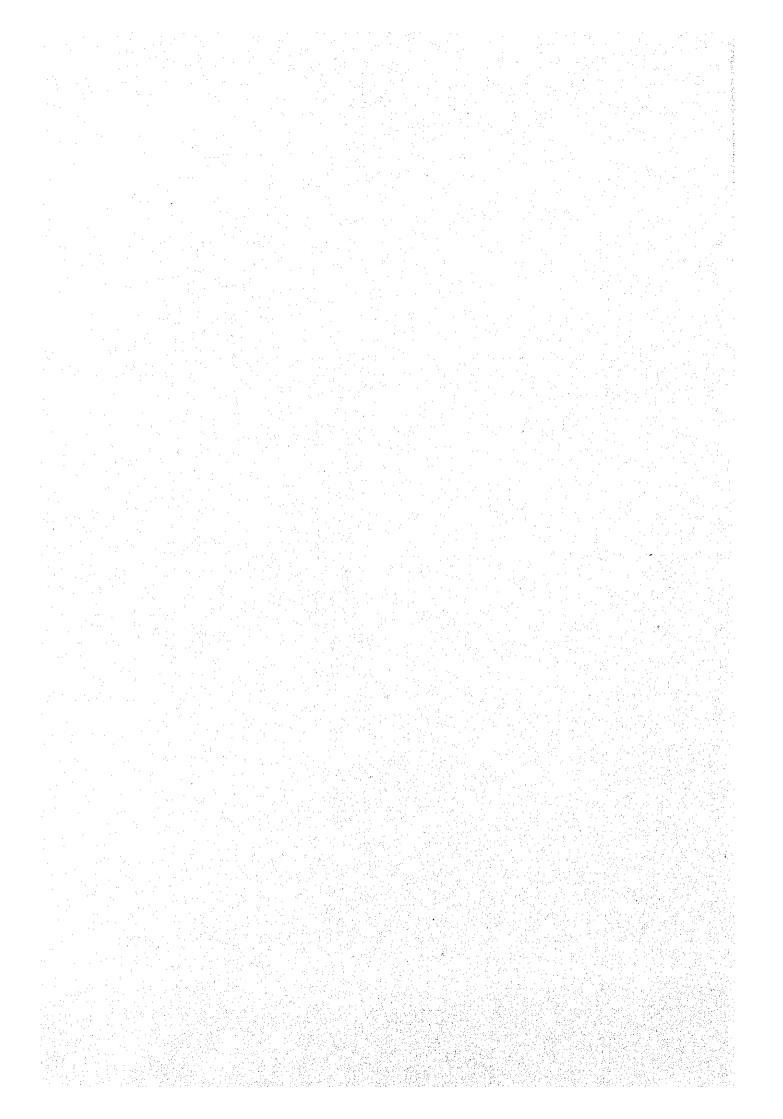




Fig. 6.7-1 230 kV System Configuration at FY 2016





Note: Figures in circle are correspondent with the number of subtransmission line to be constructed during the period of FY 2012-2016 as shown in Table 6.4-2.

Fig. 6.7-2 115kV and 69kV System Configuration at FY

The two new terminal stations with total capacity 1,800 MVA will be constructed and 11 existing terminal stations will have capacity added totally 2,900 MVA compared with the JICA plan at FY 2011. The total increasing capacity, therefore, will be 4,700 MVA, of which 1,200 MVA is invested by MEA and 3,500 MVA is invested by EGAT.

The two new terminal stations planned by the JICA Study Team can be summarized as follows:

(a) Construction of a new terminal station as countermeasures against overloading of Nonjok T/S and Onnuj T/S.

The installation of 2 x 300 MVA 230/115 kV transformers are proposed. As one of the candidate sites, a place around Ramintra area will be selected by reason of:

- Located adjacent to the 115 kV subtransmission lines on the secondary side of both the above-mentioned terminal stations.
- Easily interconnected also with the northern terminal stations such as Jangwatana, Lardprao, Klongrangsit, etc.

Incidentally, the new terminal station (hereinafter referred to as "Ramintra T/S") is located outside the EGAT's 230 kV outer ring lines, so that MEA will have to find a plot of land to construct T/S and receive power at 230 kV from EGAT at nearby existing T/S.

(b) Construction of a new terminal station as countermeasures against overloading of South Bangkok T/S.

The installation of two 230/69 kV and two 230/115 kV transformers, each rated 300 MVA, are proposed.

As the 69 kV load at South Bangkok T/S is distributed widely also in the area along the west side of the Chau Phraya River, it is desirable that the new terminal station should be constructed around Ratburana area, located on the west side of the river, by terminating the double circuit of the EGAT's existing three circuit 230 kV South Thonburi – South Bangkok line at the new terminal station (hereinafter referred to as "Ratburana T/S").

i di Berlig Kondret, prigi Perryadi, di dia akamata indiki basah mendalah mendakan kemalah di dilili. Sebelik mendalah mendak perbenjah mendalah mendalah mendak mendalah di mendalah mendalah mendalah mendalah men

of the Charlest Sphill Section of Berk is the car of the Note what the second care

(2) Subtransmission line improvement and expansion

According to the subtransmission line expansion plan during the period of FY 2012-2016 formulated by the JICA Study Team, the total length of subtransmission line to be constructed will be 109.3 ckt-km, of which 79.0 ckt-km is overhead line and 30.3 ckt-km is underground cable.

These can be briefly summarized as follows:

- (a) Construction of 230 kV double circuit subtransmission line from Onnuj T/S to the new Ramintra T/S, a distance of 19.0 km, of which 13.0 km is overhead line and 6.0 km is underground cable.
- (b) Construction of the outgoing 115 kV and 69 kV subtransmission line from the new Ratburana T/S, the total length of 24.7 ckt-km.
- (c) Construction of 115 kV subtransmission line to be linked the 11 new distribution substations such as Klongdan D/S, Lumpagshe D/S, etc., the total length of 26.0 ckt-km.
- (d) Construction of the incoming 69 kV subtransmission line to be linked distribution substations with the installation of the third transformer such as Samsen D/S, Bangson D/S, etc. to modify the system configuration to "Tapped-tie normally open (3 incomings)", the total length of 6.1 ckt-km.
- (e) Construction of 115 kV subtransmission line to transfer the load at Maungthong-3 D/S and Maungthong-9 D/S from Jangwatana T/S to Klongrangsit T/S as countermeasures for the overloading Jangwatana T/S, the total length of 14.5 ckt-km.
- 6.8 Subtransmission Line and Terminal Station System Plan (FY 1997-2011)

- (1) Terminal station improvement and expansion

 Table 6.8-1 shows the target for terminal station programme up to FY 2016.
 - (a) Construction of terminal station

The nine new terminal stations with total capacity 4,800 MVA will be constructed. Among these, the following four terminal stations which are located outside the EGAT's 230 kV outer ring lines will be

as tally all the least to each and americancy basis are longer life to be after that the observed of

constructed with the total capacity of 2,400 MVA by MEA's own investment.

FY 1999: Thanontok T/S 230/115 kV, 2x300 MVA

FY 2000: Sanampao T/S 230/115 kV, 1x300 MVA

230/69 kV, 1x300 MVA

FY 2006: Klongtoey T/S 230/115 kV, 2x300 MVA

Thonburi T/S 230/69 kV, 1x300 MVA

(b) Addition of terminal station

The 18 existing terminal stations will have capacity added totally 8,115 MVA. Among these, the following two terminal stations will have capacity added totally 900 MVA by MEA's own investment.

FY 2006: Sanampao T/S 230/69 kV, 1x300 MVA to 2x300 MVA

FY 2011: Sanampao T/S 230/115 kV, 1x300 MVA to 2x300 MVA

Thonburi T/S 230/69 kV, 1x300 MVA to 2x300 MVA

The installed capacity of terminal stations at each target year up to FY 2016 is as shown in Table 6.8-2.

(2) Subtransmission line improvement and expansion

(a) 230 kV subtransmission line

Table 6.8-3 shows the 230 kV subtransmission line system expansion plan.

Table 6.8-3 230 kV Subtransmission Line System Expansion Plan (FY 1997-2011)

Name of Subtransmission Line	Distance (km)	Circuit (No.)	Conductor Size (mm²)	Commissioning Date (Fiscal Year)
Construction	(Nii)	(110+)	(11811 /	(Fiscar Tour)
1. Lardprao - Sanampao	7.8	2	2x1, 200	2000
2. Bangkapi - Klongtoey	7.7	2	2x1,200	2006
3. Bangkoknoi - Thonburi	10.4	2	2x1,200	2006
Addition				
1. South Thonburi - Thanontok	8.0 0.6	1	2x400 2x1,200	1997
2. Lardprao - Sanampao	7.8	1	2x1,200	2006

Table 6.8-1 Target for Terminal Station System Program

Name of	System Voltage			ir	stallation (Capacity (MY/	()		
Terminal Station	(kY)	1997	1998	1999	2000	2001	2006	2011	2016
Construction									
1. Onnuj	230-115		2×300			-			
2. Thanontok *	230-115	·	1.	2x300			* 1:		
3. Sanampao *	230~115		1		1x300				
	230- 69				1x300				
4. Ratchada	230-115				1x300				
5. Bangbor	230-115					1x300		1 2 2 2	74.5
6. Klongtoey *	230-115						2x300		
7. Patanakarn	230-115				1 + ++ 11		3×300		·
8. Talingchan	230-115					4.	2×300		,
9. Thomburi *	230- 69				. 4.	r i i i i	1x300	t the	
10. Ramintra *	230-115						'2000		2×300
11. Ratburana	230-115					171			2x300 2x300
	230- 69		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in to the	1 11 1		1000	(2x300 2x300
·	1.0								2x300
Subtotal	,	_	600	600	900	300	2, 400		1, 800
Addition									
1. South Thomburi	230- 69	3x200 to 4x200	1	. if the second		. jest		+ 5.7	- :
2. Klongrangsit	230-115	1x200 to 2x200				in the state			-1,
3, Nongjok	230-115	2x200 to 2x200 + 1x300	. :	en ser iz					
4. Teparak	230-115		1x300 to 2x300			in. En hatesta	anding Japan		
<u>.</u> .	230- 69		; 1x300 to 2x300	1.11					٠.
5. Jangwatana	230-115		2x300 to 3x300					,#* D	
6. Sainoi	230-115		e e govern Marke type	1x300 to 2x300	ele ele			es en sage	
7. Bangkoknoi	230-115				1x300 to 2x300		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
8. Bangkapi	230- 69))			All a	4x200 to			
		1 11				2×200 + 2×300			- •
9. North Bangkok	230- 69					2x200 +	:		
*						1x285 to 2x200 +		ri Doğumlar	1
						2x300			
0. South Bangkek	230- 69					4x200 to	8 (1918 4 8 4)	1.48 F.	
		25, s	·\$		14. The state of t	2x200 + 2x300	igh.	and pro	r Pro-s
1. Bangplee	230-115						3x200 to	rio i s	
2. South Bangkok	230~115				1 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		4x200 2x200 to	e eller ett dyke	
3. Jangwatana	230-115						3x200 3x300 to		
4. Bangbor	230~115					. Ad	4x300 1x300 to		
E 0	990						2×300		
5. Onnuj	230-115						2x300 to 3x300		
	4.0								and the second second

Table 6.8-1 Target for Terminal Station System Program (Cont.)

Name of	System Voltage		, · · ·	10	stallation C	apacity (min	,		.
Terminal Station	(kV)	1997	1998	1999	2000	2001	2006	2011	2016
. Klongrangsit	230- 69	. ,				,	2x200 to 3x200		
. Lardorao	230- 69						4x200 to 2x200 +		
. Sanampao *	230- 69						2x300 1x300 to		
. Klongrangsit	230-115						2x300	2x200 to	en en
						, v		3x200	
. Nanjak	230-115		***					2x200 + 1x300 to 4x300	
. Bangkokno i	230-115							2x300 to 3x300	
, Bangbor	230-115							2x300 to 3x300	
. Onnuj	230-115							3x300 to 4x300	
. Ratchada	230-115					. :		1x300 to	
, Sanampao *	230-115							2x300 1x300 to	te gasta
. Talingchan	230-115				1 - - -		:	2x300 2x300 to	
. Lardprao	230 69	·						3x300 2x200 +	till og det skaller i skaller blever i skaller blever blever blever blever blever blever blever blever blever Det skaller blever
	100 09				:			2x300 to 4x300	
. South Bangkok	230- 69							2x200 + 2x300 to	erstell.
. Thonburi *	230- 69			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		y y		1x300 to	e e stantie
. Bangplee	230-115	:						2x300	4x200 to
A Service of the serv									2x200 + 2x300
. Klongrangsit	230-115		lad s					1. •	3x200 to 4x200
. Bangkokno i	230-115								3x300 to 4x300
. Sainoi	230-115				syl 2 to 1	Lawrence Control		4	2x300 to 3x300
. Sanampao *	230-115	6.19	144 S	ar s	Maria de la compansión de			1	2x300 to 3x300
Klongtoey *	230-115	1 w 3 1 v2 x1	WAY	Part (1 s			2x300 to 3x300
. Patanakarn	230-115		g. v.o.		1981				3x300 to 4x300
Talingchan	230-115	0.04			21 1. 52				3x300 to 4x300
8. Bangkapi	230- 69					e. ·			2x200 + 2x300 to
	000 00	1,000,1	Table 1			95 d. v.	1965. 1970.		4x300 to
). South Thomburi	230- 69	9 9000 9000			MAN I				2x200 + 2x300
O. Ratchada	230- 69								2x300 to 3x300
Subtotal	5 45 4.6	700	900	300	300	715	2, 000	3, 200	2, 900
Total	(196 ₁ 0)	700	1,500	900	1, 200	1,015	4, 400	3, 200	4, 700

Table 6.8-2 Installed Capacity of Terminal Stations

. Name of	Actual	7th Plan			• .	Planning	Period			
Terminal Station	1995	1996	1997	1998	1999	2000	2001	2006	2011	2016
115 kV System									· · · · · · · · · · · · · · · · · · ·	:
1. Bangplee	2x200	3×200	3x200	3×200	3×200	3×200	3×200	4x200	4x200	2x200 + 2x300
2. Klongrangsit	2x200	3x200	2×200	2×200	2×200	2×200	2×200	2×200	3×200	4x200
3. Nangjak	1x200	2×200	2×200 + 1×300	2x200 + 1x300	2×200 + 1×300	2x200 + 1x300	2×200 + 1×300	2x200 + 1x300	4x300	4x300
4. South Bangkok	2×200	2x200	2×200	2×200	2×200	2×200	2×200	3x200	3x200	3×200
5. Bangkokno i		1×200	1x300	1×300	1×300	2x300	2x300	2×300	3x300	4×300
6. Jangwatana		2x300	2×300	3×300	3x300	3×300	3x300	4x300	4x300	4×300
7. Sainoi		1×200	1x300	1x300	2×300	2×300	2x300	2x300	2x300	3x300
8. Teparak	<u> </u>	1x300	1x300	2×300	2×300	2×300	2×300	2×300	2x300	2x300
9. Bangbor	· ·						1×300	2×300	3x300	3x300
10. Onnuj				2×300	2×300	2×300	2×300	3×300	4×300	4x300
11. Ratchada			<u> </u>			1x300	1×300	1×300	2×300	2×300
12. Sanampao *	l —	·				1x300	1x300	1x300	2×300	3×300
13. Thanontok			· ·		2×300	2×300	2×300	2x300	2×300	2×300
14, Klongtoey *		<u> </u>		<u> </u>				2×300	2×300	3×300
15. Patanakarn						:	:	3×300	3×300	4×300
16. Talingchan							. — .:	2×300	3x300	4x300
17. Ramintra *										2×300
18. Ratburana	<u></u>	<u>.</u>						<u>-</u>		2×300
Subtotal	1, 400	3, 300	3, 600	4, 800	5, 700	6, 600	8, 900	10, 300	12, 800	16, 200
69 kV System					:					
1. Bangkapi	4x200	4x200	4×200	4x200	4×200,	4×200	2x200 + 2x300	2×200 + 2×300	2×200 + 2×300	4x300
2. Banokokno i	3x200	4×200	4×200	4×200	4x200	4x200	4×200	4×200	4x200	4×200
3. Bangplee	2×200	2×200	2×200	2×200	2×200	2x200	2×200	2×200	2×200	2×200
4. Chidlom *	2x250	2×250	2×250	2×250	2×250	2×250	2x250	2×250	2x250	2×250
5. Klongrangsit	3x200	3×200	2×200	2×200	2×200	2×200	2×200	3×200	3×200	3x200
6. Lardorao	4x200	4x200	4×200	4×200	4×200	4x200	4×200	2x200 + 2x300	4x300	4×300
7. North Bangkok	2x200 + 1x285	2×200 + 1×285	2×200 + 1×285	2x200 + 1x285	2×200 + 1×285	2x200 + 1x285	2×200 + 2×300	2x200 + 2x300	2×200 + 2×300	2×200 + 2×300
8. South Bangkok	4×200	4x200	4×200	4×200	4×200	4×200	2×200 + 2×300	2x200 + 2x300	4×300	, 4x300
9. South Thonburi	2x200	3×200	4×200	4×200	4×200	4×200	4×200	4×200	4×200	2x200 +
10. Ratchada		2×300	2×300	2×300	2x300	2x300	2-200	2200	0.000	2x300
11. Teparak		1x300	1×300	2x300	2x300	2x300	2x300	2x300	2x300	3x300
12. Thanontok		2×250	2×250	2x250	2x300		2x300	2x300	2x300	2×300
3. Sanampao *				27200	28230	2x250	2x250	2x250	2x250	2x250
4. Thomburi	·	:				1x300	1x300	2x300	2x300	2x300
15. Ratburana								1x300	2x300	2×300
,,										2×300
Subtotal	5, 585	7, 385	7, 385	7, 685	7, 685	7, 985	8, 700	9. 700	10,400	11, 700
Total	6, 985	10, 685	10, 985	. 12, 485	13, 385	14, 585	15, 600	20, 000	23, 200	27, 900

(b) 115 kV and 69 kV subtransmission line

Table 6.8-4 shows the 115 kV and 69 kV subtransmission line system expansion plan.

Table 6.8-4 115 kV and 69 kV Subtransmission Line System Expansion Plan (FY 1997-2011)

(Unit: ckt-km)

DV.	Over	head L	ine	Underg	Underground Cable				
FY -	115 kV	69 kV	Total	115 kV	69 kV	Total			
1997 1998 1999 2000 2001	53.4 111.3 94.5 75.6 9.5	6.7 12.7 4.3 23.2 8.4	60. 1 124. 0 98. 8 98. 8 17. 9	9.0 4.7 23.5 22.7 11.5	11.0 4.5 7.7 14.5 2.1	20. 0 9. 2 31. 2 37. 2 13. 6			
1997-2001	344.3	55.3	399.6	71.4	39.8	111.2			
2006 2011	232.8 89.0	42.8 14.9	275.6 103.9	67.0 29.6	30.4 16.8	97.4 46.4			
Total	666.1	113.0	779.1	168.0	87.0	255.0			

6.9 Design of Protective Relay System

To attain further high reliability of 230 kV subtransmission line, the following protection system shall be applied under this plan on the basis of two main protection groups and one backup protection group.

Meanwhile, the protection systems of 115 kV and 69 kV subtransmission lines, substations, etc. will be determined in accordance with the relevant criteria of MEA with necessary modifications.

Incidentally, the optical fiber should be used as a telecommunication line of the differential relays.

Protective Relay Scheme

•	Group 1 ; Digital current differential scheme
Main protection	Group 2 ; Distance relaying scheme
Backup protection	Distance relaying scheme

6.10 Optical Fiber Telecommunication Network

(1) Optical fiber telecommunication network between district offices

A telecommunication network formation plan is being formulated by MEA (Refer to Fig. 6.10-1) for the purpose of forming an optical fiber telecommunication network by 1998 between the Head Office adjacent to the Chidlom T/S and 14 district offices [existing 13 offices including 1 office scheduled to be constructed). As this plan is effective, the MEA is recommended to promote the plan for implementation:

(2) Optical fiber telecommunication network for protection of subtransmission line

The subtransmission lines (230 kV) requiring protection scheduled to be constructed and the commissioning period thereof (fiscal year) are as listed below:

Route		Commissioning FY Length					
1. Lardprao	(EGAT) Sai	nampao ((MEA)	2000	7.8	km (UG)	
2. Bangkapi	(EGAT) Klo	ongtoey	(MEA)	2006	7.7	km (UG)	
3. Bangkokno	i(EGAT) The	onburi ((MEA)	2006	10.4	km (UG)	
4. Onnuj	(EGAT) Rar	mintra ((MEA)	2016	13.0	km (OH)	
		For Springer	le the Appeto T		6.0	km (UG)	

Since underground cable is scheduled to be used under this subtransmission line construction project, application of the power line carrier wave system would be difficult. Therefore, it will be appropriate to form the telecommunication systems for protection of subtransmission line by adopting microwave radio system or optical fiber system. To improve the reliability, the telecommunication line should be of a two-route (diversity) configuration.

6.11 VHF and UHF Telecommunication Network

(1) Trunk radio system

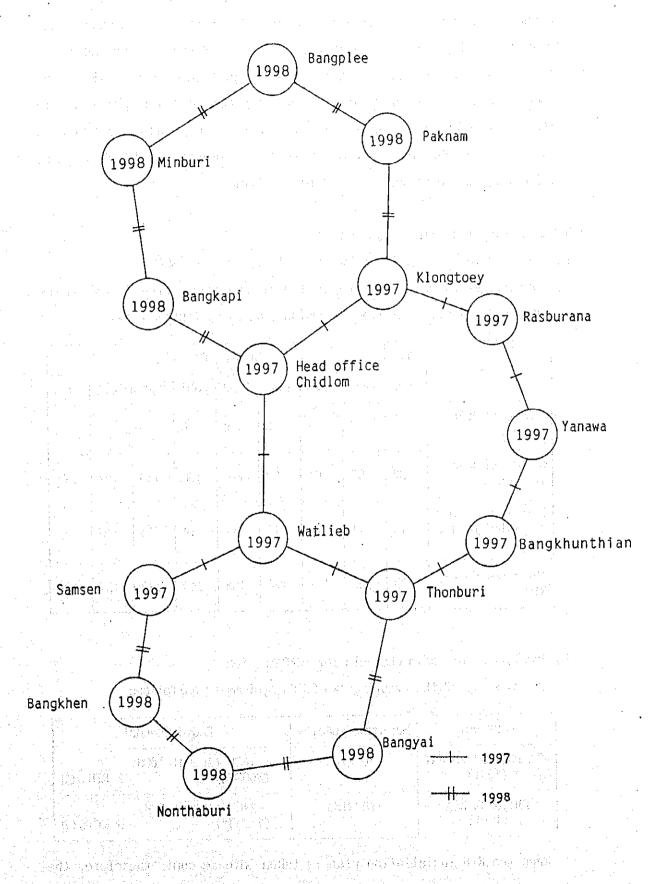


Fig. 6.10-1 MEA Fiber Optic Transmission Configuration Network

At present, the MEA is promoting introduction of a trunk radio system of 800 MHz band, the number of voice channels are 15 [extension to 28 channels is possible in maximum in view of the system]. Thereby, the channel shortage problem in contrast to the number of subscriber units (about 1,800 sets) will be settled after completion of this project. By increasing the number of voice channels (repeater units) in proportion to the increase in the number of subscriber units, the trunk radio system is evaluated to be sufficient to meet the needs of MEA for radio telecommunication network in the future as well.

(2) SCADA telecommunication systems

(a) Installation plan of RTU (Remote Terminal Unit) for SCADA

The number of RTU to be installed in the respective fiscal years
according to the substation extension plan is as listed below:

Item	7th	Planning Period							
ı cell	1996	1997	1998	1999	2000	2001	2006	2011	2016
Number of RTUs for T/S	6	5	5	5	6	5	5	5	4
Number of RTUs for D/S	82	93	101	109	120	130	149	164	-171
Number of common use RTUs for T/S and D/S	10	11	12	12	12	14	18	18	21
Total number of RTUs	98	109	118	126	138	149	172	187	196

(b) Acquisition of radio channels for SCADA system The capacity of the existing two SCADA systems is as follows:

Contract	Maximum Capacity	Radio Channel			
MEA-PSD-207/REPEAT (1981)	80 RTUs	16CH (Actual 16CH) (800MHz) 5 RTUs/CH			
PM4-0532-WBA (1991)	120 RTUs	24CH (Actual 8CH) (2.2GHz) 5 RTUs/CH			

When the RTU installation plan is taken into account, therefore, the

number of existing radio channels (120 RTUs can be accommodated) will be fully occupied in FY 1999. Consequently, it will be required to extend the 2,200 MHz band radio channels by FY 1999.

(c) Countermeasures for preventing radio wave interference with high-rise buildings in the central part of Bangkok

The propagation interference of the SCADA radio channels is predicted to become severe further in the future in proportion to increase in the number of high-rise buildings along with the progress of development in the central part of Bangkok. As the shadow loss per unit shielding area is greater in the case of 2,200 MHz band radio channels than in the case of 800 MHz band radio channels, moreover, the propagation interference due to high-rise buildings will be so much severe.

As a countermeasure, it considered effective to make positive use of optical fiber cable network being planned by MEA at present.

CHAPTER 7

FEASIBILITY DESIGN

CHAPTER 7 FEASIBILITY DESIGN

7.1 Study of Model Districts

7.1.1 Distribution System and Capacity of Distribution Substation

For executing detailed feasibility design, the following model districts have been selected.

- Sathorn Area (High density commercial area)
- Paphol Yothin Area (Commercial area)
- Jomthong Area (Industrial area)

With regard to these model districts, subtransmission lines and distribution substations in the surrounding areas, optimum systems of distribution system and distribution substation are studied on the basis of the following substation capacity as parameters:

- Case $1:3 \times 40$ MVA
- Case 2 : 4 x 40 MVA
- Case 3 : 3 x 60 MVA
- Case 4 : 3 x 80 MVA

(1) Power distribution plan

A study has been carried out and an expansion plan has been formulated regarding the 115 kV and 69 kV system configurations for power supply to distribution substations in the model districts and surrounding areas. The expansion plan in the respective cases (Case 1 to Case 4) has been formulated on the basis of the subtransmission line expansion plan described in CHAPTER 6, taking into account effective utilization of the

existing systems around the respective model districts and surrounding areas. (Case 3 is almost the same as the base plan in CHAPTER 6.)

The system configurations used in this study are outlined in Fig. 7.1-1.

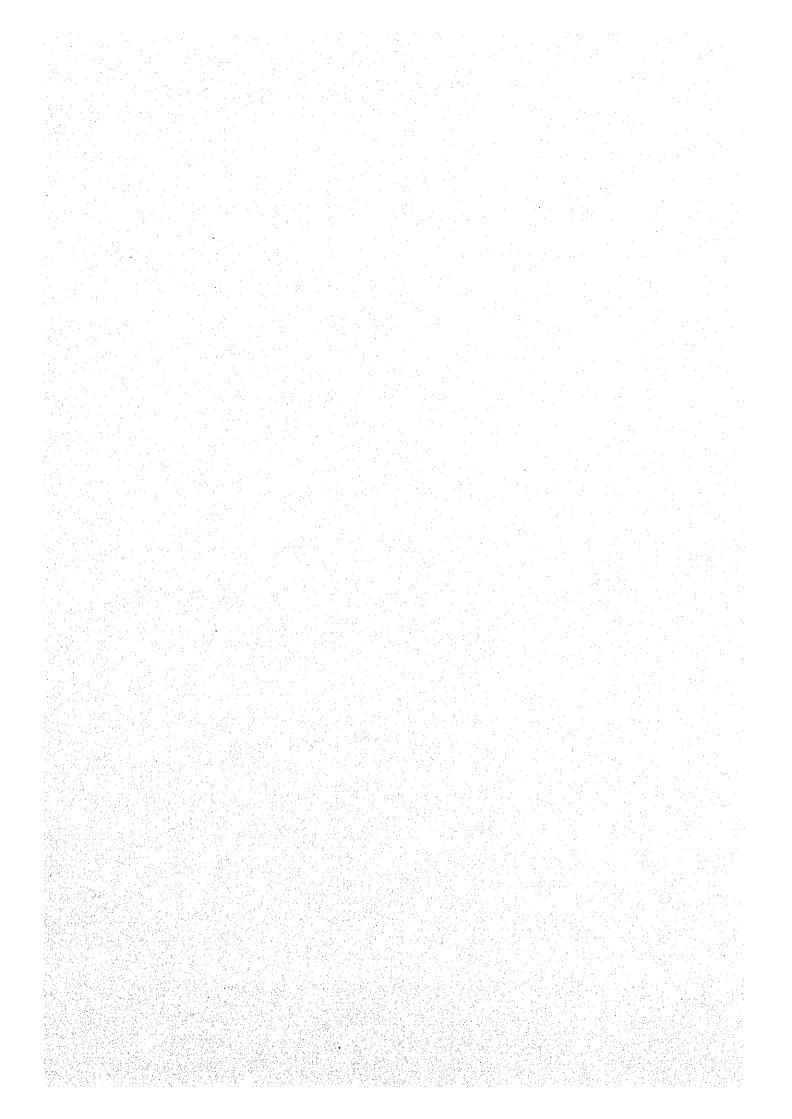
(a) Evaluation of the respective cases

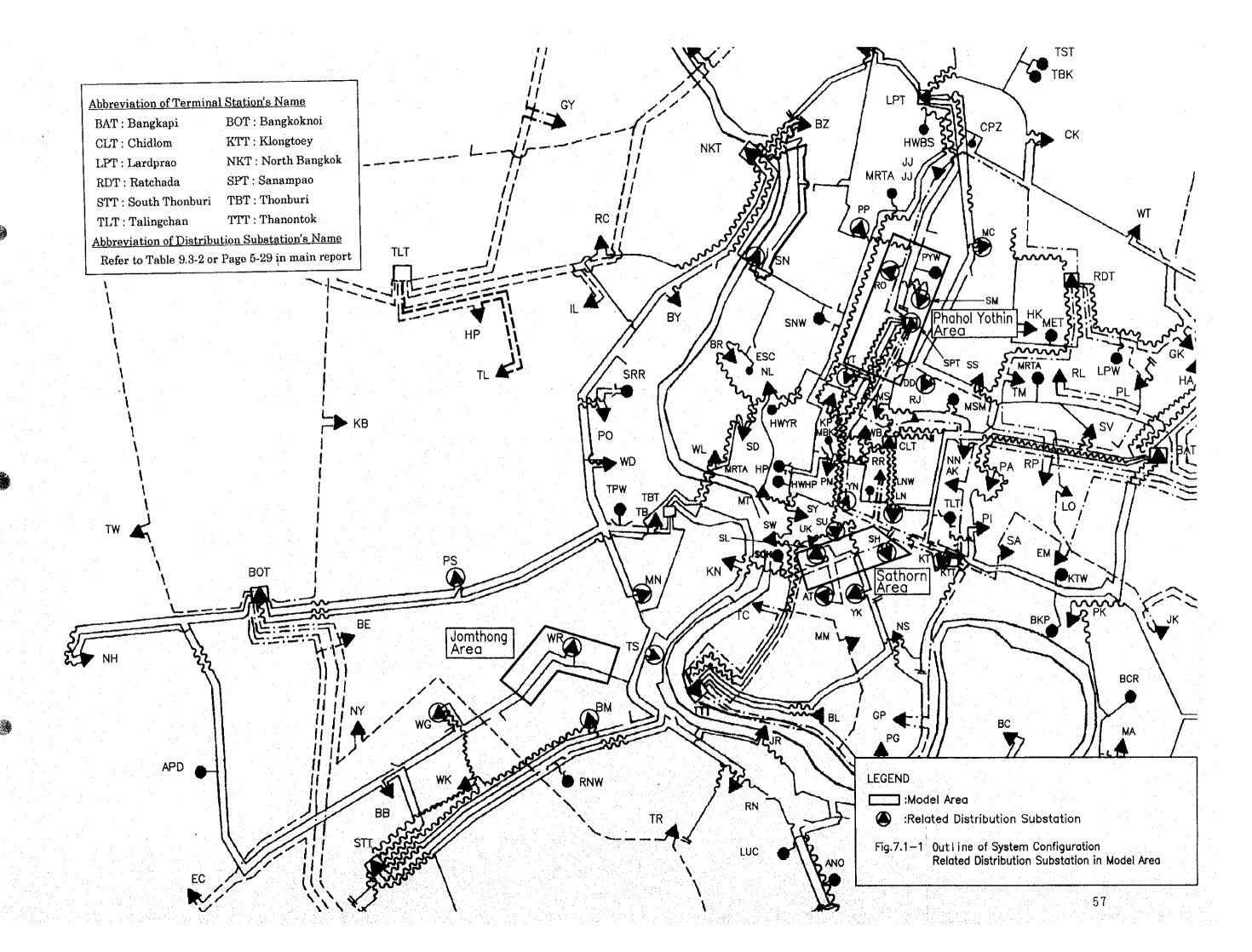
The construction cost in the respective cases is as completed in the tables below.

The 3 \times 60 MVA and 3 \times 80 MVA plans with the smallest number of substations to be constructed are advantageous, since the substation

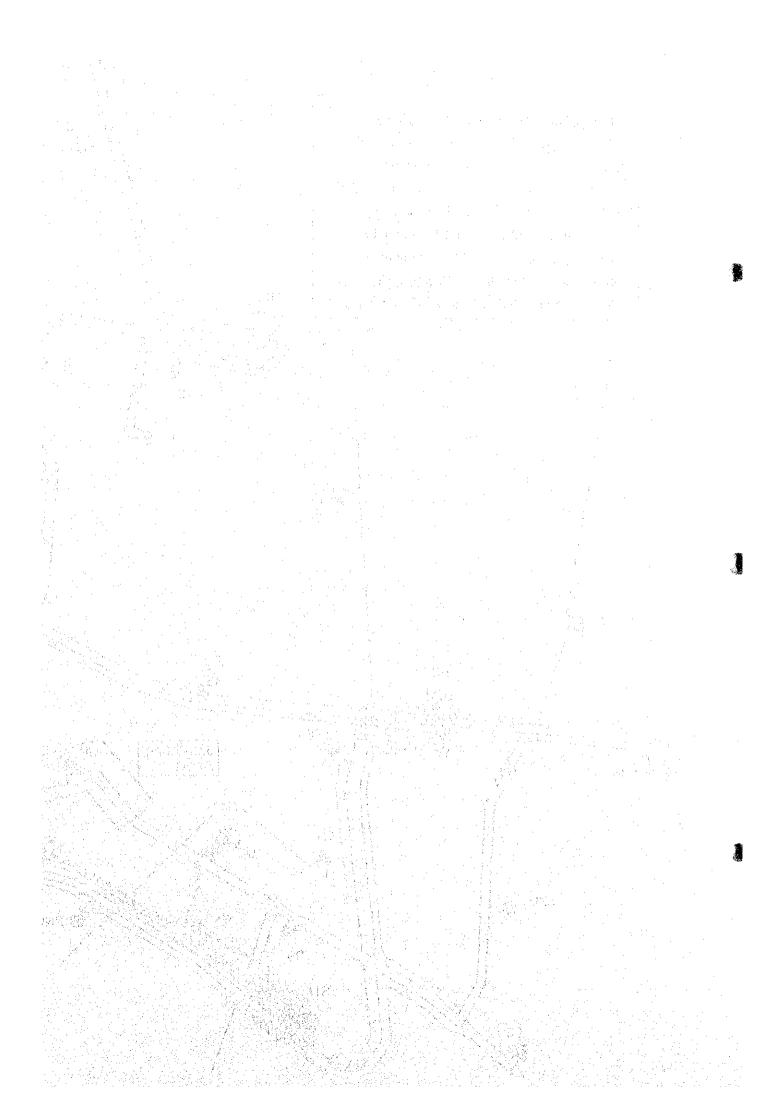
and the control of th

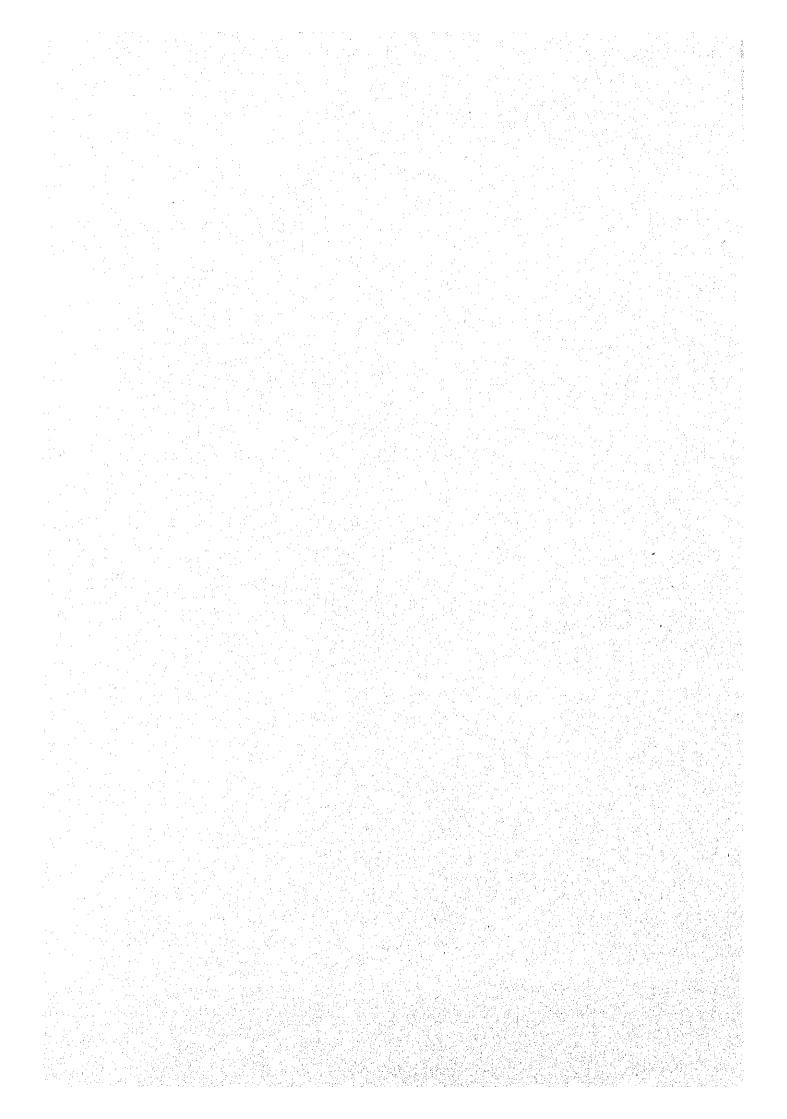
and the short time to the action of the control of the state of the st


《本文》: 1967年 - 「本文海》: 1967年 - 1


entro distribution and other operations parell. She has also be a fixed figure of the guardin erandigi in leksilik erindi. Erindi yakhariy kurdiga aratig yak irandik bili kababar ƙasar ƙasar ƙasar

er and telepoper of the real result of the real result of the control of the cont a disability in any paolitical agriculty with a friends design to be the long to the first field and the first and the control of th


langer verkerarigen seder in dat bangagist (a)

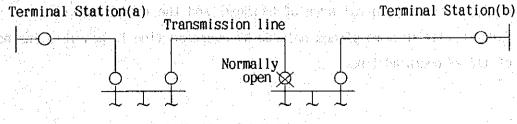

an in a confirmation of the contract of the co and and countries they continued in the first particular and the first properties of the beday of the best to

e de la companya del companya de la companya del companya de la co			
	The said of the said the		
	light bear the Later and the government later the fi		
· 医克勒特氏 经货递的 人名意	公益基本 (1736) (1943年 東京 		

construction cost dominates over the other cost when the construction is economically evaluated.

Total Cost			(Unit : Mill	ion Baht)
Name of Area	Case 1	Case 2	Case 3	Case 4
Sathorn	1,915.8	1,518.1	1,244.7	1,341.6
Phahol Yothin	1,355.2	1,140.0	1,036.2	923.2
Jomthong	799.4	624.8	473.2	457.1
/Total	4,050.4	3, 282. 9	2,754.1	2,721.9

(b) Economic comparison of Cases 3 and 4


In Cases 3 and 4, the substation capacity to be expanded in the respective model districts is roughly equal. However, while the number of substations to be constructed in Case 4 is slightly lower than in Case 3 so that the substation expansion cost of Case 4 is advantageous over Case 3:

Economical Comparison of System Voltages using 115 kV and 69 kV System

The conditions of system configuration and operation, construction cost, economic and other conditions are compared in the cases of adopting 69 kV and 115 kV system configurations.

(1) Configuration of system models

Adopted in this comparison are the distribution substation consisting of three 60 MVA transformer banks and the subtransmission line which is a so-called "tapped-tie normally open".

Distribution Substation

(2) Comparison between construction cost and annual expenses including transmission loss

As shown in Table 7.1-1(a), in case of underground cable line, the longer the distance between any two distribution substations is than 2.7 km, as a border in terms of construction cost, the more advantageous is the 115 kV system, but the shorter this distance is than this border, the more advantageous is the 69 kV system.

If compared in terms of annual expenses including transmission loss, the border of advantage in distance is roughly 2.0 km. As a sensitivity test, the cost of substation outlet circuit breakers is calculated where the cost on the 115 kV system is assumed to be increased further by 10% (from 11.4 million Baht to 12.54 million Baht). As a result of comparing the construction cost based on this calculation, the border of construction cost is about 3 km, and about 2.3 km when the transmission loss is included, as is presented in Table 7.1-1(b).

In the case of overhead line, the border of line distance becomes longer since the construction cost of subtransmission line becomes relatively lower. As a result of comparing the annual expenses including transmission loss, about 2.1 km is a border distance, as is presented in Table 7.1-1(c).

(3) Results of study

The reinforcement of the 115 kV system is deemed to be the most advantageous in attaining simplification of the system, reduction of the number of subtransmission line circuits, saving of transmission loss and so forth, taking into account the various economic effects incurred from the unit construction costs and the choice between overhead and underground conductors. However, the 69 kV system can not necessarily be disregarded altogether, as the 69 kV network has already been widely equipped in the central area of Bangkok, and the road conditions are so diverse that in some places only 69 kV overhead line is possible instead of 115 kV overhead line.

Table 7.1-1 Cost Comparison Analysis

(a) In case of Underground Cable Line

Unit : Million Baht

			01111			
Distance of	Construc	tion	cost	Annual Ex	pend	liture
Substations				with Li	ne L	oss
(km)	69kV		115kV	69kV		115kV
1.9	3, 588. 5	<	3, 642. 5	475. 2	<	476.7
2.0	3, 636. 6	ζ,	3, 683. 5	<u>481. 9</u>	<	482.2
2.1	3, 684. 6	<	3, 724. 4	488. 7	>	487. 6
2. 2	3, 732. 7	<	3, 765. 4	495. 4	>	493. 1
2.6	3, 924. 9	<	3, 929. 2	522. 2	>	515. 1
2.7	<u>3, 972. 0</u>	>	<u>3, 970. 2</u>	528. 9	>	520. 6
2.8	4,021.0	>	4, 011.2	535. 6	>	526. 1

(b) In case of 115kV CB cost increased by 10%

Unit: Million Baht

				01110 111111		Dulle
Distance of	Construc	tion	cost	Annual Ex	pend	liture
Substations		<u>, 11.</u>		with Li	ne L	oss
(km)	69kV		115kV	69kV		115kV
2. 2	3, 732. 7	<	3, 788. 2	495. 4	<	496. 1
2.3	3, 780. 7	<	3, 829. 1	<u>502. 1</u>	>	<u>501. 6</u>
2.4	3, 828. 8	<	3, 870. 1	508.8	>	507. 1
2. 5	3, 876. 8	<	3, 911. 1	515. 5	\rightarrow	512.6
2.9	4, 069. 1	<	4, 074. 9	542. 3	>	534. 5
3.0	<u>4, 117. 1</u>	. > .	<u>4, 115. 9</u>	549. 0	>	540.0
3.1	4, 165. 2	, > ;	4, 156.8	555. 7	> .	545. 5
3. 2	4, 213. 2	>	4, 197. 8	562. 4	>	551.0

(c) In case of Overhead Line

Unit: Million Baht

				· · · · · · · · · · · · · · · · · · ·		
Distance of	Construc	tion	cost	Annual Ex	pend	liture
Substations			<u>, 1988 - 1988 - 19</u>	with Li	ne L	oss
(km)	69kV		115kV	69kV		115kV
2. 0	2, 835. 9	<	2, 992. 9	398. 5	<.	399.8
2.1	2, 843. 9	<	2, 999. 3	<u>401. 0</u>	₹4	<u>401. 2</u>
2. 2	2, 852. 0	<	3, 005. 8	403.6	, > ,	402.6
2.3	2, 860. 0	<	3, 012. 2	406. 1	<u> </u>	403.9
11.0	3, 558. 2	< □	3, 572. 1	626. 6	>	523.4
12.0	<u>3, 638, 5</u>	>	<u>3, 636. 4</u>	651. 9	, >	537. 1
13.0	3, 718. 7	>	3, 700. 8	677.3	>	550.9
14.0	3, 799. 0	>	3, 765. 1	702.6	>	564.6

7.1.3 Study of Distribution Voltage, Conductor Size and Bank Configuration

Studied herein is an optimum system configuration in view of the distribution voltage and conductor size.

The distribution voltage is studied regarding 12 kV and 24 kV voltages including 36 kV, a one-rank higher voltage.

The distribution line conductor size is also studied regarding 185 mm² applied by MEA including 240 mm², a one-rank larger conductor size.

(1) Study of maximum number of feeders per one substation The study results is as shown in Table 7.1-2.

Table 7.1-2 Number of Feeders

(Feeders/Bank)

			······································			(: 00001	3/Dails/	
Diversity	Feeder	Feede	r Capacity	488 A	Feede	eder Capacity 600 A		
Factor	Voltage	В	ank Capacit	у	B	ank Capacit	y	
		40 MVA	60 MVA	80 MVA	40 MVA	60 MVA	80 MVA	
Residential	12 kV	5	8	10	4	6	8	
1. 1580	24 kV	3	4	5	2	3	4	
·	36 kV	2	3	4	2	2	3	
Commercial	12 kV	5	8	10	4	6	8	
1. 1274	24 kV	3	4	5	2	3	4	
	36 kV	2	3	4	2	2	3	
Industrial	12 kV	5	7	10	4	6	8	
1. 0895	24 kV	3	4	5	2	3	4	
	36 kV	2	3	4	2	2	3	

Size of conductor

488 A ; 185sq.mm 600 A ; 240sq.mm

(2) Evaluation of study results

The construction cost of equipment downstream of feeders is calculated on a trial basis according to the respective bank configurations, and the calculation results are presented in Table 7.1-3.

As a result of this study, the following can be concluded:

(a) Distribution voltage

The economically optimum distribution voltage is 24 kV.

Table 7.1-3 Cost of Model Case

		L	_	No of Boodon	11C Cable	Doorbood		Unit Cost	ost			Cost (Thousand Baht	sand Baht)		KVA Cost
Size of Bank	Capaci ty			NO. OI FECUCIS		7	3	╬		2	Pandar CIC	11C Cable	Cyprhond	Total	
ConductorConfigulation	tion	Loading	Voltage	(10)	Length (*)	rength (km)	(thousand Baht)	1.			C10 10000	3100			(Raht/kYA)
(Sq. ME)	(VIII)	(0,14)	13	3 × 5 = 15	1	21. 91	æ	1	_	2, 880	18,640	11,580	63, 100	93, 320	972. 1
3×40	130	95	2 2	ا! ده د		21.	12.	200	4, 240	3, 060	16.070	4.770	67.040	87.880	915.4
7		}	: %		550			500	5, 460	3, 230	15,000	3, 000	70, 770	88, 770	924. 7
			2	4 × 5 = 20	5.		×°		3, 960	2, 880	24.860	20, 200	87.440	132, 500	1, 035, 2
(V × V	180	128	. 2	н		30.36		200	4, 240		21, 430	8.060	92, 900	122, 390	956. 2
O# (#		7	, #	اا چ د				200	5, 460	3, 230	20,000	4, 910	98, 060	122, 970	960. 7
			2	3 × 8 = 24	7, 300	25	တိ	700	3, 960	2,880	29.830	28.910	100, 450	159, 190	1, 105, 5
3×60	180	144	- 74	$3 \times 4 = 12$	1.900		12.	200	4.240	3,060	21, 430	8, 060	106. 730	136, 220	•
; -			. 69	×	1, 125	 !:	17.	500	5, 460	3, 230	22, 500	6, 140	112, 660	141, 300	981.3
			27	3 × 10 * 30	1			700		2, 880	37. 290	44.950	133, 860	216, 100	1, 125, 5
3×80	240	192	24	X ro				12, 500	4, 240	3, 060	26, 790		142, 230	181.420	944. 9
}			88	×	-: 	. 1	1.5	200	5, 460	3, 230	30, 000	10, 370	150, 130	190.500	992. 2
			12	$3 \times 4 = 12$			œ́	700	3,960	2, 920	14.910	7.520	63, 980	86, 410	900. 1
3×40		98	77	. X	h 11			12, 500	4, 240	3, 100	10, 710	2. 330	67, 920	80.960	843.3
}		3	: ::	" " X	550			17, 500	5, 460	3, 270	15,000	3,000	71,650	89, 650	933. 9
			12	4 × 4 = 16	63			8, 700	3, 960	2. 920	19.890	13, 070	88, 650	121, 610	950. 1
U/×/		128	24	4 × 2 = 2	906	30, 36		12, 500	4.240	3, 100	14, 290	3,820	94. 120	112, 230	876.8
P	-	}	. S.	· ~ ×	8			17, 500	5, 460	3, 270	20,000	4,910	99, 280	124, 190	970. 2
			2	3 × 6	18 4, 150			700	3, 960	2, 920	22, 370	16, 430		140,650	976. 7
3×80	180	144	24				1	12, 500	4, 240	3, 100	16, 070	4.770	108, 130	128, 970	895. 6
3	_	:	, F	 	£.			200	5, 460	3, 270	15,000	3, 000	114,060	132,060	917. 1
			2	3 × 8 = 24	7		80	200	3, 960	2, 920	29, 830	28.910	135, 720	194.460	1, 012.8
3×80	240	192	2	×				. 500	4, 240	3, 100	21, 430	8,060	-		904. 1
3 3 30 2	(1)	}	98	။ ×		46		. 500]	5, 460	3, 270	22, 500	6, 140	151, 990	180, 630	9.10.8
										-					-
										i,				*	
ų* 1:															
		:			:[::				:	•			:		
			j- * .										>		
							:								
) () () ()								b d	٠.						
				1 A) k =		•:•		73°.						
													٠		•

(b) Conductor size

The conductor size of 240 mm² is economically advantageous over 185 mm² in all of the respective cases.

When the transmission capacity per circuit is increased, the effect of any fault arising in distribution line can possibly spread over a wide range of the distribution system. It cannot necessarily be said that a reckless increase of the transmission capacity is desirable in view of reliability.

When the above situations are taken into account, the distribution line conductor size of 185 mm² being adopted at present is evaluated to be sufficient.

(c) Bank configuration

Upon evaluation of distribution line cost per bank kVA on each bank configuration, the following general tendency was obtained in all of the respective cases:

 $3 \times 80 \text{ MVA} > 3 \times 60 \text{ MVA} > 4 \times 40 \text{ MVA} > 3 \times 40 \text{ MVA}$

In other words, the case of 3 x 40 MVA is economically optimum.

According to the results of evaluation in view of the configurations of subtransmission line and substation bank, the cases of 3×60 MVA and 3×80 MVA are concluded to be substantially advantageous over the other cases, as described in Clause 7.1.1.

However, there is not so much difference between 3 x 60 MVA and 3 x 80 MVA in view of preference.

 $3 \times 40 \text{ MVA} > 4 \times 40 \text{ MVA} \gg 3 \times 60 \text{ MVA}, 3 \times 80 \text{ MVA}$

When the construction cost downstream of substation feeders is included in the subtransmission line and substation to each bank configuration, 3 x 60 MVA is ultimately evaluated to be justifiable.

(d) Conclusion

When the above studies are summarized, the system indicated below is judged to be optimum:

Substation bank configuration: 3 x 60 MVA Number of feeders per bank : 5 circuits - The number of feeders includes a standby one circuit feeder to cope with standby line in preparation for large scale power demand.

Meanwhile, any feeder for power capacitor and station service transformer is not taken into consideration.

Distribution voltage

24 kV

Conductor size

: 185 mm²

7.2 Land Acquisition Plan for Subtransmission Line and Substation Facilities

enganging kemalah digalah dibibada 144 kecaman di Kemalah di Kecaman

7.2.1 Features and Problematical Points

Although it will be necessary to acquire the land required for subtransmission line and substation facilities as well as the rights pertaining to the land depending upon the natures of required equipment and facilities, it has become increasingly difficult to acquire the land on account of increasing population and complexity of the city area.

(1) Overhead subtransmission line was about the safety of
As overhead subtransmission line connects the fixed power sources and the load center (substations), the line is affected specifically by the areas along the route. Since the total Bangkok area is included in the function zone of metropolis and a wide range of urbanization is in progress, proper adjustments for land utilization are essential in the respective areas along the line route.

(2) Underground subtransmission line whose the first three ways to be a first

As the majority of underground subtransmission lines are laid in the spaces under roads, every road manager tends to strengthen the regulations for the occupancy of such spaces reflecting ever-growing social interests in the recent road environment worsened due to traffic congestion, noise, vibration and so forth resulting from construction work. Therefore, it has become more and more difficult to use roads, which are valuable urban spaces.

Consequently, it has become necessary to promote reasonable formation of power distribution system after adjustment regarding the work period, method, arrangement, etc. with other enterprises occupying the road spaces for telephone line, gas pipeline, water works, etc. while ensuring smooth road traffic.

(3) Substation

As the situation of land utilization have become more and more serious along with the progress in urbanization, it has become very difficult to acquire any substation site area requiring a considerably sizable space. In planning land acquisition for substation, a sizable one lot of space is required, and it should be possible to construct incoming and outgoing lines from and to subtransmission and distribution lines. In the case of distribution substation, especially, it should be located in a load center in view of its function, and similarly as in the case of subtransmission line, the construction work is affected largely by urban redevelopment, disaster preventive public work, park gardening and other miscellaneous projects. Therefore, it is essential to promote adjustment for land utilization.

Incidentally, the following five patterns can be considered as those of settling the rights for constructing substation in a public underground space.

- In case there is a building above the space: Partial ownership.
- Same as Item (1) above: Room lease.
- In case there is no such building: Partial ownership (settling of surface rights).

ana na mana kada awan 1948 matao 1951 menangining di Panjang Menang

THE REPORT OF THE SERVE OF THE PARTY OF THE PARTY OF THE PROPERTY OF THE PARTY.

- Same as above: Partial ownership (no settling of surface rights).
- Same as above: Room lease (land lease).

7.2.2 Method of Promoting Land Acquisition of Systematic self-gas [In regular pro-

(1) Basic concept of land acquisition to the pass making this operation to appear to the concept of land acquisition to the pass making the concept of land acquisition to the pass making the concept of land acquisition to the pass making the concept of land acquisition to the pass making the concept of land acquisition to the con

As the job of land acquisition is that of negotiations with the third parties for acquiring the space for equipment and facilities, this job is

The first of the Secondaria discussion by the second and the discussion is a stage of the gradient

- directly related to business operation of the utility. Therefore, land acquisition should be promoted based on the following items of basic concept:
- (a) Prior to formulating short and long-term plans, survey should be carried out sufficiently regarding the development trend, development projects, laws and regulations for land utilization and other items, and the results of such survey be reflected to the short and long-term plans after sufficient discussions and coordination with the sectors in charge of planning and work execution.
- (b) Through close communication and coordination with local public bodies and relevant administrative agencies, sufficient understanding and cooperation should be obtained regarding the subtransmission line and substation construction plans.
- (c) Based on the results of formulating a land acquisition plan in accordance with the plans, the land and the right related thereto should be acquired from a true land owner after concluding a contract with the owner.
- (d) When the property right among the land and right related thereto has been acquired, the right should be registered.

(2) Promotion of land acquisition

- (a) The land required for construction of such power facilities should be acquired based on the short and long-term plans formulated by the sector in charge of equipment planning. More concretely, land acquisition should be promoted mainly by and under responsibility of the sector in charge of land acquisition while having discussions with the sectors in charge of equipment planning and work execution.
- (b) The information pertaining to the situations of land including the land utilization, urban redevelopment, main road construction and other plans should be collected minutely through daily activities. Moreover, negotiations for actual land acquisition should also be promoted smoothly. For these purposes, it is desirable to appoint the staff in charge of land acquisition also not only in the head office but also in each district office.

appropriate for the program and the solution of the solution o

7.3 Underground Distribution System Facilities

7.3.1 Underground Substation

(1) In the case where it is necessary to construct substation at a site adjacent to an overpopulated urban area or busy street where electric power demand is concentrated, it is not easy to acquire the land for substation and the land price becomes extraordinarily high in such an overpopulated urban area. Moreover, it becomes difficult to construct any outdoor type substation and thereby it becomes essential to adopt the underground substation. However, the construction cost of the underground substation is much higher than that of other types of substations. Prior to adoption of this type, an optimum site should be selected after sufficient overall economic comparative study taking into account the long term system reliability, demand and supply, construction cost of subtransmission and distribution lines as well.

of the organization of the control of the factors as

(2) Since the cost of civil, architectural and structural work for constructing underground rooms is very high, the construction cost of underground substation becomes much higher than that of the other type substations. In the case of TEPCO, for example, the building construction cost occupies as much as nearly twice the equipment/installation cost as presented below for reference:

275 kV, 2x300 MVA	Substation	66 kV, 2x20 MVA S	ubstation
Equipment/Installation	Construction	Equipment/Installation	Construction
Cost	Cost	Cost	Cost
38%	62%	34%	66%

Remarks:

1) The building construction cost refers to the cost of the building occupied by the power company or the portion of the building occupied by the power company according to a partial ownership agreement/contract.

on a reference en la coma la tropa da aporte de la capación de la capación de la capación de la capación de la

- 2) The geological conditions largely affecting the building construction cost are based on the average values in Tokyo.
- 3) Scale of 275 kV substation: Underground four stories.

(Total floor area: 16,000 m²)

4) Scale of 66 kV substation: Underground two stories.

(Total floor area: 700 m²)

On the other hand, the land price for substation around some of the busy streets of Bangkok has risen to be equivalent to the construction cost of substation (excluding the land cost) in maximum. Therefore, it is expected to become economically feasible to adopt underground type substation in the city center of Bangkok in the near future.

Calculation example:

Land price: $125,000(Baht/m^2) \times 1,320 \text{ m}^2 = 165 \text{ million Baht}$

Substation construction cost:

Server to the property of the contract of

a) Equipment and material cost : 136 million Baht

b) Civil structure & installation cost: 31 million Baht

Total: 167 million Baht

Note: The value of land price for Satorn Substation is quoted as a unit land price, and the substation construction cost is quoted from the standard unit price of 115/24 kV, 2 x 60 MVA substation for FY 1994.

7.3.2 Utility Tunnel

(1) Objectives of utility tunnel

The major objectives of utility tunnel are to reduce traffic congestion caused by repeated excavation of road by utilities enterprises, promote effective utilization of the space under roads and eliminate disturbances to living environment of the residents along the route.

The other advantages are as follows, for example:

- 1) Acquisition of walking space by eliminating electric poles and wires.
- 2) Improvement of urban scenery by eliminating electric poles.
- 3) Elimination of disturbances to fire fighting activities by eliminating electric poles and wires.
- 4) Prevention of collapse of electric poles, breaking of wires and other troubles at the time of natural disasters.

(2) Construction of utility tunnel

A utility tunnel is constructed by the road manager according to a utility tunnel construction plan to be formulated by the road manager (It is essential that two public utilities enterprises among such enterprises should apply for participation in the project).

(3) Cost to be born for utility tunnel construction Any person scheduled to occupy the utility tunnel should bear the amount of investment (estimated in case such a tunnel is constructed independently by himself) among the cost required for constructing the utility tunnel.

(4) Cost to be born for management of utility tunnel Any person occupying the utility tunnel should bear the cost required for reconstruction, maintenance, repair, restoration from disaster and management of the utility tunnel.

A concept of utility tunnel is presented in Fig. 7.3-1.

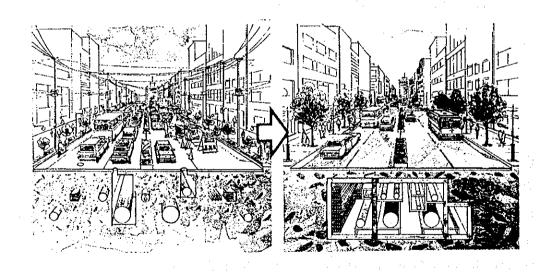


Fig. 7.3-1 Concept of Utility Tunnel