Project:
The River Sediment Survey
For
The Study on Comprehensive
Management Plan Of Muda River Basin
in Malaysia

Section Two - Attachment Two. Results of River Bed Sampling..

Client:
JICA Study Team.
CTI Engineering Co Ltd.
In association with
INA Corporation.

Contractor. Pembinaan ditu Padat. 282, Jalan Kangar, Perlis, 01000 Kangar, Perlis.

		بر بند بند بند <mark>بدر ب</mark> ر پیرو بین شد بند بند بند بند بند شد شد بند بند بند بند بند بند بند بند بند بن	·			
Project Location		M/S. INDERA CON	STRUCTION SD	N. BHD.		
ile No.		KANGAR, PERLIS SM/L/9411034				
Date Tested		23/11/1994				
rested By	:	KAMARUI.				
	•	SIEVE ANALYSIS				
Sample No.	:	И I	K		soil (g) =	50.0
Sieve	Sieve	Weight of	Wt.Sieve	Weight of	Cumulative	Percentage
No.	Opening		+ Soil	Soi 1	Retained	Passing
	(nya) 	[g]	{ g }	[g]	[g]	X
4	5.0	497.0	497.0	0.0	0.0	100.00
10	2.0		513.7	0.0	0.0	100.00
1.6	1.18	491.6	491.6	0.0	0.0	100.00
30	0.600	341.5	341.5	0.0	0.0	100.00
40	0.425	436.0	438.6	2.6	2.6	94.80
50	0.300		412.3	5.3	7.9	84.20
100	0.150	385.0	404.1	19.1	27.0	46.00
200	0.075	268.3	271.2	2.9	29.9	40.20
Base	========	396.4 	39 6.4 ==========	0	29.9 =========	40.20 ========
Sample No.	:	И 2	N	eight of dry	soil (g) =	50.0
Sieve	Sieve	Weight of			Cumulative	_
No.	Opening	Sieve	+ Soil	Soil		Passing
		[g]	[g] 	[g]	[g]	X
4	5.0	497.0	497.0	0.0	0.0	100.00
10	2.0	513.7	521.9	8.2	8.2	83.60
16	1.18	491.6	505.2	13.6	21.8	56.40
30	0.600	341.5	358.1	16.6	38.4	23.20
. 40	0.425	436.0	439.8	3.8	42.2	15.60
50	0.300	407.0	408.0	1.0	43.2	13.60
100	0.150	385.0	386.4	1.4	44.6	10.80
200	0.075	268.3	268.6	0.3	44.9	10.20
Base	========	396.4	396.4 =========	0	44.9 ==========	10.20
Sample No.	:	M 5		eight of dry		50.0
Sieve	Sieve	Weight of	Wt.Sieve	Weight of		Percentage
No.	Opening	Sieve	+ Soil	Soil	Retained	Passing
	-	[g]	[g] 	[g]	(g)	%
4	5.0	497.0	497.0	0.0	0.0	100.00
10	2.0		513.7	0.0	0.0	100.00
16	1.18	491.6	491.6	0.0	0.0	100.00
30	0.600	341.5	341.5	0.0	0.0	100.00
40 50	0.425	436.0	436.1	0.1	0.1	99.80
50	0.300	407.0	407.1	0.1	0.2	99.60
100	0.150	385.0	385.2	0.2	0.4	99.20
200 Base	0.075	268.3	268.7	0.4	0.8	98.40
15.74 (2.14)		396.4	396.4	0	0.8	98.40

Sample No.	: N	7	V.	eight of dry	soil (g) =	50.0
Sieve . No.	Sieve Opening [mm]	Weight of Sieve [g]	Wt.Sieve + Soil [8]	Weight of Soil [g]	Cumulative Retained [g]	Percentage Passing %
4	5.0	497.0	497.0	0.0	0.0	100.00
10	2.0	513.7	513.7	0.0	0.0	100.00
16	1.18	491.6	491.6	0.0	0.0	100.00
30	0.600	341.5	341.5	0.0	0.0	100.00
40	0.425	436.0	436.0	0.0	0.0	100.00
50	0.300	407.0	407.0	0.0	0.0	100.00
100	0.150	385.0	385.1	0.1	0.1	99.80
200	0.075	268.3	269.3	1.0	1.1	97.80
Base		- 396.4	396.4	0	1.1	97.80

SOIL NEO	CHAPIC SD	£. 683.				
17, LGR(DES FALAS	SATE,	FRAI	CARDER.	13600	PALI.

îel	:	04-309279
181	:	04-391693

STORGUETER TEST File to. : SALE	/ 1 411	034		•	Date Tire	Etapsed tise, t (min)	Hydroxeter Reading, Rh	True Reading, Rh	Correction Reading, R		Particle Diazeter D (sa)	Percentag Final, k
Date Tested : 23/1	-									(23)	n (33)	
	-,-				i	0						
Supple Ro. : N.1						0.25	11.5	12.0	12.6	182.40	0.1033	40.29
•						0.5	10.0	10.5	11.1	188.35	0.0742	35.69
					;	i	9.0	9.5	10.1	192.31	0.0530	32.30
Aydrometer fo.		=	i		-	1	8.5	9.0	9.6	194.30	0.0377	30.70
Temperature test,	Ĩ	=	19.0	Ç	1	5	8.0	8.5	9.1	115.28	0.0240	21.10
leaperature correction.	ät	=	2.3		!	10	7.5	8.0	8.6	198.26	0.0170	27.50
Baaiseus correction,	Ĺ	=	9.5		1	15	7.0	7.5	8.1	203.25	0.6149	25.90
Dispersant correction,	1	=	3.5		;	20	8.5	7.0	7.4	202.23	0.0122	24.30
Spesific gravity,	ľs	Ξ	2.67		1	39	6.0	6.5	7.1	204.21	0.9100	22.70
Piscosity of water	â	= 3	1.7982		i L	. 65	5.5	5.0	1.1	206.20	0.0082	21.10
Rass of dry soil,	Ē	:	59.9	5	!	69	5.3	5.8	1.4	206.55	0.0071	20.46
Deasity Pater Correctica.	ĹΫ	=	1.8		1	120	5.0	5.5	1.1	202.18	0.0050	19.51
					1	240	4.8	5.3	5.9	208.97	0.0016	18.87
4					;	369	4.6	5.1	5.7	209.77	0.0029	18.23
					;	489	4.5	5.0	5.5	210.17	0.0025	17.91

ATORGASTER TEST File Bo. : SM/E/9411004	Pate Ti s e	•	Hydroseter Reading, Rh'	free Reading, Rh	Correction Reading, R		Particle Diazeter D (ma)	Percentage Final, k
Date Tested: 23/11/1994						*******		
Saple No. : N 2	i	0						
gendin on : 4 C	į	0.25	3.0	3.5	4.1	216.12	0.1121	13.08
	;	0.5	2.0	2.5	3.1	220.01	0.0800	9.89
	!	1	1.0	1.5	2.1	224.05	0.0571	6.70
lydrometer %5. = 2	;	Į	0.5	1.0	1.6	226.03	0.0405	5.10
Temperature test.	c ;	5	9.0	0.5	1.1	228.02	0.0257	3.51
Semperature correction, Kt = 2.3	:	10	-0.1	0.4	1.0	228.45	0.0102	3.19
Heniscus correction, Ga = 0.5		. 15	-0.1	0.4	1.0	228.41	0.0119	3.19
Dispersant correction, r = 3.5	į	20	-0.1	9.4	1.0			
Spesific gravity. Gs = 2.68	,	30	-0.2			225.41	0.0129	3,19
	.9 !			0.4	1.0	228.51	0.0105	3.03
-	•	45	-0.2	0.3	0.9	228.41	0.0016	2.37
Bass of dry soil, a = 50.5	£ ;	69	-0.2	0.3	9. 9	228.81	0.0074	2.17
Deasily Vater Correction, Cv = 1.8	;	129	-0.3	0.2	0.8	229.21	0.0053	2.55
	;	249	-0.3	0.2	0.8	221.21	0.0037	2.55
	!	350	-0,3		9.8		0.0030	2.55
	:	489					0.0024	2.55
		350	-0.3 -0.3 -0.3	0.2 0.2 0.2	8.0 8.0 8.0	229.21 229.21 229.21	0.	60 10

SOLL RECHARIC SON, BRD. 17. LOROBE TALANE SATU, PRAI GASDEN, 13500 PRAI.

Tel : 04-309279 Fax : 04-391893

File %2. : S5/L/9411034 Date Tested : 23/11/94	l Date l Fi∉e	Etapsed time, t (sin)	Hydroseter Reading, Rh'	True Reading, Sh	Correction Reading, 2		Particle Disseter D (as)	Percentage Final, k 1
rate terten . Cililia	!	0		••••				•
Saaple Ro. : 45	:	0.25	29.0	29.5	39.1	112.17	0.0813	16.25
•		0.5	28.0	28.5	29.1	115.94	0.0585	13.05
	i	1	27.0	27.5	28.1	120.91	0.0420	89.85
Agdrozeter Bo. = 1	ĺ	į	26.0	26.5	27.1	124.87	0.0302	25.44
Temperature test, F = 30.0 C	1	5	24.0	24.5	25.1	132.81	0.0197	89.26
Temperature correction, Mt = 2.3		10	22.0	22.5	23.1	140.74	0.0143	73.86
Rediscus correction, Ca = 0.5	!	15	20.0	20.5	21.1	145.58	0.0120	67.47
Dispersant correction, r = 3.5	6	20	19.0	15.5	20.1	152.64	0.0104	44.27
Spesific gravity, Gs = 2.65	I I	30	18.0	18.5	19.1	155.61	9.0037	61.07
Viscosity of valer a = 0.7982 mas	1	45	17.5	18.0	1.5i	158.59	0.6072	59.46
Kass of dry soil, a = 50.0 g	1 1	\$9	17.0	17.5	18.1	169.55	0.0063	57.88
Density Valer Correction, Cv = 1.8	1	120	11.0	16.5	17.1	164.54	0.0045	54.68
•		240	15.5	16.9	16.6	188.53	0.0032	53.08
		360	15.0	15.5	16.1	161.51	0.5026	51.41
	•	480	14.4	15.3	15.9	159.30	0.0023	59.84
HYDROMETER TEST	Date	Elapsed	Rydrozeter	Free	Correction		Particle	-
#YDROMETER TEST File Vo. : SM/1/9411034 Date Tested : 23/11/1994	Date Time		Rydrozeter		Correction Reading, R		Pacticle Diazotes D (mm)	ferceatig fieal, k
File Vo. : SM/1/9411034 Date Tested : 23/11/1994		Elapsed Line, L	Rydrozeter			Depld, Kr	Diameter	fical, k
File Vo. : SM/1/9411034 Date Tested : 23/11/1994		Elapsed tiee, t (min)	Rydrozeter			Depld, Kr	Diameter	fical, k
File Vo. : SM/1/9411034 Date Tested : 23/11/1994		Elapsed ties, t (min)	Hydrozeter Beading, Sh'	Reading.Rh	Reading, R	depth, Re (sz)	Diazoter D (mm)	Eical, k
File No. : SN/1/9411034 Date Tested : 23/11/1994 Sample No. : 8 7		Elapsed time, t (min) 0 0.25	Bydrozeter Beading, Bh' 24.6	Reading.Sh	Reading, R	Depth, Rr (sa)	Diazotes D (sa) O.0125	Final, k 1 92.84
File No. : SN/1/9411034 Date Tested : 23/11/1994 Sample No. : N / Hydrometer No. = 2		Elapsed time, t (min) 0 0.25	Hydroacter Beading, Sh' 24.6 24.0 24.0 22.0	28.5 26.5 24.5 22.5	29.1 27.1	Depth, Rr (sz) 115.54 124.87	Diameter D (mm) O.0125 0.0102	Final, k 1 92.84 85.46
File No. : SN/1/3411034 Date Tested : 23/11/1994 Sample No. : N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C		Elapsed tiee, t (min) 0 0.25 0.5 1 2	Hydroacter Beading, Rh' 28.0 24.0 22.0 21.0	28.5 26.5 26.5 24.5 22.5 21.5	29.1 27.1 27.1 25.1	Depth, Rr (52) 115.94 124.87 132.81 149.74 144.71	Diameter D (mm) O.0125 O.0102 O.0111	Final, k 1 92.84 85.46 80.08
File No. : SM/1/9411034 Date Tested : 23/11/1994 Sample No. : N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3		Elapsed tiee, t (min) 0 0.25 0.5 1 2 5	Hydroacter Reading, Rh' 28.G 28.0 24.0 22.0 21.0 20.0	28.5 26.5 24.5 24.5 22.5 21.5 20.5	29.1 27.1 27.1 25.1 23.1 22.1 21.1	Depth, Re (s2) 116.54 124.87 132.81 140.74	0.6825 0.6825 0.6825 0.0837 0.0737 0.0705 0.0147	Final, k 1 92.84 86.46 80.08 73.70
File No.: SM/1/9411034 Date Tested: 23/11/1994 Sample No.: N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Homiscus correction, Co = 0.5		Elapsed ties, t (min) 0 0.25 0.5 1 2 5	Hydroacter Reading, &h' 28.6 28.0 24.0 27.0 21.0 20.0 19.0	28.5 26.5 24.5 22.5 21.5 20.5 19.5	29.1 27.1 27.1 25.1 23.1 22.1 21.1 20.1	Depth, Re (sz) 116.94 124.87 132.81 140.74 144.71 148.68 152.64	0.6825 0.6825 0.6825 0.0632 0.0631 9.0370 0.0705 0.0147 0.9122	92.84 85.44 80.08 73.70 70.51
File No.: SM/1/3411034 Date Tested: 23/11/1994 Sample No.: N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Hemiscus correction, Co = 0.5 Dispersant correction, T = 3.5		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15	Hydrozeter Reading, Rh' 24.0 24.0 22.0 21.0 20.0 19.0 18.0	28.5 26.5 26.5 24.5 22.5 21.5 70.5 19.5	29.1 27.1 27.1 25.1 23.6 22.1 21.1 20.1 11.1	Depth, Re (s2) 118.54 124.87 132.81 140.74 144.71 148.68 152.84 155.81	0.6325 0.6325 0.9192 0.9191 0.9770 0.0205 0.0147 0.9122 0.0107	92.84 85.45 80.08 73.70 70.51 67.32
File No.: SM/1/3411034 Date Tested: 23/11/1994 Sample No.: 8 7 Hydremeter No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Heaisous correction, Co = 0.5 Dispersant correction, T = 3.5 Spesific gravity, Gs = 2.62		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15 20 30	Bydrozeter Reading, Rh' 28.6 26.0 21.0 21.0 20.0 19.0 18.0	78.5 26.5 24.5 22.5 21.5 20.5 19.5 18.5 18.0	29.1 27.1 25.1 23.1 22.1 21.1 20.1 11.1 18.6	Depth, Re (s2) 115.94 124.87 132.81 140.74 144.71 148.68 152.84 135.51	0.6325 0.6325 0.9102 0.0431 0.0770 0.0205 0.0147 0.9122 0.0107 0.0283	92.84 85.45 89.08 73.70 70.51 67.32 64.13 69.34 59.34
File No.: SN/1/3411034 Date Tested: 23/11/1994 Sample No.: 8 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Heniscus correction, Cm = 0.5 Dispersant correction, T = 3.5 Spesific gravity, Gs = 2.62 Viscosity of water 0 = 0.7987 mPas		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15 29 30 45	Bydrozeter Reading, Rh' 28.6 26.0 21.0 20.0 19.0 18.0 17.5 17.0	28.5 26.5 24.5 22.5 21.5 20.5 19.5 18.5 18.6	29.1 27.1 25.1 23.1 22.1 21.1 20.1 11.1 18.6 18.1	Depth, Re (s2) 115.94 124.87 132.81 140.74 144.71 148.68 157.84 155.41 158.59 160.55	0.6325 0.6325 0.9102 0.0431 0.07205 0.0147 0.9122 0.0107 0.0072	92.84 85.45 89.08 73.70 70.51 67.32 64.13 69.34 59.34 57.75
File No.: SN/1/9411034 Date Tested: 23/11/1994 Sample No.: N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Hemiscus correction, Nt = 2.3 Hemiscus correction, N = 3.5 Spesific gravity, Gs = 2.62 Yiscosity of vater n = 0.7982 mPas Mass of dry soil, n = 50.0 g		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15 29 30 45	8ydrozeter Berding, Rh' 28.0 28.0 21.0 20.0 19.0 18.0 17.5 17.0 16.5	28.5 26.5 26.5 24.5 22.5 21.5 20.5 19.5 18.5 18.0 17.5	29.1 27.1 25.1 25.1 23.1 22.1 20.1 11.1 18.6 18.1	Depth, Re (\$2) 116.54 124.87 132.81 140.74 144.71 148.68 152.84 155.61 158.59 160.55 182.55	0.6325 0.6325 0.9202 0.0431 0.0370 0.0205 0.0147 0.9122 0.0107 0.0072 0.0063	92.84 85.45 80.08 73.70 70.51 67.32 64.13 69.34 53.34 57.75
File No.: SM/1/3411034 Date Tested: 23/11/1994 Sample No.: 8 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Heniscus correction, Co = 0.5 Dispersant correction, T = 3.5 Spesific gravity, Gs = 2.62		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15 29 30 45 60 120	Bydrozeter Berding, Rh' 24.0 24.0 21.0 20.0 19.0 18.0 17.5 17.0 16.5	28.5 26.5 26.5 24.5 22.5 21.5 20.5 19.5 18.5 18.0 17.5 17.0	29.1 27.1 25.1 25.1 23.4 22.1 21.1 20.1 11.1 11.6 18.1 17.6	Depid, Re (\$2) 115.54 124.87 132.81 140.74 144.71 148.68 152.64 155.61 158.59 160.56 182.55 164.54	0.6325 0.6325 0.9202 0.0431 0.0370 0.0205 0.0147 0.9122 0.0107 0.0083 0.0072 0.0063	92.84 85.45 80.08 73.70 70.51 67.32 64.13 80.34 53.34 57.75 56.15
File No.: SN/1/9411034 Date Tested: 23/11/1994 Sample No.: N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Hemiscus correction, Nt = 2.3 Hemiscus correction, N = 3.5 Spesific gravity, Gs = 2.62 Yiscosity of vater n = 0.7982 mPas Mass of dry soil, n = 50.0 g		Elapsed tiee, t (min) 0 0.25 0.5 1 2 5 10 15 20 30 45 60 120 240	Hydroacter Reading, Rh' 28.0 24.0 22.0 21.0 20.0 19.0 18.0 17.5 17.0 16.5 16.0	28.5 28.5 28.5 24.5 22.5 21.5 20.5 19.5 18.0 17.5 17.0 18.5	29.1 27.1 25.1 25.1 23.1 22.1 21.1 20.1 19.1 18.6 18.1 17.4	Depid, Re (\$2) 115.54 124.87 172.81 140.74 144.71 148.60 152.84 155.51 158.59 160.56 162.56 164.54 165.34	0.6325 0.6325 0.9632 0.9632 0.0431 0.0370 0.0205 0.0147 0.9122 0.0107 0.0072 0.0072 0.0063 0.0072 0.0032	92.84 85.46 89.08 73.70 70.51 67.32 64.13 89.34 59.34 57.75 54.56 53.92
File No.: SN/1/9411034 Date Tested: 23/11/1994 Sample No.: N 7 Hydrometer No. = 2 Temperature test, T = 39.0 C Temperature correction, Nt = 2.3 Hemiscus correction, Nt = 2.3 Hemiscus correction, N = 3.5 Spesific gravity, Gs = 2.62 Yiscosity of vater n = 0.7982 mPas Mass of dry soil, n = 50.0 g		Elapsed ties, t (min) 0 0.25 0.5 1 2 5 10 15 29 30 45 60 120	Bydrozeter Berding, Rh' 24.0 24.0 21.0 20.0 19.0 18.0 17.5 17.0 16.5	28.5 26.5 26.5 24.5 22.5 21.5 20.5 19.5 18.5 18.0 17.5 17.0	29.1 27.1 25.1 25.1 23.4 22.1 21.1 20.1 11.1 11.6 18.1 17.6	Depid, Re (\$2) 115.54 124.87 132.81 140.74 144.71 148.68 152.64 155.61 158.59 160.56 182.55 164.54	0.6325 0.6325 0.9202 0.0431 0.0370 0.0205 0.0147 0.9122 0.0107 0.0083 0.0072 0.0063	92.84 85.45 89.08 73.70 70.51 67.32 64.13 69.34 59.34 57.75 55.15

	ı	μı	Į\$ į	15		M/	S. INDERA CONSTRUCTION SON. BHD.	
		DATE	23/11/9	23/11/94	 PROJ LOCA	EC1	NCAR, PERLIS.	(control
€> <u>A</u>		TESTED BY	Kemarul	Kamarul	LAB.	REFS	/1/9411034 C3NIV138 %	EL CONT
0		<u> </u>	X	×	•	c		0.004
		VISUAL SOIL DESCRIPTION			PARTICLE SIZE DISTRIBUTION	HYDROMETER		0.4 0.06 0.04 0.005 SILT % 22 8 8
		VISUA	Brownish sandy clayey SILT.	Dark grey silty SAND.	PARTICLE SIZ	(E) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		SAND % 61
0	L	NOTATION	0	•	ž	20 9.6 9.6		10 GRAVEL %
		E DEPTH	++			B.S. TEST SIEVE		
	HOLE NO:	SAMPLE SAMPI NO. From		<u> </u>	. :		SNIS249 % 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 O •

-	DATE	23/11/94	23/11/94		LOCA	ATIC		NC	₹R,	PE	RLI	NST S.	RD	Cr:	100	SI	w.	В	HD.		 									 	
TESTED	BY	Kamarul	Kamarul		LAB.	REF.	SM/		\$!!			 ဗ္ဂ		8		NI SS				R	 - မ္ဘ	- 	3	Ş	0.00			CLAY%		- The state of the	
	NOTAL NOTAL				NO		HYDROMETER					/	d	7											0.06 0.01 0.005			SILT %		41 52	
	VISUAL SOIL DESCRIPTION	ey CLAY.	cy CLAY.		PARTICLE SIZE DISTRIBUTION	(mn)	4.18 425 300 212 212 3150		*																0.4			% GNAS	9	7	
	NOTATION	O Dark grey silt	 Yellowish silc.	,	Appendix of the second	(mm)	20 12.5 9.5 6.3																		10			GRAVEL %		1	
O: CAMPI E DEPTH	From To						B.S. TEST SIEVE																		, 00,	·		U			
HOLE NO:	N O	Æ	Œ			L	, !	8	8	1	8 8	3	L_ ₹	\ \{		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q4		၂ မ္က	 <u> </u> 8		<u>}</u>	C	,	l - 2.	5	ASTM	0	•	

0g. **ઢ**-૪૬ 300 6.0 6.0 Operator: Jais / Salt ğ Percentage possing

Sample: No : M.Z.

Replieb Condond Took Stanon

SRADING CURVE (FORM 'G' OF BS. 1377 : 1975)

Form G Particle size distribution Wet UD sieving method Operator Jais /Sabri Job: Date: 15 11 94 Borchole No: Sample No. M3 Description of soil: Total mass of dry sample (m1) 1400 Depth of sample: BS test siève Total percentage passing Percentage retained Maximum sievo lozd† Mass retained. $\frac{M M}{m_1} \times 100$ 50 · mm 37.5 mm 28 mm 4500 25 inm 3500 -20∙mm 2500 14 mm 2000 Passing 20 mm (m_2) Riffled sample passing 20 mm (m₃) Riffling correction, C_1 Corrected values $C_1 = \frac{m_2}{m_3} =$ C1 X mass retained , 12:5 mm 1500 10 mm 1000 6.3 mm 750 Passing 6.3 mm (m₄) Riffled sample passing 6:3 mm (m₅) Riffling correction, C_2 $C_2 = \frac{m_2}{m_3} \times \frac{m_4}{m_5} =$ Corrected values C2 X mass retained ិន្ត ពេល 500 3.35 mm 300 2-36mm 200 <u>4.14</u> · 1.18 mm 138 100 $600~\mu m$ 9.86 75 425 µm 75 300 pm 18.57 10.43 -.50 -212 pm 50 150 µm 6.72 40 75 µm Passing 75 pm 25

*Delete, the inappropriete word.

(The misses given are for 300 nm and 200 mm diameter sieves. These masses may be increased when 450 nm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the persolited maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

goleenge pomeoness.

rorm a					•
. Particle size distribution)n				
Wet LDry sieving method	i i j				
Operator	•	Job:			<u>.</u>
<u>.</u>		J00;		Site:	
Date:	, · · · · · · · ·		-	Borehole No): ⁻
Description of soil:		· ·		Sample No:	M-11
Total mass of dry sample (n	_{n1})/3/0	g	.	Depth of san	•
BS test siève	Mass retained	Mass retained.	Percentage retained	Total percentage	Maxin siera
•	,		M1335 x 100	passing	toadţ
	В	18	 	-}	
80 mm ∫		1 =		<u>: </u>	8
37.5 ntm 28 mm	ļ	ļ	<u> </u>		_
25 mm	<u> </u>	<u>- </u>		•	4500
-20 ymm	ĺ		· · · · · · · · · · · · · · · · · · ·		3500
114 cmm		 			2500
Passing 20 mm (m2)			 		
Riffled sample			}	1	'
passing 20 mm (m ₃)		j		•	
Riffling correc	tion, C ₁	Corrected values			-
$C_1 = \frac{m_2}{m_1} =$		• •			1
$\frac{1}{m_3} = \frac{1}{m_3}$		C ₁ X mass retained		<u> </u>	
12/5 mm		A .		ļ	
10 mm				<u> </u>	1500
6.3 mm]	100	- T
Passing 6.3 mm (m ₄)				100	750
Riffled sample		-		1.	<u> </u>
passing 6:3 mm (m_5)				l	ł
Rilling correc	tion. Ca	Corrected values			
$C_{2i} = \frac{m_2}{m_3} \times$	- 4	oometta raints	, I		1
m_1 m_3 N	m ₅ .	C2 X mass retained			
\$ nim	-18		1.37	986	cán
3.35 mm	80		6.11	92.5	500 300
2-36 _{mm} ,	160		12.21	80.3	200
t.18 nւու	490		37.40	42.9	100
600 µm	290		22-14	30.6	75
425 μm 300 μm					75
212 jun -	234	- i	17.86	J.9 .	50
150 µm	38	· · · · · · · · · · · · · · · · · · ·	- 20		50
75 pm - 🕇	-22 -		2.90	.0.0	40 1 5
Passing 75,pm					E)
	1		~·	y	

Politie the inappropriate word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage possing

CURVE (FORM 'A' OF BO 1277 : 1278

A 1984 Better -

Particle size distribution Wel Des sieving method Operator Jals/Salm Job: Date: 15/11 /9# Borchole No: Description of soil: Sample No: M 6 Total mass of dry sample (m, 1452 Depth of sample: BS test siève Mass retained Mass retained. Percentage retained Total Maximum barriuk beteentake sieve loadi $\frac{M_{133}}{m_1} \times 100$ 50· mm 37.5 mm 28 mm 4500 3500 -20;mm 2500 34 mm 2000 Passing 20 mm (m₂) Riffied sample passing 20 mm (m₃) Riffling correction, C1 Corrected values Ci X mass retained , 12:5 mm 1500 10 mm 0 100 1000 6.3 mm 0.41 99.6 750 Passing 6.3 mm (m_4) Riffled sample passing 6:3 mm (m_5) Rilling correction, C2 Corrected values C2 X mass retained 6.83 98.8 \$ ១៣ 500 5·37 12·53 78 3.35 ma 300 184 2-36mm 200 1.18 nm 36.09 22.87 524 100 600 μm 332 75 425 µm 75 300 pm 264 18.18 ...50 212 pm · 50 ESO pm 5 20 75 µm Passing 75 pm Total

*Delete the inappropriete word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

企业发展的现在分

Particle size distribution	on			•	
. Wet Dry sieving method				•	
Operator	1.*	Job:		Site:	2.
Date:				Borehole No	•
Description of soil:		<u>.</u>			
Total mass of dry sample (r	n.) #40		` .	Sample No:	
BS test siève	Mass retained		T	Depth of san	-1
	Massicunce	Mass retained.	Percentage tetained Mass x 100	Total percentage passing	Maximus sievo load†
	8	Į į			8
50-mm 37.5 mm		-		<u>- </u>	
28 mm		-		-	4500
					3500
-2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				<u> </u>	2500
					2000
Passing 20 mm (m ₂) Riffled sample					,
passing 20 mm (m ₃)					
Riffling corre	clion C.	Corrected values		·	
$C_1 = \frac{m_2}{m_3} =$,	C ₁ X mass retained			-
, 12·5 mm					1500
10 mm	0		0	100	1000
6.3 mm	20		4.55	95.5	750
Passing 6.3 mm (m ₄)					1
Riffled sample passing 6:3 mm (\bar{m}_5)				-	
1					
Riffing correc	tion, C_2	Corrected values			[
$C_{2,i} = \frac{m_2}{m_3} X$	$\frac{m_4}{m_5}$:	C2 X mass retained		, <u>i</u>	
\$ nim	20		4.55	90:9	soo
3.35 mm	98		13.18	77.7	300
2-36mm	76		14.27	60.5	200
600 µm	90		27.73	32.7	100
425 pm			<u>~γγ.ψ></u>	12-3	75 75
300 µm	30		6.82	5.5	50
212 pm 150 pm	•				50
75 µm	20		4.55	0.9	40
Passing 75 pm			0.45	0.5	15
					<u> </u>

*Delete the Inappropriate word.

† The misses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part as a time.

ξ9galezog agomastist B B B B

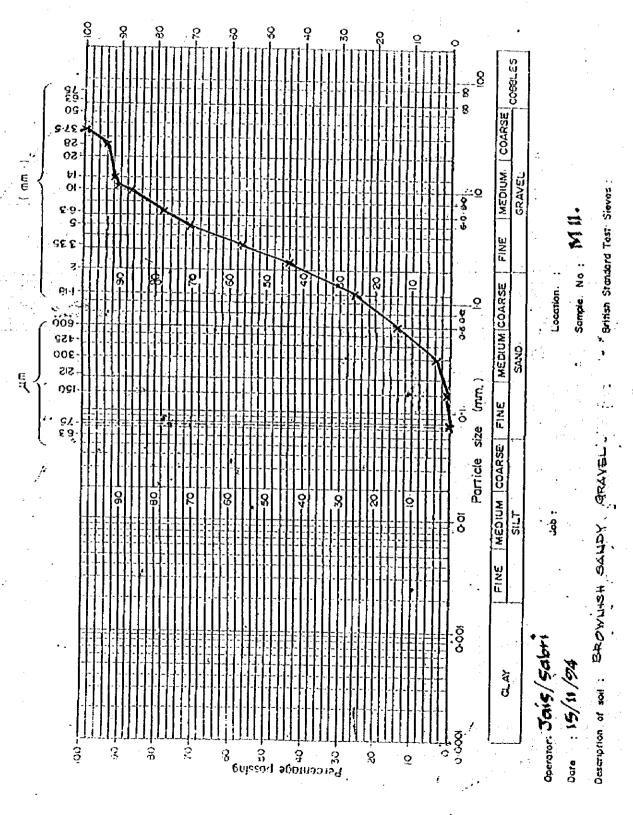
Particle size distribution Wet De sieving method Operator ... Date: Borchole No: Description of soil: Sample No: M 9 Total mass of dry sample (m1) 2454 Depth of sample: BS test siève Mass relained Mass retained. Total Percentage Maximum batziuk beideofake sieve loadţ retained Mass x 100 50 mm 37.5 mm 28 mm 4500 25 mm 3500 -20 mm 2500 14 mm 2000 Passing 20 mm (m₂) Riffled sample passing 20 mm (m₃) Riffling correction, C1 Corrected values C1 X mass retained . 12·5 mm 1500 100 0 10 mm 1000 5.54 6.3 nim 136 94.5 750 Passing 6.3 mm (m₄) Riffled sample passing 6:3 mm (m_5) Rilling correction, C2 Corrected values C2 X mass retained 22:15 56:19 10:42 1:63 0:90 544 ្ស ពេល 500 1380 16.1 3.35 nm 300 2-36 mm 200 40 1.18 nin 100 600 µm 75 425 µm 75 0.57 2.6 300 µm ..50 212 jim 50 0.8 150 µm 40

*Delète the inappropriate word.

The misses given are for 300 turn and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

75 pm

Passing 75 pm


Total .

0 Percenioge possing

10.00					•
Particle size distributio	מכ			•	
. Wet ID . sieving method	-				
				-	
Operator -	·	Job:	• ·	Site:	÷ •
Date:		•	-	Borchole No	•
Description of soil:			•		M10
	1290	• •		Sample No:	MILL
Total mass of dry sample (8 '	· ·	Depth of sam	ple:
BS test sieve	Mass retained	. Mass retained.	Percentage	Total	Maxim
		£.7±	retained	percentage	sieva
•			Mals x 100	Yessing	lozdf
	 		m ₁ × 100		
50 · mm	8	8			8
37.5 mm					
28 mm					4500
25 mm			-		3500
- 2 0ymm 3 4 mm	7/			100	2500
·	36.		2.79	97.2	2000
Passing 20 mm (m ₂)			• •		,
Riffled sample passing 20 mm (m ₃)					1
	L				
Riffling corre	ction C	Corrected values		1 1	
$C_1 = \frac{m_2}{m_3} =$		C ₁ X mass retained	•	ļ	1
,,,,,,		A.			
, 12:5 mm	22		1.71	95.5	1500
10 mm 6.3 mm	28		2.17	93.3	1000
	210		16.28	77.1	750
assing 6.3 mm (m ₄)			1		
Offied sample assing 6:3 mm (m_5)					}
	L				
Riffling correc		Corrected values			
$C_{2} = \frac{m_2}{m_3} X$	$\frac{m_4}{m_4}$	C V		• •	1
3	<i>m</i> 5.	C ₂ X mass retained			
\$ mm	150		11.63	65.4	500
3.35 mm	248		19.22	46.2	300
2.36mm	238		18.45	46.2 27.8	200
1.18 ուս։ 1.18 ուս։ 1.18 ուս։	262		20.31	<u> </u>	100
425 μm	44		3.41	4.0	75
300 pm	16		124	7.0	75 50
212 juni -				28	50
150 µm	12-		0.93	1.9	40
75 µm / Passing 75 µm	_ 14		1.08.	0.8.	23
100000 75/100				,	

*Delete the inappropriate word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

ADING CURVE (FORM 'G' OF BS. 1377 : 1975)

Form G.

Particle size distribution

Wet 102 sieving method

Operator JAIS/Sabri

Date: 15/11/94

Description of soil:

Site:

Borchole No:

Sample No: M 11

Mass retained	Mass retained	Percentage retained	Total perceotage	Maximus
				sieva
		L	presing	load†
].	Mass x 100		.[
8	18			g
0	<u> </u>	0	100	- `
				4500
		· —.		3500
			-	2500
18.		2.78	91.7	2000
				7
ection C ₁	Corrected values			
	C. X mass retained		İ	1
1	of 11 mars retained			
				1500
				1000
88		8.12	78.1	750
1.				
			• •	J
<u> </u>				ļ
ection, C_2	Corrected values			
m4 =				
<i>m</i> ₅ •	C ₂ X mass relained			
70		6.96	71.2	500
144		14.31	56.9	300
.130.	1	12.92	43.9	200
			25.6	100
120		11.93	13:71	75
102-		10.111	~- 5.7	75 50
100			<u> </u>	50
26		2.78	0.99	40
6		0.60	0.4	25
·				
			,	
	0 56 28. 28. 40 88 ection, C ₂ m ₄ m ₅ . 70 144 130 184 120	28. 28. 28. Corrected values C ₁ X mass retained 38. Corrected values C ₂ X mass retained 70. 14H. 130. 184. 120. 102.	$\begin{array}{c cccc} 0 & & & & & & & & & & & \\ \hline 56 & & & & & & & & & \\ \hline 28 & & & & & & & & \\ \hline 28 & & & & & & & \\ \hline 28 & & & & & & & \\ \hline 28 & & & & & & & \\ \hline 28 & & & & & & \\ \hline 29 & & & & & & \\ \hline 20 & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & & \\ \hline 20 & & & & & \\ 20 & & & & & \\ \hline 20 & & & & & \\ \hline 20 & & & & & \\ \hline 20 & & & & & \\ 20 & & & & & \\ \hline 20 & & & & & \\ 20 & & & & & \\ 20 & & & & \\ 20 & & & & \\ 20 & & & & \\ 20 & & & & \\ 20 & & & & \\ 20 & & & & \\ 20$	$\begin{array}{c cccc} 0 & 0 & 0 & 100 \\ 56 & 5.7 & 91.7 \\ \hline \hline 28 & 2.78 & 91.7 \\ \hline \hline 28 & 2.78 & 91.7 \\ \hline \hline 28 & 0.80 & 90.9 \\ \hline 40 & 3.98 & 86.9 \\ \hline 88 & 8.75 & 78.1 \\ \hline \hline 20 & 6.96 & 11.2 \\ \hline 1411 & 14.31 & 56.9 \\ \hline 130 & 12.9 & 43.9 \\ \hline 184 & 18.29 & 25.6 \\ \hline 120 & 1.93 & 13.11 \\ \hline \hline 102 & 10.14 & 3.6 \\ \hline \hline 26 & 2.78 & 0.99 \\ \hline \end{array}$

*Delète the inappropriate word.

The masses given are for 300 inin and 200 mm diameter sieves. These masses may be increased when 450 inin diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage passing

9

Form G Particle size distribution Wet Dry sleving method Operator Date: Borchole No: Description of soil: Sample No: M 12 Total mass of dry sample (m1) 2736 Depth of sample: BS test siève Mass retained Mass retained. Total percentage passing Percentage Donielst. sievo load 50-mm 180 18.3 15.2 88.8 37.5 nim 28 mm 4500 25 mm 3500 20 mm 2500 34 mm 70.7 2000 Passing 20 mm (m2) Riffed sample passing 20 mm (m₃) Riffling correction, \mathcal{C}_1 Corrected values $C_1 = \frac{m_2}{m_3} =$ C1 X mass retained 55.5 61.8 66.5 . 12:5 mm 1500 -128 10 mm 1000 172 6.3 mm 750 Passing 6.3 mm (ni₄) Riffled sample passing 6:3 mm (m_5) Riffling correction, C_2 $C_{2,1} = \frac{m_2}{m_3} \times \frac{m_4}{m_5} =$ Corrected values C2 X mass retained 118 \$ nim 500 3.35 mm 214 300 222 2:36mm 200 1.18 mm 392 100 600 pm 332 75 425 µm 75 300 թու 218 ..50 -212 pm 50 150 µm 40 75 pm . Passing 75 pm 15

Total .

*Delete the inappropriate word.

[The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

GE E 000 458 300 £ 3 CURVE Percentage possing

Form G Particle size distribution Wet Dry sieving method Operator Date: Borchole No: Description of soil: Sample No: M - 13 . Depth of sample: BS test siève Mass retained Mass retained. Total Maximum bazziuk beteentake tettined lozdi Mass x 100 100 50· mm 89.8 87.2 84.5 37.5 mm 10.23 48 S0 2.69 28 mm 4500 25 mm 3500 164 8.83 20 mm 2500 1**14** (nm 6.89 128 2000 Passing 20 mm (m₂) Riffed sample passing 20 mm (m₃) Riffling correction, C1 Corrected values C1 X mass retained 66.0 52 2.80 . 12·5 mni 1500 66 62.4 3.55 10 mm 1000 6.3 mm 126 6.78 750 Passing 6.3 mm (m_4) Riffled sample passing 6:3 mm (ms) Rilling correction, C2 Corrected values C2 X mass retained 4.52 5 nm 500 144 126. 232 268 7.75 3.35 mg 43.4 300 2-36 mm 200 1.18 ou 100 600 pm 14.42 75 42\$ µm 75 128 300 µm 8.50 ..50 212 pm · 18 ŚØ 150 թու 0.97 40 75 µm 0.1 23 2 0.11 Passing 75 pm Total .

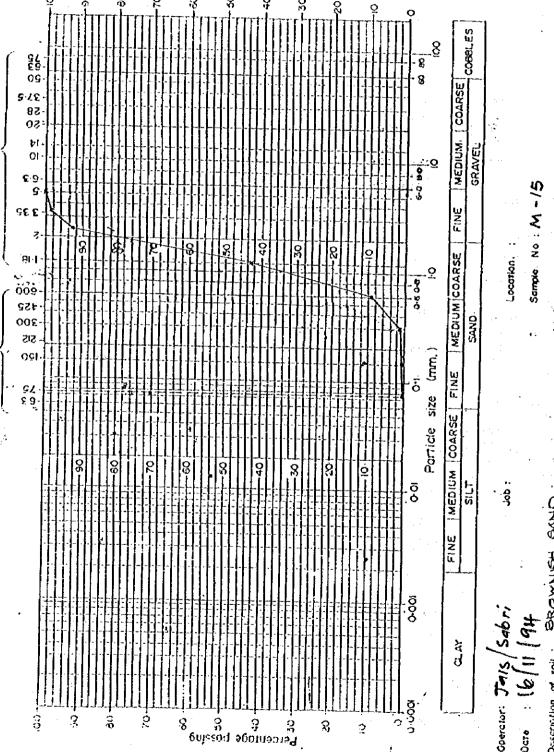
*Delete the inappropriate word.

The misses given are for 300 rnm and 200 mm diameter sieves. These masses may be increased when 450 rnm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

gole suq aquinamaq

Form G Particle size distribution Wel Dog sieving method

Description of soil: Total mass of dry sample (m.) 1868


Borehole No:

Sample No: M I

Percentage retained Mass x 100 mg 12.96 5.14 7.34 1.07 1.18	Total percentage passing S1.0 S1.9 74.4 72.4	Maximus siere (103d) 8 4500 3500 2500 2000
5.14 7.34 1.07 1.18	819 145 13.4	4500 3500 2500
	1	
0.54 0.43 107	71.7 71.3 70.2	1500 1000 750
0.86 H.82 14.35 34.51 1:07 2:36 0.96 6:21	64.3 64.5 50.3 (0.7 3.6 1.2	\$00 300 200 100 75 75 50 50 40
	482 14.55 34.51 1:07 2:36	482 64.5 14.35 50.2 34.51 10.7 1:07 3.6 2:36 1.2

*Delete the inappropriete word.

†The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

19161 0					
Particle size distributio	n				
Wet Dry sieving method	•			•	
Operator		Job:		Site:	
Date:			•	Borehole No:	
Description of soil:					
Total mass of dry sample (n	1359	g`,	· ·	Sample No: Depth of sam	-
BS lest siève	Mass retained	Mass retained.	B	7	1
•		14133 161411160	Percentage retained	Total perceptage	Maximur sieve
			Ma)s x 100	baring	loidf
			M X 100		
•	8	: 984			g
\$0 mm				·	
37.5 nim 28 mm		~	 	 	
25 mm		·	 	<u> </u>	4500 3500
20 yn m	,		1		2500
114 mm			<u> </u>		2000
Passing 20 mm (nt ₂) .					
diffed sample	j			ŧ	
oussing 20 mm (m ₁)					
Riffling correc	ina C	Commission			
	nion, c _i	Corrected values	·		.[
$C_1 = \frac{m_2}{m_3} =$	•	C ₁ X mass retained			
10.5					
. 12։5 mn։ 10 mm					1500
6.3 mm				·	1000
		· · · · · · · · · · · · · · · · · · ·			750
assing 6.3 mm (m_4)				•	j ·
iffled sample				<u>.</u>	
assing 6:3 mm (ms)		·			
Rilling correc	tion, C_2	Corrected values	•	l	-
$C_2 = \frac{m_2}{m_3} X$	$\frac{m_4}{m_4} =$		İ		
<i>m</i> ₃	m_{5} ,	C2 × mass retained	•		
\$ nim	-		·O	· (00)	500
3.35 nm.	20		1.47	98.5	300
2-36 nm	78.		5.74	92.8	200
1.18 nm	680		5.74 50.04 33.55	428	100
600 µm	456		33.55	9.2	75
425 μm 300 μm	100				75
212 pm	108		1.95	1.3	50
150 µm	12		-	- A . 11:	50 40
75 µm -	2		0.88	04	15 ·
Passing 75 pm					
			~~~}-		<del></del>

Potete the inappropriete word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage passing & & &

Particle size distribution	) n				
- Net Dry - sieving method	113			•	
<b>Operator</b>		Job:	,	Site:	<b>.</b> .
Date:		•		Burehole No	
Description of soil:		y .		Sample No:	KI
Total mass of dry sample (	n, 870	8	<b>,</b>	Depth of san	` .
BS test siève	Mass retained	Mass retained.	Parameters		
•			Petcentage retained	Total percentage	Maximu
			Hals x 100	passing	loadf
	8	É	<del></del>		8
37.5 nm .		† · · · · · · · · · · · · · · · · · · ·		:	°
28 mm			<del> </del>	<del></del>	-
25 mm					4500 3500
<b>ያ</b> ስያመመ መመ <i>ት</i> ር					2500
	}		<u> </u>	<del></del>	2000
Passing 20 mm (m ₂ ) Kiffled sample		, .			
passing 20 mm (nr ₃ )			<u> </u>	-	1.
Riffling corre	tion, C ₁	Corrected values	<u></u> -	-	+
$C_1 = \frac{m_1}{m_3} =$		C ₁ X mass retained			
, 12·5 mm	••••		· · · · · · · · · · · · · · · · · · ·		
10 mm	~~~~				1500 1000
6.3 mm					750
assing 6.3 mm (m ₄ )	•	•		·	1
iffled sample assing 6:3 mni (ms)					1
Riffling correc	lion C	<u> </u>			ļ
$C_{2i} = \frac{m_2}{m_3} X$		Corrected values	-	<u> </u>	<b>!</b>
$\frac{1}{m_3}$	m ₅ ·	C ₂ X mass retained			
\$ nim					500
3.35 nm 2-36 nm	. 0				300
1.18 ກເກເ	0.1		0.01	99.99	200 100
600 րա	0.1		0.01	99.48	75
425 µm 300 µm				-	75
212 pm -	148	<del></del>	1.01	83.0	50 50
150 pm	634		12:88	10.1	30 40
Passing 75 pm -	72		8.28	1.8	15
ual ·	<del></del>	··		,[	

*Defete the inappropriate word.

†The misses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Africance A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Form G

Particle size distribution

MCMOS sieving method

Operator Salari / Jais

Date: 16/11/94 Description of suil: Total mass of dry sample (n	n) 1216	8	·	Borehole No Sample No: Depth of san	K-2
BS test siève	Mass retained	Mass retained.	Percentage retained  Mals x 100	Total percentage passing	Maximu sieva load†
50 mm 37.5 nm 28 mm 25 mm 20 mm 14 mm	8	8		:	4500 3500 2500 2000
Passing 20 mm (m ₂ ) Riffled sample passing 20 mm (m ₃ )					
Riffling correct $C_1 = \frac{m_1}{m_3} =$		Corrected values  C1 X mass retained			
, 12·5 mm 10 mm 6.3 mm	0		0.19	100	1500
Passing 6.3 mm $(m_4)$ Riffled sample passing 6:3 mm $(m_5)$				11.>	750
Riffling correc $C_{2} := \frac{m_{2}}{m_{3}} \times$	$m_4 = 1$	Corrected values  C2 X mass retained			
\$ nim 3.35 nim 2-36nim 1.18 nim 600 pin 425 pin 300 pin 212 pin 150 pin 75 pin Passing 75 pin	14 94 190 436 280 116		1.15 7.13 15.63 35.86 23.03 9.54 5.26	98.4 90.6 15.0 39.1 16.1 6.6	500 300 200 100 75 75 50 50 40

*Delete the inappropriate word.

The masses given are for J00 inm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage political

Form G Particle size distribution Wet IDry sieving method Operator Salm / Sals. Date: 15/11/94

Total mass of dry sample  $(m_1)$  2055  $g^{-1}$ 

6.3 mm

200

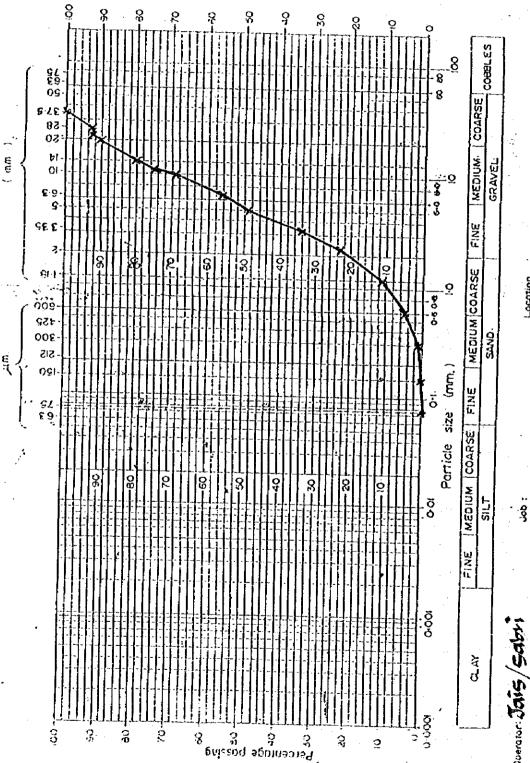
Description of soil:

35.2

750

Borchole No:

Sample No: 43


Depth of sample: BS test siève Mass retained . Mass retained. Percentage Maximum sieve load† Total percentage passing  $\frac{Mals}{m_1} \times 100$ 50 · mm 100 4.96 10.80 4.09 950 84.2 80.2 66.5 37.5 nim 102 222 28 mm 25 mm 3500 13.63 280 -20 mm 2500 1**14** mm 294 2000 52.2 Passing 20 mm (m₂) Riffled sample passing 20 mm  $(m_3)$ Riffling correction,  $C_1$   $C_1 = \frac{m_2}{m_3} = \cdots$ Corrected values C1 X mass retained .64 3.11 , 12·5 mm 44.9 1500 86 10 mm 1000

9.73

Passing 6.3 mm (ni4) Riffled sample passing 6:3 mm ( $\bar{m}_{\rm S}$ ) Riffling correction,  $C_2$ :  $C_2 := \frac{m_2}{m_3} \times \frac{m_4}{m_5} :=$ Corrected values C, X mass retained 4.28 \$ aim 30.9 500 138 3.35 mm 24.2 300 2-36mm 98. 200 142 1.18 mm 12.5 100 600 µm 5.26 75 425 µm 75 106 300 µm 50 -212 pm 50 150 pm 1.56 0.54 40 75 µm 6.29 0.3 25 Passing 75 um lotal

*Delete the inappropriate word.

†The masses given are for 300 cmm and 200 mm diameter sieves. These masses may be increased when 450 cmm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.



Yotal .

Particle size distribution Ret Dry sieving method Operator -Job: Date: Borchole No: Description of soil: Sample No: K4 Total mass of dry sample  $(m_1)$ Depth of sample: BS test sleve Mass retained Mass retained. Percentage retained Total Maximum perceptige sievo passing lozdj M235 x 100 50-mm 0 6.63 2.03 37.5 mm 38 38 124 28 mm 4500 25 mm 3500 20 mm 1.60 2500 186 114 mm 9.95 2000 Passing 20 mm  $(m_2)$ Riffled sample passing 20 mm (m₃) Riffling correction,  $C_1$   $C_1 = \frac{m_1}{m_3} = \cdots$ Corrected values C₁ X mass retained 68.8 . 12:5 mm. 1500 10 mm llo. 1000 6.3 mm 234 12.51 56.3 750 Passing 6.3 mm  $(\dot{m}_4)$ Riffled sample passing 6:3 mm  $\{\hat{m}_5\}$ Rilling correction, C1 Corrected values  $C_{2,i} = \frac{m_2}{m_3} X$ C2 X mass retained 134 7:17 \$ គាកា 500 278 14.87 11.44 12.19 6.10 3.35 mm 300 2-36 htm 22.8 200 1.18 mm 228 100 600 µm 114 75 425 µm 75 300 μու 62. .50 212 pm 0.86 50 150 μm 04 40 75 pm Passing 75 pm

Delete the inappropriate word.

The misses given are for 300 tom and 200 mm diameter sieves. These masses may be increased when 450 tom diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

120

25

0.011

BS 1377: 1975

Percentage possing

Form G Particlo size distribution Met*/Dry* sieving method
Operator Jais / Sabri
Date: 15 11 | 94
Description of soil:

Job:

Site: -

Boteliole No:

Sample No: 165

Total mass of dry sample (n	ii) 1907	8		Depth of sam	以り nla:
BS test sleve	Mass retained	Mass totalned	Percentago refeined  Mass x 100	Total percentage passing	Maximum sleve foad}
- 75 лот 63 пап	8	B			8,
50 nun 37.5 min 20 ₺5 mm	0		D	100	4500 3500 2590
4 20 mm	58.		3.85	16.7	2000
Passing 20 mm $(m_2)$ füffled sample passing 20 mm $(m_3)$					
Riffling corre $C_{\parallel} = \frac{m_2}{m_3} =$	ction, $C_1$	Corrected values  C1 X mass retained			
12-5 mm 10 mm 6.3 mm	30 50 78		1.99 3.32 5.16	94.2	1500 1000 750
Passing 6.3 mm $(m_4)$ Riffled sample passing 6.3 mm $(m_5)$					
Riffling corre $C_2 = \frac{m_2}{m_3} \times$	ction, C ₂	Corrected values  C2 X mass relained			
5 mm 3.35 mm 2.36am	62 152 108		4.11	81.6 71.5	500 300
1.18 ssm 600 pm 425 pm	318 244		13:114 25:68 14:51	58·3 33·3 13·8	200 100 75
300 րտ 212 թո	180		11.94	1.8	75 50 50
150 pm 75 pm Passing 75 pm	>0 귀		0.23	0.21	40 25
Total					-

Delete the inspisopilate word,

The masses given are for 100 mm and 200 mm diameter stoves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a mailler sample should be used or the sample sleved a part at a time.

GRADING CURVE (FORM G. OF BS. 1377: 1975)

orm G			•
		tributio g method	-:
betafor or Hrule	-21c Alui	t Wearoa	. •

Borehole No:

Description of soil:

Sample No: KU-1

Total mass of dry sample (m1) 1826 g

Depth of sample:

BS test siève	Mass retained	Mass retained	Percentage	Total	Maximum
•			retained	percentage	sievo
	<u>.</u>		Mass x 100	brzziuf	loadţ
			mi		
	8	8			g
50 mm 37.5 mm	0	<del></del>	0	100	-{ '
28 mm	56		3.01	969	4500
25 mm	24		1.3/1	956	3500
20 mm	98		5.37	90.3	2500
<b>14</b> mm	126		4.90	83.4	2000
assing 20 mm (m ₂ )					,
Uffled sample		·	,		•
ussing 20 mm (m ₃ )				].	
Riffling corre	tion, $C_1$	Corrected values			
$C_1 = \frac{m_2}{m_3} =$	- <u> </u>	C1 X mass retained	•		
			-		. :
, 12·5 mm	<del>ነ</del> ዛ		241	80.9	1500
10 mm	64 110		3.20	77.4	1000
6.3 mm	110		6.02	71.4	750
assing 6.3 mm (m ₄ )				-	
iffled sample		. ]			
assing 6:3 mm (m ₅ )					
Rilling correc	tion, $C_2$	Corrected values			<del></del>
$C_2 = \frac{m_2}{m_3} X$	_			İ	
$\frac{\sigma_1}{m_3}$	ms.	C ₂ X mass retained			
\$ mm	84		4.60	66.8	500
3.35 mm	138		7.56	59.3	300
2-36 _{mm}	142		7.78	5 .5	200
	402		22.02	29.5	100
1.18 nm			1911	11.6	75
600 bin	336		1340	11.1	4.7
600 թm 425 թm	-				75
600 թm 425 թm 300 թm	336		7.78	3.3	75 50
600 pm 425 pm 300 pm 212 pm	142		778	3.3	75 50 50
600 թm 425 թm 300 թm	-				75 50

*Delete the inappropriate word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

enlezaq seamoosef 3 3 3

Particle size distribution Wet 1Dry sieving method Operator Salai/Jais Date: 15 11 94 Borchole No: Description of soil: Sample No: Ku 2. Total mass of dry sample (m1) 1600 Depth of sample: BS test siève Mass retained Mass tettined. Percentage retained Total perceptage passing M133 x 100

<b>50</b> -mm	34.2	į į	2-14	97.9	В
37.5 mm	39.3		2.49	45.4	-
28 mm	60		3.75	91.6	4500
<b>25</b> mm	•		-		3500
-20 mm	60		3.75	87.9	2500
114 mm	36.	•	2.25	85.6	2000
Passing 20 mm $(m_2)$ Killed sample passing 20 mm $(m_3)$					,
Riffling corre	ction, $C_1$	Corrected values			· · ·
$C_1 = \frac{m_2}{m_3} =$		C ₁ X mass retained	<del>,</del>		
. 12:5 mm	12		0.75	845	1500
10 mm	~~~~~		1.25	83.6	1000
6.3 mm	26		1.63	82.0	750
Passing 6.3 mm $(\bar{m}_4)$ Riffled sample passing 6:3 mm $(\bar{m}_5)$					*****
Riffling correct $C_2 = \frac{m_2}{m_3} X$		Corrected values  C2 X mass retained	•		
\$ nim	40		2.50	79.5	500
3.35 mm	104	-	6.20	73-0	300
2.36 mm	126.		7.88.	65.1	200
1.18 mm	248	. <del>-</del>	1843	46.5	100
600 µm	286		17.81	28.6	75
425 µm	- 1115			-	75
300 բու 212 թա	142		8.89	19.7	50
150 µm				-	SO
75 µm .	16		1.00	18.7	40
Passing 75,pm	レ		0.13	13.6.	25
Total					
			9	•	

*Delète the inappropriete word,

The masses given are for 300 inm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Maximum sieve ford†

459 005 SIS OGI Ç Percentage passing

· Form G	•				
Particlo size distributio	<b>N</b> O	•			•
				-	
Wet Dry sieving method	•			•	
Operator		Job:		Site:	
Date:		•		Borehoje No:	:* :*
Description of soil:		Ī.	•	Sample No:	KA-1
Total mass of dry sample (n	11) 1606	8	•	Depth of sam	•
BS test siève	Mass retained	Mass retained.	Percentage retained	Total perceotage	Maximun siève
			$\frac{Miss}{m_1} \times 100$	passing	loadţ
*	8	8			8
3/5 mm \$0 mm			<del> </del>	· [	<b>-</b>  -
28 mm					4500
·25 mm					3500
-20 yam 54 yam		· · · · · · · · · · · · · · · · · · ·	·		2500
assing 20 mm (m ₂ )  officed sample  assing 20 mm (m ₃ )					2000
<del></del>	rion C		<u> </u>		ļ
Riffling correct $C_1 = \frac{m_2}{m_3} =$	cuon, c ₁	Corrected values  C X mass retained			
, 12:5 mm	•				1500
10 mm			٥	100	1000
6.3 mm	4	<u>-</u>	0.25	99.8	750
ssing 6.3 mm $(m_4)$ filed sample ssing 6:3 mm $(m_5)$					
Rilling correc	tion C	Corrected values		<del></del>	
$C_{2} = \frac{m_2}{m_3} X$	$m_4 = 1$	C ₂ X mass retained		; ·	
\$ mm	6		6.37	99.4	500
3.35 nm	26	-	1.62	978	300
2-36 _{mm}	52.		3.24	44.5	200
1.18 am	300		18.68	75.8	100
600 um [	CH	1	2 2 2 2 1	100	26

*Delete the inappropriate word.

The masses given are for 300 inm and 200 mm diameter sieves. These masses may be increased when 450 inm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

600 µm

425 pm

300 pm

212 nm ·

150 µm

75 þin

Passing 75 pm

lotal

514

550

32:00

8.59

0.87

. 1.0

0.1

75

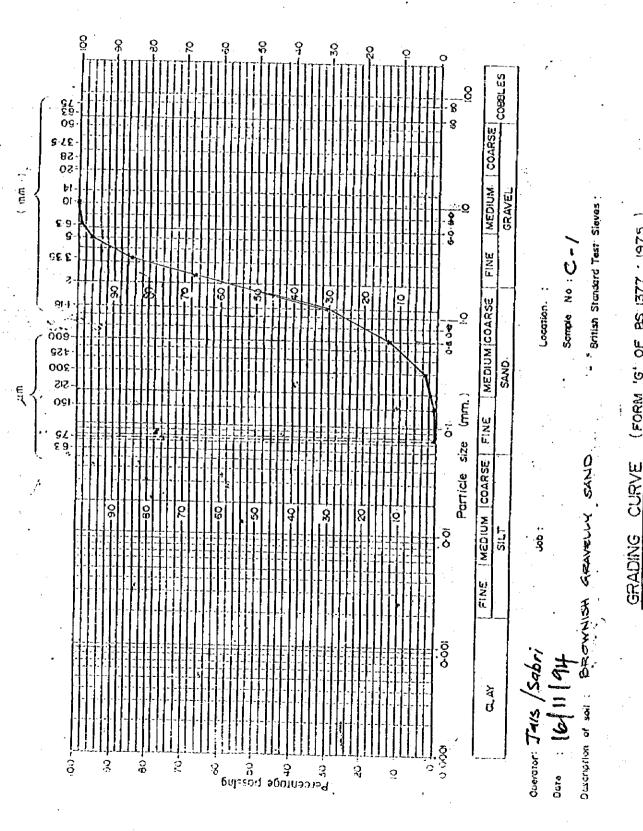
75

..50

50

40

D


Form G Particle size distribution Wet Dry sieving inethod
Operator Word July Description of soil:

Borehole No: Sample No: KAZ

BS test siève	Mass retained	Mass retained.	0	Depth of san	
•		1	Percentage retained	Total percentage	Maximun sieve
	ĺ		<b> </b> '	passing	loid
		1	$\frac{M_{133}}{m_1}$ x 100		
	8	18	<del></del>	<del></del>	
<b>20.</b> mm		3	1		8
37.5 mm				-	
. 28 mm					4500
25 mm					3500
-20 mm					2500
ាំ មួយ	·				2000
Passing 20 mm $(m_2)$				1	<del> </del>
Riffied sample	<i>:</i>				
passing 20 mm (m ₃ )					
Riffling correc	tion, C1	Corrected values			<del></del>
$C_1 = \frac{m_2}{m_3} =$			•		.]
$m_3$		C ₁ X mass retained		1	
, 12·5 mm-	0		0	เพ	1.600
10 mm	8		0.111	99.6	1500 1000
6.3 mm	16		0.82	98.8	750
assing 6.3 mm (m ₄ )				100	1.00
diffed sample				ĺ .	]
vassing 6:3 mm ( $\bar{m}_5$ )	1				
Riffling correc	tion C.	Corrected values	•		<del> </del>
		Corrected values			[
$C_{2} = \frac{m_2}{m_3} X$	$\overline{m_5}$ ,	C2 X mass retained			
	··				
3.35 nm	52	<u> </u>	0.2	98.3	500
2.26 _{mm} .			3.67	95.6	300
1.18 nm	102 564		5:24	90.4	200
600 pm	852		78.47 43.16	61.4	100
425 µm	-		45.10	17.6	75
300 μm	278		14.28	-73	75 50
212 pm	-		14 10	3.3	50
150 μm	54		2.11	.0.57	40
75 µm -	3		0.41	0.3/	15
Passing 75,pm					
otal	·	· 1	. [	,	

*Delete the Inappropriate word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.



Form G Particle size distribution Wet Dog sieving method Operator Date: Borchole No: Description of soil: Sample No: C -1 Total mass of dry sample (m1) 1620 Depth of sample: BS test siève Mass retained Percentage setzined Total perceptage sieva passing loadf Mass x 100 50·mm 37.5 mm 28 mm 4500 -25 mm 3500 -20 mm 2500 1j4 mm 2000 Passing 20 mm  $(m_2)$ Riffled sample passing 20 mm  $(m_1)$ Riffling correction, C1 Corrected values C1 X mass retained , 12-5 mm 1500 mm 01 100 · 0 1000 6.3 mm 12.0 0.74. 99.3 750 Passing 6.3 mm (m₄) Riffled sample passing 6:3 mm (m₅) Riffling correction,  $C_2$   $C_2 = \frac{m_2}{m_3} \times \frac{m_4}{m_5} =$ Corrected values C2 X mass retained 2.72 11.60 18.02 36.54 17.16 96:5 \$ ពភោ 500 188 3.35 mm 300 292 2.36mm 200 1.18 nun 30·4 13·2 100 600 µm 75 425 µm 75 300 µm 10.40 .50 212 pm 50 150 µm 2.22 0.3 40 75 µm Passing 75 µm 0.25 25 Total .

*Delete the inappropriate word.

The masses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage passing

RADING CURVE (FORM 'G" OF BS. 1377 : 1975 )

Particle size distribution Wet Dog sieving method Date: Borchole No: Description of soil: Sample No: C2 Total mass of dry sample (m, ) 1636 Depth of sample: BS test siève Mass retained Mass reteined. Percentage retained Meximum sieve loadj Total percentage passing Mals x 100 **50**⋅mm 37.5 mm 28 mm 4500 25 mm 3500 -30.ww 2500 114 tnm 2000 Passing 20 mm (m2) Riffled sample passing 20 mm (m₃) Riffling correction,  $C_1$ Corrected values C₁ X mass retained , 12:5 mm-1500 10 mm 100 1000 6.3 mm 1.83 30 98.2 750 Passing 6.3 mm (m₄) Riffled sample passing 6:3 mm (m₅) Riffling correction, C2 Corrected values C2 X mass retained 4.65 15.53 21.52 26.53 16.01 76 \$ nim 254 352 3.35 nim 300 2-36 ann 200 434 ា.18 ភាព 100 600 µm 75 425 µm 75 300 pm 11.86 ..50 -212 pm 150 բու 30 2. 75 µm 0.15 25 Passing 75.11m

*Delete the Inappropriate word.

1The misses given are for 300 com and 200 mm diameter sieves. These masses may be increased when 450 com diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage possing

GRADING CURVE (FORM 'G' OF BS. 1377 : 1975 )

Form G

Particle size distribution WellDog sieving method Operator Job: Date: 17/11/94 Borchole No: Description of soil: Sample No: 5 Total mass of dry sample (m1) 758 g Depth of sample: BS test siève Mass retained Mass retained . Percentage Total Maximum bretiuk bercentake retrined zieve lozdf M135 x 100 50· mm 37.5 mm 28 mm 4500 25 mm 3500 -20 ymm 2500 114 mm 2000 Passing 20 mm (m2) Riffled sample passing 20 mm ( $m_1$ ) Riffling correction, C1 Corrected values  $C_1 = \frac{m_2}{m_3}$ C1 X mass retained 0 100 , 12:5 mm 1500 12 1.58 98.4 10 mm 1000 16 6.3 mm 96.3 211 750 Passing 6.3 mm  $(m_4)$ Riffled sample passing 6:3 mm  $(m_5)$ Rilling correction,  $C_2$ Corrected volues C2 X mass retained 0.53 ្ស ពាកា 500 0.53 3.35 nm 300 2.36mm'. 0:53 200 1.18 nin 2.64 20 100 600 pm 44 75 425 pm 75 156 300 pm 30.28 .50 212 pm · 50 420 150 µm 40 75 pm Passing 75 pm 23 Total

*Delete the inappropriate word.

The masses given are for 300 inm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percentage passing

0

Form G Particle size distribution - Wet Dog - sieving method Date: Description of soil: Sample No: 92 Total mass of dry sample  $(m_1)$ Depth of sample: BS test siève Mass retained. Mass retained. Percentage tetained Total percentage passing Maximum loadi 1 Mass x 100 50 mm 31.5 nim 28 mm 4500 25 mm 3500 20 mm 2500 1j4 mm 2000 Passing 20 mm  $(m_2)$ Riffied sample passing 20 mm (m₃) Riffling correction,  $C_1$ Corrected values C1 X mass retained , 12:5 mm 500 10 mm 0 0 100 1000 12 6.3 mm 0.60 91.4 750 Passing 6.3 mm (m₄) Riffled sample passing 6:3 mm (m₅) Riffling correction,  $C_2$   $C_2 := \frac{m_2}{m_3} \times \frac{m_4}{m_5} =$ Corrected values C2 X mass retained 98.7 0.70 ិទ្ធ ពេល 500 3.35 nm 100 93.7 85.3 53.5 9.03 300 236mm 8.34 31.86 32.26 200 na 81.1 001 600 րտ 21.2 75 425 µm 75 300 µm 17.19 4.0 ..50 212 pm 50 0.6 150 pm 3.45 40 75 µm 0.4 23 Passing 75 pm lots!

*Delete the inappropriete word.

†The misses given are for 300 mm and 200 mm diameter sieves. These masses may be increased when 450 mm diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

Percenioge possing

Particle size distribution Wet Dry sieving method operator Date: Borchole No: Description of soil: Sample No: B-1 Total mass of dry sample (m1) 1492 Depth of sample: BS test siève Mass retained Mass retained. Total Maximum bazzing berceptage retrined sieva load† Mats x 100 50-mm 37.5 mm 28 mm 4500 -25 mm 3500 20 mm 2500 1j4 mm 2000 Passing 20 mm (m2) Kiffled sample passing 20 mm  $(m_1)$ Riffling correction, C1 Corrected values  $C_1 = \frac{m_2}{m_3} =$ C₁ X mass retained 100 , 12:5 mm 1500 6 0.40 10 mm 1000 6.3 mm 12 98.8 0.80 750 Passing 6.3 mm (m4) Riffled sample passing 6:3 mm  $(m_5)$ Rilling correction, C2 Corrected values C₂ X mass retained 22 1.47 \$ nim 500 114 3.35 nm 300 182. 12·20 34·32 30·43 2-36nim" 71.5 200 1.18 mr 100 600 µm 454 75 12:7 425 pm 75 300 μπ 156 ..50 212 pm 50 150 µm 20 0.5 40 75 µm 23 Passing 75.pm

Form G

Delete the inappropriate word.

[The masses given are for 300 non and 200 mm diameter sieves. These masses may be increased when 450 non diameter sives are used (see Appendix A) but otherwise, if the mass retained exceeds the permitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

eniceorage possings

D

· Form G Particle size distribution Wet Dry sieving method

Description of soil:

Burchole No:

Sample No: M2

BS test siève	Mass retained	Mass retained.	Parantas	1	
	<b>Манитери</b>	Paras tetained.	Percentage retained	Total percentage passing	Maximus sieve load
-			$\frac{M_{233}}{m_1} \times 100$	-	
<b>20</b> ∙ mm −	g	ğ			8
37.5 nim					- `
28 mm					4500
25 mm 20 mm				<del></del>	3500
94 mm				· · · · · · · · · · · · · · · · · · ·	2500 2000
Passing 20 mm (m2)				<del></del>	- <del> </del>
Riffied sample passing 20 mm (m ₁ )					.]
Riffling correc	tion, C,	Corrected values	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>
$C_1 = \frac{m_2}{m_3} =$		C ₁ X mass retained			
. 12·5 mai					1500
10 mm 6.3 mm	0		6	100	1000
Passing 6.3 mm (m ₄ ) Riffled sample passing 6:3 mm (m ₅ )					750
Riffling correc		Corrected values			
$C_{2} = \frac{m_2}{m_3} X$	$\frac{m_{5}}{m_{5}}$ .=	C2 X mass retained			
\$ mm	4		0.73	49.3	500
3.35 nm 2.36 nm	n		4.02	95.3	300
1.18 nm	60.		10-97	84.3	200
600 µm	140		45.34 25.59	38.4 13.#	100 75
425 µm					75
300 րու	18		10.60	2.8	-50
150 pm	10		1.83	0.9	50 40
75 µm -	#		0.72.	0.2	40 23
Passing 75,pm				, U Z	
olal	<u>l</u>	<u> </u>			

*Delète the inappropriete word.

The masses given are for 300 inm and 200 mm diameter sieves. These masses may be increased when 450 inm diameter sives are used (see Afgeodix A) but otherwise; if the mass retained exceeds the perinitted maximum, the result is invalid; in this case, a smaller sample should be used or the sample sieved a part at a time.

SOIL MECHANIC SDD.BRD. 17. LORONG TALANG SATU, PRAI GARD	ES. 13600 PRAI, P.V.	Fel: :04-309279 Fal: :04-391893
PROJECT : M/S. EXDERA EGGATION : MANGAR, PER	File #SM/L/9411034 Date :22/11/1994 By :TAMARDL	
SPECIFIC GRAVITY TEST RESULT		
SAMPLE NO. : BI	Flask Calibration : ec = 656.8	
Rt. Flash + Water + Soil . as   Rt. Flash + Water (cai.) , sc   Rt. of Dry Soil   Rt. of Dry Soil   S.G. of Water at t 'C   S.G. of Sail	50.0 50.0 0.9957 0.9951 2.6766 2.6693	
SAMPLE NO. : 32	ftask Calibration : mc = 655.5	
Vt. Flask + Vater + Soil , as g Vt. Flask + Vater (cal.) , ac g Vt. of Dry Soil g S.G. of Vater at t 'C S.G. of Soil Av. S.G. of Soil	30.0 30.0 680.3 680.2 648.9 648.9 50.0 50.0 0.9957 0.9957 2.6766 2.4623	=======================================
; Temperature, t C   Pt. Flask + Vater + Soil , as g   Pt. Flask + Vater (cai.) , mc g	50.0 50.0 0.9976 0.9963 2.6660 2.6840 2.67	-0.23t
: SAMPLE RO. : C 2 ! FLASE BO. : 2	Flask Calibration : sc = 655.5	-6.221
; Temperature. t ; Vt. Flask + Vater + Soif , es ; ; Vt. Flask + Vater (cal.) , sc ; ; Vt. of Dry Soil ; ; S.G. of Vater at t *G* ; S.G. of Soil ; ; Av. S.G. of Soil	28.0 30.0 649.1 680.3 649.3 648.9 50.0 50.0 0.9963 0.9957 2.6725 2.6766 2.67	

SOIL MECHANIC SON.BED. 17. LORORG TALANG SAFO, PRRI GARDEN, I	3600 PRAI, 7.9.	fet :04-309279 Fax :04-391693
PROJECT : N/S. INDEBAA CON LOCATION : TANGAR, PERLIS	File #SE/L/#411934 Date :22/11/1944 By :#ABARUL	
SPECIFIC SHAPITY TEST RESULT	•••••	
SAMPLE BO. : I I		
FLASE #0. : 1 F	lask Calibration : mc = 656.8	· · · · · · · · · · · · · · · · · · ·
Temperature, t Yt. Flask + Valer + Soil , as p Yt. Flask + Fater (cal.) , ec p	581.6 651.4 650.6 650.1	
S.G. of Soil ;	0.9963 0.9960 2.6554 2.6588	
SAMPLE RO. : X 2		, 
FLASK NO. 2 F	lask Calibration : ac = 655.5	-0.221
Temperature, t C Yt. Flask + Vater + Soil , ms g Vt. Flask + Vater (cal.) , mc g	680.3 680.1 648.7 648.9	
S.G. of Vater at t C ; S.G. of Soil ; Av. S.G. of Soil ;	\$0.0 \$0.0 0.49\$4 0.49\$7 2.7078 2.6481 2.68	
SARPLE BO. : K 4	iask Calibration : sc = 656.8	;
Temperature, t C  Yt. Flask + Yater + Soil , as g  Yt. Flask + Yater (cal.) , mc g  Yt. of Dry Soil g  S.G. of Water at t 'C	650.4 650.4 50.0 50.0 0.9976 0.9163 2.6875 2.6985 2.69	
SARPLE NO. : I D FLASK NO. : 2 F	lask Galibration : mc = 655.5	\$.22 <b>t</b>
Fit. of Dry Soil s :	680.3 630.5 648.7 648.9 50.0 50.0 0.9554 0.9557	
S.G. of Soil Av. S.G. of Soil	2.7078 2.7057 2.71	103

SOLE RECHARIC SDY. BED. 17. LORONG TALLANG SATU, PRAI GARDER,	, 13600 PBAI, P.W.	Tel :04-309279 Fax :04-391893
PROJECT : K/S. INGERAX ( LOCATION : KANSAR, PERLIS		File #SK/L/9411034 Date :22/11/1994 Sy :#A#A#UL
SPECIFIC CRAVITY TEST RESULT		
SAMPLE NO. : K 5 : FLASK NO. : 1	Flask Calibration : pc = 656.8-0.2	
Temperature, t & C	28.0 30.0 682.0 681.5 550.4 549.4 50.0 50.0 0.9163 0.9157 2.7132 2.7057	
SAMPLE NO. : KA 1	Flask Calibration : se = 655.5-0.2	2t
Feaperature, t C VI. Flask + Vater + Soil , as g VI. Flask + Vater (cal.) , ac g VI. of Dry Soil g S.G. of Vater at t 'E S.G. of Soil Av. S.G. of Soil	30.0 30.0 1 680.3 580.5 1 648.9 648.9 2 50.0 50.0 1 0.9957 0.9957 2 2.6766 2.7057 2 2.69	
SAMPLE NO. : NA 2 : FLASK RO. : 1	Flask Galibration : ac = 654.8-0.2	) <u>t</u>
Temperature, t C Vt. flask + Vater + Soit , ms g Vt. Flask + Vater (cat.) , mc g Vt. of Dry Soil g S.G. of Vater at t 'C S.G. of Soil Av. S.G. of Soil	31.0 28.0 481.0 682.0 649.7 650.4 50.0 50.0 0.9954 0.9963 2.6658 2.7132 2.69	
SAMPLE NO. : 19 1	Flask Calibration : ac = 656.4-0.1	
· ·	; 33.0 30.0 ; 680.6 661.1	

SOIL MECHANIC SDN.AHD. 17. LORONG TALANG SATU, PRAI GARDEN	i, 13600 PRAI, P.W.	Tel :04-305279 Fax :04-391893
PROJECT : M/S. INDERIA LOCATION : LANGAR, PERLI	CORSTRUCTION SON. BHD.	File WSM/L/94)1034 Date :27/11/1994 By :KAMARUL
SPECIFIC GRAVITY TEST RESULT		
SAMPLE NO. : M 1	Flask Calibration : mc = 45	6.8-0.23L
Temperature, t  Vt. Flash + Valer + Soil , as g  Vt. Flash + Valer (cal.) , ac g  Vt. of Dry Soil - g  S.G. of Valer at t *C  S.G. of Soil  Av. S.G. of Soil	36.0 30.0 680.4 681.2 649.0 649.9 50.0 50.0 0.9544 0.9957 2.6769 2.6623	
SAMPLE NO. : FU Z FLAST NO. : 2	Elask Calibration : me = 6	55.5-0.22t
Wt. Flask + Water + Spil , as g	648.5 648.9 50.0 50.0 0.9151 0.9157 2.6953 2.4911	
SAMPLE NO. : 8 2 FLASE VO. : 2	Flask Calibration : Bc = 6	55.5-0.22t
Temperature, t C  Yt. Flask + Vater + Soil , as g  Wt. Flask + Vater (cal.) , ac g  Yt. of Bry Soil g  S.G. of Vater at t 'C  S.G. of Soil  Av. S.G. of Soil		1195

SOIL MECHANIC SDR. 38B. 17, LORONG TALANG SATO, PRAI GARDEN	, 13600 PRAI, F.Y.	Бэт	:04-309278 :04-391893
PROJECT: B/S. INDERIA CONSTRUCTION SDR. BRD. LOCATION: TANGAR, PERLIS			#S#/L/9411034
SPECIFIC GRAPIET TEST RESULT			
SAMPLE SO	Flask Calibration : ac = 656.8-0.		=======================================
Temperature, t C  Yt. Flash + Vater + Soil , ms g  Yt. Flash + Vater (cal.) , mc g  Yt. of Dry Soil g  S.G. of Vater at t C  S.G. of Soil  Av. S.G. of Soil	\$80.1 681.1 \$648.8 649.9 \$50.0 50.0 \$0.9941 0.9957 \$2.6651 2.6461		
SAMPLE RO. : N 4	Flask Calibration : sc = 655.5-0.	??l	
Temperature, t  Vt. Flash + Valer + Soil , as g  Nt. Flash + Valer (call ) as	1 30.0 30.0 1 650.4 639.3 1 648.9 648.9 1 50.0 50.0 1 0.9957 0.9957 2 6911 2 6766 1 - 2.68		
SAMPLE NG. : A 5	Flask Calibration : ec = 655.5-0.		
Temperature, t	\$666.7 \$69.3 \$50.0 \$50.0 \$0.9922 0.9963 \$2.5163 2.7768 \$2.65		
SAMPLE NO. : X 6	Flask Calibration : sc = 655.5-0.		
Temperature, t C  At. Flask + Vater + Spil , es s  At. Flask + Vater (cal.) , ec g  Vt. of Dry Spil s  S.G. of Vater at t 'C  S.G. of Spil  Av. S.G. of Spil	35.0 30.0 679.6 580.2 647.8 648.9 50.0 50.0 0.9941 0.9957 2.7310 2.6623 2.70		

OPE RECEARIC SPECIAL STORES SATE OF SAFE CAR	DEN, 13690 PRAI, P.V.	Tel :04-309279 Far :04-391893
· ·	AA COESTRECTION SON. BAD. Reis	File WSB/L/9411034 Date :22/11/1994 By :RANARUL
SPECIFIC GRAVITY TEST RESULT	***************************************	
SAMPLE NO. : X 7 FLAST NO. : 2	Flask Galibration : sc = 655.5-	
Temperature, t Yt. Flask + Vater + Soil , ms Yt. Flask + Vater (cal.) , me Yt. of Dry Soil S.G. of Vater at t 'C S.G. of Soil Av. S.G. of Soil	C 30.0 30.0 8 680.1 679.7 8 648.9 648.9 8 50.0 50.0 0.9957 0.9957 2.6481 2.5930 - 2.62	
SAMPLE NO. : X 8 FLASH NO. : 1	Flask Calibration : me = 656.8-	0.231
Temperature, t Vt. Flask + Vater + Soil , as Vt. Flask + Vater (cal.) , ac Vt. of Dry Soil S.G. of Vater at t C S.G. of Soil Av. S.G. of Soil	6 ; 39.0 30.0 5 680.8 681.3 6 649.7 645.9 6 50.0 50.0 1 0.9947 0.9957 2.7015 2.4766 - 2.69	
SAMPLE NO. : X 9	Elask Calibration : ec = 655.5-	
Teaperature, t VI. Flask + Vater + Soil , as Vt. Flask + Vater (cal.) , ac Vt. of Dry Soil S.G. of Vater at t '6 S.G. of Soil Av. S.G. of Soil	F 50.0 50.0 0.1947 0.1940 2.6971 2.7183 2.71	
SARPLE NO. : 8 10 Flask no. : 1	Flask Calibration : ac = 656.8-0	).23t
Temperatore, t Yt. Flask + Yater + Soil , as Yt. Flask + Yater (cal.) , ac Yt. of Dry Soil S.G. of Yater at t 'C S.G. of Soil Av. S.G. of Soil		(C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C 0 D ) (C

SOIL MECHANIC SON. 890. 17. LORONG TALAKG SATI		, 13690 PRAI, i	₹,¥.		:04-309279 :04-391893
PROJECT :	K/S. INDERAL CONSTRUCTION SON. BUD.			File Date	#S#/L/9411034 : 72/11/1994 : TABARUL
SPECIFIC GRAVITY TEST					
SAMPLE NO. : FLASK #0. :	1 11		ulian · sr =	£\$\$ \$-0 22t	
Temperature, t  Vt. Slask + Vater + S:  Vt. Flask + Vater + Ga  Vt. of Dry Soil  S.G. of Vater at t 'C  S.G. of Soil  Av. S.G. of Soil	011, 25 g 1.1, 20 g	\$ 50.0 \$ 0.9453 \$ 2.7511	28.0 680.4 649.3 50.0 0.3363 2.7015		
SARPLE NO. :	¥ 12 1	Flask Calibra		<b>656.8-0.231</b>	
_	eil, es g l.), ec g	; 33.0 ; 680.8 ; 649.2 ; 50.0 ; 0.9947 ; 2.7015	681.2 649.9 50.9 0.9957 2.6623 2.68		
SAMPLE NO. :	X 13	Flask Calibr			
Temperature, t  Yt. Slask + Vacer + S  Yt. Flask + Vater (ca  Yt. of Dry Soil  S.G. of Vacer at t 'C  S.G. of Soil  Av. S.G. of Soil	<b>.</b>	0.9947	50.0 0.9570 2.6583 2.68		
SAMPLE SO. : FLASA NO. :	E 14	Flash Calibr			
Tesperature, t  Vt. Flask + Vater + S  Vi. Flask + Vater (ca  Vt. of Dry Soil  S.G. of Vater at t 'C  S.G. of Soil  Av. S.G. of Scil	1.1 , 20 8	682.0	30.0 681.6 549.9 50.0 6.9957 2.7205 2.72		CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

SOIL MECHANIC SDN.BAD. 17. LORONG TALANG SATU, PRAI GA	RDS4, 13600 _, PRA1, P.V.	let :04-309279 Fax :04-391893
PROJECT : M/S. INDE LOCATION : MARGAR, P.	File #SB/L/9411034 Date :22/11/1994 By :XANARUL	
SPECIFIC GRAVITY TEST RESULT		•••••••••••••••••••••••••••••••••••••••
SAMPLE NO. : N 15	Flask Calibration :	#c = 455.5-0.22t
Temperature, t Wt. Flask + Water + Soil , as Wt. Flask + Water (cal.) , ac Wt. of Dry Soil S.G. of Water at t C S.G. of Soil Av. S.G. of Soil	C   32.0 30.0 g   679.8 680.5 g   648.5 668.5 g   50.0 50.4   0.9951   0.9922   2.6664   2.6966   - 2.66	
SAMPLE NO. : SI FLASK NO. : 1	Elask Calibration :	nc = 656.8-0.23t
Temperature, t Vt. Stask + Vater + Soil , as Vt. Stask + Vater (cal.) , mc Vt. of Dry Soil S.G. of Vater at t *C S.G. of Soil Av. S.G. of Soil	C   30.0 30.1 E   681.2 681. E   649.9 649. E   50.0 50.6   0.9957 0.995   2.6623 2.676   - 2.6	3 9 0 7
SAMPLE NO. : 5 2 Flasi no. : 2	Flask Calibration :	ne = 655.5-0.22t
Teaperature, t Vt. Flask + Vater + Soil , as Vt. Flask + Vater (cal.) , sc Vt. of Dry Soil S.G. of Vater at t '6 S.G. of Soil Av. S.G. of Soil	C 29.0 30.1 E 680.7 681. g 649.1 648.1 E 50.0 50.1 0.1960 0.4576 2.7034 2.718	