Chapter 3 Salopa Area

3-1 Outline of the Survey Area

The Salopa area is located about 20 km southeast of Tasikmalaya. The area lies along the upper reaches of S. (Sungai) Ciwulan and S. Cimedang in the central part of the study area. The altitude of the area ranges from 300 m up to 1,144 m (G. Bongkok). Most of the area is situated on the hilly lands between 300 and 400 m above sea level.

The area lies geologically among the wide exposure of alternations of volcanics/pyroclastics and sediments of the Jampang Formation. Calcareous sandstone of the Bentang Formation and turbidity sediments and pyroclastics of the Halang Formation partly covers the Jampang Formation in the western part of the area. The Kalipucang limestone occurs mainly in the southwestern part of the Salopa area. Structurally the area lies on the wing of a gentle anticlinorium whose axis is WNW-ESE.

On the basis of the results of the existing geological information together with the results of the photogeological analysis on the JERS-1 SAR images, this area was selected for the field survey area in the first phase. The survey covered over a rectangular area of 518 km². The field works in the first phase were composed of geological survey, stream sediment sampling, panning survey and reconnaissance soil survey.

3-2 Geological Survey

3-2-1 Survey Method

The first phase field works in the Salopa area were consisted of geological survey and geochemical exploration. The area was selected based on the analysis of existing geological information and photogeological interpretation on the JERS-1 SAR images, through which the geological setting of the survey area was defined.

Prior to the field work, a series of drainage system maps of 1:10,000 scale was prepared from the compilation of existing topographic maps (1:50,000 and 1: 25,000) and satellite images. Several sets of GPS instruments were employed for locating major surveying points in the field.

In the course of the geological survey, panning survey and stream sediment sampling, a couple of mineralized areas was found. Combined these field results with the existing information of alteration

and mineralization on the area, semi-detailed geological survey and soil survey were carried out in two areas; Ciniru and Cikuya. The route maps of 1:10,000 scale were produced during these surveys, using 50-meter tape with a Brunton-type compass. The important mineral showings and old workings were studied in much detail (sketches of 1:100 to 1:200), and samples were taken for laboratory analysis.

During the field works, geology and degrees of hydrothermal alteration were investigated. The degrees of silicification, sericitization and pyritization were carefully judged and recorded on the field note by geologists. Other features of mineralization and hydrothermal alteration such as sulfide dissemination, clay alteration (montmorillonitization, kaolinitization, etc.), carbonitization and quartz networking were also checked in the survey.

A total length of more than 344 km was explored during the survey in the Salopa area, and the geological information was compiled into geological maps of 1:25,000 scale. The geology and geologic profile of the Salopa area are shown in Fig. 2-5.

The numbers of samples collected in the survey are: 744 stream sediment samples, 315 pan concentrate samples, 179 soil samples, more than 30 rock samples for thin sections and for whole rock analysis, 46 altered rock and clay samples for X-ray diffraction analysis and more than 80 ore samples for assay and polished sections. The results of the laboratory works are briefly summarized in Tables 2-4 to 2-11.

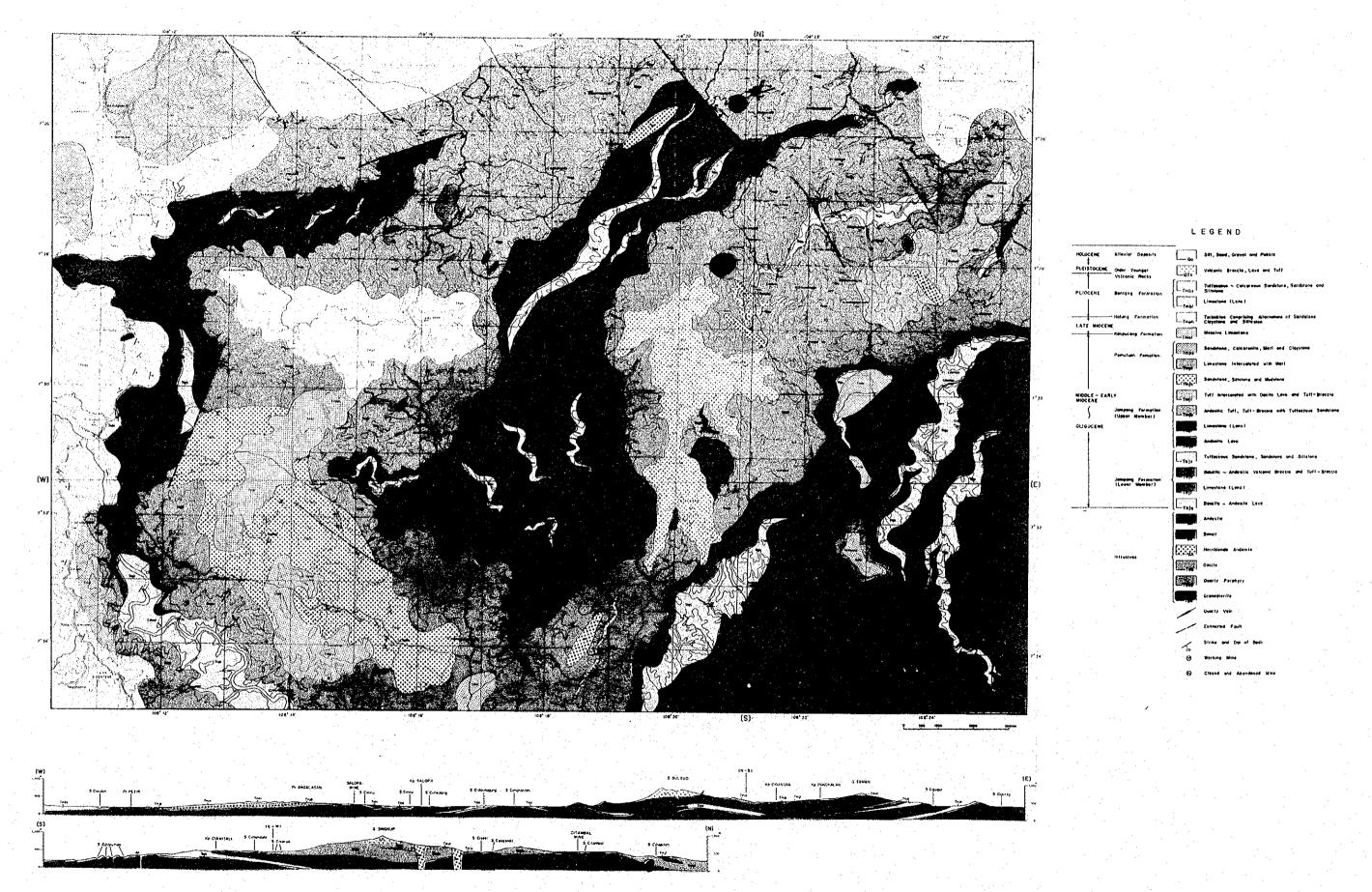


Fig. 2-5 Geology and Geologic Profile of the Salopa Area

Table 2-4 Results of Whole Rock Analysis

Sample	SiO2	TiO2	A1203	Fe2O3	FeO	MnO	MgO.	CaO	Na2O	K20	P2O5	Cr2O3	LOI	Total	Fe/Mg	Con.P	Rock	Locality
No.	%	*	*	%	%	*	%	*	*	*	%	%	%	%		%	1,00%	3000007
(Salopa)							-			-					-	~		
AA2W	53.85	0.66	16.04	4.92	2,13	0.15	2.77	7,54	2.25	116	0.10	0.00	0.54	400 00	0.07			
AA8W	53.52	0.55	17.92	2.74	3,37					1.15	0.18	0.02	8.54	100.20	2.37	51.53	Tan	S.Cipinaha
	w.i					0.15	3,67	8.46	3.14	0.57	0.14	0.01	5,94	100.18	1.59	44.14	Tan	S,Ciseel
AA9W	50.79	0.68	16.97	4.10	2.57	0.15	3.67	9.03	2,56	0.89	0.16	0,01	8.82	100.40	1.71	48.80	ian	S.Ciseel
AHSIW	52.58	1.15	20.14	5.88	0.98	0.13	1.60	8.35	4.24	2.03	0.26	<.01	2.74	100.09	3.82	44.35	Tomj	S.Ciwulan
AS1W	50.64	0.86	20.69	4.22	3.22	0.13	3,08	10.65	2.95	0.55	0.15	<.01	2.91	100.05	2.28	51.62	Tan	S.Ciwaraku
AS2W	56.39	0.48	18.61	3.76	1.10	0.11	3.42	7.51	3.82	1.09	0.23	0.01	3,36	99.89	1.31	34.98	Tgd	S.Cihapitan
AS3W	54.15	0.69	18.48	3.75	3.07	0.19	4.22	9.04	2.98	0.83	0.16	. 0,01	2,59	100,16	1.53	44.52	Tan	S.Cisarua
AS4W	52.61	0.78	15,38	3.47	4.80	0.15	2.58	7.68	2.79	0.98	0.21	0.03	8.39	99.85	3.07	55.50	Tan	S.Cihapitan
AS5W	52.93	0,80	17,91	5.21	3,39	0.23	2.66	9.98	3.12	0.98	0.19	<.01	2.70	100.10	3.04	54.45	Tan	S.Cihapitan
AD99W	49.23	0,64	17.08	3.61	4.05	0.21	4.13	8.64	2.83	0.63	0.12	0,01	9.10	100.28	1.77	49.02	Tomi	S.Ciharuman
AK1W	52.79	0.85	16.78	4.75	3,52	0.14	5.22	9.60	2.68	0.80	0.15	0.02	3.31	100.61	1.49	47.25	Tan	
AK2W	45.46	0.83	17.06	5.57	4.46	0.21	5.35	11.31	1.93	0.20	0.07	0.02	7.14	99.61				S.Cimedang
AK3W	51.35	0.79	17.96	4,51	3.13	0.17	4.71	10.21	2.49						1.77	55.89	Tan	S.Cimedang
AK4W	48.72	0.73	18.28	4,62		-				0.75	0.12	0.01	3.99	100.19	1.53	47.49	Tomj	S.Cimedang
					3.43	0.16	5,27	11.61	2.21	0.54	0.09	0.01	4.91	100.58	1.44	48.61	Tomj	S.Cimedang
AK5W	42.64	0.78	16,97	3.99	2.16	0.19	1.79	16.98	2.24	0.53	0 11	0.04	12.13	100.55	3.21	55.77	Tan	S.Cikuya
AK6W	56.70	0.58	16,78	4.01	3,43	0.17	3.43	6,77	2.96	0.71	0.11	< 01	4.07	99.72	2.05	49.78	Tan	S.Cikuya
AK7W	50.47	0.68	16.51	4,51	3.76	0.19	5.63	8,88	2.59	0.30	0.14	0.02	5.93	99.61	1.39	47.86	Tan	S.Cikuya
AK8W	47.98	0.76	14.49	4,11	4,44	0.14	7.94	9.43	2.12	0.40	0.09	0.15	7.49	99.54	1.03	43.75	Tan	S.Citatah
AKOW	52.91	0.69	14.94	5.56	2.75	0.18	3.17	6.75	1,59	1.56	0.13	0.01	9,03	99.27	2.45	55.11	Tan	S.Ciseel
AK10RW	53.09	0.71	17,66	4.39	3.51	0,17	4.24	8.76	3.08	1.31	0.17	0.01	3.10	100.20	1.76	46,37	Tan	Gn Lubuk
AK10W	46.22	0.97	18.03	4.54	4.29	0.16	6.57	11.63	2.34	0.73	0.09	0.02	4.79	100,38	1.28	46.50	Tgd	S.Ciseel
AK11W	47.19	0.41	17,39	2.34	2.64	0.14	1.89	10.31	2.29	1.11	0.13	<.01	14.71	100.55	2.51	47.27	Tomj	S.Ciseel
AK12W	54.12	0.44	17.43	2.77	3,19	0.18	2.57	7.62	3.06	1.08	0.17	0.01	7.28	99.90	2.21	45.91	Tomi	· · · · · · · · · · · · · · · · · · ·
AH2W	49.74	1,19	17.84	5.33	4.20	0.22	3.74	10.15	3.39	0.73	0.84	<.01	2.79	100,16				S.Ciseel
AH3W	50.29	1,21	19.49	6.16	3.76	0.43	3.45	7.57	3.21	0.57					2.41	53.38	Tomi	S.Ciwulan
AH5W	56.51	0.92	17.43	4.22	1.96	0.06					0.21	<.01	4.09	100.44	2.70	56.28	Tomj	S.Ciwulan
AH6W	54.08	0.97	18.44				1.61	7.74	3.35	1,26	0.18	0,01	4.96	100.21	3.58	48.08	Tomi	S.Ciwulan
		بالسفاء ومعاطاه		3.76	4.95	0.20	3.78	6.98	3.11	0.71	0.25	<.01	3.82	99.05	2.20	52.30	Tomi	S.Ciwulan
AH7W	56.88	0.83	17.19	3.28	3.42	0.14	2.40	6.21	3.53	1.46	0.26	<.01	4.24	99.84	2.66	46.30	Tomj	S.Ciwulan
AHBW	50.45	0,67	17,30	3.61	2.60	0.13	3.86	8.90	2.77	0.88	0.16	0.01	8.65	99.99	1.52	43.79	Tomj	S.Ciwulan
VH AW	55.04	0.82	17.50	4.69	2,59	0.15	2.89	7.86	3.72	0.85	0.23	0.01	3.48	99.83	2.36	47.73	Tomj	S.Ciwulan
AH10W	48.10	0.87	19.63	4.46	3.62	0.23	3.83	11,91	2.52	0.46	0.16	<.01	4.07	99.86	1.99	52.84	Tomj	S.Ciwulan
AH25W	48.65	0.89	18.13	4.74	3,97	0.22	5,89	7.66	2.12	0.89	0.16	0.01	6.98	100.31	1.40	48.06	Tomj	S.Ciseel
AH27W	58.49	0.48	18.23	3.32	1.14	0.11	2.53	7.96	3.65	1.31	0.17	0.01	2.00	99.40	1.63	35.55	Tgd	Gn.Payung
AH28W	54.48	0.72	16.89	3.73	3.82	0.14	5.57	8.58	3.08	0.98	0.16	0.02	2.07	100.24	1.29	42.69	Tomi	S.Ciseel
(Sidamuli	h)	9.5		15.75	11 1 1 1	184	17	100		Y. C. 12	Visit 1		-		3.30			
BA6W	46.03	0.88	19.84	8.48	1.74	1.48	4.11	8.80	3.67	0.99	0.10	<.01	6.70	100.82	1.84	46,32	Tan	S.Ciawitali
BH2W	51.22	0.87	17.75	4.91	4.38	0.15	4.65	9.35	2.89	0.62	0.40	0.01	2.33	99.53	1.89	51.89	Tan	S.Cładiloka
внзм	60.13	0.48	18.47	2.92	1.97	0.14	1.86	8.86	3.28	1.54	0.22	<,01	2,33	100.20	2,47	40.77	Tda	S.Cisawangan
(Clsasah)	,	1. 1.1	100	1000			1,315		-	7.70	100			30,0				O.O.Sawangan
CA5W	55.15	0,60	16.18	1,70	0.99	1.70	3.56	7.38	3.10	0.93	0.17	0.01	5,28	96.75	174	44.00	Tod	le City-let
CA8W	50.41	1.41	17.33	4.50	4.98	0.15	4.43	7.82	3.32	0.33	0.21		+		1.74	44.96	Tgd	S.Cikoplok
CA9W	47.25	0.90	18,53	2.33	6.21	0.18						< 01	5.46	100.29	2.04	52.95	Tom	S.Cigorowong
CD316W	63.97	0.33					6.62	9.61	2,38	0.33	0.16	0.01	5.47	99.98	1.26	47.10	Tgd	S.Cijalu
CD316W		·	16.63	1.98	1.12	0.08	0.84	5.32	3,41	0.34	0.08	<.01	5.75	99.85	3,45	38.70	Tgd	S,Cijambehaseu
	64.79	0.66	14.16	2,93	2.78	0.12	2.13	4.99	4.13	1.10	0.17	<.01	1.47	99.43	2.54	42.40		Pr.Tenjolaut
CD351W	49.07	0.72		3.22	5.33	0.24	3.86	8.74	3,15	0.50	0.08	0.01	4,96	99.25	2.13	52.27		S.Cijolang
CK2W	50.56	0.74	18.01	4.34	4.74	0.40	5.11	9.65	2,35	0.66	0.12	0.01	3.15	99.84	1.69	51.57	Tomj	S.Ciwulan
CK3W	52.26	0.74	14.94	6.55	2.19	0.16	5.55	6.36	2.89	1.36	0.09	0.02	6.22	99.33	1.46	45.20	Tan	S.Cibutuireng
CK4W	50.27	0.73	16.25	4.73	3.78	0.13	7.46	10.27	2.10	0.55	0.10	0.02	4.15	100.54	1.08	44.29	Tomj	S.Cikancung
CK5W	53.59	0.84	16.05	4.70	3.84	0.24	5.59	5.70	3.54	1.00	0.14	<.01	5.04	100.27	1.44	44.35		S.Cilangla
S3W	47.68	0.83	21.80	3.47	4.78	0.50	3.86	10.89	2.25	0.27	0.08	<.01	4.05	100.46	2.05	55.33		S.Cipanawar
S4W	55.21	0.88		2.44	4.93	0.27	3.84	7.23	3.00	1.14	0.18	0.01	5,20		1.86	47.18		S.Cilangla
CS6W	66.52	0.42	13.66	1.47	3.02	0.23	1.34	2.03	3.02	2.95	0.10	<.01	4.32	99.08				
HIOW	64.94	0.94	14.46	3.57	1.88	0.26	1.81	5.33	3.41	1.05					3.24	37.29		S.Cilangla
CH20W	57.57										0.30	<.01	2.37	100.32	2.81	44.82		Cikelirleutik
	· name and index	0.45	17.28	3,33	1.72	0.27	2.25	6.47	1.72	2.83	0,13	<.01	6.13		2.10	40.95		S.Cipunduan
CH22W	65.82	0.65	14,61	4.77	0.86	0.10	1.34	2.87	3.47	2,44	0.15	0.01	3,67	100.76	3.85	41.56	Tda	S.Cicadas

Table 2-4 Results of Whole Rock Analysis

Sample	Q	C	or	ab	an	WO	di wo	di-en	di-is	hy en	hy-fs	ol·fo	ol-fa	mt	hm	ii		. Y-10
No.	, ×	%	*	%	*	%	%	*	*	*	%	ļ	-		+	+	ap	Total
(Salopa)											- ~	- ^	//	7	70	×	*	, 9
AA2W	17,80	0.00	6.80	19.03	30.28	0.00	2.49	2.15	0.00	4.75	0.00	0.00	0.00	5,44	1 4 4 7	1		
AA8W	10.10	0.00	3.37	26.55	33.13	0.00	3.31	2.24	0.81	6.89	2.49		0.00			1,25		
AA9W	10,42	0.00	5.26	21.65		0.00	4.83	4.01	0.21	5.13	0.27	0.00	0.00	*********		1.05		• • • • • • • • • • • • • • • • • • • •
AHS1W	2.74	0.00	12.00	35.86	29,93	0.00	4.09	3.54	0.00	0.45	0.00	0.00	0.00	***********	·	1,29		
AS1W	6.06	0,00	3.25	24.95	41,59	0.00	4.28	3.29	0.54	4.38	0.71	0.00				2.20		
AS2W	10.63	0.00	6.44	32.31	30.42	0.00	2.23	1.93	0.00	6.59	0.00	0.00	0.00		0.00	1.63		
AS3W	9.64	0.00	4.91	25.20	34,60	0.00	3.84	2.94	0.49	7.56	1.26		**********	2.51	2.02	0.91	4.000	
AS4W	12.88	0.00	5.79	23,59	26.55	0.00	4.25	2.32	1.78	4.11	3.16	0.00	0.00	5,43	0,00	1.31	0.38	97.57
AS5W	9.29	0.00	5.79	26.39	***********	0.00	6.80	5.26	0.82	1.36	0.21	0.00	0.00	5.02	0.00	1.48	· · · · · · · · · · · · · · · · · · ·	91.44
AD99W	6.49	0.00	3.72	23,93	32,05	0.00	4, 19	2.83	1.04	7.46	2.75		0.00	7.56	0.00	1,52		
AK1W	8.89	0.00	4.73	22.66		0.00	6.35	5.08	0.55	7.91	0.85	0.00	0.00	5.23	0.00	1.22	0.28	91.18
AK2W	4.25	0.00	1.18	16.32	37.30	0.00	7.66	5.76	1,13	7.56	** *** * * * * * * * * * * * * * * * * *	0.00	0.00	6.88	0.00	1.62	0.36	97.29
AK3W	8.06	0.00	4.43	21.06	35.62	0.00	5.95	4.82	0.42		1.48	0.00	0.00	8.08	0.00	1.58	0.17	92.46
AK4W	4.65	0.00	3.19	18.69	38.37	0.00	7.78	6.16	0.42	6.91	0.61	0.00	0.00	6,54	0.00	1.50	0.28	96.20
AK5W	0.00	0.00	3.13	18.94	34,69	15.23	5,16	4.46	************	6.96	0.84	0.00	0.00	6.69	0.00	1.39	0.21	95.66
AK6W	16,94	0.00	4.20	25.03	30.41	0.00	1.03	0.73	0.00	0.00	0.00	0.00	0.00	5.32	0.32	1.48	0.26	88.98
AK7W	8.44	0.00	1.77	21.90	32.54	0.00	4.42	**********	0.20	7.81	2.15	0.00	0.00	5.81	0.00	1.10	0.26	95.66
AK8W	4.38	0.00	2.36	17.93	28.84	0.00	7.24	3.38	0.58	10.64	1.83	0.00	0.00	6.54	0.00	1.29	0.33	93,67
AK9W	19.66	0.00	9.22	13.45	29.02	0.00		5.47	1,04	14.30	2.73	0.00	0.00	5.95	0.00	1,44	0.21	91.90
AK10RW	7.24	0.00	7.74	26.05	30.50	0.00	1.51 4.95	1.30	0.00	6.59	0.00	0.00	0.00	7.45	0.42	1.31	0.31	90.24
AK10W	0.00	0.00	4.31	19.79	36.54		······································	3.75	0.70	6.81	1.27	0.00	0.00	6.36	0.00	1.35	0.40	97.10
AK11W	7.50	0.00	6.56	19.37	33.90	0.00	8.58	6.56	1.13	5.47	0.94	3.03	0.58	6.58	0.00	1.84	0.21	95.58
AK12W	12.45	0.00	6.27	25.88	30.70	0.00	6.85	4.21	2.24	0.49	0.26	0.00	0.00	3.39	0.00	0.78	0.31	85.85
AH2W	4.41	0.00	4.31	28.67	erthininini e	0.00	2.50	1.57	0.78	4.83	2.40	0.00	0.00	4.01	0.00	0.84	0.40	92,62
AH3W	8.40	0.33	3.37	27.15	31.31	0.00	5.68	4.29	0.81	5.02	0.95	0.00	0.00	7.73	0.00	2.26	1.99	97.43
AH5W	15.56	0.00	7.45	28.33	36.18	0.00	0.00	0.00	0.00	8.59	0.62	0.00	0.00	8.93	0.00	2.30	0.50	96.37
AH6W	12.14	0.00	4,20	26.30	28.81	0.00	3.51	3.04	0.00	0.97	0.00	0.00	0.00	3.85	1.57	1.75	0.43	95.25
AH7W	14.01	0.00	8,63	29.85	28.81	0.00	1.75	1.09	0.55	8.32	4.20	0.00	0.00	5.45	0.00	1.84	0.59	95.25
AH8W	8.55	0.00	5.20	**********	26.75	0.00	0.99	0.65	0.27	5.33	2.19	0.00	0.00	4.75	0.00	1.58	0.62	95,62
AH 9W	11.60	0.00		23.43	32.18	0.00	4.56	3.67	0.36	5.94	0.57	0.00	0.00	5.23	0.00	1.27	0.38	91.34
4H10W	3,73	0.00	5.02	31,46	28.55	0.00	3.74	3.23	0.00	3.97	0.00	0.00	0.00	6,48	0.23	1.56	0.55	96.36
4H25W	7.13		2.72	21.31	40.90	0.00	7.15	5.35	1.10	4.19	0.86	0.00	0.00	6.46	0.00	1.65	0.38	95.80
4H27W	13.84	0.14	5,26	17.93	36,95	0.00	0.00	0.00	0,00	14.66	2.32	0,00	0.00	6.87	0.00	1.69	0.38	93.33
4H28W	7.85	0,00	7.74	30.87	29.50	0.00	3.71	3.21	0.00	3.09	0.00	0.00	0.00	2.64	1.50	0.91	0.40	97.40
Sidamuil		0.00	5.79	26.05	29.37	0.00	5.07	3.76	0.82	10.11	2.19	0.00	0.00	5.40	0.00	1.37	0.38	98.15
3A6W		0.00																
3H2W	. 0.00	0.00	********	31.04	34.75	0.00	3.45	2.98	0.00	0.57	0.00	4.68	0.00	7.89	1.03	1.67	0.24	94.14
	7.12	0.00	••••••••	24.44	33.64	0.00	4.24	3.09	0.76	8.49	2.07	0.00	0.00	7.12	0.00	1.65	0.95	97.22
3H3W Cisasah)	18.33	0.00	9.10	27.74	31.13	0.00	0.61	0.48	0.07	4.15	0.60	0.00	0.00	4.23	0.00	0.91	0.52	97.89
CISMSMI)	14 07										[1	
CA8W	7.04	0.00	5.50	26.22	27.49	0.00	3.34	2.89	0.00	5.97	0.00	0.00	0.00	7.00	0.96	1.14	0.40	95.58
	7.04	0.00	•••••••••••••••••••••••••••••••••••••••	28.08	31.59	0.00	2.44	1.71	0.52	9,32	2.86	0.00	0.00	6.52	0.00	2.68	0,50	94.84
CA9W	0.03	0,00	······	20.13		0.00	3.22	2.01	1.02	14.47	7.31	0.00	0.00	3.38	0.00	1.71	0,38	94.51
D316W D323W				28.84		0.00	0.00	0.00	0.00	2.09	0.03	0.00	0.00	2.86	0.00	0.63	0.19	94.10
	23.83	0.00		34.93	*******	0.00	2.84	1.94	0.67	3.36	1.15	0.00	0.00	4.25	0.00	1.25	0.40	97.97
CD351W	2.90	0.00			37.24	0.00	2,33	1.34	0.89	8.27	5.50	0.00	0.00	4.66	0.00	1.37	0.19	94,28
CK2W	6,57	0.00	3.90	••••••••••••	36.65	0,00	4.36	2.95	1.08	9.77	3.57	0.00	0,00	6.29	0.00	1.41	0.28	96.69
K3W	10,17	0.00	8.04		23.78	0.00	3.00	2.59	0.00	11.23	0.00	0.00	0.00	5.44	2.80	1.41	0.21	93.09
K4W	5,86	0.00	3,25	*********	33.29	0.00	7.10	5.65	0.63	12.92	1.44	0.00	0.00	6,85	0.00	1.39	0.24	96.38
K5W	8.55	0.00		29.94	24.96	0.00	1.00	0.77	0.12	13.14	2.10	0.00	0.00	6.82	0.00	1,60	0.33	95.24
CS3W	3.29	*************	1.60		48,59	0.00	2.05	1.23	0.70	8.38	4.77	0.00	0.00	5.03	0.00	1.58	0.19	96.42
	11.65		6.74		26.78	0.00	3.31	1.93	1.23	7,64	4.86	0.00	0.00	3.54	0.00	1.67	0.43	95,12
,,,,,,,,,,,,,,,,,	29.76	2.05	7.44	25.54	9.42	0.00	0.00	0.00	0.00	3.34	4.06	0.00	0.00	2.14	0.00	0.80	0.43	94.78
****************	28.57	0.00	6.21	28.84	21.06	0.00	1.44	1.24	0.00	3.27	0.00	0.00	0.00	4.18	0.68	1.79	****	***********
H20W	19.86	0.00	6.73	14.55	31.07	0.00	0.07	0.06	0.00	5.54	0.17	0.00	0.00	4.82	0.00		0.71	97 97
H22W	28.59	1.40 1	4.42	29.35	13.26	0.00	0.00	0.00	0.00	3.34	0.00	0.00	0.00	************		0.86	0.31	94.03
		1.0								3.34	5.00	0.00[0.001	1.21	3.94	1.24	0.36	97.09

Table 2-5 Results of Microscopic Observation of Thin Sections (1)

Sample Locality	Rock Name	Formation	Texture	Phenocryst/Crystal Frag. Groundmas/Matrix	Alteration
				Qz Kf Pl Bi Hb Px 01 Ep 00 02 Kf Pl Hb Px Cl	
[Salopa]					
S. Cipinaha	Andesite	Tan	Porp		
AA8T S. Ciseel			Porp	1:	מייט יט יט יט יום
S. Ciseel	Hornblende Andesite		Porn	11	ration of the contract of the
AHS1T S. Ciwulan	Andesite		Porn-Onbi		Fl→th•Se•ta, Hb→th•ca
S. Ciwaraku	Andesite	Tan	Porn	1(
S. Cihapitan			10 To		F1+Ca
S. Cisarua	Andesite		Porn	□	D1 III. (A)
S. Cihapitan			Porn		rı•no→cn
S. Cihapitan			Porn		r.t.
Gulingmuding	g Lapilli Tuff		Pvcl	1	
AS18T S. Cibangbai			Clas		Outlettled Co Boott
			Slas		Foor 1 from out
			orp-Ophi		DI Co. Co. Co. Co.
AD36T S. Ciniru	Lapilli Tuff		Pyc1		11 Ca Se, 82 verille
S. Ciniru			Porn-Onhi		וז - רמ ספי אק יאבווזה
S. Cipagacian		Tomi	Porp-Ophi		
S. Ciharuman			Porp-Ophi)	plant Charles De Charles
S. Cimedang			Porp		1 1 VII VE VA, I A VII
S. Cimedang	Basalt		Porp	11<	
S. Cimedang	Andesite		oro	1 < 0	
S. Cimedang	Basalt		Ophi		
i	Basalt	14	Porp) C	D1 - C2 - Ch
	Hornblende Andesite	Tan	Porp	0	
AK7WT S. Cikuya	Hornblende Andesite	Tan	orp-Ophi		PI-IIA-Ch
Abundance of Minerale.	•			-	I TAILO TOIL

●;Abundant, ○;Common, △;Rare, ·;Trace Formation Names

Tomi: Jampang Formation, Tmk1: Kalipucang Formation, Tmpa: Pamutuan Formation, Tmbs; Bentang Formation, Tmph; Halang Formation, Qtv:01d Volcanic Rocks, Tgd; Granodiorite, Tda; Dacite, Tan; Andesite (dyke)

Pycl; Pyroclastic, Clas; Clastic, Porp; Porphyritic, Lepb; Lepidoblastic, Glom-gr; Glomerophyric granular, Hypd-gr; Hypidiomorphic-granular, Ophi;Ophitic, Int-gr;Inter-granular, Hol-pp;Holocrystalline-porphyritic Textures

Qz;Quartz, Kf;Potash feldspar, Pl;Plagioclase, Bi:Biotite, Hb;Hornblende, Px;Pyroxene, Ol;Olivine, Ep;Epidote Op; Opaque minerals, Gl; Glass, Ch; Chlorite, Se; Sericite, Ca; Carbonates

Winerals

Table 2-5 Results of Microscopic Observation of Thin Sections (2)

r		1		-							<u>.</u>		
Alteration		P1•Px→Ch•Se		P1•Hb→Ch	P1 → Se•Ch•Ca	Ca. Fossi 1	P] ↓ Se		P1→Ca•Ch	P1→Ca•Ch	P1→Ca•Se•Ch	P] → Se	
Groundmas/Matrix	Qz Kf Pl Hb Px 01		∇ O					< C	0		V 0	. · · · · · · · · · · · · · · · · · · ·	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Phenocryst/Crystal Frag. Groundmas/Matrix	Qz Kf P1 Bi Hb Px 01 Ep 0p Qz Kf P1 Hb Px 61	0	<00 ●								•		
Texture		Porp	Porp	Ophi	Porp	Clas	Porp	Porp-Ophi	Porp	Porp	Porp-Ophi	Ophi	Hol-gr
Formation		Tomj	Tan	Tgd	Tomj	Tomj	Tomj		Tomj	1	} 		Tgd
Rock Name		Andesite	Hornblende Andesite	Gabbro	Hornblende Andesite	Calcareous Shale	Andesite	Andesite	Andesite	Andesite	Andesite	Basalt	Granodiorite-Porphyry
Locality		AK8RT S. Cigugur	AK10RT Gn. Lubuk	AK10WT S. Ciseel	AK12WT S. Ciseel	AK13RT S. Ciseel	Umar	S. Ciwulan	S. Ciwulan	S. Cimulan	S. Ciwulan	S. Cıwulan	AH277 Gn. Payung
Sample	No.	AKBRT	AK10RT	AK10WT	AK 12 WT	AK13RT	AK14RT Umar	AH2T	1.0	MET	AH8T	AH 10T	AH277

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	P1 •Px→Ch•Se	•Px→Ch	P1→Se•Ch	Ca. Fossil	Px•P1→Ch
Ŀ	P1	П	[4]	S	Α×
		0			
	0	0	0	}	
			!		
				4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	\Diamond	•			\Diamond
	•	•	•	, , , , ,	•
	1	1	-		
	Porp-Oph	Porp	Porp	Clas	Pyc1
		Tan			
				ø	Tuff
	Basalt	Andesite	Dacite	Limestone	Lapilli
[Sidamulih]	BA6T S. Ciawitali Basalt	S. Ciadiloka	BH3T S. Cisawangan Dacite	Gn. Karang	BS5T S. Cinangkerok Lapilli Tuff
	BAGT	BH2T	BH3T	BESIT	BS5T

٠.	[Cisasah]											 	_					Γ-
	CA5T S. Cikoplok	CA5T S.Cikoplok Granodiorite-Porphyry	Tgd	Hol-pp		•				•			<u>P</u> 1	• △ · · · · · · · · · · · · · · · · · ·	S.	S:11:	cifie	! 77
	CD3161 S. Cijambehaseum Quartz-Porphyry	m Quartz-Porphyry	Tgd	Hol-pp	О •	Ö	0						· PI+Ch	P1→Ch•Se				1
	CD323T Pr. Tenjolaut Granodiorite	Granodiorite	Tgd	Hypd-gr	0	•	O	·				 		 				-
	CD351T S.Cijolang Diorite	Diorite	Tgd	Hol-pp		•	;:- !		7:	◁			<u> </u>	P]•Px→Ca•Ch	Ş		1 1 1 1 1	7
	3 ()									l								1

Abundance of Winerals: ●; Abundant, ○; Common, △; Rare, ·; Trace Formation Names

Textures

Vinerals

Tomi: Jampang Formation, Takl: Kalipucang Formation, Tapa: Pamutuan Formation, Tabs: Bentang Formation, Taph: Halang

Formation, Qtv;0ld Volcanic Rocks, Tgd;Granodiorite, Tda;Dacite, Tan;Andesite (dyke)
: Pycl;Pyroclastic, Clas;Clastic, Porp;Porphyritic, Lepb;Lepidoblastic, Glom-gr;Glomerophyric granular, Hypd-gr;Hypidio-morphic-granular, Ophi;Ophitic, Int-gr;Inter-granular, Hol-pp;Holocrystalline-porphyritic
: Qz;Quartz, Kf;Potash feldspar, Pl;Plagioclase, Bi;Biotite, Hb;Hornblende, Px;Pyroxene, Ol;Olivine, Ep;Epidote

Op:Opaque minerals, 61:61ass, Ch;Chlorite, Se;Sericite, Ca;Carbonates

Table 2-5 Results of Microscopic Observation of Thin Sections (3)

Sample	Locality	Rock Name	k	4.00		
No.				arnie		Alteration
CKIT	S. Ciwulan	Andesite	Tan Porm		Transport of the control of the cont	
CK2WT		Hornblende Andesite	-	7	7.1 + x x + Ch • Ca	
CK3WT	S Cibatuireng	-		or p-opilia		
LAVAO	S Cilearonia	-				
F 1 AC	S. C. rancuig	antsant	Lon	Porp-Ophi		1
CAD		Hornblende Andesite		C		
CK6WT	,	Dacite	Tda Porp	0		
CK7RT	S. Carongge	Dacite	Tda Porp			
CSIT	Lebak Gintung	Dacitic Tuff				licilled
CS3T	S. Cipanawar	Diorite		00		
CHIT	S. Ciwulan	Granodiorite-Porphyry			10	
CHIOL	Cikelirleutik	Dacite	1			Ça
CH20T	S. Cipunduan	Ouartz-Pornhyry	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CH22T	CH22T S Cicadas	Davito		-		
Ahundano	o of Winordle.	Vacate O	-		O Pl→Se, Silicified	fied
ייי - ע	יייי	mountaine of minerals. Choundant, Chounson,	∴ : Kare :Trace	ace		
rormation names		: Tomj:Jampang Formation.	Imkl: Kalipucang Formation,	g Formatio	ion. Impa:Pamutuan Formation Tabs:Rentang Bormation Tark: Dellar	To Jones
		Formation, Qtv:01d Yolcan	nic Rocks, Tgd	Granodio	nic Rocks, Tgd: Granodiorite, Tda: Darite Tan. Andesite (days)	i, ilaialig
Textures		yel:Pyroclastic, Clas;C	lastic, Porp:Po	orphyritic	tio Glostor Close of the Contract of the Contr	· · · · · · · · · · · · · · · · · · ·
		orphic-granular, Ophi;0	phitic, Int-gr	:Inter-gra		hypa-gr; hypidio-
Minerals		Qz;Quartz, Kf;Potash feld	dspar, Pl;Plag	ioclase, I	Olivino	() () () () () ()
	Ö	Op:Opaque minerals, G1:Glass,	lass, Ch;Chlorite,	ite, Se;Se		מחס בם

Profits National No. Ch. Ser William No. Ch. Ser Chemistre Ch. S. C	A1:6y		
Profess Na Salopa Salopa Profess Na Supplement Profess Na		Mo; Ch; Se; Mu; Ka; Ha; Pr; Mx	
Profiss Ka S. Cipinaba Companies	4 · . 0 0 © ©	[Salopa]	
Pr-diss Ka S. Chengoor O A Pr-diss Ka S. Chengoor O A Qr vein, Se S. Chintel A Qr vein, Pr-Qr-for S. Chintel Pr-diss Ka S. Chintel A Pr-diss Chintel A Pr-diss Chintel A Pr-diss Ka S. Chintel A Pr-disp Zone A Pr-diss Chintel A Pr-disp Zone A Pr-diss Chintel A Pr-disp Zone A Pr-diss Chintel A Pr-disp Zone A Pr-disp Zone A Pr-disp Zone A Pr-diss Chintel A Pr-disp Zone A	0.0	aha 📉	Py-diss, Ka
Pr-diss. Ka S. Cipinella C.	0.0	0	; ; ;
Gr vein Se S. Cipirable A. Cissel	©	EH.	Py-diss,
We vein, Py-Cy-Cy Py-tiss, Na S. Ciseei Color Dygreen clay S. Cinimal Color Dygreen clay S. Cinimal Color Oy vein, Se S. Cinimal C	-	S. S	Qz vein, S
Py-diss, Na S. Ciseel Di Py-diss, Na Py-diss, N		nten	0z vein, F
Py-diss, Na S. Ciseel Display Py-diss, Na S. Ciseel Display Py-diss, Na S. Ciseel Display Displa			
Digreen clay S. Cinitu O Color	. 1		Py-diss,
Py-diss. Se		Ciniru	p-green clay
Py-diss. Se		Ĭ	
		ra.	
X Qr vein Se-Ka S. Citambal		ig lung	02 vein, L
Qr vein, Se S. Cikurawet ∆ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑			Oz vein,
X Qr vein, Se S. Cikurawet △ X Qz vein, Se S. Cikurawet △ geothermal precipitates S. Cigalap △ limestone Timkl, S. Cigalap ○ larosite or Py S. Cicaruluk ○ parosite or Py S. Cicaruluk ○ gossan S. Cicaruluk ○ clayey zone S. Cicaruluk ○ clayey zone S. Cikurya △ clayey zone S. Cikurya △ clayey zone S. Cikurya △ qz stockwork S. Cikurya △ wasste S. Cikurya △ wasste S. Cikurya △ wasste S. Cikurya △ wasste S. Cikurya △ Qz stockwork S. Cikurya Qz stockwork S. Cikurya <td< td=""><td>•</td><td>et.</td><td>Oz vein,</td></td<>	•	et.	Oz vein,
Vervein Se S. Cikharawet A A Vervein Se geothermal precipitates S. Cigelap A A Janosite or Py S. Cicarniuk S. Cigelap A Janosite or Py S. Cicarniuk A Cicarniuk A A A Janosite or Py S. Cicarniuk A A A Janosite or Py S. Cicarniuk A A Janosite or Py S. Cicarniuk A A Janosite or Py S. Cicarniuk A Cilaystrane S. Cicarniuk A A Varioar, Py-diss S. Cichaya A Varioarie A Cichaya		et.	Oz vein,
Section Sect	1	19	
Limestone Taki S. Ciburter S. Cicaruluk S			geothermal precipitates
Jarosite or Py S. Cicaruluk Phosphorite S. Cigelap S. Citis S. C		S	
Phosphorite		Solcaruluk	jarosite or Py
S. Ci jalu O O		ರ	Phosphorite
Clayer zone S. Cibarombong College Clayer zone	\triangleleft	Cijalu	gossan
Clayey zone		Cibayombong	
Qz float, Py-diss S. Cikuya ∆ ∆		Citiis	ਹ
tuff-breccia_clayey Tomj & Cinunjan		Cikuya	Qz float, Py-diss
Clay, Lm	•	S. Cinunjan	-breccia, clayey
waste S.Cikuya A.Cikuya A.Cimedang		S. Cikuya	
waste S.Cikuya △ waste S.Cikuya △ waste S.Cikuya △ Waste S.Cikuya △ Qz stockwork S.Cimedang △ Qz stockwork S.Cimedang △ Qz stockwork S.Cimedang △ Ca veinlet S.Cijeruk △ Sil-clayey zone, Lm S.Cijeruk △ Sil-clayey zone, Lm S.Ciseel ○		Cikuya	#aste
Waste S. Cikuya △ Waste S. Cikuya △ Qz stockwork S. Cimedang △ Qz stockwork S. Cimedang △ Qz stockwork S. Cimedang △ Cavendet S. Cimedang △ Cavendet S. Cimedang △ Cavendet S. Cimedang △ Cavendet S. Cimedang △		Cikuya	
waste S. Cikuya △ Qz stockwork S. Cimedang △ Qz stockwork S. Cimedang △ Qz stockwork S. Cimedang △ Ca-veinlet S. Ciperuk △ Ca-veinlet S. Ciperuk △ Sali-clayey zone, Lm S. Ciseel		Cikuya	
waste S. Cikuya ∆		Cikuya	waste
Qz stockwork S. Cimedang △	©	Cikuya	
Qz stockwork S.Cimedang △	0	Cimedang △	
(Ca veinlet Sil-clayey zone, La S Ciseel C		Cimedang	
Sil-clayey zone, Lar	0	Cijeruk	
	©	Ciseel	zone.
zone, L ${\mathbb D}$	Ö	S. Cisee1	zone,
Abundance of Winerals: ◎:Abundant, ○:Common, △:Few. :,Rare		٠	Winerals:

ptilolite, Wd:Wordenite, Lm:Laumontite, An; Analcime, Al:Alunite, Gy:Gypsum, Ja; Jarosite, Ca; Calcite, Ak; Ankerite, Si; Siderite, Cr: a-Cristobalite, Tr:Toridymite, Qz; Quartz, Pl; Plagioclase, Kf; Potash Feldspar, Py; Pyrite, Go; Goethite, He; Hematite, Mg; Magnetite, Ap; Apatite Ep; Epidote, Rd; Rhodochrosite, Ho:Hornblende, At; Anatase

Table 2-6 Results of X-Ray Diffraction Analysis (2)

1	Que vein Unit Wich Se Mil Se M	Al: Gy: Ja Ca: Ak: Si Cr: Tr: Qz Pl
	Warring Warr	
	Waste Waste Waste Si fice Si Si See	© 1
Very Control	Sil float S. Ciseel S. Ciseel Sil vein S. Ciseel S. Ci	
Weign	Silvein Silv	
Clear Precipitation Continue Continu	Seothermal precipitates S. Ciwulan Clayey tuff Py-diss S. Cimangan Clayey tuff Py-diss S. Cimangan Clayey zone S. Cimangan Clayey zone Py-diss Comj Salopa Clayey zone Py-diss Comj Salopa Clayey zone Py-diss Comj Sulopa Clayey zone Py-diss Comj Sulopa Clayey zone Py-diss Comj Sulomulin Clayey zone Py-diss S. Cikamulin Clayey zone Py-diss S. Cisasah Clayey zone Py-diss Clayes Clayes Clayes Clayey zone Clayey zone Clayey zone Clayey zone Clayey zone Py-Ka S. Cisasah Py-Ka Py-Ka Py-Ka Py	
Contact Cont	Clayey tuff Pr-diss Tomi S. Cimenggu Clayey tuff Pr-diss S. Cimenggu Clayey zone, Py-diss S. Cimenggu Clayey zone, Py-diss Tomi Salopa Clayey zone, Py-diss Tomi Sulomating Clayey zone, Py-diss Comit Sulomating Clayey zone, Py-diss S. Cipemultuan Clayey zone, Py-diss S. Cisemaria Clayey zone, Py-diss S. Cisemaria Clayey zone, Py-diss S. Ciseman Clayey zone, Py-diss Clayes Clayes Clayer Comit Min zone, Py-Ka S. Ciseman Clayey zone, Py-Ka S. Ciseman	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Sil clayey tull, ry-files S. Cimenggu Clayey zone Py-diss Tomj Gulingmuding S. Cimenguling	
	Silf-Clayey Zone	0
1	Clayey zone	
Float, Prints Constraint	tuff-breccia, clayey	
Execution Profits Composition Compos	Clayey zone, Py-diss Gulingmuding Clayey zone, Py-diss Tomj Gulingmuding Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss Tomj S. Cikawung Clayey zone, Py-diss S. Cisonari Clayey zone, Py-diss S. Cisosah Clayey zone, Py-diss Clayes zone, Mon zone, Py-Ka S. Cisonari S. Cisonari Clayey zone, Py-Ka S. Cigadap S. Cigadap Clayey zone, Py-Ka S. Cigadap S. Cigadap Clayey zone, Py-Ka S. Cigadap S. Cig	-
	Sidamulin Sidamulin Sidamulin Sil float, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol S. C	
	Sil float, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss Tomi S. Cikawung D. Cikawung D) (
Liffeat, Py-diss Sintemular A	Sil float, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss S. Cisonari Clayey zone, Py-diss S. Cisosan Clayey zone, Mon	
Float, Py diss S. Chengel	Sil float, Py-diss S. Cipongol Clayey zone, Py-diss S. Cipongol Clayey zone, Py-diss S. Ciponari Clayey zone, Py-diss S. Cisonari Clayey zone, Py-diss S. Cisosah Clayer Clay	
19 19 19 19 19 19 19 19	Clayey zone, Py-diss S. Cipamutuan Clayey zone, Py-diss Tomi S. Cikawung Clayev zone, Py-diss S. Cisonari Clayey zone, Py-diss Clayes Clayes Clayer	
Tuff Py-diss Topi S. Cikenung A.A.	Sil tuff, Py-diss Tom S. Cikawung ∆ ∆ ∴ Qz vein float, Py-imp S. Cisonari ∆ ∴ Clayey zone, Py-diss S. Cisonari ∆ ∴ Sil float, Py-diss S. Cisonari ∆ ∴ Sil float, Py-diss S. Cisonari ∆ ∴ Mu ore, Mo S. Cisasah Ø ∴ Wh zone, Mo S. Cisasah Ø ∴ Qy ore, Hm-imp S. Cisasah Ø ∴ Qy ore, Hm-imp S. Cisasah Ø ∴ Mn zone, Hm S. Cisasah Ø ∴ Ah-Gy ore, Sp-diss Cidadap ∴ Clayey zone, Py-Ka S. Cigadap ∴ Clayey zone, Py-Ka ∴ Clayey zo	D .C
Float, Py-imp S. Cisopari A B B B B B B B B B	Qz vein float, Py-imp S. Cisonari clayey zone, Py-diss S. Cisonari Sil float, Py-diss S. Cisonari Sil float, Py-diss S. Cisonari Dumice tuff Tomj S. Cisasah Mn ore, Mo S. Cisasah Mn zone, Mo S. Cisasah Gy ore, Am-imp S. Cisasah Dumice tuff Gy Tomj S. Cisasah Gy ore, Am-imp S. Cisasah Dumice tuff Gy Tomj S. Cisasah Mn zone, Hm S. Cisasah An cone, Sp-diss Cidadap Clayey zone, Sy-ka S. Citadap Clayey zone, Py-ka S. Citadan Mn ore, Hm-specularite S. Citadan Mn ore, Hm-specularite S. Citadan)©
Float, Py-diss S. G. sonari Direct, Py-diss S. G. sonari Direct, Py-diss S. G. sonari Direct, Py-diss D	Clayey zone, Py-diss S. Gisonari, Sil float, Py-diss Sidamulin 2 Sil sasah Sil sas	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Sil float, Py-diss Sidamulih 2 Cisasah Dumice tuff Tom Cisasah O O O O O O O O O).©
Cisasah Cisa	Dumice tuff) ©
100°C 100°	Numice tuff Tomj S. Cisasah O Num oze, No S. Cisasah O Num zone, No S. Cisasah O Luff Gy oze, Hm-imp S. Cisasah O Num zone, Hm S. Cisasah O Clay zone, Gy Cidadap O Clayey zone, Fy-Ka S. Cijambehaseum Clayey zone, Fy-Ka S. Cijam	
10 mm 20 cleasan 20 cleas	Mrn ore, Mo	
1	Mn zone, No S. Cisasan O tuff	0
Tongon Tongon Solution Congression	Tour No Color	
1 2000 S. Cisasah	ULIT UDDIE UDDI	
Ore, Amillor of the control of th	Note, Milling S. C.sasah Dumice tuff 6y Tom S. C.sasah Dumice tuff 6y Tom S. C.sasah C. ay zone, Gy C. adap C. adap C. adap C. ayey zone, Py-Ka S. C. ismbehaseum C. ayey zone, Py-Ka S. C. ismbehaseum C. ayey zone, Py-Ka S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseum M. ore, Milling S. C. ismbehaseum S. C. ismbehaseu	
### Some for the first form of the form o	Dumice tuff 6y Tong S. Cisasah Am zone. Hm S. Cisasah S. Cisasah Cidadap Cidadap Cidadap Cidadap Cidadap Cidadap Cidadap Cidayey zone. Py-Ka S. Cijambehaseum Min ore. Hm-specularite S. Cipunduan Min ore. Min ore. Min ore. Min ore. S. Cipunduan Min ore.	
ay zone, Hm ay zone Gy Cidadap Go Co Common Cidadap Go Co Cidadap Go Cidadap Go Cidadap Go Cidadap Go Cidadap Go CC Cidadap Go Cidadap Go Cidadap Go Cidadap Go Cidadap Go Co Co Cidadap Go Cidadap Go Cidadap Go Cidadap Go Cidadap Go Co Cidadap Go Cidadap Go Co Co Common Cidadap Go Cidadap Go Co Co Cidadap Go Co Common Cidadap Go	Mn zone, Hm S. Cisasah Cidadap Cidadap Cidadap Cidadap Cidadap Cidadap Cidadap Cidadap Cidayey zone, Py-Ka S. Cijambehaseum Ciayey zone, Py-Ka S. Cijambehaseum Ciayey zone, Py-Ka S. Cijambehaseum Mn ore, Hm-specularite S. Cipunduan Mn ore Mn ore S. Cipunduan S. Cipunduan	
ay zone. 6y -6y ore. Sp-diss -6y ore. Sp-diss -6y ore. Sp-diss -6y ore. Sp-diss -6y ore. Py-Ka -6y ore. Py-Ka -6y ore. Hm-Specularite -6y ore. Hm-Specularite -6y ore. Ch-Ep -7	Clay zone, Gy Cidadap Ah-Gy ore, Sp-diss Cidadap Clayey zone, Py-Ka S. Cijambehaseum Clayey zone, Py-Ka S. Cijambehaseum Clayey zone, Py-Ka S. Citisuk Mn ore, Hm-specularite S. Cipunduan Mn ore Mn ore S. Cipunduan	0
Gradap S. Cidadap S. Cidadap S. Cidadap S. Cidadap S. Cidadap S. Citsuk S. Citsuk S. Cipunduan S. Cibersih S. Cibersih S. Cibersih S. Cibersih S. Cibersih S. Cibersih S. Cipersih S. Cibersih S	Ah-Gy ore, Sp-diss Cidadap clayey zone, Py-Ka Clayey zone, Py-Ka S. Citisuk Mn ore, Hm-specularite Mn ore, Hm-specularite S. Cipunduan Mn ore	
ayey zone, Py-Ka S. Citisuk ayey zone, Py-Ka S. Citisuk ore, Hm-Specularite S. Cipunduan ore, Hm-Specularite S. Cipunduan ore, Hm-Specularite S. Cipunduan ore, Ch-Ep S. Cibersih Cp ore, Ch-Ep S. Cibersih Alnerals: ©:Abundant, O:Common, A:Few, Rare Workburtorillonite, Ch:Chlorite, Se:Sericite, Mu:Muscovite, Ka:Kaolin, Pr:Pyrophyllite, Wx:Mixed-Layer Wineral, Ha:Halloysite, Infinite, Ma:Mordorite, Layer Wineral, Ha:Halloysite,	clayey zone, Py-Ka clayey zone, Py-Ka S. Citisuk Mn ore, Hm-specularite S. Cipunduan Mn.ore	
ayey zone, Py-Ka S. Citisuk ore, Hm-Specularite S. Cipunduan ore, Hm-Specularite S. Cipunduan ore, Hm-Specularite S. Cipunduan 1 tuff, Py-Sp-Ep Tomi S. Cibersih Cp ore, Ch-Ep S. Cibersih Cp ore, Ch-Ep S. Cibersih Minerals: ©:Abundant, O:Common, A:Few, Rare Minerals: Wo:Montmorillonite, Ch:Chlorite, Se:Sericite, Mu:Muscovite, Ka:Kaolin, Pr:Pyrophyllite, Wx:Mixed-Layer Wineral, Ha:Halloysite, Infinite, Ma:Mondonite, Ch:Chlorite, Mu:Muscovite, Raikaolin, Pr:Pyrophyllite, Wx:Mixed-Layer Wineral, Ha:Halloysite,	An ore, Hm-Specularite S.Citisuk Mn ore, Hm-Specularite S.Cipunduan Mn ore S.Ciwulan	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ore, Hm-Specularite S. Cipunduan Ore S. Ciwulan 1 tuff. Py-Sp-Ep Tom; S. Cibersih Cp ore, Ch-Ep S. Cibersih Cp ore, Ch-Ep S. Cibersih Minerals: ©:Abundant, O:Common, A:Few, Rare Minerals: O:Abundant, Chomicorillonite, Ch:Chlorite, Se;Sericite, Mu:Muscovite, Ka:Kaolin, Pr:Pyrophyllite, Mx:Mixed-Layer Wineral, Ha:Halloysite, Infinite, Ma:Mondonite, Ch:Chlorite, Ch:Chlorite, Ma:Mondonite, Ch:Chlorite, Ma:Mondonite, Ch:Chlorite, Ch:Chlorite	Mn ore Hm-specularite S. Cipunduan Mn ore S. Ciwulan	
Ore 1 Liff, Py-Sp-Ep Tom S. Cibersih D. C. Dersih D. C. De	Wn ore	
Luff, Py-Sp-Ep Tom S Cibersih Day	ターコ ルー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
Cp ore, Ch-Ep Minerals: ②:Abundant, O:Common, △:Few, ·:Rare Minerals: ③:Abundant, O:Common, △:Few, ·:Rare Mo:Mostantialionite, Ch:Chlorite, Se;Sericite, Mu:Muscovite, Ka:Kaolin, Pr:Pyrophyllite, Mx:Mixed-Layer Mineral, Ha:Halloysite,	7-00-ED Toming Cibersin	
Minerals: @:Abundant, O:Common, \(\triangle\): Rare : Mo:Moscovite, Ka:Kaolin, Pr:Pyrophyllite, Wx:Mixed-Layer Mineral, Ha:Halloysite, ntilolite Markovite, Larice and Wordonite Instruments.	On-Ed	
: Mo: Montmorillonite, Ch:Chlorite, Se; Sericite, Mu; Muscovite, Ka; Kaolin, Pr: Pyrophyllite, Mx; Mixed-Layer Mineral, Ha: Halloysite,	O:Common A:Few Rare	
interpretation of the state of	Chichlorite SerSericite Mn.Muscovite KarWaolin	Westingday winds [no. 10. 10. 10. 10. 10.
The state of the s	life [m.[ammontite An. Analoine 31.4]to Co.Come	To To move to Co. Collate and the contract of
		Ja, Jaiosie, Caicile, AK; Ankerile,

Table 2-6 Results of X-Ray Diffraction Analysis (3)

							. 1		ŧ,		-			
	No:Ch:Se:Mu:Ka:Ba:Pr:Mx Cp:Md:Lm:An A1:6y:Ja Ca:Ak:Si Cr:Tr:Qz P1:Kf Py:Go:He:Mg:Ap:Ep:Rd:Ho:At		-	T	T	1	Se; Sericite, Mu; Muscovite, Ka; Kaolin, Pr; Pyrophyllite, Mx; Mixed-Laver Wineral Ha; Halloysite (n.Clino-		Quartz, Pl:Plagioclase, Kf:Potash Feldspar, Py:Pyrite, Go:Goethite, He:Hematite, Mg:Magnetite, Ap;Apatite				1.	
Clay Winerals Zeolites S-Salts Carbona res Silicates Fldsp Wiscellaneos Winerals	i g	1	-	7		1	ζ.	ีซ	₽	- 1		٠.	- : .	
E	2	-	÷	- i	4	1	ුදු	Ü	Ap;		Ċ			
18	12			÷.	j			. 7						
÷	卢		L	1	1	ŀ	+	4	Ţ.			•	Ţ,	
ဗ	2	1	-	1	7	1	Ú	i.	7	: 1			10	
Je	6	1	·} -	÷-	†	1	Ć	Ď	Ě	٠.			• (. :
19		-	ļ.,	4	ļ.,	Į.	~	S	Ä				:	
હિ	12	1.	i.	j.	1		;I	Si	66	- :			٠.	
š	8			7	-	Г	2	4.	-					
*	7			ナ	j	ı		ŭ	តុ		. · ·			·"
Ŀ	Δ.		1	ᆣ	<u> </u>	Į.	ŗ	F	Ħ	14				
Sp	χŧ		;	į.,	ij	ŀ	4	ž	E					٠.
2	5	1		7	1	1	3	~	E.			٠,		
S	2	1		<u> </u>	į		Ļ	₹	<u></u>	٠,		<i>.</i> .		
ě	Ò	ĮΨ	Ϋ́		;©	1	3	a i		2				4.
g	느		į.	•	1		7	Ë	Ę,					11
12	烎	1	ï			1	ed	2	ij			- '		
37	\equiv	┞	:	1	•		Ě	చ	ē	٠.			: .	
tes	S	١	ί.		<u>.</u>	1	ü	Ģ	ပ္သ	Ė	ĕ,			
8	÷	1:	;				-	_	,8					17.
ş	'n	 - -	÷-	<u> </u>	;		نه	<u>ئ</u> و ،	Ξ.	٠.				
0	2	ļ		<u>:</u>	-		<u> </u>	S.	5		9		4.	
ts	÷			;	i -		Ę	ုဋ	Ĺ	- :		٠,		٠.
ä	جي	[0	(0))		Ë	70	ф.	:			5 -	1
S	Ξ		•		i	1	ē	ß	, -					
	Y	ļ	! _	1	 	1	À	٠.	Ξ.					
	Αr						ü	Ħ	ar.	. 1			, .	
Š	E	1	-	-		1	ρ.,	8	S				· .	
111	<u>q</u>		} ·	⊹ - :	<u></u> أ	1	Ę	હ	2					i.
8	×	١	į.,	<u>.</u>	<u>.</u> .		긍	3	į.	:			*	1.
2	ರ		:	1	:		ğ		Sh				٠.	
	×	-		į –	;	1	ď	ţ	<u>ta</u> .	7.1		•	٠. :	Y .
	5				-	1	, 2×4	Ę	Α.					
S	ے	١.,		;	<u>i</u> .		9	Ξ	ij.	1		Ċ		
Z,	Нa	1	;	;	;	١.	7	7::		ف	14			
ä	ď	* -		:	i	1	8	~	S	S.				
크	3 K		ļ.,	ļ			Sil	ύ.	E -	2	÷,	Ž.		
~	ź	l	Ŀ.		1:		- PE	튔	8 -	Ξ	٠.	٠.		
Ŕ	ઝ						¥	펉	ිදිලි <u>.</u>	<u>:</u>	Įď.	1		
ပ	Ė		¥	;·			0.5	Ą.	Ξ.		÷			
	2		<u>.</u>	į.	: ****		- 43	Ħ		ä		4		
	Ę			1	∣⊲		္မ	-	۰.	5		1.	-	:
-					T .	၂ ဗ	ĕ	ä,	2	ğ			:	
					S. Cigorowong	Rare	á	13	1	Ę				
Ţ		٠.	:		음		Š	8	ä,	Ĕ		0		
Ξ		17	5	g	; ≩	١.	ئە	3	2 1	₽.	4.5	·		45
ပ္က		놂	S	က္ဆ	١X	ė	m	3	œ.		4		1	fr.
-3	1.0	ŏ	S. Cisasah	S. Cisasha	Š	1 1	੍ਰ	Ħ	<u>ب</u> بو	2		e Jiri	٠.	
		<u>ر</u>	ပ		ပ	7	5		E	3	٥,			
Rock Locality		S. Cibersil	2)	(0)	9	Ę,	Ę	ឌ	à	4			, O.	e 1
Ö	nit	ė				Ħ	J	Ë	<u> </u>	₹ .	. 1.:			
₹.	<u>.</u> 5					Š	ţ,	ğı	<u></u>	5 .		٠.,		
				1		ā	Ξ	<u>o</u>	U 5	J .			. :	
٠.								- 12	; □	-				
						9	Ö	7. D		2				
			·			ب	1110	Md: N	te. D	. 117				
						dant,	morillo	te, Md;	alite, To	ייני ייני				
						undant, (ntmorillo	lite, Md:	obalite, Ty	ותסוכי עתיי				
						Abundant, (Montmorillo	lolite, Md;M	stobalite, Ty Fridota Pd.1	ייחיי ייחיי				
						O:Abundant, (o;Montmorillo	tilolite, Md:N	ristobalite, T n.Fridota DA.1	ייחיים ייחיים				
						O:Abundant, (Mo: Montmorillonite, Ch; Chlorite,	ptilolite, Md:Wordenite, Im:Laumontite, An:Analcime, A1:Alunite, Gy:Gypsum, Ja:Jarosite, Ca;Calcite, Ak;Ankerite, Si;Siderite, Cr: a	Cristobalite, Tr:Toridymite, Qz;	THE THE TOTAL OF THE PROPERTY OF THE PROPERTY ALTHOUGH A LINE TASE				
Kenarks			th.	J	one	ls: O:Abundant, (: Mo:Montmorillo	ptilolite, Md:N	Cristobalite, T	יישע יישריה איזיים				
		ein	ų.	昌	stone	rals: @:Abundant, (: Mo; Montmorillo	ptilolite, Md;	Cristobalite, T	יישע יישר הדיקידיקיד				
		vein	re, Ah	ire, 冒	y stone	nerals: O:Abundant, (ptilolite, Md;	Cristobalite, T	ייטי ישיסהדליז יליז				
		ay vein	ore, Ah	, ore, Hin	apy stone	Winerals: O:Abundant, (ptilolite, Md;N	Cristobalite, T	יישע ישיסטדקיזיקי				
		clay vein	6y ore, Ah	Gy ore, Hm	soapy stone	of Winerals: O:Abundant, (ptilolite, Md;N	Cristobalite, T	יישי ישיסהוליזיליז				
Kenarks		clay vein	Gy ore, Ah	Gy ore, Hm	soapy stone	e of Winerals: @:Abundant, (ptilolite, Md;N	Cristobalite, T	ייחיי ייזי סיידעיי עלי				
Kenarks		clay vein	6y ore, Ah	Gy ore, Hm	soapy stone	nce of Winerals: O:Abundant, (ptilolite, Md;N	Cristobalite, T	T'ENT STONE ATT. AT				
Kenarks		K clay vein	K Gy ore, Ah	X Gy ore, Hm	X soapy stone	dance of Minerals: @:Abundant, (ptilolite, Md;N	Cristobalite, T	יים אי יים הדתיי ילה				
Кепатка	.NO.	.X5X clay vein	S3X Gy ore, Ah	S4X Gy ore, Hin	S8X soapy stone	Noundance of Minerals: O:Abundant, O:Common, A:Few.	Abbreviations : Mo:Wontmorillo	ptilolite, Md;N	Cristobalite, T	יימיי יים החדתיי יעדי				

Table 2-7 Results of Ore Microscopy (1)

AA6P S AA7P S AA9P G AA11P G AA12P S AA21P S	Salopa] Cinung Cinung	Py As	Cp Sp G	n Cv Ag	Sc Io	
A 6 P G G G A 1 1 P G G G A 1 1 P G G G G G G G G G G G G G G G G G	Salopal Cinunjang Cinunjang ulingmudin			-		
A 6 P	Cinunjang Cinunjang Ulingmudin			-		
A 7 P G A 9 P G A 1 1 P G A 1 1 8 P S A 2 1 P N	Cinunjang ulingmudin	•				
A9P. GA11P. GA13P. SA21P. N	ulingmudin	◁				7 40 1 1 0 +
A 1 1 P G A 2 1 B P S C D 2 O P S S S S S S S S S S S S S S S S S S		◁				2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
A 2 1 P S D 2 0 P S	ulingmudin	◁			-	4 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2
A 2 1 P D 2 0 P	Cimarante	4				3 A A A A A A A A A A A A A A A A A A A
020P	ralindung	√				
	Ciniru		1 1 2 1 1 1 1 1 1 1			
031P S	Cinir	◁				
0118P S	Ciba	□				0 0
)253P S	Citambal					1
)255P S.	Cikura					. d
1257P S	Cikuraw	<				0
260P S	Cikondan	◁		C		
261P S.	Cikondan		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2011110
12P S.	Ciwulan	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
7 P S.	Cilawa	◁				D D T T T
IMP	Cimedan					1 4 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 MP	Cimedan	ř		1	1	
7MP S.	Cikuya	:		1		Head Inches
K9MP S.	Cikuy	∇		T -		TOTAL LOCAL
KIOMP S	Cikuy	0			1	10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KIIMPS	O	:				1 1
K12MP S.	Cikuy	◁		7	S	1 CIFIED TO
K13MP S.	Cikuy	⊲		1	V.	
K14MP S.	Cikuy	⊲ ⊲		1	0	
6MP S	Citat	;; -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.	
2 MP	Cisee	17.7		7	()	TOTAL TARGET BOCK TACKET
K25MP	a.	0		17-	0	HANDER HAND
K26MP	Clseel		1	1	0	£ 10a +
S3P S	C 1.	◁			S	4
bundance o	f Minerals: O	Commo	, c Q . < u			011 4001 5011

Sp:Sphalerite, Gn:Galena

: Py:Pyrite, As:Arsenopyrite, Cp:Chalcopyrite, Sp:Sphalerite Cv:Covelline, Ag:Argentite, Sc:Specularite, Io;Iron Oxide

Abbreviations

Table 2-7 Results of Ore Microscopy (2)

прје	Locality	Mine	erals	Remarks
No.		Py As Cp Sp	Gn Cv Ag Sc Io	
AS6P	lingmu	∇. ∇		ilicified rock
ASI2P	Cihapita			licified rock floa
9	Cihapi		◁	ilicified rock, St
17	Cihapita			ilicified rock, Stibnit
	Sidam			
BASRP	arangjamb	\triangleleft		iner
D 4 0	Cipong			z float
X 2 M	idamuli	<		z flo
BKSMP	Cigabang			z float
K 7 M	Lingga	< < > < < < < < < < < < < < < < < < < <		2 floa
BSIP	tan		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BS2P	Cikaso	4		Z Iloat
S.4	Cikas	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7 f.o.a
	Cisasah]			
o n;	Cipat			п. е.у.
 ;	Cipatuja			z flo
CD342P	Citisuk	о О	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 V E
S D	.Cipundu	£-	0	ron ore
CK4MP	S.Cibersih	0		ore, #
Φ:	Cilangl		Ο	ron ore float,
7	Cipalal	√		licified rock float
7.1	sasah			iliceous Hm zone
\sim	Sa			n ore (Pyrolusi
co:	Sasa			ypsum ore
a.	Sasa	4		iliceou
	ပ်			liceous zon
9	Cikerep	0		z vein
2	ibuniasi			r 1 te
CVI	ibuniasi	7	✓	arite-Gn or
ndanc	I W	. Сопшоп.	Rare Trace	

Abbreviations Py:Pyrite, As;Arsenopyrite, Cp:Chalcopyrite, Sp:Sphalerite, Gn:Galena Cv:Covelline, Ag;Argentite, Sc:Specularite, Io:Iron Oxide

Table 2-8 Methods of Analysis and Limits of Detection of Ore Samples

Element	Methods of Analysis	Detection	Upper
		Limit	Limit
λu	Pire assay with AA finish	5 ppb	10 ppm
Ag	Nitric aqua regia with ICP finish	2 ppm	0.05 %
Cu	ditto	0.001 %	2.5 %
Pb	ditto	0.001 %	2.5 %
Zn	ditto	0.001 %	2.5 %
Sb	HC1/KC10; extraction with AA finish	0.2 ppm	0.1 %
Cr	Total digestion with AA finish	2 ppm	1 %
Иn	Nitric aqua regia with ICP finish	0.001 %	2.5 %
Ba	Total digestion with AA finish	10 ppm	1. %

^{*} AA means Atomoc Absorption Nethod.

Table 2-9 Major Assay Results of Ore Samples (1)

Sample	Width	Au ppb	Au g/t	Ag	Cu	Pb	Zn	Fe	Sb	Cr	Ma	Ba	Locality
No. [Salopa]	cm	(FA+AA)	(FA)	ppm	<u> ×</u>	*	%	*	*	%	- %		
4A4M	grab	<5			0.002	0.004				(Cr2O3 %			
√A6M	1	210		<2		0.001 0.008	0.019 0.021	5.03 7.05	<.01	0.02	0.277		
4A7M	grab	755		2	0.004	0.003	0.009	5.49	<.01	0.03	0.214 0.143		S.Cinunjang
VA10M	grab	<5		<2	0,010	0.009	0.008		<.01	0.02	0.143		
VA12M	grab	10		<2	0.006	0.004	0.003	7.93	<.01	0.02	0.006		S.Cipinaha
VA13M VA14M	grab	2,450		4	0,006	0.007	0.029		<.01	0.01	0.656		- Andread - Annual Control of the Co
VA15M	grab	1,280 140		4	0.028	0.449	0.899	2,74	<.01	0.07	0.009	<.	S.Cipinaha
A17M	4	195	ļ	2	0.002 0.008	0.009	0.018 0.027	6.10	<.01	0.03	0,060		
VA18M	8	710		- 4	0.011	0.006	0.027	5,45 5,63	<.01	0.03	0.079		
VA19M	2	1,520		4	0.024	0.234	0.756	4.04	<.01	0.02	0.013	< ·	
VA21M	grab	>10,000	18.65	26	0.020	0.021	0.090	3.87	0.01	0.01	0.463	<u> </u>	
VA22M	4	>10,000	17.00	80	0.023	0.036	0.052	6.58	0.02	0.01	0.025		
VA23M VA24M	grab grab	175 45		<u><2</u>	0.008	0.003	0.016	3.15	<.01	0.02	0.023		
SOIM	grab	- 45 - <5		2	0.004	0.007	0.016	6.19	<.01	0.01	0.014	< 1	
S02M	grab	600			0.004	0.003	0.008	9.99	<.01	0.04	0.074	·	
S04M	grab	355	~ ****	₹2	0,001	<.001	0.003	4.45 6.17	0.08	0.01	0.012 0.052	<.1	- Chairmann Market and a second and a second as a seco
S06M	grab	90	****************	<2	0.007	0.004	0.002	7,64	<.01	0.01	0.002		S.Ciwarak Gulingmuding
\S09M	grab	45		2	0.005	0.004	0.003	6.46	< 01	0.01	0.004		Gulingmuding
S10M	grab	<5			0.003	0.001	0.002	18,15	<.01	0.03	0.014		Gulingmuding
S12M S14M	grab grab	4,230		134	0.003	0.017	0.104	3,06	0.04	0.01	0.034	<.1	S.Cipangaras
S15M	grab	2,230 3,020		4 6	0.004	0.002	0.002	4.32	<.01	0.03	0.007	<.1	S.Cihapitan
S16M	grab	>10,000	27.15	82	0.002	0.002	0.004 0.010	6.36 1.98	<.01	0.06	0.015	<.1	S.Cihapitan
S17M	grab	>10,000	17.07	38	0.007	0.004	0.007	1.87	4.83 1.63	0.02 0.05	0,009 0.011	<u> </u>	S.Cihapitan
D3M	30	10		4	0.004	<.001	0.012	8.36	<.01	0.03	0.011		S.Cihapitan S.Cimedang
D20M	25	2,760		20	0.001	0.005	0.011	4.35	0.01	0.02	0.222		S.Ciniru
D30M D31M	20	290		16	0.004	0.013	0.042	5,66	<.01	0.03	1.325		S.Ciniru
D38M	grab 1.5	395		58	0.006	0.008	0,027	3.90	< 01	0,03	0.497	<.1	S.Ciniru
D42M	2	135 <5		- 6 4	0.002	<.001	0.006	5.55	<.01	0.03	0,309		S.Ciniru
D46M	25	<5			<.001 0.003	<.001 0.001	0.006	5.67	<.01	0.01	0.221		S.Ciniru
D97M	2.5	420		4	0.003	0.001	0.009	5.42 4.91	<.01 <.01	0.01	0,124		S.Ciniru
D112M	grab	40		<2	0.006	0.001	0.004	5.55	<.01	0.01 0.01	0.082	<u></u>	S.Ciharuman
D118M	grab	540		12	0.004	0.053	0.014	15.05	<.01	0.02	0.030	<1	
D253M	grab	825		8	0.006	0.013	0.035	3,56	<.01	0.02	0.039		S.Citambal
D254M D255M	grab	310 4,810		2	0.019	0.001	0.010	5.13	<.01	0.02	0.298		S.Citambal
D256M	grab grab	5,050		10	0.004	0.002	0.011	5.64	<.01	0.01	0.216	<.1	S.Cikurawet
D257M	grab	3,380		4	0.006	0.101 0.024	0.766 0.053	5.02	0.01	0.02	0.035		S.Cikurawet
KIM	grab	5		<2	0.002	<.001	0.003	4.90 2,54	<.01 <.01	0.02	0.060		S.Cikurawet
K3M	2	260		4	0.015	<.001	0.014	17.95	<.01	0.04	0.309 0.516	<.1 <.1	
K4M	2	<5		2	0.009	<.001	0.011	11.45	<.01	0.03	0.291	<.1	
K5M K6M	. 5	195			0.011	<.001	0.008	12.00	<.01	0.01	0.537	<.1	
K7M	grab grab	70 1,560		<2	0.007	0.001	0.001	5.99	<.01	0.04	0.009	<.1	
K8M	grab	135		30 <2	0.002	0.005	0.067	6.82	<.01	0.01	0.012		S.Cimedang, float
K9M	grab	2,960		10	0.002	0.001	0.001	2.66 8.62	<.01 0.01	<.01	0.012	< 1	
K10M	grab	970		8	0,002	0.002	0.004	2.78	<.01	<.01 <.01	0.026	<.1	
K11M	grab	4,670		330	0.002	0.004	0.015	1.84	0.01	<.01	0.043	<.1 <.1	
K12M	grab	3,690		134	0.002	0,009	0.009	1.84	0.01	<.01	0.018	<u> </u>	
K13M K14M	grab 20	4,630		32	0.003	0.011	0.024	3.27	<.01	<.01	0.015	<.1	
KIEM	grab	285 155		<u>8</u>	<.001	0.001	0.002	1,14	<.01	<.01	0.011		S.Cikuya
K17M	grab	<5		<u></u> <u></u>	0.006	0.020	0.004 0.008	6.26	0.02	0.02	0.071		S.Citatah
K18M	grap	<5		<2	0.003	0.001	0.008	5.53 5.22	<.01 <.01	0.04 0.01	0.088 0.135		S.Citatah
K19M	grab	<5		<2	0.002	0.001	0.009	5.18	<.01	0.01	0.135 0.148	<u> </u>	S.Cimedang S.Cimedang
K20M	3	20		4	0.002	<.001	0.003	6.39	<.01	<.01	1.425	21	S.Cljeruk
K21M	2.5	105		2	0.002	0,001	0.009	3.31	<.01	<.01	0.226		S.Ciseel
K22M K23M	8.5 4	75 256		2	0.001	0.001	0.009	6.05	0.04	0.01	0.078		S.Ciseel
K24M	30	255 7,470		4	0.001	0.001	0.011	5.08	0.03	<.01	0.106	<.1	S.Ciseel
K25M	grab	9,190		28 42	0.006	0.006	0.016	2.36	0.01	0.01	0.016		Umar
K26M	grab	2,180		8	0.003	0.022	0.025	2.63 2.79	0.02	0.01	0.017		Umar
K28M	6	215		2	0.001	0.005	0.003	4.14	0,01 <.01	<.01 0.01	0.020		S.Ciseel, float
H4M	grab	<5		<2	0.016	0.001	0.071	2 60	<.01	0.01	0.026		S.Ciseel
H5M	30	35		<2	0.002	0.001	0.011	22.40	<.01	0.01	0.139		S.Cibunter S.Cicaruluk
Н9М	grab	130		2	0.013	<.001	0.146	1.57	0.01	0.01	0.936		S.Cigelap
H10M H11M	grab	425		<2	0.021	0.001	0.018	45.40	<.01	0.03	0.279		S.Cijalu
H12M	10 5	4,120 >10,000	35 37	6	0.014	0.008	0.006	8.81	0.01	0.07	0.011	<.1	S.Cibayombong
H13M	10	2,620	35.31	18 74	0.007	0.002	0.006	2.80	<.01	0.02	0.019	<,1	S.Ciseel
H14M	grab	90		- 74	0.033	0.188	0.071	4.11	0.05	0.02	0.006		S.Ciseel
				<u> </u>	0.010	0.010	0.005	5.34	<.01	0.08	0.002	<u> </u>	S.Citiis

Table 2-9 Major Assay Results of Ore Samples (2)

Sample	Width	Au ppb	Au g/t	Ag	Cu	Pb	Zn	- Ea	~				
No.	cm	(FA+AA)	(FA)	ppm		-	<u> </u>	Fe w	Sb	Cr	Mn	Ba	Locality
Sidamuii	h)			T	 		<u>*</u>	*	%	<u> </u>	- %		and Remarks
D398M	grab	40		2	0.001	<.001	0.001		(Sb ppm)	(Cr ppm)		(Ba ppm)	
3D401M	grab	200		6	0.015	0.020		2.18	0.2	40	0.026		Karangpari
3D408M	grab	1,590		20		0.010	0.006	4.83	2.2	55	0.019	160	
BD423M	grab	10		20	0.020	0.004	0.002	2.67	8.8	100	0.017	160	S.Cipongol, float
BD426M	grab	<5		√2			0.001	9.21	0.2	15	0.015		S.Cipamutuan
BA2M	grab	<5		2	0.007	0.009	0.004	6.13	0.6	10	0.010		S.Cipamutuan
3H1M	date	205				0.019	0.054	4.00	0.4	25	0.082	140	Karangjambe
BH4M	grab	<5		<2	0.003	0.007	0.024	5.60	1,2	35	0.203	240	S.Cikawung
3H5M	grab	100			0.026	0.018	0.001	11.55	7.2	70	0.009	780	S.Cisonari, float
ВН6М	grab	<5			0.013	0.009	0.003	4.04	2.0	85	0.016	60	S.Cisonari, float
SHSIM	grab	< <u>5</u>		<2	0.006	0.002	0.009	5.67	0.4	20	0.097	190	S.Cisonari
3S2M	grab	640		<2	<.001	0.006	0.004	0.61	2.0	5	>2.50	8,500	Gn. Karang
3S3M	grab	25		11	0.012	0.013	0.002	6.37	2.4	10	0.028	80	S.Citenbeng, float
3S4M				<2	0.009	0.001	0.014	3.39	<.2	55	0.084	190	S.Cilerujek float
3S5M	grab 3	60		<2	0.008	0.281	0.014	0.83	0.6	15	0.130	70	S.Cherujek, ricat
SS6M		<5	لنسب ا	2	0.002	0.003	0.013	3.23	0.8	20	0.097	200	S.Cilenjek, float
K1M	grab	25		<2	0.001	0.003	0.001	1.13	2.0	25	0.037		S.Cisumurbandung, floa
K2M	grab	<5	<u> </u>	<2	0.023	0.003	0.036	6.63	<.2	105	0.012	20	S.Cinangkerok, float
SK3M	30	480		2	0,020	0.009	0.007	2.91	5.6	35	0.047	200	Banjarsari Banjarsari
3K4M	60	360		<2	0.004	0.001	0.002	3.68	9,8	15	0.012	80	Sidamulih 2
	30	840		2	0.005	0.017	0.047	0.94	0.8	15		1,200	Sidamulih 2
K5M	grab	100		16	0.083	0.439	1.380	1,11	2.6	15	0.008	20	S.Cigabang
K6M	grab	430		2	0.004	0.004	0.009	1,83	0.6	25	0.018	40	S.Cigabang, float
K7M	grab	620		4	0.001	0.004	0.008	5.58	50.0		0.043	80	Lingga, float
Clsasah)								- 5.50	30.0	15	0.005	760	Lingga, float
D295M	grab	60		2	0.208	0.518	>2.50	0.87	2.4				
D329M	grab	<5		<2	0.014	0.004	0.025	7.91	42.0	10	0.010	480	S.Cidadap
D342M	25	<5		<2	0.001	0.018	0.025	11.95		10	0.069	60	S.Cidarawati
D343M	20	<5		<2	0.001	0.008	0.028		0.8	15	0.150	20	S.Citisuk
D353M	22	<5		<2	0.129	0.048	0.007	6.43 3.54	3.4	10	0.077	20	S.Citisuk
K1M	grab	<5	-	<2	0.004	0.024	0.010		130.0	15	0.032	20	S.Cijulang
K2M	3	<5		<2	<.001	0.001	0.002	3.38	30.0	10	>2.50	8,500	S.Ciwulan, float
K3M	30	<5		<2	0.056	0.003	1.780	2.72	0.4	10	0.120	. 260	S.Cibutuireng
K4M	20	<5		4	2.030	0.003	0.057	6.47	4.4	25	>2.50	920	S.Cibersih
K5M	15	<5		<2	0.044	0.003	0.369	15.80	1.2	25	0.273	20	S.Cibersih
K6M	30	<5		<2	0.052	<.001	0.007	6.84	5.8	15	0.179	340	S.Cibersih
K7M	grab	30	1	46	0.638	0.990	0.365	25.00	2.6	10	0.038	20	S.Cilangla
A1M	grab	10		<2	0.086	0.005	0.365	4.50	4.8	25	0.066	.100	S.Cipalaiar, float
A2M	grab	<5	- 1	<2	0.023	0.003	0.100	6.90	0.6	35	0.126	120	S.Cijalu
A3M	3	<5			0.010	0.002	0.051	2.98	0.6	10	0.096	400	S.Cijalu
A5M	15	30			0.002	0.008		2.67	2.0	10	0.451	190	S.Cijalu
A7M.	15	<5		<2	0.002	0.008	0.009	8.03	0.2	. 5	0.103	50	S.Cidarawati
MBA	5	<5		(2	0.002		0.012	5.45	0.4	5	0.035	. : 100	S.Cidarawati
A9M	grab	3,490		16	0.381	0.001	0.010	7.21	<.2	50	0.093	40	S.Cipatujah
A10M	grab	110		4	0.0161	2.210	0.376	2.09	15.0	5	0.011	50	S.Cipatujah
AIIM	8	50	+	10	1.325	0.066	0.016	3.75	1.8	5	0.009		S.Cipatujah, float
A12M	8	20		4		0.031	0.013	7.55	2.4	10	0.015		S.Cipatujah
SIM	grab	10		4	0.148	0.029	0.012	7.86	0.8	10	0.008		S.Cipatujah
S2M	grab	<5				0.021	0.009	9.38	34.0	10	>2.50		S.Cisasah
S3M	grab	270		16	0.002	0.051	0.050	0.30	<.2	5	>2.50	5,000	\$.Cisasah
S4M	grab	1,310		6	0.002	0.348	0.006	0.90	7.8	10	0.345		S.Cisasah
S5M	grab	260		124	0.008	0.189	0.452	14.60	32.0	15	0.036		S.Cisasah
\$8M	grab			6	0.013	0.043	0.114	4.48	1.2	10	0.033		S.Cisasah
\$11M		<5		. 2	0.010	0.004	0.017	6.31	4.8	25	0.198		S.Cifangla
311M	grab	. 10		2	0.026	0.043	0.026	10.20	1.6	10	0.013		
513M	grab	<5		2	0.033	0.018	0.008	29.90	0.6	10	0.031		S.Cibengang
314M	grab	<5		<2	0.026	0.013	0.009	23.80	0.6	10	0.031		S Cibengang
315M	grab	<5		2	0.025	0.034	0.014	34.70	1.2	10	0.050	100	S.Cibengang
	grab	<5		2	0.038	0.035	0.026	10.85	1.0	10		60	S.Cibengang
316M	grab	<5		16	1.620	0.054	0.040	15.00	1,4	10	0.059	. 40	S.Cibengang
317M	grab	10		30	. 0.442	>2.50	>2.50	2.88	3.2		0.015		S.Cibengang
18M	grab	<5		18	0.687	0.359	0.251	4.32	1.8	15	0.206		S.Cilangla
13M	grab	<5		2	0.036	0.019	0.057	39.20		20	0.072		S.Cilangla
21M	grab		0.71	634	2.030	34.630	9.090	39.20	1.0	10	0.142		S.Cipunduan
02M	grab	. 1	2.17	662	0.830	38.640	16.940						Cibuniasih
						50.070	19.940				- 10	%)16.29	Cibuniasih

Table 2-10 Methods of Analysis and Limits of Detection of Soil and Stream Sediment Samples

Element	Methods of Analysis	Detection	Upper
		Limit	Limit
λυ	Fire assay with NAA finish	l ppb	10 ppm
٨g	NC1/KC10, extraction with ICP finish	0.02 ppm	0.02 %
Cu	ditto	0.2 ppm	0.5 %
Pb	ditto	0.5 ppm	0.5 %
Ζп	ditto	1 ppm	0.5 %
Λs	ditto	0.2 ppm	0.5 %
Sb	ditto	0.2 ррт	0.1 %
llg	ditto	0.1 ppm	0.5 X
P	Total digestion with ICP finish	10 ppm	1 %
Cr	Total digestion with ICP finish	1 ppm	*
Жn	Total digestion with ICP finish		1 %
Ba	Total digestion with ICP finish	5 ppm 10 ppm	1.%

^{*} AA means Atomoc Absorption Method.

^{**} NAA means Neutron Activation Analysis.

Stream Sediment

Sample	Au (NAA)	Au (FA)	Ag	Cu	Pb	Zη	As	Sto	Hg		C.	1/2	T - 5
No.	ppb	g/t	ppm	ppm	ppm	pom	ppm	ppm	ppm	ppm	Cr ppm	Mn ppm	Ba ppm
AD007 S AD008 S			7.80	50.0	15.0	172	131.5	10.2	. 1.8	450	520	1,355	90
AD009 S			15.30 20.70	44.4 39.6	28.0 25.0	272 241	209.0	21.6	20.8	320	851	1,420	60
AD010 S			0.60	36.2	55	131	181.5 19.8	23.4 1.2	10.3	320 280	679	1,380	60
AD011 S			20.20	41.8	21.5	190	192.5	12.6	0.7	340	948 428	1,175 1,035	70 70
AD012 S AD013 S			11.75 0.02	37.2 40.6	20.0	173	193.5	9.2	3.5	300	360	990	80
AD014 S		† 	14.60	45.4	9.5 37.5	282 215	7.6 283.0	<.2 22.8	<.1	260	563	1,370	40
AD015 S			34.90	43.8	79.0	389	301.0	44.2	0.6 28.2	320 350	762	1,140 1,625	70 50
AD018 S AD019 S		<u> </u>	10.90	41.8	37.0	222	388.0	28.2	19	340	371	1 110	80
AD022 S		 	29.80 26.70	43.8 32.4	82.5 79.0	288	642.0	45.8	4.3	320	276	1,360	90
AD023 S			47.00	22.4	144.5	201 392	975.0 1,750.0	62.2 249.0	5.2 7.6	310	88	2,220	150
AD024 S			8.04	23.6	33.5	136	620.0	17.0	8,8	450 280	42 135	1,475 1,450	190 150
AD026 S AD029 S			8.72	27.0	54.0	136	485,0	32.8	10.1	340	228	1,035	150
AD057 S			15.20 1.74	58.4 28.4	157.5 15.5	512 228	329.0	25.4	22.8	360	355	1,415	80
AD058 S	T 112		1.56	28.2	11.5	218	30.8 24.6	1.4 0.2	0,2 0,2	320 330	543 513	1,980	50
AD066 S			<.02	32.0	7.5	201	2.2	<.2	0.2	330	438	1,985 1,635	60 60
AD136 S AD137 S			0.02 3.60	54,2 45,2	9.5 10.5	122	11.8	<.2	<.1	280	439	1,315	80
AD138 S		7 7 7 7	0.92	39.0	10.5	159 212	27.6 32.0	4.6 0.8	0.3 0.1	360	307	1,570	60
AD139 S		•	5.44	26.6	16.0	239	25,4	12.0	0.1	420 350	442 576	2,010	60 30
AD143 S AD144 S			<.02 0.08	36.6	8.5	78	18,8	< 2	5.4	350	215	1,610	60
AD217 S			<.02	37.2 27.8	8.5 10.0	158 168	6.2 3.2	<.2	0.4	340	549	1,305	70
AD242 S	651		4,30	94.2	374.0	1,675	3.∠ 115,0	<.2 8.4	<.1 7.7	430 600	198 227	1,625 1,885	110
AD243 S AD244 S			4.72	106,5	406.0	1,965	147,5	11.0	10.2	560	157	1,880	170 190
AD245 S			6.24 5.08	123,0 96,2	566.0 379.0	2,240	160.0	11.6	10.8	600	165	1,785	200
AD246 S	702		4.52	94.2	358.0	1,785 1,540	126,5 128.0	8.0 9.6	7.5 7.2	570 650	167 219	1,660	180
AD247 S			7.90	162.0	832,0	2,240	199.5	18.2	12.8	540	273	1,965 2,220	190 170
AD248 S			11.80 6.76	227.0 123.5	1,295.0 495.0	2,230	258.0	29.6	20.8	510	179	1,960	240
AD250 S			14.00	334.0	2,000,0	2,220 2,210	196.0 324.0	15.0 48.2	9.5 32.0	530	354	2,390	160
AD251 S		5.3	15.65	301.0	1,780.0	2,210	280.0	42.2	28,0	480 490	142 249	1,970 2,340	250 230
AD252 S			15.90 0.72	364.0	1,760.0	2,210	269.0	49.0	34.0	500	148	2,240	160
	>10,000	12.9	33,60	33.0 64.6	33.0 93.5	222 374	26.4	1.2 392.0	3.7	490	123	1,320	100
AD263 S			0.16	22.6	10.0	127	18.0	1.8	281.0 19.7	490 670	73 57	895 1,050	100 190
AD264 ST AH007	140 2,300		0.02	48.2	10.0	187	8.2	< 2	37.0	620	279	1,750	110
AH018	165		<.02 0.02	29.2 23.4	6.5	267	4.8	<.2	<.1	390	360	2,320	40
AH035	378		0.02	47.6	10.0	82 84	17.0 37.2	<.2	< 1	530 380	206 183	1,075	80
AH061 AH078	493		<.02	21.0	6.5	63	24.4	<.2	<.1	630	345	1,340	110 60
AH114	510 1,020		<.02 1.38	19.4 34.6	9.5	112	8.8	<.2	0.1	490	105	1,300	90
AH123	276		6.06	57.2	36.5	222 384	15.0 106.0	<.2 9.4	1.8 7.4	430 530	210	1,640	130
AH126	101		1.20	38.6	19.0	163	49.4	3.4	0.8	430	215 126	1,770 1,335	150 190
AH129 AK003	289 5		0.18 8.40	87.6 25.8	21.5	162	32.2	< 2	0.2	460	49	1,475	100
AK008	153		2.12	25.8	7.5 9.0	230 264	7.8 į 7.6	1.2 0.2	<.1	550	543	2,100	60
AK011:	940		8.08	27.4	7.5	192	15.8	4,0	0.2	250 300	639 389	2,220 1,885	40 40
AK012 AK016	320 142		2.38	28.4	8.0	212	9.2	<.2	< 1	540	540	1,805	80
AK030	1,435		23.70	27.2 34.6	9.5 17.5	257 284	7.2 101.5	1.4 21.0	<.1 15.9	580	523	2,190	60
AK031	2,080		34.90	30.6	17.0	132	329.0	41.4	16.4	290 320	348 159	1,255 815	60 100
AK032 AK033	>10,000 1,110	15.2	99.40	23.0	153.0	374	1,415.0	443.0	45.3	430	12	385	150
AK034	1,190		16.70 2.60	29.2 32.6	14.0 8.0	281 191	139.0 42.2	14.4	18.9	350	482	2,660	40
AK035	1,425		18.05	30.0	9,0	179	59.6	12.6	4.5 2.4	270 310	663 399	2,060 1,175	40 60
AK036 AK040	1,585 530		12.60	29.4	7.5	210	38.0	6.8	4.0	300	508	2,160	40
AK041	860		3.84 7.42	60.4 30.8	18.5 25.0	109 285	36.0 44.0	6.6	1.0	290	873	585	90
AK042	. 527.		7.56	35.8	8.5	202	13.2	4.4	24.7	270 290	590 259	1,935	40 70
AK044 AK092	132 297		7.12	24.8	8.0	131	10.6	3.0	8.2	300	231	1,490	70
AK095	888		<.02 0.08	21.8 47.6	15.0 18.5	210 247	2.8	<.2	< 1	470	283	2,330	60
AK096	294		1.46	47.4	87.0	223	30.4 25.2	<.2 0.6	1.2	680 460	276 i 560 i	4,370 1,505	150 80
AK103 AK127	1,110		0.08	48.2	8.0	222	23.4	<.2	1.6	370	546	2,020	80
AK134	218 1,570		<.02 6.88	25.0 70.8	7.5	194	3.2	<.2	< 1	450	175	1,980	130
AK135	127		1.26	43.6	63.0 32.5	392 268	23.8 7.4	20.2	26.2 3.3	500 780	160	1,940	200
AK150	385		4.96	63.8	53.0	429	17.4	11.4	4.5	610	136 197	2,150 2,070	130
AK158 AS045 ST	562 1,490		0.98	46.4	22.5	179	285.0	4.8	8.2	420	111	2,070	210
AS111 ST	9,360		<.02 27.40	12.0 56.0	6.5 25.0	137 205	9.6 2,340.0	<.2 208,0	< 1 129.5	400	282	1,715	40
AS112 ST	2,490		6.32	42.2	13.5	154	1,100.0	178.5	138.5 53.9	550 530	202 454	1,350 1,335	140
AS113 ST	385		1.74	33.6	10.5	139	111.0	6.0	8.6	500	320	1,445	130
AT104	<1 350		<.20	73.0 30,6	12.0 8.0	58	8,270.0	<2.0	<1.0	560	99	855	40
AT137	242		4.84	52.2	119.0	102 766	14.8 83.8	<.2 2.8	<.1 2.2	300 560	225	1,210	100
AT138 AT141	276 1,250		5.86	106.0	525.0	1,570	135,0	10,6	8.8	540	222 153	1,840 1,650	140 200
AT146	509		3.88 6.26	90.2 56.2	378.0 44.5	1,275 312	103.0	9,0	6.9	510	143	1,525	170
AT147	149		1.32	45.2	22.5	164	82.8 253.0	12.0 5.2	9.7 5.5	580 550	149 82	1,455	170
	-						;	V.4 ;	J.J :	0001	02 }	2,040	230

Sample	Au (NAA)	ALL (FA)	An	Cu	Pb	7							
No.					PU	Zn	As	Sb	Ho	P	Cr	Mn	Ba
	ppb	gΛ	ppm	ppm	_ ppm i	- ppm	ppm	ppm	ppm	ppm	ppm	- norm	
AT150	>10,000	16.6	34.10	61.6	107.0	322	2.830.0	423.0				pom	ppm
AT152	228	100	0.24	32.4				1	301.0	470	83	950	20
BH020 ST	164				10.5	87	172.0	3.8	1.1	640	113	1.055	220
-7			0.02	22.8	9.5	142	3.0	<.2	<1	300	470	1,435	70
CD282	268		0.48	5.6	13.5	113	55.4	14	1	210	42		4.000
CD338	188		0.06	48.8	24.5	157					1.3	335	1,230
CK001	197		28.00				6.4	<.2	0.1	340	90	1,450	90
				41.0	332.0	726	522.0	26.6	11	400	63	>10,000	130
CT001	450	i	0.04	18.0	10.5	108	22.6	< 2	< 1	210	150	1,965	7777-1/4
CS001 ST	708		49.60	51.4	615.0	1,235	356.0	75.2					110
CH016 ST	101		< 02				330.0	13,2	0.6	480	32	>10,000	90
	101		N.UZ ;	27.6	12.5	355	3.4	<u> </u>	0.1	370	288	2,720	40

Sample	Au (NAA)	Ag	Cu	: Db	7-		O.					
No.	ppb	ppm	pom	ppm	Dpm .	As ppm	Sb pom	Hg	Pom	Cr	Mn	- Ba
AS002 S	21	0.76	46.8	4.0	63	10.4	52	ppm 0.5	220	197	975	ppn 120
4S003 S	120	3.92	54.0	8.0	65	60.0	3.6	2.0	330	49	1.320	80
\S004 S	278	19,10	41.8	13.0	100	142.0	18.6	10,2	230	136	1,000	80
\\$005 S	45	2.16	41.2	9.0	66	78.4	3.4	2.6	280	108	1,035	90
10154 S	2	0.58	60.4	8.0	52	8.4	0.2	< 1	250	115	215	60
AD184 S	8	0.02	75.6	5.5	125	1,895.0	97.2	<1	1,610	165	865	100
AD202 S AKOO1 S		0.02	66.2	6.0	89	235.0	15.0	<1	430	141	660	40
1K002 S	410 68	1.32 0.46	15.2 15.2	13.0	16	1,440.0	30.4	<.1	240	16	355	210
K018 S	375	1.22	15.2	13.0 9.0	18	352.0	15,8	0.4	230	14	440	100
1K020 S	58	0.14	7.0	10.5	15	1,785.0 592.0	22.0 18.0	<u> </u>	370 300	18	235 155	140 60
1K021S	31	0.30	24.8	12.0	23	242.0	8.8		310	6D	155 265	110
HOO1 S	13	0.72	45.2	10.5	61	23.8	0.4		380	104	1.045	100

3-2-2 Geology and Geologic Structure

(1) Introduction

The geology of the Salopa area is composed of the following five stratigraphic units:

- Andesitic to basaltic lava, volcanic breccia, tuff breccia and tuff (Jampang Formation)
- Massive limestone (Kalipucang Formation)
- Calcareous sandstone with limestone lenses (Bentang Formation)
- Tuffaceous sandstone and turbidites (Halang Formation)
- ·Volcanic breccia (Older Volcanic Rocks)

Intrusive bodies of andesite, dacite and quartz-porphyry occur in these rock units.

The general trend of these formations is ENE-WSW. They form a gentle anticlinorium with the axis of WNW-ESE direction. NW and E-W trending fault systems which cut Neogene volcanic-sedimentary sequences occur.

Based on the photogeological analysis on the SAR images, the geologic structure of the Salopa area is characterized by the existence of a couple of circular structures and the development of lineaments trending mainly NNE direction.

(2) Stratigraphy

Jampang Formation

It is the oldest rock in the Tasikmalaya area. It is composed of basaltic to andesitic volcanic breccia and lava (Lower Member), andesitic tuff and lava, and dacitic tuff and lava (Upper Member).

The alternation of volcanic breccia and lava of basaltic to andesitic composition is the representative facies of the Lower Member of the Jampang Formation. Volcanic breccia sometimes shows a polymictic feature, consisting of various kinds of rock fragments of breccia to boulder size. It crops out widely in the Salopa area. Lava is commonly brecciated. Sandstone lenses are intercalated in volcanic breccia and lava. Some parts of volcanic breccia and andesite lava show propylitic alteration.

The chemical composition of the Jampang Formation changes into andesitic/acidic in the Upper Member. The lower part of the Upper Member is composed of andesitic pyroclastic rocks with a few thin units of andesite lava. Tuff-breccia and tuff are the major constitutes. Thin limestone lenses occur within the lower to middle parts of the Upper Member.

The upper part of the Upper Member is composed of acidic pyroclastics (dacitic tuff and tuff-breccia of greenish color) and lava. Thin clastic sediments (tuffaceous sandstone, siltstone and mudstone) occur at the upper-most part of the Upper Member.

The Jampang Formation is overlain comformably by the Kalipucang Formation.

Kalipucang Formation

The Kalipucang Formation is composed of massive, crystalline reef limestone. It is distributed mainly in the western to southern parts of the Salopa area. It is overlain uncomformably by the Bentang Formation.

Bentang Formation

It is composed mainly of calcareous sandstone, siltstone, shale and tuffaceous sandstone. Calcareous sandstone is the representative facies of the Bentang Formation in the Salopa area. It is well-bedded. It sometimes contains thin limestone lenses. The Bentang Formation is distributed mainly in the western part of the Salopa area.

Halang Formation

The Halang Formation is composed of tuffaceous sandstone with intercalation of turbidites. This sandstone sometimes shows graded bedding, parallel lamination, convolute lamination and load cast. These sedimentary structures suggest that the sandstone was deposited by turbidity currents.

The major occurrence of the Halang Formation is to the north of the Tasikmalaya area. It occurs locally at the western part of the Salopa area.

Older Volcanic Rocks

It is composed of andesitic to basaltic volcanic breccia and lava. These rocks occur at the top of the mountains, forming steep topography. It was derived from the volcanic products of Gn. Cikuray, Gn. Sawal, etc. at the Plio-Pleistocene time.

(3) Intrusive Rocks

Andesite

Several andesite dikes are intruded in the Jampang Formation. Most of them are hornblende andesite, while some are pyroxene andesite. These andesite dikes are composed mainly of plagioclase, hornblende and pyroxene. They show porphyritic texture. Chloritization, sericitization and carbonitization were sometimes observed in these rocks.

Dacite

Intrusive bodies of dacite were found at Pr. Bengkok and other localities within the Jampang Formation in the Salopa area. Dacite is composed of such minerals as plagioclase, K-feldspar, quartz and hornblende.

Granodiorite-Porphyry

Small stocks of granodiorite-porphyry occur within tuff-breccia and lava of the Jampang Formation in the northeastern part of the survey area.

Granodiorite-porphyry is a holocrystalline porphyritic igneous rock, consisting of plagioclase, homblende, quartz and biotite as phenocrysts.

Whole Rock Analysis

Thirty-four rock samples were provided for whole rock analysis. Twelve major components including Cr₂O₃ and LOI were analyzed at Chemex Labs Ltd. Results of chemical analysis and CIPW norm calculation are shown in Table 2-4. Rock names of igneous and volcanic rocks identified from field observations and thin sections were checked through the analysis.

(4) Geologic Structure

Fold Structure

Several fold systems, from regional anticline to local minor foldings, were observed in the survey area. They are generally gentle structures.

Regional anticlinal structure was observed in the northwestern to southern areas within tuff and sandstone of the Jampang Formation. This anticlinorium has an axis of approximately WNW-ESE direction.

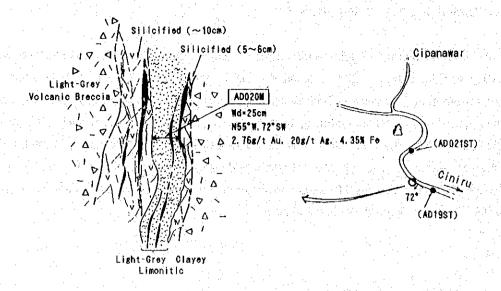
Local anticlines and synclines of similar trend were observed in some areas in the Salopa area.

Fault

A series of NW fault systems was found within the Jampang Formation in the northeastern part of the survey area. The trend of these faults coincides with the gold-bearing quartz veins in this area.

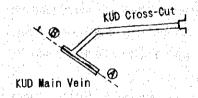
Faults of NNE to ENE systems occur within the Jampang Formation in the western part of the survey area. These fault systems, which were picked up through the satellite image photogeological interpretation, are not so extensive in the field. This type of fractures probably exists as igneous joints and/or minor faults of small displacement.

3-2-3 Mineralization and Associated Alteration


The significant development of gold-bearing quartz veins and quartz networks was observed at S. Ciniru, S. Cikuya, Cikondang, S. Citambal and the upper reaches of S. Ciseel. Quartz veins and networks are hosted mainly by volcanic breccia and tuff-breccia of the Jampang Formation. The width of each vein ranges from a few centimeters up to 1 m. The major trend of vein systems is NW. Gold is accompanied by some sulfide minerals. Pyrite and arsenopyrite are the two most common sulfide minerals; a small amount of chalcopyrite, sphalerite and galena were found in a bonanza of gold. Associated alteration is characterized by strong silicification and sericitization. The major occurrences of gold-bearing quartz veins are described as follows.

Ciniru

Gold-bearing quartz veins and network veins were found at the junction of S. Ciniru (a branch of S. Cimedang) and S. Cipanawar in the central part of the Salopa area. The geology of the prospect is composed of volcanic breccia and andesite lava of the Jampang Formation (Lower Member). Gold was recognized in a series of quartz veins/networks of NW direction. Silicification and sericitization were observed in and around veins. Pyrite and arsenopyrite are disseminated within quartz veins and in silicified country rock. A small amount of manganese minerals was found within quartz veins. Montmorillonite, kaolin and ankerite were detected in and around the veins by X-ray diffraction analysis. Fig. 2-6 shows the mode of occurrence of one of the quartz vein outcrops along the river-bed of S. Ciniru. Significant gold and silver grades up to 2.76 g/t Au and 20 g/t Ag at 25 cm in width (AD20M) were obtained from this vein.


Mining activity by local prospectors started in 1960's. More than 10 old mining tunnels are distributed in the vicinity of the junction of S. Ciniru and S. Cipanawar. One mining concession (Kuasa Pertambangan) of 20 ha was registered at the end of 1980's.

During panning survey this phase, many gold grains were detected along S. Cimedang and its branch rivers together with some cinnabar and sulfide minerals. Remarkable Au, Ag, As and Sb anomalies were caught along S. Ciniru and S. Cimedang by stream sediment geochemistry. Reconnaissance soil survey in this prospect also revealed the existence of gold anomalies of NW-SE direction. On the basis of these results, it is considered that the gold mineralization may extend to the south and to the southeast.

River-Bed Out Crop, Ciniru

Fig. 2-6 Sketch of Quartz Veins in the Ciniru Prospect

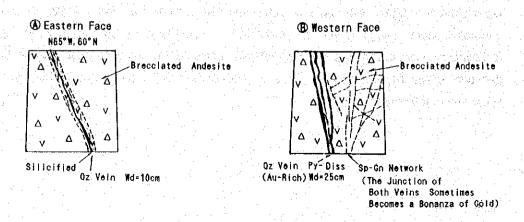


Fig. 2-7 Sketch of Quartz Veins in the Citambal Prospect

Cikuya

A group of quartz veins/networks is developed at S. Cikuya (a branch of S. Cimedang) in the southern part of the Salopa area.

Quartz veins in Cikuya are generally thin, from a few centimeters up to 20 cm. Each vein shows various trends. Two major directions were recognized among them -- NW and NNE. Gold and silver grades up to 4.67 g/t Au and 330 g/t Ag (AK11M) were obtained from grab samples in the Cikuya prospect. Pyrite-arsenopyrite dissemination was observed in quartz. A small amount of chalcopyrite, sphalerite, galena and manganese minerals was observed in some parts of the ores. The surrounding rocks of quartz veins are strongly silicified and sericitized. Montmorillonite and kaolin were found in some parts of veins and surrounding rocks. A small amount of gypsum and ankerite were also detected by X-ray diffraction analysis.

Gold mining by local people was active in 1980's. Nearly 10 old tunnels were found at the flank of a small hill in this prospect. These are hosted by volcanic breccia and andesite lava of the Jampang Formation (Lower Member). It is located to the southeast of the Ciniru mineralized zone.

Cikondang

Two major gold-bearing quartz veins were caught at Cikondang prospect which is located along S. Cihapitan in the northeastern part of the Salopa area. Quartz veins are hosted mainly by volcanic breccia and tuff-breccia of the Jampang Formation.

The Yayat-Hadli vein strikes N45° to 60°W, and dips 30°SW. The width is about 20 cm. It has a branch of N50°W, 28°NE in the western part. Pyrite and arsenopyrite are disseminated in quartz vein. A patch of gold concentration, about several millimeters in diameter, was sometimes observed within quartz. A small amount of argentite and cinnabar was observed in such samples under the microscope. Country rocks near the veins are weakly silicified and moderately sericitized.

The Hamid vein occurs in the northeastern part of the Cikondang prospect. It shows the strike direction of E-W, and the dip of 10°N. The Hamid vein is thin -- generally 3 to 5 cm in width. A small amount of pyrite, arsenopyrite, chalcopyrite, stibnite, argentite and cinnabar was observed in some samples under the microscope. Gold and silver grades up to 27.15 g/t Au and 82 g/t Ag (AS16M) were returned from grab samples.

Nearly 20 mining shafts have been dug in the Cikondang prospect by local people. One mining concession (Surat Ijin Penambangan Rakyat) of 8 ha was applied recently for the Yayat-Hadli vein.

Citambal

In the Tasikmalaya area, gold mining is most active at Citambal. It is located at the middle reaches of S. Citambal in the northeastern part of the Salopa area. There are two major veins -- the KUD (Koperasi Unit Desa) main vein and Cikurawet vein, both are hosted in volcanic breccia and tuff-breccia of the Jampang Formation.

The KUD main vein is a gold-bearing quartz vein/network which strikes N 50° to 60°W, and dips 60° to 80°NE. The width ranges from 10 cm up to 1 m. The total length, which has not yet been confirmed by systematic exploration, is estimated to be 1,200 m. A branch vein occurs at the hanging-wall side in the southeastern part. Silicification and sericitization were observed in the country rocks near quartz vein. Traces of kaolin and gypsum were detected in and around quartz vein. Pyrite and arsenopyrite are commonly disseminated within quartz and the surrounding alteration zone. In some part of the KUD main vein, sphalerite-galena network vein occurs beside the main vein (see Fig. 2-7). The sphalerite-galena network vein was cut by the pyrite-arsenopyrite quartz vein. The junction of pyrite-arsenopyrite quartz vein and sphalerite-galena network vein sometimes forms a bonanza of gold.

The KUD main vein was discovered in 1968. KUD (corporation unit of village-people) Mekar Jaya was established, and the mining operation started on April 1993. Mining is carried out in two places the main crosscut near KUD office, and the Tisna shaft which is located at the northwest of the main crosscut. The current production rate is 110 t/month of crude ore. Recovered gold grade is approximately 10 g/t Au by the traditional crushing and gold amalgamation method. One KP of 36.5 ha is registered under the name of KUD.

The KUD main vein extends to the southeast. Two small concessions (SIPR) and several old shafts exist at the southeastern part of the main vein system.

The Cikurawet vein occurs approximately 500 m west of the KUD main vein. It shows a strike direction of N 50°W with dipping 70° to 80°NE. Strike length is estimated to be about 600 m. A branch vein striking N-S with W-dip, is accompanied in the northwestern part. The vein exhibits a network nature of 10 cm to 1 m wide. Silicification and sericitization were recognized around quartz network. Weak montmorillonitization and kaolinitization were also observed. Pyrite and arsenopyrite are the major sulfide minerals contained in quartz veins. Sphalerite, galena and manganese minerals were observed in some parts of the vein. A patch of gold concentration was found at the northwestern end of this vein. Nearly 200 local people are currently working in the mining operation. Two crosscuts and more than 10 shafts were dug in this area. One SIPR of 5 ha is registered.

Ciseel

Gold mineralization was found at the upper reaches of Ciseel in the northeastern part of the Salopa area. It is situated at the southeastern extension of the Cikondang-Citambal gold prospects. Together with that of Cijurey (mentioned below), these occurrences are distributed in a line of NW-SE direction.

A series of gold-bearing quartz veins is mined by local people in Nyalindung. This is located at the southeastern extension of the KUD main vein. Gold grades up to 35.31 g/t Au at 5 cm in width (AH12M) were returned from thin quartz-clay veins in Nyalindung. The mode of occurrence of veins is shown in Fig. 2-8. Remarkable stream sediment anomalies up to 16.6 g/t Au and 34.10 ppm Ag (AT150ST) were obtained in this locality.

A couple of veins is also mined at a few kilometers upstream of Nyalindung. It is called the Umar vein. The Umar vein is hosted by andesite lava of the Jampang Formation. It is composed of vein systems of NW and N-S directions. Gold grades up to 7.47 g/t Au at 30 cm in width (AK24M) were obtained from samples in the Umar prospect.

The other localities where gold mineralization was detected through the first phase geological survey and panning survey are as follows:

- *Cimaranten
- *Gulingmuding
- *Cigelap
- *Cigugur
- *Cijurey
- *Cibatungurung
- *Cipangesikan-Cijalu
- *Cibeunying
- *Cipinaha

The outline of these gold mineralization is summarized in Table 2-12.

Phosphate ores were found at two localities -- Cigelap and Lubanglalai in the Salopa area.

Cigelap, a branch of Ciwulan, is located in the western part of the Salopa area. Phosphorite occurs in a Kalipucang limestone cave of about 100 m deep. It shows a banded texture of phosphorite and limestone. It was mined at a small scale by local people in the past.

Phosphorite was also found at Lubanglalai, a branch of Cibunter, in the southwestern part of the

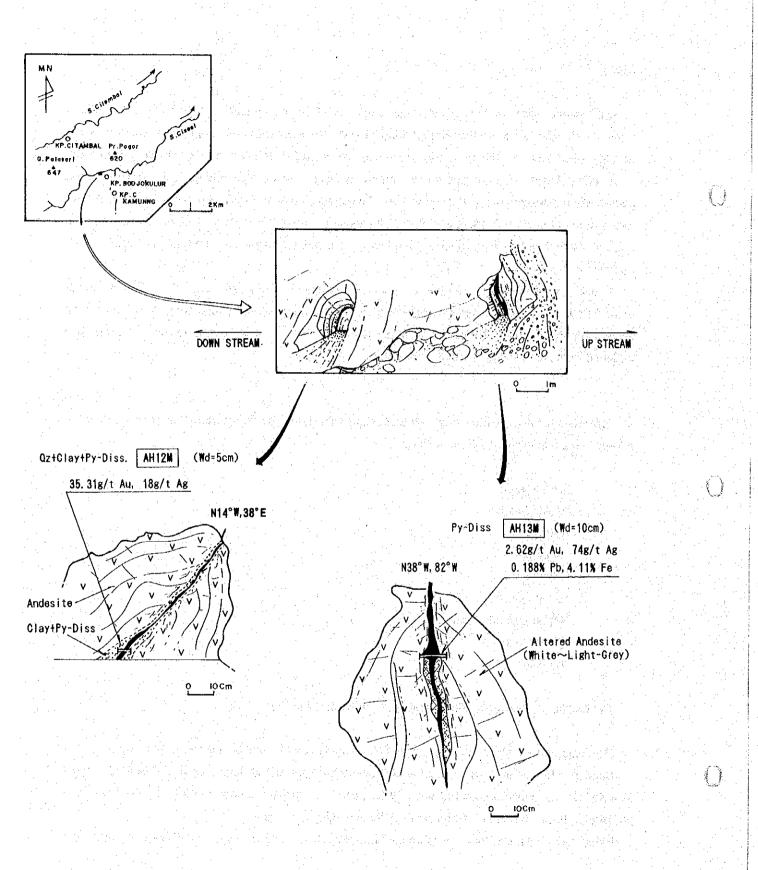


Fig. 2-8 Sketch of Quartz-Clay Veins in the Nyalindung Prospect

Salopa area. It occurs in a Kalipucang limestone cave of about 500 m deep. It has never been produced because the access was difficult.

3-3 Stream Sediment Geochemistry

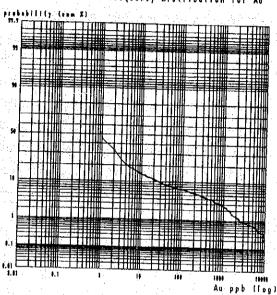
3-3-1 Sampling and Chemical Analysis

Stream sediment geochemistry was carried out in the first phase for the purpose of defining hidden mineralized zones which would otherwise be undetected by geological survey, as well as for clarifying the extension of mineral occurrences known through the geological survey.

Fine sand samples of -80 mesh were collected from sediments in major channels and some of the bigger tributaries. The number of stream sediment samples collected was 744, which corresponds to a sampling density of approximately one sample per 0.7 km². The samples, after being air-dried in the field, were analyzed at Chemex Labs Ltd. for 12 elements; Au, Ag, Cu, Pb, Zn, As, Sb, Hg, P, Cr, Mn and Ba. The methods of analysis and limits of detection are shown in Table 2-10.

3-3-2 Anomalies of Stream Sediment Geochemistry

(1) Statistical Data Analysis


The distribution of geochemical data of some elements tends to show a close approximation to the logarithmic normal distribution, the common logarithmic conversion of the respective analytical values was adopted in the statistical data processing. When an analytical value was less than the detection limit, a value half of the lower limit was substituted in the calculation.

At first, statistical properties of geochemical data were checked. Basic statistical figures were calculated. Distribution histograms of each element were drawn out. Correlation coefficients among 12 elements were examined.

Then the selection of threshold values for anomalies was made. Cumulative frequency distribution of each element was plotted on the logarithmic probability graph using computer. If an element showed any significant curvature, then the threshold was determined from the corresponding value on the curve. If any specific curvature was not recognized on the curve, then the threshold was calculated by the value of twice the standard deviation added to the mean of the element. The thresholds of Ag, Cu, Zn, Mn and Ba were obtained on the logarithmic probability graphs. While those of Au, Pb, As, Sb, Hg, P and Cr were determined by the statistical calculation.

SW of Salopa (branch of Cimedang)	Many Au Some Cin	Many Au Ag, As, Sb	Vol-bre And lava (Jp)	ž.	PyAs	(Mont, Kaol)	Auz.76g/t,Ag20g/t (Wd=25cm,AD20M)	MP (20 hg)
Southern part (branch of Cimedang)	Many Au	Mamy Au Ag, As, Sb	Tuff-bre And-lava (Jp)	Oz vein NW & NNE	Py,As,Cp Sp,Gn	Sil, Ser (Chi, Mont, Kaol)	, Au4.67g/t,Ag330g/t(AK11M) Au4.23g/t,Ag134g/t(AS12M)	Old tunnels(10)
Central part (branch of Cimedang)	Some Au		Lap tuff (Jp)	Oz vein NW & NNE	Py,As,Sp,Gn	Sil (Ser)	Au1.52g/t,Pb0.23%,Zn0.76% (Wd=2cm,AA19M)	Old tunnels (Dutch time)
Gulingmuding Northern part (branch of Cipinaha)	Gold not Sc detected Ag	Some Au Ag. As, Sb	Tuff (dacite) (Jp)	Oz vein NNE	Py,Sp	Sil, Kaol Chi	Au0.09g/t,Fe7.64%(AS6M)	Old tunnel, shaft
Western part (branch of Ciwulan)	Gold not detected		Cap tuff (Jp)	Carb vein NW (?)	Py,As	Carb (Mont, Kaol)	Au0.13g/t,Zn0.15%,Mn0.94%	Old tunnels
SE part (near the junction of Cliurey)	Some Au		And lave (Jp)	!	1	1		Nothing
Eastern part (upper reaches of Cijurey)	Some Au Sc	Some Au	Vol-bre, And lave, Tf (Jp)	1	1			Nothing
Cibatungurung Southern part (branch of Ciharuman)	Some Au		And lava Tf (Jp)	Oz netwk NW	Py.As	Sil, Ser (Kaol, Chi)	Au0.54g/t,Ag12g/t,Fe15.05% (AD118M)	Old shaft & tunnel
SE part (branch of Cimendale)	Some Au	1	Tf-breccia (Jp)	Limo vein NE	&	Sil (Carb)		Old tunnel (Cijalu)
NE of Salopa branch of Cimedang)	Some Au	1	1			is.	Fe5.22%,Mn0.14%(AK18M)	Nothing
NE part (Cihapkan)	Some Au	Many Au Ag,As,Sb	Vol-bre Tf-bre (Jp)	Oz vein NW, 30 SW E-W, 10 N	Py,As,Cp,Sp Gn,Ag,Sc (Au)	Sill, Ser	Au27.15gtt.Ag82g/t.Sb4.83% (AS16M)	Shafts (20) SIPR (8 ha)
44 TE	Many Au Ag	Many Au Ag, As, Sb	Vol-bre Tf-bre (Jp)	Oz vein NW	Py,As,Sp,Gn Sb,(Au)	Sil, Ser (Mont, Kaol)	Au5.05g/t, Ag10g/t, Pb0.10%	Shaffs (20) KP (36.5 ha)
NE part (upper reaches of Ciseel)	Many Au Ag	Mamy Au Ag,As,Sb	Vol-bre (Jp) Tf-bre Lap ff	Oz vein NW, N-S	Py,As,Cp,Sp Gn,Sb	Sil, Ser Mont, Kaol Carb (Chi)	Au7.47g/t.kg28g/t (Wd=30cm, Umar.AK24M) Au35.31g/t.kg18g/t (Wd=5cm, Nyalindung, AM12M)	Shafts (10)
Northern part (upper reaches of Cipinaha)	Gold not detected		Tf-bre (Jp)	Oz vein	Py.\$p	Sil, Mont Kaol	Au2.45g/t,Fe6.01%,Mn0.66% (AA13M)	Nothing
SW part (branch of Ciwutan)	Gold not So	Some Au As						Nothing
	Gold not Sc detected	Some Au		1		1		Nothing
Western part (branch of Ciwulan)	Gold not So detected	Some Au	1	1.				Nothing

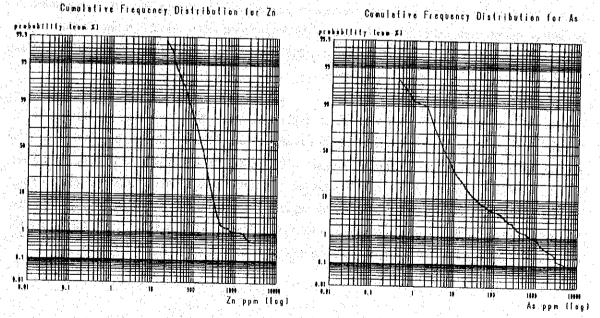


Fig. 2-9 Cumulative Frequency Distribution Graphs of Stream Sediment Geochemistry

Cu and Zn have a distinctive curvature on the curve.
Au and As, on the other hand, show no such specific point.

A series of maps showing geochemical anomalies of stream sediments for each element was produced. Values of each sample were expressed by one of three kinds of symbols on the map. Geochemical anomalies for each element were cross-checked on the maps. The results of panning survey were taken into consideration. The results of geological survey, especially those of the distribution of quartz veins, quartz floats and hydrothermal alteration, were also referred. Gold mineralization was primarily presented by the distribution of Au anomalies in stream sediment geochemistry. The Au anomalies of stream sediments were well-correlated with the occurrences of quartz veins and panning anomalies. The distributions of some other elements such as Ag, As and Sb also well-corresponded to the distribution of quartz veins and panning anomalies. The association of these geochemical elements was explained by ore mineral assemblage. Thus these elements were thought to be good indicators of gold mineralization in this area.

These results were integrated together, and several significant anomalous zones were outlined. Ten potential mineralized areas thus chosen are described in the next section. The distribution of geochemical anomalies was drawn by computer shown in the appendices.

(2) Anomalies of Stream Sediment Geochemistry

Ciniru: Au anomalies of stream sediments up to 9,090 ppb (AD15ST) and pan concentrates are densely arranged along S. Ciniru and S. Cipanawar in the Salopa area. Ag, As and Sb anomalies of stream sediments are located in the same area (for example: 5,660 ppb Au, 47.00 ppm Ag, 1,750 ppm As and 249 ppm Sb, AD23ST). Pb anomalies were also detected in some part. These anomalies are positioned not far from the localities of quartz veins and network veins. Most of them are within a few kilometer distance. It suggests that the quartz veins and their surrounding alteration zones are most likely the origin of these geochemical anomalies.

Cikuya: Au anomalies of stream sediments and pan concentrates are closely arranged along S. Cikuya. Ag, As and Sb anomalies of stream sediments are located within the same area. The representative value of stream sediment sample is 15.2 g/t Au, 99.40 ppm Ag, 1,415 ppm As and 443 ppm Sb (AK32ST). Occurrences of quartz veins and alteration zones were recognized in this prospect.

The middle reaches of S. Cimedang is situated at the middle of the Ciniru and Cikuya prospects. Significant Au anomalies up to 6,990 ppb (AD138ST) were found in this locality. Some Ag, As and Sb anomalies, mainly of the second order, also occur in this area.

Cibunter-Cibaregbeg: A series of Au anomalies of stream sediments up to 493 ppb (AH61ST) is sparsely distributed in this area, which lies to the southwest of the Ciniru prospect. Some significant gold anomalies of pan concentrates were observed in this area, although it has not been fully covered by the panning prospecting. As anomalies of the second order are also scattered in this area.

Cikondang: Several Au anomalies of stream sediments were detected along S. Cihapitan. Ag, As and Sb anomalies of stream sediments were also distributed in the area. The representative value of stream sediment is 9,360 ppb Au, 27.40 ppm Ag, 2,340 ppm As and 208 ppm Sb (AS111ST).

Citambal: Very distinctive Au, Ag, As and Sb anomalies of stream sediments were found in the Citambal prospect. The representative value is 12.9 g/t Au, 33.60 ppm Ag, 2,990 ppm As and 392 ppm Sb (AD262ST). Cu, Pb and Zn anomalies are overlapped on these anomalies. The representative value for Cu, Pb and Zn is 5.3 g/t Au, 15.65 ppm Ag, 301 ppm Cu, 1,780 ppm Pb and 2,210 ppm Zn (AD251ST).

Ciseel: Very distinctive Au and Ag anomalies of stream sediments accompanying with As and Sb anomalies were observed along the upper reaches of S. Ciseel. These anomalies were concentrated in two zones -- Umar and Nyalindung. The representative values of stream sediments are 1,570 ppb Au and 6.88 ppm Ag (AK134ST, Umar), and 16.6 g/t Au, 34.10 ppm Ag, 2,830 ppm As and 423 ppm Sb (AT150ST, Nyalindung). Some Pb data showed anomalous values as well.

Citembang: A small Au anomalous zone (up to 218 ppb)occurs along S. Citembang in the eastern part of the Salopa area. It is situated at the southeastern extension of the Ciseel mineralized zone.

Cijurey: A couple of weak Au (252 ppb) and As (31.2 ppm) anomalies was detected at the upper reaches of S. Cijuley and the upper reaches o

Gulingmuding: A couple of Au and Ag anomalies of the second order was detected at the Gulingmuding prospect. Sb anomalies of stream sediments up to 32 ppm (AS85ST) occur at the upper reaches of S. Gulingmuding. As anomalies accompanying the second order Cu anomalies also occur widely from S. Cipinaha up to S. Gulingmuding through S. Cibenjot.

Ciwarak: A small Au anomalous zone (up to 1,490 ppb, AS45ST) occur along S. Ciwarak (a branch of Ciwulan) in the western part of the Salopa area.

The other localities where some weak anomalies were detected by the stream sediment geochemistry are as follows:

- ·Cimaranten
- ·Cibatungurung
- ·Cipangesikan-Cijalu
- ·Cipinaha
- Cibangbai

3-4 Panning Survey

3-4-1 Sampling and Heavy Mineral Identification

Panning survey was carried out in the Salopa area in the first phase.

Pan concentrate samples were collected from trap sites in the active drainage channels. A bucketful of sand and gravel which was about 2 liters was gathered and carefully panned out. A panned sample of about 5 grams was obtained finally at every point. Fineness and number of gold grains were measured, and heavy mineral composition was examined roughly by loupe in the field and carefully under the microscope in the laboratory.

The procedures of gold and heavy minerals analysis were illustrated in Fig. 2-10. Three hundred and fifteen panned samples were checked in the Salopa area.

3-4-2 Anomalies of Panning

Gold was detected in 108 samples either by naked eye or under the microscope. It stands nearly one-third of the total amount of samples obtained in the Salopa area. It is composed of coarse to very fine carat gold of up to 1,200 microns in diameter (middle reaches of S. Cimedang). The major heavy minerals observed in pan concentrates are: garnet, epidote, zircon, ilmenite, corundum, magnetite and iron-oxide. Sulfide minerals such as pyrite, arsenopyrite, chalcopyrite, galena, sphalerite, stibnite, argentite, cinnabar and realgar were often found in pan concentrates near mineralized zones.

The major localities where gold and some indicator minerals for gold mineralization (cinnabar, realgar, argentite, etc.) were detected by panning survey are the following eleven places:

- ·Ciniru
- ·Cikuya
- ·Cimaranten
- ·Cigugur
- ·Cijurey
- Cibatungurung
- Cipangesikan-Cijalu
- Cibeunying
- :Cikondang
- Citambal
- ·Ciseei

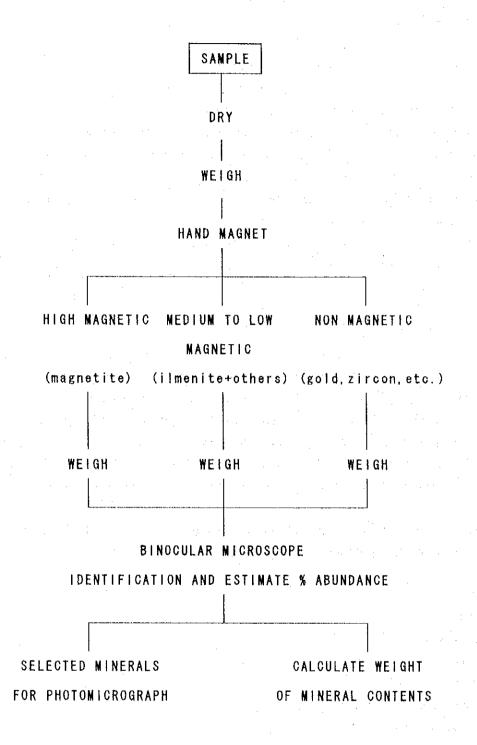


Fig. 2-10 Flow Chart of Gold and Heavy Mineral Analysis

3-5 Soil Survey

3-5-1 Sampling and Chemical Analysis

Soil sampling of the semi-detailed level was conducted in two prospects in the Salopa area.

Soil samples were taken from the B-layer of residual soil at a depth of 40 to 80 cm from the surface using hand-auger. The sampling points were arranged along creeks and ridge lines in the prospect.

The sampling was carried out generally by a team composed of one geologist, one surveyor and several field hands. While a hole was dug and a soil sample was picked up by surveyor, the observation of samples was made and it was recorded on the field note by geologist. The record form for soil samples consisted of the following descriptions:

- Location (grid coordinates)
- ·Sample number
- ·Sample type (residual, talus, alluvial or cultivated)
- Site topography (hill top, slope, base of slope, valley
- floor or level)
- ·Horizon (A, BF, BT, BM or C)
- Depth
- ·Color
- ·Texture (organic, sandy, silty, clay or gravel)
- Coarse fragment (lithic fragment, quartz, pisolite or others)
- ·Bedrock geology.

Soil samples were air-dried at the base camp, then crashed to -80 mesh. Chemical analysis was conducted at Chemex Labs Ltd. of Canada for 12 elements; Au, Ag, Cu, Pb, Zn, As, Sb, Hg, P, Cr, Mn and Ba. The analytical details are given in Table 2-10. A total of 179 soil samples was collected and provided for chemical analysis in the Salopa area.

On the assumption that the distribution of geochemical data of some elements shows a close approximation to logarithmic normal distribution, the common logarithmic conversion of the respective analytical values was adopted in the statistical data processing. When an analytical value was less than the detection limit, a value half of the lower limit was substituted in the calculation (same as in the stream sediment geochemistry).

At first, statistical properties of geochemical data were checked. Basic statistical figures were calculated. Distribution histograms of each element were drawn out. Correlation coefficients among 12

elements were examined. The threshold values were determined by the same way as in the stream sediment geochemistry. The thresholds of Cu, As, Sb, Hg, P, Cr and Ba were obtained on the logarithmic probability graphs. While those of Au, Ag, Pb, Zn and Mn were determined by the statistical calculation. Values of each sample were expressed by one of three kinds of symbols on the map. The soil anomaly maps drawn by computer are attached in appendices.

Several major anomalies and some minor anomalies of Au were distinguished in the prospect. Anomalies of Ag, As and Sb almost overlap on the Au anomalies. It is possible to explain this conformability by the mineral assemblage of gold-bearing quartz veins -- the occurrences of gold, argentite, arsenopyrite and stibnite. The mode of distribution of the other elements such as Cu, Pb, Zn and Hg, whose negative correlation to Au were indicated through the statistical analysis, is different from that of Au.

3-5-2 Anomalies of Soil Geochemistry

Ciniru: A series of soil anomalies was caught in the Ciniru prospect. It is composed of several anomalies of Au (up to 25ppb), Ag (up to 0.58 ppm), As (up to 1,895 ppm) and Sb (97.2 ppm). Each of them extends to the SE direction over 2 to 3 km.

Cikuya: This anomaly is located about 6 km southeast of the Ciniru anomaly. It is composed of a group of distinctive anomalies of Au (up to 410 ppb), Ag (19.10 ppm), As (up to 1,785 ppm) and Sb (30.4 ppm), arranging roughly in the NW-SE direction.

A hill lies between these two prospects. Some anomalies of panning survey and stream sediment geochemistry along the middle reaches of S. Cimedang were found at the downstream of it. These two prospects are located in a mineralized rectangular zone of 8 km (NW-SE) by 5 km (NE-SW).

3-6 Discussion

Gold-bearing quartz veins in the Salopa area are hosted by andesitic and dacitic volcanic and pyroclastic rocks of the Jampang Formation. The host rocks belong to the so-called "Old Andesites" (V. Benmellen, 1945). The rocks are considered to be formed by the Oligocene to Miocene submarine tholeiitic volcanic activity. Gold mineralization in this area is restricted within the Jampang Formation. There has been no gold mineralization found in the Kalipucang limestone or Bentang calcareous sandstone. The gold mineralization is, therefore, thought to be genetically related to the Miocene tholeiitic volcanism.

The NW system is dominant among the vein systems in this area. An area where quartz veins are developed is structurally situated on the wing of a regional anticlinorium (whose axis is WNW-ESE). Major veins of the NW system show the trend which crosscut the axes of the anticlines. Although the detailed structural analysis of the vein system has not been made, it can be interpreted to be controlled by the regional tectonics in the West Java district. On the basis of the results of photogeological interpretation on the JERS-1 SAR images, a series of complex circular structures whose diameter was approximately several tens of kilometers was distinguished near Salopa. The circular structure was interpreted to be formed before the activities of the Younger and Older Volcanic Rocks developed to the north and to the west of the survey area. It is probably a kind of volcanic depression caused by the volcanic activity of the Upper Member of the Jampang Formation. No geologic evidence that may indicate the volcanic depression structure has been found during the field survey in the Salopa area. The structural pattern and genesis of vein systems is an important matter for the exploration. It must be further studied in the next phase survey.

Characteristic features of ore minerals and hydrothermal alteration in the Salopa area are summarized as follows:

- 1. As ore minerals, a small amount of pyrite, arsenopyrite, galena, sphalerite and chalcopyrite are contained in quartz veins. Traces of argentite, stibnite, cinnabar, realgar and electrum were found under the microscope.
- 2. Regarding the vein mineralization, two stages were distinguished: quartz veins with a small amount of pyrite and arsenopyrite, and sulfide network veins consisting mainly of galena-sphalerite-chalcopyrite. The former is earlier than the latter. Some cases are known that a junction of these two mineralization forms a bonanza of gold.
- 3. Quartz is the major gangue mineral. A small amount of calcite and manganese minerals also occurs within veins.
- 4. The alteration is composed mainly of silicification and sericitization. Propylitic alteration was recognized in some veins near intrusive bodies.

These features are basically the characteristics of epithermal gold deposit. Gold-bearing quartz veins in the Salopa area are thought to belong to the aduralia-sericite type epithermal gold deposit categorized by Hayba, et al. (1985). Compared with the well-known epithermal gold deposits such as Cikotok and Pongkor in West Java, two things are different: (a) the occurrence of As-Sb minerals (arsenopyrite and stibnite), and (b) lack of adularia in the gangue mineral assemblage. They are probably caused from the differences of age and conditions of formation between them. (The radioactive age data show that the Cikotok and Pongkor deposits were formed in Plio-Pleistocene).

Chapter 4 Sidamulih Area

4-1 Outline of the Survey Area

The Sidamulih area is located about 40 km southeast of Tasikmalaya. The area lies along the upper reaches of S. Cijulang and S. Cikaso in the eastern part of the study area. The altitude of the area ranges from 250 m up to 594 m (Gn. Porang). Most of the area is situated on the hilly lands between 300 and 500 m above sea level.

The area lies geologically among the wide exposures of alternations of volcanics/pyroclastics and sediments of the Jampang Formation. The Kalipucang limestone occurs mainly in the northern and southern parts of the Sidamulih area. Tuffaceous and calcareous sandstone of the Pamutuan Formation partly occurs between the Jampang Formation and Kalipucang limestone mainly in the southwestern part of the area. The geology of the Sidamulih area corresponds to the eastern extension of the Salopa area.

Based on the results of the existing geological information and photogeological analysis on the JERS-1 SAR images, this area was selected for the field survey area in the first phase. The survey covered over a rectangular area of 170 km². The field works in the first phase were composed of geological survey, stream sediment sampling and panning survey.

4-2 Geological Survey

4-2-1 Survey Method

The first phase field works in the Sidamulih area consisted of geological survey and geochemical exploration. The area was selected based on the analysis of existing geological information and photogeological interpretation on the JERS-1 SAR images.

Prior to the field work, a series of drainage system maps of 1:10,000 scale was prepared from the compilation of existing topographic maps (1:50,000 and 1: 25,000) and satellite images. Several sets of GPS instruments were employed for locating major surveying points in the field.

In the course of the geological survey, panning survey and stream sediment sampling, a couple of mineralized areas was found. The route maps of 1:10,000 scale were produced during these surveys, using 50-meter tape with a Brunton-type compass. The important mineral showings and old workings were studied in much detail (sketches of 1:100 to 1:200), and samples were taken for laboratory analysis.

A total length of more than 105 km was explored during the survey in the Sidamulih area, and the geological information was compiled into geological maps of 1:25,000 scale. The geology and geologic profile of the Sidamulih area are shown in Fig. 2-11.

The numbers of samples collected in the survey are: 209 stream sediment samples, 54 pan concentrate samples, more than 5 rock samples for thin sections and for whole rock analysis, 6 altered rock and clay samples for X-ray diffraction analysis and 26 ore samples for assay and polished sections. The results of the laboratory works are briefly summarized in Tables 2-4 to 2-11.

4-2-2 Geology and Geologic Structure

(1) Introduction

The geology of the Sidamulih area is composed of the following three stratigraphic units:

Andesite to basalt lava, volcanic breccia, tuff, sandstone, shale, chert and limestone (Jampang Formation)

Tuffaceous and calcareous sandstone, tuff and alternations of limestone and sandstone (Pamutuan Formation)

·Massive limestone (Kalipucang Formation)

The general trend of these formations is nearly E-W. They form a gentle anticlinorium with the axis of E-W direction. NW and NE trending fault systems which cut Neogene volcanic-sedimentary sequences occur.

The occurrence of lineaments trending NE to ENE directions was observed on the SAR images in the Cisasah area.

(2) Stratigraphy

Jampang Formation

The Jampang Formation occupies in the central part of the Sidamulih area. It is divided into two members: the Lower and Upper.

The Lower Member of the Jampang Formation is composed mainly of volcanic breccia and lava of andesitic to basaltic composition. The volcanic breccia facies often shows a polymictic feature,

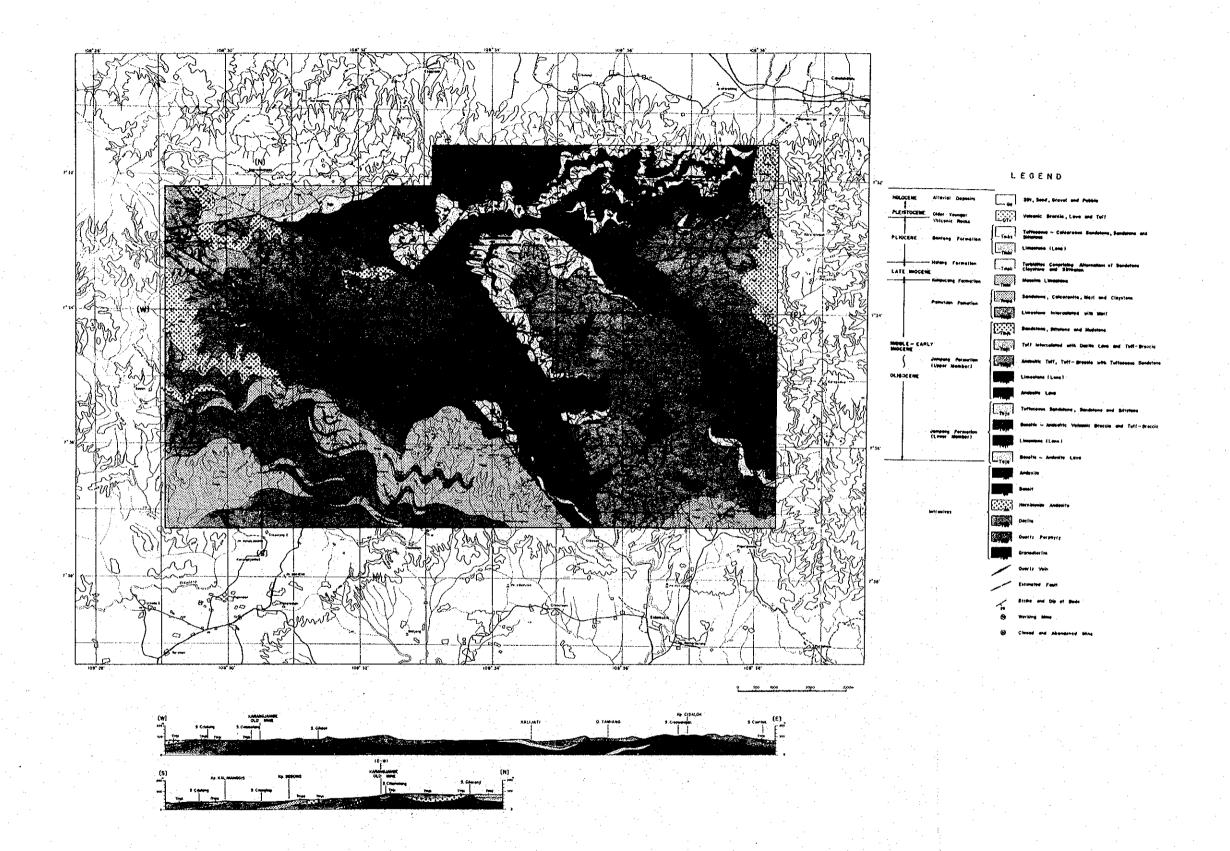


Fig. 2-11 Geology and Geologic Profile of the Sidamulih Area

consisting of various kinds of breccia such as basalt, andesite, limestone, siltstone, siltcified tuff, etc. Several units of andesite to basalt lava are intercalated in the volcanic breccia. Several layers of tuffaceous -- andesitic -- sandstone are interbeded within volcanic members of the Jampang Formation.

The Upper Member is composed of andesitic tuff, tuff-breccia, tuffaceous sandstone and siltstone. Thin layers of mudstone and limestone are interbeded within sandstone and siltstone. The clastic facies is dominated at the uppermost part of the Upper Member.

Pamutuan Formation

The Pamutuan Formation is composed mainly of well-bedded tuffaceous and calcareous sandstone and siltstone. Thin limestone lenses are sometimes intercalated in calcareous sandstone. The Pamutuan Formation occurs in the central to the southwestern parts of the survey area.

Kalipucang Formation

The Kalipucang limestone -- massive, sometimes crystalline, reef limestone -- occurs in the northen and southern part of the Sidamulih area. Limestone caves are developed in this limestone. Phosphate ores were found in some of the limestone caves.

(3) Intrusive Rocks

Apart from a couple of small andesite dykes, no significant intrusive body was found in the Sidamulih area.

Whole Rock Analysis

Three igneous rock samples were provided for whole rock analysis. The same methods of analysis in the Salopa area were applied in the Sidamulih area.

(4) Geologic Structure

Fold Structure

The general trend of Neogene volcanic and sedimentary sequences is nearly E-W. Calcareous sandstone of the Pamutuan Formation dips gently to the south in the southern part of the survey area. Whereas the Kalipucang limestone dips to the north in the northwestern area. They form a gentle anticlinorium with the axis of E-W direction.

Fault

Two fault systems trending NW and NE were recognized in the Cisasah area. Neogene volcanic-sedimentary sequences were divided into several blocks by these crosscutting faults.

Faults of NW system occur among the Jampang and Pamutuan volcanic-sedimentary rocks mainly in the central to the western parts of the survey area.

Faults of NE to NNE trends occur within the Jampang Formation in the northeastern area. They are correlated to the lineaments observed on the SAR images.

4-2-3 Mineralization and Associated Alteration

The occurrences of gold and sulfide mineralization and associated alteration, though not so remarkable, were observed at several places in the Sidamulih area. The major localities are explained below. Manganese ore within the Kalipucang limestone was once mined at Gn. Karang in the northeastern part of the Sidamulih area. Phosphorite ores were found within the Kalipucang limestone at Karangpari and Banjarsari, both are located in the southwestern part of the area. The outline of gold and sulfide mineralization in the Sidamulih area is shown in Table 2-13.

Cipamutuan

A series of light grey clay zones with strong pyrite dissemination are distributed along S. Cipamutuan in the southern part of the Sidamulih area. These altered zones occur in volcanic breccia and andesite lava of the Jampang Formation. Chlorite, montmorillonite and calcite are detected by X-ray diffraction analysis. Gold has not been found through geological survey and panning survey in the first phase.

Sankanbawang

White to light grey clay zones were found at Sankanbawang (S. Cimaratiga) in the southern part of the Sidamulih area. Pyrite is strongly disseminated in the clay zone. The host rock is volcanic breccia of the Jampang Formation. Silicification, chloritization, sericitization and carbonitization were detected by X-ray analysis. Gold has not been detected in this place.

Many boulders of silicified rock with pyrite dissemination were found at the upstream of S. Sankanbawang. Kaolinitization was observed in such boulders.

Cimaratiga

Boulders of silicified rock are extensively distributed along S. Cimaratiga in the southern part of the area. Pyrite is sometimes disseminated in silicified rock. Kaolinitization was observed. Low grade gold (up to 0.84 g/t Au, BK4M) was detected in some silicified rock floats.

Boulders and floats of silicified rock were also found at Cipongol (the upper reaches of S. Cipakuhaji) and Karangjambu (the upper reaches of S. Cikaso) in the northern part of the Sidamulih area. Pyrite is disseminated in these floats. Silicified breccia was found within volcanic breccia of the Jampang Formation at Karangjambe (the upper reaches of S. Cijulang-Wetan) in the northwestern part of the area. These breccias contain pyrite. Gold was detected in some of these breccia (up to 1.59 g/t Au, BD408M). Kaolinitization was observed in breccia. This kind of reworked ore was mines by prospectors about 10 years ago.

Table 2-13 Summary of Geological and Geochemical Surveys in the Sidamulih Area

O R E ALTERATION ASSAY RESULT MINING ACTIVITY MINERALS	Chl, Carb Au0.01g/t,Fe9.21% Py (Mont) (BD423M) Nothing	Chi, Ser Carb Fe6.67%(BH6M) Nothing	y,(Sp,Gn) Sil Au0.84g/t,Ag2g/t (BK4M)	Au1.59g/t,Ag20g/t Py Sil Au1.59g/t,Ag20g/t (BD408M) Nothing	Py Sil Au0.64g/t,Ag11g/t (BS2M) Nothing	Sil,Ser Se4.00%(BA2M) Old tunnels	
	11g/t,Fe9.21% (BD423M)	7%(BHSM)		9g/t,Ag20g/t (BD408M)		%(BA2M)	Mn>2.50%(BHS1M)
		Fe5.6	Au0.8	Au1.5	Au0.6	Fe 4 .00	Mn>2.
ALIERALI	Chi, Cart (Mont)	Chí, Ser Carb	is .	3	₩.	Sil,Ser (Kaol)	
N N	Py	Py	Py,(Sp,Gn)	Ą	y.	Ру,Ср	Rd
VEIN SYSTEM				.	 	Breccia (reworked)	Pod
HUST RUCK	Vol-bre And lava (Jp)	Vol-bre (Jp)		1		Vol-bre Tf-bre (Jp)	Limestone (Kafipucano)
- 1 F E	Grey clay + Py	White clay + Py	Silicified & Py diss. (float)	Silicified & Py diss. (float)	Silicified & Py diss. (float)	Silicified & Py diss.	Mn pod in limestone
SEDIMENT	Some As (Iow)	Some Au (low)	Some Au As(low)	Some Au (low)	Some As (low)	Some Au As(low)	
PAINING	Gold not detected	Gold not detected	Gold not detected	Gold not detected	Gold not detected	Gold not detected	l
LOCATION	Southern part	Southern part Sankanbawang (branch of Cima- ratiga)	Southern part	Northern part (upper reaches of Cipakuhaji)	Northern part (upper reaches of Cikaso)	NW part (up- per reaches of Ciwulan Wetan)	NE part
J W W	Cipamutuan	Sankanbawang	Cimaratiga	Cipongol	Karangjambu (Karangjambe p	Gn. Karang N

4-3 Stream Sediment Geochemistry

4-3-1 Sampling and Chemical Analysis

Stream sediment geochemistry was carried out in the first phase for the purpose of defining hidden mineralized zones which would otherwise be undetected by geological survey, as well as for clarifying the extension of mineral occurrences known through the geological survey.

Fine sand samples of -80 mesh were collected from sediments in major channels and some of the bigger tributaries. The number of stream sediment samples collected was 209, which corresponds to a sampling density of approximately one sample per 0.8 km². The samples, after being air-dried in the field, were analyzed at Chemex Labs Ltd. for 12 elements; Au, Ag, Cu, Pb, Zn, As, Sb, Hg, P, Cr, Mn and Ba. The methods of analysis and limits of detection are shown in Table 2-10.

4-3-2 Anomalies of Stream Sediment Geochemistry

(1) Statistical Data Analysis

The same methods and procedures of stream sediment geochemistry in the Salopa area were applied in the Sidamulih area.

These results were integrated together, and several anomalous zones, though not significant, were picked up. The distribution of geochemical anomalies was drawn by computer shown in the appendices.

(2) Anomalies of Stream Sediment Geochemistry

Cipamutuan: Au anomaly of stream sediments has not been found at this locality. Only one low level Zn anomaly was caught.

Sankanbawang: A couple of Au anomalies of stream sediments up to 58 ppb was caught at this locality. No other element has shown an anomalous value.

Cimaratiga: One Au anomaly (55 ppb) and some low level Cu anomalies of stream sediments were detected along S. Cimaratiga.

Cipongol: One low level Au anomaly was found at the upper reaches of S. Cipongol. It corresponds to the locality where silicified rock floats are distributed.

Karangjambu: Only a couple of low level As anomalies were found in this locality.

Karangjambe: Several low level Cu anomalies were distributed along the upper reaches S. Cijulang-Wetan. One low level Au anomaly was also found at this locality. These anomalies were interpreted to come from breccia ores contained in volcanic breccia of the Jampang Formation.

The other localities where some Au anomalies of stream sediments, though low level, were detected are as follows:

- ·A branch of S. Cijulang-Wetan
- ·Binangun (upper reaches of S. Cisandari)
- ·Upper reaches of S. Cinangkerok
- ·Cimonggu

All of these anomalies are low level and sporadic. No significant anomalous value of Ag and Sb has been detected in the Sidamulih area.

4-4 Panning Survey

4-4-1 Sampling and Heavy Mineral Identification

Panning prospecting was carried out in the Sidamulih area in the first phase. Fifty-four panned samples were checked in the Sidamulih area.

4-4-2 Anomalies of Panning

Gold has not been detected in pan concentrate samples in the Sidamulih area this phase. Heavy minerals observed in pan concentrates are: epidote, zircon, ilmenite, magnetite, pyrite and iron oxide.

Pyrite and limonite were frequently found in the following three localities:

- ·Cipamutuan
- ·Sankanbawang
- ·Cimaratiga

Clay alteration zones with pyrite dissemination occur in the former two localities. Pyrite and limonite were thought to be derived from these alteration zones.

4-5 Discussion

*

It became clear through the survey that the gold ores which had been known at Karangjambe and other localities in the Sidamulih area were ore breccias contained in the volcanic breccia of the Jampang Formation. They were mixed into the breccia when the host rock was formed. It means that the original ores were formed much older than the Jampang Formation. They are a kind of reworked ore. Geochemical gold anomalies which were deemed to be found in the past exploration in this area might come from such reworked origin. They are false ones consequently.

Grey to light grey clay zones occur in the central-southern part of the survey area. The results of geochemical survey in the first phase showed that the level of Au anomaly was very low. It was interpreted that the clayey alteration was formed by a geothermal activity.

Chapter 5 Cisasah Area

5-1 Outline of the Survey Area

The Cisasah area is located about 40 km south-southwest of Tasikmalaya. It is facing the Indian Ocean. The area lies along the lower reaches of S. Ciwulan and S. Cilangla in the southwestern part of the study area. The altitude of the area is not high; most of the area is situated between 50 and 250 m above sea level.

The area lies geologically among the distribution of volcanic rocks and pyroclastic rocks of the Jampang Formation. The Kalipucang limestone occurs locally among the Cisasah area. Calcareous sandstone of the Bentang Formation covers these rocks mainly in the western and eastern parts of the area. The general trend of these formations is nearly NE-SW with minor disorders.

Based on the results of the existing geological information and photogeological analysis on the JERS-1 SAR images, this area was selected for the field survey area in the first phase. The survey covered over a rectangular area of 312 km². The field works in the first phase were composed of geological survey, stream sediment sampling and panning survey.

5-2 Geological Survey

5-2-1 Survey Method

The first phase field works in the Cisasah area consisted of geological survey and geochemical exploration. The area was selected based on the analysis of existing geological information and photogeological interpretation on the JERS-1 SAR images.

Prior to the field work, a series of drainage system maps of 1:10,000 scale was prepared from the compilation of existing topographic maps (1:50,000 and 1: 25,000) and satellite images. Several sets of GPS instruments were employed for locating major surveying points in the field.

In the course of the geological survey, panning survey and stream sediment sampling, a couple of mineralized areas was found. The route maps of 1:10,000 scale were produced during these surveys, using 50-meter tape with a Brunton-type compass. The important mineral showings and old workings were studied in much detail (sketches of 1:100 to 1:200), and samples were taken for laboratory analysis.

A total length of more than 235 km was explored during the survey in the Cisasah area, and the

geological information was compiled into geological maps of 1:25,000 scale. The geology and geologic profile of the Cisasah area are shown in Fig. 2-12.

The numbers of samples collected in the survey are: 401 stream sediment samples, 104 pan concentrate samples, more than 18 rock samples for thin sections and for whole rock analysis, 19 altered rock and clay samples for X-ray diffraction analysis and more than 45 ore samples for assay and polished sections. The results of the laboratory works are briefly summarized in Tables 2-4 to 2-11.

5-2-2 Geology and Geologic Structure

(1) Introduction

The geology of the Cisasah area is composed of the following three stratigraphic units:

- Andesitic to basaltic lava, volcanic breccia, tuff-breccia, dacitic tuff (Jampang Formation)
- Massive limestone (Kalipucang Formation)
- Calcareous sandstone with intercalations of tuff and limestone (Bentang Formation)

The general trend of these formations is NE-SW. They form a series of gentle foldings with the axes of NW-SE direction. Some faults which cut Neogene volcanic-sedimentary sequences are of the NE system. Intrusive bodies of granodiorite and quartz-porphyry occur in these formations.

On the basis of the photogeological analysis on the SAR images, the geologic structure of the Cisasah area is characterized by the development of lineaments trending NE direction.

(2) Stratigraphy

Jampang Formation

The Jampang Formation in the Cisasah area is composed of andesitic to basaltic volcanic rocks (Lower Member), and dacitic pyroclastic and volcanic rocks (Upper Member).

The Lower Member is mainly composed of volcanic breccia and lava of andesitic to basaltic composition. It occurs mainly along rivers. They are the oldest rocks in the study area. Volcanic breccia and andesite lava locally show propylitic alteration near intrusive bodies of granodiorite and quartz-porphyry.

The Upper Member of the Jampang Formation is widely distributed within and around the Cisasah

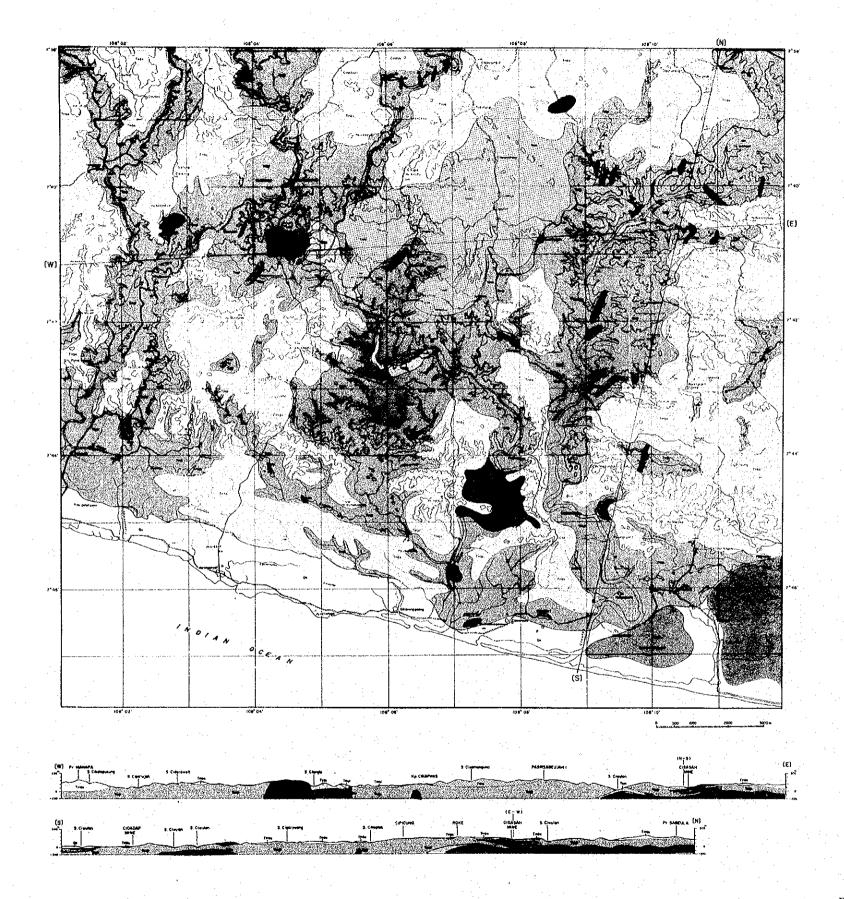
area. It is composed of dacitic tuff, fine tuff, pumice tuff, tuff-breccia and dacite lava. They show green color, and are called green tuffs. Green tuffs sometimes show montmorillonite, chlorite and zeolite alteration, especially in the eastern part of the study area.

Kalipucang Formation

The Kalipucang Formation is represented by massive, sometimes crystalline, reef limestone in the Cisasah area. It is distributed in the central part of the survey area. It also occurs widely to the east of the Cisasah area. Karst topography is developed in the Kalipucang limestone area.

Bentang Formation

The Bentang Formation is mainly composed of calcareous sandstone, tuffaceous sandstone and siltstone. Thin lenses of limestone are interbedded within calcareous sandstone. The Bentang Formation occurs all over the area, covering hills in the Cisasah area. The Jampang green tuffs are sometimes overlain directly by the Bentang calcareous sandstone in the survey area.


(3) Intrusive Rocks

Granodiorite

A granodiorite stock occurs at Pr. Tenjolaut in the northern part of the Cisasah area. It is a hollocrystalline granitic rock. The phenocrysts are composed of plagioclase, K-feldspar, quartz, hornblende and biotite. In the vicinity of this stock, several small stocks of diorite and quartz-porphyry occur. These are thought to be derived from the Tenjolaut granodiorite.

Quartz-Porphyry

Several small stocks and dikes of quartz-porphyry are distributed in the central to the western parts of the Cisasah area. They occur within the Jampang Formation. Quartz-porphyry is a porphyritic rock of acidic composition. Under the microscope, phenocrysts of plagioclase, quartz and hornblende were observed. Some part of a quartz-porphyry body shows an aphanitic dacitic appearance.

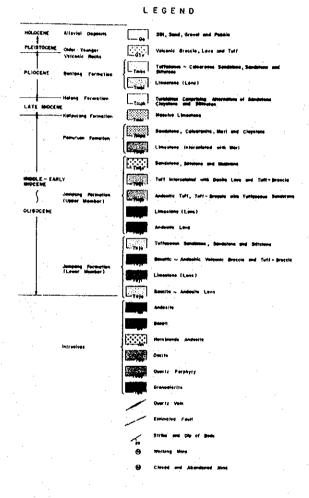


Fig. 2-12 Geology and Geologic Profile of the Cisasah Area

Whole Rock Analysis

Sixteen igneous rock samples were provided for whole rock analysis. The same methods of analysis in the Salopa area were applied in the Cisasah area.

(4) Geologic Structure

Fold Structure

The geologic structure of the Cisasah area shows monotonous, flat features. Only gentle foldings were observed in the survey area. They appear as the occurrences of volcanic breccia and andesite lava of the Lower Member of the Jampang Formation among the Upper Member along river beds. These foldings have a general axis of approximately NW-SE direction.

Fault

Faults of NW to NNW systems, though minor, were found within the Upper Member of the Jampang Formation in the eastern part of the survey area.

Faults of NE systems, which were picked up through the satellite image photogeological interpretation, have not been encountered during the geological survey. This type of fractures probably exists as igneous joints and/or minor faults of small displacement.