

Appendix 9 (3) Result of Nation-wide Groundwater Level Observation

< Eastern Province >

1

T)

Point No. No. G.W.D(m) G.	< Easte	rn Prov	ince >				<u> </u>			
E-1 A 7.60 8.80 8.50 10.40 9.30 9.50 3.40 3.40 B 4.60 7.80 9.20 10.20 12.20 10.60 3.50 3.50 E-2 A 7.90 10.00 10.30 10.30 11.40 9.40 3.60 3.40 B 5.60 8.90 10.40 12.00 13.30 11.00 4.80 4.40 E-3 A 7.40 9.60 8.30 9.30 9.50 7.90 5.90 4.70 B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E-4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 E-5 A 7.90 10.10 10.20 11.20 9.90 4.40 4.40 E-5 A 7.90 10.10 10.20 11.20 9.90 1.40 14.00	Point	Well	May. 199	Jun.	Jul.	Sep.	Oct.	Nov.	Feb. 1995	Mar.
B 4.60 7.80 9.20 10.20 12.20 10.60 3.50 3.50 E - 2 A 7.90 10.00 10.30 10.30 11.40 9.40 3.60 3.40 B 5.60 8.90 10.40 12.00 13.30 11.00 4.80 4.40 E - 3 A 7.40 9.60 8.30 9.30 9.50 7.90 5.90 4.70 B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 B 2.88 3.88 9.60 11.10 11.90 9.90 4.40 4.40 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 E - 6 A 4.70 5.53 10.00 11.20 9.00 3.50 3.40 <	No.	No.	G.W.D(m)	G.W.D(m)	G.W.D (m)	G.W.D(m)	G.W.D(m)	G.W.D(m)	G.W.D(m)	G.W.D(m)
E - 2 A 7.90 10.00 10.30 10.30 11.40 9.40 3.60 3.40 B 5.60 8.90 10.40 12.00 13.30 11.00 4.80 4.40 E - 3 A 7.40 9.60 8.30 9.30 9.50 7.90 5.90 4.70 B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 7.70 6.70 B 4.53 14.20 10.70 11.30 10.70 3.50 3.40	E - 1	Α	7.60	8.80	8.50	10.40	9.30	9.50	3,40	3,40
B 5.60 8.90 10.40 12.00 13.30 11.00 4.80 4.40 E - 3 A 7.40 9.60 8.30 9.30 9.50 7.90 5.90 4.70 B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 B 2.88 3.88 9.60 11.10 11.90 9.90 4.40 4.40 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80		В	4.60	7.80	9.20	10.20	12.20	10.60	3.50	3,50
E - 3 A 7.40 9.60 8.30 9.30 9.50 7.90 5.90 4.70 B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 B 2.88 3.88 9.60 11.10 11.90 9.90 4.40 4.40 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50	E - 2	A	7.90	10.00	10.30	10.30	11.40	9.40	3.60	3.40
B 3.90 5.10 8.00 8.60 12.00 8.60 5.00 4.50 E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 B 2.88 3.88 9.60 11.10 11.90 9.90 4.40 4.40 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50		В	5.60	8.90	10.40	12,00	13.30	11.00	4.80	4.40
E - 4 A 4.95 6.97 8.35 9.35 9.75 9.35 3.91 3.50 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90	E - 3	A	7.40	9.60	8.30	9.30	9.50	7.90	5.90	4.70
B 2.88 3.88 9.60 11.10 11.90 9.90 4.40 4.40 E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.70 11.60 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90		В	3.90	5.10	8.00	8.60	12.00	8.60	5.00	4.50
E - 5 A 7.90 10.10 10.20 11.20 8.50 10.70 7.70 6.70 B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.00 B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58	E-4	Α	4.95	6.97	8.35	9.35	9.75	9.35	3.91	3.50
B 4.53 14.20 10.70 10.70 11.30 10.70 8.60 7.80 E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.30 B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90		В	2.88	3.88	9,60	11.10	11.90	9.90	4.40	4.40
E - 6 A 4.70 5.53 10.00 13.00 11.20 9.00 3.50 3.40 B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.30 B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 <td< td=""><td>E - 5</td><td>A</td><td>7.90</td><td>10.10</td><td>10.20</td><td>11.20</td><td>8.50</td><td>10.70</td><td>7.70</td><td>6.70</td></td<>	E - 5	A	7.90	10.10	10.20	11.20	8.50	10.70	7.70	6.70
B 4.80 7.70 10.60 11.90 12.60 9.80 4.20 3.90 E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.30 B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20		В	4,53	14.20	10.70	10.70	11.30	10.70	8.60	7.80
E - 7 A 4.80 4.85 12.00 12.00 14.00 11.00 5.80 4.70 B 5.33 6.33 7.80 8.80 9.90 8.40 6.20 4.50 E - 8 A 7.30 16.30 11.60 11.60 11.60 19.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90 7.90 9.90 7.90 6.40 6.20 6.20 6.4	E - 6	A	4.70	5.53	10.00	13.00	11.20	9.00	3.50	3.40
E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.90 9.90 9.90 9.30 E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.90 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00		В	4.80	7.70	10.60	11.90	12.60	9.80	4.20	3.90
E - 8 A 7.30 16.30 11.60 11.60 14.70 11.60 9.90 9.30 B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 E - 13 A 8.20 10.30 10.20 11.60 <t< td=""><td>E-7</td><td>Α</td><td>4.80</td><td>4.85</td><td>12.00</td><td>12.00</td><td>14.00</td><td>11.00</td><td>5.80</td><td>4.70</td></t<>	E-7	Α	4.80	4.85	12.00	12.00	14.00	11.00	5.80	4.70
B 7.30 9.35 9.90 11.10 9.60 10.10 6.60 6.40 E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 <		В	5.33	6.33	7.80	8.80	9.90	8.40	6.20	4,50
E - 9 A 3.13 6.20 9.90 11.00 12.40 11.60 5.58 5.40 B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40	E-8	·A	7.30	16.30	11.60	11.60	14.70	11,60	9.90	9.30
B 3.00 4.05 8.90 9.90 7.90 9.30 7.90 6.90 E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44		8	7.30	9.35	9.90	11,10	- 9.60	10.10	6.60	6.40
E - 10 A 5.75 7.98 9.78 10.40 11.70 10.00 5.40 4.50 B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80	E - 9	Α	3.13	6.20	9.90	11,00	12.40	11.60	5.58	5.40
B 3.25 4.30 9.25 9.40 10.60 9.20 6.40 6.20 E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60		В	3.00	4.05	8.90	9.90	7.90	9.30	7.90	6.90
E - 11 A 3.10 5.25 11.20 11.70 11.70 8.90 8.52 8.40 B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50	E - 10	Α	5.75	7.98	9.78	10.40	11,70	10.00	5.40	4.50
B 2.30 4.45 13.10 13.10 14.80 7.78 7.20 6.60 E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30		В	3,25	4.30	9.25	9.40	10.60	9.20	6.40	6.20
E - 12 A 5.40 7.40 9.90 10.70 13.90 10.20 6.00 5.60 B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30	E - 11	A	3.10	5.25	11.20	11.70	11.70	8.90	8,52	8.40
B 4.80 6.80 9.50 10.30 12.20 8.30 6.40 6.30 E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30		В	2.30	4.45	13.10	13.10	14,80	7.78	7.20	6.60
E - 13 A 8.20 10.30 10.20 11.60 13.90 9.40 8.60 7.80 B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30	E - 12	Α	5.40	7.40	9.90	10.70	13.90	10.20	6.00	5.60
B 6.80 9.00 9.90 11.20 12.60 10.20 7.40 7.40 E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30		В	4.80	6.80	9,50	10.30	12.20	8.30	6.40	6.30
E - 14 A 5.53 10.80 11.40 11.64 9.74 12.54 9.44 8.40 B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30	E - 13	A	8.20	10.30	10.20	11.60	13.90	9.40	8.60	7.80
B 3.10 4.20 12.30 13.90 13.20 12.00 11.80 10.60 E - 15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30		В	6.80	9.00	9.90	11.20	12.60	10.20	7 10	7.40
E-15 A 7.40 8.60 10.60 11.20 12.30 8.20 6.50 5.30	E - 14	Α	5.53	10.80	11.40	11.64	9.74	12.54	9.44	8.40
		В	3.10	4.20	12.30	13.90	13.20	12.00	11.80	10.60
B 4 - 10.10 10.60 11.90 8.60 5.40 4.40	E - 15	A	7,40	8.60	10.60	11.20	12.30	8.20	6.50	5.30
		В		-	10.10	10.60	11.90	8.60	5.40	4.40

(Note) G.W.D: Groundwater Depth from Surface.

Appendix 9(4) Result of Observation

Province: Eastern	Aqu	ifer:	Alluvium		German Land (m)
District: Chama	<u> </u>			ó	Groundwater Level (m) Well No.E-1A
Site Name: Rhama Hos.		Month	G.W.L(GL-m)		
	1	94May	7.6	2	
Diameter: 1250 mm	2	Jun	8.2	4	
Depth: 15 m	3	Jul	8.05		
Yield: 800 l/day	4	Sep	9	6	
Map No.	5	Oct	8.45	8	
Elevation: 760 m	6	Nov	8.55		
Grid Ref.: N=8760Km800m	7	95Feb	5.5	10	94 95
E=517Km0m	8	Mar	5.5		May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apo
Maximum Groundwater L	evel l	Fluctuat			
Province: Eastern		ifer:	Alluvium		
District: Chama	1 `				. Groundwater Level (m) Well No.E-1B
Site Nante: Bazim	No.	Month	G.W.L(GL-m)	0	
	1	94May	4.6	2	
Diameter: 1250 mm	2	Jun	6.2		
Depth: 11 m	3	Jul	6.9	4	
Yield: 1800 I/day	4	Sep	7.4	6	
Map No. 1133A3	5	Oct	8.4		
Elevation: 755 m	6	Nov	7.6	8	
Grid Ref.: N=8754Km0m	7	95Feb	4.05		
E=512Km250m	8	Mar	4.05	10	94 95
Maximum Groundwater L	_			1	May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr.
Province: Eastern		ifer:			
District: Lundazi	เสนุข	iter:	Gneiss		Groundwater Level (m) Well No.E-2A
Site Name: Mwata Sch.		<u> </u>	G.1/1/G1 1	0	Well No.E-2A
one traine, privata ocii,	1	Month	G.W.L(G1m)		
Diameter: 1250 mm	2	94May	7.9	2	
Depth: 14.5 m	$\frac{2}{3}$	Jun	8.95	4	
		Jul	9.1		
	4	Sep	9.1	6	情報事件事件的 《诗 》
Map No. 1133C1	5	Oct	9.65	8	
Elevation: 1.31 m	6	Nov	8.65		
Grid Ref.: N=8703Km600m	7	95Feb	5.75	10	94 95
E=527Km0m	8	Mar	5.65		May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mac Apr
Maximum Groundwater L					
Province: Eastern	Aqu	ifer:	Gneiss		
District: Lundazi	<u> </u>		r	0	Groundwater Level (m) Well No.E-28
Site Name: Mwata R.H.C.	No.	Month	G.W.L(GL-m)	U	
	1 1	94May	5.6	2	
	1				
Diameter: 1250 mm	2	Jun	7.25	انو	
Diameter: 1250 mm Depth: 14.5 m	 		7.25 8	4	
Diameter: 1250 mm Depth: 14.5 m Yield: 500 l/day	2	Jun		4 6	
Diameter: 1250 mm Depth: 14.5 m Yield: 500 l/day Map No. 1133C1	3	Jun Jul	8	6	
Diameter: 1250 mm Depth: 14.5 m Yield: 500 l/day Map No. 1133C1 Elevation: 1120 m	2 3 4	Jun Jul Sep	8 8.8		
Diameter: 1250 mm Depth: 14.5 m Yield: 500 l/day Map No. 1133C1	2 3 4 5	Jun Jul Sep Oct	8 8.8 9.45	6	
Diameter: 1250 mm Depth: 14.5 m Yield: 500 Vday Map No. 1133C1 Elevation: 1120 m	2 3 4 5 6	Jun Jul Sep Oct Nov	8 8.8 9.45 8.3	6	94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

Appendix (5) Result of Observation

Province: Eastern District: Lundazi	Aqu	ifer:	Gneiss	Groundwater Level (m) Well No.E-3A
Site Name: Council	No	Month	G.W.L(GL-m)	0 well No.E-3A
Site Prante, Council	1	94May	7.4	
Diameter: 1250 mm	2	Jun	8.5	
Depth: 15 m	3	Jul	7.85	
Yield: 1500 l/day	3			6
	-	Sep	8.35	
Map No. 1233A3	5	Oct	8.45	8
Elevation: 1130 m	6	Nov	7.65	10
Grid Ref.: N=8641Km400m	7	95Feb	6.65	94 95
E=520Km0m	8	Mar	6.05	May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L				
Province: Eastern	Aqu	ifer:	Gneiss	Griffalling Files Als
District: Lundazi				Groundwater Level (m) Well No.E-3B
Site Name: Mulla Sch.	No.	Month	G.W.L(GL-m)	
<u> </u>	1	94May	3.9	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Diameter: 1310 mm	2	Jun	4.5	
Depth: 15 m	3	Jul	5.95	
Yield: 1000 l/day	4	Sep	6.25	
Map No. 1233A3	5	Oct	7.95	6
Elevation: 1130 m	6	Nov	6.25	
Grid Ref.: N=8637Km900m	7	95Feb	4.45	8 1
E=518Km500m	8	Mar	4.2	94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L	evel l	luctuat	on(m) 4.05	may son the Mag Sep Oct Not Dec 11st recover 14
Province: Eastern	Αqυ	ifer:	Gneiss	
District: Lundazi				Groundwater Level (m) Well No.E-4A
Site Name:	No.	Month	G.W.L(GL-m)	
Chkomene W/L	1	94May	4.95	
Dianteter: 1160 mm	2	Jun	5.96	
Depth: 15 m	3	Jul	6.65	
Yield: 600 l/day	4	Sep	7.15	
Map No. 1232D2	5	Oct	7.35	6
Elevation: 1102 m	6	Nov	7.15	
Grid Ref.: N=8597Km0m	7	95Feb	4.43	8
E=486Km0m	8	Mar	4.23	95
Maximum Groundwater L				May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Province: Eastern		ifer:	Gneiss	
District: Lundazi			-	Groundwater Level (m) Well No.E-49
Site Name:	No	Month	G.W.L(GL-m)	0
Chkomene Vil.	1	'94May	2.88	
Diameter: 1160 mm	2	Jun	3.38	
Depth: 15 m	3	Jul	6.24	
Yield: 1200 l/day	4	Sep	6.99	4
Map No. 1232D2	5		7.39	
*		Oct		
	6	Nov	6.39	
Grid Ref.: N=8597Km400m	7	95Feb	3.64	94 95
E=486Km250m	8	Mar	3.64	May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L	evel I	·luctuat	ion(ni) 4.51	

Appendix 9(7) Result of Observation

and the second s				
Province: Eastern	Aqu	ifer:	Sandstone	
District: Jumbe				Groundwater Level (m) Well No.E-7A
Site Name: Jumbe Vil.	No.	Mouth	G.W.L(GL-m)	
	1	94May	4.8	2
Diameter: 1160 mm	2	Jun	4.83	
Depth: 15 m	3	Jul	8.4	
Yield: 600 l/day	4	Sep	8.4	
Map No. 1332A3	-5	Oct	9.4	8
Elevation: 600 m	6	Nov	7.9	
Grid Ref.: N=8530Km700m	7	95Feb	5.3	10 10 91 95
E=400Km700m	8	Mar	4.75	May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L			1	
Province: Eastern	Αqυ		Sandstone	
District: Jumbe	1,,42	iici.	Canasione	Groundwater Level (m) Well No.E-7B
Site Name: Manondo	No.	Month	G.W.L(GL-m)	0
She ivanie, wandhud	1		5.33	
Diameter: 1340 mm	2	94May		
	3	Jun	5.83	
Depth: 15 m		Jul	6.57	
Yield: 800 l/day	4	Sep	7.07	
Map No. 1332A3	5	Oct	7.62	6
Elevation: 600 m	6	Nov	6.87	
Grid Ref.: N=8530Km100m	7	95Feb	5.77	8 1 24 25 15 15 15 15 15 15 15 15 15 15 15 15 15
E=400Kra400ra	8	Mac	4.92	May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr
Maximum Groundwater L				
Province: Eastern	Aqu	ifer:	Granite	Commented Land (a)
District: Chipata	<u> </u>		<u> </u>	Groundwater Level (m) Well No.E-8A
Site Name: Maguya	No.	Month	G.W.L(GL-m)	
	1_1_	94May	7.3	
Diameter: 1470 mm	2	fun	11.8	▲
Depth: 18 m	3	Jul	9.45	6
Yield: 1000 I/day	4	Sep	9.45	8 - 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Map No. 1332D3	5	Oct	11	
Elevation: 1100 m	6	Nov	9.45	10
Grid Ref.: N=8468Km650m	7	95Feb	8.6	12 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
E=458Km500m	8	Mar	8.3	9.5 May Jun Jul Aug Sep Oct Now Dec Jan Feb Mat Apr
Maximum Groundwater L				
Province: Eastern	Aqu	ifer:	Gneiss	
District: Chipata	L			Groundwater Level (m) Well No.E-8B
Site Name: Nabvutika	No.	Month	G.W.L(GL-m)	
	1	94May	7.3	
Diameter: 1290 mm	2	Jun	8.33	
Depth: 15 m	3	Jul	8.6	
Yield: 1100 l/day	4	Sep	9.2	6
Map No. 1332D1	5	Oct	8.45	
Elevation: 1140 m	6	Nov	8.7	8 1
Grid Ref.: N=8495Km350m	7	95Fcb	}	
E=461Km350m	8	Mar	6.85	95
Maximum Groundwater L				May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mat Apr
L				

Appendix 9(8) Result of Observation

Province: Eastern District: Chadiza	Aqu	ifer:	Granite		Groundwater Level (m) Well No.E-9A
Site Name: Kumadzi Vil.	No.	Month	G.W.L(GL-m)	0	
	1	94May	3.13	2	
Dianteter: 1380 mm	2	Jun	4.67	4	
Depth: 15 m	3	Jul	6.52	4	
Yield: 1600 l/day	4	Sep	7.07	•	
Map No. 1432A2	5	Oct	7.77	6	
Elevation: 1044 m	6	Nov	7.37		
Grid Ref.: N=8448Km150m	7	95Feb	4.36	8	94 95
E=439KmS00m	8	Mar	4.27		94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
<u> </u>		L			may lift the was seport not see it it require the
Maximum Groundwater L					
Province: Eastern	Aqu	ifer:	Granite		Groundwater Level (m) Well No.E-9B
District: Chadiza		i		0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Site Name: Chadiza Sec.	No.		G.W.L(GL-m)	1	
	1	94May	3	2	
Diameter: 1370 mm	2	Jun	3.53	3	kiti laki idaki i
Depth: 15 m	3	Jul	5.95		
Yield: 1200 l/day	4	Sep	6.45	4	
Map No. 1432A2 .	5	Oct	5.45	5	
Elevation: 1052 nt	6	Nov	6.15	6	
Grid Ref.: N=8444Km250m	7	95Feb	5.45	7	95
E=438Km450m	8	Mar	4.95		94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L	evel l	Fluctuat	ion(m) 3.45		
Province: Eastern	Αqu	ifer:	Granite		
District: Chadiza	<u> </u>			_	Groundwater Level (m) Well No.E-10A
Site Name: Chzombe	No.	Month	G.W.L(GL-m)	0	Charles and the second of
	1	94May	5.75	ż	
Diameter: 1160 mm	2	Jun	6.87		
Depth: 15,35 m	3	Jul	7.77	4	
Yield: 600 l/day	4	Sep	8.08	- 6	
Map No. 1432A2	5	Oct	8.73		
Elevation: 1049 m	6	Nov	7.88	8	
Grid Ref.: N=8431Km750m	7	95Feb	5.58	10	
E=437Km250m	8	Mar	5.13	10	91 95
Maximum Groundwater L	evel	Fluctuat			May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Province: Eastern		ifer:	Granite		die en
District: Chadiza					Groundwater Level (m)
Site Name: Basic Sch.	No.	Month	G.W.L(GL-m)	0 7	Well No.E408
one rance, busic ben.	1	94May	3.25	1	
Diameter: 1160 mm	2	Jun	3.78	2	
Depth: 12.2 m	$\frac{2}{3}$		6.25	3	
Yield: 400 l/day	1 4	Jul Sep	6.33	1 1	
Map No. 1432A2	5			4	
		Oct	6.93	5	
Elevation: 1055 m	6	Nov	6.23	6	
Grid Ref.: N=8428Km700m	17	95Fcb	4.83	7.1	94 95
E=439Km150m	8	Mar	4.73		May fun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwaler L	evel	Fluctuat	ion(ni) 3.68	L	

Appendix 9(9) Result of Observation

Province: Eastern	Aqu	iler:	Gneiss	
District: Katette				Groundwater Level (m) Well No.E-11A
Site Name: Basic Sch.	No.	Month .	G.W.L(GL-m)	O
	1	94May	3.1	
Diameter: 1160 mm	2	ไขก	4.2	
Depth: 15 m	3	Jul	7.2	
Yield: 1200 I/day	4	Sep	7.4	
Map No. 1432A1	5	Oct	7.4	1 6 144 1 1
Elevation: 1061 m	6	Nov	6.0	
Grid Ref.: N=8442Km750m	7	95Feb	5.8	8 94
E=398Km200m	8	Mar	5.8	May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Maximum Groundwater L				3
Province: Eastern	Aqu		Gneiss	
District: Katelle	1		0110130	Groundwater Level (m) Well No.E-11B
Site Name: Katete Boma	No.	Month	G.W.L(GL-m)	0
	1	94May	2.3	2 2
Diameter: 1160 mm	2	Jun	3.4	
Depth: 15 m	3	Jul	7.7	
Yield: 1300 l/day	4	Sep	7.7	
Map No.	5	Oct	8.6	-
Elevation: 1052 m	6	Nov	5.0	8 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
Grid Ref.: N=8442Km550m	7	95Feb	4.8	
E=398Km750m	8	Mar	4.5	94 95
Maximum Groundwater L				May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Province: Eastern	Aqu		Gneiss	3
District: Sinda	Logu	iici.	Oliciss	Groundwater Level (m)
Site Name: Post Off.	No.	Month	G.W.L(GL-m)	-I WEIL NO.E-IZA
one traine. I dit on.	1	94May	5.4	
Diameter: 1160 mm	2	Jun	6.4	
Depth: 15 m	3	Jul	7.7	
Yield: 1200 l/day	4	Sep	8.1	
Map No. 1431B2	5	Oct	9.7	6
Elevation: 1100 m	6	Nov		
			7 X	18
Grid Ref: N=8428Km750m			7.8	8
Grid Ref.: N=8428Km750m F=365Km450m	7	95Feb	5.7	10
E=366Km450m	7	95Feb Mar	5.7 5.5	10 91 95 95 95 No. 10 Aug Sac Oct Viv. Dig 95
E=366Km450m Maximum Groundwater L	7 8 evel F	95Feb Mar luctuation	5.7 5.5 on(m) 4.3	10 91 95 95 95 No. 10 Aug Sac Oct Viv. Dig 95
E=366Km450m Maximum Groundwater L Province: Eastern	7	95Feb Mar luctuation	5.7 5.5	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
E=366Km450m Maximum Groundwater Le Province: Eastern District: Sinda	7 8 evel F Aqu	95Feb Mar luctuation ifer:	5.7 5.5 on(m) 4.3 Granite	3 10 91 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-128
E=366Km450m Maximum Groundwater L Province: Eastern	7 8 evel F Aqu	95Feb Mar Juctuation ifer:	5.7 5.5 on(m) 4.3 Granite G.W.L(GL-m)	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater Le Province: Eastern District: Sinda Site Name: Chassa	7 8 evel F Aqu No.	95Feb Mar luctuation ifer: Month 94May	5.7 5.5 en(n) 4.3 Granite G.W.L(GL-m) 4.8	3 10 91 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-128
E=366Km450m Maximum Groundwater L Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm	7 8 evel F Aqu No. 1 2	95Feb Mar luctuation ifer: Month 94May Jun	5.7 5.5 on(n) 4.3 Granite G.W.L(GL-m) 4.8 5.8	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater L Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m	7 8 evel F Aqu No. 1 2 3	95Feb Mar luctuation ifer: Month 94May Jun Jul	5.7 5.5 on(m) 4.3 Granite 6.W.L(GL-m) 4.8 5.8 7.2	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater Le Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m Yield: 600 Vday	7 8 evel F Aqu No. 1 2 3	95Feb Mar luctuation ifer: Month 94May Jun Jul Sep	5.7 5.5 on(n) 4.3 Granite G.W.L(GL-m) 4.8 5.8 7.2 7.6	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater Li Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m Yield: 600 l/day Map No. 1431B2	7 8 evet F Aqu No. 1 2 3 4 5	95Feb Mar luctuati ifer: Month 94May Jun Jul Sep Oct	5.7 5.5 on(n) 4.3 Granite G.W.UGL-m) 4.8 5.8 7.2 7.6 8.5	3 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater Li Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m Yield: 600 l/day Map No. 1431B2 Elevation: 1040 mt	7 8 evel F Aqu No. 1 2 3 4 5	95Feb Mar luctuation ifer: Month 94May Jun Jul Sep Oct Nov	5.7 5.5 on(n) 4.3 Granite G.W.L(GL-m) 4.8 5.8 7.2 7.6 8.5 6.6	Groundwater Level (m) Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater L Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m Yield: 600 l/day Map No. 1431B2 Elevation: 1040 mt Grid Ref.: N=8424Km600m	7 8 evel F Aqu No. 1 2 3 4 5 6 7	95Feb Mar luctuati ifer: Month 94May Jun Jul Sep Oct Nov 95Feb	5.7 5.5 on(m) 4.3 Granite 6.W.L(GL-m) 4.8 5.8 7.2 7.6 8.5 6.6 5.6	Groundwater Level (m) Groundwater Level (m) Well No.E-12B
E=366Km450m Maximum Groundwater Li Province: Eastern District: Sinda Site Name: Chassa Diameter: 1160 mm Depth: 14.5 m Yield: 600 Vday Map No. 1431B2 Elevation: 1040 mt	7 8 8 evet F Aqu No. 1 2 3 4 5 6 7 8	95Feb Mar luctuati ifer: Month 94May Jun Jul Sep Oct Nov 95Feb Mar	5.7 5.5 on(n) 4.3 Granite G.W.L(GL-m) 4.8 5.8 7.2 7.6 8.5 6.6 5.6 5.6	Groundwater Level (m) Groundwater Level (m) Well No.E-12B Well No.E-12B 10 94 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

Appendix 9(10) Result of Observation

Province:	Eastern	Αqυ	ifer:	Gneiss		Commission to and fact
District:	Peatauke		<u> </u>		0	Groundwater Level (m) Well No.E-13A
Site Name:	Khande	No.	Month	G.W.L(GL-m)	Н .	
<u>;</u>		1	94May	8.2] 2	
Diameter:	1160 mm	2	Jun	9.25	4	
Depth:	18.8 m	3	Jul	9.2	6	
Yield:	700 l/day	4	Sep	9.9	8	
Map No.	1431A4	5	Oct	11.1	10	
Elevation:	970 m	6	Nov	8.8		
Grid Ref.:	N=8415Km100m	7	95Feb	8.4	12	94 95
<u> </u>	E=328KmS00m	8	Mar	8	[[May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Af
Maximum	Groundwater L	evel i	Fluctuat	ion(m) 3.05	ـــا[
Province:	Eastern	Aqu	ifer:	Gneiss		
District:	Pelauke		11		, 0	Groundwater Level (m) Well No.E-13B
Site Name:	Ifosi	No.	Month	G.W.L(GL-m)	" [
		1	94May	6.8	2	
Diameter:	1160 mm	2	Jun	7.9	j :	
Depth:	16.6 m	3	Jul	8.35	4	
Yield:	600 I/day	4	Sep	9	6	
 	1431A4	5	Oct	9.7	i !	
Elevation:	1018 m	6	Nov	8.5	8	
	N=8414Km500m	1	95Feb	7.1	10	
	E=332Km400m	8	Mar	7.1	 	94 95
Maximum	Groundwater L				{	May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr
Province:	Eastern	Aqu		Gneiss	<u> </u>	
District:	Myimba	```		Oliviss		Groundwater Level (m) Well No.E-14A
Site Name:		No	Month	G.W.L(GL-m)	0 (Well No.E-14A
one Hame,	Dasic.oc.	1	94May	5.53	2	
Diameter:	1160 mm	2	Jun	8.17	2	
Depth:	15.5 m	3	Jul	8.47	4	
Yield:	1900 l/day	4	Sep	8.59		
Map No.	1430D2	5	Oct	7.64	6	
Elevation:	708 m	6	Nov	9.04	8	
		7				
Ond Kei		8	95Feb	7.49 6.97	10 1	94 95
Maniamar	E=265Km00m		Mar			May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
Province:	Groundwater L					:
	Eastern	Aqu	iter:	Gneiss		Groundwater Level (ni)
District:	Nyimba Boma		r	I	0 7	Groundwater Level (m) Well No.E-14B
Site Name:	Nyimba Boma		Month	G.W.L(GL-m)		
***		1	94May	3.1	2	
Diameter:	1160 mm	2	Jun	3.65	4	
Depth:	15 m	3	Jul	7.7		
Yield:	1000 l/day	4	Sep	8.5	6	
Map No.	1430D2	5	Oct	8.15	8	
Elevation:	718 ու	6	Nov	7.55	"	
		-	95Feb	7.45	10	
Grid Ref.:		7			1 10	701
Grid Ref.:	N=8389Km0m E=265Km750m Groundwater Li	8	Mar	6.85		94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

Appendix 9(11) Result of Observation

Province: Eastern	Aqu	ifer:	Granite		Camatalantantan
District: Kacholola	L.			0	Groundwater Level (m) Well No.E-15A
Site Name: Mombe Sch.	No.	Month	G.W.L(GL-m)	: .	
		94May	7.4	2	
Diameter: 1370 mm	2	Jun	8.0	1	
Depth: 15 m	3	Jul	9.0		
Yield: 600 l/day	4	Sep	9.3	.6	
Map No. 1430D3	5	Oct	9.9	8	
Elevation: 880 m	6	Nov	7.8	io	
Grid Ref.: N=8365Km800m	7	95Feb	7.0		94 95
E=240Km450m	8	Mar	6.4		May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Api
Maximum Groundwater L	evel	Fluctuat	ion(m) 3.5		
Province: Eastern	Aqu	ifer:	Granite		
District: Kasholala	1 .		•	Ó 1-	Groundwater Level (m) Well No.E-15B
Site Name: Mwana	No.	Month	G.W.L(GL-m)		
	1	94May		2	
Diameter: 1500 mm	2	Jun		4	
Depth: 15 m	3	Jul	10.1	6	
Yield: 600 l/day	4	Sep	10.8	8	
Map No. 1430D3	5	Oct	11.0	ĬĬ	
Elevátion: 890 m	6	Nov	9.4	10	
Grid Ref.: N=8366Km700m	7	95Feb	7.8	12 L	
E=242Km500m	8	Mar	7.3	1	94 May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr
Maximum Groundwater L	evěli	Fluctuat	ion(m) 3.8		ter trag orb test not test test tensial tel

Appendix 9(6) Result of Observation

	Southern	Aqu	ifer:	Gneiss		Groundwater Level (m) Well No. S-5A
	Choma				0	Otopiiquaret Feses (m) M-811 No 2-27
Site Name:	Batoka B.Sch.	No.	Month	G.W.L(GL-m)	•	
		l	94May	10.9		
Diameter:	1100 mm	2	Jun	11.5	5	
Depth:	m	3	Jul	11.9		
Yield:	Vday.	4	Sep	12.9	10	
Map No.	1627C1	5	Oct	13.7	10	
Elevation:	1190 m	6	Nov	13.6		•
	N=\$164Km650m	7	95Feb	13.6	15	94 %5
F		8	Mar	13.7		May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Ap
	E=511Km700m					May Jun Jul Aug Sep Oct Nov Dec Jan Fee Mar A
	Groundwater L					
Province:		Aqu	ifer:	Gneiss		Groundwater Level (m) Well No.S-5B
District:	Monze				0 1	Orogina water Ecses (m) Well No.8-3B
Site Name:		No.	Month	Q.W.L(GL-m)	2	
Bato	ka A.Comp.	1	94May	9.6		
Diameter:	1100 mm	2	Jun	10.4	4	
Depth:	14.8 m	3	Jul	11.8	6	
Yield:	1/day	4	Sep	13,7	8	
Map No.	1627C1	5	Oct	13.0	10	
Elevation:	1182 m	6	Nov	14.0	12	
	N=8146Km950m	7	95Feb	10.7	14	
Olia Kei		8	Mar	10.0	14	94 95
	E=5118/m650m	·			1	May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Ap
	Groundwater L					· · · · · · · · · · · · · · · · · · ·
Province:	Southern	Aqu	ifer:	Sandstone		Groundwater Level (m)
District:	Sinázonswe	<u> </u>	·		l o,	Groundwater Level (m) Well No.S-6A
Site Name:	Siapaka Vil.		Month	G.W.L(GL-m)		
		1	94May	9.2	5	
Diameter:	1100 mm	2	Jun	9.2]	
Depth:	m	3	Jul	15.8	10	
Yield:	l/day	4	Sep	15.7	"	
Map No.	1727A2	5	Oct	15.7] 15	
Elevation:	552 m	6	Nov	15.7	1 '	•
	N=8102Km800m	7	95845	11.6	20	
	E=545Km-100m	8	Mar	12.4	1 20	94 95
Maximum	Groundwater L	erei			1	May Jun Jul Aug Sep Oct Nov Dee Jan Feb Mar Ap
Province:	Southern		ifer:	Sandstone	1	· · · · · · · · · · · · · · · · · · ·
	Sinazonswe	- ^q'	ilici.	Danasione	1	Groundwater Level (m) was seen
District:		 	1	Tana a	0	Well No.S-6B
Site Name:		No.	+	G.W.L(GL-m)		
	aka Comp.	1 1	94May		5	
Diamèter:	1200 mm	2	Jun	15.8	ļ	
Depth:	16 m	3	Jul	10.8	10	
Yield:	Vđay	1	Sep	12.9]	
Map No.	1727A2	5	Oct	11.5] 15	
Elevation:	559 m	6	Nov	13.1]	
		1-			20	
·	N=8102Km900m	17	1 33140	11.7	1.0	
Grid Ref.:	N=8102Km900m E=545Km650m	8	95Feb Mar	13.0	"	94 95 May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Ap

JAPAN INTERNATIONAL COOPERATION AGENCY

REPUBLIC OF ZAMBIA MINISTRY OF ENERGY AND WATER DEVELOPMENT

THE STUDY

ON

THE NATIONAL WATER RESOURCES MASTER PLAN

IN

THE REPUBLIC OF ZAMBIA

FINAL REPORT
SUPPORTING REPORT [V]

WELL INVENTORY SURVEY

OCTOBER, 1995

YACHIYO ENGINEERING CO., LTD. (YEC)

THE STUDY ON NATIONAL WATER RESOURCES MASTER PLAN IN THE REPUBLIC OF ZAMBIA

SUPPORTING REPORT (V) WELL INVENTORY SURVEY

Table of Contents

Table of Contents List of Tables List of Figures

	CHAPTER 1	INTRODUCTION	V-1
	1.1	Scope	V-1
	1.2	Contents of Report	V-1
N	CHAPTER 2	DEVELOPMENT OF NEW DATA-BASE SYSTEM	V-2
<u>.</u>	2.1	Purpose of New Data-Base System	
	2.2	Existing Borehole Data	
	2.3	Survey Item	V-2
	2.4	Survey Method	V-2
	2.5	Data-Base Programme	
	OHADTED 2	PUMPING TEST ANALYSIS	V 0
	3.1	Purpose of Analysis	
	3.2	Method of Analysis	
	3.3	Results of Analysis	
	•	3.3.1 Transmissivity	
		3.3.2 Coefficient of Permeability	
		3.3.3 Specific Yield	V-12
			•
• .	CHAPTED A	GROUNDWATER PRODUCTION SURVEY	
	CHAITER	BY DISTRICT	V-15
		DI PISIRIUI	V 15
	4.1	Purpose of Survey	
•	4.2	Survey Item and Method	V-13
	4.3	Survey Result	¥-10
Pn	•	4.3.1 Number of Boreholes and Shallow Wells by District	
()	and the second second	4.3.2 Rate and Ratio of Rural Water Supply	V-16

CHAPTER 5	IMFORMTION DERIVED FROM DATA-BASE	V-21
5.1	Lithology of Aquifer	V-21
5.2	Hydraulic Characteristics of Aquifer	
5.3	Depth of Main Groundwater Supply	
5.4	Thickness of Aquifer	V-28
5.5	Depth of Layer Boundary and Lithology	V-32
5.6	Groundwater Level of Borehole	V-34
5.7	Borehole Design	
5.8	Yield of Borehole	V-48
5.9	Quality of Water	V-48
5,10	Purpose of Groundwater Usage	V-50
CHAPTER 6	RECOMMENDATION	V-53
6.1	Effective Use of Borehole Data-Base	V-53
6.2	Execution of Adequate Pumping Test	V-53
	6.2.1 Execution of Step Draw-down Test	V-53
	6.2.2 Proper Pumping Test for Aquifer Constants	V-54

Appendices

List of Tables

Table 2-2 Code for Data-base (2) V-8 Table 3-1 Transmissivity by Pumping Test Analysis V-10 Table 3-3 Specific Yield by Pumping Test Analysis V-12 Table 3-3 Specific Yield by Pumping Test Analysis V-12 Table 4-1 Number of Boreholes and Shallow Wells V-17 Table 4-2 Groundwater Supply Ratio in Rural Areas by Province V-17 Table 4-3 Groundwater Supply Ratio in Rural Areas by Province V-17 Table 5-1 Litho-stratigraphic Unit of Aquifer V-21 Table 5-2 Litho-stratigraphic Unit of Aquifer V-22 Table 5-3 Specific Capacity V-22 Table 5-4 Transminissivity (the same as specific Capacity) V-2 Table 5-5 Coefficient of Permeability V-2 Table 5-6 Representative Value of Specific Yield V-2 Table 5-8 Depth of Main Groundwater Supply V-2 Table 5-9 Depth of Main Groundwater Supply V-2 Table 5-10 Thickness of Main Aquifer V-3 Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3 Table 5-12 Depth for Surface at Which Water Rises at Drilling V-3 Table 5-13 Greatest Depth to Which Water Rises at Drilling V-3 Table 5-14 Greatest Depth to Which Water Rises at Drilling V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-19 Length of Plain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Horn Surface to Bottom of DwA(2) V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	and the second second		11.7
Table 3-1 Transmissivity by Pumping Test Analysis. V-12 Table 3-2 Coefficient of Permeability by Pumping Test Analysis. V-12 Table 3-3 Specific Yield by Pumping Test Analysis. V-12 Table 4-1 Number of Boreholes and Shallow Wells. V-17 Table 4-2 Groundwater Supply Ratio in Rural Areas by Province V-19 Table 4-3 Groundwater Supply Ratio in Rural Areas. V-20 Table 5-1 Lithology of Aquifer. V-2: Table 5-2 Table 5-3 Specific Capacity. V-2: Table 5-5 Coefficient of Permeability. V-2: Table 5-6 Representative Value of Specific Yield. V-2: Table 5-7 Depth of Main Groundwater Supply V-2: Table 5-8 Depth of Upper Limit of Main Aquifer. V-2: Table 5-10 Table 5-11 Table 5-11 Depth from Surface at Which Water First Struck at Drilling. V-3: Table 5-12 Depth from Surface to Which Water Rises at Drilling. V-3: Table 5-15 Table 5-16 Table 5-16 Table 5-17 Total Depth of Existing Borehole. V-4 Table 5-18 Length of Plain Part of Casing. V-4 Table 5-20 Table 5-20 Depth from Surface to Bottom of Casing. V-4 Table 5-20 Table 5-20 Table 5-21 Table 5-21 Table 5-22 Table 5-22 Table 5-23 Table 5-24 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Figure 3-1 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-3 Figure 3-4 Figure 3-4 Figure 3-4 Figure 3-5 Figure 4-5 Figure 4-7 Figure 4-7 Figure 4-7 Figure 4-7 Figure 4-7 Figure 4-8	Table 2-1	Code for Data-base (1)	V-1
Table 3-2 Coefficient of Permeability by Pumping Test Analysis. V-12 Table 3-3 Specific Yield by Pumping Test Analysis. V-12 Table 4-1 Number of Boreholes and Shallow Wells. V-17 Table 4-2 Groundwater Supply Ratio in Rural Areas by Province. V-15 Table 4-3 Groundwater Supply Ratio in Rural Areas by Province. V-15 Table 5-1 Lithology of Aquifer. V-22 Table 5-2 Litho-stratigraphic Unit of Aquifer. V-22 Table 5-3 Specific Capacity. V-22 Table 5-4 Transminssivity (the same as specific Capacity). V-22 Table 5-5 Coefficient of Permeability. V-22 Table 5-6 Representative Value of Specific Yield. V-27 Table 5-7 Depth of Main Groundwater Supply. V-27 Table 5-8 Depth of Lower Limit of Main Aquifer. V-27 Table 5-9 Depth of Lower Limit of Main Aquifer. V-28 Table 5-10 Thickness of Main Aquifer. V-37 Table 5-11 Depth from Surface at Which Water First Struck at Drilling. V-37 Table 5-12 Depth of Water from Surface before Pumping Test. V-37 Table 5-13 Total Depth of Existing Borehole. V-4 Table 5-15 Total Depth of Existing Borehole. V-4 Table 5-16 Depth from Surface of Pump Intake. V-4 Table 5-17 Diameter. V-4 Table 5-19 Depth for Surface to Bottom of Casing. V-4 Table 5-20 Depth from Surface of Borehole Depth for Surface of Borehole Depth From Surface of Surface. V-4 Table 5-20 Depth from Surface of Borehole Depth from Surface of Surface. V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing. V-4 Table 5-22 Tidel at Pumping Test. V-3 Table 5-24 Purpose of Groundwater Usage. V-5 Figure 2-1 Borehole Completion Form of DWA(1). V-3 Figure 3-2 Transmissivity by Pumping Test Analysis. V-1 Figure 3-3 Specific Yield by Pumping Test Analysis. V-1 Figure 3-4 Specific Yield by Pumping Test Analysis. V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1		Code for Data-base (2)	V-8
Table 3-3 Specific Yield by Pumping Test Analysis. V-12 Table 4-1 Number of Boreholes and Shallow Wells. V-17 Table 4-2 Groundwater Supply Ratio in Rural Areas by Province V-18 Table 4-3 Groundwater Supply Ratio in Rural Areas. V-20 Table 5-1 Litho-stratigraphic Unit of Aquifer. V-21 Table 5-2 Litho-stratigraphic Unit of Aquifer. V-21 Table 5-3 Specific Capacity V-2 Table 5-4 Transmmissivity (the same as specific Capacity) V-2 Table 5-5 Coefficient of Permeability. V-2 Table 5-6 Representative Value of Specific Yield V-2 Table 5-7 Depth of Main Groundwater Supply V-2 Table 5-8 Depth of Lower Limit of Main Aquifer V-2 Table 5-9 Depth of Lower Limit of Main Aquifer V-3 Table 5-10 Thickness of Main Aquifer V-3 Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3 Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3 Table 5-13 Greatest Depth to Which Water Rises at Drilling V-3 Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-19 Length of Pain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Table 5-23 Water Quality V-4 Table 5-24 Borehole Completion Form of DWA(1) V-3 Figure 2-1 Borehole Completion Form of DWA(2) V-4 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Figure 3-1 Breakdown of Lithology Analysed V-5 Figure 3-1 Fransmissivity by Pumping Test Analysis V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1	- 777	Transmissivity by Pumping Test Analysis	V-10
Table 4-1 Number of Boreholes and Shallow Wells. V-17 Table 4-2 Groundwater Supply Ratio in Rural Areas by Province. V-18 Table 4-3 Groundwater Supply Ratio in Rural Areas. V-20 Table 5-1 Lithology of Aquifer. V-21 Table 5-2 Litho-stratigraphic Unit of Aquifer. V-21 Table 5-3 Specific Capacity V-22 Table 5-4 Transmissivity (the same as specific Capacity) V-22 Table 5-5 Coefficient of Permeability. V-22 Table 5-6 Representative Value of Specific Yield V-27 Table 5-7 Depth of Main Groundwater Supply V-22 Table 5-9 Depth of Lower Limit of Main Aquifer V-23 Table 5-10 Thickness of Main Aquifer V-23 Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3 Table 5-12 Depth of Water from Surface to Which Water Rises at Drilling V-3 Table 5-13 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Length of Plain Part of Casing V-4 Table 5-19 Length of Plain Part of Casing V-4 Table 5-20 Depth for Surface to Bottom of Casing V-4 Table 5-21 Diameter Of United Portion of Borehole below Casing V-4 Table 5-22 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 3-2 Figure 3-3 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-2 Figure 4-2 Figure 4-2 Forundwater Supply Ratio in Rural Areas V-1		Coefficient of Permeability by Pumping Test Analysis	V-12
Table 4-2 Groundwater Supply Ratio in Rural Areas by Province V-15 Table 4-3 Groundwater Supply Ratio in Rural Areas. V-20 Litho-5-1 Lithology of Aquifer V-2: Table 5-2 Litho-stratigraphic Unit of Aquifer V-2: Table 5-3 Specific Capacity V-2: Table 5-4 Transminissivity (the same as specific Capacity) V-2: Table 5-5 Coefficient of Permeability V-2: Table 5-6 Representative Value of Specific Yield V-2: Table 5-7 Depth of Main Groundwater Supply V-2: Table 5-8 Depth of Upper Limit of Main Aquifer V-2: Table 5-9 Depth of Lower Limit of Main Aquifer V-2: Table 5-10 Thickness of Main Aquifer V-3: Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3: Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3: Table 5-13 Depth of Water from Surface before Pumping Test V-3: Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3: Table 5-15 Total Depth of Existing Borehole V-4: Table 5-17 Diameter Depth from Surface of Pump Intake V-4: Table 5-18 Length of Plain Part of Casing V-4: Table 5-19 Length of Plain Part of Casing V-4: Table 5-20 Depth from Surface to Bottom of Casing V-4: Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4: Table 5-22 Yield at Pumping Test V-3: Table 5-24 Purpose of Groundwater Usage V-5: Transmissivity by Pumping Test Analysis V-1: Transmissivity by Pumping Test Analysis V-1: Transmissivity by Pumping Test Analysis V-1: Figure 3-2 Figure 3-1 Figure 3-2 Coefficient of Permeability by Pumping Test Analysis V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1: Figure 4-2 Groundwater Suppl	Table 3-3	Specific Yield by Pumping Test Analysis	V-12
Table 5-1 Lithology of Aquifer V-21 Table 5-2 Litho-stratigraphic Unit of Aquifer V-21 Table 5-3 Specific Capacity V-22 Table 5-3 Specific Capacity V-22 Table 5-4 Transmmissivity (the same as specific Capacity) V-22 Table 5-5 Coefficient of Permeability V-22 Table 5-6 Representative Value of Specific Yield V-22 Table 5-7 Depth of Main Groundwater Supply V-22 Table 5-8 Depth of Upper Limit of Main Aquifer V-23 Table 5-9 Depth of Lower Limit of Main Aquifer V-23 Table 5-10 Depth from Surface at Which Water First Struck at Drilling V-3 Table 5-11 Depth from Surface at Which Water Rises at Drilling V-3 Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3 Table 5-13 Depth of Water from Surface before Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-19 Length of Plain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-24 Water Quality V-4 Table 5-24 Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Input Items of Borehole Data-base V-5 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Table 4-1		
Table 5-1 Lithology of Aquifer	Table 4-2	Groundwater Supply Ratio in Rural Areas by Province	V-19
Table 5-2 Table 5-3 Specific Capacity	Table 4-3	Groundwater Supply Ratio in Rural Areas	V-20
Table 5-3 Specific Capacity V-2: Table 5-4 Transmmissivity (the same as specific Capacity) V-2: Table 5-5 Coefficient of Permeability V-2: Table 5-6 Representative Value of Specific Yield V-2: Table 5-7 Depth of Main Groundwater Supply V-2: Table 5-8 Depth of Upper Limit of Main Aquifer V-3: Table 5-9 Depth of Lower Limit of Main Aquifer V-3: Table 5-10 Thickness of Main Aquifer V-3: Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3: Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3: Table 5-13 Depth of Water from Surface before Pumping Test V-3: Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3: Table 5-15 Total Depth of Existing Borehole V-4: Table 5-16 Depth from Surface of Pump Intake V-4: Table 5-17 Diameter V-4: Table 5-18 Length of Plain Part of Casing V-4: Table 5-19 Length of perforated Part of Casing V-4: Table 5-20 Depth from Surface to Bottom of Casing V-4: Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4: Table 5-22 Yield at Pumping Test V-4: Table 5-23 Water Quality V-4: Table 5-24 Purpose of Groundwater Usage V-5: Figure 2-1 Breakdown of Lithology Analysed V-1: Figure 3-2 Transmissivity by Pumping Test Analysis V-1: Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1: Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1: Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Table 5-1		
Table 5-4 Transmmissivity (the same as specific Capacity). V-2: Table 5-5 Coefficient of Permeability. V-2: Table 5-6 Representative Value of Specific Yield. V-2: Table 5-7 Depth of Main Groundwater Supply. V-2: Table 5-8 Depth of Upper Limit of Main Aquifer. V-2: Table 5-9 Depth of Lower Limit of Main Aquifer. V-3: Table 5-10 Thickness of Main Aquifer. V-3: Table 5-11 Depth from Surface at Which Water First Struck at Drilling. V-3: Table 5-12 Depth from Surface to Which Water Rises at Drilling. V-3: Table 5-13 Depth of Water from Surface before Pumping Test. V-3: Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test. V-3: Table 5-15 Total Depth of Existing Borehole. V-4 Table 5-16 Depth from Surface of Pump Intake. V-4 Table 5-17 Diameter. V-4 Table 5-18 Length of Plain Part of Casing. V-4 Table 5-20 Depth from Surface to Bottom of Casing. V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing. V-4 Table 5-23 Water Quality. V-4 Table 5-24 Table 5-25 Tigure 2-1 Borehole Completion Form of DWA(2) Table 5-24 Transmissivity by Pumping Test Analysis Figure 3-1 Breakdown of Lithology Analysed. V-1 Figure 3-2 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells. V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas. V-1	Table 5-2	Litho-stratigraphic Unit of Aquifer	V-21
Table 5-5 Table 5-6 Table 5-6 Table 5-6 Table 5-7 Table 5-7 Depth of Main Groundwater Supply Table 5-8 Depth of Upper Limit of Main Aquifer Table 5-9 Depth of Lower Limit of Main Aquifer Table 5-10 Thickness of Main Aquifer Table 5-11 Depth from Surface at Which Water First Struck at Drilling Table 5-12 Depth of Water from Surface before Pumping Test Table 5-13 Depth of Water from Surface before Pumping Test Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test Table 5-15 Total Depth of Existing Borehole Table 5-16 Depth from Surface of Pump Intake Table 5-17 Diameter V-4 Table 5-19 Length of Plain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Table 5-23 Water Quality Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Breakdown of Lithology Analysed Figure 3-3 Figure 3-1 Frigure 3-4 Frigure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-1 Groundwater Supply Ratio in Rural Areas	Table 5-3	Specific Capacity	V-22
Table 5-5 Table 5-6 Table 5-6 Table 5-6 Table 5-7 Table 5-7 Depth of Main Groundwater Supply Table 5-8 Depth of Upper Limit of Main Aquifer Table 5-9 Depth of Lower Limit of Main Aquifer Table 5-10 Thickness of Main Aquifer Table 5-11 Depth from Surface at Which Water First Struck at Drilling Table 5-12 Depth of Water from Surface before Pumping Test Table 5-13 Depth of Water from Surface before Pumping Test Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test Table 5-15 Total Depth of Existing Borehole Table 5-16 Depth from Surface of Pump Intake Table 5-17 Diameter V-4 Table 5-19 Length of Plain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Table 5-23 Water Quality Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Breakdown of Lithology Analysed Figure 3-3 Figure 3-1 Frigure 3-4 Frigure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-1 Groundwater Supply Ratio in Rural Areas	Table 5-4	Transmmissivity (the same as specific Capacity)	V-24
Table 5-6 Table 5-7 Table 5-7 Depth of Main Groundwater Supply Table 5-8 Depth of Upper Limit of Main Aquifer V-2: Table 5-9 Depth of Lower Limit of Main Aquifer V-3: Table 5-10 Thickness of Main Aquifer Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3: Table 5-12 Depth of Water from Surface before Pumping Test V-3: Table 5-13 Depth of Water from Surface before Pumping Test V-3: Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3: Table 5-15 Total Depth of Existing Borehole V-4: Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-18 Length of Plain Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Breakdown of Lithology Analysed Figure 3-2 Figure 3-3 Frigure 3-3 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-1 Figure 4-1 Groundwater Supply Ratio in Rural Areas. V-1	Table 5-5	Coefficient of Permeability	V-25
Table 5-7 Table 5-8 Depth of Upper Limit of Main Aquifer	Table 5-6	Representative Value of Specific Yield	V-27
Table 5-8 Table 5-9 Depth of Upper Limit of Main Aquifer	Table 5-7	Depth of Main Groundwater Supply	V-28
Table 5-9 Table 5-10 Thickness of Main Aquifer	Table 5-8	Depth of Upper Limit of Main Aquifer	V-28
Table 5-10 Thickness of Main Aquifer V-3: Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3: Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3: Table 5-13 Depth of Water from Surface before Pumping Test V-3 Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-18 Length of Plain Part of Casing V-4 Table 5-19 Length of perforated Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Borehole Completion Form of DWA(1) V-4 Figure 2-3 Breakdown of Lithology Analysed V-5 Figure 3-1 Transmissivity by Pumping Test Analysis V-1 Figure 3-2 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-3 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Table 5-9	Depth of Lower Limit of Main Aquifer	V-32
Table 5-11 Depth from Surface at Which Water First Struck at Drilling V-3- Table 5-12 Depth from Surface to Which Water Rises at Drilling V-3- Table 5-13 Depth of Water from Surface before Pumping Test V-3 Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-18 Length of Plain Part of Casing V-4 Table 5-19 Length of perforated Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Borehole Completion Form of DWA(1) V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Specific Yield by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Table 5-10	Thickness of Main Aquifer	V-32
Table 5-12 Depth from Surface to Which Water Rises at Drilling		Depth from Surface at Which Water First Struck at Drilling	V-34
Table 5-13 Depth of Water from Surface before Pumping Test V-3 Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-18 Length of Plain Part of Casing V-4 Table 5-19 Length of perforated Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Depth from Surface to Which Water Rises at Drilling	V-34
Table 5-14 Greatest Depth to Which Water was Lowered at Pumping Test V-3 Table 5-15 Total Depth of Existing Borehole V-4 Table 5-16 Depth from Surface of Pump Intake V-4 Table 5-17 Diameter V-4 Table 5-18 Length of Plain Part of Casing V-4 Table 5-19 Length of perforated Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 Figure 2-1 Borehole Completion Form of DWA(1) V-5 Figure 2-2 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Depth of Water from Surface before Pumping Test	V-37
Table 5-15 Total Depth of Existing Borehole		Greatest Depth to Which Water was Lowered at Pumping Test	V-37
Table 5-16 Depth from Surface of Pump Intake		Total Depth of Existing Borehole	V-40
Table 5-17 Diameter		Depth from Surface of Pump Intake	V-40
Table 5-18 Length of Plain Part of Casing	and the second s	Diameter	V-43
Table 5-19 Length of perforated Part of Casing V-4 Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1			
Table 5-20 Depth from Surface to Bottom of Casing V-4 Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Purpose of Groundwater Usage V-5 List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Tôtal Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1			
Table 5-21 Diameter of Unlined Portion of Borehole below Casing V-4 Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Depth from Surface to Bottom of Casing	V-46
Table 5-22 Yield at Pumping Test V-4 Table 5-23 Water Quality V-5 List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-5 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Diameter of Unlined Portion of Borehole below Casing	V-46
Table 5-23 Water Quality V-4 Table 5-24 Purpose of Groundwater Usage V-5 List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-4 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Table 5-22	Yield at Pumping Test	V-48
List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Water Quality	V-48
List of Figures Figure 2-1 Borehole Completion Form of DWA(1) V-3 Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Purpose of Groundwater Usage	V-51
Figure 2-1 Borehole Completion Form of DWA(1) Figure 2-2 Borehole Completion Form of DWA(2) Figure 2-3 Input Items of Borehole Data-base Figure 3-1 Figure 3-2 Figure 3-2 Transmissivity by Pumping Test Analysis Figure 3-3 Coefficient of Permeability by Pumping Test Analysis Figure 3-4 Figure 4-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1			
Figure 2-1 Figure 2-2 Borehole Completion Form of DWA(1) Figure 2-3 Figure 2-3 Input Items of Borehole Data-base Figure 3-1 Figure 3-2 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis Figure 3-4 Figure 3-4 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-3 V-4 V-4 V-4 V-5 V-4 V-6 V-7 Figure 4-1 Figure 4-2 Figure 4-2 Borehole Completion Form of DWA(1) V-4 V-4 V-4 V-5 V-6 V-7 V-7 Figure 3-7 Figure 4-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1			
Figure 2-1 Borehole Completion Form of DWA(1) Figure 2-2 Borehole Completion Form of DWA(2) Figure 2-3 Input Items of Borehole Data-base Figure 3-1 Figure 3-2 Figure 3-2 Transmissivity by Pumping Test Analysis Figure 3-3 Coefficient of Permeability by Pumping Test Analysis Figure 3-4 Figure 4-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1			
Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		List of Figures	
Figure 2-2 Borehole Completion Form of DWA(2) V-4 Figure 2-3 Input Items of Borehole Data-base V-5 Figure 3-1 Breakdown of Lithology Analysed V-1 Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	Figure 2-1	Borehole Completion Form of DWA(1)	V-3
Figure 2-3 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-3 Figure 3-4 Figure 4-1 Figure 4-2 Figure 4-2 Figure 4-2 Figure 4-2 Figure 3-3 Figure 4-2		Borehole Completion Form of DWA(2)	V-4
Figure 3-1 Figure 3-2 Figure 3-2 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis Figure 3-4 Figure 4-1 Figure 4-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1 V-1 V-1 Figure 3-1 Figure 3-2 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 4-1 Figure 4-2 Figure 4-2 V-1	-	Input Items of Borehole Data-base	V-5
Figure 3-2 Transmissivity by Pumping Test Analysis V-1 Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1	~	Breakdown of Lithology Analysed	: V-10
Figure 3-3 Coefficient of Permeability by Pumping Test Analysis V-1 Figure 3-4 Specific Yield by Pumping Test Analysis V-1 Figure 4-1 Total Number of Existing Boreholes and Shallow Wells V-1 Figure 4-2 Groundwater Supply Ratio in Rural Areas V-1		Transmissivity by Pumping Test Analysis	V-11
Figure 3-4 Specific Yield by Pumping Test Analysis	. •	Coefficient of Permeability by Pumping Test Analysis	V-13
Figure 4-1 Total Number of Existing Boreholes and Shallow Wells	•	Specific Yield by Pumping Test Analysis	
Figure 4-2 Groundwater Supply Ratio in Rural AreasV-1	_	Total Number of Existing Boreholes and Shallow Wells	V-17
Gigues S.1 Lithology of Aguiller	•	Groundwater Supply Ratio in Rural Areas	V-19
· Papare 3-1 Littibiliza di figuitoi mantantiamentamentamentamentamentamentamentament	Figure 5-1	Lithology of Aquifer	V-2
Figure 5-2 Litho-stratigraphic Unit of Aquifer	•	Litho-stratigraphic Unit of Aquifer	V-22

Figure 5-3	Specific Capacity by Lithology	V-23
Figure 5-4	Relationship between Transmissivity and Specific Capacity	V-24
Figure 5-5	Relationship between Permeability and Specific Capacity	V-25
Figure 5-6	Coefficient of Permeability by Lithology	
Figure 5-7	Relationship between Specific Yield and Specific Capacity	:.V-27
Figure 5-8	Depth from Surface of Main Supply by Lithology	V-29
Figure 5-9(1)	Depth of Boundary and Thickness of Main Aquifer by Lithology(1)	V-30
Figure 5-9(2)	Depth of Boundary and Thickness of Main Aquifer by Lithology(2)	
Figure 5-10	Depth of Layer Boundary and Lithology	
Figure 5-11	Depth from Surface at Which Water First Struck by Lithology	
Figure 5-12	Depth from Surface to Which Water Rises by Lithology	
Figure 5-13	Depth of Water from Surface before Pumping Test by Lithology	
Figure 5-14	Greatest Depth to Which Water was Lowered During Pumping Test	V-39
Figure 5-15	Total Depth of Borehole by Lithology	V-41
Figure 5-16	Depth from Surface of Pump Intake by Lithology	
Figure 5-17	Diameter of Borehole	
Figure 5-18	Plain Portion of Casing by Lithology	V-44
Figure 5-19	Perforated Portion of Casing by Lithology	
Figure 5-20	Depth from Surface to Bottom of Casing by Lithology	
Figure 5-21	Diameter of Unlined Portion of Borehole below Casing	
Figure 5-22	Yield of Pumping Test by Lithology	
Figure 5-23	Purpose of Groundwater Use by Province	
Figure 6-1	Concept of Step Draw-down Test	

A TOTAL CONTRACTOR

Programa

CHAPTER 1 INTRODUCTION

1.1 Scope

The results of well inventory survey are summarized in this report. Well inventory survey comprises three items. These are development of new data-Base, analysis of pumping test data and investigation on the current situation of existing boreholes and shallow wells. Most of these results have been stored in a new Data-Base developed by Study Team and a lot of information on hydrogeology were derived from the Data-Base and described in this report.

1.2 Contents of Report

The contents of the report are as follows:

Chapter 1 comprises an introduction of this report.

Chapter 2 describes the Data-Base developed by Study Team.

Chapter 3 describes pumping test data analysis.

Chapter 4 describes the current groundwater use by province and district.

Chapter 5 describes hydrogeological formation derived from the data base.

Signatura di Salamania di Salama

and the constant of the consta

Chapter 6 describes recommendation on well inventory survey

CHAPTER 2 DEVELOPMENT OF NEW DATA-BASE SYSTEM

2.1 Purpose of New Data-Base System

The purpose of development of a new data-base system is to collect and arrange available hydrogeological data for effective use, including use in a groundwater resources master plan. More than 4,600 borehole data have been collected, arranged and input to computer data-base. The computer data-base program has many functions and is useful for various kinds of purposes related to hydrogeology.

2.2 Existing Borehole Data

Water wells in Zambia are classified into boreholes and shallow wells. The borehole drill log is recorded based on 'Borehole Completion Form of DWA' as shown in Figure 2-1 and 2-2. On the other hand, shallow well has not any completion form. All the borehole records are sent to DWA headquarters and all the shallow well records are sent to Provincial Water Engineers Office. However, only half or two thirds of all the borehole records are actually stored in DWA. These records include important information about hydrogeology. In the case of shallow wells, the conditions of record storage are worse than that of boreholes and the information derived from them is sparse. Therefore, the data-base was developed using borehole records. There are two types of borehole records - one is newly drilled records (about 4,600) and the other is rehabilitation records (about 1,400 records). The newly drilled records were mainly used for the data-base.

2.3 Survey Item

Survey items are divided into 2 categories.

- Information on boreholes and hydrogeology from borehole data stored in DWA.
- Aquifer constant

Survey items on boreholes are shown in Figure 2-3. The items included in the borehole completion form are so important that most of these were stored in the data-base. In addition, new items, results of pumping test analysis and summary of hydrogeological information, were also added to the data-base.

2.4 Survey Method

Borehole data was collected from Drilling Section, Provincial Water Engineers office of DWA and private drilling companies. The total number of borehole data is more than 4,600. Subsequently, several kinds of analysis such as pumping test analysis and classification of aquifer were carried out and these results were input into the computer data-base.

2.5 Data-Base Pogram

A data-base program system was developed by the Study Team. All the items included in the Data base are shown in Figure 2-3. The computer data-base program was developed using Quick-Basic system. The main functions of the data-base are as follows:

- 1) Input data
- 2) Display data on computer screen

REPUBLIC OF ZAMBLA—WATER AFFAIRS DEPARTMENT

Borehole Completion Form

Name of Proporty	-					
	District	:		. 4	Site melected by	Site No
Name of Owner(a)	Province		•		Drill Unit No	
Total depth of bornhole.	motros	Depth in metros	metros			DATE OF:
of man successions	enter	Fren	To	Forma	Formations Bored	THE PARTY OF THE P
± .	e mottres					Completion
Continuous baller test of hours gave yield of litre	litres per second					
Continuous pump test of hours gave viold of litro	litrus per second		************			FOR OFFICE USE ONLY
	motros		•	4	• • • • • • • • • • • • • • • • • • • •	Borwholo File No
Depth from surface of pump intake	metres	•	•			Scholule No.
Greatest depth to which water was lowered during test	MACTORITY					
Does water return to original lovel after test?	metres	:	***************************************			Office Record Ref
Details of ceaing left in borobole:						. Porobore Senal//
Longth in Mottos	-	:	*****			CHARGES:
3						Tetal for Borehole.
Damoter in min Plain Perforated	stod					Yor Oseing
						goog
				-		Ruxings:
Depth from surface to bottom of easing.	metre.	:	•	•		
Diameter of unkned portion of borehole below easing.	ww			************		•
Quanty of water (state fresh, brackish or saline, etc.)			******	•		
Total distence chargeableXm at X		•				
Pemarks						

		I	BOREHOLE	PUMP	TES	T		Form WOITN
	Borehole N	0	Driller				Deto	
			larloj al					
						to sator.		
	·			Quality	of water	Recover	y lovels after finis	à of pump test
Clock time	Elapsed time	Yield (pumping rate) litres per sec.	Depth from surface to water in metres	Close	Turbii	Clock time	Elapsed time when pump stopped	Walet level in metros
	Start							
	ì min.		<u> </u>			V 1	1 min.	
	2 min.		· ·				2 min.	·
<u> </u>	3 min.						3 min.	·
	4 min.	:					4 min.	
	5 to in.		<u> </u>				8 min.	
	10 min.						6 min.	
	15 mm.	·					7 min.	
	20 min.						8 min.	
	25 min.						9 min.	-, -
	30 min.		}ii _	-			10 min.	
	40 տա.						12 min.	
-	50 min.	[-			14 min.	
	6) வட்ட	· · · · · · · · · · · · · · · · · · ·		-	i -		16 mia.	
	70 mis.	 			 		18 min.	
 	80 min.						29 min.	· · · · · · · · · · · · · · · · · · ·
	90 mia.			-	 		25 min.	
	105 min.	·		-		 	30 min.	
	,120 min.	 			}		35 min	
	159 min.	 		-	-	1	40 min.	
	3 hours			-{	 		45 mia	
	4 hones				1		50 mia.	
	8 hours	_	 	 			65 min.	
	6 hours	<u> </u>	1	1	1	1	60 min.	:
·	7 hours			-	1	- <u> </u>	70 toin.	
	S hours				-	1	80 mln.	
	9 bours					1	90 min.	
	10 hours		1.			-	105 min.	
	11 hours		-	-	1	-	120 min	
	12 hours		-	-	-	-[135 min.	-
	13 hours		-			1	150 min.	
	14 hours		-			1	180 mir.	
	15 hours		-	-	-	-		
	16 lears		-	-	-	-	Resears:	
	17 hours		-			-	1	
	18 hours	-	1		-			
	19 harara		-	_	-	-		
		-	_		-	1		
	21 Sours	1	-	-{		7		
	22 hiun	-		 -		1		
	-, 1				- I	6		

of de the sto at	
s which time the dopth from surface to water layer was	
	Drill or Pump Foreman

Borehole Completion Form of DWA Grid Reference Name of Property Name of Owner Localiy Province/District Chief Borehole Record Number Date of Completion Total Depth of Boreholes Depth from Surface at Which Water First Struck
Depth from Surface of Main Supply
Depth from Surface to Which Water Rises
Test Method : PUMP litres hours Depth of Water from Surface before Test
Depth from Surface of Pump Intake
Greatest Depth to Which Water was Lowered During Test
Does Water Return to Original Level after Test
Details of Casing Left in Borehole Diameter in mm Plain Persorated Depth from Surface to Bottom of Casing Diameter of Unlined Portion of Borehole below Casing Quality of Water: Total Distance Chargeable Remarks: Lithology Lithostratigraphic Depth in meters Lithology unit from Additional Information : Code Man Reference Number File Name of Analysis Drainage Area Altitude Thickness of Aquifer from
Main Aquifer Lithology: FRACTUREBERANITE
Specific Capacity Total Litho-stratigraphic unit: Transmisivity Specific Yield Coefficient of Permeability Current Yield Operating Condition : O Name of Project Purpose : COMMERCIAL : OPERATING Reason: **Donor Agency** Population Supplied Type of Owner

Type of Driller

Figure 2-3

Input Items of Borehole Data-base

- 3) Retrieve data
- 4) Calculate statistical value of data
- 5) Print out selected data

The data-base program system employs a code system to input data. A number of codes were prepared for many items. The code system prevents an error in input and makes it easy to retrieve data. Table 2-1 and 2-2 show the codes used in the data-base system.

Manuals to operate the data-base have been prepared so that anyone can easily access the data-base. The data-base program is installed in two personal computers provided by IICA in Sheki-Sheki office of DWA.

Province	District	Code		Province	District	Code
Lusaka	Lusaka-Urban	11		Luapula	Mansa	71
1	Lusaka-Rural	12			Nchelenge	72
	Luangwa	13			Kawambwa	73
					Mwense	74
Copperbelt	Ndola-Urban	21			Samfya	75
	Ndola-Rutal	22				
	Chililabombw	23		Northern	Kasama	81
	Chingola	21			Kaputa	82
	Mufulira	25			Mbata	83
**.	Kalulushi	26			Mporokoso	84
	Kitwe	27			Luwingu	85
: •	Luanshya	28			Chilubi	86
					Isoka	87
Central	Kabwe-Urban	31			Chinsali	88
	Kabwe-Rural	32		1 a 1	Mpika	89
	Mumbwa	33		11		
	Mkushi	34		Eastern	Chipata	91
	Serenje	35		1	Chama	92
			•		Lundazi	93
Northwester	Solwezi	41			Chadiza	94
	Mwinilunga	42			Katete	95
	Zambezi	43			Petauke	96
	Kabompo	44				
	Mfumbwe	45				
	Kasempa	46	[Quality o	f Water Co	le
L			•	1	fresh]
Western	Mongu	51]	2	brackish	·
	Lukulu	52		3	saline	
	Kalabo	53		1	odour	
	Kaoma	54			<u> Todous</u>	,
					*.	•
	Senanga	55 56				1.
1	Sesheke	30]			
Southern	Livingstone	61]			
Journelli	Namwala	62	100			: -
	Mazabuka	63				•
	Monze	64				
	Choma	65				
	Kalomo	66				
	Siavonga	67				
	Gwembe	68		9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	O'NUMBE	00 60				

Table 2-1 Code for Data-base (1)

Sinazongwe

<litology(st< th=""><th>ıb)></th></litology(st<>	ıb)>
(for detail)	

	and the last of th
а	argillaceous
	calcareous
	cavernous
	cherty
	clayey
	cican
	coase grained
	consolidated
	crystaline
£	fault
	felsic
	fine grained
	fractured
	fresh
er)	granityic
	gravelly
m	massive
	medium grained
	metamorphised
р	pelitic
	peorly-sorted
	botona
s	sandy
	silty
u	unconsolited
w	weatherd
	well-sorted
	vegetal
L	fissured
	carstified
	e e m

<Lithology(main)>

<ri>Ti</ri>	in	ology(main)>
103	_	(for detail)
01	8	amphibolite
02	L	andesite
03	-	aplite
3	L	aplite
05	_	argillite
06	_	arkosé
07	٥	basait
08	C	carbonate rock
8	L	carbonatite
10	_	chert
11	L	clay
12	_	coal
13	L	conglomerate
14	₫	diòrite
15	L	
16	L	dolomite
17	8	gabro
18	L	gneiss
19	L	granit
20	L	gravel
21	<u>i</u>	igneous rock
22	L	limestone
23	լո	mari
24	L	meta-igneous
25	L	mela-sediment
26	L	meta-volcanics
27	L	metamorphic rock
28	L	migmatite
29	L	mudstone
30	þ	peat
31		pegmatite
32	Γ	philite
33		plutonic rocks
34	Γ	porphyry
33	Γ	pyroclastics
36	9	quartzite
37	r	rhyolite
38	s	sand
39	Γ	sand & gravel
40	Γ	sandstone
41		schist
42	Τ	sedimentary rock
43	Γ	shale
44	Ι	silt
45	Γ	siltstone
46	Ī	slate
47	T	soil
48	1	sycnite
49	ţı	tuff
50	Ī	varves
51	T	voleanie rock
52	t	latorito

laterite

<Lithl-stratigraphic> (for deatil & outline) 01 Allvium

	101/10111
02	Kalahari Group
03	Karroo Supper group
04	Upper Karroo Group
05	Lower Karroo Group
06	Katanga Super Group
07	Kundelunga Group
08	Upper Roan Group
09	Lower Roan Group
10	Muva Supper Group
11	Basement Complex
12	Granit
13	Other Igneous rocks
14	Metamorphic rocks

<Lithology(sub)>

	outline)	
0)	coase grained	
	crystaline	
	fault	e je
04	fine-grained	
05	fractured	
	fresh	
07	metamorphised	
08	unconsolidated	
09	weatherd	
10	Cavenous	

<Lithology(main)> (for outline)

	(tor	outline)			
1	01	amphibolite			
1	02	argillite			
	03	basalt			٠.
•	04	cárbonate rocks			•
ĺ	05	clay			
	06	conglomerate	_		
-	07	dolomite		٠.	
	03	gneiss			_
	09	granit		-	_
	10	gravel		:	:
	11	igneous rocks		- ;	
	12	limestone			
	13	mela-igneous			
	14	meta-sediment			
-	15	meta-volcanics		ı,	
	16	migmalite		1	,
	17.	quartzite			
	18	sand		-	
	19	sand&gravel	: :	:	
	20	sandstone	;		_
	21	schist			_
	22	shale		_	
	23	sittstone			
	1 A 4	III k to .			

laterite Mudstone

<Puropse>

01	Rural Water Supply	
02	Urban Water Supply	
03	Irrigation	
04	Livestock	
	Fisheries	
	Industrial	
07	Commercial	
08	Exploratory	
09	Observation	
10	Others	
III	Unknown	

<Operating Condition>

i_:_	The second second		
01	operating		
02	not operating	 	
	Reason		

<Donor Agency>

01	DUTCH
02	GTZ
03	IRISH
[04]	JICA
05	KFW
[06]	NGO
07	NORAD
08	UNICEF
09	WORLD BANK

<Owner Type>

01	Central Gavernment
02	Local Gavernment
03	Private

<Driller Type>

	יער	iner Type-	
	01	GRZ	٠.
ĺ	02	Private	

<Drainage Area>

01	Kafue
	Zambezi
03	Luanga
04	Luapulua
05	Chambeshi
06	Tanganika

Table 2-2 Code for Data-base (2)

CHAPTER 3 PUMPING TEST ANALYSIS

3.1 Purpose of Analysis

Pumping test analysis was carried out to obtain aquifer coefficients. Groundwater storage and flow are strongly dominated by aquifer characteristics and aquifer coefficients, namely transmissivity and specific yield, represent aquifer characteristics. Groundwater storage in aquifer can be calculated using these constants.

3.2 Method of Analysis

More than 600 sets of pumping test data stored in borehole records were analyzed. The pumping test data to be analyzed were selected carefully before hand, because some data give unreliable results and are not suitable for analysis. The hydraulic parameters analyzed are as follows:

- 1) Coefficient of permeability
- 2) Transmissivity
- 3) Specific yield

The methods employed for the analysis are as follows:

- 1) Theis Method
- 2) Jacob Method

€ }

3) Recovery Method

Comparisons of the results analyzed by each method were made and final solutions were determined for each data set. Though the reliability of pumping test data was not always good, finally about 350 sets of 600 sets analyzed were adopted as providing reasonable results. Pumping test records were analyzed by a computer programs which was developed for that purpose. Three methods mentioned above are available in this program and analysis is carried out speedily on a graphic display.

The purpose of pumping test carried out by DWA is to estimate available yield of borehole and not to obtain aquifer parameters. Therefore, the pumping test has some problems listed below in terms of obtaining accurate aquifer parameters

- Yield changes as time passes
- Accuracy of measuring groundwater table is low and some data gave obviously unreasonable results
- Pumping time is short
- Yield and therefore the groundwater flow velocity near the borehole is too large for Darcy's law to hold good.

Actual draw-down curves sometimes diverges from theoretical curve for the reasons mentioned above, which cause error in analysis.

3.3 Results of Analysis

Results of the analysis are attached in Appendix 1 and 2. These figures show that the observed data sometimes diverges from the theoretical curves and the results are not always good. However, it is considered that the values order of these results may be acceptable. Breakdown of lithology analyzed si shown in Figure 3-1.

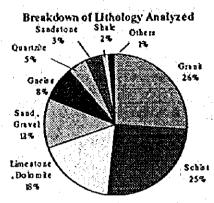


Figure 3-1 Breakdown of Lithology Analyzed

3.3.1 Transimissivity

Analysed result of transimissivity is shown in Table3-1 and Figure3-2.

Table 3-1 Transimissivity by Pumping Test Analysis

Lithology	Data	Medium	Range	(m2/day)
	Number	(m2/day)	Minimum	Maximum
Limestone & Dolomite	57	2.62	0.00483	488
Schist	80	2.45	0.124	682
Sand & Gravel	37	4.89	0.123	112
Granite	81	1.87	0.00103	8 5
Sandstone, Conglomerate	11	4.3	0.0961	10.1
Quartzite	15	2.99	0.0143	33.4
Gneiss, Migmatite	25	1.02	0.0731	12.3
Argillaceous Rock	111111111111111111111111111111111111111	1.47	0.564	4.26
Others*	5	1.01	0,115	5.45
< Total >	333	1.87	0.00103	85

(Note) * Others include Igneous and the other metamorphic rocks

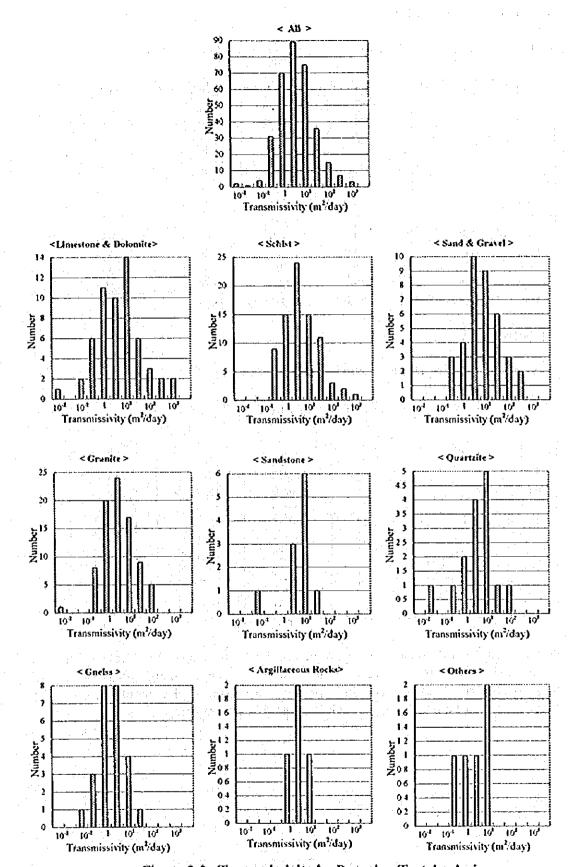


Figure 3-2 Transmissivity by Pumping Test Analysis

3.3.2 Coeficient of Permeability

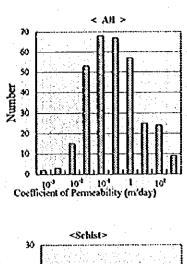
Analysed result of coefficient of permeability is shown in Table 3-2 and Figure 3-3.

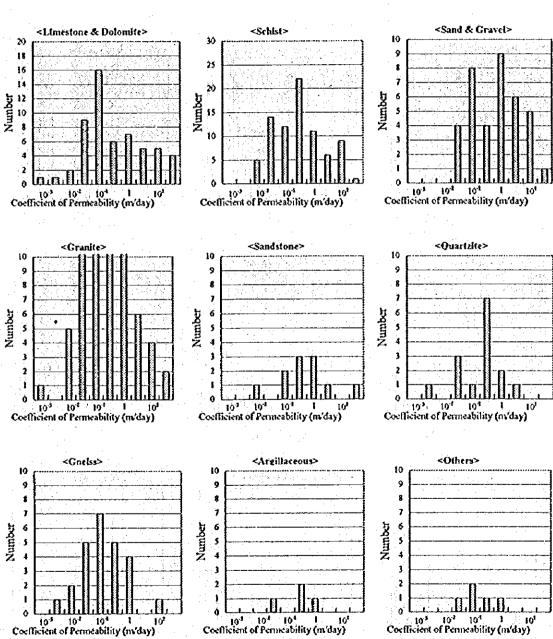
Table 3-2 Coeficient of Permeability by Pumping Test Analysis

Lithology	Data	Medium	Range (m/day)		
	Number	(m/day)	Minimum	Maximum	
Limestone & Dolomite	56	0.096	0.000403	97.5	
Schist	80	0.127	0.0062	14.2	
Sand & Gravel	37	0.478	0.0132	10.8	
Granite	84	0.128	0.000129	22.1	
Sandstone, Conglomerate	11	0.275	0.00356	18.8	
Quartzite	15	0.161	0.0011	1.02	
Gneiss, Migmatite	25	0.0606	0.00203	3.51	
Argillaceous rock	4	0.107	0.0238	0.473	
Others*	5	0.0401	0.024	0.331	
< Total >	323	0.13	0.000129	97.5	

(Note) * Others include Igneous and the other metamorphic rocks

3.3.3 Specific Yield

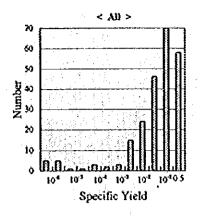

Analysed result of specific yield is shown in Table 3-3 and Figure 3-4.


Table 3-3 Specific Yield by Pumping Test Analysis

Lithology	Data	Medium	Range		
	Number		Minimum	Maximum	
Limestone & Dotomite	45	0.030	7.81x10 ⁻⁸	0.262	
Schist	58	0.030	7.03×10 ⁻⁷	0.254	
Sand & Gravel	29	0,016	3.46×10 ⁻¹³	0.249	
Granite	49	0.068	6.78×10 ⁻³	0.284	
Sandstone, Conglomérate	11	0.045	2.98×10 ⁻³	0.263	
Quartzite	10	0.052	1.65×10 ⁻⁸	0.257	
Gneiss, Migmatite	15	0.0412	1,18x10 ⁻⁶	0.172	
Argillaceous.Rock	2	0.057	4.60×10 ⁻²	0.0703	
Others*	1	0.018	-		
< Total >	233	0.0381	3,46x10 ⁻¹¹	0.284	

(Note) * Others include Igneous and the other metamorphic rocks

It should be noted that values of aquifer parameters shown in Table 3-2 to Table 3-4 may be greater than the actual representative value for each rock type. Pumping test is carried out for successful boreholes and unsuccessful boreholes are abandoned without pumping test. The greater the yield of a borehole, the higher the aquifer parameters.



1

(1)

Figure 3-3 Coefficient of Permeability by Pumping Test Analysis

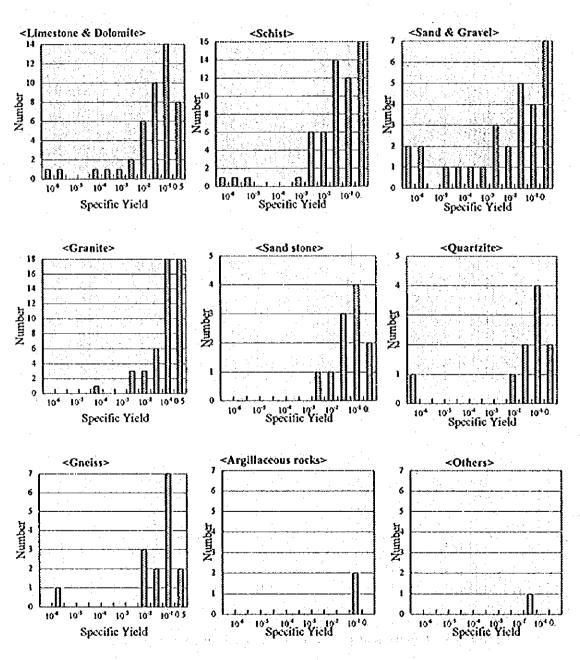


Figure 3-4 Specific Yield by Pumping Test Analysis

CHAPTER 4 GROUNDWATER PRODUCTION SURVEY BY DISTRICT

4.1 Purpose of Survey

The purpose of this survey is to obtain the number of boreholes and shallow wells by district. The results of this survey give the information listed below:

- Current groundwater production rate by district especially in rural areas.
- Relative depth of groundwater table. Ratio of boreholes / shallow wells is closely related to this depth.
- Ratio of groundwater use / surface water use. Groundwater use is inversely related to surface water use.
- Distribution of aquifers for boreholes and shallow wells

4.2 Survey Item and Method

Survey Items are as follows:

- 1) the number of existing boreholes and shallow wells by district
- 2) Average yield of boreholes and shallow wells

The method for item 1)

- The survey used the information published by DWA as a basis. This information gives the total number of existing boreholes and shallow wells drilled between 1964 and 1985 by Province.
- The number of boreholes and shallow wells drilled after 1986 by province was estimated from the increase rate of boreholes and shallow wells between 1964 and 1985.
- The number of boreholes and shallow wells by province was divided into each district based on the borehole data-base and investigation at each district office of DWA. The number of townships, villages and population in each district have been utilized as important information for the estimation.

The method for item 2)

- The survey used the information published by CMMU as a basis, which gives the current operation rate of boreholes and shallow wells in rural areas.
- Average yield of boreholes was assumed to be 7m³/day based on the capacity of a handpump. On the other hand, average yield of shallow wells is assumed to be one third of that of boreholes, which is based on experience and on the information derived from the result of nation wide groundwater level observation.

4.3 Survey Result

4.3.1 Number of Boreholes and Shallow Wells by District

(1) Number of Boreholes

The number of existing boreholes is shown in Table 4-1 and Figure 4-1. The results are summarized as follows:

- Provinces are divided into 3 groups in terms of the number of boreholes. The first group is Western(2,960), Lusaka(2,570), and Southern(1,490), the second group is Central(870), Copperbelt(840) and Eastern(750), the third group is Northern(190), Luapula(170) and Northwestern(190).
- In Lusaka province, 87% of boreholes are concentrated in the Lusaka Urban District due to high demand for city water supply and the existence of superior aquifers in the dolomite.
- Many boreholes were drilled under NORAD's long term project. Unconsolidated sands of Kalahari formation in Western province made it easy to drill them.
- Southern province often suffered a shortage of water from drought and many boreholes were drilled as a counter-measure by JICA etc.
- Lusaka, Western and Southern provinces are located in the southern part of Zambia often and suffer a shortage of annual precipitation. Therefore, the number of boreholes needed is greater than for other provinces.
- On the contrary, there is heavy precipitation in the third group, Northern, Luapula and Northwestern provinces, and this results in fewer boreholes in these provinces.
 The second group, Central, Copperbelt and Eastern provinces is intermediate between the first and the third group.

(2) The Number of Shallow Wells

The number of existing shallow wells is shown in Table 4-1 and Figure 4-1. The result is summarized as follows:

- Provinces are divided into 3 groups in terms of the number of shallow wells. The first group is Eastern province(2,140), the second group is Northern(1,080), Luapula(1,100) and Western(1,020) and Southern(800), the third group is Copperbelt(660), Central(600) and Lusaka(390). The number of shallow wells by province is closely related to average depth of groundwater table by province.
- It is noted that there are many shallow wells especially in Eastern province and those provinces which have more shallow wells have fewer boreholes.
- The difference in the number of shallow wells among provinces is not so great as that of boreholes.

4.3.2 Rate and Ratio of Rural Water Supply

(1) Metod to Estimate Groundwater Supply Ratio In Rural Areas

Groundwater supply ratio has been estimated based on the investigation into number and current yield of existing boreholes and shallow wells. The groundwater supply ratio has been estimated as follows:

1.0	• • • • • • • • • • • • • • • • • • • •			44 9 7 19
Table 4-1	Number	of Borehòle:	s and Si	iallow Wells

Province	District		shallow well	Province	District		shallow well
usaka	Lusaka-Urban	2,230	20	Southern	Livingstone	110	20
	Lusaka-Rural	290	260		Namwala	140	110
	Luangwa	50	120		Mazabuka	400	120
*.	Total	2,570	400		Monze	220	130
Copperbelt	Ndola-Urban	270			Choma	160	110
copperedic	Ndola-Rural	190	660		Kalomo	170	100
	Chililabombwe	50			Siavonga	100	
	Chingola	60			Gwembe	120	
	Mufulira	70		1.5	Sinazongwe	100	70
	Kalulushi	.50			Total	1,520	84
	Kitwe	80		Luapula	Mansa	60	280
*	Luanshya	100			Nchelenge	40	
	Total	870	660	} :	Kawambwa	30	
Central	Kabwe-Urban	130			Mwense	40	
Celinai	Kabwe-Rural	390			Samiya	30	14
	Mumbwa	120			Total	200	1,13
•	Mkushi	160		Northern	Kasama	70	18
	Serenje	90			Kaputa	30	8
	Total	890			Mbala	20	12
Northwestern	Solwezi	50			Moorokoso	20	14
Nonnwestern	Mwinilunga	20			Luwingu	20	
	Zambezi	30			Chilubi	0	
	Kabompo	20			Isoka	20) S
	Mfumbwe	1 10			Chiosali	20	
$1/2 \leq 1/2 \leq 1/2$		40			Mpika	40	
100	Kasempa	170		4	Total	240	
	Total	570		Eastern	Chipata	230	4
Western	Mongu	450			Chama	90	
	Lukulu				Lundazi	80	
	Kalabo	480			Chadiza	100	
: '	Kaoma	450			Katete	100	
	Senanga	540			Petauke	180	
	Sesheke	510	170	4	Total	780	
	Toatl	3,000	1,060	Total	Troisi	9,968	

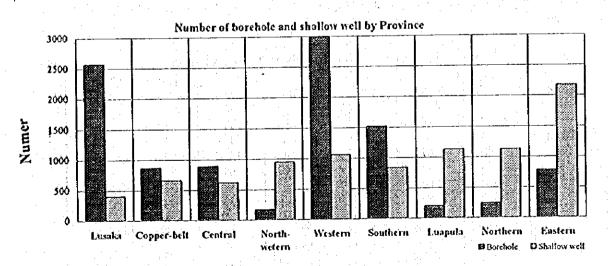


Fig 4-1 The Total Number of Existing Boreholes and Shallow Wells

Groundwater supply ratio

= (Total current groundwater use m³/day) / (33.85 l/day x population)

33.851/cap /day is consumption rate including 10% water loss rate in rural areas.

Total current groundwater use(m3/day)

= (Total number of boreholes + shallow wells) x (Operation rate) x (Unit yield)

Operation rate

Operation rate has been assumed based on the results of investigations carried out by CMMU. Borehole = 0.7, Shallow Well = 0.6

Unit Yield

Unit yields have been estimated as follows, Borehole = $7.5 \text{ m}^3/\text{day} \times 0.8 = 6 \text{ m}^3/\text{day}$ Shallow well = (Unit yield of borehole) $/ 3 = 6 \text{ m}^3/\text{day} / 3 = 2 \text{ m}^3/\text{day}$

Unit supply rate, 38.51/cap./day is obtained from target supply rate of 351/cap./day plus water loss rate of 3.51/cap./day. Unit yield of boreholes, 7.5m³/day, means standard yield from a handpump with 10 hours' operation a day. Finally, 6m³/day was decided as unit yield of boreholes on the assumption that handpumps are being operated at 80% of their standard capacities. On the other hand, unit yield of shallow wells, 2m³/day, was decided on the assumption that yield of shallow wells is almost one third of that of boreholes based on long experience and field survey.

(2) Groundwater Supply Ratio in Rural Areas

Groundwater supply ratio in rural areas has been estimated as shown in Table 4-2 and Figure 4-2 by province and Table 4-3 by district. Water supply in rural areas is summarized as follows:

Table 4-2 Groundwater Supply Rate in Rural Areas

	Number of Well		Total		Water Supply Ratio (%)			
Province	Borehole	Shallow Well	Yield (m³/day)	Population	Ratio by Borehole	Ratio by Shallow Well	Tota1	
Lusaka	2,570	400	1,872	157,633	24%	8%	31%	
Copper-belt	870	660	3,308	314,891	21%	7%	27%	
Central :	890	620	3,821	507,428	16%	3%	20%	
North-western	170	950	1,834	333,234	6%	9%	14%	
Western	3,000	1,060	13,703	531,072	61%	6%	67%	
Southern	1,520	840	7,392	695,166	24%	4%	28%	
Luapula	200	1,130	2,161	442,034	5%	8%	13%	
Northern	240	1,130	2,305	736,876	4%	5%	8%	
Eastern	780	2,170	5,845	883,218	10%	8%	17%	
Total	10,240	8,960	42,198	4,601,552	18%	6%	24%	

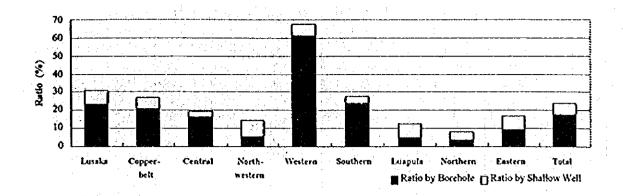


Figure 4-2 Groundwater Supply Ratio inRural Areas

Groundwater is the main resource used for water supply in rural areas. Therefore, water supply ratio in rural areas is proportional to the number of boreholes and shallow wells, especially to that of boreholes. Average water supply ratio in the whole of Zambia is 24%. Water supply ratios by province are, Western province 67%, Lusaka 31%, Copperbelt 27% and Southern 28%, these provinces show higher supply ratio than the country average. On the other hand, water supply ratios for, Central province 20%, Eastern 17%, Northwestern 14% and Luapula 13%, show lower ratios than the country average. Of course it is considered that the shortage of groundwater has been made up for by using surface water in those provinces where water supply ratio is low. However, surface water is less valuable than groundwater in terms of drinking water in rural areas because of unreliable quality and quantity through out year.

1

Table 4-3 Groundwater Supply Ratio in Rural Area

			Boreho	le I		Shallow V	Vell	Total		Supply
Province	District	Total	Operating	Yield (m3/day)	Total	Operating	Yield(m3/day	Yield (m3'day)	Population	Rate(%)
usaka	Lusaka-Urbar		0	0	A - A	0	0	0		
	Lusaka-Rura	290	203	1,218	260	156		1,530	142,993	28
	Luangwa	50	35	210	120	72	141	354	14,640	
	Total	340	238	1,428	380	228	456	1,834	157,633	31
Copperbelt	Ndola-Urban	190		798	660	396	792	1,590	152,027	27
* * .	Ndola-Rural	50	133 35	• •	000	390	0	210		
	Chitilabomby Chicagola	60	42			0	0	252		
	Chingola Mufulira	70	49	-:-		ŏ	ŏ	294		
	Kalulushi	50	35			10 at 6	اة ا	Ž10		
	Kitwe	80	56			ŏ	ŏ	336		
	Luanshya	100	70			ŏ	ŏ	420		
	Total	600	420		660	396	792	3,312		
Central	Kabwe-Urbar									
	Kabwe-Rural		273	1,638	150	90	180	1,818	198,767	24
	Mumbwa	120	84		140	84	168	672	112,792] 15
	Mkushi	160	112	672	140	84	168	840	100,662	27
	Serenje	90	: 63	378	110	66				14
	Total	760	532	3,192	540	324	648	3,840	507,428	2(
Northwester	Solwezi	50	35	210	190			438	98,401	17
	Mwinilunga	20	14	84	180	103	216	300	75,154] :: 10
,	Zambezi	30								4
r (Kabompo	20								
	Miumbwe	l lò			1					
1 2	Kasempa	40								
<u> </u>	Total	170								
Western	Mongu	570				2.0				
	Lukulu	450								
	Kalabo	450								
	Kaoma	450								
	Senanga	540								
•	Sesheke	510			170					
	Total	2,970								
Southern	Livingstone	110		1						
	Namwala	140					P. Contraction			
	Mazabuka	400				1				
	Monze	220		3				1 ′		
	Choma	160					•			
	Kalomo	170	4	1						
	Siavonga	100 120						1		3
	Gwembe	100				1				
	Sinazongwe Total	1,320								
T	Mansa	60								
Luapula	Nchelenge	40	1			1				
	Kawambwa	30	1							
	Mwense	40						1		•
	Samfya	30			1		1			1
	Total	200	140	840						
Northern	Kasama	70								
	Kaputa	30							-	
	Mbala	20						1		
	Mporekoso	20					1			
	Luwinga	20	1			1	1		1	4
	-	l.	1	1						
	Chifubi	0			100					1 .
	Isoka	20) · 1	. 8	4 90) 5	1 10:	8 19:	2 108,78	2
	Chinsali	20	1	4 8-	1 160	0 9	6 19	2 270	6 76,15	0
							1	1	1 1	
	Mpika	40		8 161	_					
	Total	240	163	8 1,008	1,130	678	8 1,350	5 2,36	4 736,870	6
Eastern	Chipata	230	16	11 964	6 430	25	\$ 51	6 1,48	2 239,15	9 1
	Chama	90			L	i i	1		1	
			1			1	1	1	1	
	Lundazi	80	5	6 330	1					
	Chadiza	100)] 7	0 420	0 350	0 21	0 42	0 84	0 60,17	9 :
	Katete	100	ol 7	10 420	0 390	0 23	al 46	8 88	8 (31,30	5
	Petauke	180								
•		780	54	zt - 3 3 3			2 2,60		0 883,21	8
	Total	18	UL 34	01 3.27	6 2, 176	V] . 1.30.	Z	*) J.00	U 003.20	9

CHAPTER 5 IMFORMTION DERIVED FROM DATA-BASE

5.1 Lithology of Aquifer

(1) Lithplogy of Aquifer

Aquifer lithology is shown in Table 5-1 and Figure 5-1. As shown in Table 5-1, more than 60% of aquifers are composed of Limestone & Dolomite and Schist.

Table 5-1 Lithology of Aquifer

Main Aquifer Lithology	Number of Borehole Data	%
Limestone & Dolomite	1,267	32
Schist	1,160	30
Sand & Gravel	479	12
Granite	448	11
Sandstone	175	5
Quartzite	176	5
Gneiss	88	2
Shale, Mudstone, etc.	65	2
Others	38	1
< Total >	3,896	

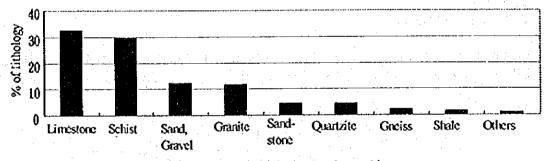


Figure 5-1 Lithology of Aquifer

(2) Litho-stratigraphic Unit of Aquifer

Litho-stratigraphic Unit of Aquifer of existing boreholes are shown in Table 5-2 and Figure 5-2 by lithology. As shown in Table 5-2, about 70 % of aquifers are composed of Katanga Super Group.

Table 5-2 Litho-stratigraphic Unit of Aquifer

Litho- stratigraphic Unit	Number of Boreliotes	% of all the Borcholes	Litho- stratigraphic Unit	Number of Borcholes	% of all the Boreholes
Alluvium	190	4.5	Muva	17	0.4
Kalahari	389	9.1	Basement	225	5.3
Karroo	61	1.4	Granite	469	11.0
Katanga	2914	68,3	< Total >	4264	

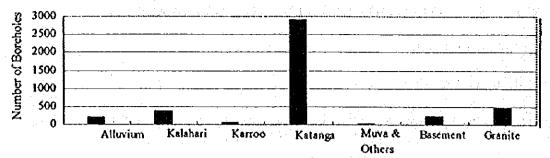


Figure 5-2 Litho-stratigraphic Unit of Aquifer

5.2 Hydraulic Characteristics of Aquifer

(1) Specific Capacity

Specific Capacity of existing boreholes are shown in Table 5-3 and Figure 5-3 by lithology. Specific capacity is a good indicator for the capacity of a borehole. From this point of view, the ranking of capacity by rock type is given as follows:

- 1) Limestone & Dolomite
- 2) Sand & Gravel
- 3) Sandstone
- 4) Quartzite
- 5) Schist
- 6) Granite and Gneiss

As shown in Table 5-3, it is concluded that Limestone & Dolomite, and Sand & Gravel, but especially Limestone & Dolomite, form far superior aquifers compared with other rock types.

Table 5-3 Specific Capacity

	TAULE 3-3	Specific Caba	uty		
Lithology	Datà	Medium	Range (m2/day)		
	Number	(m2/day)	Minimum	Maximum	
Limestone & Dolomite	1267	50.2	0.016	7200	
Schist	1160	4.2	0.061	9070	
Sand & Gravel	479	25.9	0.027	1150	
Granite	448	5.7	0.001	1800	
Sandstone, Conglomerate	175	10.5	0.111	2130	
Quartzite	176	6.0	0.147	3090	
Gneiss, Migmatite	88	2.3	0.219	468	
Argillaceous.Rock	65	1.9	0.032	332	
Others*	38	1.9	0.291	378	
< Total >	4246	9.96	0.001	9070	

(Note) * Others include igneous and the other metamorphic rocks

(2) Transmmissivity

Transmmissivity of existing boreholes analyzed using pumping test data are shown in Table 3-1 and Figure 3-1 by lithology.

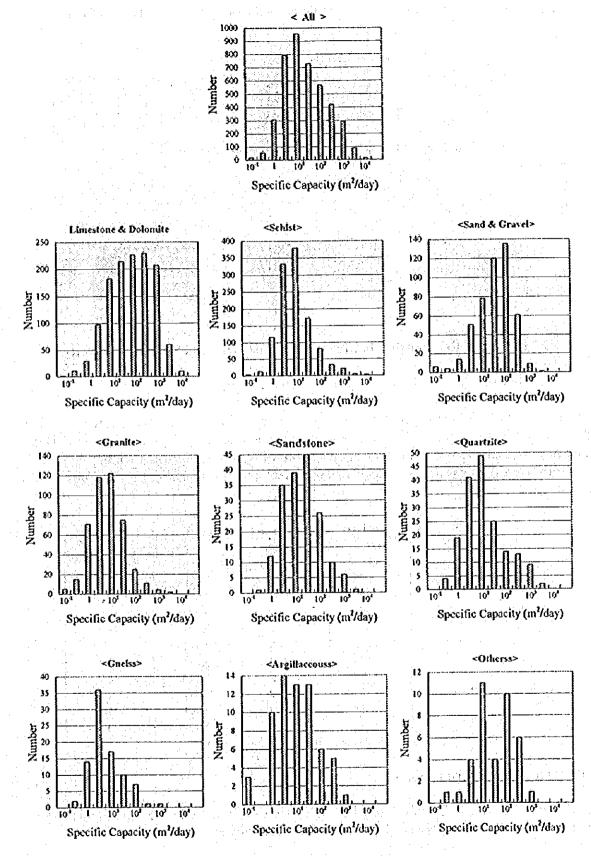


Figure 5-3 Specific Capacity by Lithology

The approximate relationship between specific capacity and transmissivity is as follows:

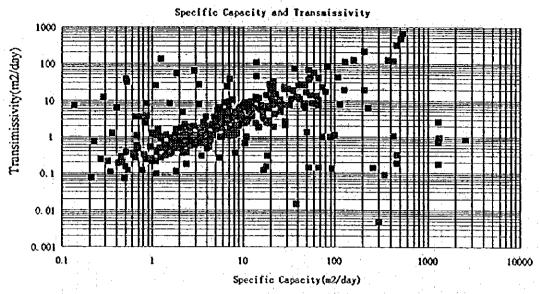


Figure 5-4 Relationship between Transimissivity and Specific Capacity

Specific capacity (m²/day) = Transmissivity(m²/day)

The relation that specific capacity is almost the same as transmissivity is adopted to obtain the general trend of transmissivities. The median value of specific capacities stored in Database has been adopted as the representative value of transmissivity for each lithology. It is better to use values shown in Table 5-4 as representative transimissivity than values shown in Table 3-1.

Table 5-4 Transmmissivity (the same as specific capacity)

Lithology	Data	Average	Range	Range (m2/day)		
	Number	(m2/day)	Minimum	Maximum		
Limestone & Dolomite	1267	50.2	0.016	7200		
Schist	1160	4.2	0.061	9070		
Sand & Gravel	479	25.9	0.027	1150		
Granite	418	5.7	0.001	1800		
Sandstone, Conglomerate	175	10.5	0.111	2130		
Quartzite	176	6.0	0.147	3090		
Gneiss, Migmatite	88	2.3	0.219	468		
Argillaceous.Rock	65	1.9	0.032	332		
Others*	38	1.9	0.291	378		
< Total >	4246	9.96	0.001	9070		

(Note) * Others include Igneous and the other metamorphic rocks

(3) Coefficient of Permeability

Coefficient of Permeability of existing boreholes are shown in Table 5-5 and Figure 5-6 by lithology. Coefficient of permeability was obtained as follows:

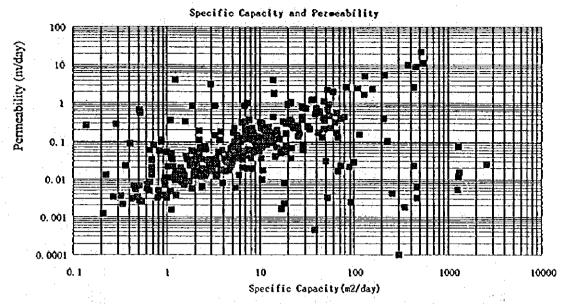


Figure 5-5 Relationship between Permeability and Specific Capacity

Coefficient of permeability (m/day)

= Transimissivity(m2/day) / [Borehole length(m) - Groundwater level from surface before pumping test(m)]

It is better to use values shown in Table 5-5 as representative permeability than values shown in Table 3-2.

Table 5-5 Coefficient of Permeability

Lithology	Data	Average	Range (m/day)	
	Number	(m/day)	Minimum	Maximum
Limestone & Dolomite	1,267	1.31	0,00022	356
Schist	1,160	0.11	0.00069	436
Sand & Gravel	479	0.68	0.00061	457
Granite	446	0.15	0.000015	180
Sandstone, Conglomerate	175	0.27	0.0017	39
Quartzite	176	0.16	0.0037	72
Gneiss, Migmatite	88	0.06	0.0038	10
Argillaceous.Rock	65	0.05	0.00098	8
Others*	38	0.05	0.00047	15
< Total >	4,244	0.26	1.52×10 ⁻⁵	436.1

(Note) * Others include Igneous and the other metamorphic rocks

(4) Specific Yield

Specific Yields of existing boreholes have been obtained by pumping test analysis for more than 200 data sets. These result are shown in Table 3-3 and Figure 3-4. Relationship between specific yield and specific capacity is shown in Figure 5-7. Specific capacity does not appear to be related to specific yield as shown in Figure 5-7. Values of specific yield vary widely as shown in Figure 3-3. It is difficult to find a trend of specific yield by aquifer and to decide a representative specific yield for each aquifer from only the results of pumping test analysis. The following relation between specific yield and specific capacity was proposed in "Groundwater Resources Inventory of Zambia (1978, Chenov)",

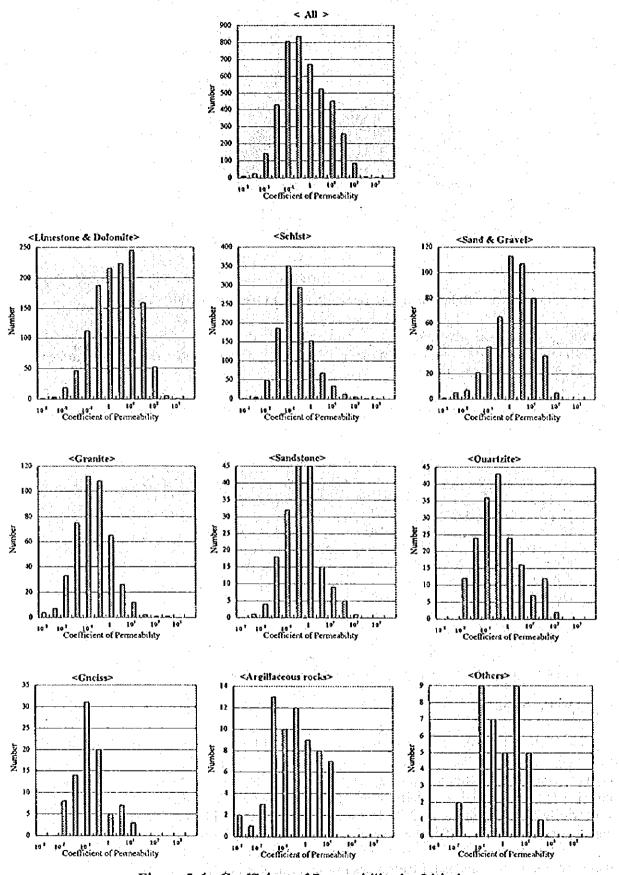


Figure 5-6 Coefficient of Permeability by Lithology

Specific Yield = $0.0934 \times [Permeability (m/day)]^{(17)}$

However, such a relation is not obvious from Figure 5-7.

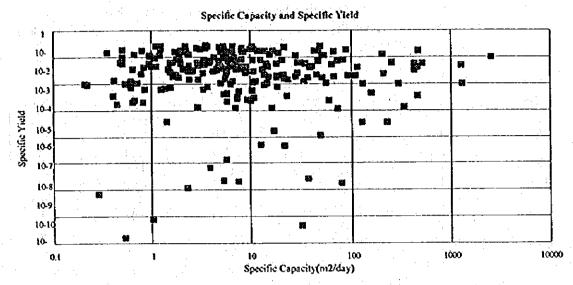


Figure 5-7 Relationship between Specific Yield and Specfic Capacity

Representative value of specific yield as obtained from pumping test analysis is 4%, therefore, actual average specific yields may be around 4%. The specific yield of each aquifer has been assumed as shown in Table 5-6 considering its permeability. It is better to use values shown in Table 5-6 as representative specific yield than values shown in Table 3-3.

Table 5-6 Representative Value of Specific Yield

Grade	Specific Yield	Lithology	Grade	Specific Yield	Lithology
Permeability High	5%	Limestone Dolomite Sand & Gravel	Permeability Medium Low	3%	Granite Schist Quartzite
Permeability Medium High	4%	Sandstone	Permeability Low	2%	Gneiss Argillaceous Rocks Others

(1)

5.3 Depth of Main Groundwater Supply

(1) Depth from Surface of Main Supply

Depth from surface of main supply of existing boreholes are shown in Table 5-7 and Figure 5-8 by lithology. The depth is shallower in sand & gravel. However, there are little difference among the other lithology.

Table 5-7 Depth of Main Groundwater Supply

Lithology	Data	Average	Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1321	28.6	2.0	108.5	0.37
Schist	1176	34.5	0.2	91	0.44
Sand & Gravel	511	24.9	0.74	114.0	1.05
Granité	427	29.4	3.0	85.0	0.72
Sandstone, Conglomerate	182	35.2	1.0	110	1.29
Quartzite	186	33.3	2.0	91	1,17
Gneiss, Migmatite	85	28.1	2.0	70	1.58
Argillaceous Rock	44	33.6	2.7	70.0	2.54
Others*	55	33.3	3.0	70.1	2.33
< The whole >	4343	30.4	0.2	114	0.25

(Note) * Others include Igneous and the other metamorphic rocks

5.4 Thickness of Aquifer

(1) Depth of Upper Limit of Main Aquifer

Depth of upper limit of main aquifer of existing boreholes are shown in Table 5-8 and Figure 5-9 by lithology. The depth is shallower in sand & gravel. However, there are little difference among the other lithology. The depth is usually less than 30m.

Table 5-8 Depth of Upper Limit of Main Aquifer

Lithology	Data	Medium	Range	Range (G.Lm)		
<u> </u>	Number	(G.Lm)	Minimum	Maximum		
Limestone & Dolomite	1380	16.6	1.5	76.2		
Schist	1249	21.0	0.3	76.0		
Sand & Gravel	521	8.0	0.62	72.0		
Granite	476	15.2	1.0	61.0		
Sandstone, Conglomerate	193	18.0	1.0	76.0		
Quartzite	193	20.0	.0	68.0		
Gneiss, Migmatite	91	19	2.0	65.0		
< The whole >	4283	18.0	0.3	76.2		

(2) Depth of Lower Limit of Main Aquifer

Depth of lower limit of main aquifer of existing boreholes are shown in Table 5-9 and Figure 5-9 by lithology. Depth of lower limit of main aquifer exists usually about 10m above the bottom of Boreholes.

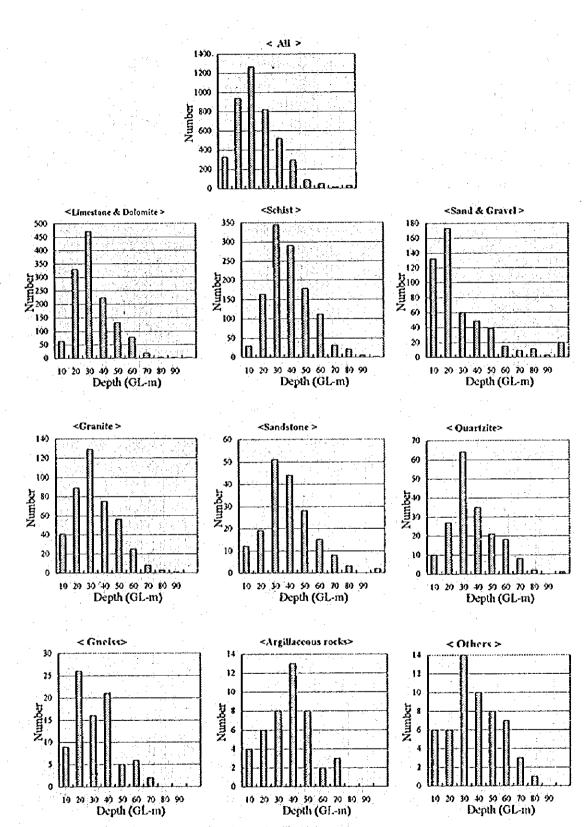


Figure 5-8 Depth from Surface of Main Supply by Lithology

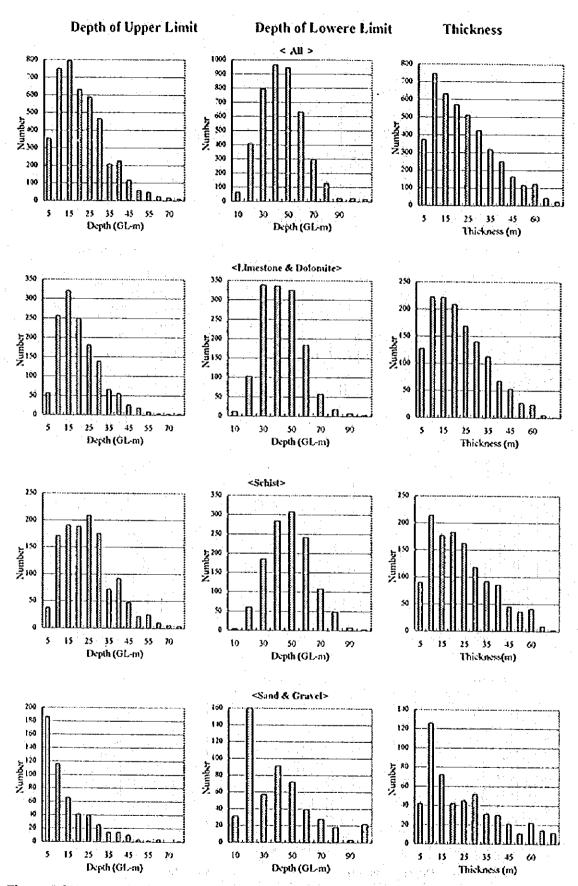


Figure 5-9(1) Depth of Boundary and Thickness of Main Aquifer by Lithology(1)

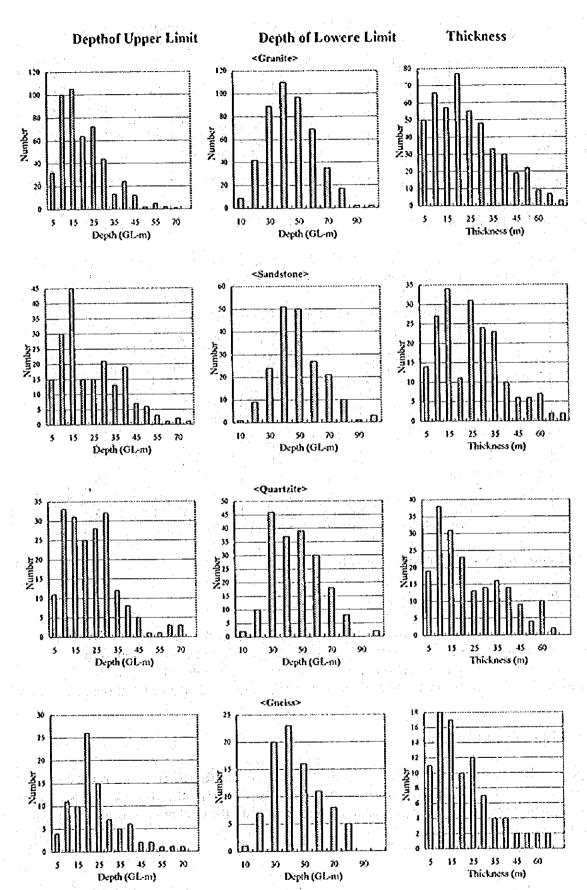


Figure 5-9(2) Depth of Boundary and Thickness of Main Aquifer by Lithology (2)

(I)

Table 5-9 Depth of Lower Limit of Main Aquifer

Lithology	Data 📑	Average	Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1381	38.8	1.8	108.0	.38
Schist	1248	44.5	4.0	101,9	0.43
Sand & Gravel	521	35.6	4.2	123.3	1.04
Granite	472	41.1	4.0	110.0	0.77
Sandstone, Conglomerate	197	45.7	10.0	110.0	1.21
Quartzite	192	43.1	9.0	91.5	1.24
Gneiss, Migmatite	91	41.2	8.0	80.0	1.69
< The whole >	4284	41.1	1.8	123.3	0.26

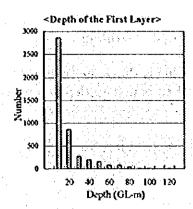
(3) Thickness of Main Aquifer

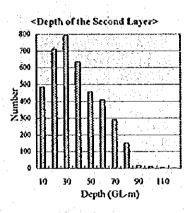
Thickness of main aquifer of existing boreholes are shown in Table 5-10 and Figure 5-9 by lithology. Thickness of main aquifer is usually less than 30m.

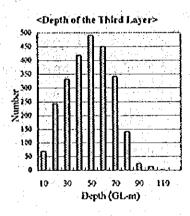
Table 5-10 Thickness of Main Aquifer

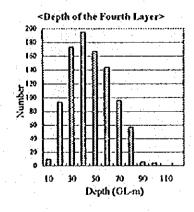
Lithology	Data	Medium	Range (m)	
	Number	(m)	Minimum	Maximum
Limestone & Dolomite	1378	18.0	0.3	81.0
Schist	1251	19.4	0.5	84.9
Sand & Gravel	520	17.0	0.8	109.3
Granite	476	20.0	0.1	85.0
Sandstone, Conglomerate	197	23.0	0.4	104.8
Quartzite	193	17.0	2.0	70.0
Gneiss, Migmatite	91	15.0	0.3	67.6
Argillaceous.Rock	46	15.5	1,0	60.0
Others*	58	21.0	2.0	61.4
< The whole >	4288	21.7	0.1	109.3

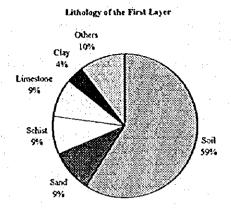
(Note) * Others include Igneous and the other metamorphic rocks

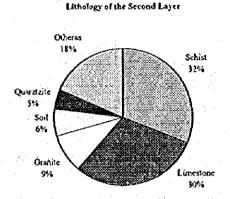

5.5 Depth of Layer Boundary and Lithology

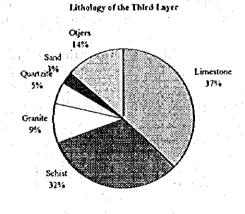

(1) Depth of Boundary of Layers


Aquifer are divided into sub-strata in the borehole records. Three or four strata division is the most common. Figure 5-10 shows depth of lower limit from the first stratum to the fourth stratum. The first stratum is considered to be usually composed of strongly weathered rock. The strata underlying the first stratum are composed of fractured and fresh rock.


(2) Lithology of Each Layer


Figure 5-10 shows lithology from the first stratum to the fourth stratum. As shown in Fugure 5-10, the first stratum is usually composed of strongly weathered rock. This stratum forms aquifer providing groundwater to shallow wells and the thickness is usually less than 20m.





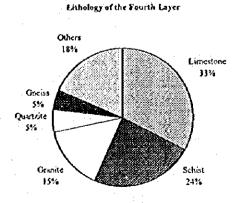


Figure 5-10 Depth of Layer Boundary and Lithology

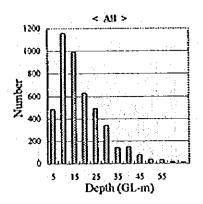
5.6 Groundwater Level of Borehole

(1) Depth from Surface at Which Water First Struck at Drilling

Depth from surface at which water first struck at drilling is shown in Table 5-11 and Figure 5-11 by lithology. The depth is approximately equal to boundary depth between strongly weathered zone of rock and fractured zone of rock.

Table 5-11 Depth from Surface at Which Water First Struck at Drilling

Lithology	Data Average		Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,374	14.9	1.5	76.2	0.27
Schist	1,238	19.1	0.3	68.5	0.32
Sand & Gravel	519	11.4	0.62	60.5	0.48
Granite	474	15.4	0.25	58	0.45
Sandstone, Conglomerate	192	18.7	1.0	76	0.94
Quartzite	192	18.3	1.5	68	0.87
Gneiss, Migmatite	89	18.4	2.0	65.0	1.23
Argillaceous.Rock	46	19.8	2.4	63	2.01
Others*	58	19.9	3.0	65.0	1.80
< The whole >	4,555	16.2	0.25	76.2	0.16

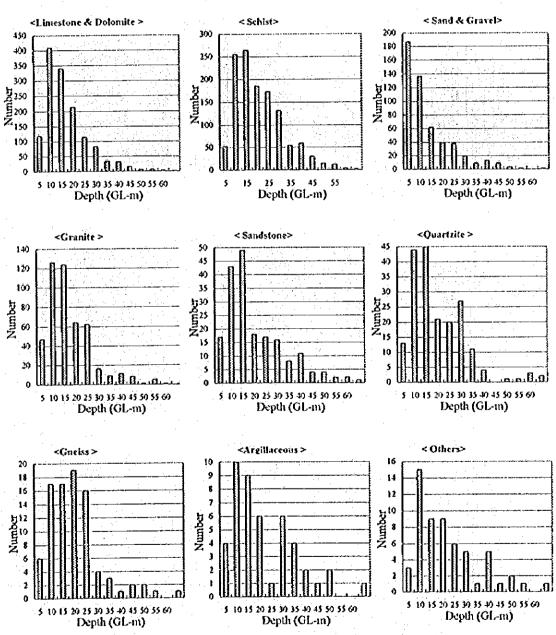
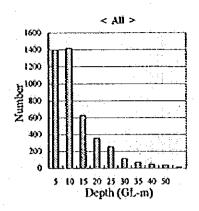
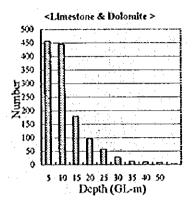
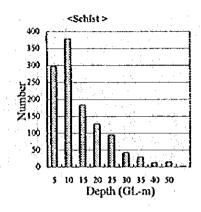
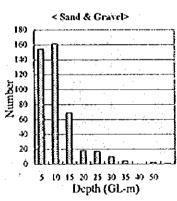

(Note) * Others include Igneous and the other metamorphic rocks

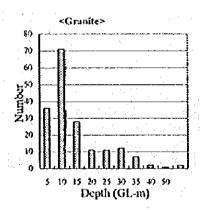
(2) Depth from Surface to Which Water Rises at Drilling

Depth from surface to which water rises at drilling are shown in Table 5-12 and Figure 5-12 by lithology. The groundwater table rises in a borehole up to near the static groundwater level after the borehole has encountered fractures bearing groundwater.

Table 5-12 Depth from Surface to Which Water Rises at Drilling

Lithology	Data	Average	Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,298	9.3	0.2	80.8	0.22
Schist	1,183	11.8	0.3	75	0.27
Sand & Gravel	506	9.3	0.1	64.7	0.14
Granite	436	8.7	0.15	70	0.35
Sandstone, Conglomerate	181	12.4	0.7	65	0.77
< The whole >	4,329	10.2	0.08	80.8	0.13


Figure 5-11 Depth from Surface at which Water First Struck by Lithology

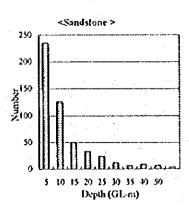


Figure 5-12 Depth from Surface to Which Water Rises by Lithology

(3) Depth of Water from Sirface before Pumping Test

Depth of groundwater from surface before pumping test is shown in Table 5-13 and Figure 5-13 by lithology. The depth is considered to be static groundwater level of boreholes. The level of boreholes shown in Table 5-14 is almost the same as that of shallow wells. Therefore, it may be concluded that the groundwater level in fractured zone of rock is continuously linking to that of strongly weathered zone of rock.

Table 5-13 Depth of Water from Sirface before Pumping Test

Lithology	Data	Medium	Range	(G.Lm)	Standard	
4.	Number	(G.Lm)	Minimum	Maximum	Deviation	
Limestone & Dolomite	1,386	12.0	4.0	12.0	0.03	
Schist	1,255	8.5	0.0	48.8	0.25	
Sand & Gravel	522	5.4	0.0	55.7	0.42	
Granite	476	6.4	0,0	79.0	0.37	
Sandstone, Conglomerate	197	8.7	0.0	65.0	0.73	
Quartzite	193	8.7	0.0	60.2	0.62	
Gneiss, Migmatite	91	8.3	0.08	40.0	0.72	
Argillaceous.Rock	46	8.4	1.4	40.1	1.27	
Others*	58	9.8	0.1	35.8	1.23	
< The whole >	4,601	7.1	0	79	0.12	

(Note) * Others include Igneous and the other metamorphic rocks

(4) Greatest Depth to Which Water was Lowred at Pumping Test

Greatest depth to which water was lowered at pumping test are shown in Table 5-14 and Figure 5-14 by lithology. From the difference between the greatest groundwater depth lowered and the static groundwater level shown in Table 5-13, average draw down at pumping test is calculated as follows;

Average draw down at pumping test = 30.7 (m) - 7.1 (m) = 23.6 (m)

The draw down is larger in limestone and dolomite aquifers and smaller in schist aquifers than the others.

Table 5-14 Greatest Depth to Which Water was Lowred at Pumping Test

Lithólogy	Data	Average	Range	(G.L-m)	Standard
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,275	22.8	0.8	85	0.45
Schist	1,163	40.3	1.5	97.0	0.49
Sand & Gravel	542	20.3	1.8	77.0	0.64
Granite	451	36.2	0.61	80.0	0.78
Sandstone, Conglomerate	181	32.7	1.5	91	1.38
Quartzite	175	36.0	1.0	82.0	1.41
Gneiss, Migmatite	89	35.9	9.5	75.0	1.61
Argillaceous Rock	40	30,7	5.0	58.6	2.41
Others*	53	31.4	4.6	67.0	2.42
< The whole >	4,266	30.7	0.61	97.0	0.28

(Note) * Others include Igneous and the other metamorphic rocks

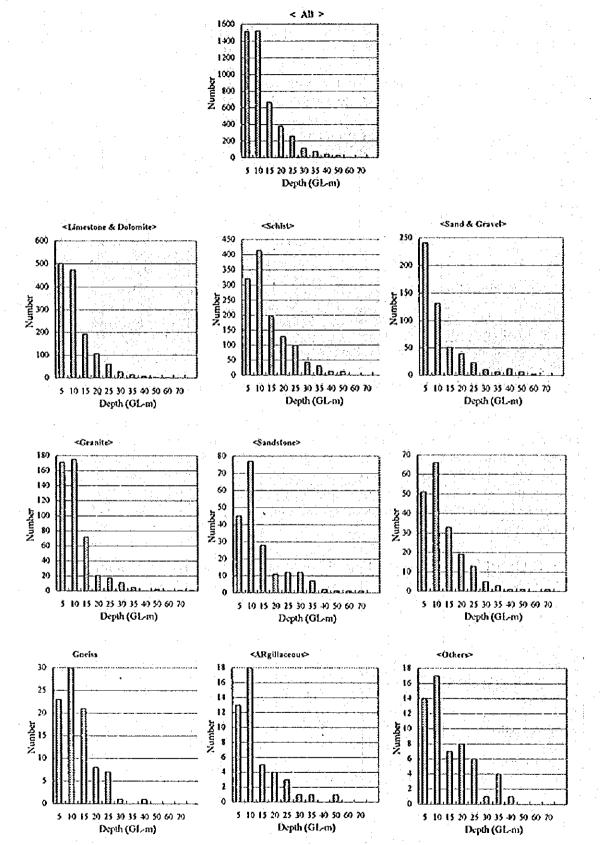


Figure 5-13 Depth of Water from Surface before Test by Lithology

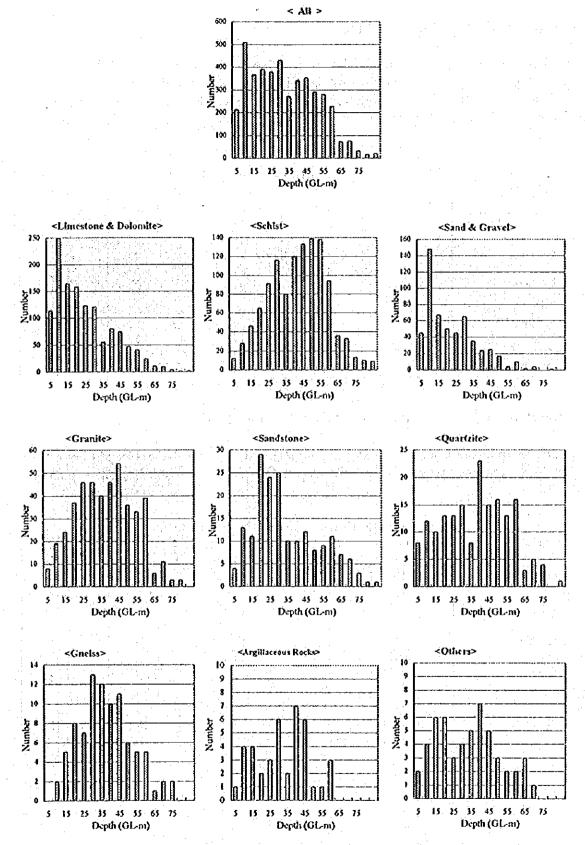


Figure 5-14 Greatest Depth to Which Water was Lowered During Pumping Test

T

5.7 Borehole Design

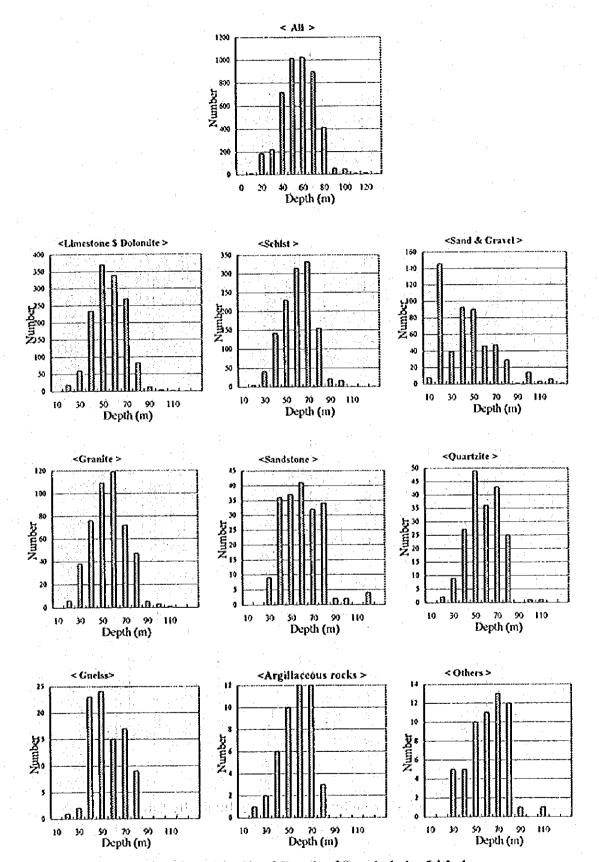
(1) Total Depth of Existing Borehole

Total depth of existing boreholes is shown in Table 5-15 and Figure 5-15 by lithology. Average depth of existing boreholes is 52.6m with large variety of the values. The average total depth by lithology has little difference among different lithology type. However, the total depth of boreholes drilled in sandstone and conglomerate aquifers is smaller than others.

Table 5-15 Total Depth of Existing Borehole

Lithology	Data	Average	Range	Standard	
	Number	(m)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,386	52.3	12.5	108.5	0.37
Schist	1,255	57.8	18.2	122.0	0.41
Sand & Gravel	522	40,2	6.1	123.3	1.06
Granite	476	52.1	11.6	110	0.72
Sandstone, Conglomerate	197	56.4	21.4	119.9	1.26
Quartzite	193	54.4	10.3	106.7	1.10
Gneiss, Migmatite	91	50,6	18.1	80.0	1.56
Argillaceous Rock	46	53.5	10.4	80.0	2.16
Others*	58	58.2	25.6	104.5	2.14
< The whole >	4,602	52.6	6.1	123.3	0.25

(Note) * Others include Igneous and the other metamorphic rocks


(2) Depth from Surface of Pump Intake at Pumping Test

Depth of pump intake from surface at pumping test is shown in Table 5-16 and Figure 5-16 by lithology. It seems that well pumps are set usually 7m over borehole bottom at pumping test.

Table 5-16 Depth from Surface of Pump Intake

Lithology	Data	Average	Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,343	43.0	2.5	85.0	0.34
Schist	1,234	48.4	2.8	118.0	0.38
Sand & Gravel	181	40.8	15.0	100.0	1.17
Granite	457	41.7	2.7	105.0	0.67
Sandstone, Conglomerate	159	49.0	11.0	91.0	1.3
Quartzite	189	47.2	9.0	100.0	1.14
Gneiss, Migmatite	87	43.8	3.9	77.5	1.61
Argillaccous.Rock	41	42.9	2.8	67.0	2.31
Others*	57	48.0	17.5	74.0	1.96
< The whole >	4,105	45.4	2.5	118	0.22

(Note) * Others include Igneous and the other metamorphic rocks

Fugure 5-15 Total Depth of Borchole by Lithology

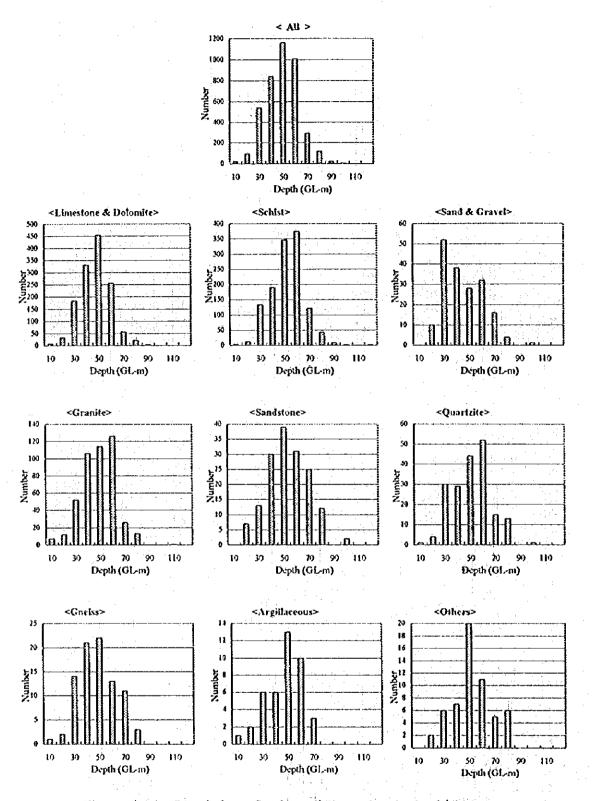


Figure 5-16 Depth from Surface of Pump Intake by Lithology

(3) Diameter

Diameter of existing boreholes is shown in Table 5-17 and Figure 5-17 by lithology. From the results, it is concluded that almost 80% of drilling diameter of the existing boreholes is 150mm.

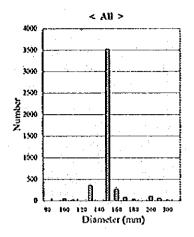
Table 5-17 Diameter

Lithology	Data	Average	Range	(mm)	Standard
	Number	(mm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1358	150	100	300	0.47
< The whole >	4517	150	75	300	0.25

(4) Length of Plain Part of Casing

Length of plain part of casing of existing boreholes is shown in Table 5-18 and Figure 5-18 by lithology.

Table 5-18 Length of Plain Part of Casing


		Strigtt vi strive and ottoring						
Lithology	Data	Average	Range	Standard				
	Number	(m)	Minimum	Maximum	Deviation			
Limestone & Dolomite	1,358	9.0	0.3	50.0	•			
Schist	1,226	12.2	0.7	59.8	•			
Sand & Gravel	518	12.1	1.0	63.3	-			
Granite	458	12.0	0.28	67.3	•			
Sandstone, Conglomerate	195	15.0	2.0	68.2	-			
< The whole >	4,508	11.4	0.28	68.2	-			

(5) Length of Perforated Part of Casing

Length of perforated part of easing of existing boreholes is shown in Table 5-19 and Figure 5-19 by lithology. From this result, it is concluded that screen part occupies almost 35% of total length of boreholes.

Table 5-19 Length of perforated Part of Casing

Lithology	Data	Average	Range	Standard	
	Number	(m)	Minimum	Maximum	Deviation
Limestone & Dolomite	1,358	16.7	0.0	65.9	0.33
Schist	1,226	20.4	0.0	79.0	0.36
Sand & Gravel	518	16.8	0.0	68.0	0.60
Granite	458	15.8	0.0	50.0	0.54
Sandstone, Conglomerate	195	22.4	0	75.2	1.14
< The whole >	4,508	18.0	0.0	79.0	0.19

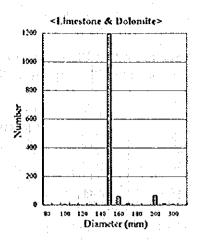


Figure 5-17 Diameter of Borehole

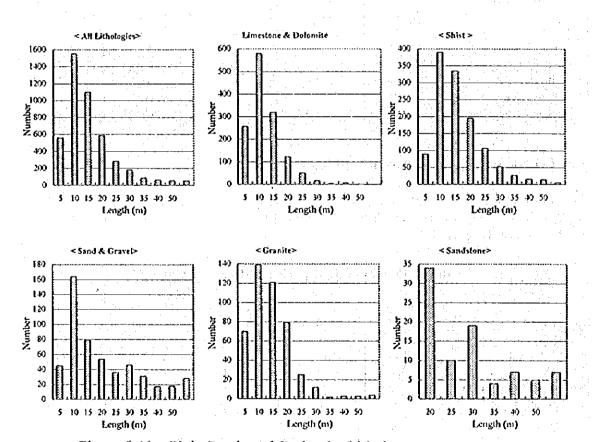
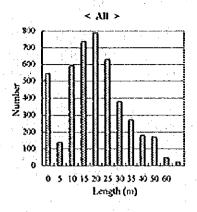



Figure 5-18 Plain Portion of Casing by Lithology

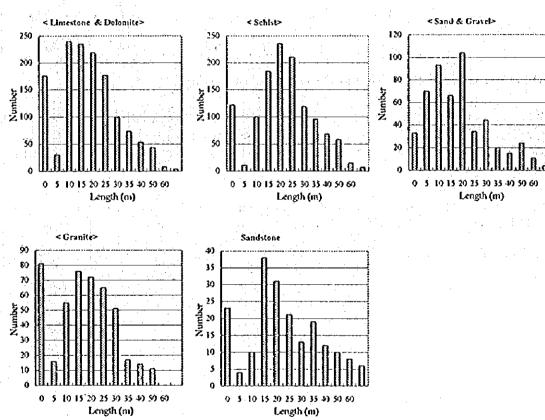


Figure 5-19 Perforated Portion of Casing by Lithology

(6) Depth from Surface to Bottom of Casing

Depth from surface to bottom of casing of existing boreholes is shown in Table 5-20 and Figure 5-20 by lithology. From this result, it is concluded that average length of open hole part of existing boreholes is 21.5m and rock of this part is thought to be hard and does not need any casing.

Table 5-20 Depth from Surface to Bottom of Casing

Lithology	Data	Average	Range	Standard	
	Number	(G.Lm)	Minimum	Maximum	Deviation
Limestone & Dolomite	1352	26.6	0.6	80.5	0.38
Schist	1206	34.5	2.0	92.0	0.41
Sand & Gravel	\$13	33.5	5.6	99.6	0.91
Granite	456	28.7	1.5	80.6	0.65
Sandstone, Conglomerate	195	39.8	5.0	90.9	1.21
< The whole >	4470	31.2	0.6	99.6	0.24

(7) Diameter of Unlined Portion of Borehole below Casing

Diameter of unlined portion of borehole below casing of existing boreholes is shown in Table 5-21 and Figure 5-21 by lithology. The diameter is almost the same as that of lined portion. It seems that drilling diameter is usually 150mm from borehole top to bottom except top soil part subject to collapse.

Table 5-21 Diameter of Unlined Portion of Borehole below Casing

Lithology	Data	Average	Range	Standard	
	Number (m		Minimum	Maximum	Deviation
< The whole >	4,337	150	43	300	.23

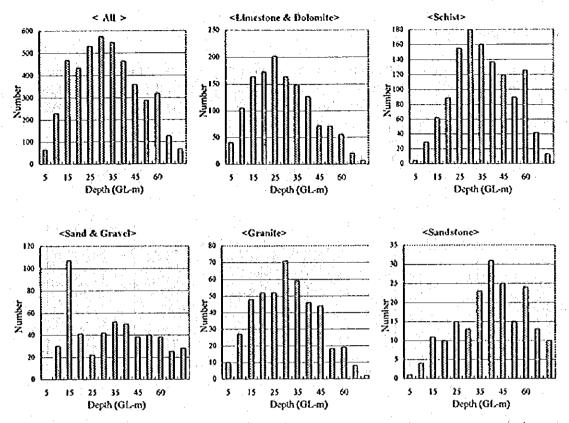


Figure 5-20 Depth from Surface to Bottom of casing by Lithology

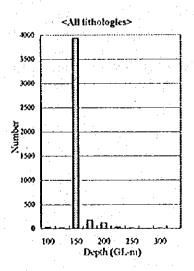


Figure 5-21 Diameter of Unlined Portion of Borekole below Casing

5.8 Yield of Borehole

(1) Yield at Pumping Test

Yield at pumping test of existing boreholes is shown in Table 5-22 and Figure 5-22 by lithology. Limestone and dolomite aquifers show much higher yield than the others, and the average yield is twice as large as the average yield of all aquifres. However, yields vary widely even within same lithology type as shown in Figure 5-22.

Table 5-22 Yield at Pumping Test

Lithology	Data Medium			Range (1/sec)			
	Number	(Vsec)	(m³/day)	Minimum	Maximum		
Limestone & Dolomite	1,386	4.7	406	0	60.6		
Schist	1,255	1.5	130	0	60.0		
Sand & Gravel	522	. 1,5	130	0	40.0		
Granite	476	1,1	95	. 0	39.7		
Sandstone, Conglomerate	197	1.8	156	0	55,8		
Quartzite	193	1,6	138	0	50		
Gneiss, Migmatite	91	0.7	60	0.08	11.0		
Argillaceous Rock	46	1.5	130	0	40		
Others*	58	2.8	242	0.2	12.0		
< The whole >	4,601	2.0	173	0	66		

(Note) * Others include Igneous and the other metamorphic rocks

5.9 Quality of Water

(1) Quality of Water

Borehole water quality is as follows;

Table 5-23	Water Q	uality	(Data number = 4,600)			
Fresh	Brackish	Saline	Odour	Turbid		
99.84%	0.09%	0.02%	0%	0.05%		

According to the data-base, borehole water quality is considered to be suitable for drinking.

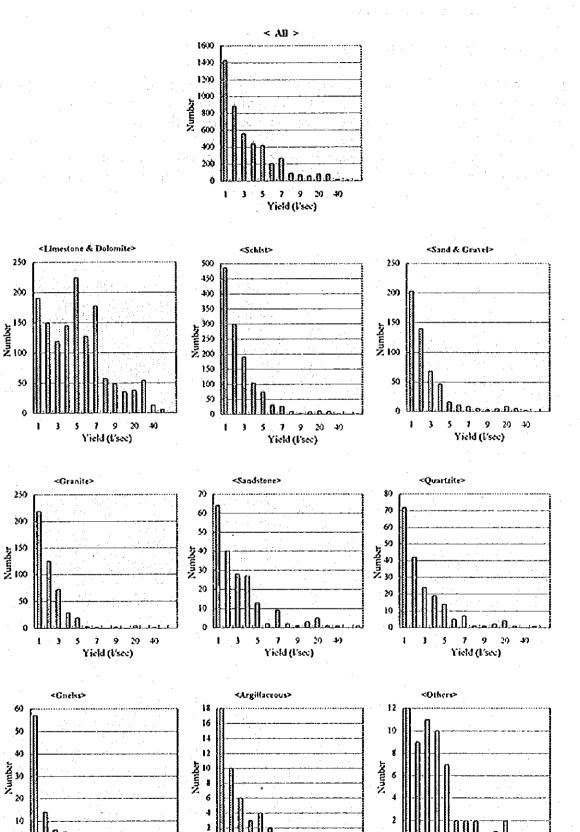


Figure 5-22 Yield at Pumping Test by Lithology

5

7 9 20 40 Yield (l'see) 7 9 20 40 Yield (Vsee)

7 9 20 Yield (Vsec)

5.10 Purpose of Groundwater Usage

(1) Purpose of Groundwater Usage

Purpose of existing boreholes are shown in Table 5-24 and Figure 5-23 and 5-24 by lithology. As shown in the Table and Figure, the purposes of groundwater usage is different by province. Purposes for irrigation, urban water supply and the others except rural water supply is dominant in Lusaka and Copperbelt provinces. On the other hand, purpose for rural water supply is much dominant in Western, Eastern Northern, Luapula Provinces. Purposes in Southern and Central Provinces are intermediate between 2 groups mentioned above.

Table 5-24 Purpose of Groundwater Usage

Lusaka			Copperbelt			Central		
Purpose	Nurober	%	Ригроѕе	Number	%	Purpose	Number	%
Irrigation	976	40.0	Rural Water Supply	123	21,5	Irrigation	285	40.4
Live-stock	640	26.2	Urban Water Supply	115	20.1	Live-stock	203	28.8
Urban Water Supply	535	21,9	Irrigation	113	19.8	Rural Water Supply	132	18.7
Rural Water Supply	117	4.8	Industrial	100	17.5	Urban Water Supply	36	5.1
Industrial	111	4.5	Live-stock	84	14.7	Industrial	31	4.4
Commer-cial	57	2.3	Commer-cial	35	6.1	Commer-cial	19	2.7
Fisherics	. 3	0.1	Explo-ratory	1	0.2	Fisheries	0	0.0
Obser-vation	3	0.1	Fisheries	0	0.0	Explo-ratory	- 0	0.0
Exploratory	1	0.0	Observation	0	0,0	Observation	0	0.0
Total	2143			571			706	

Northwestern		400	Western			Southern		
Purpose	Number	%	Purpose	Number	%	Purpose	Number	%
Rural Water Supply	45	80.4	Rural Water Supply	394	98.5	Rural Water Supply	366	39.1
Live-stock	6	10.7	Urban Water Supply	5	1.3	Irrigation	262	28.0
Irrigation	5	8.9	Industrial	0	0.3	Live-stock	247	26.4
Urban Water Supply	0	0.0	Irrigation	0	0.0	Industrial	34	3.6
Fisheries	0	0.0	Live-stock	0	0.0	Urban Water Supply	25	2.7
Industrial	0	0.0	Fisheries	0	0.0	Commer-cial	2	0.2
Commer-cial	0	0.0	Commer-cial	0	0.0	Fisheries	1	0.1
Explo-ratory	0	0.0	Explo-ratory	0	0.0	Explo-ratory	Ò	0.0
Observation	0	0.0	Obscryation	0	0.0	Observation	0	0.0
Total	56			399			937	

Luapula			Nothern			Eastern		
Purpose	Number	%	Purpose	Number	%	Purpose	Number	%
Rural Water Supply	42	79.2	Rural Water Supply	66	61.7	Rural Water Supply	203	57.2
Industrial	5	9.4	Irrigation	- 18	16.8	Live-stock	63	17.7
Urban Water Supply	4	7.5	Live-stock	15	11.0	Irrigation	61	17.2
Irrigation	2	- 3.8	Urban Water Supply	6	. 5,6	Urban Water Supply	21	5.9
Live-stock	O	0.0	Fisheries	1	0.9	Industrial	4 4	1.1
Fisheries	0	0.0	Industrial	1	0.9	Commer-cial	3	0.8
Commer-ciai	0	0.0	Commer-cial	0	0.0	Fisheries	- 0	0.0
Explo ratory	0	0.0	Explo-ratory	0	0.0	Explo-ratory	0	0.0
Observation	0	0.0	Observation	0	0.0	Observation	0	0.0
Total	53		41	107			355	

TIL -	2 1 14	1 _	A	4	
Inc	w	תותו	C AH	13.1	
The				111	

Purpose	Number	%
Irrigation	1528	30.37
Rural Water Supply	754	26.8
Commer-cial	1732	2.1
Live-stock	1270	0.5
Urban Water Supply	5	0.5
Fisheries	289	0.1
Explo-ratory	120	0.0
Industrial	2	0.0
Observation	3	0.0
total	5703	

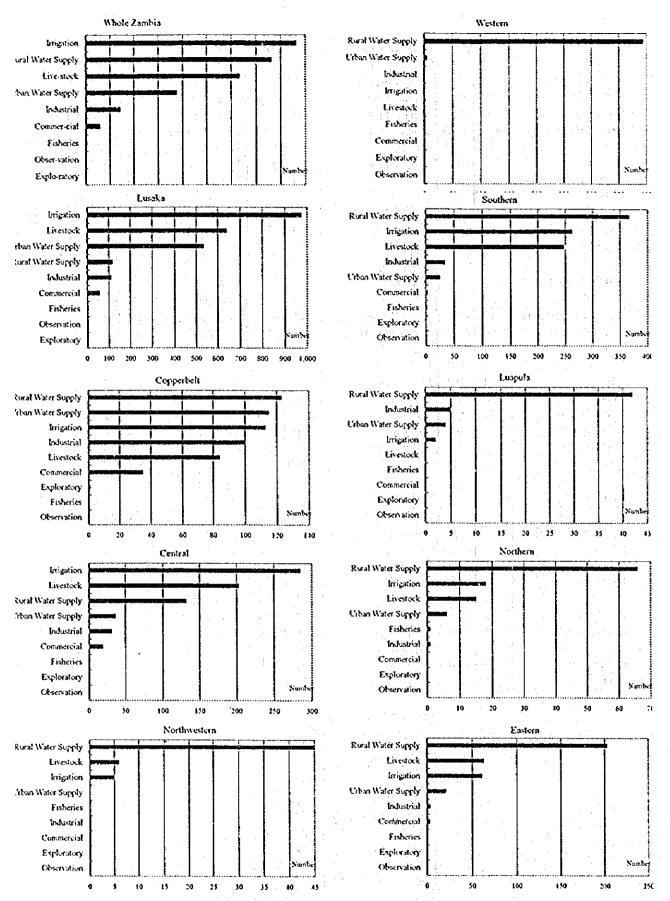
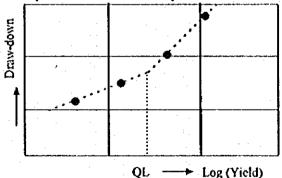


Figure 5-23 Purpose of Groundwater Use by Province

CHAPTER 6 RECOMMENDATION

6.1 Effective Use of Borehole Data-Base

The effective use of borehole data-base is desirable for future groundwater development. The advantages of using the data-base are as follows;


- 1) It is easy to retrieve information about aquifers and existing boreholes near new groundwater development sites. From this, the planning of new boreholes, expected yield, length, casing program, etc., are easily carried out according to information derived from the data-base. Borehole data necessary for users are instantly found and printed out. The computer data-base has greatly reduced the time for searching out borehole data.
- 2) Statistical information on aquifers hydrogeology and boreholes capacity by district or province are easily obtained from the data-base. These information is useful not only for actual groundwater development planning but also for scientific hydrogeological study aiming at making clear characteristics of aquifers throughout Zambia.

6.2 Execution of Adequate Pumping Test

6.2.1 Execution of Step Draw-down Test

Step draw-down test is carried out to determine safe yield of a borehole. Step draw-down test is defined as a pumping test to observe draw-downs of borehole with different yields. Safe yield of a borehole is determined as shown in Figure 6-1.

If pumping rate exceeds safe yield, rock fragments enter into the borehole and are deposited on the bottom. If the worst comes to the worst, the wall of borehole and ground surface may collapse. Other than these phenomena, the efficiency of pumping ratio may be reduced

Safe Yield =
$$QL \times (0.7 - 0.8)$$

QL= An intersecting point of two lines as shown in Figure 6-1.

Figure 6-1 Concept of Step Draw-down Test

inverse proportion to the pumping rate leading to uneconomical condition. These phenomena mentioned above occur especially in boreholes equipped with power pumps. On the other hand, such the cases occur rarely in boreholes equipped with hand pumps, because yield of handpump is low. However, proper yields of such boreholes with hand pumps also should be determined in the case of future exchange from hand pump to power pump for rural water supply.

6.2.2 Proper Pumping Test for Aquifer Constants

It is necessary to obtain aquifer hydraulic constants precisely for planning large scale groundwater development. For this purpose, execution of proper pumping test is necessary. As a matter of course, pumping tests are always carried out after completion of boreholes, but those tests are not carried out in an appropriate method in terms of testing the aquifer and obtain the aquifer constants. Important points in execution of a pumping test for that purpose are as follows:

- 1) To drill observation boreholes and to observe groundwater level fluctuation in the observation boreholes during pumping test.
- 2) To keep yield of pumping well constant.
- 3) Before the pumping test, a stepped draw-down test should be carried out to decide the appropriate pumping rate for aquifer constants.

APPENDICES

Appendix 1	List of Pumping Te	st Analysis R	esult	V-App
Appendix 2	Result of Pumping	Test Analysis		V-App

APPENDICES

Appendix 1	List of Pumping Test Analysis Result	V-App1
Appendix 2	Result of Pumping Test Analysis	V-App9

学自身的区别物质

Appendix 1 to a confidencial to an about the Appendix (Appendix Appendix Ap

Appendix 1 (1) List of Pumping Test Analysis Result (1)

Borehole	Lithology	T	heis Me	thod	Ya	icobu M	lethod	Recovery	Method	Final Value		
Number		T	k	S	T	k	s	T	k	T	k	S
1690	Dolomite	0.878	0.025	0,101	0.871	0.025	0.1	0,699	0.02	0.816	0.023	0.t01
1931(B)	Dolomite			. (1.042	0.095	1.042	0.095	
LS-8	Dolomite							5.87	1.96	5.87	1.96	
2390-1	Dolomite	54.6	9.099	0.113	54.55	9.091	0,123	1 . 1		36.38	6.063	0.118
2623C	Dolomite	29	4.14	4E-05	28.1	4.01	6E-05	9.57	1.37	22.22	3.173	5E-05
2626D	Dolomite	1,329	0.063	8E-08	1.33	0.063	8E-08	0.892	0.043	1.184	0.056	8E-08
2680A	Dolomite	11.32	0.943	0.012	11.18	0.931	0.013	9,585	0.799	10.69	0.891	0.013
1630	Limestone				:	4.4		1.41	0.023	1.41	0.023	. !
2198	Limestone	. ;						11	0.272	11	0.272	
1692	Limestone	121	2.33	3E-07	⊴ 137	2,64	2E-08		1	86	1.657	2E-07
2670-1	Limestone	0.383	0.015	0.036	0.381	0.015	0.035	0.231	0.009	0.332	0.013	0.036
2671-1	Limestone .	2.287	0.127	0.022	2.345	0.13	0.022	1.099	0.061	1.91	0.106	0.022
2625-1	Lintestone :	0.16	0.005	0.021	0.158	0.005	0.019	0.129	0.004	0.149	0.005	0.02
2015	Limestone							26.1	13	26.1	13	. :
2012	Limestone	10.5	0.553	0.006	10.5	0.554	0.006	3.75	0.197	8.25	0.435	0.006
2013	Linæstone	7.65	0.219	0.004	7.8	0.223	0.003	3.57	0.102	6,34	0.181	0.004
СНЗ	Limestone							3.514	0.227	3,514	0.227	
MW1	Limestone .		1. 2				. 1	9.35	1.34	9,35	1.34	
2669-1	Limestone	0.379	0.025	0.048	0.379	0.025	0.048	0.354	0.024	0.371	0.025	0.048
2668-1	Limestone	1.057	0.151	0.001	1.059	0.151	0.001	0.628	0.09	0.915	0.131	0.001
2637	Limestone	2.736	0.391	0.01	2.725	0.389	0.011	1.087	0.155	2.183	0.312	0.011
MAK13	Limestone			·		. :		2.86	0.476	2.86	0.476	
LUSCIO	Limestone	7				.*		131	26.3	1,31	26.3	
LUSC13	Limestone	733	147	0.055	730	146	0.057	1 1		487.7	97.67	0.056
LUSC16	Limestone						4.	12.2	4.07	12.2	4.07	
2663	Limestone .	0.729	0.017	0.03	0.718	0.017	0.03	0.928	0.022	0.792	0.019	0.03
2147-3	Limestone	0.113	0.019	0.063	0.111	0.019	0.06	0.214	0.036	0.146	0.024	0.061
LE6	Limestone	0.097	0.011	0.01	0.097	0.011	0.009	0.034	0,004	0.076	0.008	. 0.01
1839	Limestone	1	1 :	0.278	0.987	0.017	0.247	0.655	0.012	0.881	0.015	0.263
1375	Limestone	4.23	0.113	0.026	4.23	0.112	0.025	1.74	0.046	3.4	0.09	0.025
2136C	Limestone	167	11.1	0.032	168	11.2	0.034	29.2	1.95	121.4	8,083	0.033
2604	Limestone	184	16.7	0.003	484	16.7	0.004			322.7	:11.13	0.003
1532-1	Limestone	1.12	0.023	0.077	1.13	0.024	0.071	0.74	0.015	0.997	0.021	0.074
2667	Limestone	1,335				1				1.345	ŀ	1
2631-1	Limestone	8.39		1	i .	l.		7.6			0.27	.0.01
2135B	Limestope	2.1	0.058		1			1	l		0.047	0.036
1947	Limestone							0.881	0.059		0.059	
1889-1	Limestone			4.					-		1	
1720	Limestone							27.62	0.952	27.62	0.952	
2615-1	Limestone				6.08	0.105	3E-04]		o	į	
2228-2	Limestone					1. 11.73 £		2.62	0.056	i `		

Appendix 2 (2) List of Pumping Test Analysis Result (2)

Borehole	Lithology	T	heis Me	thod	Ya	icobu M	lethod	Recovery	Method	·	Final V	alue
Number		Т	k	5	Т	k	s	Т	k	T	k	S
2605C	Limestone	4.53	2.27	0,077	4.26	2.13	0.091	1.89	0.947	3.56	1.782	0.084
2607B	Limestone	2.18	0.07	0.037	2.07	0.067	0.039	2.51	0.081	2.253	0.073	0.038
2608A	Limestone	0.936	0.078	0.016	0.933	0.078	0.014	0.759	0.063	0.876	0.073	0.015
2614A	Limestone	7.74	1.29	0.125	7.65	1,28	0.122	6.15	1.02	7.18	1.197	0.124
1662	Linestone	1.5	0.034	0.164	1.5	0.034	0.154	1.76	0.04	1.587	0.036	0.159
1948-2	Liniestone								* *			4.4
2088	Limestone -				0.307	0.307	0.085	0.186	0.186	0.186	0.186	0.043
2286-1	Limestone	0.007	1E-01	0.01	0.007	1E-04	0.01			0.005	1E-04	0.01
2162-1	Limestone					1		7.552	5,594	7.552	5,594	
3003	Limestone	0.706	0.023	0.125	0.726	0.023	0.128	0.5	0.016	0.611	0.021	0.127
2678-1	Limestone	0.076	0.002	0.024	0.109	0.003	0.015	0.23	0.007	0.138	0.004	0.019
1630	Limestone	4.58	0.075	0.067	4.64	0.076	0.069	1.46	0.024	3.56	0.058	0.068
2228-1	Limestone	0.172	0.004	0.048	0.164	0.003	0.048	0.207	0.004	0.181	0.004	0.048
MB-14	Schist							2.084	0.11	2.084	0.11	
1429	Schist							0.561	0.014	0.561	0.014	1.5
1670	Schist	0.231	0.019	0.008	0.247	0.021	0.006	0.505	0.042	0.328	0.027	0.007
2037	Schist	. 44	0.62	0.159	43.9	0.618	0.154	34.6	0.487	40.83	0.575	0.157
2205	Schist	0.374	0.019	0.256	0.37	0.019	0.252	0.403	0.02	0.382	0.019	0.254
2204	Schist	0.217	0.009	0.127	0.208	0.008	0.125	0.123	0.005	0.183	0.007	0.126
2555	Schist						* * !	682	31	682	31	
2147	Schist	0.114	0.019	0.059	0.113	0.019	0.059	0.22	0.037	0.149	0.025	0.059
2136	Schist	196	1.13	0.004	197	13.1	0.005			131	8.7	0.004
2012	Schist	7.07	0.372	0.168	6.99	0.368	0.171	4.08	0.215	6.047	.0.318	0.17
1648	Schist	2.22	0.089	0.038	2.15	0.086	0.041	1.98	0.079	2.117	0.085	0.039
1532	Schist		* 1									(.
1428	Schist				1	0.114	1E-05	0.779	0.022	0.779	0.022	7E-06
1442	Schist	1.87	0.069	0.154	1.86	0.069	0.155	2.3	0.085	2.01	0.074	0.155
2603	Schist	1.65	0.165	4E-04	1.66	0.166	4E-04			1.103	0.11	4E-04
1748	Schist	0.219	0.007	0.048	0.224	0.008	0.039	0.196	0.007	0.213	0.007	0.043
1728	Schist	1.227	0.123	0.224	1.22	0.122	0.222	1.23	0.123	1.226	0.123	0.223
1679	Schist	1.278	0.035	0.203	1.245	0,034	0.208	0.275	0.007	0.933	0.025	0.206
1633	Schist	0.104	0.007	0.013	0.104	0.007	0,013	0.376	0.024	0.195	0.012	0.013
2627	Schist	71.24	30.32	0.017	71.42	30,39	0.017	23.32	9.924	55.33	23.54	0.017
KB05	Schist						1 1 1	3.06	0.383	3,06	0.383	
KB02	Schist	1.86	0.932	0.253	1.74	0.872	0.255	1.89	0.943	1.83	0.916	0.254
CH2	Schist		1 1	. i			3.45	1.97	0.328	1.97	0.328	
MW2	Schist	4.					i	5.08	0.282	5.08	0.282	
MW03	Schist	30,7	2.05	0.169	30.5	2.03	0.169	23.2	1.55	28,13	1.877	0.169
MW04	Schist	4,45	0.227	0.005	4.46	0.228	0.004	3,04	0.135	3,983	0,203	0,004
2638	Schist	2.462	0.308	0.076	2,169	0.309	0.079	6.235	0.779	3.722	0.465	0.077
2640	Schist	2.548	0.182	0.015	2.562	0.183	0.014	2.663	0.19	2.591	0.185	0.014

Appendix 1 (3) List of Pumping Test Analysis Result (3)

Borchole	Lithology	Tt	icis Mei	thod	Ya	cobu M	ethod	Recovery	Method		Final V	alue
Number		T	k	s	T	k	s	T	k	7	<u>k </u>	s
LUSC3	Schist	8.15	0.34	2E-06	8.16	0.34	2E-06	- 3,4	0.142	6.57	0.271	2E-06
LUSC12	Schist			, [}			0.544	0.136	0.544	0.136	
2634	Schist	34.89	2.052	0.001	34.88	2.052	0.001	į		23.26	1.368	0.001
2635	Schist	0.253	0.013	0,002	0.253	0.013	0.002	0.592	0.03	0.366	0.018	0.002
LN5	Schist	37.9	3.44	0.045	38.5	3.5	0.044			25.47	2.313	0.014
LN6	Schist	228	20.7	0.025	231	21	0.023	171	15.6	210	19.1	0.024
2273	Schist	4.02	1.34	0.004	4.04	1.35	0.004	2.02	0.672	3.36	1.121	0.004
KAL02	Schist			1.7	11.14			3.46	0.089	3.46	0.089	
2282	Schist	0.369	0.041	0,103	0.359	0.04	0.11			0.243	0.027	0.107
2127	Schist	0.293	0.029	0.036	0.293	0.029	0.036	0.231	0.023	0.272	0.027	0.036
KAL01	Schist			.	1			2.36	0.147	2.36	0.147	- 1
2660-3	Schist :	1.67	0.032	0.028	1.62	0.031	0.036			1.097	0.021	0.032
2619	Schist :			. :				1.88	0.313	1.88	0.313	
CHS 02	Schist	12.44	6.222	0.015	12.53	6.266	0.015			8,325	4.163	0.015
2070	Schist							0.687	0.031	0.687	0.031	
3151	Schist	19.1	0.616	0.055	19.08	0.615	0.058	3.673	0.118	13.95	0.45	0.056
2255	Schist	6.017	0.231	0.03	6.058	0.233	0.03	5.798	0.223	5.958	0.229	0.03
1957-1	Schist											. 1
2148-1	Schist				1			0.466	0.058	0.466	0.058	
2612A	Schist	1,95	0.061	0.025	1.96	0.061	0.027	1.28	0.04	1.73	0.054	0.026
2617C	Schist	2.29	0.104	0.001	2.31	0.105	0.001	1.44	0.065	2.013	0.091	0.001
2618B	Schist	3,86	0.482	0.003	3.82	0.477	0.003	3.63	0.453	3.77	0.471	0.003
2622-C	Schist	7.1	0.569		7.4	0.569	0.03	6.04	0.464	6.947	0.534	0.031
2165	Schist	1.0			1.4			23.6	0.655	23.6	0.655	
1947	Schist	ļ :		1	A section			0.644	0.013	0.644	0.043	
1889	Schist	1:28	0.031	0.203	1.28	0.03	0.21	0.363	0.009	0.974	0.023	0.207
1846	Schist				1.1.1		. :.	1.56	0.13	1.56	0.13	
1609	Schist	47.87			8,417			0.218	0.005	0.218	0.005	
1660	Schist	3.58	0.073	0.169	3.28	0.067	0.19	4.03	0.082	3.63	0.074	0.18
1238	Schist	2,36	0.105	0.012	2.36	0.106	0.013	2.57	0.115	2.43	0.109	0.013
1964-1	Schist											
2598	Schist	4.71	27.7	0.206	4.72	27.8	0.2	2		3,143	18.5	0.203
1993	Schist	11.8	0,843	0.021	11.76	0.84	0.02	13,38	0.956	12.31	0.88	0.021
2950	Schist	4.5		1				19.06	3.465	19.06	3.465	
3047	Schist							0.684	0.114	0.684	0.114	
1365	Schist	2.36	0.139	0.046	2.34	0.138	0.04	3.24	0.191	2.647	0.156	0.047
1368	Schist							0.477	0.011	0,477	0.011	
1354	Schist	2.85	0,109	0.242	2.86	0.11	0.25	7 3.45	0.133	3,053	0,117	0.25
1813	Schist					1 4:	1.	27.5	72.5	27,5	72.5	
2628	Schist				0.257	1.0	0,04	7 0.124	0.031	0.124	0.031	0.024
1578	Schist	10.4	0.217	0.1	1.00		1	5 11.3	0.235	10.56	0.22	0.108

Appendix 1 (4) List of Pumping Test Analysis Result (4)

Borchole	Lithology	T	heis Me	thod :	Ýa	icobu N	lethod	Recovery	Method	Tag a	Final V	'alue
Number	: .	T	k	\$	T	k	s	Т	k	T	k	s
MUM03	Schist							0.787	0.262	0.787	0.262	
MB093	Schist	1:36	0.136	0.035	1.32	0.132	0.038	0.71	0.071	1.13	0.113	0.037
MB094	Schist		:		3.5			2.65	0.106	2.65	0.106	
MB001	Schist							6.91	0.432	6.91	0.432	
2783	Schist	3.69	0.184	0.03	3,73	0.187	0.03		4.1	2.173	0.124	:0,03
1755	Schist	0.295	0.015	0.002	0.306	0.016	0.002	0.248	0.013	0.283	0.015	0.002
2310	Schist	18,8	0.447	8E-07	19.1	0.455	6E-07		: *	12.63	0.301	7E-07
KB04	Schist	11.3	6.44	0.012	11.7	6.63	0.012	2.8	1.59	8.6	4.887	0.012
мимот	Schist				. :			10.3	0.278	10.3	0.278	
2658-1	Gravel				7.829	1.957	4E-06	2.803	0.701	2.803	0.701	2E-06
LN13	Gravel	2.88	0.303	0.002	2.87	0.302	0.002	1.14	0.152	2.397	0.252	0.002
1466	Gravel	1.94	0.045	0.16	1.89	0.044	0.165	1.08	0.025	1.637	0.038	0.163
2765	Sand	27.87	9.288	0.055	27.64	9.212	0.056			18.5	6.167	0.055
2154	Sand	3.5			0.461	0.092	3E-04	0.123	0.025	0.123	0.025	2E-04
2128	Sand	4.			22.5	1,607	7E-11	7.961	0.569	7.961	0.569	3E-11
2078	Sand	14.3	1,02	0.004	14.3	1.02	0.003	16.2	1.16	14.93	1.067	0.003
2271	Sand	0.61	0.022	0.079	0.581	0.021	0.079	0.841	0.03	0.677	0.024	0.079
1608	Sand	9.19	0.224	0.07	9.22	0.225	0.075	6.66	0.163	8.357	0.204	0.073
1607	Sand	0.14	0.003	0.02	0.14	0.003	0.017	0.152	0.003	0.144	0.003	0.019
1902	Sand	:		\$				1.12	0.043	1.12	0.043	10.00
2203	Sand	23.2	1.78	5E-04	24.7	1.9	2E-01	10.4	0.799	19.43	1,493	4E-04
2205	Sand	0.437	0.022	0.252	0.426	0.021	0.246	0.419	0.021	0.427	0.021	0.249
1601	Sand				÷							1,4
2629C	Sand :		,		41.79	1.493	1E-06	17.23	0.574	17,23	0.574	2E-06
2059	Sand	3.11	0.345	0.044	2.75	0.305	0.074	2.45	0.272	2.77	0.307	0.059
2636	Sand	4.545	0.303	5E-05	4.535	0.302	5E-05	3.365	0.224	4.148	0.276	5E-05
2048	Sand ·	0.403	0.134	0.196	0.406	0.135	0.201			0.27	0.09	0.199
1737	Sand	134	479	0.01	133	477	0.01	69.9	250	112.3	402	0.01
3097	Sand	1.76	0.586	0.132	1.56	0.52	0.206	0.981	0.327	1.434	0.478	0.169
3052	Sand				61.87	5.406	.9E-08	7.333	0.611	7.333	0.611	4E-08
3051	Sand							1.233	0.457	1.233	0,457	
2972	Sand	0.532	0.133	0.225	0.531	0.133	0.232	*.		0.354	0.089	0.229
2162	Sand						,	1.168	0.04	1.168	0.04	
1934	Sand :			- 1				1.127	0.045	1.127	0.045	
1964	Sand :							1.76	0.041	1.76	0.041	4.
1268	Sand					: 1	1.	4.886	0.168	4.886	0.168	
E :	Sand	9.993	0.833	0.006	10.04	0.837	0.006			6.677	0.557	0.006
2263	Sand	114	8,79	0.179	- 114	8.78	0.18	91.7	7.06	106.6	8.21	0.18
MAK15	Sand & Gravel				379.5	94.87	0.039	43.37	10,84	43.37	10.84	0.02
	Sand & Gravel		<u> </u>					•				
2610A	Sand & Gravel	19	2.38	0.019	19.2	2.4	0.017	23.9	2.99	20.7	2 59	0.018

Appendix 1 (5) List of Pumping Test Analysis Result (5)

Borchole	Lithology	TI	heis Me	thod	Ya	cobu M	cthod	Recovery	Method		Final V	aluè
Number		T	k	s	<u> T </u>	k	s	T	, k	T	k	S
2611A	Sand & Gravel	0.728	0.014	0.176	0.726	0.014	0.171	0.639	0.012	0.698	0.013	0.174
1710	Sand & Gravel		-,* -1+	1				24.9	77.9	24.9	77.9	
2311	Sand & Gravel	47.5	1.64	0.016	47.7	1.65	0.016			31.73	1.097	0.016
1720	Sand & Gravel	72.98	2.517	0.002	72.7	2.507	0.003	25	0.862	56.89	1.962	0.002
1613	Granite	38.4	0.662	0.176	38.3	0.661	0.163			25.57	0.441	0.17
2013	Granite	8.02	0.229	0.003	8.18	0.234	0.002	3.99	0.114	6.73	0.192	0.002
1742	Granite	1.13	0.564	0.023	1.13	0.567	0.022	1.13	0.564	1.13	0.565	0.022
1647	Granite :	0.619	0.031	0.058	0.62	0.031	0.055	0.327	0.016	0.522	0.026	0.057
1762	Granite	0.228	0.008	0.044	0.227	0.008	0.041	0.255	0.009	0.237	0.009	0.042
KB03	Granite :							8.29	31.9	8.29	31.9	
2633-1	Granite	34.6	3,14	0.19	34.5	3,14	0.174	44.4	4.04	37.83	3.44	0.182
2294	Granite	0.394	0.131	0.109	0.397	0.132	0.095	0.377	0.126	0.389	0.13	0.102
2719	Granite	2.01	0.223	0.059	1.99	0.221	0.06			1.333	0.148	0.06
1691	Granite							3.44	1.32	3.44	1.32	
2867	Granite	0.873	0.04	0.15	0.855	0.04	0.159			0.576	0.027	0.155
KSM08	Granite	3,559	0.297	0.009	3.58	0.298	0.009	: '		2.38	0.198	0.009
1601	Granite	4.		,			,	7.24	0.13	7.24	0.13	1 1
2269	Granite	28.22	2.315	0.123	28.73	2.357	0.123	Ė		18.98	1.557	0.123
1916-1	Granite							1				
2048-1	Granite				is .		į :	. 1				,
2613A	Granite	2.3	0.056	0.029	2.3	0.056	0.031	1.21	0.03	1.937	0.047	0.03
2665B	Granite	0.314	0.157	0.02	0.314	0.157	0.018	0.474	0.237	0.367	0.184	0.019
1610	Granite	0.302	0.009	0.03	0.304	0,009	0.028	0.388	0.012	0.331	0.01	0.029
3086	Granite	20.7	0.863	0.036	19	0.792	0.066			13.23	0.552	0.051
2268	Granite	1,18	0.393	0.196	1.17	0.391	0.164	1.57	0.523	1.307	0.436	0.18
2601	Granite	0.352	0.024	0.037	0,301	0.02	0.052		1	0.218	0.015	0.044
2522-1	Granite	1.12	0.02	0.141	1.12	0.02	0.147	1.471	0.026	1.237	0.022	0.144
2074	Granite	3.128	1.564	0.061	3.126	1.563	0.061			2.085	1.042	0.061
2022	Granite			47.1				4.262	0.425	4.262	0.425	!
1932	Granite							15.64	1,955	15.64	1.955	100
1754	Granite	31.12	1.596	0.061	31.51	1,616	0.064	1	· ·	20.88	1.071	0.063
1789	Granite	97,42	4.235	0.079	94.87	4,125	0.08	62.62	2.723	84.97	3.694	0.079
1878	Granite	4.359	0.726	0.155	4,347	0.725	0.150	4.042	0.674	4.249	0.708	0,156
1882	Granite							7.452	0.932	7.452	0.932	
1791	Granite						1	13.5	45.1	13.5	45.1	
2830	Granite	213.9						2.12	0.096	2.12	0.096	
2769	Granite		- "					6.95	0.451	6.95	0.451	
2833	Granite	3.85	0.193	0.095	3.84	0.192	0.09				1	
2739	Granite	1						66,9		ł .	1	1
2734	Granite							0.64	1		1 '	1
2308	Granite							1.49		1	0.063	4

J)

Appendix 1 (6) List of Pumping Test Analysis Result (6)

Borehole	Lithology	T	heis Me	thod	Y.	cobu N	lethod	Recovery	Method	Final Value			
Number		Т	k	S	T	k	s	T	k	T	k	s	
2307	Granite	0.428	0.014	0.007	0.427	0.014	0.007	0.297	0.01	0.384	0.013	0.007	
2262	Granite							1.33	0.042	1.33	0.042		
2246	Granite	69.2	5.33	0.059	67.6	5.2	0.057	3.62	0.279	16.81	3.603	0.058	
2309	Granite	4.64	0.309	0.085	1.61	0.309	0.084	1.37	0.092	3.55			
2161	Granite	24.1	0.985	0.11	24.2	0.987	0.123	20.9	0.852	23.07	0.941	0.117	
2139	Granite	:				.		0,977	0.039	0.977	0,039	, ¢	
3134	Granite	i ,						1.84	0.92	1.84	0.92	11	
2949	Granite	0.286	0,03	0.28	0.251	0.026	0.288	0.375	0.039	0.304	0.031	0.284	
1859	Granite	0.198	0.009	0.134	0.198	0.009	0.103	0.377	0.016	0.258	0.011	0.119	
1793	Granite			:				1.68		1.68	0.023		
1794	Granite	11.4					11 .	3.13		3.13	0.313		
1523	Granite	10.1	0.259	0.013	10.2	0.262	0.012	5.36	· .	8.553	0.219	0.012	
1490	Granite : .							0.475	0.015	0.475	0.015		
1477	Granite -	*						0.251	0.011	0.251	0.011		
1456	Granite	:						0.479	0.038	0.479	0.038	6. 1 () () ()	
1479	Granite				1 1			0.698	0.013	0.698	0.013		
1475	Granite :	:			·			0.236	0.004	0.236	0.004	:	
2052	Granite	: 11						2.49	0.225	2.49	0.225		
3002	Granite							1.85	2.31	1.85	2.31		
2266	Granite	9.86	0.448	0.005	10	0.455	0.005	10.8	0.489	10.22	0.464	0.005	
1862	Granite :	3	0.116	0.002	2.98	0.115	0.002	1.58	0.061	2.52	0.097	0.002	
1856	Granite						110 g	0.208	0.014	0.208	0.014		
1325	Granite	7.65	0.183	0.093	7.44	0.178	0.104			5.03	0.12	0.099	
1804	Granite	0.648	0.023	0,094	0.567	0.02	0.098	0.404	0.014	0.54	0.019	0.096	
1809	Granite	1.127	0.063	0.248	1.136	0.063	0.24	1.013	0.056	1.092	0.061	0.211	
1334	Granite	1.48	0.185	0.03	1.43	0.179	0.035	1.22	0.152	1.377	0.172	0.032	
1294	Granite							3.66	0.178	3.66	0.178		
1327	Granite	4.46	1.06	0.07	4.47	1.06	0.067			2.977	0.707	0.068	
1326	Granite							0.933	0.067	0.933	0.067		
1272	Granite				·			1.44	0.086	1.14	0.086		
1275	Granite	:						0.604	0.027	0.604	0.027		
2210	Granite				100		·	2.15	0.075	2.15	0.075		
1753	Granite				36.2	1.65	0.159	11.3	0.512	11.3	0.512	0.08	
1558	Granite							0.569	0.078	0.569	0.078		
1296	Granite :		.					1.11	0.044	1.11	0.044		
1297	Granite	: 1		* .				0.489	0.035	0.489	0.035		
1948	Granite	6.02	2.01	0.043	6.08	2.03	0.044	1.45	0.485	4.517	1.508	0.043	
2931	Granite	- 3.86	0.115	0.059	3.86	0.115	0.056	1.51	0.046	3.087	0.092	0.058	
MB117	Granite	90	5	0,014	91.8	5.1	0.015	17	0.946	66.27	3,682	0.015	
SER03	Granite	0.001	1E-04	7E-05	100.0	2E-04	7E-05	0.001	1E-04	0.001	IE-04	7E-05	
1866	Granite	1.05	0.102	0.254	1.06	0.102	0.241	0.706	0.068	0.939	0.091	0.248	

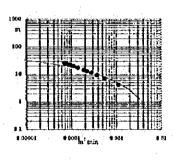
Appendix 1 (7) List of Pumping Test Analysis Result (7)

Borehole	Lithology	Theis Method			Yacobu Method			Recovery Method		Final Value		
Number		T	k	. S	T	- k - [\$	T	k	T	k	s
1726	Granite	0.873	0.097	0.139	0.924	0.103	0.116	0.498	0.055	0.765	0.085	0.128
2	Granite :		į			1		6.93	0.33	6.93	0.33	
1647(A)	Granite	0.582	0.029	0.067	0.582	0.029	0.058	0.344	0.017	0.503	0.025	0.062
2146	Sandstone	3.82	0,153	0.037	3.61	0.144	0.062	2.07	0.083	3.167	0.127	0.05
2135	Sandstone	1.98	0.055	0.051	1.95	0.054	0.052	1.16	0.032	1.697	0.047	0.051
2017	Sandstone	111	0.366	0.004	11.5	0.382	0.002	2.25	0.075	8.25	0.274	0.003
1773	Sandstone	15.2	0.371	0.009	15.2	0.37	0.012			10.13	0.247	0.01
2749-1	Sandstone	1.79	0.198	0.092	1.83	0.204	0.086			1.207	0.134	0.089
2716	Sandstone	11.28	28.21	0.022	11.25	28.12	0.022			7.51	18.78	0.022
2231	Sandstone	0.098	0.01	0.053	0.19	0.019	0.038			0.096	0.01	0.045
1305(A)	Sandstone	9.537	0.795	0.011	9.528	0.794	0.01	7.856	0.655	8,974	0.748	0.01
2615B	Sandstone	5.37	1.07	0.004	5.47	1.09	0.005	2.06	0.412	4.3	0.857	0.004
1957	Sandstone	3.687	0.176	0.265	3.72	0.177	0.261		;	2.169	0.118	0.263
2212	Quartzite	4.601	0.307	0.039	4.505	0.3	0.049	5.406	0.36	1.837	0.322	0.044
LS-2	Quartzite				1,1			7.23	0.831	7.23	0.831	* *
1823	Quartzite	0.021	1E-01	0.018	0.022	4E-04	0.016			0.014	3E-04	0.017
1950	Quartzite	11		: 1				2.37	0.215	2.37	0.215	
1988	Quartzite	1.11	0.222	0.248	1.11	0.223	0.265	1.08	0.215	1.1	0.22	0.257
2289	Quartzite	0.467	0.013	0.065	0.433	0.012	0.058	0.469	0.013	0.456	0.012	
1566	Quartzite	5.95	0.139	0.176	5.93	0.138	0.176		0.059	4.807	0.112	0.176
2203	Quartzite	43.7		ł		3,36	2E-08		0.987	33.37	2.569	
1667	Quartzite	0.356	0.03	0.011	0.298	0.025	0.015	4	0.033	0.348	0.029	0.013
1666	Quartzite		1					2.06	0.229	2.06	0.229	
1665	Quartzite				1) B			10.5	0,269	10.5	0.269	Į I
1653	Quartzite	6.53	0.126	0.076	6.53	0.126	0.031		0.108	1 .	0.12	1
2937	Quanzite	1		1 1 4			. +	4.57	0.117		0.117	1
2630	Quartzite	2,91	1	0.071	2.91		0.073			2.993	0.125	I
2617	Gneiss	0.106	l									
1916	Gneiss	0.307	0.015	0.172	0.308	0.015	0.173		0.052	!	0.047	i
1917	Gn≳iss						4 0	1.2				1
2158	Gneiss	2.56		1	100		1		0.041	2.107	0.073	
1880	Gneiss	8.37	1 : 1				1			5,596	13.02	ļ
1450	Gneiss	3.79	0.087	0.017	3.74	0.086	0.017			2.51	0.058	1
1487	Gneiss							0.598	ł	l .	0.066	1
2140	Gaeiss	12.6	1		12.5	l	0.043			4.3	ł ·	ł
1787	Gneiss	7.15	0.14	0,036	7.18	0.141	0.034	1	•		1	1
1176	Gneiss							0.111	0.002		ł]
1489	Gneiss							0.353		0.353	0.011	
1524	Gneiss	0	0	0	0	0	0		1 .	1.21	0.084	l
1860	Gneiss							0.73	1.	1 .	0.046	l ·
1483	Oneiss	1.17	0.065	0.054	1.17	0.065	0.056	0.716	0.039	1.019	0.056	0.055

Appendix 1 (8) List of Pumping Test Analysis Result (8)

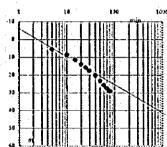
Borehole	Lithology	Theis Method			Yacobu Method			Recovery	Method	Final Value			
Number		T :	k	s	T	k	s	T	k	Т	k	s	
1526	Gneiss	0.086	0.006	0.068	0.088	0.006	0.053	0.055	0.004	0.076	0.005	0.061	
1594	Onciss	ŀ			· ·	1.		0.493	0.07	0.493	0.07		
1559	Oneiss				:		100	1.56	1.72	1.56	4.72	•	
1557	Gneiss						4	0.303	0.061	0.303	0.061		
1555	Gneiss							1:32	0.063	1,32	0.063	÷ .	
1350	Gneiss	1.24	0.052	0.049	1.23	0.051	0.05	0.88	0.037	1.117	0.047	0.049	
1352	Gneiss	0.976	0.019	0.009	0.984	0.019	0.009	0.343	0.007	0.768	0.015	0.009	
1348	Gneiss Gneiss	0.553	0.019		0.531	0.018	0.002	0.489		0.703	0.013	0.009	
MB003	Gneiss Gneiss	2.947	0.134	0.087	2.912	0.132	0.092	4,417	0.201	3,425	0.156	0.137	
MB12	Gneiss	3.144	0.126	1E-06	3.172	0.127	1E-06	0.351	0.014	2.222	0.089	1E-06	
MB13	Gneiss	0.706	0.044	0.064	0.711	0.011	0.061	0.504	0.032	0.64	0.04	0.062	
3048	Clay			2 4,5 5,75				0.564	0.113	0.564	0.113	0.002	
2244	Clay					, ,		4.26	0.474	4.26	0.474		
1731	Siltstone	0.962	0.021	0.072	0.971	0.022	0.069		0.025	1.021	0.023	0.07	
1731	Siltstone	0.929	0.021	0.071	0.916	0.021	0.07	1.34	0.03	1.072	0.024	0.07	
1731	Siltstone	0.962	0.021	0.072	0.971	0.022	0.069	1.13	0.025	1.021	0.023	0.07	
1731	Siltstone	0.929	0.021	0.071	0.946	0.021	0.07	1.34	0.03	1.072	0.024	0.07	
1842	Igneous Rock		•					0.115	0.023	0.115	0.023		
1843	Igreous Rock		. •					0.762	0.04	0.762	0.04		
2038	Meta-Igneous							1.01	0.034	1.01	0.034		
2679	Meta-Igneous	5.868	0.309	0.019	6.05	0.318	0.018	1.122	0.233	5.447	0.287	0.018	
1942	Meta-Sediment				1.			3.97	0,331	3.97	0.331		
1942	Meta-Sediment							3.95	0.329	3.95	0.329		
1649	Unknown	1.111	0.036		1.107				0.019	0.933	0.03	0.212	
1258	Unknown	3.033	0.142	0.157	3.022	0.141	0.145	I . I	0.052	2.389	i l		
2672-1	Unknown	0.695	0.116		0.693	0.116	2.4	0.709	0.118	0,699			
1639	Unknown	2.915	i i		2.973	0.248	0.011	1	0.39	3.524	0.294	0.011	
2148	Unknown	1.094	0.137	0.057	1.046	0.131	0.06		0.125	1.048	0.131	0.058	
2135R	Unknown	2.1	0.233	0.035	2.08	0.231	0.035		0.111	1.725	0.192	0.035	
KSM13	Unknown	16.09	1 967	0.363	16.71	1012	0.262	3.19	6.37	3.19	6.37	0.000	
1781 2136-2	Unknown	16.09 191	1.867 12.7			1							
2095	Unknown	0.722	0.014	i		0.014			1.78 0.011	137.6 0.676		!	
2229-2	Unknown Unknown	0.722	0.014	0.03	0.724	0.014	V.029	0.933	0.011	0.933	•		
1989	Unknown	1.03	0.54	0.082	1.03	0.541	0.082		0.023	0.89			
	Unknown	0.41		į		l .	6	1	1 1		1 -	0.095	
1331(0)	Tengosti	0.41	V.003	0.072		(7.717	1 0.077	1.70	2.73	1.027	1.317	0.073	

Appendix 2 (1) Explanation of Analyzed Figures

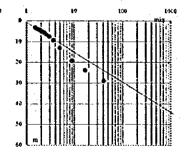

No. 2208 (Borehole Number in Data-base)

T= 4.37E-01 k= 2.19E-02 S= 2.52E-01 I: Transitissivity By Theis Wetl T: Transisissivity By Jacob Nothod I : Transizissivity By Jatob Nethod k : Coefficient of Perceability by Theis Nethodk : Coefficient of Perceability by Jacob Ne - k : Coefficient of Perceability

s : Specific Yield by Theis Method

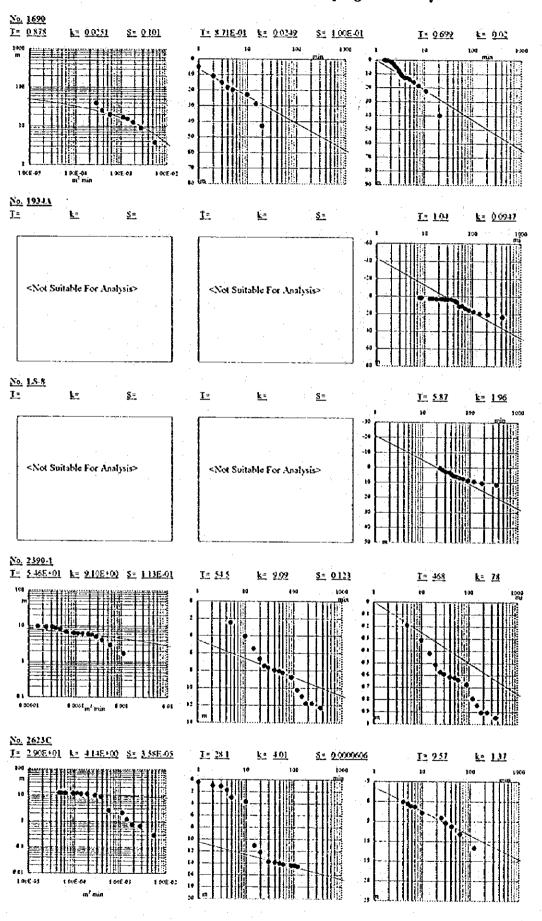

s : Specific Vield by Jacob Veth

by Jacob Vethod


x - axis is r/t(o2/oin) y - axis is draw down (a)

(Theis Method >

x - axis is t (min) y - axis is draw down (m)


(Jacob Method)

x - axis is t (oin) y - axis is draw down (m)

< Recovery Kethod >

Appendix 2 (2) Result of Pumping Test Analysis

V-App.-10